WO2022137332A1 - 電子銃および電子線応用装置 - Google Patents

電子銃および電子線応用装置 Download PDF

Info

Publication number
WO2022137332A1
WO2022137332A1 PCT/JP2020/047913 JP2020047913W WO2022137332A1 WO 2022137332 A1 WO2022137332 A1 WO 2022137332A1 JP 2020047913 W JP2020047913 W JP 2020047913W WO 2022137332 A1 WO2022137332 A1 WO 2022137332A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode electrode
photocathode
electron
electron beam
electron gun
Prior art date
Application number
PCT/JP2020/047913
Other languages
English (en)
French (fr)
Inventor
英郎 森下
卓 大嶋
洋一 小瀬
寿英 揚村
真人 ▲桑▼原
Original Assignee
株式会社日立ハイテク
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク, 国立大学法人東海国立大学機構 filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/047913 priority Critical patent/WO2022137332A1/ja
Priority to JP2022570811A priority patent/JP7406009B2/ja
Priority to US18/036,217 priority patent/US20230402246A1/en
Publication of WO2022137332A1 publication Critical patent/WO2022137332A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06375Arrangement of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/262Non-scanning techniques
    • H01J2237/2623Field-emission microscopes
    • H01J2237/2626Pulsed source

Definitions

  • the present invention relates to an electron gun using a photocathode and an electron beam application device such as an electron microscope using the same.
  • Patent Document 1 describes a chemical reaction and a biological structure that occur on a time scale from picoseconds to nanoseconds by mounting a pulsed electron gun in an electron microscope and controlling the timing of irradiating a sample with a shortened pulsed electron beam.
  • a device for dynamically visualizing high-speed phenomena such as changes in crystals and phase changes in crystals with high spatial resolution is disclosed.
  • Non-Patent Document 1 discloses a configuration of an electron gun using such a NEA photocathode.
  • Patent Document 3 discloses a configuration of an electron gun provided with a control anode electrode.
  • an optical pump & electron probe method using an electron beam for measuring a sample excited by light irradiation for example, as disclosed in Patent Document 1
  • This method is a method for time-resolved measurement by controlling the timing from the excitation of the sample to the measurement. If the measurement is a reversible process, the integrated signal can be detected by repeating the measurement, so it is possible to select a condition in which the space charge effect does not matter.
  • the electron gun disclosed in Patent Document 3 has a common point with the configuration of the electron gun of the embodiment described below in that it includes a control anode electrode arranged between the cathode and the anode. Have.
  • the electron gun of Patent Document 3 is an electron gun for electron beam reduction transfer, and the control anode electrode is provided for increasing the emittance of the electron gun, and has a completely different purpose.
  • An electron gun is arranged with a photocathode having a substrate and a photocathode formed on the substrate, a light source for emitting pulse excitation light, and a photocathode facing the substrate.
  • a condenser lens that collects pulse excitation light toward the photocathode, a first anode electrode and a second anode electrode arranged facing the photocathode of the photocathode, and a first anode electrode and a second anode electrode. It has a first power source to which a first control voltage is applied between the photocathodes and a second power source to which an acceleration voltage is applied between the photocathode and the second anode electrode.
  • the first anode electrode is arranged between the optical cathode and the second anode electrode, and the surface of the first anode electrode facing the second anode electrode is concave and faces the first anode electrode of the second anode electrode.
  • the surface is convex
  • the first control voltage is a voltage at which the surface electric field strength of the photocathode becomes larger than the surface electric field strength of the photocathode when an acceleration voltage is applied to the second anode electrode when the first anode electrode is not provided. ..
  • the electron beam application device includes an electron gun, and an electron optical system that irradiates a sample with a pulsed electron beam emitted from the electron gun and a pulsed electron beam are irradiated on the sample. It has a detector that detects electrons that have passed through the sample or electrons that are emitted by interaction with the sample, and a control unit that controls the irradiation conditions of the pulsed electron beam from the electron optical system to the sample.
  • the electron gun is arranged facing the photocathode having a substrate and a photocathode formed on the substrate, a light source that emits pulse excitation light, and the substrate of the photocathode, and directs the pulse excitation light toward the optical cathode.
  • a condensing lens for condensing light and a first anode electrode and a second anode electrode arranged to face the photocathode of the photocathode are provided.
  • the first anode electrode is arranged between the optical cathode and the second anode electrode, and the surface of the first anode electrode facing the second anode electrode is concave and faces the first anode electrode of the second anode electrode.
  • the surface is convex,
  • the control unit optimizes the irradiation conditions of the pulsed electron beam on the sample by the electron optical system according to the parameters of the electron gun under the predetermined pulse conditions set for the electron gun.
  • FIG. 1 It is a figure which shows the outline of the pulse electron gun which concerns on Example 1.
  • FIG. It is a figure which shows the outline of the pulse electron gun which concerns on Example 1.
  • FIG. It is a figure which shows the outline of the conventional pulse electron gun. It is a graph of the on-axis potential distribution of the pulsed electron gun which concerns on Example 1.
  • FIG. It is a graph of the electric field strength distribution on the axis of the pulsed electron gun which concerns on Example 1.
  • FIG. It is a graph of the electron number dependence of the virtual light source position of the pulse electron gun which concerns on Example 1.
  • FIG. It is a graph of the electron number dependence of the virtual light source diameter of the pulse electron gun which concerns on Example 1.
  • FIG. 1 It is a graph of the electron number dependence of the irradiation opening angle of the pulse electron gun which concerns on Example 1.
  • FIG. It is a graph of the electron number dependence of the conversion luminance of the pulse electron gun which concerns on Example 1.
  • FIG. It is a graph of the electron number dependence of the emittance of the pulse electron gun which concerns on Example 1.
  • FIG. It is a figure which shows the definition of the virtual light source position, the virtual light source diameter, and the irradiation opening angle of a pulse electron gun. It is a figure which shows the outline of the electron beam application apparatus which concerns on Example 2.
  • FIG. It is a figure which shows the outline of the electron beam application apparatus which concerns on Example 2.
  • FIG. It is a figure which shows the definition of the irradiation angle and the irradiation area on the sample of an electron beam. It is a figure which shows the outline of the electron beam application apparatus which concerns on Example 3.
  • FIG. It is a figure which shows the outline of the electron beam application apparatus which concerns on Example 3.
  • FIG. It is a figure for demonstrating the optimum irradiation angle.
  • FIG. It is a figure which shows the outline of the electron beam application apparatus which concerns on Example 4.
  • FIG. It is a flowchart which shows the setting procedure of the control value of an electron beam application apparatus. It is a flowchart which shows the setting procedure of the control value of an electron beam application apparatus.
  • FIG. 1 shows a configuration example of a pulsed electron gun.
  • the pulse electron gun 21 is a part of the elements incorporated in the electron beam application device represented by the electron microscope, and the electron microscope incorporating the pulse electron gun described in this embodiment is detailed as Examples 2 to 4. To explain.
  • the pulse electron gun 21 is for concentrating the pulse excitation light 2 on the photocathode 13 having a photocathode 12 formed on the transparent substrate 11, the pulse light source 1 for exciting the photocathode 13, and the photocathode 13. It has a condenser lens 4, a first anode electrode 22 for controlling the electric field strength on the photocathode 13, and a second anode electrode 23 for accelerating an electron beam to final energy. As shown in FIG. 2, a third anode electrode 24 capable of varying the applied voltage may be added for the purpose of improving the controllability of the electron optical system such as the irradiation angle and the irradiation current amount of the pulsed electron gun 21.
  • Power supplies 30 to 33 are connected to the cathode electrode 14, the first anode electrode 22, the second anode electrode 23, and the third anode electrode 24, respectively, and the potential of each electrode is controlled.
  • the potential of the second anode electrode 23 is always set as the reference potential, the power supply 32 can be omitted.
  • a part of the second anode electrode 23 may be configured as an accelerating tube for accelerating and transporting the electron beam.
  • FIG. 1 shows only the peripheral structure of the photocathode 13, and an extremely high vacuum is maintained around the photocathode 13 by a differential exhaust throttle, a vacuum chamber, a vacuum exhaust facility, etc. (not shown). Ion pumps and non-evaporative getter pumps are connected as vacuum exhaust equipment.
  • the photoelectric film 12 is preferably a p-type semiconductor made of GaAs, and its surface is a NEA surface in which the energy level at the lower end of the conduction band is higher than the vacuum level.
  • excitation light having a wavelength corresponding to the band gap of the photoelectric film 12
  • the NEA photocathode using GaAs as a photocathode has a small energy width of 0.2 eV or less of the emitted electron beam, and is effective for measurements requiring energy resolution.
  • the photocathode 13 is placed in the vacuum chamber of the electron gun together with the condenser lens 4.
  • the pulse light source 1 serving as an excitation light source for exciting the photocathode 13 is placed outside the vacuum chamber, and the pulse excitation light 2 passes through the viewing port 3 and is placed near the transparent substrate 11 side of the photoelectric film 12.
  • the light is condensed on the photoelectric film 12 by the condensed lens 4.
  • the electrons emitted from this condensing point are used as the irradiation electron beam of the electron microscope.
  • the output of the pulse excitation light 2 from the pulse light source 1 may be either a spatial light output or an optical fiber output as long as it satisfies the irradiation intensity required to obtain the required pulse electron beam.
  • the pulse excitation light 2 can be focused on the photoelectric film 12 with a numerical aperture (NA) of 0.5 or more, and a focusing diameter equivalent to the diffraction limit can be achieved.
  • NA numerical aperture
  • the optimum excitation wavelength for the photoelectric film 12 mainly composed of GaAs is in the range of 700 to 800 nm, and the focusing diameter when focused at the diffraction limit is about ⁇ 1 ⁇ m. Since the angle range of the pulsed electron beam 25 emitted from the NEA surface is as narrow as about 10 degrees or less, a high-luminance electron source can be obtained.
  • the pulse excitation light 2 is focused on the photoelectric film 12 of the photocathode 13 as shown in FIG.
  • the electron emission of the photocathode electron source having a photoelectric film with a NEA surface The region is as large as ⁇ 1 ⁇ m in diameter. For this reason, when comparing electron beams with the same electron density, the photocathode electron source uses electron beams emitted from a wider space, so the distance between electrons is large in the electron emission region, and even when the pulse is shortened, the space is short. It is superior to the field emission electron source in that the charge effect is less likely to be manifested.
