WO2022166524A1 - 电池充电控制方法、系统、车辆、可读存储介质及设备 - Google Patents

电池充电控制方法、系统、车辆、可读存储介质及设备 Download PDF

Info

Publication number
WO2022166524A1
WO2022166524A1 PCT/CN2022/070778 CN2022070778W WO2022166524A1 WO 2022166524 A1 WO2022166524 A1 WO 2022166524A1 CN 2022070778 W CN2022070778 W CN 2022070778W WO 2022166524 A1 WO2022166524 A1 WO 2022166524A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
charging
difference
value
Prior art date
Application number
PCT/CN2022/070778
Other languages
English (en)
French (fr)
Inventor
刘铭
梁建英
李艳昆
肖婵娟
田庆
周卓敏
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to EP22748803.8A priority Critical patent/EP4290729A1/en
Priority to JP2023547093A priority patent/JP2024505288A/ja
Publication of WO2022166524A1 publication Critical patent/WO2022166524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure belongs to the technical field of battery charging, and in particular relates to a battery charging control method, system, vehicle, readable storage medium and device.
  • the battery parallel charging system performs current control, it generally controls the total bus current. According to the parallel rule, the current allocated to each battery is unknown. Therefore, there are certain problems, especially for parallel charging of multi-cluster batteries. System, the problem is more prominent.
  • the present disclosure proposes a battery charging control method, system, vehicle, readable storage medium and device.
  • the present disclosure achieves the purpose of controlling the charging current by continuously adjusting the charging voltage. , to ensure that the charging current of each cluster battery does not exceed the charging current limit, on the one hand, the control accuracy of the charging process is improved, and on the other hand, the charging safety is also improved.
  • the present disclosure adopts the following technical solutions:
  • a first aspect of the present disclosure provides a battery charging control method for a single-cluster parallel battery system, including the following steps:
  • the bus voltage is controlled to realize charging control.
  • the difference ⁇ U between the bus voltage and the battery voltage can be updated and adjusted in real time according to the current state of the battery.
  • the value of ⁇ U will be shorter.
  • it becomes a negative value the bus voltage is lowered, and the control of the current drop is realized.
  • the current will not fluctuate significantly, and the follow-up between the voltage and the current is good.
  • the consistency of charging between batteries can also be ensured to a greater extent. Reduce battery charge differences.
  • the current state of the battery includes the state of charge, temperature, voltage and internal resistance of the battery.
  • the PI loop is used to calculate the difference between the bus voltage and the battery voltage.
  • the specific process of controlling the bus voltage includes: comparing the difference between the current bus voltage and the battery voltage and the voltage at the start of battery charging The sum of the values is used as the final current charging voltage value, and the busbar voltage is controlled to reach this voltage value to realize the control of the charging current.
  • a second aspect of the present disclosure provides a battery charging control method for a multi-cluster parallel battery system, including the following steps:
  • each cluster of batteries calculate the suitable allowable charging current value of each cluster of batteries, and determine the minimum value among them;
  • the bus voltage is controlled to realize charging control.
  • the information of all batteries is controlled and integrated to calculate the minimum charging current limit in the multi-cluster battery, and the charging voltage is calculated with the minimum charging current limit, and then the bus voltage is controlled. , which can ensure the safety of all cluster batteries, and at the same time, continuously adjust the control according to the actual state to control the bus voltage, respond quickly to changes in the battery state, and improve the control accuracy of the charging process.
  • each cluster of cells is connected in parallel.
  • the current state of the battery includes the state of charge, temperature, voltage and internal resistance of all batteries.
  • the PI loop is used to calculate the difference between the bus voltage and the battery voltage.
  • the difference between the current bus voltage and the battery voltage and the sum of the voltage values at the start of battery charging are taken as the final current charging voltage value, and the bus voltage is controlled to reach this voltage value to achieve Control of charging current.
  • a third aspect of the present disclosure provides a battery charging control system, including:
  • the parameter configuration module is configured to determine the suitable allowable charging current value according to the obtained current state of the battery
  • the calculation module is configured to calculate the difference between the bus voltage and the battery voltage according to the difference between the allowable charging current value and the current value obtained by real-time sampling;
  • the charging control module is configured to control the bus voltage according to the difference between the bus voltage and the battery voltage to realize charging control.
  • a fourth aspect of the present disclosure provides a battery charging control system, including:
  • the parameter configuration module is configured to calculate the allowable charging current value adapted to each cluster of batteries according to the obtained current state of each cluster of batteries, and determine the minimum value among them;
  • a calculation module configured to calculate the difference between the bus voltage and the battery voltage according to the difference between the minimum value of the allowable charging current value and the current value obtained by real-time sampling;
  • the charging control module is configured to control the bus voltage according to the difference between the bus voltage and the battery voltage to realize charging control.
  • a fifth aspect of the present disclosure provides a control system, comprising:
  • the battery management system is configured to determine the appropriate allowable charging current value according to the obtained current state of the battery; calculate the difference between the bus voltage and the battery voltage according to the difference between the allowable charging current value and the current value obtained by real-time sampling value, and determine the final requested charging voltage value according to the difference;
  • the vehicle controller receives the charging voltage value finally requested by the battery management system, and controls the bus voltage with this value.
  • a sixth aspect of the present disclosure provides a control system, comprising:
  • the battery management system is configured to be configured to calculate the allowable charging current value adapted to each cluster of batteries according to the obtained current state of each cluster of batteries, and determine the minimum value among them; according to the minimum value of the allowable charging current value and real-time The difference between the sampled current values is calculated, the difference between the bus voltage and the battery voltage is calculated, and the final requested charging voltage value is determined according to the difference;
  • the vehicle controller receives the charging voltage value finally requested by the battery management system, and controls the bus voltage with this value.
  • a seventh aspect of the present disclosure provides a computer-readable storage medium, in which a plurality of instructions are stored, and the instructions are adapted to be loaded by a processor of a terminal device and execute the steps in the battery charging control method.
  • An eighth aspect of the present disclosure provides a terminal device, including a processor and a computer-readable storage medium, where the processor is configured to implement various instructions; the computer-readable storage medium is configured to store a plurality of instructions, the instructions are suitable for being loaded by the processor And execute the steps in the battery charging control method.
  • a ninth aspect of the present disclosure provides a vehicle including the above control system, a readable storage medium or a terminal device.
