WO2022138571A1 - エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法 - Google Patents

エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法 Download PDF

Info

Publication number
WO2022138571A1
WO2022138571A1 PCT/JP2021/047055 JP2021047055W WO2022138571A1 WO 2022138571 A1 WO2022138571 A1 WO 2022138571A1 JP 2021047055 W JP2021047055 W JP 2021047055W WO 2022138571 A1 WO2022138571 A1 WO 2022138571A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
treatment agent
elastomer fiber
fiber
Prior art date
Application number
PCT/JP2021/047055
Other languages
English (en)
French (fr)
Inventor
康平 小田
武志 西川
Original Assignee
竹本油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹本油脂株式会社 filed Critical 竹本油脂株式会社
Priority to CN202180084975.5A priority Critical patent/CN116685736B/zh
Publication of WO2022138571A1 publication Critical patent/WO2022138571A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Definitions

  • the present invention relates to a treatment agent for an elastomer fiber high-speed spinning process and a method for producing an elastomer fiber.
  • elastomer fibers which are a type of synthetic fibers, have stronger adhesiveness between fibers than other synthetic fibers.
  • an oil agent may be applied to the elastomer fiber in the spinning process of the elastomer fiber.
  • Patent Document 1 discloses, as a method for producing an elastic fiber as an elastomer fiber, a raw material composition containing a thermoplastic polyurethane elastomer is melt-spun at a spinning rate of 2000 to 10000 m / min.
  • Patent Document 2 describes an elastomer composed of (a) polyorganosiloxane or mineral oil, (b) silicon resin, and (c) ether-modified polyorganosiloxane, to which an oil having a viscosity of 50 centistoke or less at 30 ° C. is applied.
  • Polyurethane elastic fibers as fibers are disclosed.
  • Patent Document 3 discloses a treatment agent for elastic fibers as an oil agent containing a base component, an amino-modified silicone, and a silicone resin.
  • the elastomer fiber in addition to further improving the unwinding performance of stably unwinding the elastomer fiber from the package, the elastomer fiber can be used. There is a need to improve the performance of suppressing scattering.
  • the treatment agent for the high-speed spinning process of elastomer fibers having a winding speed of 1000 m / min or more for solving the above problems has a total content ratio of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group of 100 mass. %,
  • the dimethyl silicone is contained in an amount of 70 to 97% by mass
  • the silicone resin is contained in an amount of 0.1 to 10% by mass
  • the mineral oil is contained in an amount of 0 to 10% by mass
  • the modified silicone is contained in a proportion of 2 to 5% by mass.
  • the gist is that the kinematic viscosity at 30 ° C. is 8 to 70 mm 2 / s.
  • the treatment agent for the elastomer fiber high-speed spinning process having a winding speed of 1000 m / min or more means a treatment agent applied to the elastomer fiber in the elastomer fiber spinning process having a winding speed of 1000 m / min or more.
  • the kinematic viscosity of the treatment agent for the elastomer fiber high-speed spinning process at 30 ° C. is preferably 8 to 40 mm 2 / s.
  • the elastomer fibers are preferably polyurethane-based elastomer fibers.
  • the gist of the method for producing an elastomer fiber for solving the above-mentioned problem is that the treatment agent for the elastomer fiber high-speed spinning process is adhered to the elastomer fiber in the spinning process at a winding speed of 1000 m / min or more.
  • the winding speed in the spinning step is preferably 1000 to 10000 m / min.
  • the unfoldability of the elastomer fiber can be suitably improved, and the scattering from the elastomer fiber is suppressed.
  • a first embodiment embodying a treatment agent for an elastomer fiber high-speed spinning process according to the present invention (hereinafter, also simply referred to as a treatment agent) will be described.
  • the treatment agent of this embodiment contains dimethyl silicone and a silicone resin, and optionally mineral oil.
  • the treatment agent further contains a modified silicone having an amino group. Assuming that the total content of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group in the treatment agent is 100% by mass, the treatment agent contains 70 to 97% by mass of dimethyl silicone and 0. It contains 1 to 10% by mass of mineral oil, 0 to 10% by mass of the modified silicone, and 2 to 5% by mass of the modified silicone, and has a kinematic viscosity at 30 ° C. of 8 to 70 mm 2 / s.
  • the unfoldability of the elastomer fiber can be suitably improved.
  • the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
  • the term "high speed" in the treatment agent for the high-speed spinning process of elastomer fibers means that the winding speed in the spinning process is 1000 m / min or more. That is, the treatment agent is used by adhering it to the elastomer fiber in the elastomer fiber spinning step in which the winding speed is 1000 m / min or more.
  • the treatment agent has a kinematic viscosity of 8 to 40 mm 2 / s at 30 ° C. Is preferable. When the kinematic viscosity of the treatment agent is within the above numerical range, the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber. The method for measuring the kinematic viscosity will be described later.
  • the dimethyl silicone is not particularly limited, but preferably has a kinematic viscosity of 5 to 1000 mm 2 / s at 25 ° C.
  • Specific examples of the dimethyl silicone include dimethyl silicone having a kinematic viscosity of 10 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 100 mm 2 / s at 25 ° C, and a kinematic viscosity of 1000 mm 2 / s at 25 ° C.
  • Examples thereof include dimethyl silicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C, dimethyl silicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C, and the like.
  • the above-mentioned dimethyl silicone may be used alone or in combination of two or more.
  • the silicone resin is not particularly limited, but is represented by the M unit shown in Chemical formula 1 below, the siloxane unit shown in Chemical formula 2 below, the Q unit shown in Chemical formula 3 below, and the chemical resin 4 below. It is preferably composed of two or more structural units selected from siloxane units.
  • R 1 , R 2 , and R 3 are hydrocarbon groups having 1 to 24 carbon atoms, respectively.
  • R4 is a hydrocarbon group having 1 to 24 carbon atoms
  • R 5 and R 6 are alkylene groups having 1 to 5 carbon atoms, respectively.
  • R 7 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, a residue obtained by removing one hydroxyl group from a 1 to 4 valent aliphatic carboxylic acid having 4 to 22 carbon atoms, or a residue having 6 to 22 carbon atoms.
  • Residues obtained by removing one hydroxyl group from a 1- to 4-valent aromatic carboxylic acid, f is an integer from 0 to 1.
  • the silicone resin preferably has a molar ratio of M units to Q units (hereinafter, also referred to as “MQ ratio”) of 0.5 to 1.2.
  • the hydrocarbon group having 1 to 24 carbon atoms is not particularly limited, and is a saturated hydrocarbon group. It may be an unsaturated hydrocarbon group or an unsaturated hydrocarbon group. Further, it may be a linear hydrocarbon group or a hydrocarbon group having a branched chain.
  • hydrocarbon group having 1 to 24 carbon atoms examples include 1) methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group, hexyl group and isohexyl group.
  • Octyl group isooctyl group, decyl group, isodecyl group, dodecyl group, isododecyl group, tridecyl group, isotridecyl group, tetradecyl group, isotetradecyl group, hexadecyl group (cetyl group), isohexadecyl group, octadecyl group (stearyl group) , Isooctadecyl group, Eicosyl group, Isoeicosyl group, Docosyl group, Isodocosyl group, Tetracosyl group, Isotetracosyl group and other 1 to 24 aliphatic hydrocarbon groups, 2) Cyclopropyl group, Cyclopentyl group, Cyclohexyl group, Cyclo Alicyclic hydrocarbon groups having 3 to 24 carbon atoms such as octyl group and 3-pinanyl group, 3) carbons such as
  • Examples of the alkylene group having 1 to 5 carbon atoms in R5 and R6 of Chemical formula 2 include a methylene group, an ethylene group, a propylene group, a butylene group, and a heptylene group.
  • Examples of R 7 -NH (-R 6 -NH) f -R 5- of the above-mentioned Chemical formula 2 include the following (1) to (10).
  • the aminoalkyl group of (1) above include an aminoethyl group, a 3-aminopropyl group, a 4-aminobutyl group and the like.
  • Examples of the substituted iminoalkyl group of (2) above include N-ethyl-3-iminopropyl group and N-ethyl-2-iminoethyl group.
  • Examples of the N-phenyliminoalkyl group of (3) above include an N-phenyl-3-iminopropyl group and an N-phenyl-2-iminoethyl group.
  • N-substituted aliphatic amide alkyl group of (4) above examples include N-acetoyl-2-iminoethyl group, N-dodecanoyl-2-iminoethyl group, N-octadecanoyl-2-iminoethyl group and N-octadecenoyl-.
  • 2-Iminoethyl group N-acetoyl-3-iminopropyl group, N-dodecanoyl-3-iminopropyl group, N-octadecanoyl-3-iminopropyl group, N-octadecenoyl-3-iminopropyl group, N-acetoyl -4-Iminobutyl group, N-dodecanoyl-4-iminobutyl group, N-octadecanoyl-4-iminobutyl group, N-octadecenoyl-4-iminobutyl group, N- (2-carboxyethylcarbonyl) -2-iminoethyl group, Examples thereof include N- (2-carboxyethylcarbonyl) -3-iminopropyl group, N- (2-carboxyethylcarbonyl) -4-iminobutyl group and the like.