  • Both the pulsed light source and the continuous light source are connected as the excitation light source in case the optical path of the excitation light is adjusted, the alignment of the electron optical system is adjusted, or when it is necessary to compare the continuous electron beam and the pulsed electron beam.
  • a configuration that can be switched and used is preferable.
  • the first anode electrode 22 or the second anode electrode 23 is composed of partial electrodes equally divided in the azimuth angle direction, and is a partial electrode. May be arranged so as to be symmetrical with respect to the optical axis.
  • an electrostatic deflector for alignment may be separately provided in the electron gun chamber.
  • the vacuum in the chamber (electron gun chamber) in which the photocathode 13 is placed is in an extremely high vacuum region.
  • the members in the chamber need to be bakable, and from this point of view, an electrostatic deflector is preferable to an electromagnetic deflector.
  • FIG. 3 shows a conventional electron gun structure using the photocathode 13.
  • the cathode electrode 114 and the anode electrode 123 have a two-electrode structure facing each other, the cathode electrode 114 is concave with respect to the anode electrode 123, and the anode electrode 123 is convex with respect to the cathode electrode 114.
  • This electrode structure is called a Pierce type, and an electrostatic lens action in which the convex lens action due to the electric field distributed between the cathode electrode 114 and the anode electrode 123 is enhanced can be obtained.
  • this electrode structure has the effect of suppressing the lateral spread of the electron beam 25, since the electron emission region is surrounded by the cathode potential electrode 114, the accelerated electric field strength on the surface of the photocathode 13 is high. It will decrease. Since the space charge effect is a phenomenon mainly caused by the Coulomb repulsion between electrons, it appears most strongly in the region where the energy of the electrons immediately after being emitted from the photocathode 13 is small.
  • the first anode electrode 22 is arranged between the second anode electrode 23 and the cathode electrode 14 in close proximity to the photocathode 13.
  • the surface of the first anode electrode 22 facing the second anode electrode 23 has a concave shape
  • the surface of the second anode electrode 23 facing the first anode electrode 22 has a convex shape
  • the surface of the first anode electrode 22 facing the third anode electrode 24 has a concave shape
  • the first anode of the third anode electrode 24 has a concave shape.
  • the surface facing the electrode 22 is convex
  • the surface of the third anode electrode 24 facing the second anode electrode 23 is concave
  • the surface of the second anode electrode 23 facing the third anode electrode 24 is convex. The shape.
  • the electrostatic lens action extends to the electrons in the vicinity of the optical axis, and in the electron gun structure shown in FIGS. 1 and 2, the tip of the first anode electrode 22 and the photocathode 13 are close to each other in the region. Since it is arranged, the cathode electrode 14 is configured as a flat plate electrode.
  • the electric field strength distribution and the electron beam trajectory of the pulsed electron gun of FIG. 1 were calculated.
  • an electron with an irradiation energy of 200 keV is assumed as an electron beam application device equipped with an electron gun, assuming a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM). It has a gun structure.
  • the cathode electrode voltage V 0 applied by the power supply 30 is -200 kV
  • the first anode electrode voltage V 1 applied by the power supply 31 is -180 to -195 kV
  • the second anode electrode voltage V 2 applied by the power supply 32 is 0 V. And said.
  • the voltage applied between the first anode electrode 22 and the second anode electrode 23 is referred to as a control voltage (in this example, the first anode electrode voltage V 1 ), a cathode electrode 14, and therefore an optical cathode 13.
  • the voltage applied between the second anode electrode 23 and the second anode electrode 23 may be referred to as an acceleration voltage (in this example, the cathode electrode voltage V 0 ).
  • the gap d 1 between the cathode electrode 14 and the first anode electrode 22 is 1.5 mm
  • the gap d 2 between the first anode electrode 22 and the second anode electrode 23 has a maximum potential difference of about 200 kV. And set it to 23 mm.
  • FIG. 4 The on-axis potential distribution under this condition is shown in FIG. 4, and the on-axis electric field strength is shown in FIG.
  • the intensity of the convex lens distributed in the region of ⁇ 2 V / ⁇ Z 2 > 0 between the first anode electrode 22 and the second anode electrode 23 is proportional to
  • the light source diameter ⁇ 1 of the photoelectric film 12 of the pulse excitation light 2 As ⁇ m, the virtual light source position z vs calculated by changing the value of the control voltage V 1 and the number of electrons Ne of one pulse is shown in FIG. 6, the virtual light source diameter r vs is shown in FIG. 7, and the electron beam irradiation opening angle ⁇ vs. 8 is shown in FIG. 8, the converted brightness ⁇ is shown in FIG. 9, and the emitterance is shown in FIG.
  • the definitions of the virtual light source position z vs , the virtual light source diameter r vs , and the irradiation opening angle ⁇ vs will be described with reference to FIG.
  • the orbit of the region without the lens field after passing through the second anode electrode 23 is extrapolated to the photocathode 13 side, and the position 15 where the horizontal spread is minimized is the virtual light source.
  • the position z vs. the beam radius at that position is defined as the virtual light source diameter r vs
  • the opening half angle of the electron beam from the virtual light source is defined as the irradiation opening angle ⁇ vs.
  • emittance is defined by r vs ⁇ ⁇ vs.
  • the electric field strength on the surface of the photocathode 13 is preferably 5 MV / m or more.
  • the first anode electrode is set so that the accelerated electric field on the surface of the photocathode 13 is maximized. It is effective to control the control voltage V 1 of 22.
  • the assumed electric field strength distribution is calculated in advance based on the actually applied voltage value, and the electrode structure has a low discharge risk. It is necessary to configure so as to be. Further, the virtual light source diameter r vs , the virtual light source position z vs , the irradiation opening angle ⁇ vs , and the converted luminance ⁇ depend on the acceleration voltage, pulse width, number of electrons, and the like of the pulsed electron beam.
  • the focusing position of the pulse excitation light 2 is defocused from the active layer (photocathode 12) of the photocathode 13, and excitation optics can be selected so that a condition having a slightly large focusing diameter can be selected.
  • the system may be configured. Since the space charge effect becomes apparent when the electrons repel each other in the vicinity of the electron emission position, the influence of the space charge effect is reduced by increasing the electron emission area.
  • the excitation optical system is configured so that the focusing diameter can be used continuously or by switching between a specific defocus condition and the focus condition, and pulsed electrons are set so that the defocus amount is set within a range in which the brightness does not significantly decrease.
  • a gun may be configured.
  • the virtual light source diameter r vs of the pulsed electron gun becomes large, and the number of electrons emitted per pulse also changes, so that the optimum electrons for the defocus condition are obtained. It is necessary to set the focusing conditions of the optical system separately.
  • the above has been described as a pulsed electron gun to which a high-intensity photocathode having a NEA surface is applied.
  • the electrode structure shown in FIG. 1 or 2 is effective as a method for suppressing the above.
  • FIG. 12 and 13 show configuration examples of a transmission electron microscope (TEM) equipped with the pulsed electron gun of Example 1.
  • FIG. 12 shows the case where the pulsed electron beam 25 has no crossover between the photocathode 13 and the sample 52
  • FIG. 13 shows the case where the pulsed electron beam 25 has a crossover 26 between the photocathode 13 and the sample 52.
  • the space charge effect at the crossover position is not a problem, such as when the acceleration voltage of the pulsed electron beam 25 is large or when the number of electrons in one pulse is small, even if the electron optical system is controlled to have a crossover, the space is spatial. Degradation of resolution is not a problem.
  • FIG. 12 shows. It is preferable to control the electro-optical system so that there is no crossover or the number of crossovers is minimized.
  • the sample 52 is irradiated with an electron beam, and the transmitted electron 27 is projected onto the phosphor screen 53 with an objective lens 62 or a projection lens, and an image or diffraction pattern obtained by projecting the transmitted electron 27 is imaged with a CCD camera or the like.
  • An electron energy loss spectroscopy (EELS) detector may be arranged for the purpose of measuring the energy spectrum of the electron beam transmitted through the sample 52.
  • the pulsed electron microscope has an optimum control value for the set conditions based on the virtual light source diameter r vs calculated in advance. Control system is configured.
  • the irradiation angle (half-width) ⁇ of the pulsed electron beam 25 is adjusted by the intensity of the condenser lens 61 mounted between the photocathode 13 and the sample 52, and the aperture 51 that limits the pass region of the electron beam. As shown in FIG. 14, the irradiation angle (half-width) ⁇ of the electron beam 25 is defined as an angle at which the crossover 17 formed on the photocathode 13 side of the sample 52 is expected.
  • the irradiation angle ⁇ Mr vs / L can be expressed as the virtual light source diameter r vs of the pulsed electron gun, the reduction ratio M of the condenser lens, and the distance L between the crossover 17 and the sample 52.
  • the reduction ratio M also depends on the virtual light source position z vs of the pulsed electron gun.
  • the radius R of the electron beam irradiation region of the pulsed electron beam 25 passing through the throttle 51 can be approximated to the radius R to L ⁇ vs / M as the irradiation opening angle ⁇ vs of the virtual light source position 16.
  • ⁇ R -2 the product of the radius R and the irradiation half-width ⁇ can be approximated as shown in (Equation 2). From (Equation 2), a pulsed electron gun having a large converted luminance ⁇ is superior in order to reduce the irradiation angle ⁇ and increase the current density.
  • FIG. 20 shows an example of the procedure for setting the control parameters of the electron microscope.
  • the pulse width, the pulse interval, and the amount of charge are set as the irradiation conditions of the pulsed electron beam 25 emitted from the photocathode 13 (S1). These parameters can be freely set by the observer within the range of the set values given as the device specifications.
  • the pulse width and pulse interval of the pulse electron beam 25 are substantially determined by the pulse width of the pulse excitation light 2 irradiating the optical cathode 13 and the pulse interval, and the amount of charge contained in one pulse is the focusing condition of the excitation light.
  • the irradiation condition of the pulse electron beam 25 can be set by setting the irradiation condition of the pulse excitation light 2 to the photocathode 13.
  • the electrode voltage of the pulsed electron gun 21, that is, the acceleration voltage V 0 and the control voltage V 1 are set (S2). Since it is preferable to use the pulsed electron gun 21 under high brightness conditions in normal observation, the control voltage V1 is set to the maximum value of the control voltage V1 that can be set so that the electric field strength on the photocathode surface is maximized. Will be done.
  • the virtual light source position z vs , the virtual light source diameter r vs , the irradiation opening angle ⁇ vs , and the converted luminance ⁇ of the pulse electron gun 21 are determined.