  • the present disclosure adjusts the value of the difference ⁇ U between the bus voltage and the battery voltage in real time by monitoring the current state of the battery.
  • the value of ⁇ U will become a negative value for a short time. , so as to pull down the bus voltage and realize the control of the current drop. It can be seen from the simulation results that the control method of the present disclosure can ensure that the SOC of the battery has been steadily increasing, the current will not fluctuate significantly, and the followability of the voltage and the current is good.
  • the information of all batteries is integrated, the minimum charging current limit of the multi-cluster batteries is calculated, the charging voltage is calculated with the minimum charging current limit, and then the bus voltage is controlled, The safety performance of each battery is guaranteed to the greatest extent.
  • the present disclosure achieves the purpose of controlling the charging current by continuously adjusting the charging voltage, and responds quickly to changes in the battery state.
  • the PI loop adjustment can also be used to eliminate the influence of the detection error.
  • the control precision of the charging process is further improved, and the improvement of the control precision also means the improvement of the charging safety.
  • the control of the charging current during the charging process is relatively accurate, the actual charged capacity of the entire battery system at the end of the charging is close to the fully charged state, which ensures that the states of each battery are approximately the same, which further helps to protect the battery, and The charging time will not increase, which effectively improves the charging efficiency.
  • Embodiment 1 is a schematic diagram of a control principle of Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a charging process according to Embodiment 1 of the present disclosure
  • Embodiment 3 is a schematic diagram of a charging effect of Embodiment 1 of the present disclosure.
  • FIG. 4 is a schematic diagram of a control principle of Embodiment 2 of the present disclosure.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only a relational word determined for the convenience of describing the structural relationship of each component or element of the present disclosure, and does not specifically refer to any component or element in the present disclosure, and should not be construed as a reference to the present disclosure. public restrictions.
  • the current multi-cluster battery parallel charging strategy is the first one is a constant voltage charging method.
  • the realization method is to charge the battery by controlling the bus voltage to be at a fixed value.
  • the charging current decreases as the battery voltage approaches the bus voltage until the battery voltage is equal to the bus voltage. This method is more difficult to achieve the ideal effect in actual projects. Due to the difference in the internal resistance of the two clusters of batteries, as well as the difference in line impedance and other congenital factors, it will lead to the phenomenon of uneven current between multiple clusters, which means The battery will be fully charged first.
  • the step-down current charging refers to charging the battery by controlling the bus current step-down.
  • the voltage of the battery is used to judge whether the battery is fully charged, and the lithium battery will show different polarization characteristics when the current is different.
  • the greater the current the greater the polarization. That is, the shorter the time to reach the upper limit of the charging voltage, the less the amount of electricity that can be charged in general. Therefore, taking advantage of the characteristics of the battery polarization changing with the current size, a step-down current charging strategy can be used, that is, the constant current charging is performed with a larger current value at the beginning of charging, and when the battery voltage is close to full charge, the current is reduced by half for charging.
  • the polarization of the battery When charging, due to the current reduction, the polarization of the battery will fade, and the voltage will drop to a certain extent.
  • the battery can continue to be charged, and so on and so forth, until the current drops below the set value, charging to the upper limit of the voltage, that is, the end of charging .
  • the advantage of this charging method is that it has high charging efficiency, more power can be charged without increasing the charging time, and because the charging control is performed according to the charging voltage, it is safer than the above-mentioned constant voltage charging strategy. .
  • the constant current charging strategy is used in the multi-cluster battery system.
  • the constant current charging strategy has many advantages in the application of the single-cluster battery system, but when it is used in the multi-cluster battery system, it will encounter and Same problem with constant voltage charging.
  • the battery management system When performing constant current charging in a multi-cluster battery system, the battery management system will apply to the vehicle controller for the charging current value of the battery according to the real-time voltage and temperature of the battery, and the vehicle controller will use the requested value from the battery management system. Adjust the bus current value to achieve the purpose of controlling the charging.
  • the states of all batteries cannot be exactly the same.
  • the inconsistencies in the charging speed of different batteries the inconsistencies in internal resistance, and the inconsistencies in life decay rates mentioned above, there are also structural design.
  • the inconsistency of battery temperature caused by heat dissipation problems caused by factors such as the inconsistency of the charging current value requested by different battery management systems will lead to inconsistencies in the charging current value.
  • the minimum value of the current value is selected to control the bus current, so as to ensure that the battery will not be overcharged during the charging process, thereby causing a safety accident. And such a control method will also have the same problem as constant voltage charging, only one cluster of batteries can be fully charged, while others will be in a state of dissatisfaction.
  • the total voltage is the same, so a better way to control the charging current is to control the charging current by controlling the bus voltage and increasing and decreasing the bus voltage. the goal of.
  • the allowable charging current value will be different according to the current state of the battery, and the voltage calculated based on this allowable current value will also be different. Using the lowest voltage among the calculated voltage values in several clusters as the charging voltage can be It meets the requirement that the charging current of each cluster of batteries does not exceed the limit current value.
  • the constant voltage charging value or the constant current charging value is unchanged after a given value, and the charging control value will not change until the control conditions of the next stage are not met, which will make the charging
  • the control becomes inflexible, and it is difficult to make a timely response to the battery state.
  • it cannot respond to the charging control in time.
  • the present disclosure provides a charging method, which can improve the charging efficiency and at the same time ensure the safety of the charging process.
  • the charging current value By allowing the charging current value to calculate the difference between the bus voltage and the battery voltage, the current control is realized by raising the battery voltage.
  • the method of controlling the current by controlling the voltage will be more flexible than the traditional charging method, the response speed will be faster, and the charging current can be kept below the charging current limit, but at the same time it will not pull The whole process of long charging improves the charging efficiency.
  • the control principle is shown in Figure 1.
  • the pi loop control method is used to control the voltage and current limit.
  • the allowable charging current value of the battery system in the current state is calculated.