  • N-substituted aromatic amide alkyl group of (5) above examples include N- (2,4-dicarboxybenzene-carbonyl) -2-iminoethyl group and N- (2,5-dicarboxybenzene-carbonyl)-.
  • aminoalkyl iminoalkyl group of (6) above examples include N- (2-aminoethyl) -2-iminoethyl group, N- (2-aminoethyl) -3-iminopropyl group, and N- (2-aminoethyl). ) -4-Iminobutyl group and the like.
  • Examples of the substituted iminoalkyl iminoalkyl group of (7) above include N- (N'-ethyl-2-iminoethyl) -3-iminopropyl group and N- (N'-propyl-2-iminoethyl) -3-imino.
  • Examples include propyl groups.
  • N-phenyliminoalkyl iminoalkyl group of (8) above examples include N- (N'-phenyl-2-iminoethyl) -3-iminopropyl group and N- (N'-phenyl-2-iminoethyl) -2. -Iminoethyl group and the like can be mentioned.
  • N-substituted aliphatic amidoalkyliminoalkyl group of (9) above examples include N- (N'-acetoyl-2-iminoethyl) -2-iminoethyl group and N- (N'-dodecanoyl-2-iminoethyl) -2.
  • N-substituted aromatic amidoalkyl iminoalkyl group of (10) examples include N- [N'-(2,4-dicarboxybenzene-carbonyl) -2-iminoethyl] -2-iminoethyl group and N- [.
  • the analysis of siloxane units such as M unit and Q unit of silicone resin is not particularly limited, but can be performed by elemental analysis, FT-IR spectrum analysis, CP / MAS NMR spectrum analysis and the like.
  • the ratio of the constituent siloxane units can be calculated by measuring the carbon number of each silane compound used as a raw material by the above analysis method. Then, the number of moles of the siloxane unit in the molecule is calculated from the measured values of the ratio of the constituent siloxane units, the theoretical molecular weight of the siloxane units constituting the silicone resin, and the mass average molecular weight described later, and the molar ratio is calculated. Can be done.
  • silicone resin examples include, for example, a methyl silicone resin having a mass average molecular weight of 12000 and an MQ ratio of 0.8, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8.
  • examples thereof include a methyl silicone resin having a mass average molecular weight of 9000 and an MQ ratio of 0.85, and an amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.91.
  • the above silicone resin may be used alone or in combination of two or more.
  • the mineral oil contained in the above-mentioned treatment agent is not particularly limited, and examples thereof include aromatic hydrocarbons, paraffinic hydrocarbons, and naphthenic hydrocarbons. More specifically, for example, spindle oil, liquid paraffin and the like can be mentioned.
  • the mineral oil preferably has a kinematic viscosity of 5 to 10 mm 2 / s at 40 ° C.
  • Specific examples of the above mineral oil include, for example, a mineral oil having a kinematic viscosity of 10 mm 2 / s at 40 ° C, a mineral oil having a kinematic viscosity of 5 mm 2 / s at 40 ° C, and a kinematic viscosity of 7 mm 2 / s at 40 ° C.
  • Mineral oil and the like are examples of the above mineral oil having a kinematic viscosity of 10 mm 2 / s at 40 ° C.
  • the above-mentioned mineral oil a commercially available product can be appropriately adopted.
  • the above mineral oil may be used alone or in combination of two or more.
  • the modified silicone having an amino group is not particularly limited, and a diamine-type amino-modified silicone or a monoamine-type amino-modified silicone can be used.
  • Specific examples of the modified silicone having an amino group include a monoamine type amino-modified silicone having an kinematic viscosity of 60 mm 2 / s at 25 ° C and an equivalent of 4100 g / mol, and a kinematic viscosity of 90 mm 2 / s at 25 ° C.
  • Examples thereof include monoamine-type amino-modified silicone having an equivalent of 8800 g / mol, and diamine-type amino-modified silicone having a kinematic viscosity of 450 mm 2 / s at 25 ° C. and an equivalent of 5700 g / mol.
  • the modified silicone having an amino group may be used alone or in combination of two or more.
  • (Second Embodiment) A second embodiment in which the elastomer fiber according to the present invention is embodied will be described.
  • the treating agent of the first embodiment is attached to the elastomer fiber of the present embodiment.
  • the amount of the treatment agent (without solvent) adhered to the elastomer fiber of the first embodiment is not particularly limited, but is adhered at a ratio of 0.1 to 10% by mass from the viewpoint of further improving the effect of the present invention. It is preferable to have.
  • the elastomer fiber is not particularly limited, and examples thereof include polyester-based elastomer fibers, polyamide-based elastomer fibers, polyolefin-based elastomer fibers, and polyurethane-based elastomer fibers.
  • polyurethane-based elastomer fibers are preferable, and among these, polyurethane-based elastomer fibers spun by the melt spinning method are preferable. In such a case, the manifestation of the effect of the present invention can be further enhanced.
  • the elastomer fiber means a fiber having a high elasticity, which can be stretched when a tensile stress is applied and returns to the original length when the tensile stress is released. .. Therefore, the elastomer fiber can be paraphrased as an elastic fiber.
  • the method for producing an elastomer fiber of the present embodiment is obtained by supplying (that is, supplying) the treating agent of the first embodiment to the elastomer fiber in the spinning step.
  • a method for refueling the treatment agent a method of adhering to the elastomer fiber in the spinning step of the elastomer fiber by a neat refueling method without diluting is preferable.
  • the adhesion method for example, a known method such as a roller lubrication method, a guide lubrication method, or a spray lubrication method can be applied.
  • the method for producing the elastomer fiber itself applied to the present embodiment is not particularly limited, and the elastomer fiber itself can be produced by a known method.
  • a wet spinning method, a melt spinning method, a dry spinning method and the like can be mentioned.
  • the melt spinning method is preferably applied from the viewpoint that the load on the working environment is small because no solvent is used and the production can be performed at a lower cost.
  • the winding speed of the elastomer fiber in the spinning process is not particularly limited, but high-speed spinning of 1000 / min or more is preferable.
  • the winding speed in the spinning step is more preferably 1000 to 10000 m / min.
  • the treatment agent contains 70 to 97% by mass of dimethyl silicone and silicone resin, assuming that the total content of dimethyl silicone, silicone resin, mineral oil, and modified silicone having an amino group in the treatment agent is 100% by mass. It contains 0.1 to 10% by mass of mineral oil, 0 to 10% by mass of mineral oil, and 2 to 5% by mass of the modified silicone, and has a kinematic viscosity at 30 ° C. of 8 to 70 mm 2 / s.
  • the treatment agent is applied to the elastomer fiber in the elastomer fiber high-speed spinning step in which the winding speed is 1000 m / min or more. Even in this case, the unfoldability of the elastomer fiber can be suitably improved. In addition, it is possible to more preferably suppress the scattering of the treatment agent from the elastomer fiber. In addition, the shape of the elastomer fiber when it is spun and wound into a package can be better maintained.
  • the treatment agent has a kinematic viscosity at 30 ° C. of 8 to 40 mm 2 / s.
  • the treatment agent can be more uniformly adhered when the treatment agent is applied to the elastomer fiber.
  • the above embodiment can be modified and implemented as follows.
  • the above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the amount of dimethyl silicone contained in the treatment agent is 75% by mass or more, 76% by mass or more, 77% by mass or more, 78% by mass or more, 84% by mass or more, 88% by mass or more, 93% by mass or more, 94. It may be 5% by mass or more, 95.25% by mass or more, or 96.1% by mass or more, or 96.1% by mass or less, 95.25% by mass or less, 94.5% by mass or less, 93. It may be mass% or less, 88% by mass or less, 84% by mass or less, 78% by mass or less, 77% by mass or less, 76% by mass or less, or 75% by mass or less.
  • the amount of silicone resin contained in the treatment agent is 1% by mass or more, 1.9% by mass or more, 3% by mass or more, 5% by mass or more, 10% by mass or more, 13% by mass or more, 17% by mass or more, Alternatively, it may be 20% by mass or more, or 25% by mass or less, 20% by mass or less, 17% by mass or less, 13% by mass or less, 10% by mass or less, 5% by mass or less, 3% by mass or less, 1 It may be 9.9% by mass or less, or 1% by mass or less.
  • the amount of the mineral oil contained in the treatment agent may be 1.75% by mass or more, 4.9% by mass or more, 5% by mass or more, or 10% by mass or more, or 13% by mass or less. It may be 10% by mass or less, 5% by mass or less, 4.9% by mass or less, or 1.75% by mass or less. Further, the treatment agent does not necessarily have to contain mineral oil.
  • the amount of the modified silicone having an amino group contained in the treatment agent may be 0.5% by mass or more, 2% by mass or more, 3% by mass or more, 5% by mass or more, or 10% by mass or more. Alternatively, it may be 10% by mass or less, 5% by mass or less, 3% by mass or less, 2% by mass or less, or 0.5% by mass or less. Further, the treatment agent does not necessarily have to contain a modified silicone having an amino group.
  • the treatment agent contains 70 to 99.9% by mass of dimethyl silicone and 0.1 to 25% by mass of silicone resin.