  • the device holds in advance the calculated values obtained by simulating these parameters by oscillating them in multiple pulse conditions as internal parameters, and the control unit 41 refers to the internal parameters and sets the pulse conditions. Obtain the value of the parameter of the pulsed electron gun of (S3). Subsequently, the control unit 41 sets the electrons so as to have an appropriate crossover position for each electron lens installed between the pulse electron gun 21 and the sample 52 according to the parameters of the electron gun corresponding to the pulse condition.
  • the irradiation conditions of the optical system are set (S4).
  • the irradiation angle ⁇ and the irradiation area (radius R) of the pulsed electron beam irradiated to the sample are adjusted.
  • a desired observation field of view is specified (S5), observation conditions are determined, and image data and spectral data are acquired (S6).
  • the irradiation angle ⁇ and the irradiation region (radius R) are changed by controlling the irradiation conditions of the electron optical system, whereas the focusing conditions of the condenser lens 61 and the objective lens 62 and the alignment of the electron beam are performed.
  • Conditions such as conditions may be fixed and controlled by controlling the control voltage V1 of the first anode electrode 22.
  • the control voltage V1 is changed from -180 kV to -195 kV
  • the virtual light source position z vs. is changed from -18 mm to-.
  • the virtual light source diameter r vs changes from 0.8 ⁇ m to 2.0 ⁇ m, and the irradiation opening angle ⁇ vs changes from 1.5 mrad to 1.2 mrad.
  • the irradiation angle ⁇ and the irradiation region (radius R) on the sample 52 change by changing the control voltage V 1 , so that the observation conditions preferable for the observer can be selected.
  • FIG. 21 shows an example of the control parameter setting procedure in this case. Basically, the observation conditions are determined according to the same procedure as in FIG.
  • the electron beam irradiation conditions for the sample are controlled by the crossover position of the condenser lens 61 installed between the electron gun 21 and the sample 52, but in the electron microscope of this embodiment, the conditions of the electron optical system are controlled. Is fixed and the control voltage V1 of the electron gun 21 is changed (S7), whereby the same control is possible.
  • the pulsed electron gun 21 of this embodiment when used under the condition of maximum brightness regardless of the pulse condition, it is preferable to use it under the condition where the surface electric field of the photocathode 13 is maximized. Further, in order to obtain higher spatial resolution, an aberration corrector for spherical aberration and chromatic aberration may be mounted on the imaging system.
  • FIG. 15 and 16 show configuration examples of a scanning transmission electron microscope (STEM) or a scanning electron microscope (SEM) equipped with the pulse electron gun of Example 1.
  • FIG. 15 shows the case where the pulsed electron beam 25 does not have a crossover between the photocathode 13 and the sample 52
  • FIG. 16 shows the case where the pulsed electron beam has a crossover 26 between the photocathode 13 and the sample 52.
  • the space charge effect at the crossover position is not a problem, such as when the acceleration voltage of the pulsed electron beam 25 is large or when the number of electrons in one pulse is small, even if the electron optical system is controlled to have a crossover, the space is spatial. Degradation of resolution is not a problem.
  • FIG. 1 Under conditions where the space charge effect at the crossover position tends to be a problem, such as conditions where the acceleration voltage of the pulsed electron beam is small and conditions where the number of electrons in one pulse is large, in order to avoid deterioration of spatial resolution, FIG. It is preferable to control the electro-optical system so that there is no crossover or the number of crossovers is minimized.
  • the irradiation electron beam 25 focused by the condenser lens 61 and the objective lens 62 in several stages is scanned on the sample 52 by the deflector 63, the signal electrons (transmitted electrons 27, (Secondary electrons 28, etc.) are detected by the detector 54 and the detector 55, and a mapping image of the signal strength is obtained as an observation image.
  • the detector 55 is used to efficiently generate low energy ( ⁇ about 20 eV) secondary electrons 28. Can be detected.
  • a bright field detector, a dark field detector, an EELS detector, a cathode luminescence (CL) detector and the like may be mounted. Further, by connecting a pulse generator, a delay controller, or the like for synchronous control with the excitation light source of the sample to the pulse light source 1, it may be possible to perform time-resolved measurement of the reversible process by the pump-probe method.
  • FIG. 17 is a diagram schematically showing the dependence of each factor that determines the axial beam diameter on the irradiation angle ⁇ i under the condition that the probe current is constant.
  • the irradiation beam diameter 75 of the pulsed electron beam 25 focused on the sample is the geometrical aberration of the objective lens 62 (spherical aberration ⁇ S 71, chromatic aberration ⁇ C 72, diffraction aberration ⁇ D 73) and the light source diameter ⁇ . It depends on O 74.
  • Each factor has a dependence on the irradiation angle ⁇ i (see FIGS.
  • the irradiation angle ⁇ i on the sample of the electron beam 25 is determined by the focusing strength of the condenser lens 61 and the objective lens 62 mounted between the photocathode 13 and the sample 52, and the aperture 51 that limits the passing region of the pulsed electron beam 25. It will be adjusted.
  • the virtual light source diameter r vs increases due to the space charge effect. Therefore, it is necessary to appropriately control the electron optical system in order to secure the required spatial resolution.
  • the light source diameter ⁇ O is calculated by (Equation 3), and the larger the converted luminance ⁇ , the smaller the light source diameter ⁇ O. Therefore, it can be seen that if the number of electrons Ne per pulse is the same, the higher the converted luminance ⁇ , the smaller the contribution of the light source diameter ⁇ O to the irradiation beam diameter 75.
  • the optimum value ( ⁇ opt ) of the irradiation half-angle ⁇ i is determined from the numerical values of the spherical aberration ⁇ S 71, the chromatic aberration ⁇ C 72, the diffraction aberration ⁇ D 73, and the light source diameter ⁇ O 74 assumed from the setting conditions of the observer.
  • the control unit 41 sets the irradiation conditions of the electro-optical system that gives the optimum irradiation angle ⁇ opt .
  • the procedure for setting the control parameters of the electron microscope at this time is the same as that shown in FIG. 20 shown in the second embodiment, and duplicate description will be omitted.
  • the virtual light source position z vs , the virtual light source diameter r vs , the irradiation opening angle ⁇ vs , and the converted luminance ⁇ of the pulsed electron gun 21 are determined.
  • the apparatus holds in advance the calculated values obtained by performing simulations for these parameters by applying multiple pulse conditions as internal parameters.
  • the light source diameter ⁇ O projected on the sample depends on the luminance ⁇ as described above, and both the light source diameter ⁇ O and the diffraction aberration ⁇ D are inversely proportional to the irradiation angle ⁇ i on the sample. Have a relationship.
  • the charge amount Ne included in one pulse is sufficiently small and the light source diameter ⁇ O projected on the sample is sufficiently small, it is optimal based on the diffraction aberration ⁇ D , the spherical aberration ⁇ S , and the chromatic aberration ⁇ C.
  • the irradiation angle ⁇ opt is determined.
  • the contribution of the light source diameter ⁇ O to the beam diameter becomes larger than the chromatic aberration ⁇ D.
  • the optimum irradiation angle ⁇ opt is determined based on the light source diameter ⁇ O , the spherical aberration ⁇ S , and the chromatic aberration ⁇ C.
  • the optimum irradiation angle ⁇ opt is determined so that the calculated value of the total beam diameter is minimized by plotting the contribution of each aberration to the beam diameter as shown in FIG. 17 for the irradiation angle ⁇ i for each condition. ..
  • the control unit 41 has an appropriate crossover position that gives an optimum irradiation angle ⁇ opt for each electron lens installed between the pulse electron gun 21 and the sample 52 according to the parameters of the electron gun corresponding to the pulse condition.
  • the irradiation conditions of the electron optical system are set so as to be (S4).
  • control voltage V1 applied to the first anode electrode 22 may be changed in order to adjust the irradiation angle ⁇ i on the sample.
  • the procedure for setting the control parameters in this case is the same as the flow of FIG. 21.
  • the electron beam irradiation conditions for the sample are controlled by the crossover position of the condenser lens 61 installed between the electron gun 21 and the sample 52. Similar control is possible by fixing the system conditions and changing the control voltage V1 of the electron gun 21 (S7).
  • an SEM or STEM may be used in which an aberration corrector for correcting spherical aberration and chromatic aberration is mounted between the photocathode 13 and the sample 52.
  • FIG. 18 shows a configuration example of an SEM equipped with the pulsed electron gun of the first embodiment.
  • the energy of the electron beam used is smaller than that of a transmission type TEM or STEM, so that the influence caused by the space charge effect is more likely to become apparent.
  • the absolute value of the electrode voltage V 0 applied to the cathode electrode 14 is small and a large positive voltage is applied to the second anode electrode 23 in order to greatly accelerate the electron beam emitted from the photocathode 13, the electron gun 21 and the electron gun 21 It is necessary to slow down the electron beam to and from the sample. Therefore, it is not preferable that the crossover increases in the orbit of the electron beam in the electron optical system.
  • the deceleration method is applied to the electron optical system of the electron beam application device of the fourth embodiment.
  • a retarding method of applying a negative voltage to the sample 57 is applied.
  • the pulsed electron gun 21 can realize an irradiation voltage of 1 kV on the sample 57 by using the pulsed electron beam 25 emitted under the emission condition of the acceleration voltage of 11 kV. ..
  • the voltage V 0 applied to the cathode electrode 14 is -11 kV
  • the voltage V 1 applied to the first anode electrode 22 is -1 kV
  • the voltage V 2 applied to the second anode electrode 23 is 0 V.
  • the secondary electrons 28 generated on the sample 57 are accelerated by the electric field distributed between the objective lens 62 and the sample 57, pass through the lens magnetic field region of the objective lens 62, and pass through the lens magnetic field region of the objective lens 62. Go in the direction. Therefore, by installing a donut-shaped conversion electrode 56 in the SEM lens barrel and detecting the low-energy electrons 29 generated by the secondary electrons 28 colliding with the conversion electrode 56 with the detector 55, sufficient strength is obtained. Signal can be detected.
  • the sample 52 applies a boosting method in which a similar potential distribution is provided on the optical axis as the ground potential.
  • the second anode electrode 23 is extended to the vicinity of the sample 52 to form an accelerating tube, and a high voltage is applied to the second anode electrode 23 forming the accelerating tube.
  • the pulsed electron beam 25 emitted from the photocathode 13 is transported in a state where high energy is maintained inside the cylindrical second anode electrode 23.
  • the voltage V 0 applied to the cathode electrode 14 is -1 kV
  • the voltage V 1 applied to the first anode electrode 22 is +9 kV
  • the voltage V 0 applied to the second anode electrode 23 is +10 kV.
  • Guard electrode 59 ... Circular detector, 61 ... Condenser lens, 62 ... Objective lens, 63 ... Deflection, 64 ... Off-axis deflector, 71 ... Spherical aberration, 72 ... Color aberration, 73 ... Diffraction error, 74 ... Light source diameter, 75 ... Irradiation beam diameter, 114 ... Cathode electrode, 121 ... Pulse Electronic gun, 123 ... cathode electrode, 130: power supply.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