  • other state parameters such as humidity, used time, etc., may also be included or referenced.
  • control logic of charging can be set as follows: constant current 3C to charge to the highest cell voltage to 2.55V; 2C to reduce the current to charge to the highest cell voltage to 2.6V, and 1C to reduce the current to charge to the highest cell voltage to 2.7V etc., as shown in Figure 2.
  • the difference between the current value and the current value obtained by real-time sampling is allowed, and the difference value is used as the input of the PI link and input into the calculation model;
  • the actual principle is the relationship between voltage and current, and a ⁇ U value is obtained.
  • This value is the allowable charging current value obtained in the first step to control the charging current, which requires the bus voltage and the battery voltage. The difference, that is, the ⁇ U value;
  • the voltage value at the start of battery charging is summed with the ⁇ U value obtained in the previous step as the final requested charging voltage value.
  • the above scheme adjusts the value of ⁇ U in real time by monitoring the current state of the battery.
  • the value of ⁇ U will become a negative value for a short time, thereby pulling down the bus voltage and realizing the current drop. control.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the calculation of the charging voltage needs to integrate the battery information of the multi-cluster. This does not mean that the technical solution can only be applied to a parallel system of two clusters of batteries, and the technical solution is used in the parallel battery system of more than two clusters.
  • Multi-cluster battery parallel system control needs to integrate the information of all batteries, calculate the minimum charging current limit of multi-cluster batteries, calculate the charging voltage with the minimum charging current limit, and then adjust and control the bus voltage in real time.
  • the specific description includes: calculating the allowable charging current value of the battery system in the current state according to the current state of the battery, including but not limited to SOC, temperature, voltage, internal resistance, etc., and determining the minimum value, which is the minimum charging current limit value;
  • the actual principle is the relationship between voltage and current, and a ⁇ U value is obtained, which is the minimum charging current limit obtained by controlling the charging current, and the difference between the bus voltage and the battery voltage is required. value, namely ⁇ U value;
  • the voltage value at the start of battery charging is summed with the ⁇ U value obtained in the previous step as the final requested charging voltage value, and the charging current is controlled by controlling the bus voltage to reach this voltage value.
  • each charging current limit value can also be sent to the PI loop for calculation to obtain different ⁇ U values, and then through the calculation module, the ⁇ U value corresponding to the minimum charging current limit value can be determined and calculated.
  • the charging voltage value is the final charging voltage value.
  • This charging method achieves the purpose of controlling the charging current by continuously adjusting the charging voltage, and responds quickly to changes in the battery state.
  • PI adjustment can also be used to eliminate the detection error. Influence, the control accuracy of the charging process is further improved, and the improvement of the control accuracy also means the improvement of the charging safety. Due to the accurate control of the charging current during the charging process, the actual charging capacity of the entire battery system at the end of charging will be more than the traditional method, but the charging time will not increase, so the charging efficiency is improved.
  • a charging control system of a single-cluster battery parallel system is used to implement the control method provided in the first embodiment.
  • the parameter configuration module is configured to determine the suitable allowable charging current value according to the obtained current state of the battery
  • the calculation module is configured to calculate the difference between the bus voltage and the battery voltage according to the difference between the allowable charging current value and the current value obtained by real-time sampling;
  • the charging control module is configured to control the bus voltage according to the difference between the bus voltage and the battery voltage to realize charging control.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a charging control system of a multi-cluster battery parallel system is used to implement the control method provided in the second embodiment.
  • the parameter configuration module is configured to calculate the allowable charging current value adapted to each cluster of batteries according to the obtained current state of each cluster of batteries, and determine the minimum value among them;
  • a calculation module configured to calculate the difference between the bus voltage and the battery voltage according to the difference between the minimum value of the allowable charging current value and the current value obtained by real-time sampling;
  • the charging control module is configured to control the bus voltage according to the difference between the bus voltage and the battery voltage to realize charging control.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the control method provided in the first embodiment is implemented by using the cooperation of the battery management system and the vehicle controller.
  • a control system includes:
  • the battery management system is configured to determine the appropriate allowable charging current value according to the obtained current state of the battery; calculate the difference between the bus voltage and the battery voltage according to the difference between the allowable charging current value and the current value obtained by real-time sampling value, and determine the final requested charging voltage value according to the difference;
  • the vehicle controller receives the charging voltage value finally requested by the battery management system, and controls the bus voltage with this value.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the control method provided in the second embodiment is implemented by using the cooperation of the battery management system and the vehicle controller.
  • a control system includes:
  • the battery management system is configured to be configured to calculate the allowable charging current value adapted to each cluster of batteries according to the obtained current state of each cluster of batteries, and determine the minimum value among them; according to the minimum value of the allowable charging current value and real-time The difference between the sampled current values is calculated, the difference between the bus voltage and the battery voltage is calculated, and the final requested charging voltage value is determined according to the difference;
  • the vehicle controller receives the charging voltage value finally requested by the battery management system, and controls the bus voltage with this value.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • a computer-readable storage medium stores a plurality of instructions, and the instructions are adapted to be loaded by a processor of a terminal device and execute the steps in the battery charging control method provided in Embodiment 1 or Embodiment 2.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a terminal device includes a processor and a computer-readable storage medium, where the processor is used to implement various instructions; the computer-readable storage medium is used to store a plurality of instructions, the instructions are suitable for being loaded by the processor and executing the first embodiment or implementing Example 2 provides steps in a battery charging control method.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • a vehicle includes the control system of any one of Embodiments 3 to 6, or the readable storage medium of Embodiment 7 or the terminal device of Embodiment 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提供了一种电池充电控制方法、系统、车辆、可读存储介质及设备,本公开在充电过程中,根据获取的电池当前状态,确定相适配的允许充电电流值;根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;根据所述母线电压与电池电压之间的差值,控制母线电压,实现适时调整的充电控制;通过对充电电压的进行不断的调节来达到控制充电电流的目的,保证各簇电池的充电电流不会超过充电电流限值,一方面提高了充电过程的控制精度,另一方面也提高了充电安全性。