  • % And mineral oil may be contained in a ratio of 0 to 13% by mass.
  • the treatment agent of the present embodiment includes a stabilizer for maintaining the quality of the treatment agent, an antistatic agent, an antistatic agent, a binder, an antioxidant, and ultraviolet absorption within a range that does not impair the effect of the present invention.
  • Ingredients hereinafter, also referred to as other ingredients used in ordinary treatment agents such as agents may be further added.
  • Test Category 1 Preparation of treatment agent for high-speed spinning process of elastomer fiber
  • Examples 1, 3 to 5, 8, Reference Examples 1 to 10, and Comparative Examples 1 to 10 The silicone resin (B1) shown in Table 1 was synthesized by the following method.
  • this silicone resin (B1) contained 8.0 mol% of trimethylsiloxane as the siloxane unit (M body) represented by Chemical formula 1 in one molecule, and was represented by Chemical formula 3. It was a silicone resin having 10 mol% (18 mol% in total) of siloxane units (Q-form) and a molar ratio of M units to Q units of 0.8.
  • the silicone resins B2 to B4 were synthesized by adjusting the type, formulation, and reaction time of each raw material while following the method for synthesizing the silicone resin (B1). Next, using each component shown in Table 1, dimethyl silicone (A1), dimethyl silicone (A2), silicone resin (B1), mineral oil (C1), and amino-modified silicone (D1) are each 83 quality. Parts were added to the beaker so as to be 10 parts by mass, 0.1 part by mass, 4.9 parts by mass, and 2 parts by mass. These were stirred well and mixed uniformly to prepare a treatment agent for the elastomer fiber high-speed spinning process of Example 1.
  • the treating agents for the elastomer fiber high-speed spinning process of Examples 3 to 5, 8, Reference Examples 1 to 10, and Comparative Examples 1 to 9 were prepared by the same method as in Example 1 by adjusting the composition of each raw material. .. In Comparative Example 10, the elastomer fiber was produced without using a treatment agent for the elastomer fiber high-speed spinning process.
  • dimethyl silicone, silicone resin, mineral oil, amino-modified silicone, and other components used in the treatment agent for the elastomer fiber high-speed spinning process are listed in the "Dimethyl Silicone (A)” column of Table 1, "Silicone Resin (Silicone Resin). As shown in the “B)” column, the “mineral oil (C)” column, the “amino-modified silicone (D)” column, and the “other component (E)” column, respectively.
  • (Dimethyl Silicone (A)) A1: Dimethyl silicone with kinematic viscosity at 25 ° C of 10 mm 2 / s
  • A2 Dimethyl silicone with kinematic viscosity at 25 ° C of 100 mm 2 / s
  • A4 Dimethylsilicone having a kinematic viscosity of 6 mm 2 / s at 25 ° C.
  • A5 Didimethylsilicone having a kinematic viscosity of 5 mm 2 / s at 25 ° C.
  • B2 Amino-modified silicone resin having a mass average molecular weight of 16000 and an MQ ratio of 0.8
  • B3 Amino-modified silicone resin having a mass average molecular weight of 9000 Methyl silicone resin with an MQ ratio of 0.85
  • B4 Amino-modified silicone resin with an mass average molecular weight of 16000 and an MQ ratio of 0.91 The method for calculating the MQ ratio will be described.
  • MQ ratio number of moles in M units / number of moles in Q units
  • M unit compound represented by Chemical formula
  • Q unit compound represented by chemical formula 3
  • Mw mass average molecular weight of silicone resin
  • HLC-8320GPC manufactured by Tosoh Corporation equipped with TSKgel SuperH-RC was used. Further, as a measurement column, an HLC-8320GPC manufactured by Tosoh Co., Ltd. equipped with TSKguardcolum SuperH-L, TSKgel SuperH4000, TSKgel Super3000, and TSKgel Super2000 was used.
  • a calibration curve was prepared using TSKgel standard polystyrene as a standard sample, and Mw of each silicone resin was obtained.
  • C Mineral oil with kinematic viscosity of 10 mm 2 / s at 40 ° C.
  • C2 Mineral oil with kinematic viscosity of 5 mm 2 / s at 40 ° C.
  • C3 Mineral oil with kinematic viscosity of 7 mm 2 / s at 40 ° C.
  • Test Category 2 Manufacturing of Elastomer Fiber
  • Elastomer fibers were produced using the treatment agent prepared in Test Category 1.
  • a polyurethane-based elastomer obtained from polytetramethylene glycol having a molecular weight of 1000 and diphenylmethane diisocyanate was melt-spun to obtain a polyurethane-based elastomer fiber.
  • the treatment agent prepared in Test Category 1 was neatly refueled by the guide oiling method from the refueling guide located between the stretching roller before winding and the winding part. Subsequently, the polyurethane-based elastomer fiber to which the treatment agent was applied was wound into a cylindrical paper tube having a length of 58 mm under three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min.
  • Winding was performed using a surface drive winder via a traverse guide that gives a winding width of 38 mm. By this winding, 500 g of a package of melt-spun polyurethane-based elastomer fibers was obtained. The amount of the treatment agent adhered was adjusted so that the amount of liquid sent to the refueling guide was adjusted to 5% by mass.
  • Test category 3 evaluation of the treatment agents of Examples 1, 3 to 5, 8, Reference Examples 1 to 10, and Comparative Examples 1 to 10, the oil agent scattering property, shape retention property, oil agent uniform adhesion property, and oil agent uniform adhesion of the elastomer fiber to which the treatment agent was attached, and Elastomers were evaluated by the procedures described below.
  • winding is performed by using a surface drive winder (not shown) via a traverse guide (not shown) that gives a winding width of 42 mm to a cylindrical paper tube 11 having a length of 57 mm.
  • the maximum value (Wmax) and the minimum width (Wmin) of the winding width were measured, and the bulge was obtained by the following formula from the difference between the two.
  • the results of evaluation based on the following criteria are shown in the "Shape retention" column of Table 1.
  • test category 2 the polyurethane elastomer fiber was pulled out from the package manufactured under the three conditions of winding speeds of 500 m / min, 1000 m / min and 3000 m / min, and the contact angle with respect to the chrome-plated satin pin was 90 degrees. I set it to be.
  • the standard deviation When the standard deviation is 1.5 or more and less than 2.0, the oil agent adheres almost uniformly, and there is a tension fluctuation when the fiber is rubbed against the chromium-plated satin pin, but there is no problem in operation.
  • the standard deviation When the standard deviation is 2.0 or more, the oil does not adhere uniformly, and when the fiber is rubbed against the chrome-plated satin pin, the tension fluctuates greatly and a problem occurs in operation.
  • a feeding portion was formed by a first driving roller and a first free roller in constant contact with the first driving roller. Further, a winding portion is formed by a second driving roller and a second free roller that is in constant contact with the second driving roller. The distance between the feeding part and the winding part was set to about 20 cm along the horizontal direction.
  • the package (500 g roll) prepared in Test Category 2 was attached to the first drive roller.
  • the first drive roller was driven to send out the polyurethane-based elastomer fiber
  • the second drive roller was driven to wind up the polyurethane-based elastomer fiber.
  • the package was unwound until the thickness of the spool was 2 mm.
  • Decomposability (%) (V-50) x 2 ⁇ Evaluation criteria for solvability ⁇ (good): solvability is less than 120% ⁇ (possible): solvability is 120% or more and less than 140% ⁇ (poor): solvability is 140% or more When the unleashable property is less than 120% in the evaluation criteria of the unleashable property, the yarn breakage does not occur and the unleashable state can be unraveled in a stable state. When the unwindability is 120% or more and less than 140%, there is some resistance to pulling out the yarn, but no yarn breakage occurs and there is no problem in operation. When the unwindability is 140% or more, the resistance at the time of pulling out the yarn becomes larger, the yarn breaks, and the operation becomes a problem.
  • the unfoldability of the elastomer fiber can be suitably improved and the scattering of the treatment agent can be suppressed. can.
  • the shape of the elastomer fiber when it is wound around the package can be better maintained. Further, when the treatment agent is applied to the elastomer fiber, the treatment agent can be adhered more uniformly.
  • the present disclosure also includes the following aspects.
  • (Appendix 1) Assuming that the total content of dimethyl silicone, silicone resin, and mineral oil is 100% by mass, the dimethyl silicone is 70 to 99.9% by mass, the silicone resin is 0.1 to 25% by mass, and the mineral oil is used.
  • a treatment agent for a high-speed spinning process of an elastomer fiber which is contained in a proportion of 0 to 13% by mass and has a kinematic viscosity of 8 to 70 mm 2 / s at 30 ° C.
  • Appendix 2 Further, the treatment agent for an elastomer fiber high-speed spinning process according to Appendix 1, which contains a modified silicone having an amino group.
  • Appendix 7 The method for producing an elastomer fiber according to Appendix 6, wherein the winding speed in the spinning step is 1000 to 10000 m / min.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

