WO2021056904A1 - 电动汽车安全充电方法、电子设备及存储介质 - Google Patents

电动汽车安全充电方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2021056904A1
WO2021056904A1 PCT/CN2019/129479 CN2019129479W WO2021056904A1 WO 2021056904 A1 WO2021056904 A1 WO 2021056904A1 CN 2019129479 W CN2019129479 W CN 2019129479W WO 2021056904 A1 WO2021056904 A1 WO 2021056904A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current
value
preset
charger
Prior art date
Application number
PCT/CN2019/129479
Other languages
English (en)
French (fr)
Inventor
林勇刚
刘海江
Original Assignee
北京嘀嘀无限科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京嘀嘀无限科技发展有限公司 filed Critical 北京嘀嘀无限科技发展有限公司
Publication of WO2021056904A1 publication Critical patent/WO2021056904A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technical field related to vehicles, in particular to a safe charging method for electric vehicles, electronic equipment and storage media.
  • the charging of electric vehicles and energy storage systems is mainly completed by the electric control unit (ECU) on the RESS end in cooperation with on-board or off-board chargers.
  • the ECU in the existing RESS system often calculates the minimum demand that the RESS can accept based on internal and external conditions, and then sends the demand voltage and demand current to the charger, and then the charger responds to the RESS according to its own capabilities. Charge it.
  • the internal conditions that are usually considered include the current state of the battery cell can withstand current, temperature and system failure; the external conditions that are usually considered include the output capacity of the charger, the fault state, and the communication state.
  • the inventor found that due to the aging of battery cells and the diversity of charger equipment, the existing static charging strategy can hardly meet the requirements of RESS for safe and efficient charging.
  • Risk 1 The battery is aging, and the risk of charging overcurrent increases
  • the prior art calculates the required current of the battery cell in the Begin Of Life (BOL) phase. As the internal resistance of the cell aging increases, the shared voltage of the internal resistance of the cell will increase, due to the upper limit voltage of the charge at a certain temperature. No change, leading to the risk of overcharging the battery;
  • BOL Begin Of Life
  • the prior art often uses a unified battery capacity, health degree, and performance state (State Of Health, SOH) calculation model to obtain the system SOH in order to avoid a large amount of calculation. But in fact, as the aging degree of the batteries used is different, using the system SOH to calibrate the required voltage of all batteries cannot accurately control overcharging;
  • Risk two the diversity of chargers, so that the response to the demand current does not match, leading to the risk of overcharging or excessive charging time
  • the present invention provides a safe charging method for electric vehicles, including:
  • the charging current is gradually reduced until the charging current is reduced to the preset cut-off current value, then the charging is stopped.
  • the gradually increasing the charging current specifically includes:
  • the charging current increases by a preset gradient value.
  • the gradient value is set so that the total time period during which the charging current reaches the preset current upper limit value is less than the preset current rise time threshold.
  • the gradually reducing the charging current specifically includes:
  • the charging current decreases by a preset gradient value.
  • the charging current is reduced by a preset gradient value every time a preset time period passes, which specifically includes:
  • the charging current is reduced by a preset gradient value.
  • said gradually reducing the charging current also includes:
  • the required voltage is: the number of cell strings*V cell_max + ⁇ V, and the minimum value between V charger_max , where V cell_max is the maximum charging voltage value that a single cell can withstand, ⁇ V is the preset redundancy value, and V charger_max is the maximum output voltage value of the charger;
  • the required current upper limit value is: the minimum value between I cell_max , I charger_max , and I cap_min , where I cell_max is the maximum charging current value that a single cell can withstand, and I charger_max is the maximum output current value of the charger , I cap_min is the maximum current value that the charging cable connecting the charger and the battery pack of the electric vehicle can withstand.
  • the present invention provides an electronic device for controlling the safe charging of electric vehicles, including:
  • At least one processor and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the one processor, and the instructions are executed by the at least one processor, so that the at least one processor can:
  • the charging current is gradually reduced until the charging current is reduced to the preset cut-off current value, then the charging is stopped.
  • the gradually increasing the charging current specifically includes:
  • the charging current increases by a preset gradient value.
  • the gradient value is set so that the total time period during which the charging current reaches the preset current upper limit value is less than the preset current rise time threshold.
  • the gradually reducing the charging current specifically includes:
  • the charging current decreases by a preset gradient value.
  • the charging current is reduced by a preset gradient value every time a preset time period passes, which specifically includes:
  • the charging current is reduced by a preset gradient value.
  • said gradually reducing the charging current also includes:
  • the required voltage is: the number of cell strings*V cell_max + ⁇ V, and the minimum value between V charger_max , where V cell_max is the maximum charging voltage value that a single cell can withstand, ⁇ V is the preset redundancy value, and V charger_max is the maximum output voltage value of the charger;
  • the required current upper limit value is: the minimum value between I cell_max , I charger_max , and I cap_min , where I cell_max is the maximum charging current value that a single cell can withstand, and I charger_max is the maximum output current value of the charger , I cap_min is the maximum current value that the charging cable connecting the charger and the battery pack of the electric vehicle can withstand.
  • the present invention provides a storage medium that stores computer instructions, and when the computer executes the computer instructions, it is used to execute all the steps of the aforementioned method for safe charging of electric vehicles.
  • the present invention uses the highest cell voltage as the main reference index, adjusts the demand current value, uses the constant current mode, flexibly controls the demand current, and adjusts according to the feedback of the actual output current, thereby making it possible to adapt to batteries with different aging degrees in the battery pack. Core, avoid overcharging. At the same time, it can adapt to different charging modes of chargers, and solve the problem of sudden current changes caused by changes in the load of the charger.
