WO2022127911A1 - 一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用 - Google Patents

一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用 Download PDF

Info

Publication number
WO2022127911A1
WO2022127911A1 PCT/CN2021/139203 CN2021139203W WO2022127911A1 WO 2022127911 A1 WO2022127911 A1 WO 2022127911A1 CN 2021139203 W CN2021139203 W CN 2021139203W WO 2022127911 A1 WO2022127911 A1 WO 2022127911A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
spherical porous
preparation
suspension
calcination
Prior art date
Application number
PCT/CN2021/139203
Other languages
English (en)
French (fr)
Inventor
李俊华
杨雯皓
彭悦
王雅
熊尚超
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2022127911A1 publication Critical patent/WO2022127911A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/60
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention relates to a catalyst for catalytic oxidation of volatile organic compounds, a preparation method and application thereof, and belongs to the field of catalysts.
  • VOCs Volatile organic compounds
  • VOCs have atmospheric photochemical reactivity, and can photochemically react with conventional air components or pollutants such as NO x under solar radiation to generate various secondary pollutants, such as O 3 , carbonyl compounds, peroxyacetyl nitrate, etc. .
  • VOCs are also an important source of various free radicals in the atmosphere, participating in the generation of photochemical smog and secondary organic aerosols, and thus making an important contribution to the generation of haze.
  • VOCs emission control technologies are mainly divided into two categories: recycling method and destruction method.
  • the recycling method is mainly aimed at the recycling of high-concentration VOCs with recycling value.
  • the destruction method mainly converts VOCs into carbon dioxide and water through chemical and biochemical methods to achieve harmless treatment.
  • the catalytic oxidation method can significantly reduce the reaction temperature and reduce by-products, and has a wide range of application prospects.
  • commercial precious metal catalysts have a low activity temperature range, but their cost is high, and the catalysts are prone to precious metal sintering at high temperatures. In the face of flue gas with complex composition and various VOCs, precious metal catalysts are often easily poisoned and deactivated.
  • manganese-based catalysts are promising to replace precious metals for commercial application.
  • manganese-based catalysts generally have disadvantages such as low VOCs catalytic activity (high activity temperature range) and poor structural stability. Therefore, improving the activity of manganese-based catalysts and ensuring their structural stability are technical problems that need to be solved urgently in the prior art.
  • the purpose of the present invention is to provide a catalyst for catalytic oxidation of volatile organic compounds, a preparation method and an application thereof.
  • the catalyst of the present invention has higher catalyst activity and better structural stability.
  • the invention provides a catalyst for catalytic oxidation of volatile organic compounds, the catalyst has a core-shell structure;
  • the core is spherical porous Mn 2 O 3 ;
  • the shells are undoped or Cu-doped platelets of MnO 2 .
  • the diameter of the spherical porous Mn 2 O 3 is 400-1500 nm.
  • the pore diameter of the spherical porous Mn 2 O 3 is 5-20 nm.
  • the thickness of the shell is 50-200 nm.
  • the molar percentage of Cu in the treatment liquid during the synthesis of the shell is 0-40% based on the total moles of Mn.
  • the present invention also provides a method for preparing the catalyst of the present invention, comprising the following steps:
  • the water-soluble carbonate or bicarbonate is one or more mixtures of ammonium carbonate, sodium carbonate, potassium carbonate, ammonium bicarbonate, sodium bicarbonate, and potassium bicarbonate;
  • the manganese precursor is one or more mixtures of manganese sulfate, manganese chloride, manganese nitrate, and manganese acetate;
  • the copper precursor is one or more mixtures of copper sulfate, copper nitrate, and copper chloride ;
  • Described inorganic acid is one or more mixtures in sulfuric acid, hydrochloric acid and nitric acid.
  • the volume concentration of absolute ethanol after mixing in the step A) is 7% to 20%, and the molar ratio of Mn 2+ : (HCO 3- +CO 3 2- ) is 1:7 ⁇ 1:15;
  • the mass concentration of Mn 2 O 3 in the spherical porous Mn 2 O 3 suspension is 1-10 mg/mL;
  • the Mn 3+ : MnO 4 -molar ratio in the acidic KMnO 4 treatment solution containing Cu 2+ and the spherical porous Mn 2 O 3 suspension is 1: 0.8-1 :2;
  • the H + molar concentration in the acidic KMnO 4 treatment solution is 0.01-0.1 mol/L; the acidic KMnO 4 treatment solution using Cu 2+ is added dropwise to the spherical porous Mn 2 O 3 suspension.