エラストマー繊維の解舒性を好適に向上させるとともに、エラストマー繊維からの飛散を抑制することを課題とする。巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、ジメチルシリコーンを70~97質量%、シリコーンレジンを0.1~10質量%、鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm2/sである。

Description

エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法
 本発明は、エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法に関する。
 例えば合成繊維の一種であるエラストマー繊維は、他の合成繊維に比べて繊維間の粘着性が強い。例えばエラストマー繊維を紡糸してパッケージに巻き取った後、該パッケージから引き出して加工工程に供する際に、エラストマー繊維をパッケージから安定して解舒することが難しい場合がある。そのため、パッケージから安定して解舒させるために、エラストマー繊維の紡糸工程において、エラストマー繊維に油剤を付与することがある。
 特許文献1には、エラストマー繊維としての弾性繊維の製造方法について、熱可塑性ポリウレタンエラストマーを含む原料組成物を、2000~10000m/minの紡糸速度で溶融紡糸することが開示されている。
 特許文献2には、(a)ポリオルガノシロキサン又は鉱物油、(b)シリコンレジン、及び(c)エーテル変性ポリオルガノシロキサンからなり、30℃における粘度が50センチストーク以下の油剤が付与されたエラストマー繊維としてのポリウレタン弾性繊維が開示されている。
 特許文献3には、ベース成分、アミノ変性シリコーン、及びシリコーンレジンを含有する油剤としての弾性繊維用処理剤が開示されている。
特開2018-127746号公報 特開平4-343769号公報 特開2018-131699号公報
 近年、エラストマー繊維の紡糸工程において、高速化とともに高倍率延伸が行われるようになってきている。高速での紡糸工程で付与された油剤は、エラストマー繊維に付着せずに飛散しやすい傾向がある。そのため、高速での紡糸工程に用いられる油剤としてのエラストマー繊維高速紡糸工程用処理剤には、エラストマー繊維をパッケージから安定して解舒する解舒性のさらなる性能向上に加えて、エラストマー繊維からの飛散を抑制する性能の向上が求められている。
 上記課題を解決するための巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤は、ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm/sであることを要旨とする。なお、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤とは、巻き取り速度が1000m/min以上であるエラストマー繊維紡糸工程においてエラストマー繊維に適用される処理剤のことをいう。
 上記エラストマー繊維高速紡糸工程用処理剤の30℃における動粘度は8~40mm/sであることが好ましい。
 上記エラストマー繊維高速紡糸工程用処理剤において、前記エラストマー繊維はポリウレタン系エラストマー繊維であることが好ましい。
 上記課題を解決するためのエラストマー繊維の製造方法は、上記エラストマー繊維高速紡糸工程用処理剤を巻き取り速度が1000m/min以上の紡糸工程でエラストマー繊維に付着させることを要旨とする。
 上記エラストマー繊維の製造方法において、前記紡糸工程での巻き取り速度は1000~10000m/minであることが好ましい。
 本発明のエラストマー繊維高速紡糸工程用処理剤によると、エラストマー繊維の解舒性を好適に向上させることができるとともに、エラストマー繊維からの飛散が抑制される。
パッケージの側面図。
 (第1実施形態)
 本発明に係るエラストマー繊維高速紡糸工程用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
 本実施形態の処理剤は、ジメチルシリコーン及びシリコーンレジンを含有し、必要に応じて鉱物油もまた含有する。本実施形態の一態様において、処理剤は、アミノ基を有する変性シリコーンをさらに含有する。処理剤は、処理剤中のジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、ジメチルシリコーンを70~97質量%、シリコーンレジンを0.1~10質量%、鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm/sである。
 処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、エラストマー繊維の解舒性を好適に向上させることができる。また、処理剤の飛散をより好適に抑制することができる。また、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。
 なお、上記エラストマー繊維高速紡糸工程用処理剤における「高速」とは、紡糸工程での巻き取り速度が1000m/min以上を意味するものとする。すなわち、処理剤は、巻き取り速度が1000m/min以上であるエラストマー繊維紡糸工程においてエラストマー繊維に付着させて使用される
 上記処理剤は、30℃における動粘度が、8~40mm/sであることが好ましい。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。動粘度の測定方法については後述する。
 上記ジメチルシリコーンとしては、特に制限はないが、25℃における動粘度が5~1000mm/sであるものが好ましい。
 上記ジメチルシリコーンの具体例としては、例えば25℃における動粘度が10mm/sであるジメチルシリコーン、25℃における動粘度が100mm/sであるジメチルシリコーン、25℃における動粘度が1000mm/sであるジメチルシリコーン、25℃における動粘度が6mm/sであるジメチルシリコーン、25℃における動粘度が5mm/sであるジメチルシリコーン等が挙げられる。
 上記ジメチルシリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記シリコーンレジンとしては、特に制限はないが、下記の化1で示されるM単位、下記の化2で示されるシロキサン単位、下記の化3で示されるQ単位、及び下記の化4で示されるシロキサン単位から選ばれる2つ以上の構成単位から構成されていることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 (化1において、R,R,Rはそれぞれ、炭素数1~24の炭化水素基。)
Figure JPOXMLDOC01-appb-C000002
 (化2において、
 Rは炭素数1~24の炭化水素基、
 R,Rはそれぞれ、炭素数1~5のアルキレン基、
 Rは水素原子、炭素数1~5のアルキル基、フェニル基、炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基、又は炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基、
 fは0~1の整数。)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 (化4において、R,Rはそれぞれ、炭素数1~24の炭化水素基。)
 上記シリコーンレジンは、上記M単位とQ単位とのモル比率(以下、「MQ比」ともいう。)が、0.5~1.2であることが好ましい。
 上記化1、化2、化4のR、R、R、R、R、Rにおいて、炭素数1~24の炭化水素基としては、特に制限されず、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、直鎖の炭化水素基であってもよいし、分岐鎖を有する炭化水素基であってもよい。
 上記炭素数1~24の炭化水素基としては、例えば、1)メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、へキシル基、イソへキシル基、オクチル基、イソオクチル基、デシル基、イソデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、イソテトラデシル基、ヘキサデシル基(セチル基)、イソヘキサデシル基、オクタデシル基(ステアリル基)、イソオクタデシイル基、エイコシル基、イソエイコシル基、ドコシル基、イソドコシル基、テトラコシル基、イソテトラコシル基等の炭素数1~24脂肪族炭化水素基、2)シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、3-ピナニル基等の炭素数3~24の脂環族炭化水素基、3)フェニル基、ナフチル基、ベンジル基、アントラセニル基、ピレニル基、ナフトピレニル基、2-ナフタレンドデシル基等の炭素数6~24の芳香族炭化水素基が挙げられる。
 上記化2のR、Rにおいて、炭素数1~5のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、へプチレン基等が挙げられる。
 上記化2のR-NH(-R-NH)-R-としては、下記の(1)~(10)を挙げることができる。
 (1)fが0であってRが水素原子であるアミノアルキル基。
 (2)fが0であってRが炭素数1~5のアルキル基である置換イミノアルキル基。
 (3)fが0であってRがフェニル基であるN-フェニルイミノアルキル基。