Description

电池充电控制方法、系统、车辆、可读存储介质及设备 技术领域
本公开属于电池充电技术领域,具体涉及一种电池充电控制方法、系统、车辆、可读存储介质及设备。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
目前,电池并联充电系统在进行电流控制时,一般是进行母线总电流的控制,按照并联规则,分到各电池的电流是未知的,因此,存在一定的问题,尤其是对于多簇电池并联充电系统来说,问题更为突出。
一方面,可能存在某些簇电池先行充满,由于多簇并联的关系,当一簇电池充满之后,不再继续给电池充电,以防止出现过充,这样会导致其他电池长期处于严重未充满状态,导致充电效率过低,而且电池内阻会随着寿命的衰减而增大,长期出现这种情况,就会导致电池实际充入的电量越来越小,电池可用的电量越来越小,影响电池性能。
另一方面,有可能存在某些簇电池分配的充电电流,超出该簇电池当前的充电电流限制的情况,如果电池长期处于超限电流进行充电的状态,会对电池造成损坏,严重影响电池寿命和安全性能,进而会影响被充电对象的工作状态;如果对每簇电池都采用较小值来进行控制,能够保证在充电过程中不会有电池出现过充,避免引起安全事故但同样会引起部分簇电池依旧处于不满电的问题。
发明内容
本公开为了解决上述问题,提出了一种电池充电控制方法、系统、车辆、可读存储介质及设备,本公开在充电过程中,通过对充电电压的进行不断的调节来达到控制充电电流的目的,保证各簇电池的充电电流不会超过充电电流限值,一方面提高了充电过程的控制精度,另一方面也提高了充电安全性。
根据一些实施例,本公开采用如下技术方案:
本公开的第一方面提供一种电池充电控制方法,面向单簇并联电池系统,包括以下步骤:
根据获取的电池当前状态,确定相适配的允许充电电流值;
根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
上述技术方案中,对于单簇电池,可以根据电池当前状态,对母线电压与电池电压之间的差值ΔU进行实时更新与调整,当单体电池电压达到降流阈值时,ΔU的值会短时的变为负值,从而拉低母线电压,实现降流的控制,电流不会出现明显的波动,电压与电流的跟随性较好。通过实时调整,也能够较大程度的保证电池之间充电一致性。减少电池充电量差异。
作为可选择的实施方式,所述电池当前状态,包括电池荷电状态、温度、电压以及内阻值。
作为可选择的实施方式,根据允许充电电流值和实时采样得到的电流值的差值,利用PI环计算母线电压与电池电压之间的差值。
作为可选择的实施方式,根据所述母线电压与电池电压之间的差值,控制 母线电压的具体过程包括:将当前母线电压与电池电压之间的差值,以及电池充电起始时刻的电压值之和,作为最终的当前充电电压值,控制母线电压达到该电压值,实现对充电电流的控制。
本公开的第二方面提供一种电池充电控制方法,面向多簇并联电池系统,包括以下步骤:
根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;
根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
上述技术方案,在多簇电池系统中,控制综合所有电池的信息,计算出多簇电池中最小的充电电流限值,以最小的充电电流限值进行充电电压的计算,然后对母线电压进行控制,能够保证所有簇电池的安全性,同时,根据实际状态不断调整控制,以控制母线电压,对电池状态的变化响应很快,提高了充电过程的控制精度。
作为可选择的实施方式,各簇电池之间并联。
作为可选择的实施方式,所述电池当前状态,包括所有电池的荷电状态、温度、电压以及内阻值。
作为可选择的实施方式,根据允许充电电流值和实时采样得到的电流值的差值,利用PI环计算母线电压与电池电压之间的差值。
作为可选择的实施方式,将当前母线电压与电池电压之间的差值,以及电池充电起始时刻的电压值之和,作为最终的当前充电电压值,控制母线电压达 到该电压值,实现对充电电流的控制。
本公开的第三方面提供一种电池充电控制系统,包括:
参数配置模块,被配置为根据获取的电池当前状态,确定相适配的允许充电电流值;
计算模块,被配置为根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
充电控制模块,被配置为根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
本公开的第四方面提供一种电池充电控制系统,包括:
参数配置模块,被配置为根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;
计算模块,被配置为根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
充电控制模块,被配置为根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
本公开的第五方面提供一种控制系统,包括:
电池管理系统,被配置为根据获取的电池当前状态,确定相适配的允许充电电流值;根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值,并根据该差值确定最终请求的充电电压值;
整车控制器,接收电池管理系统的最终请求的充电电压值,并以此值控制母线电压。
本公开的第六方面提供一种控制系统,包括:
电池管理系统,被配置为被配置为根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值,并根据该差值确定最终请求的充电电压值;
整车控制器,接收电池管理系统的最终请求的充电电压值,并以此值控制母线电压。
本公开的第七方面提供一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行所述的一种电池充电控制方法中的步骤。
本公开的第八方面提供一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行所述的一种电池充电控制方法中的步骤。