  • FIG. 1 is a working flow chart of a method for safe charging of an electric vehicle according to an embodiment of the present invention
  • FIG. 2 is a working flow chart of a method for safe charging of electric vehicles according to the second embodiment of the present invention
  • Fig. 3 is a working flow chart of a method for safe charging of electric vehicles according to the preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the hardware structure of an electronic device for controlling safe charging of an electric vehicle according to a third embodiment of the present invention.
  • Fig. 1 shows a working flow chart of a method for safe charging of an electric vehicle according to an embodiment of the present invention, including:
  • Step S101 controlling the charger to use the required voltage to charge the battery pack of the electric vehicle, and gradually increase the charging current until the charging current reaches the preset upper limit of the required current;
  • Step S102 using constant current charging until the highest cell voltage in the battery pack reaches a preset cut-off voltage value
  • step S103 constant voltage charging is used to gradually reduce the charging current until the charging current is reduced to a preset cut-off current value, and then the charging is stopped.
  • step S101 is executed to charge in a variable current mode, until the charging current reaches the preset upper limit of the required current
  • step S102 is executed to charge to the highest unit in the battery pack by constant current charging.
  • the body voltage reaches the preset cut-off voltage value.
  • step S103 is executed, using constant voltage charging to gradually reduce the charging current until the charging current is reduced to the preset cut-off current value.
  • the present invention uses the highest cell voltage as the main reference index, adjusts the demand current value, uses the constant current mode, flexibly controls the demand current, and adjusts according to the feedback of the actual output current, thereby making it possible to adapt to batteries with different aging degrees in the battery pack. Core, avoid overcharging. At the same time, it can adapt to different charging modes of chargers, and solve the problem of sudden current changes caused by changes in the load of the charger.
  • Fig. 2 shows a working flow chart of a method for safe charging of an electric vehicle according to a second embodiment of the present invention, including:
  • Step S201 controlling the charger to use the required voltage to charge the battery pack of the electric vehicle
  • step S202 the charging current is increased by a preset gradient value every time a preset period of time has elapsed, until the charging current reaches the preset upper limit of the required current, and the gradient value is set so that the total time for the charging current to reach the preset upper limit of current is less than Preset current rise time threshold;
  • Step S203 using constant current charging until the highest cell voltage in the battery pack reaches the preset cut-off voltage value
  • Step S204 using constant voltage charging
  • Step S205 every time a preset time period has elapsed and the highest cell voltage in the battery pack reaches the cut-off voltage value, the charging current is reduced by a preset gradient value;
  • step S206 the charging current is reduced to the preset cut-off current value, and the charging is stopped.
  • the charging current increases by the gradient value
  • the gradient value is used to adjust the demand current, so as to achieve the purpose of flexible follow-up.
  • the required voltage is: the number of cell strings*V cell_max + ⁇ V, and the minimum value between V charger_max , where V cell_max is the maximum charging voltage value that a single cell can withstand, ⁇ V is the preset redundancy value, and V charger_max is the maximum output voltage value of the charger, and ⁇ V is preferably 2V;
  • the required current upper limit value is: the minimum value between I cell_max , I charger_max , and I cap_min , where I cell_max is the maximum charging current value that a single cell can withstand, and I charger_max is the maximum output current value of the charger , I cap_min is the maximum current value that the charging cable connecting the charger and the battery pack of the electric vehicle can withstand.
  • the setting of the required voltage first considers the maximum output capacity V charger_max of the charger , and the charger will not be able to output if this value is exceeded. Secondly, consider the number of battery cell strings *V cell_max . Since the voltage between single cells has a certain difference, setting this value can ensure that when the entire battery is fully charged, at least one cell can reach the full state. Finally, the ⁇ V is controlled at about 2V, which takes into account the internal resistance of the connector between the cells, to ensure that the output voltage of the charger is higher than the terminal voltage of the RESS, and to ensure that the current can be charged.
  • the setting of the upper limit of the demand current must first consider I charger_max , beyond which the charger will not be able to output. Secondly, consider the maximum current I cap_min that the charging cable can withstand. If the charging cable exceeds this value, there is a risk of heat generation and a fire. Finally, consider the maximum charging current I cell_max that the cell can withstand under external environmental conditions, and the cell will be seriously damaged if it exceeds this value.
  • the CC charging mode is uniformly used here.
  • the size of the specific gradient should be comprehensively considered that the current change to the target value cannot exceed 20-30 seconds.
  • the factor considered here is that the current gradient is too small, which will cause the demand current to be adjusted too slowly, and the CC stage will cause the current to rise slowly, leading to the problem of too long charging time.
  • the gradient value of the current change should be much smaller than the rated capacity of RESS, such as 1/10C.
  • the factor considered here is that the current change at a smaller rate will not cause a sudden change in the voltage of the single cell, which will lead to short-term overcharge.
  • the current gradient cannot be much smaller than the rated value of a single current output module of the charger, which will also cause the problem of excessively long charging time.
  • Reasonable setting of the current gradient adjustment unit value can realize flexible charging without increasing the charging time, thereby solving the overcharge problem of the battery.
  • the CC/CV method is adopted to ensure that the battery can be fully charged.
  • the current is gradually increased or decreased through the method of gradient rise and fall, and at the same time, the setting of the gradient value ensures that the total time period during which the charging current reaches the preset current upper limit is less than the preset current rise time threshold.
  • the current gradient adjustment unit value reasonably, flexible charging can be realized without increasing the charging time, thereby solving the overcharge problem of the battery cell.
  • the demand voltage and demand current upper limit setting fully considers the differences of chargers and batteries to ensure reliable charging.
