WO2022135522A1 - 电流控制方法、装置、车辆及存储介质 - Google Patents

电流控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2022135522A1
WO2022135522A1 PCT/CN2021/140827 CN2021140827W WO2022135522A1 WO 2022135522 A1 WO2022135522 A1 WO 2022135522A1 CN 2021140827 W CN2021140827 W CN 2021140827W WO 2022135522 A1 WO2022135522 A1 WO 2022135522A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
output current
next output
power battery
board charger
Prior art date
Application number
PCT/CN2021/140827
Other languages
English (en)
French (fr)
Inventor
张天强
宋江柱
姜涛
李威
刘健
姜磊
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022135522A1 publication Critical patent/WO2022135522A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the field of computer control technology, for example, to a current control method, device, vehicle, and storage medium.
  • the power of the on-board charger of the electric vehicle also increases.
  • the input current of the on-board charger does not exceed the smaller of the maximum output current of the power supply device and the rated current of the charging cable.
  • the on-board charger takes the smaller value of its own maximum output current and the power battery demand current as the target output current.
  • the on-board high-voltage components will consume electrical energy, making the actual charging current of the power battery smaller.
  • the demand current of the power battery is used as the target output current, and the power consumption of the on-board high-voltage components will reduce the actual charging current of the power battery, which will lead to longer AC charging time.
  • the present application provides a current control method, device, vehicle and storage medium, so as to adjust the current output current of the on-board charger according to the maximum output current of the on-board charger, the required current of the power battery and the actual charging current, so as to achieve real-time control of the on-board charger.
  • the current output current of the charger can improve the utilization rate of the output power of the vehicle charger during the AC charging process, shorten the AC charging time, and improve the user experience.
  • the present application provides a current control method, which is applied to a situation where a vehicle-mounted charger charges a power battery, and the method includes:
  • the current output current of the on-board charger is initially adjusted to obtain the next output current
  • the next output current is determined according to the next output voltage of the on-board charger, the maximum output current corresponding to the next output voltage, and the demand current of the power battery, the next charging current and the preset balance current Under the condition that the current safety adjustment condition is satisfied, the next output current is safely adjusted to obtain a new next output current;
  • the safety adjustment of the new next output current is continued until the on-board charger finishes charging the power battery.
  • the present application also provides a current control device, the device comprising:
  • an initial adjustment module configured to initially adjust the current output current of the on-board charger according to the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger to obtain the next output current
  • the safety adjustment module is set to determine the maximum output current corresponding to the next output voltage of the on-board charger, the next output voltage, and the demand current of the power battery, the next charging current and the preset difference current, and determine In the case that the next output current satisfies the current safety adjustment condition, the next output current is safely adjusted to obtain a new next output current; if the new next output current satisfies the current safety adjustment condition, continue to The new next output current is safely adjusted until the on-board charger completes charging the power battery.
  • the present application also provides a vehicle, which includes: an on-board charger, a power battery, one or more processors, and a storage device;
  • On-board charger set to charge the power battery
  • Power battery set to store electrical energy to power the vehicle
  • storage means arranged to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the above-mentioned current control method.
  • the present application also provides a storage medium containing computer-executable instructions, which, when executed by a computer processor, are used to perform the above-mentioned current control method.
  • FIG. 1 is a schematic flowchart of a current control method provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic flowchart of a current control method provided in Embodiment 2 of the present application.
  • FIG. 2a is a schematic diagram of a current control method provided in Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram of a current control device provided in Embodiment 3 of the present application.
  • FIG. 4 is a structural diagram of a vehicle according to Embodiment 4 of the present application.
  • FIG. 1 is a flow chart of a current control method provided in the first embodiment of the application.
  • the method can be applied to a situation where an on-board charger is used to charge a power battery.
  • the method can be executed by a current control device, which can be implemented through software and and/or hardware, and can be integrated into an electronic device that has storage and computing capabilities and is configured to perform a battery charging function.
  • a current control method provided by this embodiment includes the following steps:
  • Step S110 according to the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger, initially adjust the current output current of the on-board charger to obtain the next output current.
  • the required current of the power battery is the charging current required during the charging process of the power battery, which is equivalent to the rated charging current of the power battery, and is the maximum allowable current that can maintain normal operation when the power battery is charged.
  • the current output current of the on-board charger is the current output by the on-board charger to charge the power battery at the current moment.
  • the current output voltage of the on-board charger is the voltage corresponding to the current output by the on-board charger to charge the power battery at the current moment.
  • the next output current is the output current of the on-board charger at the next moment.
  • the on-board charger obtains the demand current of the power battery and the current charging current of the power battery from the Controller Area Network (CAN) bus, and then according to the current maximum output power of the on-board charger and the current
  • the output voltage determines the current maximum output current of the on-board charger.
  • the next output current after initial adjustment is determined according to the demand current of the power battery and the current maximum output current of the on-board charger.
  • CAN Controller Area Network
  • the current output current of the on-board charger is initially adjusted according to the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger to obtain the next output current, including: according to the current output current of the on-board charger.
  • the maximum output power and the current output voltage determine the current maximum output current of the on-board charger; when the current maximum output current is greater than the demand current, the demand current is used as the next output current; when the current maximum output current is greater than the demand current When the maximum output current is smaller than the demand current, the current maximum output current is used as the next output current.
  • the current maximum output power of the on-board charger is the output power of the rated output power of the on-board charger excluding the necessary power consumption of the on-board charger.
  • the current maximum output current of the on-board charger is the ratio of the current maximum output power of the on-board motor to the current output voltage of the on-board charger at the current moment.
  • the maximum output current of the on-board charger and the requirements of the power battery need to be calculated.
  • the smaller value of the two currents is used as the next output current of the on-board charger.
  • step S120 according to the next output voltage of the on-board charger, the maximum output current corresponding to the next output voltage, and the demand current of the power battery, the next charging current and the preset difference current, determine the next output voltage.
  • the safety adjustment is performed on the next output current to obtain a new next output current.
  • the next output voltage is the output voltage of the on-board charger at the next moment corresponding to the current moment;
  • the maximum output current corresponding to the next output voltage is the next maximum output power of the on-board charger and the The output current corresponding to the next output voltage;
  • the next maximum output power of the on-board charger is the output power in the rated output power of the on-board charger at the next moment except the necessary power consumption of the on-board charger.
  • the next charging current is the actual charging current of the power battery at the next moment;
  • the preset difference current is the fixed difference current between the demand current of the power battery and the next charging current of the power battery, which is used to determine the next charging current of the power battery Whether there is room for adjustment of the difference current with the demand current of the power battery.
  • the gap between the next charging current of the power battery and the required current of the power battery is relatively large, and the safety adjustment can be performed on the premise of ensuring the safety of charging .
  • the safe adjustment of the next output current of the on-board charger is essentially the safe adjustment of the next charging current of the power battery.