基板11と基板上に形成される光電膜12とを有する光陰極13と、パルス励起光を発光する光源1と、光陰極の基板に対向して配置され、パルス励起光を光陰極に向けて集光する集光レンズ4と、光陰極の光電膜に対向して配置される第1アノード電極22及び第2アノード電極23と、第1アノード電極と第2アノード電極との間に第1制御電圧を印加する第1電源と、光陰極と第2アノード電極との間に加速電圧を印加する第2電源とを有し、第1アノード電極は、光陰極と第2アノード電極との間に配置され、第1アノード電極の第2アノード電極に対向する面は凹形状であり、第2アノード電極の第1アノード電極に対向する面は凸形状であり、第1制御電圧は、光陰極の表面電界強度が、第1アノード電極を設けない場合に第2アノード電極に加速電圧が印加されたときの光陰極の表面電界強度よりも大きくなる電圧とされる。

Description

電子銃および電子線応用装置
 本発明は光陰極を用いた電子銃、およびそれを用いた電子顕微鏡などの電子線応用装置に関する。
 加速した電子線を照射し、試料と相互作用した電子を検出する電子顕微鏡を用いることで、試料の微細構造を計測できる。特許文献1には、電子顕微鏡にパルス電子銃を搭載し、短パルス化された電子線を試料に照射するタイミングを制御することで、ピコ秒からナノ秒の時間スケールで生じる化学反応、生体構造の変化、結晶の相変化などの高速現象を高い空間分解能で動的に可視化する装置が開示されている。
 近年、表面の電子親和力が負(Negative Electron Affinity:NEA)の光陰極電子源により、Schottky型電子銃と同程度の高い輝度(~1×107 A/m2/sr/V)が報告されている(非特許文献1)。このような高輝度NEA光陰極をパルス光で励起することにより、電子線を容易に短パルス化できる。この高輝度NEA光陰極のパルス電子銃を搭載した電子顕微鏡により、高い空間分解能の計測が可能になるものと期待される。例えば、特許文献2には、そのようなNEA光陰極を用いた電子銃の構成が開示されている。
 なお、特許文献3には、制御アノード電極を備えた電子銃の構成が開示されている。
特表2007-531876号公報 国際公開第2019/151025号 特開平10-112274号公報
Kuwahara他、「Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope」Applied Physics Letters、 Vol. 105、 p.193191、 2014年
 パルス電子線の1パルスに含まれる電子数を大きくすると、パルス内の電子が互いにクーロン反発して電子線の軌道やエネルギー分布が変化する空間電荷効果が課題となる。空間電荷効果が顕在化したパルス電子線では、輝度低下やエネルギー幅増大などの悪影響が生じる。また、1パルスあたりの電子数が同じ条件で比較した場合、パルス幅が短いほど空間電荷効果の悪影響が顕在化しやすい。
 基底状態と励起状態の遷移が可逆的に変化する試料の場合、例えば特許文献1に開示されているような、光照射によって励起された試料の計測に電子線を用いる光ポンプ&電子プローブ法を適用することで、短時間に生じる高速現象を計測することができる。この手法は、試料励起後に、計測するまでのタイミングを制御することで時間分解計測する手法である。可逆過程の計測であれば計測を繰り返して積算信号を検出できるため、空間電荷効果が問題とならない条件を選択することが可能である。
 しかしながら、基底状態と励起状態の遷移が不可逆的に変化する試料の場合、繰り返し計測による積算信号の検出ができないため、1パルスの電子線照射によって充分な計測信号を得ることが必要になる。しかしながら、1パルスに含まれる電子数を多くすると、空間電荷効果により空間分解能が劣化してしまうおそれがあった。このため、シングルショット計測により不可逆過程を計測する場合には、高い時間分解能と高い空間分解能とを両立させることができなかった。
 なお、特許文献3に開示される電子銃は、カソードとアノードとの間に配設される制御アノード電極を備えている点で、以下に説明する実施例の電子銃の構成との共通点を有する。しかしながら、特許文献3の電子銃は電子ビーム縮小転写用の電子銃であり、制御アノード電極は、電子銃の高エミッタンス化のために設けられており、目的を全く異にするものである。
 本発明の一実施の形態である電子銃は、基板と基板上に形成される光電膜とを有する光陰極と、パルス励起光を発光する光源と、光陰極の基板に対向して配置され、パルス励起光を光陰極に向けて集光する集光レンズと、光陰極の光電膜に対向して配置される第1アノード電極及び第2アノード電極と、第1アノード電極と第2アノード電極との間に第1制御電圧を印加する第1電源と、光陰極と第2アノード電極との間に加速電圧を印加する第2電源とを有し、
 第1アノード電極は、光陰極と第2アノード電極との間に配置され、第1アノード電極の第2アノード電極に対向する面は凹形状であり、第2アノード電極の第1アノード電極に対向する面は凸形状であり、
 第1制御電圧は、光陰極の表面電界強度が、第1アノード電極を設けない場合に第2アノード電極に加速電圧が印加されたときの光陰極の表面電界強度よりも大きくなる電圧とされる。
 また、本発明の一実施の形態である電子線応用装置は、電子銃を含み、電子銃から放出されるパルス電子線を試料に照射する電子光学系と、パルス電子線が試料に照射されることにより、試料を透過した電子または試料との相互作用により放出される電子を検出する検出器と、電子光学系からの試料へのパルス電子線の照射条件を制御する制御部と、を有し、
 電子銃は、基板と基板上に形成される光電膜とを有する光陰極と、パルス励起光を発光する光源と、光陰極の基板に対向して配置され、パルス励起光を光陰極に向けて集光する集光レンズと、光陰極の光電膜に対向して配置される第1アノード電極及び第2アノード電極と、を備え、
 第1アノード電極は、光陰極と第2アノード電極との間に配置され、第1アノード電極の第2アノード電極に対向する面は凹形状であり、第2アノード電極の第1アノード電極に対向する面は凸形状であり、
 制御部は、電子銃に対して設定された所定のパルス条件での電子銃のパラメータに応じて、電子光学系によるパルス電子線の試料への照射条件を最適化する。
 光陰極を用いたパルス電子銃で、空間電荷効果に起因する電子銃輝度の劣化を抑制し、高い時間分解能と高い空間分解能を両立した計測を実現できる。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
実施例1に係るパルス電子銃の概略を示す図である。 実施例1に係るパルス電子銃の概略を示す図である。 従来のパルス電子銃の概略を示す図である。 実施例1に係るパルス電子銃の軸上電位分布のグラフである。 実施例1に係るパルス電子銃の軸上電界強度分布のグラフである。 実施例1に係るパルス電子銃の仮想光源位置の電子数依存性のグラフである。 実施例1に係るパルス電子銃の仮想光源径の電子数依存性のグラフである。 実施例1に係るパルス電子銃の照射開き角の電子数依存性のグラフである。 実施例1に係るパルス電子銃の換算輝度の電子数依存性のグラフである。 実施例1に係るパルス電子銃のエミッタンスの電子数依存性のグラフである。 パルス電子銃の仮想光源位置、仮想光源径、照射開き角の定義を示す図である。 実施例2に係る電子線応用装置の概略を示す図である。 実施例2に係る電子線応用装置の概略を示す図である。 電子線の試料上の照射角と照射領域の定義を示す図である。 実施例3に係る電子線応用装置の概略を示す図である。 実施例3に係る電子線応用装置の概略を示す図である。 最適照射角について説明するための図である。 実施例4に係る電子線応用装置の概略を示す図である。 実施例4に係る電子線応用装置の概略を示す図である。 電子線応用装置の制御値の設定手順を示すフローチャートである。 電子線応用装置の制御値の設定手順を示すフローチャートである。
 以下、本発明の実施形態について、図面を用いて詳細に説明する。
 図1にパルス電子銃の構成例を示す。パルス電子銃21は電子顕微鏡に代表される電子線応用装置に組込まれる要素の一部であり、本実施例で説明するパルス電子銃を組み込んだ電子顕微鏡は、実施例2~実施例4として詳細を説明する。
 パルス電子銃21は、透明基板11の上に形成された光電膜12を有する光陰極13、光陰極13を励起するためのパルス光源1、光陰極13にパルス励起光2を集光するための集光レンズ4、光陰極13上の電界強度を制御するための第1アノード電極22、電子線を最終エネルギーに加速するための第2アノード電極23を有する。パルス電子銃21による照射角や照射電流量などの電子光学系の制御性を向上する目的で、図2に示すように印加電圧を可変にできる第3アノード電極24を追加してもよい。カソード電極14、第1アノード電極22、第2アノード電極23、第3アノード電極24にはそれぞれ電源30~33が接続され、各電極の電位が制御される。なお、第2アノード電極23の電位を常に基準電位とする場合には、電源32は省略することも可能である。また、後述するように、第2アノード電極23の一部を、電子線を加速して輸送するための加速管として構成してもよい。
 図1では光陰極13の周辺構造のみを図示しており、図示しない差動排気絞り、真空チャンバ、真空排気設備などによって、光陰極13の周囲は極高真空が維持されている。真空排気設備として、イオンポンプや非蒸発型ゲッタポンプなどが接続される。光電膜12は好ましくはGaAsで構成されたp型半導体であり、その表面は伝導帯下端のエネルギー準位が真空準位よりも高いNEA表面となっている。このNEA表面を有する光電膜12に対し、光電膜12のバンドギャップに対応する波長の励起光を照射すると、価電子帯から伝導帯に励起された電子が効率よく放出されるため、これを電子顕微鏡の照射電子線として利用できる。特に、GaAsを光電膜とするNEA光陰極は、放出される電子線のエネルギー幅が0.2 eV以下と小さく、エネルギー分解能が求められる測定には有効である。