  • Fig. 3 shows a working flow chart of a safe charging method for an electric vehicle according to a preferred embodiment of the present invention, including:
  • Step S301 if V pack ⁇ V charge_max , or failure, or state of charge (State Of Capacity, SOC) ⁇ 100, then end, otherwise, go to step S302, where V pack is the total voltage of the battery pack;
  • step S303 the highest cell reaches the cut-off voltage, that is, the upper limit of the maximum allowable charging of the battery cell, go to step S305, otherwise go to step S304;
  • Step S304 the demand current increases by k, where k is the gradient value, and when the time exceeds T seconds, step S303 is executed;
  • Step S305 the demand current is reduced by k, and step S306 is executed;
  • Step S306 if the current ⁇ cut-off current and the time exceeds T seconds, then end, otherwise, go to step S307;
  • step S307 if the highest cell reaches the cut-off voltage and the time exceeds T seconds, step S305 is executed.
  • the initial demand current and demand voltage are as follows:
  • Demand voltage MIN (number of cell strings*V cell_max + ⁇ V,V charger_max ); // ⁇ V is controlled at about 2V;
  • Demand voltage MIN (number of cell strings*V cell_max + ⁇ V,V charger_max ); // ⁇ V is controlled at about 2V;
  • the unit value of the current gradient adjustment is calculated by the method of gradient increase or decrease.
  • the size of the specific gradient should be comprehensively considered that the current change to the target value cannot exceed 20-30 seconds.
  • the gradient value of the change should be much smaller than the rated capacity of RESS, such as 1/10C. At the same time, the gradient should not be much smaller than the rated value of the single current output module of the charger.
  • the above-mentioned gradient rise method is used to gradually increase the current to the upper limit of the demanded current and maintain the demand value until the highest cell voltage reaches the upper limit of the CV phase, that is, the highest allowable upper limit of the battery cell to be charged. Continuously detect the highest cell voltage value to ensure that the cell does not exceed the upper limit of overcharge.
  • the highest cell voltage When it is detected that the highest cell voltage reaches the upper limit, it enters the CV charging phase. Keep the highest cell voltage not exceeding the upper limit of overcharge, and gradually reduce the current value according to the gradient drop method. After reducing the current each time, you need to wait until the highest cell voltage reaches the upper limit of the CV stage again to continue to reduce the current.
  • This embodiment uses a simple, universal and efficient algorithm, uses the CC mode to flexibly control the demand current, and adjusts it according to the feedback of the actual output current to solve the following problems:
  • Fig. 4 is a schematic diagram of the hardware structure of an electronic device for controlling the safe charging of an electric vehicle according to a third embodiment of the present invention, including:
  • At least one processor 401 and,
  • the memory 402 stores instructions executable by the one processor, and the instructions are executed by the at least one processor, so that the at least one processor can:
  • the charging current is gradually reduced until the charging current is reduced to the preset cut-off current value, then the charging is stopped.
  • a processor 402 is taken as an example.
  • the electronic device may further include: an input device 403 and a display device 404.
  • the processor 401, the memory 402, the input device 403, and the display device 404 may be connected by a bus or in other ways. In the figure, the connection by a bus is taken as an example.
  • the memory 402 as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as those corresponding to the electric vehicle safe charging method in the embodiment of the present application.
  • Program instructions/modules for example, the method flow shown in Figure 1.
  • the processor 401 executes various functional applications and data processing by running the non-volatile software programs, instructions, and modules stored in the memory 402, that is, realizes the safe charging method of the electric vehicle in the above-mentioned embodiment.
  • the memory 402 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of a safe charging method for electric vehicles.
  • the memory 402 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 402 may optionally include a memory remotely provided with respect to the processor 401, and these remote memories may be connected to a device that executes the method for safe charging of electric vehicles through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 403 can receive inputted user clicks, and generate signal inputs related to user settings and function control of the electric vehicle safe charging method.
  • the display device 404 may include a display device such as a display screen.
  • the one or more modules are stored in the memory 402, and when run by the one or more processors 401, the safe charging method for an electric vehicle in any of the foregoing method embodiments is executed.
  • the fourth embodiment of the present invention provides an electronic device for controlling the safe charging of an electric vehicle, including:
  • At least one processor and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the one processor, and the instructions are executed by the at least one processor, so that the at least one processor can:
  • the charging current increases by a preset gradient value until the charging current reaches the preset upper limit of the required current.
  • the setting of the gradient value makes the total time for the charging current to reach the preset upper limit of current less than the preset Set the current rise time threshold;
  • the charging current is reduced by a preset gradient value
  • the charging current increases by the gradient value
  • the required voltage is: the number of cell strings*V cell_max + ⁇ V, and the minimum value between V charger_max , where V cell_max is the maximum charging voltage value that a single cell can withstand, ⁇ V is the preset redundancy value, and V charger_max is the maximum output voltage value of the charger, and ⁇ V is preferably 2V;
  • the required current upper limit value is: the minimum value between I cell_max , I charger_max , and I cap_min , where I cell_max is the maximum charging current value that a single cell can withstand, and I charger_max is the maximum output current value of the charger , I cap_min is the maximum current value that the charging cable connecting the charger and the battery pack of the electric vehicle can withstand.
  • the current is gradually increased or decreased by the method of gradient rise and fall, and at the same time, the setting of the gradient value ensures that the total time period during which the charging current reaches the preset current upper limit is less than the preset current rise time threshold.
  • the current gradient adjustment unit value reasonably, flexible charging can be realized without increasing the charging time, thereby solving the overcharge problem of the battery cell.
  • the demand voltage and demand current upper limit setting fully considers the differences of chargers and batteries to ensure reliable charging.