 (4)fが0であってRが炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキル基。
 (5)fが0であってRが炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキル基。
 (6)fが1であってRが水素原子であるアミノアルキルイミノアルキル基。
 (7)fが1であってRが炭素数1~5のアルキル基である置換イミノアルキルイミノアルキル基。
 (8)fが1であってRがフェニル基であるN-フェニルイミノアルキルイミノアルキル基。
 (9)fが1であってRが炭素数4~22の1~4価の脂肪族カルボン酸から一つの水酸基を除いた残基であるN-置換脂肪族アミドアルキルイミノアルキル基。
 (10)fが1であってRが炭素数6~22の1~4価の芳香族カルボン酸から一つの水酸基を除いた残基であるN-置換芳香族アミドアルキルイミノアルキル基。
 上記(1)のアミノアルキル基としては、例えばアミノエチル基、3-アミノプロピル基、4-アミノブチル基等が挙げられる。
 上記(2)の置換イミノアルキル基としては、例えばN-エチル-3-イミノプロピル基、N-エチル-2-イミノエチル基等が挙げられる。
 上記(3)のN-フェニルイミノアルキル基としては、例えばN-フェニル-3-イミノプロピル基、N-フェニル-2-イミノエチル基等が挙げられる。
 上記(4)のN-置換脂肪族アミドアルキル基としては、例えばN-アセトイル-2-イミノエチル基、N-ドデカノイル-2-イミノエチル基、N-オクタデカノイル-2-イミノエチル基、N-オクタデセノイル-2-イミノエチル基、N-アセトイル-3-イミノプロピル基、N-ドデカノイル-3-イミノプロピル基、N-オクタデカノイル-3-イミノプロピル基、N-オクタデセノイル-3-イミノプロピル基、N-アセトイル-4-イミノブチル基、N-ドデカノイル-4-イミノブチル基、N-オクタデカノイル-4-イミノブチル基、N-オクタデセノイル-4-イミノブチル基、N-(2-カルボキシエチルカルボニル)-2-イミノエチル基、N-(2-カルボキシエチルカルボニル)-3-イミノプロピル基、N-(2-カルボキシエチルカルボニル)-4-イミノブチル基等が挙げられる。
 上記(5)のN-置換芳香族アミドアルキル基としては、例えばN-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,5-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(3,4-ジカルボキシベンゼン-カルボニル)-4-イミノブチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-3-イミノプロピル基、N-(2,4,5-トリカルボキシベンゼン-カルボニル)-4-イミノブチル基等が挙げられる。
 上記(6)のアミノアルキルイミノアルキル基としては、例えばN-(2-アミノエチル)-2-イミノエチル基、N-(2-アミノエチル)-3-イミノプロピル基、N-(2-アミノエチル)-4-イミノブチル基等が挙げられる。
 上記(7)の置換イミノアルキルイミノアルキル基としては、例えばN-(N’-エチル-2-イミノエチル)-3-イミノプロピル基、N-(N’-プロピル-2-イミノエチル)-3-イミノプロピル基等が挙げられる。
 上記(8)のN-フェニルイミノアルキルイミノアルキル基としては、例えばN-(N’-フェニル-2-イミノエチル)-3-イミノプロピル基、N-(N’-フェニル-2-イミノエチル)-2-イミノエチル基等が挙げられる。
 上記(9)のN-置換脂肪族アミドアルキルイミノアルキル基としては、N-(N’-アセトイル-2-イミノエチル)-2-イミノエチル基、N-(N’-ドデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデカノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-オクタデセノイル-2-イミノエチル)-2-イミノエチル基、N-(N’-アセトイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-ドデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデカノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-オクタデセノイル-2-イミノエチル)-3-イミノプロピル基、N-(N’-アセトイル-2-イミノエチル)-4-イミノブチル基、N-(N’-ドデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデカノイル-2-イミノエチル)-4-イミノブチル基、N-(N’-オクタデセノイル-2-イミノエチル)-4-イミノブチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2-カルボキシエチルカルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。
 上記(10)のN-置換芳香族アミドアルキルイミノアルキル基としては、例えばN-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N'-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,5-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(3,4-ジカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-2-イミノエチル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-3-イミノプロピル基、N-[N’-(2,4,5-トリカルボキシベンゼン-カルボニル)-2-イミノエチル]-4-イミノブチル基等が挙げられる。
 シリコーンレジンのM単位やQ単位等のシロキサン単位の分析は、特に制限されないが、元素分析、FT-IRスペクトル分析、CP/MASのNMRスペクトル分析等によって行うことができる。例えば、上記分析方法によって原料に用いた各シラン化合物の炭素数を測定することによって、構成シロキサン単位の割合を算出することができる。そして、構成シロキサン単位の割合、シリコーンレジンを構成するシロキサン単位の理論分子量、及び、後述する質量平均分子量の測定値から、分子中のシロキサン単位のモル数を算出して、モル比率を算出することができる。
 上記シリコーンレジンの具体例としては、例えば質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン、質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン、質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン等が挙げられる。
 上記シリコーンレジンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記処理剤に含まれる鉱物油としては、特に制限はないが、例えば芳香族系炭化水素、パラフィン系炭化水素、ナフテン系炭化水素等が挙げられる。より具体的には、例えばスピンドル油、流動パラフィン等が挙げられる。
 また、上記鉱物油は、40℃における動粘度が5~10mm/sであるものが好ましい。
 上記鉱物油の具体例としては、例えば40℃における動粘度が10mm/sである鉱物油、40℃における動粘度が5mm/sである鉱物油、40℃における動粘度が7mm/sである鉱物油等が挙げられる。
 上記鉱物油は、市販品を適宜採用することができる。
 上記鉱物油は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 アミノ基を有する変性シリコーンとしては、特に制限はなく、ジアミン型のアミノ変性シリコーンや、モノアミン型のアミノ変性シリコーンを用いることができる。
 アミノ基を有する変性シリコーンの具体例としては、例えば25℃における動粘度が60mm/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が90mm/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン、25℃における動粘度が450mm/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン等が挙げられる。
 上記アミノ基を有する変性シリコーンは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 (第2実施形態)
 本発明に係るエラストマー繊維を具体化した第2実施形態について説明する。本実施形態のエラストマー繊維には、第1実施形態の処理剤が付着している。エラストマー繊維に対する第1実施形態の処理剤(溶媒を含まない)の付着量は、特に制限はないが、本発明の効果をより向上させる観点から0.1~10質量%の割合で付着していることが好ましい。
 エラストマー繊維としては、特に制限はないが、例えばポリエステル系エラストマー繊維、ポリアミド系エラストマー繊維、ポリオレフィン系エラストマー繊維、ポリウレタン系エラストマー繊維等が挙げられる。これらの中でもポリウレタン系エラストマー繊維が好ましく、さらにこの中でも溶融紡糸法で紡糸されたポリウレタン系エラストマー繊維が好ましい。かかる場合に本発明の効果の発現をより高くすることができる。