  • next output current of the on-board charger it is determined whether the next output current of the on-board charger can continue to be safely adjusted according to the next output voltage of the on-board charger, the maximum output current corresponding to the next output voltage, and the next output current;
  • the demand current of the power battery and the next charging current of the power battery determine whether the next charging current of the power battery can continue to be safely adjusted; if the next output current of the on-board charger and the next charging current of the power battery can continue to be Safe adjustment, the next output current of the on-board charger is safely adjusted.
  • the next step is determined according to the next output voltage of the on-board charger, the maximum output current corresponding to the next output voltage, and the demand current of the power battery, the next charging current and the preset difference current.
  • the next output current is safely adjusted to obtain a new next output current, including:
  • the demand current is greater than the sum of the next charging current and the preset balance current, and the next output current is less than the maximum output current corresponding to the next output voltage, according to the next output voltage
  • the corresponding maximum output current and the sum of the demand current and the compensation current determine the new next output current.
  • the compensation current is the difference current between the demand current of the power battery and the next charging current of the power battery, which is used to display the actual difference between the demand current of the power battery and the next charging current of the power battery, And the next output current of the on-board charger is safely adjusted according to the actual value of the compensation current.
  • the new next output current is the output current of the on-board charger at the next moment after the next output current of the on-board charger is safely adjusted.
  • the next charging current of the power battery satisfies the current safety adjustment condition, and the next charging current of the power battery is equal to There is a safe adjustment space between the demand current of the power battery.
  • the next output current of the on-board charger is less than the current maximum output current of the on-board charger, the next output current of the on-board charger satisfies the current safety adjustment condition, and the next output current of the on-board charger is the same as the current maximum output of the on-board charger.
  • the safe adjustment of the next output current to obtain a new next output current includes:
  • the maximum output current corresponding to the next output voltage is less than the sum of the demand current and the compensation current, the maximum output current corresponding to the next output voltage is used as the new next output current; if the If the maximum output current corresponding to the next output voltage is greater than or equal to the sum of the demand current and the compensation current, the sum of the demand current and the compensation current is used as the new next output current.
  • the next output current of the on-board charger when the next output current of the on-board charger satisfies the current safety adjustment condition, the next output current of the on-board charger is safely adjusted.
  • the new next output current is confirmed according to the sum of the maximum output current corresponding to the next output voltage of the on-board charger and the demand current of the power battery and the compensation current of the power battery.
  • safely adjust the next output current of the on-board charger select the maximum output current corresponding to the next output voltage of the on-board charger, and the demand current of the power battery
  • the smaller value of the sum of the compensation current of the power battery and the power battery is used as the new next output current of the on-board charger.
  • Step 130 if the new next output current satisfies the current safety adjustment condition, continue to perform safety adjustment on the new next output current until the on-board charger completes charging the power battery.
  • the output current of the on-board charger is updated to the next output current, so that the actual charging current of the power battery is updated to the next charging current;
  • the output current of the on-board charger is updated to the new next output current, so that the actual charging current of the power battery is updated to the new next charging current; continue to judge whether the new next output current of the on-board charger satisfies Current safety adjustment condition, if the new next output current satisfies the current safety adjustment condition, continue to perform safety adjustment on the new next output current of the on-board charger.
  • the new next output current does not meet the current safety adjustment conditions, there is no safe adjustment space for the new next output current of the on-board charger, the new next output current of the on-board charger is maintained, and the charging current remains the new next charging current as the driving force Charging batteries.
  • the new next output current is safely adjusted to obtain the latest next output current.
  • the new next output voltage is the output voltage corresponding to the new next output current obtained by safely adjusting the next output current of the on-board charger; the maximum output current corresponding to the new next output voltage is the on-board charging
  • the output power of the rated output power of the on-board charger at the next moment obtained after the current safety adjustment is obtained except the necessary power consumption of the on-board charger.
  • the new next charging current is the actual charging current of the power battery at the next moment obtained by safely adjusting the next output current of the on-board charger.
  • the gap between the new next charging current of the power battery and the required current of the power battery is relatively large, and the charging can be carried out on the premise of ensuring charging safety.
  • Safety adjustment The safe adjustment of the new and next output current of the on-board charger is essentially the safe adjustment of the new and next charging current of the power battery.
  • the current output current is initially adjusted according to the required current of the power battery and the current maximum output power and current output voltage of the on-board charger to obtain the next output current;
  • the next output current is safely adjusted to obtain a new next output current; if the new next output current satisfies the current safety adjustment condition, the new next output current continues to be safely adjusted until the on-board charging The machine completes charging the power battery.
  • the current output current of the on-board charger can be controlled in real time, so as to improve the on-board charger during the AC charging process. The utilization rate of output power, shorten the AC charging time, and improve the user experience.
  • FIG. 2 is a flowchart of a current control method provided in Embodiment 2 of the present application.
  • the technical solution of this embodiment is described on the basis of the above-mentioned technical solution, and mainly includes the following steps:
  • Step S210 according to the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger, initially adjust the current output current of the on-board charger to obtain the next output current.
  • Step S220 if the demand current is less than or equal to the sum of the next charging current and the preset balance current or the next output current is greater than or equal to the maximum output current corresponding to the next output voltage, then when the When the demand current is greater than the next charging current, the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger will be refreshed, and the current output current of the on-board charger will be initially adjusted to obtain The next output current after refresh.
  • the required current of the power battery is less than or equal to the sum of the next charging current of the power battery and the preset difference current, and the next charging current of the power battery does not meet the current safety adjustment condition.
  • the next output current of the on-board charger is greater than or equal to the maximum output current corresponding to the next output voltage of the on-board charger. If the next output current of the on-board charger does not meet the current safety adjustment conditions, the on-board charger and power battery will be refreshed
  • the current data, the next output current after the refresh is the output current after initial adjustment after the on-board charger refreshes to obtain the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger.
  • the maximum output current corresponding to the current output voltage of the on-board charger is determined according to the refreshed current output voltage of the on-board charger and the current maximum output power of the on-board charger.
  • the current output current of the on-board charger is initially adjusted according to the maximum output current corresponding to the current output voltage of the refreshed on-board charger and the demand current of the refreshed power battery to obtain the next output current after the refresh.
  • Step S230 if the refreshed next output current does not meet the current safety adjustment condition, then when the required current is greater than the refreshed next charging current, continue to refresh the required current of the power battery and the on-board charger
  • the current maximum output power and the current output voltage are initially adjusted to the current output current of the on-board charger until the on-board charger completes charging the power battery.
  • the next output current of the refreshed on-board charger still does not meet the current safety adjustment condition, then when the required current of the power battery is greater than the next refreshed charging current, the next output current of the on-board charger corresponds to The next charging current of the power battery is within the safe charging range, continue to refresh the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger, and update the current output current of the on-board charger after the second refresh.
  • the initial adjustment is carried out so as to adjust the output current of the on-board charger dynamically and in real time according to the real-time data of the power battery and the on-board charger to adjust the actual charging current of the power battery.