  • the fifth embodiment of the present invention provides a storage medium that stores computer instructions, and when the computer executes the computer instructions, it is used to execute all the steps of the method for safe charging of electric vehicles as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

一种电动汽车安全充电方法及电子设备,方法包括:控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值(S101);采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值(S102);采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电(S103)。以最高单体电压为主要参考指标,调整需求电流值,使用恒流模式柔性控制需求电流,并根据实际输出电流的反馈进行调整,从而能够适应电池组中老化程度不同的电芯,避免过充。

Description

电动汽车安全充电方法、电子设备及存储介质
本申请要求在2019年09月29日提交中国专利局、申请号为201910936740.9、发明名称为“电动汽车安全充电方法、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆相关技术领域,特别是一种电动汽车安全充电方法、电子设备及存储介质。
背景技术
电动汽车、储能可重复充电的储能系统(Rechargeable Energy Storage System,RESS)的充电,主要由RESS端的电子控制单元(Electric Control Unit,ECU)配合车载或者非车载的充电机来完成。为了保证RESS系统和充电机的安全,现有RESS系统中的ECU往往根据内外部条件计算出RESS能够接受的最小需求后,向充电机发出需求电压及需求电流,然后充电机根据自身能力对RESS进行充电。通常考虑的内部条件包括当前状态电芯能够承受电流、温度及系统故障;通常考虑的外部条件包括充电机的输出能力、故障状态、通讯状态等。
然而,发明人在实现本发明的过程中发现,受电芯使用老化,充电机设备的多样性的影响,现有的静态充电策略很难满足RESS安全、高效充电的需要。
风险一:电芯老化,充电过流风险增大
现有技术以起始(Begin Of Life,BOL)阶段的电芯需求电流计算,随着电芯老化内阻增大,电芯内阻的分担电压会增加,由于在一定温度下的充电上限电压不变,进而导致电芯过充的风险;
同时,现有技术为避免较大运算量,常常采用统一的蓄电池容量、健康度、性能状态(State Of Health,SOH)计算模型得出系统SOH。但实际随着使用电芯的老化程度不同,使用系统SOH对所有电芯的需求电压进行校正并不能够精确的控制过充;
风险二:充电机的多样性,以致对需求电流的响应不匹配,进而导致过充或充电时间过长的风险
现有技术几乎所有充电机都支持恒流(Constant Current,CC)模式,但一部分充电机输出不能支持恒压(Constant Voltage,CV)模式。同时,各家充电机的最大输出电流不同,不会完全满足不同车型的需求。另外,现有配电基本上以模块化堆叠的形式来扩容,因此电流输出的步长不同,且不连续。最后,部分充电机支持多个充电口同时输出,在整体输出能力保持不变的情况下,多个充电口根据负载情况动态变化,但变化时并不通知RESS控制器,因此带来的电流突变导致RESS单元在很多情况下出现瞬时过充或性能下降的情况。
发明内容
基于此,有必要针对现有技术的电池充电方式面对电芯老化等问题是,不能准确的动态调整需求电流,需要大量查表,对不同电芯类型的适应度较差,且对外部充电机的适应性差,在复杂多变的情况下导致过充做单效率低的技术问题,提供一种电动汽车安全充电方法、电子设备及存储介质。
本发明提供一种电动汽车安全充电方法,包括:
控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值;
采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电。
进一步地,所述逐渐增加充电电流,具体包括:
每经过预设时间段,充电电流增加预设梯度值。
更进一步地,所述梯度值的设置使得所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值。
进一步地,所述逐渐减少充电电流,具体包括:
每经过预设时间段,充电电流减少预设梯度值。
更进一步地,所述每经过预设时间段,充电电流减少预设梯度值,具体包括:
每经过预设时间段且电池组中最高的单体电压达到所述截止电压值,则充电电流减少预设梯度值。
更进一步地,所述逐渐减少充电电流,还包括:
如果所述充电机的输出电流增加时,充电电流增加所述梯度值;
如果所述充电机的输出电流减少时,充电电流减少所述梯度值。
再进一步地:
所述需求电压为:电芯串数*V cell_max+ΔV、与V charger_max之间的最小值,其中V cell_max为单体电芯能够承受的最大充电电压值,ΔV为预设冗余值,V charger_max为充电机的最大输出电压值;
所述需求电流上限值为:I cell_max、I charger_max、与I cap_min之间的最小值,其中I cell_max为单体电芯能够承受的最大充电电流值,I charger_max为充电机的最大输出电流值,I cap_min为连接充电机与电动汽车的电池组的充电电缆能够承受的最大电流值。
本发明提供一种控制电动汽车安全充电的电子设备,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值;
采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电。
进一步地,所述逐渐增加充电电流,具体包括:
每经过预设时间段,充电电流增加预设梯度值。
更进一步地,所述梯度值的设置使得所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值。
进一步地,所述逐渐减少充电电流,具体包括:
每经过预设时间段,充电电流减少预设梯度值。
更进一步地,所述每经过预设时间段,充电电流减少预设梯度值,具体包括:
每经过预设时间段且电池组中最高的单体电压达到所述截止电压值,则充电电流减少预设梯度值。
更进一步地,所述逐渐减少充电电流,还包括:
如果所述充电机的输出电流增加时,充电电流增加所述梯度值;
如果所述充电机的输出电流减少时,充电电流减少所述梯度值。
再进一步地:
所述需求电压为:电芯串数*V cell_max+ΔV、与V charger_max之间的最小值,其中V cell_max为单体电芯能够承受的最大充电电压值,ΔV为预设冗余值,V charger_max为充电机的最大输出电压值;
所述需求电流上限值为:I cell_max、I charger_max、与I cap_min之间的最小值,其中I cell_max为单体电芯能够承受的最大充电电流值,I charger_max为充电机的最大输出电流值,I cap_min为连接充电机与电动汽车的电池组的充电电缆能够承受的最大电流值。
本发明提供一种存储介质,所述存储介质存储计算机指令,当计算机执行所述计算机指令时,用于执行如前所述的电动汽车安全充电方法的所有步骤。
本发明以最高单体电压为主要参考指标,调整需求电流值,使用恒流模式,柔性的控制需求电流,并根据实际输出电流的反馈进行调整,从而使得能够适应电池组中老化程度不同的电芯,避免过充。同时,能适应不同的充电机的充电模式,解决充电机因负载变化等情况导致的电流突变问题。
附图说明
图1为本发明一实施例一种电动汽车安全充电方法的工作流程图;
图2为本发明第二实施例一种电动汽车安全充电方法的工作流程图;
图3为本发明最佳实施例一种电动汽车安全充电方法的工作流程图;
图4为本发明第三实施例一种控制电动汽车安全充电的电子设备的硬件结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细的说明。
实施例一
如图1所示为本发明一实施例一种电动汽车安全充电方法的工作流程图,包括:
步骤S101,控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值;
步骤S102,采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
步骤S103,采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电。
具体来说,本发明在开始时,执行步骤S101,采用变电流方式充电,直到充电电流达到预设需求电流上限值后,执行步骤S102,采用恒流充电,充电至电池组中最高的单体电压达到预设截止电压值。电池组中最高的单体电压达到预设截止电压值后,执行步骤S103,采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值。
本发明以最高单体电压为主要参考指标,调整需求电流值,使用恒流模式,柔性的控制需求电流,并根据实际输出电流的反馈进行调整,从而使得能够适应电池组中老化程度不同的电芯,避免过充。同时,能适应不同的充电机的充电模式,解决充电机因负载变化等情况 导致的电流突变问题。
实施例二
图2所示为本发明第二实施例一种电动汽车安全充电方法的工作流程图,包括:
步骤S201,控制充电机采用需求电压向电动汽车的电池组充电;
步骤S202,每经过预设时间段,充电电流增加预设梯度值,直到充电电流达到预设需求电流上限值,梯度值的设置使得所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值;
步骤S203,采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
步骤S204,采用恒压充电;
步骤S205,每经过预设时间段且电池组中最高的单体电压达到所述截止电压值,则充电电流减少预设梯度值;
步骤S206,充电电流减少到预设截止电流值,则停止充电。
优选地,如果所述充电机的输出电流增加时,充电电流增加所述梯度值;
如果所述充电机的输出电流减少时,充电电流减少所述梯度值。
通过在所述充电中,充电需求电流、充电机输出电流变化时,使用梯度值调整需求电流,以达到柔性跟随的目的。
所述需求电压为:电芯串数*V cell_max+ΔV、与V charger_max之间的最小值,其中V cell_max为单体电芯能够承受的最大充电电压值,ΔV为预设冗余值,V charger_max为充电机的最大输出电压值,ΔV优选为2V;
所述需求电流上限值为:I cell_max、I charger_max、与I cap_min之间的最小值,其中I cell_max为单体电芯能够承受的最大充电电流值,I charger_max为充电机的最大输出电流值,I cap_min为连接充电机与电动汽车的电池组的充电电缆能够承受的最大电流值。
具体来说:
(1)需求电压和需求电流上限值计算
需求电压的设置首先考虑了充电机的最大输出能力V charger_max,超过该值充电机将无法输出。其次考虑电芯串数*V cell_max,由于单体电 芯之间的电压有一定的差异性,设置为这个值能够确保整组电池充满时,能够至少有一个单体达到充满状态。最后ΔV控制在2V左右,是考虑到电芯之间的连接器内阻,确保充电机的输出电压高于RESS的端电压,确保电流能够充入。
需求电流上限值的设置首先要考虑I charger_max,超过该值充电机将无法输出。其次考虑充电线缆能够承受的最大电流I cap_min,超过该值充电线缆将存在发热的风险,导致起火。最后要考虑外部环境条件下电芯能够承受的最大充电电流I cell_max,超过该值电芯将严重受损。
考虑到部分充电机不支持CV模式,为了解决兼容性问题,此处统一使用CC充电模式。
(2)电流梯度调整的单位值计算
电流梯度调整是有效解决电芯老化、充电机输出电流步长多样、多枪充电时因负载变化引起的电流突变等问题对电芯造成的冲击问题。
具体梯度的大小应综合考虑电流变化到目标值不能超过20-30秒。此处考虑的因素是电流梯度太小,将导致需求电流调整过慢,CC阶段会导致电流上升慢,导致充电时间过长的问题。
电流变化的梯度值应远远小于RESS的额定容量,如1/10C。此处考虑的因素是较小倍率的电流变化不会引起单体电芯电压的突变,进而导致短时过充。
电流变化梯度不能远远小于充电机单个电流输出模块的额定值,这样同样会导致充电时间超长问题。
合理设置电流梯度调整单位值,能够在不增加充电时长的情况下,实现柔性充电,进而解决电芯的过充问题。
(3)充电分段
采用CC/CV法,确保电芯能够充分充满。
(4)充电保护
充电过程时刻监控系统出现的各种异常、故障实现实时保护停机。以最高单体电压为主要参考指标,调整需求电流值,防止出现过充。
本实施例通过梯度上升和下降的方法逐渐增加或减少电流,同时, 梯度值的设置保证所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值。通过合理设置电流梯度调整单位值,能够在不增加充电时长的情况下,实现柔性充电,进而解决电芯的过充问题。最后,需求电压和需求电流上限的设置充分考虑充电机及电芯的差异性,保证充电可靠。
如图3所示为本发明最佳实施例一种电动汽车安全充电方法的工作流程图,包括:
步骤S301,如果V pack≥V charge_max,或者故障,或者荷电状态(State Of Capacity,SOC)≥100,则结束,否则,执行步骤S302,其中,V pack为电池包总电压;