  • the stirring and aging time in the step A) is 1-10h;
  • the drying time is 4-24 h, and the drying temperature is 80-120 °C;
  • the calcination is calcination under air, the calcining time is 1-6 h, and the calcining temperature is 550-700 °C;
  • the temperature of the water bath is 70 ⁇ 95°C, and the stirring time is 0.15 ⁇ 3h;
  • the drying time is 4-24h
  • the drying temperature is 80-120°C
  • the calcination is calcination in air
  • the calcination time is 0.5-4h
  • the calcination temperature is 300-400°C.
  • the present invention also provides a use of the catalyst of the present invention for removing VOCs from stationary source flue gas.
  • the catalyst of the present invention has excellent catalytic activity and structural stability, has catalytic oxidation activity similar to that of commercial noble metal catalysts, and has low cost.
  • the preparation method of the present invention is easy to realize and has commercialization prospects.
  • the catalyst of the invention can be widely used in the control of organized and unorganized VOCs emission in VOCs emission industries such as petrochemical industry, packaging and printing, pharmaceutical chemical industry, textile printing and dyeing and leather manufacturing.
  • Fig. 1 is a graph of the relationship between the conversion rate of propylene oxide and toluene and the temperature of the catalyst of the embodiment of the present invention and the comparative example.
  • Example 2 is a scanning electron microscope image of MnCO 3 , Mn 2 O 3 and catalysts Cu0, Cu2, Cu5, Cu10, Cu25, and Cu40 in Example 1 of the present invention.
  • the invention provides a catalyst for catalytic oxidation of volatile organic compounds, the catalyst has a core-shell structure;
  • the core is spherical porous Mn 2 O 3 ;
  • the shell is undoped or Cu-doped flaky MnO 2 .
  • spherical porous Mn2O3 has high thermal stability and is not easy to undergo phase transition at high temperature, and sheet - like MnO2 has higher catalytic oxidation activity of VOCs. Effectively enhance catalyst activity and ensure structural stability.
  • the diameter of the spherical porous Mn 2 O 3 is 400-1500 nm.
  • the diameter of spherical porous Mn 2 O 3 is 400-1500 nm. If the diameter of spherical porous Mn 2 O 3 is less than 400 nm, it is difficult to synthesize ; The number of exposed active sites is reduced, which is not conducive to the reaction. Preferably, the diameter of the spherical porous Mn 2 O 3 is 600-1300 nm.
  • the pore diameter of the spherical porous Mn 2 O 3 is 5-20 nm.
  • the pore size of spherical porous Mn 2 O 3 is 5-20 nm, and the pore size is less than 5 nm, which is not conducive to the diffusion of reactants.
  • the thickness of the shell is 50-200 nm.
  • the catalyst activity will decrease, and if the thickness of the shell is too thick, that is, too much MnO2 in the outer layer, the thermal stability of the catalyst will decrease.
  • the molar percentage of Cu in the treatment liquid during the synthesis of the shell is 0-40% based on the total moles of Mn.
  • the present invention also provides a method for preparing the catalyst of the present invention, comprising the following steps:
  • step A dissolving and mixing manganese precursor, water-soluble carbonate or bicarbonate and absolute ethanol, stirring and aging to obtain MnCO crystal;
  • the porous spherical morphology of Mn 2 O 3 can be stably obtained in the subsequent steps.
  • the volume concentration of absolute ethanol after mixing in the step A) is 7% to 20%, and the molar ratio of Mn 2+ : (HCO 3- +CO 3 2- ) is 1:7 to 1:15.
  • the volume concentration of anhydrous ethanol will affect the morphology of MnCO 3 .
  • the volume concentration of anhydrous ethanol is not within the above range, it may not be possible to ensure that MnCO 3 is spherical with a suitable size.
  • the above molar ratio of Mn 2+ : (HCO 3- +CO 3 2- ) can ensure that Mn 2+ is fully precipitated. If the ratio is too low, Mn 2+ may not be completely precipitated. If the ratio is too high, unreacted Too much HCO 3- /CO 3 2- may affect the morphology of MnCO 3 and cause waste of reagents.