本公开的第九方面提供一种车辆,包括上述控制系统、可读存储介质或终端设备。
与现有技术相比,本公开的有益效果为:
本公开通过监控电池当前的状态对母线电压与电池电压之间的差值ΔU的值进行实时调整,当电池系统的单体电压达到降流阈值时,ΔU的值会短时的变为负值,从而拉低母线电压,实现降流的控制。通过仿真结果可以看出,本公开的控制方法能够保证电池SOC一直平稳增长,电流不会出现明显的波动,电压与电流的跟随性较好。
本公开应用于多簇并联电池系统时,综合所有电池的信息,计算出多簇电池中最小的充电电流限值,以最小的充电电流限值进行充电电压的计算,然后 对母线电压进行控制,最大程度上保证了各个电池的安全性能。
本公开通过对充电电压的进行不断的调节来达到控制充电电流的目的,对电池状态的变化响应很快,在电池管理系统存在检测误差时,也能通过PI环调节来消除检测误差的影响,进一步提高了充电过程的控制精度,而控制精度的提高也就意味着充电安全性的提高。
本公开由于充电过程中对充电电流的控制比较准确,所以充电结束时,整个电池系统实际充入的容量近似于满电状态,保证了各个电池状态近似于一致,进一步有助于保护电池,且充电时间不会增长,有效的提升了充电效率。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是本公开的实施例一的控制原理示意图;
图2是本公开的实施例一的充电过程示意图;
图3是本公开的实施例一的充电效果示意图;
图4是本公开的施例二的控制原理示意图。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
为使本领域技术人员能够更加清楚本发明提供的技术方案的改进之处,以多簇电池并联充电策略为例进行详细介绍。
目前的多簇电池并联充电策略第一种为恒压充电方式,实现方法是通过控制母线电压处于一个固定值,来给电池进行充电。在恒压充电过程中,充电电流会随着电池电压接近母线电压而电流随之减小,直至电池电压等于母线电压。这种方法在实际的项目是比较难以达到理想效果的,由于两簇电池的内阻差异,以及线路阻抗的差异等先天因素,会导致多簇电流之间出现电流不均的现象,这就意味着会有电池先行充满,由于多簇并联的关系,当一簇电池充满之后,就不能再继续给电池充电,防止出现过充,这样会导致其他电池长期处于未充 满状态,导致充电效率过低,而且电池内阻会随着寿命的衰减而增大,使用恒压充电策略的话,常年累月的累积就会导致实际充入的电量越来越小,电池可用的电量越来越小。
除了充电容量少之外,恒压充电还比较容易引发过充、过流问题,由于电池内阻较小,当电池电压较低时,如果母线电压设定过高,会造成充电瞬间有特别大的电流冲击,可能高达几百甚至上千A,大电流冲击对于电器件以及电池寿命是有损伤的,最主要的是会引起电池的过度极化,导致电池电压增加速率加快,电池为了安全使用将提前进行保护,长期使用可能会引发安全事故。
所以,目前应用较多的是第二种阶梯降流充电的控制策略。
阶梯降流充电,指的是通过控制母线电流阶梯下降来对电池进行充电。在对锂电池进行充电时,是通过电池的电压来判断电池是否充满电,而锂电池在电流大小不同时会表现出不同的极化特性,总体来说,电流越大,极化越大,即达到充电电压上限的时间就越短,总的来说就是可充入的电量越少。所以,利用电池极化随电流大小变化的特点,可以使用阶梯降流充电策略,即充电开始时以较大的电流值进行恒流充电,当电池电压达到接近满电时,将电流降低一半进行充电,此时由于电流降低,电池的极化消褪,电压会出现一定程度的下降,电池可以继续进行充电,如此往复,直至电流下降到设定值以下,充电至电压上限,即认为充电结束。这种充电方法优点是充电效率高,在充电时间不会增加的情况下能充入的电量更多,而且由于是根据充电电压来进行充电控制,所以会比上述的恒压充电策略更加的安全。
目前,多簇工作的电池系统中使用的都是恒流充电的策略,恒流充电策略在单簇电池系统进行应用时优点很多,但是在多簇电池系统中进行运用时,就 会遇到和恒压充电一样的问题。
在多簇电池系统中进行恒流充电时,电池管理系统会根据电池实时的电压以及温度等参数向整车控制器申请电池的充电电流值,整车控制器会根据电池管理系统的请求值来调整母线电流值,进而达到控制充电的目的。然而在多簇并联的系统中,所有电池的状态不可能是完全一致的,除了上文中提到的不同电池充电速度的不一致、内阻的不一致、寿命衰减速度的不一致之外,还有结构设计等因素导致的散热问题而引起的电池温度不一致等问题,都会导致不同的电池管理系统请求的充电电流值出现不一致,而整车控制器只能控制母线电流,所以只能在多个请求的充电电流值中选取最小值来对母线电流进行控制,这样才能保证在充电过程中不会有电池出现过充,从而引起安全事故。而这样的控制方法也会出现恒压充电一样的问题,只有一簇电池能充满,而其他的还会处于不满电的状态。
除此之外,由于电池管理系统的检测精度影响,实际的控制效果会更差一点,还是会存在过充的风险,同时电量很难保证都充到很满的状态,为了满足使用的要求,通常就需要多配电量,这就增加了很多的成本。
综上,对于多簇并联的电池来说,其总电压是相同的,所以可以用来控制充电电流的比较好的方式是通过控制母线电压,通过母线电压的升高与降低来达到控制充电电流的目的。
对于每簇电池来说,允许的充电电流值依据当前电池的状态会有不同,依据此允许电流值计算得到的电压也会不同,采用几簇计算后的电压值中的最低电压作为充电电压可以满足每簇电池充电电流均不超出限制电流值的要求。
传统的充电策略中,恒压充电值或者恒流充电值在给定之后是不变的,在 不满足下一阶段的控制条件之前,充电控制值是不会改变的,这样的话就会使充电控制变得不灵活,很难对电池状态做出及时的响应,在遇到电池出现问题或者一些突发的器件损坏时,不能及时对充电的控制做出响应。
本公开为了解决现有的充电策略的缺点,提供了一种充电方法,能够提升充电效率,同时保证充电过程的安全。通过允许充电电流值计算出母线电压需要与电池电压保持的差值,通过抬高电池电压的方式来实现电流控制。通过控制电压的方法来实现控制电流的方式,会比传统的充电方法更加的灵活,响应的速度会更加的迅速,能够将充电电流一直保持在充电电流限值之下,但同时又不会拉长充电的整个过程,提升了充电效率。