 ここで、エラストマー繊維とは、弾力性に富んだ繊維であって、引張り応力を付与すると伸長することができるとともに、引張り応力が解除されると元の長さに戻る繊維を意味するものとする。そのため、エラストマー繊維は、弾性繊維と言い換えることができる。
 本実施形態のエラストマー繊維の製造方法は、第1実施形態の処理剤を紡糸工程でエラストマー繊維に給油(すなわち供給)することにより得られる。処理剤の給油方法としては、希釈することなくニート給油法により、エラストマー繊維の紡糸工程においてエラストマー繊維に付着させる方法が好ましい。付着方法としては、例えばローラー給油法、ガイド給油法、スプレー給油法等の公知の方法が適用できる。
 本実施形態に適用されるエラストマー繊維自体の製造方法は、特に限定されず、公知の方法で製造が可能である。例えば湿式紡糸法、溶融紡糸法、乾式紡糸法等が挙げられる。これらの中でも、溶媒を使用しないことで作業環境への負荷が少ない点、より安価に製造ができる観点から溶融紡糸法が好ましく適用される。
 紡糸工程におけるエラストマー繊維の巻き取り速度に特に制限はないが、1000/min以上の高速紡糸であることが好ましい。紡糸工程での巻き取り速度は、1000~10000m/minであることがより好ましい。
 第1実施形態の処理剤、及び第2実施形態のエラストマー繊維によれば、以下のような効果を得ることができる。
 (1)処理剤は、処理剤中のジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、ジメチルシリコーンを70~97質量%、シリコーンレジンを0.1~10質量%、及び鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm/sである。
 処理剤の各成分の含有割合が上記数値範囲であるとともに、動粘度が上記数値範囲であることにより、巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程において処理剤をエラストマー繊維に適用した場合であっても、エラストマー繊維の解舒性を好適に向上させることができる。また、エラストマー繊維からの処理剤の飛散をより好適に抑制することができる。また、エラストマー繊維を紡糸してパッケージに巻き取った際の形状をより良好に保持することができる。
 (2)処理剤は、30℃における動粘度が、8~40mm/sである。処理剤の動粘度が上記数値範囲であることにより、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。
 上記実施形態は、以下のように変更して実施できる。上記実施形態、及び、以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
 ・処理剤中に含まれるジメチルシリコーンの量は、75質量%以上、76質量%以上、77質量%以上、78質量%以上、84質量%以上、88質量%以上、93質量%以上、94.5質量%以上、95.25質量%以上、又は96.1質量%以上であってもよいし、あるいは、96.1質量%以下、95.25質量%以下、94.5質量%以下、93質量%以下、88質量%以下、84質量%以下、78質量%以下、77質量%以下、76質量%以下、又は75質量%以下であってもよい。
 ・処理剤中に含まれるシリコーンレジンの量は、1質量%以上、1.9質量%以上、3質量%以上、5質量%以上、10質量%以上、13質量%以上、17質量%以上、又は20質量%以上であってもよいし、あるいは、25質量%以下、20質量%以下、17質量%以下、13質量%以下、10質量%以下、5質量%以下、3質量%以下、1.9質量%以下、又は1質量%以下であってもよい。
 ・処理剤中に含まれる鉱物油の量は、1.75質量%以上、4.9質量%以上、5質量%以上、又は10質量%以上であってもよいし、あるいは、13質量%以下、10質量%以下、5質量%以下、4.9質量%以下、又は1.75質量%以下であってもよい。また、処理剤は、必ずしも鉱物油を含有しなくてもよい。
 ・処理剤中に含まれるアミノ基を有する変性シリコーンの量は、0.5質量%以上、2質量%以上、3質量%以上、5質量%以上、又は10質量%以上であってもよいし、あるいは、10質量%以下、5質量%以下、3質量%以下、2質量%以下、又は0.5質量%以下であってもよい。また、処理剤は、必ずしもアミノ基を有する変性シリコーンを含有しなくてもよい。
 ・処理剤は、処理剤中のジメチルシリコーン、シリコーンレジン、及び鉱物油の含有割合の合計を100質量%とすると、ジメチルシリコーンを70~99.9質量%、シリコーンレジンを0.1~25質量%、及び鉱物油を0~13質量%の割合で含有してもよい。
 ・本実施形態の処理剤には、本発明の効果を阻害しない範囲内において、処理剤の品質保持のための安定化剤や制電剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の通常処理剤に用いられる成分(以下、その他成分ともいう。)をさらに配合してもよい。
 以下、本発明の構成及び効果をより具体的に説明するために実施例等を挙げるが、本発明はこれらの実施例に限定されるものではない。
 試験区分1(エラストマー繊維高速紡糸工程用処理剤の調製)
 (実施例1、3~5、8、参考例1~10、及び比較例1~10)
 以下の方法により、表1に示すシリコーンレジン(B1)を合成した。
 M単位を構成することになる原料として、トリメチルメトキシシラン833.76g(8.0モル)、水800g、メタンスルホン酸2.0g、及びQ単位を構成することになる原料として、テトラエトキシシラン2083.3g(10モル)を反応容器に仕込み、78℃で24時間加温撹拌した。次いで、反応容器に炭酸水素ナトリウム1.78gを加えて中和した後、78℃に保ちながら5時間還流熟成を行った。さらに、キシレン2000gを加え、水、及び反応により副生したメタノールとエタノールを留去して、キシレン溶液に置換後、濾過した。得られた濾液の有効濃度(キシレン溶液中のレジン濃度)を50%に調整した後、その200gを別の反応容器に仕込み、反応溶液からキシレン、水を留去して、シリコーンレジン(B1)を得た。
 シリコーンレジン(B1)の分析を行ったところ、このシリコーンレジン(B1)は、1分子中に化1で示されるシロキサン単位(M体)としてトリメチルシロキサンを8.0モル%、化3で示されるシロキサン単位(Q体)を10モル%(合計18モル%)有し、M単位とQ単位のモル比率が0.8のシリコーンレジンであった。
 B2~B4のシリコーンレジンは、シリコーンレジン(B1)の合成方法に沿いつつ、各原料の種類、配合、及び反応時間を調整することで合成した。
 次に、表1に示される各成分を使用し、ジメチルシリコーン(A1)、ジメチルシリコーン(A2)、シリコーンレジン(B1)、鉱物油(C1)、及びアミノ変性シリコーン(D1)がそれぞれ、83質部、10質量部、0.1質量部、4.9質量部、及び2質量部となるようにビーカーに加えた。これらをよく撹拌して均一に混合し、実施例1のエラストマー繊維高速紡糸工程用処理剤を調製した。
 実施例3~5、8、参考例1~10、及び比較例1~9のエラストマー繊維高速紡糸工程用処理剤は、各原料の配合を調整して、実施例1と同様の方法によって調製した。なお、比較例10は、エラストマー繊維高速紡糸工程用処理剤を用いることなく、エラストマー繊維を製造した。
 エラストマー繊維高速紡糸工程用処理剤に使用するジメチルシリコーン、シリコーンレジン、鉱物油、アミノ変性シリコーン、及びその他成分の種類と質量部は、表1の「ジメチルシリコーン(A)」欄、「シリコーンレジン(B)」欄、「鉱物油(C)」欄、「アミノ変性シリコーン(D)」欄、「その他成分(E)」欄にそれぞれ示す通りである。
Figure JPOXMLDOC01-appb-T000005
 (ジメチルシリコーン(A))
 A1:25℃における動粘度が10mm/sであるジメチルシリコーン
 A2:25℃における動粘度が100mm/sであるジメチルシリコーン
 A3:25℃における動粘度が1000mm/sであるジメチルシリコーン
 A4:25℃における動粘度が6mm/sであるジメチルシリコーン
 A5:25℃における動粘度が5mm/sであるジメチルシリコーン
 (シリコーンレジン(B))
 B1:質量平均分子量が12000であり、MQ比が0.8であるメチルシリコーンレジン
 B2:質量平均分子量が16000であり、MQ比が0.8であるアミノ変性シリコーンレジン
 B3:質量平均分子量が9000であり、MQ比が0.85であるメチルシリコーンレジン
 B4:質量平均分子量が16000であり、MQ比が0.91であるアミノ変性シリコーンレジン
 MQ比の算出方法について説明する。
 MQ比は、以下の式で求められる。
 MQ比=M単位のモル数/Q単位のモル数
 M単位:化1で示される化合物
 Q単位:化3で示される化合物
 シリコーンレジンの質量平均分子量(以下、「Mw」という。)の測定方法について説明する。
 まず、表1のシリコーンレジン0.02gをバイアル瓶に採取した。これにテトラヒドロフランを30mL加えて希釈し、試料溶液を得た。この試料溶液1mLをゲル浸透クロマトグラフィー(以下、「GPC」という。)用濾過フィルターを装着した注射器を用いて異物を除去し、GPC用試料瓶に採取して試料溶液を調製した。
 リファレンスカラムとして、TSKgel SuperH-RCを装着した東ソー社製HLC-8320GPCを使用した。