  • the stirring and aging time in the step A) is 1-10 h.
  • described step A) comprises the following steps:
  • A1 take by weighing manganese precursor and water-soluble carbonate or bicarbonate, measure absolute ethanol;
  • A3) dissolve the water-soluble carbonate or bicarbonate taken by weighing in deionized water, and stir to dissolve completely;
  • A4) mix the solution of the water-soluble carbonate or bicarbonate obtained in A2) with the solution obtained in A3), and continue stirring to make the obtained MnCO crystals fully precipitate and grow;
  • step A5) The solid obtained in step A4) is washed with deionized water and centrifuged, and the washing-centrifugation is repeated 1-10 times.
  • step B) is performed, and the MnCO 3 is separated, dried and calcined to obtain spherical porous Mn 2 O 3 ;
  • the drying time is 4-24 h, and the drying temperature is 80-120 °C;
  • the calcination is calcination under air, the calcining time is 1-6 h, and the calcining temperature is 550-700 °C;
  • step C) is performed, and KMnO 4 , copper precursor and inorganic acid are dissolved and mixed to obtain an acidic KMnO 4 treatment solution containing Cu 2+ ;
  • step C After step C), proceed to step D) to ultrasonically disperse the spherical porous Mn 2 O 3 into deionized water to obtain a spherical porous Mn 2 O 3 suspension;
  • Ultrasound can make spherical porous Mn 2 O 3 well dispersed in water, avoid agglomeration, so that the Cu 2+ -containing acidic KMnO 4 treatment solution in the subsequent steps can fully contact and react with the surface of Mn 2 O 3 .
  • the mass concentration of Mn 2 O 3 in the spherical porous Mn 2 O 3 suspension is 1-10 mg/mL;
  • the acidic KMnO 4 treatment solution containing Cu 2+ can be fully contacted and reacted with the surface of Mn 2 O 3 . If the concentration is too low, the treatment solution will be wasted, and if the concentration is too high, the reaction will be incomplete.
  • step E) is performed, and the above-mentioned spherical porous Mn 2 O 3 suspension is treated with an acidic KMnO 4 treatment solution containing Cu 2+ in a water bath environment with continuous stirring.
  • the Mn 3+ : MnO 4 -mol ratio in the acidic KMnO 4 treatment solution containing Cu 2+ and the spherical porous Mn 2 O 3 suspension is 1:0.8-1:2.
  • the H + molar concentration in the acid KMnO 4 treatment solution containing Cu 2+ is 0.01 to 0.1 mol/L.
  • the acidic KMnO 4 treatment with Cu 2+ was added dropwise to the spherical porous Mn 2 O 3 suspension.
  • the temperature of the water bath is 70-95° C., and the stirring time is 0.15-3 h.
  • the reaction rate of the acidic KMnO 4 treatment solution containing Cu 2+ and the surface of Mn 2 O 3 can be reasonably accelerated.
  • the temperature is too low, the formation rate of the MnO 2 shell is too slow.
  • step F) is performed to separate, dry and calcine the treated solid to obtain the catalyst for catalytic oxidation of volatile organic compounds.
  • the solid obtained in step F) is washed with deionized water and centrifuged, and the washing-centrifugation step is repeated 1-10 times.
  • the drying time is 4-24h
  • the drying temperature is 80-120°C
  • the calcination is calcination in air
  • the calcination time is 0.5-4h
  • the calcination temperature is 300-400°C.
  • the water-soluble carbonate or bicarbonate is one or more mixtures of ammonium carbonate, sodium carbonate, potassium carbonate, ammonium bicarbonate, sodium bicarbonate, and potassium bicarbonate;
  • the manganese precursor is one or more mixtures of manganese sulfate, manganese chloride, manganese nitrate, and manganese acetate;
  • the copper precursor is one or more mixtures of copper sulfate, copper nitrate, and copper chloride ;
  • Described inorganic acid is one or more mixtures in sulfuric acid, hydrochloric acid and nitric acid.
  • the present invention also provides a use of the catalyst of the present invention for removing VOCs in flue gas.