下面以不同实施例进行详细介绍:
实施例一:
对于单簇并联电池系统来说,控制原理如图1所示,在本实施例中,采用pi环控制的方式进行控压限流控制。
首先,根据电池当前的状态,如SOC、温度、电压、内阻等,计算出当前状态下电池系统的允许充电电流值。当然,其他实施例中,可以还包含或参考其他状态参数,例如湿度、已使用时长等。
作为示例,充电的控制逻辑可以设定如下:恒流3C充电至最高单体电压到2.55V;降流2C充电至最高单体电压到2.6V,降流1C充电至最高单体电压到2.7V等,如图2所示。
允许电流值和实时采样得到的电流值作差,将差值作为PI环节的输入,输入到计算模型中;
然后,经过PI环计算,实际的原理是电压电流关系,得到一个ΔU值,这 个值即为想要充电电流控制在第一步得出的允许充电电流值,需要母线电压与电池电压之间的差值,即ΔU值;
最后,电池充电起始时刻的电压值与上一步得到的ΔU值作和,作为最终请求的充电电压值,通过控制母线电压达到该电压值,从而实现对充电电流的实时调整控制。
上述方案通过监控电池当前的状态对ΔU的值进行实时调整,当系统的单体电压达到降流阈值时,ΔU的值会短时的变为负值,从而拉低母线电压,实现降流的控制。
使用上述的充电方法进行充电测试,充电过程的曲线如图3所示,充电曲线可以看出,电池SOC一直在平稳的增长,电流不会出现明显的波动,电压与电流的跟随性较好。
实施例二:
对于多簇并联电池系统来说,充电电压的计算需要综合多簇的电池信息,为了使本领域技术人员容易理解技术方案,在本实施例中,以两簇电池并联系统为例进行说明,但这并不代表本技术方案仅能够适用于两簇电池并联系统,两簇以上并联电池系统均使用本技术方案。
多簇电池并联系统控制需要综合所有电池的信息,计算出多簇电池中最小的充电电流限值,以最小的充电电流限值进行充电电压的计算,然后对母线电压进行实时调整、控制。
具体进行描述,即包括:根据电池当前的状态,包括但不限于SOC、温度、电压、内阻等,计算出当前状态下电池系统的允许充电电流值,确定其中最小值,为最小的充电电流限值;
将最小的充电电流限值和实时采样得到的电流值作差,将差值作为PI环节的输入,输入到计算模型中;
然后,经过PI环计算,实际的原理是电压电流关系,得到一个ΔU值,这个值即为想要充电电流控制在得出的最小的充电电流限值,需要母线电压与电池电压之间的差值,即ΔU值;
最后,电池充电起始时刻的电压值与上一步得到的ΔU值作和,作为最终请求的充电电压值,通过控制母线电压达到该电压值,从而实现对充电电流的控制。
当然,如图4所示,也可以分别以各个充电电流限值送入PI环,进行计算,得到不同的ΔU值,然后经过计算模块,确定最小的充电电流限值对应的ΔU值,计算出来的充电电压值为最终充电电压值。
这种充电方法是通过对充电电压的进行不断的调节来达到控制充电电流的目的,对电池状态的变化响应很快,在电池管理系统存在检测误差时,也能通过PI调节来消除检测误差的影响,进一步提高了充电过程的控制精度,而控制精度的提高也就意味着充电安全性的提高。由于充电过程中对充电电流的控制比较准确,所以充电结束时,整个电池系统实际充入的容量会比传统方法要多,但充电时间不会增长,所以充电效率是有提升。
实施例三:
单簇电池并联系统的充电控制系统,用于实现实施例一提供的控制方法。
在本实施例中,包括:
参数配置模块,被配置为根据获取的电池当前状态,确定相适配的允许充电电流值;
计算模块,被配置为根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
充电控制模块,被配置为根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
实施例四:
多簇电池并联系统的充电控制系统,用于实现实施例二提供的控制方法。
在本实施例中,包括:
参数配置模块,被配置为根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;
计算模块,被配置为根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
充电控制模块,被配置为根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
实施例五:
当单簇电池并联系统应用于车辆时,利用电池管理系统和整车控制器配合,实现如实施例一提供的控制方法。
在本实施例中,一种控制系统,包括:
电池管理系统,被配置为根据获取的电池当前状态,确定相适配的允许充电电流值;根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值,并根据该差值确定最终请求的充电电压值;
整车控制器,接收电池管理系统的最终请求的充电电压值,并以此值控制母线电压。
实施例六:
当多簇电池并联系统应用于车辆时,利用电池管理系统和整车控制器配合,实现如实施例二提供的控制方法。
在本实施例中,一种控制系统,包括:
电池管理系统,被配置为被配置为根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值,并根据该差值确定最终请求的充电电压值;
整车控制器,接收电池管理系统的最终请求的充电电压值,并以此值控制母线电压。
实施例七:
一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行实施例一或实施例二提供的一种电池充电控制方法中的步骤。
实施例八:
一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行实施例一或实施例二提供的一种电池充电控制方法中的步骤。
实施例九:
一种车辆,包括实施例三-实施例六中任一项控制系统,或实施例七的可读存储介质或实施例八的终端设备。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (16)