 また、測定用カラムとして、TSKguardcolumn SuperH-L、TSKgel SuperH4000、TSKgel Super3000、TSKgel Super2000を装着した東ソー社製HLC-8320GPCを使用した。
 Mwは、標準試料として、TSKgel標準ポリスチレンを用いて検量線を作成し、各シリコーンレジンのMwを求めた。
 (鉱物油(C))
 C1:40℃における動粘度が10mm/sである鉱物油
 C2:40℃における動粘度が5mm/sである鉱物油
 C3:40℃における動粘度が7mm/sである鉱物油
 (アミノ変性シリコーン(D))
 D1:25℃における動粘度が60mm/sであり、当量が4100g/molであるモノアミン型のアミノ変性シリコーン
 D2:25℃における動粘度が90mm/sであり、当量が8800g/molであるモノアミン型のアミノ変性シリコーン
 D3:25℃における動粘度が450mm/sであり、当量が5700g/molであるジアミン型のアミノ変性シリコーン
 (その他成分(E))
 E1:25℃における動粘度が1000mm/sであり、エチレンオキサイドとプロピレンオキサイドのモル比(EO:PO)が1:1であるエーテル変性シリコーン
 エラストマー繊維高速紡糸工程用処理剤の動粘度は、キャノンフェンスケ粘度計を用いて、30℃の条件下で公知の方法によって測定した。同様に、鉱物油の動粘度は、キャノンフェンスケ粘度計を用いて、40℃の条件下で公知の方法によって測定した。ジメチルシリコーン、アミノ変性シリコーン、及びその他成分の動粘度は、キャノンフェンスケ粘度計を用いて、25℃の条件下で公知の方法によって測定した。
 試験区分2(エラストマー繊維の製造)
 試験区分1で調製した処理剤を用いて、エラストマー繊維を製造した。
 分子量1000のポリテトラメチレングリコールとジフェニルメタンジイソシアネートとから得られたポリウレタン系エラストマーを溶融紡糸し、ポリウレタン系エラストマー繊維を得た。
 巻き取り前の延伸ローラーと巻き取り部との間に位置する給油ガイドから、試験区分1で調製した処理剤をガイドオイリング法でニート給油した。引き続いて、処理剤を付与したポリウレタン系エラストマー繊維を、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件で、長さ58mmの円筒状紙管に巻き取った。
 巻き取りは、巻き幅38mmを与えるトラバースガイドを介して、サーフェイスドライブの巻取機を用いて行った。この巻き取りによって、溶融紡糸ポリウレタン系エラストマー繊維のパッケージ500gを得た。処理剤の付着量の調節は、給油ガイドへの送液量を調整することで何れも5質量%となるように行った。
 試験区分3(評価)
 実施例1、3~5、8、参考例1~10、及び比較例1~10の処理剤について、処理剤を付着させたエラストマー繊維の油剤飛散性、形状保持性、油剤均一付着性、及び解舒性をそれぞれ以下に説明する手順で評価した。
 (油剤飛散性)
 試験区分2で、巻き取り速度500m/min、1000m/min、3000m/minの3種類の条件でポリウレタン系エラストマー繊維を製造した際に、巻取機付近の処理剤の飛散量を目視で観察して、以下の基準で評価した。評価の結果を表1の「油剤飛散性」欄に示す。
 ・油剤飛散性の評価基準
 ◎:飛散が観察されなかった場合
 ○:僅かに飛散が観察された場合
 ×:かなりの飛散が観察された場合
 (形状保持性)
 150デニールのポリウレタン系エラストマー繊維を紡糸し、ガイド給油法にて処理剤を4.0質量%付着させた。巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で巻き取った。
 図1に示すように、巻き取りは、長さ57mmの円筒状紙管11に、巻き幅42mmを与えるトラバースガイド(図示省略)を介して、サーフェイスドライブの巻取機(図示省略)を用いて行い、500gのパッケージ10を作製した。得られたパッケージ10について、巻き幅の最大値(Wmax)と最小幅(Wmin)を計測し、双方の差から下記の式でバルジを求めた。下記の基準で評価した結果を表1の「形状保持性」欄に示す。
 バルジ=(Wmax-Wmin)/2
 ・形状保持性の評価基準
 ◎:バルジが3mm未満である場合
 ○:バルジが3mm以上、且つ6mm未満である場合
 ×:バルジが6mm以上である場合
 (油剤均一付着性)
 摩擦測定メーター(エイコー測器社製、SAMPLEFRICTION UNIT MODEL TB-1)を用いた。2つのフリーローラー間に直径1cmで表面粗度2Sのクロムメッキ梨地ピンを配置した。
 試験区分2で、巻き取り速度が500m/min、1000m/min、3000m/minの3種類の条件で製造したパッケージからポリウレタン系エラストマー繊維を引き出し、クロムメッキ梨地ピンに対して接触角度が90度となるようにセットした。
 25℃で60%RHの条件下、入側で初期張力(T)5gをかけ、100m/minの速度で走行させたときの出側の2次張力(T)を0.1秒毎に1分間測定した。この時のTの標準偏差を求め、以下の基準で評価した。評価の結果を表1の「油剤均一付着性」欄に示す。
 ・油剤均一付着性の評価基準
 ◎:標準偏差が1.5未満である場合
 ○:標準偏差が1.5以上2.0未満である場合
 ×:標準偏差が2.0以上でる場合
 なお、標準偏差が1.5未満である場合は、油剤が均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が少ない。
 標準偏差が1.5以上2.0未満である場合は、油剤がほぼ均一に付着しており、繊維がクロムメッキ梨地ピンと擦過した際に張力変動はあるが操業に問題はない。
 標準偏差が2.0以上である場合は、油剤が均一に付着しておらず、繊維がクロムメッキ梨地ピンと擦過した際に張力変動が大きく操業に問題が生じる。
 (解舒性)
 第1駆動ローラーとこれに常時接する第1遊離ローラーとで送り出し部を形成した。また、第2駆動ローラーとこれに常時接する第2遊離ローラーとで巻き取り部を形成した。送り出し部と巻き取り部の間隔を、水平方向に沿って約20cmとした。
 試験区分2で作製したパッケージ(500g巻き)を第1駆動ローラーに装着した。第1駆動ローラーを駆動させてポリウレタン系エラストマー繊維を送り出すとともに、第2駆動ローラーを駆動させてポリウレタン系エラストマー繊維を巻き取った。パッケージの糸巻の厚さが2mmになるまで解舒した。
 その際、第1駆動ローラーの送り出し速度を50m/minで固定する一方、第2駆動ローラーの巻き取り速度を50m/minより徐々に上げて、ポリウレタン系エラストマー繊維をパッケージから強制解舒した。この強制解舒において、送り出し部と巻き取り部との間でポリウレタン系エラストマー繊維の踊りがなくなる時点、言い換えれば、糸の挙動が不安定にならず、スムーズにパッケージから送り出されるようになる時点での巻き取り速度V(m/min)を測定した。下記の式から解舒性(%)を求め、以下の基準で評価した。評価の結果を表1の「解舒性」欄に示す。
 解舒性(%)=(V-50)×2
 ・解舒性の評価基準
 ◎(良好):解舒性が120%未満
 ○(可):解舒性が120%以上、140%未満
 ×(不良):解舒性が140%以上
 なお、解舒性の評価基準において、解舒性が120%未満であると、糸切れの発生は無く、安定した状態で解舒することが可能になる。解舒性が120%以上、140%未満であると、糸の引き出しに若干の抵抗があるものの、糸切れの発生は無く、操業に問題はない。解舒性が140%以上であると、糸の引き出し時の抵抗がより大きくなり、糸切れも発生して操業に問題が生じる。
 表1の結果から分かるように、本発明によれば、巻き取り速度が高速であっても、エラストマー繊維の解舒性を好適に向上させることができるとともに、処理剤の飛散を抑制することができる。また、エラストマー繊維をパッケージに巻き取った際の形状をより良好に保持することができる。また、エラストマー繊維に処理剤を付与した際に処理剤をより均一に付着させることができる。
 本開示は以下の態様も包含する。
 (付記1)
 ジメチルシリコーン、シリコーンレジン、及び鉱物油の含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~99.9質量%、前記シリコーンレジンを0.1~25質量%、及び前記鉱物油を0~13質量%の割合で含有し、30℃における動粘度が8~70mm/sであることを特徴とするエラストマー繊維高速紡糸工程用処理剤。
 (付記2)
 更に、アミノ基を有する変性シリコーンを含有する付記1に記載のエラストマー繊維高速紡糸工程用処理剤。
 (付記3)
 前記ジメチルシリコーン、前記シリコーンレジン、前記鉱物油、及び前記変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~25質量%、前記鉱物油を0~10質量%、及び前記アミノ基を有する変性シリコーンを0.5~5質量%の割合で含有する付記2に記載のエラストマー繊維高速紡糸工程用処理剤。
 (付記4)
 30℃における動粘度が、8~40mm/sである付記1~3のいずれか一つに記載のエラストマー繊維高速紡糸工程用処理剤。
 (付記5)
 前記エラストマー繊維が、ポリウレタン系エラストマー繊維である付記1~4のいずれか一つに記載のエラストマー繊維高速紡糸工程用処理剤。
 (付記6)
 付記1~5のいずれか一つに記載のエラストマー繊維高速紡糸工程用処理剤を紡糸工程でエラストマー繊維に付着させることを特徴とするエラストマー繊維の製造方法。
 (付記7)
 前記紡糸工程での巻き取り速度が、1000~10000m/minである付記6に記載のエラストマー繊維の製造方法。
 10…パッケージ、11…円筒状紙管。