  • the flue gas is the flue gas from the concentrated and unorganized emissions of VOCs emission industries such as petrochemical industry, packaging and printing, pharmaceutical chemical industry, textile printing and dyeing, and leather manufacturing.
  • the VOCs contained in the flue gas are one or more of aliphatic hydrocarbons, aromatic hydrocarbons, aldehydes, esters, ketones, acids or their halogenated compounds, preferably including toluene and propylene.
  • the use temperature of the catalyst of the present invention is 100 to 400°C.
  • step F) The solid obtained in step E) is washed with deionized water and centrifuged, and the washing and centrifugation steps are repeated for 5 times; the obtained solid is dried at 80°C for 12h and calcined at 350°C for 2h in an air atmosphere to obtain a Cu0 catalyst.
  • step F The solid obtained in step E) was washed with deionized water and centrifuged, and the washing and centrifugation steps were repeated 5 times; the obtained solid was dried at 80°C for 12h and calcined at 350°C for 2h in an air atmosphere to obtain a Cu5 catalyst.
  • step F The solid obtained in step E) was washed with deionized water and centrifuged, and the washing and centrifugation steps were repeated 5 times; the obtained solid was dried at 80°C for 12 hours and calcined at 350°C for 2 hours in an air atmosphere to obtain a Cu25 catalyst.
  • Example 2 The same procedure as in Example 2 was adopted, except that the added Cu(NO 3 ) ⁇ 3H 2 O was changed to 0.0459 g to obtain a Cu2 catalyst.
  • Example 2 The same procedure as in Example 2 was adopted, except that the added Cu(NO 3 ) ⁇ 3H 2 O was changed to 0.9176 g to obtain a Cu40 catalyst.
  • Test conditions The catalysts Cu0, Cu5, and Cu25 powders obtained in Examples 1-3 were compressed, crushed and sieved, and 40-60 mesh catalyst particles were selected for the evaluation of VOCs catalytic oxidation activity.
  • Toluene and propylene the total flue gas flow is 100ml/min, the gas space velocity GHSV is 60,000mL/(gh), the flue gas concentration is 1000ppm toluene or 1000ppm propylene, O 2 21vol.%, N 2 79vol.%, the results are shown in the figure 1.