  • the method also includes:
  • the new next output current does not meet the current safety adjustment condition, it is determined according to the demand current of the power battery and the new next charging current that the new next output current meets the regulation reduction condition, and the new next output current
  • the next output current is regulated down to obtain the regulated output current; if the regulated output current satisfies the regulated reduction condition, the regulated output current continues to be regulated.
  • the reduced output current is the reduced output current of the on-board charger.
  • the demand current of the power battery is less than or equal to the new next charging current of the power battery, and the charging circuit is in an unsafe state, and the new next charging current of the power battery needs to be reduced.
  • the on-board charger reduces the new next charging current of the power battery by reducing the new next output current of the on-board charger to obtain the reduced output current of the on-board charger, that is, reducing the output current.
  • the charging process of the power battery can be realized in many ways:
  • the On-board Charger obtains the input current limit through signal detection of the power supply equipment and the Copper Cable (CC) with a Circuit Protector (CP) That is, the maximum input current of the on-board charger.
  • the power battery management system Battery Management System, BMS
  • BMS Battery Management System
  • the on-board charger receives the power battery demand voltage U BMS sent by the CAN bus , the demand current I BMS and the charging current I B .
  • the on-board charger After receiving the demanded voltage U BMS , demanded current I BMS and charging current I B of the power battery, the on-board charger determines the current output voltage of the on-board charger according to the current output voltage U o of the on-board charger and the current maximum output power of the on-board charger. maximum According to the current maximum output current of the on-board charger and the required current value of the power battery, the smaller value of the two is taken as the next output current of the on-board charger, that is, the control target current for the initial adjustment of the output current of the on-board charger. IC1 .
  • the current safety adjustment condition is satisfied. According to the sum of the next maximum output current of the on-board charger and the demand current and compensation current of the power battery, the smaller value of the two is used as the new next output current of the on-board charger and the output current of the on-board charger. Safely adjusted control target current I C2 .
  • the current safety adjustment condition is judged for the new and next output current of the on-board charger until the output current of the on-board charger does not meet the current safety adjustment condition.
  • the on-board charger judges the demand current of the power battery and the value of the next charging current. If the demanded current of the battery is less than or equal to the next charging current, the next output current of the on-board charger is controlled to decrease. After the reduction, the on-board charger continues to judge the demand current of the power battery and the charging current after the adjustment, until the demand current of the power battery is greater than the charging current of the power battery, the on-board charger judges whether the charging of the power battery is completed, if not. Re-receive the demand current, demand voltage and charging current of the power battery sent by the CAN bus, and repeat the above operations. If completed, the on-board charger stops outputting current and voltage.
  • the current output current is initially adjusted according to the required current of the power battery and the current maximum output power and current output voltage of the on-board charger to obtain the next output current; according to the next output of the on-board charger voltage, the maximum output current corresponding to the next output voltage, and the demand current of the power battery, the next charging current and the preset difference current, and it is determined that the next output current does not meet the current safety adjustment conditions, then when the When the demand current is greater than the next charging current, the demand current of the power battery and the current maximum output power and current output voltage of the on-board charger will be refreshed, and the current output current will be initially adjusted to obtain the refreshed lower current.
  • FIG. 3 is a schematic structural diagram of a current control device according to Embodiment 3 of the present application. As shown in FIG. 3 , the current control device includes an initial adjustment module 310 and a safety adjustment module 320 .
  • the initial adjustment module 310 is configured to initially adjust the current output current according to the demand current of the power battery and the current maximum output power and current output voltage of the vehicle charger to obtain the next output current;
  • the safety adjustment module 320 is configured to be The next output current is determined according to the next output voltage of the on-board charger, the maximum output current corresponding to the next output voltage, and the demand current of the power battery, the next charging current and the preset balance current Under the condition that the current safety adjustment condition is met, the next output current is safely adjusted to obtain a new next output current; if the new next output current meets the current safety adjustment condition, the new next output current is continuously adjusted. The current is safely adjusted until the on-board charger completes charging the power battery.
  • the initial adjustment module 310 is set to:
  • the current maximum output current of the on-board charger is determined according to the current maximum output power of the on-board charger and the current output voltage; when the current maximum output current is greater than the demand current, the demand current is set as the next output current; when the current maximum output current is less than the demand current, the current maximum output current is used as the next output current.
  • the safety adjustment module 320 is set to:
  • the demand current is greater than the sum of the next charging current and the preset balance current, and the next output current is less than the maximum output current corresponding to the next output voltage, according to the next output voltage
  • the corresponding maximum output current and the sum of the demand current and the compensation current determine the new next output current.
  • the safety adjustment module 320 is also configured to:
  • the demand current is less than or equal to the sum of the next charging current and the preset difference current or the next output current is greater than or equal to the current maximum output current, when the demand current is greater than the next charging current
  • the current refresh the required current of the power battery and the current maximum output power and current output voltage of the on-board charger, and perform initial adjustment on the current output current of the on-board charger to obtain the next output current;
  • the output current does not meet the current safety adjustment conditions, continue to refresh the required current of the power battery and the current maximum output power and current output voltage of the on-board charger, and initially adjust the current output current of the on-board charger until all the The on-board charger has finished charging the power battery.
  • the safety adjustment module 320 is set to:
  • the output maximum output current corresponding to the next output voltage is used as the new next output current; If the maximum output current corresponding to the next output voltage is greater than or equal to the sum of the demand current and the compensation current, the sum of the demand current and the compensation current is the new next output current.
  • the safety adjustment module 320 is set to:
  • the new next output current is safely adjusted to obtain the latest next output current.
  • the safety adjustment module 320 is also configured to:
  • the new next output current does not meet the current safety adjustment condition, it is determined according to the demand current of the power battery and the new next charging current that the new next output current meets the regulation reduction condition, and the new next output current
  • the next output current is regulated down to obtain the regulated output current; if the regulated output current satisfies the regulated reduction condition, the regulated output current continues to be regulated.
  • the current control device provided by the embodiment of the present application can execute the current control method provided by any embodiment of the present application, and has functional modules and effects corresponding to the execution method.
  • FIG. 4 is a schematic structural diagram of a vehicle provided in Embodiment 4 of the application.
  • the vehicle includes a controller 41 , a storage device 42 , an input device 43 and an output device 44 , an on-board charger 45 , and a power battery 46 ;
  • the number of controllers 41 in the vehicle can be one or more, and one controller 41 is taken as an example in FIG. 4; connected in a way, in FIG. 4, the connection through the bus is taken as an example.
  • the on-board charger 45 is configured to provide electric energy to the power battery for energy storage.
  • the power battery 46 is configured to store electrical energy to provide an energy source for the electric vehicle.
  • the storage device 42 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the current control method in the embodiments of the present application (for example, the initial adjustment module 310, safety adjustment module 320).
  • the controller 41 executes various functional applications and data processing of the vehicle by running the software programs, instructions and modules stored in the storage device 42 , ie, realizes the above-mentioned air-conditioning temperature zone switching control method.