 光陰極13は集光レンズ4とともに電子銃の真空チャンバ内に置かれる。一方、光陰極13を励起するための励起光源となるパルス光源1は真空チャンバ外に置かれ、パルス励起光2はビューイングポート3を通過して光電膜12の透明基板11側の近傍に配置された集光レンズ4によって光電膜12に集光される。この集光点より放出される電子を電子顕微鏡の照射電子線として利用する。パルス光源1からのパルス励起光2の出力は、必要なパルス電子線を得るために必要な照射強度を満たす限り、空間光出力でも光ファイバ出力でも構わない。図1の配置とすることで、光電膜12に開口数(NA)0.5以上でパルス励起光2を集光でき、回折限界と同程度の集光径を達成できる。特にGaAsを主体とする光電膜12に対する最適な励起波長は700~800 nmの範囲にあり、回折限界で集光した場合の集光径はφ1 μm程度となる。NEA表面から放出されるパルス電子線25の角度範囲は約10 度以下と狭いため、高輝度な電子源が得られる。以下、特に記述しない場合は、パルス励起光2は図1のように光陰極13の光電膜12に集光されているものとする。
 先端径φ数10~100 nm程度に先鋭化した電極先端部に電界集中して電子線を放出する電界放出型電子源と比べて、NEA表面を有する光電膜を持つ光陰極電子源の電子放出領域は直径φ1 μmと大きい。このため、電子密度が同じ電子線で比較した場合、光陰極電子源ではより広い空間から放出される電子線を利用するため、電子放出領域で電子間距離が大きく、短パルス化した場合も空間電荷効果が顕在化しにくい点で電界放出型電子源よりも優位である。
 各電極に電圧が印加された状態で光陰極13に励起光を照射すると電子線が放出される。光陰極13に励起光としてパルス励起光2を照射することで放出される電子線25はパルス化される。光陰極13より放出されるパルス電子線25はパルス励起光2と同様のパルス波形となるため、パルス電子線のパルス幅やパルス間隔は、パルス励起光2のパルス幅やパルス間隔と同程度となる。シングルショット計測やポンプ&プローブ計測など、パルス化された照射電子線のタイミング制御を必要とする場合には、電子顕微鏡の撮像システムや試料の励起光源と同期制御を行うためのパルス発生器や遅延制御器などがパルス光源に接続される。
 励起光の光路調整や電子光学系のアライメント調整を行う場合や、連続電子線とパルス電子線との比較が必要となる場合に備え、励起光源はパルス光源と連続光源の両方が接続されており、切替えて使用できる構成が好ましい。また、アノード電極が複数段となることで問題となる軸ずれの悪影響を回避するため、第1アノード電極22または第2アノード電極23を方位角方向に等分割された部分電極からなり、部分電極は光軸を中心に対称となるように配置して構成してもよい。この構成により、差動排気絞りなど電子線の照射角度を制限する構成物に対してパルス電子線25のアライメントを調整するための偏向場を重畳することも可能である。また、電子銃室内にアライメント用の静電型偏向器を別途設けてもよい。電子銃は光陰極13の置かれるチャンバ(電子銃室)内の真空が極高真空領域であることが重要である。このため、チャンバ内の部材はベーカブルであることが必要であり、この観点で電磁型偏向器よりも静電型偏向器の方が好ましい。
 光陰極13を用いた従来の電子銃構造を図3に示す。この構造では、カソード電極114とアノード電極123とが対向した2電極構造を有し、カソード電極114はアノード電極123に対し凹面、アノード電極123はカソード電極114に対し凸面となっている。この電極構造はPierce型と呼ばれ、カソード電極114とアノード電極123の間に分布する電界による凸レンズ作用が増強された静電レンズ作用が得られる。この電極構造により電子線25の横方向の広がりを抑制する効果が得られるものの、電子放出領域の周囲がカソード電位の電極114に囲まれているため、光陰極13の表面での加速電界強度は低下することになる。空間電荷効果は、電子同士のクーロン反発を主な要因とする現象であるため、光陰極13より放出された直後の電子のエネルギーが小さい領域において最も強く表れる。これに対して、本実施例での電極構造は、第2アノード電極23とカソード電極14との間に、光陰極13に近接させて第1アノード電極22を配置する。また、第1アノード電極22の第2アノード電極23に対向する面は凹形状であり、第2アノード電極23の第1アノード電極22に対向する面は凸形状を有する。また、図2に示したように第3アノード電極24を備える場合には、第1アノード電極22の第3アノード電極24に対向する面は凹形状であり、第3アノード電極24の第1アノード電極22に対向する面は凸形状であり、第3アノード電極24の第2アノード電極23に対向する面は凹形状であり、第2アノード電極23の第3アノード電極24に対向する面は凸形状である。この構造により、Pierce型電極構造の効果を得ながら、図3に示した電子銃構造の課題である放出直後の電子に対する空間電荷効果の影響を抑制できる。なお、静電レンズ作用が電子に及ぶのは光軸近傍であり、図1、図2に示した電子銃構造では当該領域において第1アノード電極22の先端部と光陰極13とが近接して配置されているため、カソード電極14は平板電極として構成されている。
 第1アノード電極22の効果を検証するため、図1のパルス電子銃の電界強度分布と電子線軌道を計算した。この計算においては、電子銃を搭載する電子線応用装置として透過型電子顕微鏡(Transmission Electron Microscope:TEM)や走査透過型電子顕微鏡(Scanning Transmission Electron Microscope:STEM)を想定し、照射エネルギー200 keVの電子銃構造とした。電源30が印加するカソード電極電圧Vを-200 kV、電源31が印加する第1アノード電極電圧Vを-180~-195 kV、電源32が印加する第2アノード電極電圧Vを0 Vとした。なお、以下では、第1アノード電極22と第2アノード電極23との間に印加される電圧を制御電圧(この例では、第1アノード電極電圧V)、カソード電極14、したがって光陰極13と第2アノード電極23との間に印加される電圧を加速電圧(この例では、カソード電極電圧V)と呼ぶことがある。カソード電極14と第1アノード電極22の間隙dは1.5 mm、第1アノード電極22と第2アノード電極23の間隙dは、この2電極の電位差が最大で約200 kVとなることを考慮して23 mmに設定した。
 この条件での軸上電位分布を図4に、軸上電界強度を図5に示す。図4および図5で、光陰極13の電子放出面はZ= 0 mm、第1アノード電極22はZ= 2 mm、第2アノード電極23の先端部はZ= 25 mmに対応する。また、両図とも制御電圧V=-195kV、-190kV、-180kVのときの波形を、それぞれ破線、点線、実線で示している。なお、制御電圧V=-195 kVのとき、本実施例の電子銃の電位分布や電界分布は、図3に示した従来電子銃と概ね同等の電位分布や電界分布となっている。そこで、本実施例の電子銃を従来電子銃と比較する場合、仮想光源径、照射開き角、輝度、エミッタンスなどのパラメータについて、制御電圧V=-195 kVの条件で算出した値を従来電子銃の値として用いる。
 図5に示されるように、Z= 0 mmにおける軸上電界強度の絶対値は、制御電圧V=-195 kVで約3 MV/mとなるのに対し、制御電圧V=-180 kVでは8 MV/mとなっており、第1アノード電極22に印加される制御電圧を変えることにより光陰極13の表面電界が制御できることがわかる。具体的には、制御電圧Vが-195 kV、-190 kV、-180 kVの順に光陰極13の表面電界強度が増大している。
 第1アノード電極22に制御電圧Vを印加し、光陰極13の表面電界を大きい条件(例えば、制御電圧V=-180 kV)とした場合、軸上電位(図4参照)は単調増加(∂V/∂Z>0)で、軸上電界(図5参照)は光軸上の2箇所で極値(∂Ez/∂Z=0)を持ち、極大値と極小値が存在する。また、第1アノード電極22と第2アノード電極23の間の∂2V/∂Z2>0の領域に分布する凸レンズの強度は|∂2V/∂Z2|に比例する。Pierce型の電極構造とすることで、アノード電極が曲率を持たない場合、すなわちアノード電極とカソード電極とをともに平板電極で構成する場合と比べて|∂2V/∂Z2|が大きくなっており、凸レンズ作用が増強されていることがわかる。
 NEA表面を有するGaAsを光電膜12(活性層)とする光陰極13で達成可能なパルス幅(τ)4ピコ秒のパルス電子線について、パルス励起光2の光電膜12の集光径φ1 μmとして、制御電圧Vの値と1パルスの電子数Nを変えて計算した仮想光源位置zvsを図6に、仮想光源径rvsを図7に、電子線の照射開き角αvsを図8に、換算輝度βを図9に、エミッタンスを図10に示す。図6~図10とも制御電圧V=-195kV、-190kV、-180kVのときの波形を、それぞれ破線、点線、実線で示している。
 図11を用いて、仮想光源位置zvs、仮想光源径rvs、照射開き角αvsの定義を説明する。絞り51を通過したパルス電子線25について、第2アノード電極23を通過した後のレンズ場のない領域の軌道を光陰極13側に外挿し、水平方向の広がりが最小となる位置15が仮想光源位置zvsであり、その位置でのビーム半径が仮想光源径rvs、仮想光源からの電子線の開き半角が照射開き角αvsと定義される。電荷素量をe=-1.6×10-19 C、加速電圧V=-200 kVとして、 換算輝度βは(数1)に示す関係式により算出できる。また、エミッタンスはrvs×αvsで定義される。
Figure JPOXMLDOC01-appb-M000001