  • Figure 2 is a scanning electron microscope photograph of the microstructures of catalysts Cu0, Cu5, and Cu25.
  • the microscopic morphology of Cu0 is that lamellar MnO 2 wraps and grows on the periphery of porous Mn 2 O 3 nanospheres, the monolithic lamella is thicker, and the MnO 2 cladding layer is thicker.
  • the microscopic morphology of Cu5 is that the lamellar MnO 2 is wrapped around the periphery of the porous Mn 2 O 3 nanospheres.
  • the microscopic morphology of Cu25 is that the lamellar MnO 2 wraps and grows on the periphery of the porous Mn 2 O 3 nanospheres.

Abstract

一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用。用于催化氧化挥发性有机物的催化剂,具有核-壳结构;其中,核为球状多孔Mn 2O 3;壳为未掺杂或Cu掺杂的片状MnO 2。催化剂具有优异的催化活性和结构稳定性,具有与商业贵金属催化剂具有相近的催化氧化活性,并且成本低廉。催化剂可广泛适用于石油化工、包装印刷、医药化工、纺织印染和皮革制造等VOCs排放行业的有组织排放和无组织VOCs排放的控制。

Description

一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用 技术领域
本发明涉及一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用,属于催化剂领域。
背景技术
2019年,我国338个城市空气质量仍有18%为轻度污染及以上。其中,
O 3平均浓度较2018年上升6.5%,超标天数上升2.3%,PM2.5超标天数上升0.2%,而SO 2和NO 2等常规污染物超标天数则与2018年持平,说明我国大气污染仍面临以O 3和PM2.5为主的复合污染问题。挥发性有机物(Volatile organic compounds,VOCs)是一类饱和蒸气压高于133.32Pa,沸点处于50~250℃之间的有机化合物。大多数VOCs具有大气光化学反应活性,可在太阳光辐射下与空气常规组分或NO x等污染物发生光化学反应生成多种二次污染物,如O 3、羰基化合物、过氧乙酰硝酸酯等。VOCs同时是大气多种自由基的重要来源,参与光化学烟雾和二次有机气溶胶的生成,进而对灰霾的生成有着重要贡献。
目前VOCs排放控制技术主要分为回收法与销毁法两类。回收法主要针对具有回收价值的高浓度VOCs回收利用。销毁法主要通过化学、生物化学等方法将VOCs转化为二氧化碳和水等,实现无害化处理,其中催化氧化法可以显著降低反应温度、减少副产物,具有广泛的应用前景。目前商业化应用的贵金属催化剂活性温度区间较低,但其成本较高,并且催化剂在高温下易发生贵金属烧结。面对成分复杂且含有多种VOCs的烟气,贵金属催化剂往往容易中毒失活。
因此,结合成本因素,开发价格低廉、活性高的非贵金属催化剂是目前的迫切需求。锰基催化剂由于其优异的氧化还原性和低廉的价格,有希望替代贵金属实现商业化应用,但目前锰基催化剂普遍存在VOCs催化活性较低 (活性温度区间高)、结构稳定性差等缺点。因此,提高锰基催化剂活性、保证其结构稳定性是现有技术中亟需解决的技术问题。
发明内容
技术问题
为了克服上述现有技术缺点,本发明的目的在于提供一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用。本发明的催化剂具有更高的催化剂活性并且具有更好的结构稳定性。
解决方案
本发明提供一种用于催化氧化挥发性有机物的催化剂,所述催化剂具有核-壳结构;
其中,核为球状多孔Mn 2O 3
壳为未掺杂或Cu掺杂的片状MnO 2
根据本发明所述的催化剂,所述球状多孔Mn 2O 3的直径为400~1500nm。
根据本发明所述的催化剂,所述球状多孔Mn 2O 3的孔径为5~20nm。
根据本发明所述的催化剂,所述壳的厚度为50~200nm。
根据本发明所述的催化剂,所述催化剂在壳的合成过程中的处理液中以Mn的摩尔总数计,Cu的摩尔百分比为0~40%。
本发明还提供一种本发明所述的催化剂的制备方法,包含如下步骤:
A)将锰前驱体、水溶性碳酸盐或碳酸氢盐和无水乙醇溶解混合,搅拌老化得到MnCO 3晶体;
B)将所述MnCO 3分离后经干燥和煅烧得到球状多孔Mn 2O 3
C)将KMnO 4、铜前驱体和无机酸溶解混合,得到含Cu 2+的酸性KMnO 4处理液;
D)将球状多孔Mn 2O 3超声分散至去离子水中,获得球状多孔Mn 2O 3悬浊液;