  • the storage device 42 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like. Additionally, storage device 42 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some examples, storage device 42 may include memory located remotely from controller 41 , which may be connected to the vehicle via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 43 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the vehicle.
  • the output device 44 may include a display device such as a display screen.
  • the controller 41 executes a variety of functional applications and data processing by running the program stored in the system storage device 42, such as implementing the current control method provided by the embodiment of the present application, the method includes: according to the demand current of the power battery and the on-board current control method.
  • the current maximum output power and current output voltage of the charger, and the current output current is initially adjusted to obtain the next output current; according to the next output voltage of the on-board charger and the maximum output current corresponding to the next output voltage, And, the demand current, the next charging current and the preset difference current of the power battery, and it is determined that the next output current satisfies the current safety adjustment condition, then the next output current is safely adjusted to obtain a new next output current If the new next output current satisfies the current safety adjustment condition, continue to perform safety adjustment on the new next output current until the on-board charger completes charging the power battery.
  • the fifth embodiment of the present application also provides a storage medium including computer-executable instructions, the computer-executable instructions are used to execute a current control method when executed by a computer processor, and the method includes: according to the current demand of the power battery and the current maximum output power and current output voltage of the on-board charger, the current output current is initially adjusted to obtain the next output current; according to the next output voltage of the on-board charger, the maximum output corresponding to the next output voltage current, and the demand current of the power battery, the next charging current and the preset difference current, and it is determined that the next output current satisfies the current safety adjustment condition, then the next output current is safely adjusted to obtain a new lower output current. an output current; if the new next output current satisfies the current safety adjustment condition, the safety adjustment of the new next output current is continued until the on-board charger completes charging the power battery.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Examples (a non-exhaustive list) of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read- Only Memory, ROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory, EPROM or Flash Memory), Optical Fiber, Portable Compact Disc Read-Only Memory (CD-ROM), Optical Memory devices, magnetic memory devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, using the Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电流控制方法,包括:根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流;再根据所述车载充电机的下一输出电压、所述下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;在所述新下一输出电流满足所述电流安全调整条件的情况下,继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。还包括一种电流控制装置、车辆及存储介质。该方法可以提高交流充电过程中车载充电机输出功率的利用率、缩短交流充电时间,提升用户体验。

Description

电流控制方法、装置、车辆及存储介质
本申请要求在2020年12月25日提交中国专利局、申请号为202011563459.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机控制技术领域,例如涉及一种电流控制方法、装置、车辆及存储介质。
背景技术
随着电动车的动力电池容量的不断增大,电动车的车载充电机功率也随之增大。充电时,为了保证车载充电机和充电线缆的使用安全,需要保证车载充电机的输入电流不超过供电设备最大输出电流及充电线缆的额定电流二者中的较小值。车载充电机将自身最大输出电流及动力电池需求电流二者中的较小值作为目标输出电流。但交流充电过程中车载高压部件会消耗电能,使得动力电池的实际充电电流变小。当车载充电机的输出电流未达到自身最大能力时,将动力电池的需求电流作为目标输出电流,车载高压部件消耗电能会使得动力电池的实际充电电流变小,进而导致交流充电时间延长。
发明内容
本申请提供一种电流控制方法、装置、车辆及存储介质,以实现了根据车载充电机的最大输出电流、动力电池的需求电流和实际充电电流调节车载充电机的当前输出电流,达到实时控制车载充电机的当前输出电流,以提高交流充电过程中车载充电机输出功率的利用率、缩短交流充电时间,提升用户体验。
本申请提供了一种电流控制方法,应用于车载充电机为动力电池充电的情况,该方法包括:
根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流;
在根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;