 1パルスあたりの電子数Nに比例して換算輝度βが増大している場合、その条件では空間電荷効果が顕在化していないといえる。図9に示されるように、制御電圧V=-180kVの条件では、算出した全範囲でほぼ線形性が保たれているのに対して、制御電圧V=-190kV、-195kVの条件では、1パルスあたりの電子数Nが大きくなるにつれて換算輝度βが飽和している。また、同じ1パルスあたりの電子数Nであれば表面電界強度が大きい条件ほど、換算輝度βは大きくなっている。例えば、1パルスに含まれる電子数N=104個の条件で比較した換算輝度βは、従来電子銃(図3、制御電圧V=-195kVの条件に相当)ではSchottky型電界放出電子銃の約2倍に相当する4.0×107 A/m2/sr/Vであるのに対し、制御電圧V=-180kVの条件では最大で冷陰極型電界放出(Cold Field Emission:CFE)電子銃に迫る1.2×108 A/m2/sr/Vが得られることがわかった。また、図10に示されるように、エミッタンスは値が小さい程ビームの集束性がよいことを示す指標であるところ、表面電界強度が大きい条件ほど、1パルスあたりの電子数Nの大きいパルス電子線での横方向の広がりが小さくなっていることが確認できる。
 以上の計算結果から、本実施例の電子銃構成では、図9、図10に示されるように、空間電荷効果の影響を抑制するには、カソード表面の加速電界強度は大きいほど好ましいことが分かる。具体的には、パルス電子線で1パルスあたりの電子数を大きくした時の空間電荷効果の悪影響を低減するには、光陰極13の表面の電界強度は5 MV/m以上が好ましい。
 このような計算結果が得られる理由は以下のように説明できる。光陰極13の表面付近での電子同士が反発することで生じる電子軌道の発散は、光陰極13の表面に凹レンズがある状況に相当する。一方、第1アノード電極22に制御電圧Vを印加して加速電界を設けることは、光陰極13の表面に凸レンズを形成して空間電荷効果に起因する凹レンズ作用を相殺するのと同等の効果が得られる。この原理に従い、第1アノード電極22に印加した制御電圧Vによって光陰極13の表面の空間電荷効果の影響を抑制していると説明できる。したがって、空間電荷効果の影響が強く表れやすい1パルスあたりの電子数が大きいパルス電子線についても高い輝度を得るには、光陰極13の表面の加速電界が最大となるように、第1アノード電極22の制御電圧Vを制御することが有効である。
 しかし、実際にはカソード電極14と第1アノード電極22との間の狭い空間内に大きな電位差を作ると放電リスクが高まる。このため、カソード電極14、第1アノード電極22、第2アノード電極23の配置は、実際に印加される電圧値に基づいて想定される電界強度分布を事前に計算し、放電リスクの小さい電極構造となるように構成する必要がある。また、仮想光源径rvs、仮想光源位置zvs、照射開き角αvsおよび換算輝度βは、パルス電子線の加速電圧、パルス幅、電子数などに依存する。このため、上記のパラメータを事前にシミュレーションによって計算しておき、その条件に合わせるように、パルス電子銃よりも試料側の電子光学系の照射条件を最適化する電子顕微鏡の構成が考えられる。そのような電子顕微鏡の構成については、以下の実施例2~実施例4において説明する。
 空間電荷効果の影響を抑制するため、パルス励起光2の集光位置を光陰極13の活性層(光電膜12)からデフォーカスして、集光径がやや大きい条件を選択できるように励起光学系を構成してもよい。空間電荷効果は電子放出位置の近傍で電子同士が反発することで顕在化するため、電子放出面積を増大することにより、空間電荷効果の影響は低減される。集光径を連続的または特定のデフォーカス条件とフォーカス条件とを切り替えて使用できるように励起光学系を構成しておき、輝度が顕著に低下しない範囲でデフォーカス量を設定するようにパルス電子銃を構成してもよい。ただし、励起光をデフォーカスした条件ではパルス電子銃の仮想光源径rvsが大きくなることに加え、1パルスあたりに放出される電子数Nも変化するため、デフォーカス条件に対し最適な電子光学系の集束条件を別途設定する必要がある。
 以上、NEA表面を持つ高輝度光陰極を適用したパルス電子銃として説明したが、NEA光陰極を用いたものと同程度に高輝度な面状パルス電子銃に対しても、空間電荷効果の影響を抑制する手法として、図1または図2に示した電極構造は有効である。
 以下では、実施例1のパルス電子銃を搭載した電子線応用装置について説明する。
 実施例1のパルス電子銃を搭載した透過型電子顕微鏡(TEM)の構成例を図12および図13に示す。図12は光陰極13と試料52の間でパルス電子線25がクロスオーバを持たない場合、図13は光陰極13と試料52の間でパルス電子線25がクロスオーバ26を持つ場合を示す。パルス電子線25の加速電圧が大きい条件や1パルスの電子数が少ない条件など、クロスオーバ位置における空間電荷効果が問題とならない条件では、クロスオーバを持つように電子光学系を制御しても空間分解能の劣化は問題にならない。一方で、パルス電子線の加速電圧が小さい条件や1パルスの電子数が大きい条件など、クロスオーバ位置での空間電荷効果が問題となりやすい条件では、空間分解能の劣化を回避するために図12のようにクロスオーバがないように、あるいはクロスオーバの数を最小限とするように電子光学系を制御することが好ましい。
 TEMでは、試料52に電子線を照射し、透過した電子27を対物レンズ62や投影レンズなどで蛍光面53の上に投影して得られる像や回折パターンをCCDカメラなどで撮像する。試料52を透過した電子線のエネルギースペクトルを計測する目的で、電子エネルギー損失分光(Electron Energy Loss Spectroscopy:EELS)検出器を配置してもよい。照射電子線を短パルス化して照射するタイミングを制御することで、TEMのシングルショット像を取得でき、パルス幅と同程度の時間スケールで生じる高速現象を撮像できる。
 1パルスあたりの電子数が大きい条件では、空間電子効果によって仮想光源径rvsが増大する。このため、パルス電子線について設定される加速電圧、電子数、パルス幅などに対し、事前に計算された仮想光源径rvsに基づき、設定条件に対する最適な制御値となるように、パルス電子顕微鏡の制御系が構成される。
 TEM観察で高い空間分解能を得るには、パルス電子線25は試料52に対し平行照射に近い条件となるように照射角(半角)θを小さく設定する必要がある。パルス電子線25の照射角θは、光陰極13と試料52との間に搭載されたコンデンサレンズ61の強度、および電子線の通過領域を制限する絞り51によって調整される。図14に示すように、電子線25の照射角(半角)θは、試料52より光陰極13側に形成されたクロスオーバ17を見込む角度として定義される。パルス電子銃の仮想光源径rvs、コンデンサレンズの縮小率M、クロスオーバ17と試料52との距離Lとして、照射角θ=Mrvs/Lと表せる。なお、縮小率Mはパルス電子銃の仮想光源位置zvsにも依存する。
 一方、絞り51を通過するパルス電子線25の電子線照射領域の半径Rは、仮想光源位置16の照射開き角αvsとして、半径R~Lαvs/Mと近似できる。像S/Nの向上には電流密度(∝R-2)を大きく設定する必要がある。ここで、半径Rと照射半角θとの積は(数2)に示すように近似できる。(数2)より、照射角θを小さく、かつ電流密度を大きくするには換算輝度βの大きいパルス電子銃が優位である。
Figure JPOXMLDOC01-appb-M000002
 図20に電子顕微鏡の制御パラメータの設定手順の一例を示す。はじめに光陰極13より放出するパルス電子線25の照射条件として、パルス幅、パルス間隔、電荷量(電子数)を設定する(S1)。これらのパラメータは、装置仕様として与えられた設定値の範囲内で観察者が自由に設定できるものである。パルス電子線25のパルス幅とパルス間隔は実質的に光陰極13に照射するパルス励起光2のパルス幅、パルス間隔に応じて決まり、1パルスあたりに含まれる電荷量は励起光の集光条件に加え、パルス励起光2のパルス幅とピーク強度(または強度を時間について積分したピークエネルギー)に対応して決まる。このため、パルス励起光2の光陰極13への照射条件を設定することによって、パルス電子線25の照射条件を設定することができる。
 続いてパルス電子銃21の電極電圧、すなわち加速電圧V及び制御電圧Vを設定する(S2)。通常の観察ではパルス電子銃21を高輝度条件で使用する方が好ましいため、制御電圧Vは光陰極表面の電界強度が最大となるように、設定可能な制御電圧Vの最大値が設定される。
 以上のパルス条件が決まると、パルス電子銃21の仮想光源位置zvs、仮想光源径rvs、照射開き角αvs、換算輝度βが決まる。これらのパラメータについてパルス条件を複数に振ってシミュレーションを行って求めた計算値を、装置は内部パラメータとしてあらかじめ保有しており、制御部41は、内部パラメータを参照して、設定されたパルス条件でのパルス電子銃のパラメータの値を得る(S3)。続いて、制御部41は、パルス条件に対応する電子銃のパラメータに合わせて、パルス電子銃21と試料52との間に設置された各電子レンズについて、適切なクロスオーバ位置となるように電子光学系の照射条件を設定する(S4)。試料52とクロスオーバの距離Lと電子光学系の倍率Mを制御することにより、試料に照射されるパルス電子線の照射角θと照射面積(半径R)の大きさを調整する。所望の観察視野を特定し(S5)、観察条件を決定し、画像データやスペクトルデータを取得する(S6)。
 図20のフローでは、照射角θや照射領域(半径R)の変更を電子光学系の照射条件の制御により行っているのに対し、コンデンサレンズ61や対物レンズ62の集束条件や電子線のアライメント条件などの条件は固定して、第1アノード電極22の制御電圧Vを制御することにより行ってもよい。例えば図1に示した電極構造の場合、電子数104 個のパルス条件とした場合、制御電圧Vを-180 kVから-195 kVに変更すると、仮想光源位置zvsは-18 mmから-60 mmに、仮想光源径rvsは0.8 μmから2.0 μmに、照射開き角αvsは1.5 mradから1.2 mradに変わる。電子光学系のパラメータを固定しても、制御電圧Vを変えることで試料52上の照射角θと照射領域(半径R)が変わるため、観察者にとって好ましい観察条件を選択できる。この場合の制御パラメータの設定手順の一例を図21に示す。基本的には図20と同様の手順に沿って観察条件を決定する。通常のTEM観察では電子銃21と試料52の間に設置されたコンデンサレンズ61のクロスオーバ位置により、試料に対する電子線の照射条件を制御するが、本実施例の電子顕微鏡では電子光学系の条件は固定して、電子銃21の制御電圧Vを変える(S7)ことにより、同様の制御が可能となる。