  1. 一种电池充电控制方法,其特征是:包括以下步骤:
    根据获取的电池当前状态,确定相适配的允许充电电流值;
    根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
    根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
  2. 如权利要求1所述的一种电池充电控制方法,其特征是:所述电池当前状态,包括电池荷电状态、温度、电压以及内阻值。
  3. 如权利要求1所述的一种电池充电控制方法,其特征是:根据允许充电电流值和实时采样得到的电流值的差值,利用PI环计算母线电压与电池电压之间的差值。
  4. 如权利要求1所述的一种电池充电控制方法,其特征是:根据所述母线电压与电池电压之间的差值,控制母线电压的具体过程包括:将当前母线电压与电池电压之间的差值,以及电池充电起始时刻的电压值之和,作为最终的当前充电电压值,控制母线电压达到该电压值,实现对充电电流的控制。
  5. 一种电池充电控制方法,其特征是:包括以下步骤:
    根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;
    根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
    根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
  6. 如权利要求5所述的一种电池充电控制方法,其特征是:各簇电池之间并联。
  7. 如权利要求5所述的一种电池充电控制方法,其特征是:所述电池当前状态,包括所有电池的荷电状态、温度、电压以及内阻值。
  8. 如权利要求5所述的一种电池充电控制方法,其特征是:根据允许充电电流值和实时采样得到的电流值的差值,利用PI环计算母线电压与电池电压之间的差值。
  9. 如权利要求5所述的一种电池充电控制方法,其特征是:将当前母线电压与电池电压之间的差值,以及电池充电起始时刻的电压值之和,作为最终的当前充电电压值,控制母线电压达到该电压值,实现对充电电流的控制。
  10. 一种电池充电控制系统,其特征是:包括:
    参数配置模块,被配置为根据获取的电池当前状态,确定相适配的允许充电电流值;
    计算模块,被配置为根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
    充电控制模块,被配置为根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
  11. 一种电池充电控制系统,其特征是:包括:
    参数配置模块,被配置为根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;
    计算模块,被配置为根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值;
    充电控制模块,被配置为根据所述母线电压与电池电压之间的差值,控制母线电压,实现充电控制。
  12. 一种控制系统,其特征是:包括:
    电池管理系统,被配置为根据获取的电池当前状态,确定相适配的允许充电电流值;根据允许充电电流值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值,并根据该差值确定最终请求的充电电压值;
    整车控制器,接收电池管理系统的最终请求的充电电压值,并以此值控制母线电压。
  13. 一种控制系统,其特征是:包括:
    电池管理系统,被配置为被配置为根据获取的各簇电池当前状态,计算每簇电池相适配的允许充电电流值,确定其中的最小值;根据所述允许充电电流值的最小值和实时采样得到的电流值的差值,计算母线电压与电池电压之间的差值,并根据该差值确定最终请求的充电电压值;
    整车控制器,接收电池管理系统的最终请求的充电电压值,并以此值控制母线电压。
  14. 一种计算机可读存储介质,其特征是:其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行权利要求1-9中任一项所述的一种电池充电控制方法中的步骤。
  15. 一种终端设备,其特征是:包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行权利要求1-9中任一项所述的一种电池充电控制方法中的步骤。
  16. 一种车辆,其特征是:包括权利要求10-13中任一项所述的控制系统、权利要求14所述的可读存储介质或权利要求15所述的终端设备。
PCT/CN2022/070778 2021-02-07 2022-01-07 电池充电控制方法、系统、车辆、可读存储介质及设备 WO2022166524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22748803.8A EP4290729A1 (en) 2021-02-07 2022-01-07 Battery charging control method and system, vehicle, readable storage medium, and device
JP2023547093A JP2024505288A (ja) 2021-02-07 2022-01-07 電池充電制御方法、システム、車両、可読記憶媒体及び機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169031.X 2021-02-07
CN202110169031.XA CN112886665B (zh) 2021-02-07 2021-02-07 电池充电控制方法、系统、车辆、可读存储介质及设备