如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输 出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
本申请还提供了一种电流控制装置,该装置包括:
初调模块,设置为根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流;
安全调整模块,设置为在根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
本申请还提供了一种车辆,该车辆包括:车载充电机、动力电池、一个或多个处理器、存储装置;
车载充电机,设置为为动力电池充电;
动力电池,设置为存储电能为车辆提供动力;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的电流控制方法。
本申请还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行上述的电流控制方法。
附图说明
图1为本申请实施例一提供的一种电流控制方法的流程示意图;
图2为本申请实施例二提供的一种电流控制方法的流程示意图;
图2a为本申请实施例二提供的一种电流控制方法的原理图;
图3为本申请实施例三提供的一种电流控制装置的结构示意图;
图4为本申请实施例四提供的一种车辆的结构图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
实施例一
图1为本申请实施例一提供的一种电流控制方法的流程图,该方法可适用于车载充电机为动力电池充电的情况,该方法可以由电流控制装置来执行,该装置可以通过软件和/或硬件的方式来实现,并可集成于具备存储和计算能力,且设置为执行电池充电功能的电子设备中。
如图1所示,本实施例提供的一种电流控制方法的包括如下步骤:
步骤S110,根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流。
本申请实施例中,动力电池的需求电流为动力电池充电过程中所需的充电电流,相当于动力电池的额定充电电流,是动力电池充电时能维持正常工作的最大允许电流。车载充电机的当前输出电流为当前时刻车载充电机输出给动力电池进行充电的电流。车载充电机的当前输出电压为当前时刻车载充电机输出给动力电池进行充电的电流对应的电压。下一输出电流为下一时刻车载充电机的输出电流。
本申请实施例中,车载充电机从控制器局域网络(Controller Area Network,CAN)总线上获取到动力电池的需求电流和动力电池的当前充电电流,再根据车载充电机的当前最大输出功率和当前输出电压确定出车载充电机的当前最大输出电流。根据动力电池的需求电流和车载充电机的当前最大输出电流确定初调后的下一输出电流。
所述根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流,包括:根据车载充电机的当前最大输出功率与所述当前输出电压确定车载充电机的当前最大输出电流;当所述当前最大输出电流大于所述需求电流时,将所述需求电流作为所述下一输出电流;当所述当前最大输出电流小于所述需求电流时,将所述当前最大输出电流作为所述下一输出电流。
本申请实施例中,车载充电机的当前最大输出功率为车载充电机的额定输出功率中除车载充电机的必要消耗功率外的输出功率。车载充电机的当前最大输出电流为车载电机的当前最大输出功率与当前时刻车载充电机的当前输出电压的比值。
本申请实施例中,为了保证车载充电机的输入电流不超过供电设备最大输出电流及充电线缆的额定电流二者中的较小值,需要将车载充电机的最大输出电流及动力电池的需求电流二者中的较小值作为车载充电机的下一输出电流。
步骤S120,在根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,则对所述下一输出电流进行安全调整,得到新下一输出电流。
本申请实施例中,下一输出电压为当前时刻对应的下一时刻的车载充电机的输出电压;下一输出电压对应的最大输出电流为车载充电机的下一最大输出功率与车载充电机的下一输出电压对应的输出电流;车载充电机的下一最大输出功率为在下一时刻时车载充电机的额定输出功率中除车载充电机必要消耗功率外的输出功率。下一充电电流为下一时刻动力电池的实际充电电流;预设差额电流为动力电池的需求电流与动力电池的下一充电电流之间的固定差额电流,用于确定动力电池的下一充电电流与动力电池的需求电流的差额电流是否具有可调整空间。
本申请实施例中,若下一输出电流满足电流安全调整条件,则动力电池的下一充电电流与动力电池的需求电流之间的差距较大,且能够在保证充电安全的前提下进行安全调整。对车载充电机的下一输出电流进行安全调节,实质上是对动力电池的下一充电电流的安全调节。
本申请实施例中,根据车载充电机的下一输出电压、下一输出电压对应的最大输出电流及下一输出电流来确定是否可以对车载充电机的下一输出电流继续进行安全调节;再根据动力电池的需求电流和动力电池的下一充电电流确定是否可以对动力电池的下一充电电流继续进行安全调节;若车载充电机的下一输出电流和动力电池的下一充电电流均可以继续被安全调节,则对车载充电机的下一输出电流进行安全调节。
所述在根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流,包括:
如果所述需求电流大于所述下一充电电流与所述预设差额电流之和,且所述下一输出电流小于所述下一输出电压对应的最大输出电流时,根据所述下一输出电压对应的最大输出电流和所述需求电流与所述补偿电流之和确定所述新下一输出电流。
本申请实施例中,补偿电流为动力电池的需求电流和动力电池的下一充电电流之间的差值电流,用于展示动力电池的需求电流与动力电池的下一充电电流的实际差值,并根据补偿电流的实际值的大小对车载充电机的下一输出电流进行安全调节。新下一输出电流为对车载充电机的下一输出电流进行安全调整 后的下一时刻车载充电机的输出电流。
本申请实施例中,若动力电池的需求电流大于动力电池的下一充电电流与预设差额电流之和,则动力电池的下一充电电流满足电流安全调整条件,动力电池的下一充电电流与动力电池的需求电流之间存在安全调整空间。当车载充电机的下一输出电流小于车载充电机的当前最大输出电流,则车载充电机的下一输出电流满足电流安全调整条件,车载充电机的下一输出电流与车载充电机的当前最大输出电流之间存在安全调整空间。若动力电池的下一充电电流与车载充电机的下一输出电流同时满足电流安全调整条件,则可以通过安全调整车载充电机的下一输出电流来对动力电池的下一充电电流进行调整。
所述对所述下一输出电流进行安全调整,得到新下一输出电流,包括:
若所述下一输出电压对应的最大输出电流小于所述需求电流与所述补偿电流之和,则将所述下一输出电压对应的最大输出电流作为所述新下一输出电流;若所述下一输出电压对应的最大输出电流大于或等于所述需求电流与所述补偿电流之和,则将所述需求电流与所述补偿电流之和作为所述新下一输出电流。
本申请实施例中,在车载充电机的下一输出电流满足电流安全调整条件时对车载充电机的下一输出电流进行安全调整。根据车载充电机的下一输出电压对应的最大输出电流和动力电池的需求电流和动力电池的补偿电流之和来确认新下一输出电流。在保证车载充电机的输出线路和动力电池充电线路安全的情况下安全调整车载充电机的下一输出电流,选择车载充电机的下一输出电压对应的最大输出电流,和,动力电池的需求电流和动力电池的补偿电流之和二者中的较小值作为车载充电机的新下一输出电流。
步骤130,如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
本申请实施例中,对车载充电机的输出电流初调后,车载充电机的输出电流更新为下一输出电流,使得动力电池的实际充电电流更新为下一充电电流;对车载充电机的下一输出电流进行安全调整后,车载充电机的输出电流更新为新下一输出电流,使得动力电池的实际充电电流更新为新下一充电电流;继续判断车载充电机的新下一输出电流是否满足电流安全调整条件,若新下一输出电流满足电流安全调整条件,则继续对车载充电机的新下一输出电流进行安全调整。若新下一输出电流不满足电流安全调整条件,车载充电机的新下一输出电流不存在安全调整空间,维持车载充电机的新下一输出电流,充电电流保持为新下一充电电流为动力电池充电。
所述如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下 一输出电流进行安全调整,包括:
对所述新下一输出电流进行安全调整后,在重新根据所述车载充电机的新下一输出电压、新下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、新下一充电电流和预设差额电流,确定所述新下一输出电流满足电流安全调整条件的情况下,对所述新下一输出电流进行安全调整,得到最新下一输出电流。
本申请实施例中,新下一输出电压为对车载充电机的下一输出电流安全调整后得到的新下一输出电流对应的输出电压;新下一输出电压对应的最大输出电流为对车载充电机的下一输出电流安全调整后得到的新下一最大输出功率与车载充电机的新下一输出电压对应的输出电流;车载充电机的新下一最大输出功率为对车载电机的下一输出电流安全调整后得到的下一时刻时车载充电机的额定输出功率中除车载充电机必要消耗功率外的输出功率。新下一充电电流为对车载充电机的下一输出电流安全调整后得到的下一时刻时动力电池的实际充电电流。
本申请实施例中,当新下一输出电流满足电流安全调整条件,则动力电池的新下一充电电流与动力电池的需求电流之间的差距较大,且能够在保证充电安全的前提下进行安全调整。对车载充电机的新下一输出电流进行安全调节,实质上是对动力电池的新下一充电电流的安全调节。
本申请实施例中,根据车载充电机的新下一输出电压、新下一输出电压对应的最大输出电流及新下一输出电流来确定是否可以对车载充电机的新下一输出电流继续进行安全调节;再根据动力电池的需求电流和动力电池的新下一充电电流确定是否可以对动力电池的新下一充电电流继续进行安全调节;若车载充电机的新下一输出电流和动力电池的新下一充电电流均可以继续被安全调节,则对车载充电机的新下一输出电流进行安全调节。