步骤S302,初始化设置需求电压=MIN(电芯串数Pack_S*Vcell_max+ΔV,Vcharger_max),ΔV控制在2V左右,充电模式=CC,需求电流=0A,当时间超过T秒,执行步骤S303;
步骤S303,最高单体达到截止电压,即电池单体允许充电的最高上限,执行步骤S305,否则执行步骤S304;
步骤S304,需求电流增加k,k为梯度值,当时间超过T秒,执行步骤S303;
步骤S305,需求电流减少k,执行步骤S306;
步骤S306,如果电流≤截止电流且时间超过T秒,则结束,否则执行步骤S307;
步骤S307,如果最高单体到达截止电压且时间超过T秒,执行步骤S305。
具体来说:
初始化需求电流和需求电压如下:
需求电压=MIN(电芯串数*V cell_max+ΔV,V charger_max);//ΔV控制在2V左右;
充电模式=CC;
需求电流=0A。
开始充电时,在车端RESS系统中采用如下公式计算充电的需求 电压、需求电流上限:
需求电压=MIN(电芯串数*V cell_max+ΔV,V charger_max);//ΔV控制在2V左右;
充电模式=CC;
需求电流=MIN(I cell_max,I charger_max,I cap_min)。
然后,采用梯度上升或下降的办法计算电流梯度调整的单位值。具体梯度的大小应综合考虑电流变化到目标值不能超过20-30秒。变化的梯度值应远远小于RESS的额定容量,如1/10C.同时还应满足梯度不能远远小于充电机单个电流输出模块的额定值。
在充电开始阶段,使用上述梯度上升的办法逐渐增加电流至需求电流上限,并维持该需求值,直到最高单体电压达到CV阶段的上限,即电池单体允许充电的最高上限。不断检测最高单体电压值,确保单体电池不会超过过充上限。
当检测到最高单体电压达到上限,进入CV充电阶段。保持最高单体电压不超过过充上限,按照梯度下降的办法逐渐减小电流值。每次减小电流后,需要等到最高单体电压再次达到CV阶段上限才能继续减小电流。
当电流值减小到截止电流以下,停止充电。
本实施例通过一种简单通用高效的算法,使用CC模式,柔性的控制需求电流,并根据实际输出电流的反馈进行调整,进行解决以下问题:
a、电芯老化后内阻增大导致的过充问题;
b、电芯老化程度不同导致的过充问题;
c、解决充电机充电模式、电流输出步长多变的问题。
d、解决充电机因负载变化等情况导致的电流突变问题。
实施例三
如图4所示为本发明第三实施例一种控制电动汽车安全充电的电子设备的硬件结构示意图,包括:
至少一个处理器401;以及,
与所述至少一个处理器401通信连接的存储器402;其中,
所述存储器402存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值;
采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电。
图4中以一个处理器402为例。
电子设备还可以包括:输入装置403和显示装置404。
处理器401、存储器402、输入装置403及显示装置404可以通过总线或者其他方式连接,图中以通过总线连接为例。
存储器402作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的电动汽车安全充电方法对应的程序指令/模块,例如,图1所示的方法流程。处理器401通过运行存储在存储器402中的非易失性软件程序、指令以及模块,从而执行各种功能应用以及数据处理,即实现上述实施例中的电动汽车安全充电方法。
存储器402可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电动汽车安全充电方法的使用所创建的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器402可选包括相对于处理器401远程设置的存储器,这些远程存储器可以通过网络连接至执行电动汽车安全充电方法的装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置403可接收输入的用户点击,以及产生与电动汽车安全充电方法的用户设置以及功能控制有关的信号输入。显示装置404可 包括显示屏等显示设备。
在所述一个或者多个模块存储在所述存储器402中,当被所述一个或者多个处理器401运行时,执行上述任意方法实施例中的电动汽车安全充电方法。
电动汽车安全充电
实施例四
本发明第四实施例一种控制电动汽车安全充电的电子设备,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
控制充电机采用需求电压向电动汽车的电池组充电;
每经过预设时间段,充电电流增加预设梯度值,直到充电电流达到预设需求电流上限值,所述梯度值的设置使得所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值;
采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
采用恒压充电;
每经过预设时间段且电池组中最高的单体电压达到所述截止电压值,则充电电流减少预设梯度值;
直到充电电流减少到预设截止电流值,则停止充电。
优选地,如果所述充电机的输出电流增加时,充电电流增加所述梯度值;
如果所述充电机的输出电流减少时,充电电流减少所述梯度值。
所述需求电压为:电芯串数*V cell_max+ΔV、与V charger_max之间的最小值,其中V cell_max为单体电芯能够承受的最大充电电压值,ΔV为预设冗余值,V charger_max为充电机的最大输出电压值,ΔV优选为2V;
所述需求电流上限值为:I cell_max、I charger_max、与I cap_min之间的最小值,其中I cell_max为单体电芯能够承受的最大充电电流值,I charger_max为充 电机的最大输出电流值,I cap_min为连接充电机与电动汽车的电池组的充电电缆能够承受的最大电流值。
本实施例通过梯度上升和下降的方法逐渐增加或减少电流,同时,梯度值的设置保证所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值。通过合理设置电流梯度调整单位值,能够在不增加充电时长的情况下,实现柔性充电,进而解决电芯的过充问题。最后,需求电压和需求电流上限的设置充分考虑充电机及电芯的差异性,保证充电可靠。
实施例五
本发明第五实施例提供一种存储介质,所述存储介质存储计算机指令,当计算机执行所述计算机指令时,用于执行如前所述的电动汽车安全充电方法的所有步骤。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种电动汽车安全充电方法,其特征在于,包括:
    控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值;
    采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
    采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电。