 また、本実施例のパルス電子銃21を、パルス条件に関わらず最大輝度の条件で使用する場合には、光陰極13の表面電界が最大となる条件で使用することが好ましい。また、より高い空間分解能を得るために、結像系に球面収差や色収差の収差補正器を搭載してもよい。
 実施例1のパルス電子銃を搭載した走査透過型電子顕微鏡(STEM)または走査型電子顕微鏡(Scanning Electron Microscope:SEM)の構成例を図15および図16に示す。図15は光陰極13と試料52の間でパルス電子線25がクロスオーバを持たない場合、図16は光陰極13と試料52の間でパルス電子線がクロスオーバ26を持つ場合を示す。パルス電子線25の加速電圧が大きい条件や1パルスの電子数が少ない条件など、クロスオーバ位置における空間電荷効果が問題とならない条件では、クロスオーバを持つように電子光学系を制御しても空間分解能の劣化は問題にはならない。一方で、パルス電子線の加速電圧が小さい条件や1パルスの電子数が大きい条件など、クロスオーバ位置での空間電荷効果が問題となりやすい条件では、空間分解能の劣化を回避するために図15のようにクロスオーバがないように、あるいはクロスオーバの数を最小限とするように電子光学系を制御することが好ましい。
 STEMやSEMでは、数段のコンデンサレンズ61と対物レンズ62で集束した照射電子線25を、偏向器63によって試料52の上で走査した際に各照射位置で発生する信号電子(透過電子27、二次電子28など)を検出器54や検出器55で検出し、信号強度のマッピング像を観察画像として得る。二次電子28を検出するために、例えばウィーンフィルタで構成された軸外偏向器64を利用することで、検出器55を用いて低エネルギー(<約20 eV)の二次電子28を効率良く検出できる。また、試料52を透過した電子27の検出器54として、明視野検出器、暗視野検出器、EELS検出器、カソードルミネッセンス(CL)検出器などが搭載されていてもよい。また、試料の励起光源と同期制御を行うためのパルス発生器や遅延制御器などをパルス光源1に接続することにより、ポンプ-プローブ法による可逆過程の時間分解計測を可能としてもよい。
 図17は、プローブ電流が一定の条件において、軸上ビーム径を決定する各因子の照射角αに対する依存性を模式的に示した図である。STEMやSEMにおいて、試料上に集束されたパルス電子線25の照射ビーム径75は、対物レンズ62の幾何収差(球面収差δ71、色収差δ72、回折収差δ73)および光源径δ74に依存する。各因子は試料への照射角α(図15、図16参照)に対する依存性を持ち、ビーム径が最小となる照射角αの最適値(αopt)が存在する。電子線25の試料上の照射角αは、光陰極13と試料52の間に搭載されたコンデンサレンズ61や対物レンズ62の集束強度、およびパルス電子線25の通過領域を制限する絞り51によって調整される。
 1パルスあたりの電子数Nが大きい条件では、空間電荷効果によって仮想光源径rvsが増大する。このため、必要とされる空間分解能を確保するために電子光学系を適切に制御する必要がある。パルス電子銃の換算輝度βから、光源径δは(数3)により計算され、換算輝度βの大きいパルス電子銃ほど光源径δが小さくなる。したがって、1パルスあたりの電子数Nが同じであれば換算輝度βが高い程、照射ビーム径75に対する光源径δの寄与を小さくできることが分かる。
Figure JPOXMLDOC01-appb-M000003
 観察者の設定条件から想定される球面収差δ71、色収差δ72、回折収差δ73、および光源径δ74の数値から、照射半角αの最適値(αopt)が決定され、制御部41は最適照射角αoptを与える電子光学系の照射条件を設定する。このときの電子顕微鏡の制御パラメータの設定手順は実施例2に示した図20と同様であり、重複する説明は省略する。
 ステップS1、ステップS2でパルス電子線のパルス条件が設定されると、パルス電子銃21の仮想光源位置zvs、仮想光源径rvs、照射開き角αvs、換算輝度βが決まる。これらのパラメータについてパルス条件を複数に振ってシミュレーションを行って求めた計算値を、装置は内部パラメータとしてあらかじめ保有している。SEMやSTEMの場合は、上述のように試料上に投影される光源径δは輝度βに依存しており、光源径δと回折収差δはともに試料上の照射角αに反比例する関係を有している。このため、1パルスに含まれる電荷量Nが充分に小さく、試料上に投影される光源径δが充分に小さい条件では、回折収差δ、球面収差δ、色収差δに基づき最適照射角αoptが決定される。一方、1パルスに含まれる電荷量Nが大きく、試料上に投影される光源径δが充分に大きい条件になると、回折収差δよりも光源径δのビーム径に対する寄与が大きくなるため、光源径δ、球面収差δ、色収差δに基づき最適照射角αoptが決定される。最適照射角αoptは、各条件について図17に示すような各収差のビーム径に対する寄与を照射角αに対しプロットし、総合的なビーム径の計算値が最小となるように決定される。
 制御部41は、パルス条件に対応する電子銃のパラメータに合わせて、パルス電子銃21と試料52との間に設置された各電子レンズについて、最適照射角αoptを与える適切なクロスオーバ位置となるように電子光学系の照射条件を設定する(S4)。
 実施例2と同様に、試料上の照射角αを調整するため、第1アノード電極22に印加する制御電圧Vを変更してもよい。この場合の制御パラメータの設定手順は図21のフローと同様である。通常のSEM観察やSTEM観察では電子銃21と試料52の間に設置されたコンデンサレンズ61のクロスオーバ位置により、試料に対する電子線の照射条件を制御するが、本実施例の電子顕微鏡では電子光学系の条件は固定して、電子銃21の制御電圧Vを変える(S7)ことにより、同様の制御が可能となる。
 より高い空間分解能を得るために、光陰極13と試料52の間に、球面収差や色収差を補正する収差補正器を搭載したSEMあるいはSTEMとしてもよい。
 実施例1のパルス電子銃を搭載したSEMの構成例を図18に示す。一般的に加速電圧30 kV以下で利用されるSEMでは、透過型のTEMやSTEMと比べると利用される電子線のエネルギーが小さいため、空間電荷効果に起因する影響がより顕在化しやすい。また、カソード電極14に印加される電極電圧Vの絶対値が小さく、光陰極13より放出される電子線を大きく加速させるため第2アノード電極23に大きい正電圧を印加すると、電子銃21と試料との間で電子線を減速させる必要がある。このために電子光学系における電子線の軌道にクロスオーバが増えるのは好ましくない。一方で、第2アノード電極23から試料までの空間を基準電位(接地電位)とする場合には、カソード電極14と第1アノード電極22との電位差を大きく設定することが難しく、空間電荷効果の影響を十分低減することが困難である。そこで、実施例4の電子線応用装置の電子光学系では減速法を適用する。
 図18のSEMの構成例では、試料57に負電圧を印加するリターディング法を適用している。例えば試料57にリターディング電圧として-10 kVを印加する場合、パルス電子銃21では加速電圧11 kVのエミッション条件で放出されたパルス電子線25を用いて試料57上では照射電圧1 kVを実現できる。この場合、カソード電極14に印加される電圧Vを-11 kV、第1アノード電極22に印加される電圧Vを-1 kV、第2アノード電極23に印加される電圧Vを0 Vとでき、光陰極13の表面の加速電界強度5 MV/m以上を実現できる。上記の電圧条件とした場合は、第2アノード電極23を通過した後に試料57に到達するまでのパルス電子線25のエネルギーは11 keVに加速されるため、パルス内での電子同士の反発は抑制され、空間電荷効果も低減されるものと期待される。
 試料57に負電圧を印加すると、試料57上で発生した二次電子28は対物レンズ62と試料57の間に分布する電界によって加速され、対物レンズ62のレンズ磁場領域を通過し光陰極13の方向に進行する。このため、SEM鏡筒内にドーナツ形状の変換電極56を設置し、二次電子28が変換電極56に衝突して発生する低エネルギーの電子29を検出器55で検出することにより、充分な強度の信号を検出できる。
 図19のSEMの構成例では、試料52は接地電位として光軸上に同様の電位分布を設けるブースティング法を適用している。ブースティング法では第2アノード電極23は試料52の近傍まで延長されて加速管を形成し、加速管を形成する第2アノード電極23に対して高電圧が印加される。光陰極13より放出されたパルス電子線25は、筒状の第2アノード電極23の内部で高エネルギーを維持した状態で輸送される。例えば、カソード電極14に印加される電圧Vを-1 kV、第1アノード電極22に印加される電圧Vを+9 kV、第2アノード電極23に印加される電圧Vを+10 kVとすると、図18のSEMと同様の効果が得られることが期待される。
1…パルス光源、2…パルス励起光、3…ビューイングポート、4…集光レンズ、11…透明基板、12…光電膜、13…光陰極、14…カソード電極、21…パルス電子銃、22…第1アノード電極、23…第2アノード電極、24…第3アノード電極、25…パルス電子線、26…クロスオーバ、27…透過電子、28…二次電子、29…電子、30~33…電源、41…制御部、51…絞り、52,57…試料、53…蛍光面、54~55…検出器、56…変換電極、58…ガード電極、59…環状検出器、61…コンデンサレンズ、62…対物レンズ、63…偏向器、64…軸外偏向器、71…球面収差、72…色収差、73…回折収差、74…光源径、75…照射ビーム径、114…カソード電極、121…パルス電子銃、123…アノード電極、130:電源。