本申请实施例根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,得到下一输出电流;在根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。解决车载充电机的输出电流未达到自身最大能力时,将动力电池的需求电流作为目标输出电流,车载高压部件消耗电能会使得动力电池的实际充电电流变小,进而导致交流充电时间延长的问题,以实现了根据车载充电机的最 大输出电流、动力电池的需求电流和实际充电电流调节车载充电机的当前输出电流,达到实时控制车载充电机的当前输出电流,以提高交流充电过程中车载充电机输出功率的利用率、缩短交流充电时间,提升用户体验。
实施例二
图2为本申请实施例二提供的一种电流控制方法的流程图。本实施例的技术方案在上述技术方案的基础上说明,主要包括如下步骤:
步骤S210,根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流。
步骤S220,如果所述需求电流小于或等于所述下一充电电流与预设差额电流之和或所述下一输出电流大于或等于所述下一输出电压对应的最大输出电流,则当所述需求电流大于所述下一充电电流时,将重新刷新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到刷新后的下一输出电流。
本申请实施例中,动力电池的需求电流小于或等于动力电池的下一充电电流与预设差额电流之和,动力电池的下一充电电流不满足电流安全调整条件。车载充电机的下一输出电流大于或等于车载充电机的下一输出电压对应的最大输出电流,车载充电机的下一输出电流不满足电流安全调整条件,将重新刷新车载充电机和动力电池的当前数据,刷新后的下一输出电流为车载充电机重新刷新获取动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压后初调后的输出电流。根据刷新后的车载充电机的当前输出电压和车载充电机的当前最大输出功率确定车载充电机的当前输出电压对应的最大输出电流。根据刷新后的车载充电机的当前输出电压对应的最大输出电流与刷新后的动力电池的需求电流对车载充电机的当前输出电流进行初调,得到刷新后的下一输出电流。
步骤S230,如果所述刷新后的下一输出电流不满足电流安全调整条件,则当所述需求电流大于刷新后的下一充电电流时,继续刷新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,直至所述车载充电机为所述动力电池充电完毕。
本申请实施例中,刷新后的车载充电机的下一输出电流仍不满足电流安全调整条件,则当动力电池的需求电流大于刷新后的下一充电电流,车载充电机的下一输出电流对应的动力电池的下一充电电流处于安全充电范围内,继续刷 新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对二次刷新后的车载充电机的当前输出电流进行初调,以便于动态实时根据动力电池和车载充电机的实时数据,调整车载充电机的输出电流来调整动力电池的实际充电电流。
所述方法,还包括:
如果所述新下一输出电流不满足电流安全调整条件,则根据所述动力电池的需求电流、所述新下一充电电流确定所述新下一输出电流满足调降条件,则对所述新下一输出电流进行调降,得到调降输出电流;如果所述调降输出电流满足调降条件,则继续对所述调降输出电流进行调降。
本申请实施例中,调降输出电流为调降后的车载充电机的输出电流。动力电池的需求电流小于或等于动力电池的新下一充电电流,充电电路处于不安全状态需要对动力电池的新下一充电电流进行调降。车载充电机通过对车载充电机的新下一输出电流进行调降,来对动力电池的新下一充电电流进行调降,得到车载充电机调降后的输出电流,即调降输出电流。对车载充电机的调降输出电流继续进行调降条件判断,若车载充电机的调降输出电流继续满足调降条件,则继续对车载充电机的调降输出电流继续调降。
动力电池的充电过程可以有多种方式来实现:
如图2a所示,车载充电机(On-board Charger,OBC)通过具有电路保护器(Circuit Protector,CP)的供电设备、线缆(Copper Cable,CC)信号检测获取输入电流限值
Figure PCTCN2021140827-appb-000001
即车载充电机的最大输入电流。动力电池管理系统(Battery Management System,BMS)将动力电池的需求电压U BMS、需求电流I BMS及充电电流I B发送给CAN总线,车载充电机收到CAN总线发送的动力电池的需求电压U BMS、需求电流I BMS及充电电流I B。车载充电机接收到动力电池的需求电压U BMS、需求电流I BMS及充电电流I B后,根据车载充电机的当前输出电压U o与车载充电机的当前最大输出功率确定出车载充电机的当前最大
Figure PCTCN2021140827-appb-000002
根据车载充电机的当前最大输出电流和动力电池的需求电流值的大小,将二者中的较小值作为车载充电机的下一输出电流,即车载充电机的输出电流初调的控制目标电流I C1。当动力电池的需求电流大于动力电池的下一充电电流和预设差额电流之和且车载充电机的下一输出电流小于车载充电机的下一最大输出电流,则满足电流安全调整条件。根据车载充电机的下一最大输出电流和动力电池的需求电流和补偿电流之和的大小,将二者中的较小值作为车载充电机的新下一输出电流,及车载充电机的输出电流安全调整的控制目标电流I C2。对车载充电机的新下一输出电流进行电流安全调整条件判断,直至车载充电机的输出电流不满足电流安全调整条件,车载充电机判断动力电池的需求电流与下一充电电流大小 值,若动力电池的需求电流小于或等于下一充电电流,则控制车载充电机的下一输出电流调降。调降后车载充电机继续对动力电池的需求电流和调降后的充电电流进行判断,直至动力电池的需求电流大于动力电池的充电电流后,车载充电机判断动力电池是否充电完成,若未完成重新接收CAN总线发送的动力电池的需求电流、需求电压及充电电流,重复上述操作。若完成车载充电机停止输出电流电压。
本申请实施例根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,得到下一输出电流;根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流不满足电流安全调整条件,则当所述需求电流大于所述下一充电电流时,将重新刷新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,得到刷新后的下一输出电流;如果所述刷新后的下一输出电流不满足电流安全调整条件,则当所述需求电流大于刷新后的下一充电电流时,则继续刷新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,直至所述车载充电机为所述动力电池充电完毕。本申请根据动力电池的实际充电电流对车载充电机的输出电流进行控制,以便于控制动力电池的实际充电电流处于安全范围内进行实时充电,以保护电路安全、提高交流充电过程中车载充电机输出功率的利用率、缩短交流充电时间,提升用户体验。
实施例三
图3为本申请实施例三提供的一种电流控制装置的结构示意图,如图3所示,所述电流控制装置,包括:初调模块310,安全调整模块320。
初调模块310,设置为根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,得到下一输出电流;安全调整模块320,设置为在根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
初调模块310设置为:
根据车载充电机的当前最大输出功率与所述当前输出电压确定车载充电机的当前最大输出电流;当所述当前最大输出电流大于所述需求电流时,将所述需求电流为所述下一输出电流;当所述当前最大输出电流小于所述需求电流时,将所述当前最大输出电流作为所述下一输出电流。
安全调整模块320设置为:
如果所述需求电流大于所述下一充电电流与所述预设差额电流之和,且所述下一输出电流小于所述下一输出电压对应的最大输出电流时,根据所述下一输出电压对应的最大输出电流和所述需求电流与所述补偿电流之和确定所述新下一输出电流。
安全调整模块320还设置为:
如果所述需求电流小于或等于所述下一充电电流与预设差额电流之和或所述下一输出电流大于或等于所述当前最大输出电流,则当所述需求电流大于所述下一充电电流时,重新刷新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流;如果所述下一输出电流不满足电流安全调整条件,则继续刷新所述动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,直至所述车载充电机为所述动力电池充电完毕。
安全调整模块320设置为:
若所述下一输出电压对应的最大输出电流小于所述需求电流与所述补偿电流之和,则将所述下一输出电压对应的输出最大输出电流作为所述新下一输出电流;若所述下一输出电压对应的最大输出电流大于或等于所述需求电流与所述补偿电流之和,则所述需求电流与所述补偿电流之和为所述新下一输出电流。
安全调整模块320设置为:
对所述新下一输出电流进行安全调整后,在重新根据所述车载充电机的新下一输出电压、新下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、新下一充电电流和预设差额电流,确定所述新下一输出电流满足电流安全调整条件的情况下,对所述新下一输出电流进行安全调整,得到最新下一输出电流。
安全调整模块320还设置为:
如果所述新下一输出电流不满足电流安全调整条件,则根据所述动力电池的需求电流、所述新下一充电电流确定所述新下一输出电流满足调降条件,则对所述新下一输出电流进行调降,得到调降输出电流;如果所述调降输出电流 满足调降条件,则继续对所述调降输出电流进行调降。
本申请实施例所提供电流控制装置可执行本申请任意实施例所提供的电流控制方法,具备执行方法相应的功能模块和效果。
实施例四