  2. 根据权利要求1所述的电动汽车安全充电方法,其特征在于,所述逐渐增加充电电流,具体包括:
    每经过预设时间段,充电电流增加预设梯度值。
  3. 根据权利要求2所述的电动汽车安全充电方法,其特征在于,所述梯度值的设置使得所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值。
  4. 根据权利要求1所述的电动汽车安全充电方法,其特征在于,所述逐渐减少充电电流,具体包括:
    每经过预设时间段,充电电流减少预设梯度值。
  5. 根据权利要求4所述的电动汽车安全充电方法,其特征在于,所述每经过预设时间段,充电电流减少预设梯度值,具体包括:
    每经过预设时间段且电池组中最高的单体电压达到所述截止电压值,则充电电流减少预设梯度值。
  6. 根据权利要求4所述的电动汽车安全充电方法,其特征在于,所述逐渐减少充电电流,还包括:
    如果所述充电机的输出电流增加时,充电电流增加所述梯度值;
    如果所述充电机的输出电流减少时,充电电流减少所述梯度值。
  7. 根据权利要求1至6任一项所述的电动汽车安全充电方法,其特征在于:
    所述需求电压为:电芯串数*V cell_max+ΔV、与V charger_max之间的最小值,其中V cell_max为单体电芯能够承受的最大充电电压值,ΔV为预设冗余值,V charger_max为充电机的最大输出电压值;
    所述需求电流上限值为:I cell_max、I charger_max、与I cap_min之间的最小值,其中I cell_max为单体电芯能够承受的最大充电电流值,I charger_max为充电机的最大输出电流值,I cap_min为连接充电机与电动汽车的电池组的充电电缆能够承受的最大电流值。
  8. 一种控制电动汽车安全充电的电子设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够:
    控制充电机采用需求电压向电动汽车的电池组充电,逐渐增加充电电流,直到充电电流达到预设需求电流上限值;
    采用恒流充电,直到电池组中最高的单体电压达到预设截止电压值;
    采用恒压充电,逐渐减少充电电流,直到充电电流减少到预设截止电流值,则停止充电。
  9. 根据权利要求8所述的控制电动汽车安全充电的电子设备,其特征在于,所述逐渐增加充电电流,具体包括:
    每经过预设时间段,充电电流增加预设梯度值。
  10. 根据权利要求9所述的控制电动汽车安全充电的电子设备,其特征在于,所述梯度值的设置使得所述充电电流达到预设电流上限值的总时长小于预设电流上升时间阈值。
  11. 根据权利要求8所述的控制电动汽车安全充电的电子设备,其特征在于,所述逐渐减少充电电流,具体包括:
    每经过预设时间段,充电电流减少预设梯度值。
  12. 根据权利要求11所述的控制电动汽车安全充电的电子设备,其特征在于,所述每经过预设时间段,充电电流减少预设梯度值,具体包括:
    每经过预设时间段且电池组中最高的单体电压达到所述截止电压值,则充电电流减少预设梯度值。
  13. 根据权利要求11所述的电动汽车安全充电的电子设备,其特征在于,所述逐渐减少充电电流,还包括:
    如果所述充电机的输出电流增加时,充电电流增加所述梯度值;
    如果所述充电机的输出电流减少时,充电电流减少所述梯度值。
  14. 根据权利要求8-13任一项所述的控制电动汽车安全充电的电子设备,其特征在于:
    所述需求电压为:电芯串数*Vcell_max+ΔV、与Vcharger_max之间的最小值,其中Vcell_max为单体电芯能够承受的最大充电电压值,ΔV为预设冗余值,Vcharger_max为充电机的最大输出电压值;
    所述需求电流上限值为:Icell_max、Icharger_max、与Icap_min之间的最小值,其中Icell_max为单体电芯能够承受的最大充电电流值,Icharger_max为充电机的最大输出电流值,Icap_min为连接充电机与电动汽车的电池组的充电电缆能够承受的最大电流值。
  15. 一种存储介质,其特征在于,所述存储介质存储计算机指令,当计算机执行所述计算机指令时,用于执行如权利要求1至7任一项所述的电动汽车安全充电方法的所有步骤。
PCT/CN2019/129479 2019-09-29 2019-12-27 电动汽车安全充电方法、电子设备及存储介质 WO2021056904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936740.9A CN111114386B (zh) 2019-09-29 2019-09-29 电动汽车安全充电方法、电子设备及存储介质
CN201910936740.9 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021056904A1 true WO2021056904A1 (zh) 2021-04-01

Family

ID=70495351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129479 WO2021056904A1 (zh) 2019-09-29 2019-12-27 电动汽车安全充电方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN111114386B (zh)
WO (1) WO2021056904A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111942228A (zh) * 2020-07-28 2020-11-17 中国第一汽车股份有限公司 一种电动汽车低温充电控制系统及其控制方法
WO2022061645A1 (zh) * 2020-09-24 2022-03-31 深圳市大疆创新科技有限公司 充电方法、受电设备、充电管家设备、充电系统及计算机可读存储介质
CN113611931A (zh) * 2021-08-05 2021-11-05 森克创能(天津)新能源科技有限公司 一种锌镍电池的梯级充电方法
CN114537219B (zh) * 2022-02-16 2023-11-14 北京海博思创科技股份有限公司 充电截止荷电状态确定方法、装置、设备及介质
CN114454766B (zh) * 2022-02-25 2024-03-19 重庆金康动力新能源有限公司 动力电池充电方法、系统和设备
CN117642957A (zh) * 2022-06-23 2024-03-01 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、电子设备及存储介质
CN115742861B (zh) * 2022-11-22 2024-08-13 重庆长安新能源汽车科技有限公司 一种新能源汽车电池防过充控制方法、装置、设备及介质