Claims (14)

  1.  基板と前記基板上に形成される光電膜とを有する光陰極と、
     パルス励起光を発光する光源と、
     前記光陰極の前記基板に対向して配置され、前記パルス励起光を前記光陰極に向けて集光する集光レンズと、
     前記光陰極の前記光電膜に対向して配置される第1アノード電極及び第2アノード電極と、
     前記第1アノード電極と前記第2アノード電極との間に第1制御電圧を印加する第1電源と、
     前記光陰極と前記第2アノード電極との間に加速電圧を印加する第2電源とを有し、
     前記第1アノード電極は、前記光陰極と前記第2アノード電極との間に配置され、
     前記第1アノード電極の前記第2アノード電極に対向する面は凹形状であり、前記第2アノード電極の前記第1アノード電極に対向する面は凸形状であり、
     前記第1制御電圧は、前記光陰極の表面電界強度が、前記第1アノード電極を設けない場合に前記第2アノード電極に前記加速電圧が印加されたときの前記光陰極の表面電界強度よりも大きくなる電圧とされる電子銃。
  2.  請求項1において、
     前記光陰極と前記第2アノード電極との間に前記加速電圧が印加され、前記第1アノード電極と前記第2アノード電極との間に前記第1制御電圧が印加されたとき、前記光陰極の表面電界強度が5 MV/m以上である電子銃。
  3.  請求項1において、
     前記光陰極と前記第2アノード電極との間に前記加速電圧が印加され、前記第1アノード電極と前記第2アノード電極との間に前記第1制御電圧が印加されたとき、前記光陰極と前記第2アノード電極との間における軸上電位分布は極値を持たず、前記光陰極と前記第2アノード電極との間における軸上電界強度は極大値と極小値の双方を持つ電子銃。
  4.  請求項1において、
     前記第1アノード電極と前記第2アノード電極との間に配置される第3アノード電極と、
     前記第3アノード電極と前記第2アノード電極との間に第2制御電圧を印加する第3電源と、を有し、
     前記第1アノード電極の前記第3アノード電極に対向する面は凹形状であり、前記第3アノード電極の前記第1アノード電極に対向する面は凸形状であり、
     前記第3アノード電極の前記第2アノード電極に対向する面は凹形状であり、前記第2アノード電極の前記第3アノード電極に対向する面は凸形状である電子銃。
  5.  請求項1において、
     前記光電膜は、表面の電子親和力が負の半導体である電子銃。
  6.  請求項1において、
     前記第1アノード電極または前記第2アノード電極は、方位角方向に等分割された部分電極からなり、前記部分電極は光軸を中心に対称となるように配置される電子銃。
  7.  電子銃を含み、前記電子銃から放出されるパルス電子線を試料に照射する電子光学系と、
     前記パルス電子線が試料に照射されることにより、前記試料を透過した電子または前記試料との相互作用により放出される電子を検出する検出器と、
     前記電子光学系からの前記試料への前記パルス電子線の照射条件を制御する制御部と、を有し、
     前記電子銃は、
      基板と前記基板上に形成される光電膜とを有する光陰極と、
      パルス励起光を発光する光源と、
      前記光陰極の前記基板に対向して配置され、前記パルス励起光を前記光陰極に向けて集光する集光レンズと、
      前記光陰極の前記光電膜に対向して配置される第1アノード電極及び第2アノード電極と、を備え、
     前記第1アノード電極は、前記光陰極と前記第2アノード電極との間に配置され、前記第1アノード電極の前記第2アノード電極に対向する面は凹形状であり、前記第2アノード電極の前記第1アノード電極に対向する面は凸形状であり、
     前記制御部は、前記電子銃に対して設定された所定のパルス条件での前記電子銃のパラメータに応じて、前記電子光学系による前記パルス電子線の前記試料への照射条件を最適化する電子線応用装置。
  8.  請求項7において、
     前記電子銃のパラメータは、仮想光源位置、仮想光源径、照射開き角及び換算輝度値を含む電子線応用装置。
  9.  請求項7において、
     前記制御部は、前記電子銃に対して設定されるパルス条件を複数に振ってシミュレーションを行って求めた前記電子銃のパラメータを内部パラメータとしてあらかじめ保有し、前記電子銃に対して設定された前記所定のパルス条件での前記電子銃のパラメータを、前記内部パラメータを参照して求める電子線応用装置。
  10.  請求項7において、
     前記制御部は、前記試料に対する前記パルス電子線の照射角を制御するため、前記電子銃の前記第1アノード電極と前記第2アノード電極との間に印加される制御電圧を制御する電子線応用装置。
  11.  請求項7において、
     前記電子線応用装置は、走査型電子顕微鏡であり、
     前記電子光学系は減速法が適用される電子光学系である電子線応用装置。
  12.  請求項11において、
     前記電子銃の前記第2アノード電極の端部が前記試料付近まで延長されて加速管を形成する電子線応用装置。
  13.  請求項7において、
     前記光陰極と前記第2アノード電極との間に加速電圧が印加され、前記第1アノード電極と前記第2アノード電極との間に制御電圧が印加されたときの前記光陰極の表面電界強度は、前記第1アノード電極を設けない場合に前記第2アノード電極に前記加速電圧が印加されたときの前記光陰極の表面電界強度よりも大きくなる電子線応用装置。
  14.  請求項7において、
     前記光陰極と前記第2アノード電極との間に加速電圧が印加され、前記第1アノード電極と前記第2アノード電極との間に制御電圧が印加されたときの前記光陰極の表面電界強度は、5 MV/m以上である電子線応用装置。
PCT/JP2020/047913 2020-12-22 2020-12-22 電子銃および電子線応用装置 WO2022137332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/047913 WO2022137332A1 (ja) 2020-12-22 2020-12-22 電子銃および電子線応用装置
JP2022570811A JP7406009B2 (ja) 2020-12-22 2020-12-22 電子銃および電子線応用装置
US18/036,217 US20230402246A1 (en) 2020-12-22 2020-12-22 Electron gun and electron beam application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047913 WO2022137332A1 (ja) 2020-12-22 2020-12-22 電子銃および電子線応用装置

Publications (1)

Publication Number Publication Date
WO2022137332A1 true WO2022137332A1 (ja) 2022-06-30

Family

ID=82159179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047913 WO2022137332A1 (ja) 2020-12-22 2020-12-22 電子銃および電子線応用装置

Country Status (3)

Country Link
US (1) US20230402246A1 (ja)
JP (1) JP7406009B2 (ja)
WO (1) WO2022137332A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509360A (ja) * 1995-07-10 1999-08-17 インテバック・インコーポレイテッド 超微小放出領域を有する負電子親和力フォトカソードを利用した電子ソース
JP2001143648A (ja) * 1999-11-17 2001-05-25 Hitachi Ltd 光励起電子線源および電子線応用装置
JP2007258119A (ja) * 2006-03-24 2007-10-04 Univ Nagoya スピン偏極電子発生装置
JP2013045525A (ja) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp 電子銃および荷電粒子線装置
CN108428610A (zh) * 2018-03-26 2018-08-21 电子科技大学 一种小型离子源及其制备方法
JP6722958B1 (ja) * 2019-11-20 2020-07-15 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における電子ビームの射出方法
JP6762635B1 (ja) * 2020-04-16 2020-09-30 株式会社Photo electron Soul 電子銃、電子線適用装置、および、電子ビームの射出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509360A (ja) * 1995-07-10 1999-08-17 インテバック・インコーポレイテッド 超微小放出領域を有する負電子親和力フォトカソードを利用した電子ソース
JP2001143648A (ja) * 1999-11-17 2001-05-25 Hitachi Ltd 光励起電子線源および電子線応用装置
JP2007258119A (ja) * 2006-03-24 2007-10-04 Univ Nagoya スピン偏極電子発生装置
JP2013045525A (ja) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp 電子銃および荷電粒子線装置
CN108428610A (zh) * 2018-03-26 2018-08-21 电子科技大学 一种小型离子源及其制备方法
JP6722958B1 (ja) * 2019-11-20 2020-07-15 株式会社Photo electron Soul 電子線適用装置および電子線適用装置における電子ビームの射出方法
JP6762635B1 (ja) * 2020-04-16 2020-09-30 株式会社Photo electron Soul 電子銃、電子線適用装置、および、電子ビームの射出方法

Also Published As

Publication number Publication date
JPWO2022137332A1 (ja) 2022-06-30
JP7406009B2 (ja) 2023-12-26
US20230402246A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
US9997326B2 (en) Charged particle beam device
US6259094B1 (en) Electron beam inspection method and apparatus
US8895922B2 (en) Electron beam apparatus
JPH06132002A (ja) 走査電子顕微鏡
JP5518128B2 (ja) 荷電粒子ビーム装置用モノクロメータ及びこれを用いた電子装置
KR20150003248A (ko) 고해상도 전자 빔 이미징을 위한 장치 및 방법
JP4527289B2 (ja) オージェ電子の検出を含む粒子光学装置
US10566170B2 (en) X-ray imaging device and driving method thereof
US8742342B2 (en) Electron microscope
US20180005797A1 (en) Scanning electron microscope
JP3867048B2 (ja) モノクロメータ及びそれを用いた走査電子顕微鏡
KR100881236B1 (ko) 입자빔장치의 편향시스템
JP4781211B2 (ja) 電子線装置及びこれを用いたパターン評価方法
JP7349011B2 (ja) 電子銃及び電子顕微鏡
JP7294971B2 (ja) 走査型電子顕微鏡および走査型電子顕微鏡の2次電子検出方法
WO2022137332A1 (ja) 電子銃および電子線応用装置
JP5452722B2 (ja) 収差補正装置およびそれを用いた荷電粒子線装置
JP2019164886A (ja) ビーム照射装置
WO2013065375A1 (ja) ストリーク管及びそれを含むストリーク装置
JP6401600B2 (ja) ストリーク管及びそれを含むストリーク装置
JPH05109381A (ja) 直接写像型反射電子顕微鏡
JP5934517B2 (ja) 色収差補正装置及び色収差補正装置の制御方法
JP2021068505A (ja) 電子線装置及び電極
KR20190028279A (ko) 엑스선 영상 장치 및 그의 구동 방법
US20230113759A1 (en) Charged particle beam device, and method for controlling charged particle beam device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966825

Country of ref document: EP

Kind code of ref document: A1