图4为本申请实施例四提供的一种车辆的结构示意图,如图4所示,该车辆包括控制器41、存储装置42、输入装置43和输出装置44、车载充电机45、动力电池46;车辆中的控制器41的数量可以是一个或多个,图4中以一个控制器41为例;车辆中的控制器41、存储装置43、输入装置44和输出装置45可以通过总线或其他方式连接,图4中以通过总线连接为例。
车载充电机45,设置为提供电能给动力电池进行能量储备。
动力电池46,设置为储存电能给电动汽车提供能量来源。
存储装置42作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的电流控制方法对应的程序指令/模块(例如,初调模块310,安全调整模块320)。控制器41通过运行存储在存储装置42中的软件程序、指令以及模块,从而执行车辆的各种功能应用以及数据处理,即实现上述的空调温区转换控制方法。
存储装置42可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储装置42可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置42可包括相对于控制器41远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置43可设置为接收输入的数字或字符信息,以及产生与车辆的用户设置以及功能控制有关的键信号输入。输出装置44可包括显示屏等显示设备。
控制器41通过运行存储在系统存储装置42中的程序,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的电流控制方法,该方法包括:根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,得到下一输出电流;根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件,则对所述下一输出电流进行安全调整,得到新下一输出电流;如 果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
实施例五
本申请实施例五还提供了一种包括计算机执行指令的存储介质,所述计算可执行指令在由计算机处理器执行时用于执行一种电流控制方法,该方法包括:根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述当前输出电流进行初调,得到下一输出电流;根据所述车载充电机的下一输出电压、下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件,则对所述下一输出电流进行安全调整,得到新下一输出电流;如果所述新下一输出电流满足电流安全调整条件,则继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种电流控制方法,应用于车载充电机为动力电池充电的情况,包括:
    根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流;
    在根据所述车载充电机的下一输出电压、所述下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;
    在所述新下一输出电流满足所述电流安全调整条件的情况下,继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
  2. 根据权利要求1所述的方法,其中,所述根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流,包括:
    根据所述车载充电机的所述当前最大输出功率与所述当前输出电压确定所述车载充电机的当前最大输出电流;
    在所述当前最大输出电流大于所述需求电流的情况下,将所述需求电流作为所述下一输出电流;
    在所述当前最大输出电流小于所述需求电流的情况下,将所述当前最大输出电流作为所述下一输出电流。
  3. 根据权利要求1所述的方法,其中,所述在根据所述车载充电机的下一输出电压、所述下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流,包括:
    在所述需求电流大于所述下一充电电流与所述预设差额电流之和,且所述下一输出电流小于所述下一输出电压对应的最大输出电流的情况下,根据所述下一输出电压对应的最大输出电流和所述需求电流与补偿电流之和确定所述新下一输出电流。
  4. 根据权利要求3所述的方法,还包括:
    在所述需求电流小于或等于所述下一充电电流与预设差额电流之和或所述下一输出电流大于或等于所述下一输出电压对应的最大输出电流,且当所述需求电流大于所述下一充电电流的情况下,重新刷新所述动力电池的需求电流和所述车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当 前输出电流进行初调,得到下一输出电流;
    在所述下一输出电流不满足所述电流安全调整条件的情况下,继续刷新所述动力电池的需求电流和所述车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,直至所述车载充电机为所述动力电池充电完毕。
  5. 根据权利要求3所述的方法,其中,所述对所述下一输出电流进行安全调整,得到新下一输出电流,包括:
    在所述下一输出电压对应的最大输出电流小于所述需求电流与所述补偿电流之和的情况下,将所述下一输出电压对应的最大输出电流作为所述新下一输出电流;
    在所述下一输出电压对应的最大输出电流大于或等于所述需求电流与所述补偿电流之和的情况下,将所述需求电流与所述补偿电流之和作为所述新下一输出电流。
  6. 根据权利要求3所述的方法,其中,所述在所述新下一输出电流满足所述电流安全调整条件的情况下,继续对所述新下一输出电流进行安全调整,包括:
    对所述新下一输出电流进行安全调整后,在重新根据所述车载充电机的新下一输出电压、所述新下一输出电压对应的最大输出电流,以及,所述动力电池的需求电流、新下一充电电流和预设差额电流,确定所述新下一输出电流满足所述电流安全调整条件的情况下,对所述新下一输出电流进行安全调整,得到最新下一输出电流。
  7. 根据权利要求6所述的方法,还包括:
    在所述新下一输出电流不满足所述电流安全调整条件,根据所述动力电池的需求电流以及所述新下一充电电流确定所述新下一输出电流满足调降条件的情况下,对所述新下一输出电流进行调降,得到调降输出电流;
    在所述调降输出电流满足所述调降条件的情况下,继续对所述调降输出电流进行调降。
  8. 一种电流控制装置,包括:
    初调模块,设置为根据动力电池的需求电流和车载充电机的当前最大输出功率和当前输出电压,对所述车载充电机的当前输出电流进行初调,得到下一输出电流;
    安全调整模块,设置为在根据所述车载充电机的下一输出电压、所述下一 输出电压对应的最大输出电流,以及,所述动力电池的需求电流、下一充电电流和预设差额电流,确定所述下一输出电流满足电流安全调整条件的情况下,对所述下一输出电流进行安全调整,得到新下一输出电流;在所述新下一输出电流满足所述电流安全调整条件的情况下,继续对所述新下一输出电流进行安全调整,直至所述车载充电机为所述动力电池充电完毕。
  9. 一种车辆,包括:车载充电机、动力电池、至少一个处理器、存储装置;
    车载充电机,设置为为动力电池充电;
    动力电池,设置为存储电能为车辆提供动力;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一项所述的电流控制方法。
  10. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一项所述的电流控制方法。
PCT/CN2021/140827 2020-12-25 2021-12-23 电流控制方法、装置、车辆及存储介质 WO2022135522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011563459.4A CN112721680B (zh) 2020-12-25 2020-12-25 一种电流控制方法、装置、车辆及存储介质
CN202011563459.4 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135522A1 true WO2022135522A1 (zh) 2022-06-30

Family

ID=75616324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140827 WO2022135522A1 (zh) 2020-12-25 2021-12-23 电流控制方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN112721680B (zh)
WO (1) WO2022135522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721680B (zh) * 2020-12-25 2023-04-18 中国第一汽车股份有限公司 一种电流控制方法、装置、车辆及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310122A1 (en) * 2016-04-22 2017-10-26 Richtek Technology Corporation Charging apparatus and charging control circuit thereof and charging control method
CN109177780A (zh) * 2018-09-29 2019-01-11 北京新能源汽车股份有限公司 一种充电控制方法、装置及电动汽车
CN110829543A (zh) * 2019-11-26 2020-02-21 桑顿新能源科技有限公司 充电电流动态调整方法、装置和新能源汽车