CN116317031B (zh) * 2023-05-17 2023-08-15 深圳源川智控技术有限公司 换电柜充电电流调整方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108945A1 (en) * 2005-11-17 2007-05-17 Matsushita Electric Works, Ltd. Charging method, charging circuit, and charging device
CN101431250A (zh) * 2007-11-06 2009-05-13 上海辰蕊微电子科技有限公司 用于电池充电器的充电管理控制电路及其控制方法
CN101951003A (zh) * 2010-09-29 2011-01-19 无锡中星微电子有限公司 充电管理装置
CN101958562A (zh) * 2009-12-01 2011-01-26 北京汽车新能源汽车有限公司 锂离子电池组的充电管理方法和充电机
CN102981122A (zh) * 2011-09-07 2013-03-20 杭州市电力局 一种电动汽车电池测试方法和系统
CN103490111A (zh) * 2013-08-06 2014-01-01 重庆邮电大学 一种分段式恒流恒压充电方法
CN106785134A (zh) * 2016-12-19 2017-05-31 北京小米移动软件有限公司 终端设备的电池充电方法及装置
CN108761335A (zh) * 2018-04-11 2018-11-06 超威电源有限公司 一种铅酸蓄电池循环寿命的检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209039B2 (ja) * 1995-05-30 2001-09-17 新神戸電機株式会社 鉛蓄電池の充電方法
JP5020530B2 (ja) * 2006-04-14 2012-09-05 パナソニック株式会社 充電方法ならびに電池パックおよびその充電器
JP4725605B2 (ja) * 2008-06-25 2011-07-13 パナソニック電工株式会社 充電回路
CN102655344A (zh) * 2011-03-02 2012-09-05 江苏嘉钰新能源技术有限公司 一种调整电池充电电压的电源和方法
CN103427124B (zh) * 2012-05-14 2015-08-26 微宏动力系统(湖州)有限公司 电池组充电方法
WO2015033666A1 (ja) * 2013-09-06 2015-03-12 日産自動車株式会社 二次電池の充電方法及び充電装置
CN106026269A (zh) * 2016-06-27 2016-10-12 深圳天珑无线科技有限公司 快速充电设备及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108945A1 (en) * 2005-11-17 2007-05-17 Matsushita Electric Works, Ltd. Charging method, charging circuit, and charging device
CN101431250A (zh) * 2007-11-06 2009-05-13 上海辰蕊微电子科技有限公司 用于电池充电器的充电管理控制电路及其控制方法
CN101958562A (zh) * 2009-12-01 2011-01-26 北京汽车新能源汽车有限公司 锂离子电池组的充电管理方法和充电机
CN101951003A (zh) * 2010-09-29 2011-01-19 无锡中星微电子有限公司 充电管理装置
CN102981122A (zh) * 2011-09-07 2013-03-20 杭州市电力局 一种电动汽车电池测试方法和系统
CN103490111A (zh) * 2013-08-06 2014-01-01 重庆邮电大学 一种分段式恒流恒压充电方法
CN106785134A (zh) * 2016-12-19 2017-05-31 北京小米移动软件有限公司 终端设备的电池充电方法及装置
CN108761335A (zh) * 2018-04-11 2018-11-06 超威电源有限公司 一种铅酸蓄电池循环寿命的检测方法

Also Published As

Publication number Publication date
CN111114386B (zh) 2021-02-05
CN111114386A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021056904A1 (zh) 电动汽车安全充电方法、电子设备及存储介质
CN102545291B (zh) 太阳能蓄电系统及太阳能供电系统
TW201916529A (zh) 電源控制器、供電系統及其控制方法
WO2022166524A1 (zh) 电池充电控制方法、系统、车辆、可读存储介质及设备
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
CN109617103B (zh) 一种储能机组的梯次利用储能电池能量控制方法和系统
JP2015195674A (ja) 蓄電池集合体制御システム
TWI634722B (zh) 電池並聯搭接的控制方法
CN106159980B (zh) 发电系统和能量管理方法
CN115800206B (zh) 储能系统的控制方法、装置、计算机设备及介质
JP2023535099A (ja) 充放電装置、電池の充電及び放電方法、並びに充放電システム
CN103199312B (zh) 电池电流的管理方法及装置
CN114465260A (zh) 一种光伏储能电池均衡的控制方法
CN114156968B (zh) 储能系统的充放电控制方法、装置、控制器和储能系统
CN106026294A (zh) 一种充电器及其控制方法
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
CN109193885B (zh) 光伏储能逆变器的控制系统
CN116846016A (zh) 过压保护方法、储能设备及电池包
CN205811622U (zh) 一种充电器
CN207039235U (zh) 一种充电系统
TWI793489B (zh) 燃料電池電堆的控制系統與方法
CN112928798B (zh) 储能设备的电量控制方法、装置和储能设备
WO2019163008A1 (ja) 直流給電システム
CN102136755A (zh) 双单元热备份直流电源装置及铁路机车
WO2017135170A1 (ja) 電力貯蔵システムおよびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947032

Country of ref document: EP

Kind code of ref document: A1