Claims (5)

  1.  ジメチルシリコーン、シリコーンレジン、鉱物油、及びアミノ基を有する変性シリコーンの含有割合の合計を100質量%とすると、前記ジメチルシリコーンを70~97質量%、前記シリコーンレジンを0.1~10質量%、前記鉱物油を0~10質量%、及び前記変性シリコーンを2~5質量%の割合で含有し、30℃における動粘度が8~70mm/sであることを特徴とする巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤。
  2.  30℃における動粘度が、8~40mm/sである請求項1に記載の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤。
  3.  前記エラストマー繊維が、ポリウレタン系エラストマー繊維である請求項1又は2に記載の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤。
  4.  請求項1~3のいずれか一項に記載の巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤を巻き取り速度が1000m/min以上の紡糸工程でエラストマー繊維に付着させることを特徴とするエラストマー繊維の製造方法。
  5.  前記紡糸工程での巻き取り速度が、1000~10000m/minである請求項4に記載のエラストマー繊維の製造方法。
PCT/JP2021/047055 2020-12-21 2021-12-20 エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法 WO2022138571A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180084975.5A CN116685736B (zh) 2020-12-21 2021-12-20 弹性体纤维高速纺丝工序用处理剂以及弹性体纤维的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211807 2020-12-21
JP2020211807A JP6910679B1 (ja) 2020-12-21 2020-12-21 巻き取り速度が1000m/min以上のエラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法

Publications (1)

Publication Number Publication Date
WO2022138571A1 true WO2022138571A1 (ja) 2022-06-30

Family

ID=76968306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047055 WO2022138571A1 (ja) 2020-12-21 2021-12-20 エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法

Country Status (3)

Country Link
JP (1) JP6910679B1 (ja)
CN (1) CN116685736B (ja)
WO (1) WO2022138571A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133548A (ja) * 2006-11-27 2008-06-12 Sanyo Chem Ind Ltd 弾性繊維用油剤
JP2009197338A (ja) * 2008-02-19 2009-09-03 Sanyo Chem Ind Ltd 弾性繊維用油剤
JP5936292B1 (ja) * 2015-05-11 2016-06-22 竹本油脂株式会社 乾式紡糸ポリウレタン系弾性繊維
JP5936293B1 (ja) * 2015-05-12 2016-06-22 竹本油脂株式会社 乾式紡糸ポリウレタン系弾性繊維
JP6141554B1 (ja) * 2017-02-14 2017-06-07 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維
JP6480072B1 (ja) * 2018-09-20 2019-03-06 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614628B1 (ja) * 2019-09-25 2019-12-04 竹本油脂株式会社 弾性繊維用処理剤、及び弾性繊維

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133548A (ja) * 2006-11-27 2008-06-12 Sanyo Chem Ind Ltd 弾性繊維用油剤
JP2009197338A (ja) * 2008-02-19 2009-09-03 Sanyo Chem Ind Ltd 弾性繊維用油剤
JP5936292B1 (ja) * 2015-05-11 2016-06-22 竹本油脂株式会社 乾式紡糸ポリウレタン系弾性繊維
JP5936293B1 (ja) * 2015-05-12 2016-06-22 竹本油脂株式会社 乾式紡糸ポリウレタン系弾性繊維
JP6141554B1 (ja) * 2017-02-14 2017-06-07 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維
JP6480072B1 (ja) * 2018-09-20 2019-03-06 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維

Also Published As

Publication number Publication date
CN116685736A (zh) 2023-09-01
CN116685736B (zh) 2024-05-28
JP2022098325A (ja) 2022-07-01
JP6910679B1 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
JP5665236B2 (ja) 塗布型弾性繊維用処理剤、弾性繊維の処理方法及び弾性繊維
JP5936293B1 (ja) 乾式紡糸ポリウレタン系弾性繊維
CN110791964B (zh) 弹性纤维用处理剂和弹性纤维
JP6951801B1 (ja) 弾性繊維用処理剤及び弾性繊維
WO2022138571A1 (ja) エラストマー繊維高速紡糸工程用処理剤、及びエラストマー繊維の製造方法
US7288209B2 (en) Treating agent for elastic fibers and elastic fibers obtained by using the same
WO2022050409A1 (ja) 弾性繊維用処理剤及び弾性繊維
JP6141554B1 (ja) 弾性繊維用処理剤及び弾性繊維
JP5936292B1 (ja) 乾式紡糸ポリウレタン系弾性繊維
JP4628094B2 (ja) 弾性繊維用処理剤及びそれを用いて得られた弾性繊維
JP2009179889A (ja) 弾性繊維用処理剤およびその応用
JP4318282B2 (ja) ポリウレタン系弾性繊維用処理剤及びポリウレタン系弾性繊維の処理方法
JP4223356B2 (ja) 弾性繊維用処理剤及び弾性繊維
JPH10158938A (ja) 弾性繊維の油剤付与方法
JP4443331B2 (ja) 弾性繊維用処理剤及びその弾性繊維
JP2002013070A (ja) 弾性繊維用処理剤および弾性繊維
JP7507532B1 (ja) 合成繊維用処理剤および合成繊維
JP7522415B1 (ja) 弾性繊維用処理剤及び弾性繊維
JP7525152B2 (ja) 合成繊維用処理剤、及び合成繊維
JP2002371467A (ja) 弾性繊維用処理剤及び弾性繊維
JP5665230B2 (ja) 添加型弾性繊維用改質剤、弾性繊維の製造方法及び弾性繊維
JP3280790B2 (ja) ポリウレタン弾性糸用油剤
JP4297769B2 (ja) 弾性繊維用処理剤と弾性繊維
WO2023223626A1 (ja) 弾性繊維用処理剤、及び弾性繊維
JPH0641873A (ja) ポリウレタン繊維用油剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084975.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910715

Country of ref document: EP

Kind code of ref document: A1