Publications (1)

Publication Number Publication Date
WO2022166524A1 true WO2022166524A1 (zh) 2022-08-11

Family

ID=76056035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070778 WO2022166524A1 (zh) 2021-02-07 2022-01-07 电池充电控制方法、系统、车辆、可读存储介质及设备

Country Status (5)

Country Link
EP (1) EP4290729A1 (zh)
JP (1) JP2024505288A (zh)
CN (1) CN112886665B (zh)
CL (1) CL2023002303A1 (zh)
WO (1) WO2022166524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080460A (zh) * 2023-04-10 2023-05-09 武汉爽润科技有限公司 一种基于充电桩的动力电池快速充电方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498446B2 (en) * 2020-01-06 2022-11-15 Ford Global Technologies, Llc Plug-in charge current management for battery model-based online learning
CN112886665B (zh) * 2021-02-07 2022-10-28 中车青岛四方机车车辆股份有限公司 电池充电控制方法、系统、车辆、可读存储介质及设备
CN114361626A (zh) * 2022-01-04 2022-04-15 深圳天邦达科技有限公司 基于bms bus端口特性的电池主动充放电的管理方法
CN115333210B (zh) * 2022-10-17 2023-04-07 国网浙江慈溪市供电有限公司 直流充电桩控制方法及装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110316488A1 (en) * 2005-12-21 2011-12-29 Austriamicrosystems Ag Circuit Arrangement for the Energy Supply of a Battery and Associated Method
CN102633170A (zh) * 2011-02-15 2012-08-15 上海三菱电梯有限公司 电梯节能装置及其控制方法
CN105391079A (zh) * 2015-10-20 2016-03-09 株洲变流技术国家工程研究中心有限公司 一种基于新能源互连的功率融通型平衡供电系统及方法
CN112886665A (zh) * 2021-02-07 2021-06-01 中车青岛四方机车车辆股份有限公司 电池充电控制方法、系统、车辆、可读存储介质及设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042691A1 (de) * 1999-01-11 2000-07-20 Siemens Aktiengesellschaft Verfahren und vorrichtung zum laden von akkumulatoren
CN100384052C (zh) * 2004-01-08 2008-04-23 力博特公司 电池充电器的充电控制方法及其电路
JP5618986B2 (ja) * 2009-03-31 2014-11-05 岩崎電気株式会社 充電装置
CN102009650B (zh) * 2010-11-25 2013-01-02 奇瑞汽车股份有限公司 一种电动车里程增加器发电电压控制方法
KR101838507B1 (ko) * 2015-12-15 2018-03-14 현대자동차주식회사 차량의 보조 배터리 충전 시스템 및 그 제어방법
CN106451592B (zh) * 2016-07-29 2019-04-05 北京车和家信息技术有限公司 电池充放电的控制方法、电池充放电的控制设备和电动车
CN109066881B (zh) * 2018-09-03 2021-10-29 杭州中恒电气股份有限公司 一种快速调节电池电流方法
CN109991547B (zh) * 2019-03-29 2021-06-18 深圳猛犸电动科技有限公司 锂离子电池包最大允许充放电电流估计方法及装置
CN111162583B (zh) * 2020-01-13 2024-05-14 深圳市凌康技术有限公司 一种闭环控制方法及系统
CN112072737A (zh) * 2020-08-31 2020-12-11 广东小天才科技有限公司 充电方法及装置、电子设备、计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110316488A1 (en) * 2005-12-21 2011-12-29 Austriamicrosystems Ag Circuit Arrangement for the Energy Supply of a Battery and Associated Method
CN102633170A (zh) * 2011-02-15 2012-08-15 上海三菱电梯有限公司 电梯节能装置及其控制方法
CN105391079A (zh) * 2015-10-20 2016-03-09 株洲变流技术国家工程研究中心有限公司 一种基于新能源互连的功率融通型平衡供电系统及方法
CN112886665A (zh) * 2021-02-07 2021-06-01 中车青岛四方机车车辆股份有限公司 电池充电控制方法、系统、车辆、可读存储介质及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080460A (zh) * 2023-04-10 2023-05-09 武汉爽润科技有限公司 一种基于充电桩的动力电池快速充电方法

Also Published As

Publication number Publication date
CN112886665B (zh) 2022-10-28
CN112886665A (zh) 2021-06-01
CL2023002303A1 (es) 2024-03-01
EP4290729A1 (en) 2023-12-13
JP2024505288A (ja) 2024-02-05

Similar Documents

Publication Publication Date Title
WO2022166524A1 (zh) 电池充电控制方法、系统、车辆、可读存储介质及设备
US10230248B2 (en) Maintenance method of power battery pack
CN111942228A (zh) 一种电动汽车低温充电控制系统及其控制方法
US8638063B2 (en) AC current control of mobile battery chargers
WO2021056904A1 (zh) 电动汽车安全充电方法、电子设备及存储介质
CN108417917B (zh) 一种锂离子电池快速充电方法
CN113370840B (zh) 一种自适应不同低速电动车电压等级的充电控制算法
US20220255327A1 (en) Decentralized active equalization method for cascaded lithium-ion battery pack
CN112440807B (zh) 电动车充电的充电请求目标电流控制方法
CN114172221B (zh) 一种多支路电池系统的防过充控制系统
CN109866655A (zh) 一种分布式电池组均衡控制系统及其控制方法
CN113013938A (zh) 一种多支路并联的并网型电池储能系统荷电状态均衡方法
CN110970670B (zh) 动力电池管理方法、装置及计算机可读存储介质
CN102931706B (zh) 一种蓄电池两阶段电流充电的星载软件限流控制方法
CN109866654B (zh) 一种动力电池单体电量均衡方法
CN112768793A (zh) 一种电池组主动均衡补偿方法、装置、系统及电子设备
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
WO2023245574A1 (zh) 充电控制方法、充电控制装置、电子设备及存储介质
CN115800423B (zh) 储能系统和储能系统的调节方法
WO2023092416A1 (zh) 动力电池充电的方法和电池管理系统
CN115800420B (zh) 储能系统和储能系统的调节方法
CN108494027B (zh) 一种锂离子电池组主动均衡控制方法
CN107947207A (zh) 一种ev电池储能系统状态评估管理系统
WO2023035161A1 (zh) 动力电池充电的方法和电池管理系统
WO2023092414A1 (zh) 动力电池充电的方法和电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547093

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022748803

Country of ref document: EP

Effective date: 20230907