CN110861535A (zh) * 2018-08-15 2020-03-06 上海汽车集团股份有限公司 一种充电控制方法及装置
CN111193312A (zh) * 2018-11-14 2020-05-22 乐金电子研发中心(上海)有限公司 充电机及充电方法
US20200231060A1 (en) * 2019-01-17 2020-07-23 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
CN112721680A (zh) * 2020-12-25 2021-04-30 中国第一汽车股份有限公司 一种电流控制方法、装置、车辆及存储介质

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963186B2 (en) * 2003-02-28 2005-11-08 Raymond Hobbs Battery charger and method of charging a battery
JP5607569B2 (ja) * 2011-03-31 2014-10-15 トヨタ自動車株式会社 車両の充電装置およびそれを備える車両、ならびに電流センサのオフセット補正方法
DE102012221807A1 (de) * 2012-11-28 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Laden eines elektrischen Energiespeichers eines Elektrofahrzeugs an einer Steckdose mit Reduktion des Ladestroms nach Ausfall und Wiedereinsetzen der Stromversorgung
KR101509925B1 (ko) * 2013-09-12 2015-04-08 현대자동차주식회사 배터리 충전 시스템 및 장치
CN104659854B (zh) * 2013-11-22 2018-03-27 北汽福田汽车股份有限公司 车载电池的充电方法、系统及具有其的汽车
KR102002629B1 (ko) * 2014-04-29 2019-07-23 주식회사 만도 최적 효율로 충전하는 차량용 배터리 충전기 및 그 방법
JP2016123198A (ja) * 2014-12-25 2016-07-07 三菱自動車工業株式会社 電動車両のバッテリ制御装置
KR101776403B1 (ko) * 2015-10-08 2017-09-07 현대자동차주식회사 환경차량용 배터리충전기의 운전 방법
SG11201700428UA (en) * 2016-02-05 2017-09-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Charge method, adapter and mobile terminal
FR3050405B1 (fr) * 2016-04-22 2018-04-27 Renault S.A.S Procede de commande d'un chargeur embarque dans un vehicule electrique ou hybride a detection de charge en grappe
CN107666171A (zh) * 2016-07-28 2018-02-06 比亚迪股份有限公司 电动汽车、电动汽车的车载充电器及其控制方法
CN108233495B (zh) * 2016-12-09 2021-05-14 泰达电子股份有限公司 充电系统及其控制方法
CN106945541B (zh) * 2017-02-23 2020-02-04 扬子江汽车集团有限公司 在线充纯电动车辆动力电池的充电控制方法及系统
KR20200071873A (ko) * 2018-12-06 2020-06-22 현대자동차주식회사 차량의 배터리 충전 제어 방법
KR102213601B1 (ko) * 2018-12-06 2021-02-08 현대오트론 주식회사 Obc용 배터리 충전 방법 및 이를 실행하는 시스템
JP7110159B2 (ja) * 2018-12-07 2022-08-01 矢崎総業株式会社 電源システム
US10804793B2 (en) * 2018-12-18 2020-10-13 Lear Corporation Variable zero voltage switching (ZVS) hybrid controller for power factor corrector (PFC)
CN209402203U (zh) * 2019-02-21 2019-09-17 海汇新能源汽车有限公司 纯电动汽车用高效充电控制装置
KR20200126446A (ko) * 2019-04-29 2020-11-09 현대자동차주식회사 친환경 차량의 충전 제어 시스템 및 방법
CN110341543B (zh) * 2019-07-08 2020-11-10 中国第一汽车股份有限公司 高压下电控制方法、交流充电系统及电动汽车
CN110649687A (zh) * 2019-10-15 2020-01-03 湖南猎豹汽车股份有限公司 一种bms智能充电识别控制方法
CN111532177B (zh) * 2020-06-01 2021-08-24 中国第一汽车股份有限公司 充电加热控制方法、装置、汽车和存储介质
CN111942228A (zh) * 2020-07-28 2020-11-17 中国第一汽车股份有限公司 一种电动汽车低温充电控制系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310122A1 (en) * 2016-04-22 2017-10-26 Richtek Technology Corporation Charging apparatus and charging control circuit thereof and charging control method
CN110861535A (zh) * 2018-08-15 2020-03-06 上海汽车集团股份有限公司 一种充电控制方法及装置
CN109177780A (zh) * 2018-09-29 2019-01-11 北京新能源汽车股份有限公司 一种充电控制方法、装置及电动汽车
CN111193312A (zh) * 2018-11-14 2020-05-22 乐金电子研发中心(上海)有限公司 充电机及充电方法
US20200231060A1 (en) * 2019-01-17 2020-07-23 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling vehicle
CN110829543A (zh) * 2019-11-26 2020-02-21 桑顿新能源科技有限公司 充电电流动态调整方法、装置和新能源汽车
CN112721680A (zh) * 2020-12-25 2021-04-30 中国第一汽车股份有限公司 一种电流控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN112721680B (zh) 2023-04-18
CN112721680A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN106972582B (zh) 一种大功率无线充电系统及其控制方法
CN105720645A (zh) 一种充电方法、装置和充电器
WO2020124590A1 (zh) 多节电芯的充电方法、装置、介质及电子设备
EP4057419A1 (en) Charging method and device to be charged
KR102359911B1 (ko) 전기 차량 충전 시스템 및 전기 차량 충전 방법
WO2021056904A1 (zh) 电动汽车安全充电方法、电子设备及存储介质
WO2022135522A1 (zh) 电流控制方法、装置、车辆及存储介质
CN113273049A (zh) 供电装置、方法及电子设备
TW201813182A (zh) 充電方法及電子設備
CN114598003A (zh) 充电方法、装置及存储介质
CN110601295A (zh) 一种充电装置、充电方法及电子设备
US20200070675A1 (en) Method for charging electric vehicles
CN211530765U (zh) 一种充电装置及电子设备
WO2024040955A1 (zh) 储能系统充电电压、功率自动调节方法、系统及存储介质
CN113572211A (zh) 基于推断的快速充电
CN116846016A (zh) 过压保护方法、储能设备及电池包
CN115347648A (zh) 多电池包并机充电方法、装置、配电设备及可读介质
CN111071102B (zh) 一种直流充电桩的柔性充电方法及装置
CN211629880U (zh) 一种充电装置及电子设备
JP2012196084A (ja) 充電装置、電子機器、及び充電方法
CN112255949A (zh) 一种车辆的控制架构和控制方法
CN112363560A (zh) 一种光伏发电系统的控制和分配方法及装置
JP2020120529A (ja) 車両の充電制御システム
WO2023170931A1 (ja) バッテリ管理システム、及びバッテリ管理方法
CN116526626B (zh) 一种支持可编程充电的充电电路及充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909517

Country of ref document: EP

Kind code of ref document: A1