E)在水浴环境下使用含Cu 2+的酸性KMnO 4处理液处理上述球状多孔 Mn 2O 3悬浊液,持续搅拌;
F)将处理后的固体分离、干燥并煅烧,得到用于催化氧化挥发性有机物的催化剂。
根据本发明所述的制备方法,所述水溶性碳酸盐或碳酸氢盐为碳酸铵、碳酸钠、碳酸钾、碳酸氢铵、碳酸氢钠、碳酸氢钾中的一种或多种混合物;所述锰前驱体为硫酸锰、氯化锰、硝酸锰、乙酸锰中的一种或多种混合物;所述铜前驱体为硫酸铜、硝酸铜、氯化铜中的一种或多种混合物;所述无机酸为硫酸、盐酸、硝酸中的一种或多种混合物。
根据本发明所述的制备方法,所述步骤A)中混合后无水乙醇的体积浓度为7%~20%,Mn 2+:(HCO 3-+CO 3 2-)摩尔比为1:7~1:15;
所述步骤D)中球状多孔Mn 2O 3悬浊液中Mn 2O 3质量浓度为1~10mg/mL;
所述步骤E)中含Cu 2+的酸性KMnO 4处理液与球状多孔Mn 2O 3悬浊液中的Mn 3+:MnO 4 -摩尔比为1:0.8~1:2;含Cu 2+的酸性KMnO 4处理液中的H +摩尔浓度为0.01~0.1mol/L;使用Cu 2+的酸性KMnO 4处理液逐滴加入至球状多孔Mn 2O 3悬浊液。
根据本发明所述的制备方法,所述步骤A)中的搅拌老化时间为1~10h;
所述步骤B)中干燥时间为4~24h,干燥温度为80~120℃;所述煅烧为空气下煅烧,煅烧时间为1~6h,煅烧温度为550~700℃;
所述步骤E)中水浴温度为70~95℃,搅拌时间为0.15~3h;
所述步骤F)中干燥时间为4~24h,干燥温度为80~120℃,所述煅烧为在空气下煅烧,煅烧时间为0.5~4h,煅烧温度为300~400℃。
本发明还提供一种本发明所述的催化剂用于固定源烟气中的VOCs脱除的用途。
有益效果
本发明的催化剂具有优异的催化活性和结构稳定性,具有与商业贵金属催化剂具有相近的催化氧化活性,并且成本低廉。本发明的制备方法易于实现,具有商业化前景。本发明的催化剂可广泛适用于石油化工、包装印刷、 医药化工、纺织印染和皮革制造等VOCs排放行业的有组织排放和无组织VOCs排放的控制。
附图说明
图1本发明实施例、对比例的催化剂催化氧化丙烯和甲苯转化率与温度的关系图。
图2本发明实施例1的MnCO 3、Mn 2O 3和催化剂Cu0、Cu2、Cu5、Cu10、Cu25、Cu40的扫描电镜图。
具体实施方式
以下将详细说明本发明的各种示例性实施例、特征和方面。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好地说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在另外一些实例中,对于本领域技术人员熟知的方法、手段、器材和步骤未作详细描述,以便于凸显本发明的主旨。
如无特殊声明,本发明所使用的单位均为国际标准单位,并且本发明中出现的数值,数值范围,均应当理解为包含了工业生产中所不可避免的系统性误差。
本发明提供一种用于催化氧化挥发性有机物的催化剂,所述催化剂具有核-壳结构;
其中,核为球状多孔Mn 2O 3
其中,壳为未掺杂或Cu掺杂的片状MnO 2
其中,球状多孔Mn 2O 3具有高热稳定性,高温时不易发生相变,片状MnO 2具有更高的VOCs催化氧化活性,将片状MnO 2壳生长在球状多孔Mn 2O 3核上能够有效提升催化剂活性并且保证结构稳定性。
根据本发明所述的催化剂,所述球状多孔Mn 2O 3的直径为400~1500nm。
球状多孔Mn 2O 3的直径为400~1500nm,如果球状多孔Mn 2O 3的直径小于400nm,则较难合成;如果球状多孔Mn 2O 3的直径大于1500nm,催化剂比表面积可能会明显下降,活性位点暴露数减少,不利于反应。优选地,球状多孔Mn 2O 3的直径为600~1300nm。
根据本发明所述的催化剂,所述球状多孔Mn 2O 3的孔径为5~20nm。
球状多孔Mn 2O 3的孔径为5~20nm,孔径小于5nm,不利于反应物的扩散,孔径大于20nm,比表面积下降,活性位点暴露数减少,不利于反应。
根据本发明所述的催化剂,所述壳的厚度为50~200nm。
如果壳的厚度过薄,即外层MnO 2过少,催化剂活性会降低,如果壳的厚度过厚,即外层MnO 2过多,催化剂热稳定性会降低。
根据本发明所述的催化剂,所述催化剂在壳的合成过程中的处理液中以Mn的摩尔总数计,Cu的摩尔百分比为0~40%。
Cu的摩尔百分比超过40%后,Cu的掺入量已经饱和,再进一步提高Cu的摩尔百分比会造成试剂浪费。
本发明还提供一种本发明所述的催化剂的制备方法,包含如下步骤:
首先进行步骤A),将锰前驱体、水溶性碳酸盐或碳酸氢盐和无水乙醇溶解混合,搅拌老化得到MnCO 3晶体;
使用采用上述步骤得到的MnCO 3晶体,可以在后续步骤中稳定的获得Mn 2O 3的多孔球状的形貌。
其中,所述步骤A)中混合后无水乙醇的体积浓度为7%~20%,Mn 2+:(HCO 3-+CO 3 2-)摩尔比为1:7~1:15。
无水乙醇的体积浓度会影响MnCO 3的形貌,无水乙醇的体积浓度不在上述范围内时,可能无法保证MnCO 3为适宜大小的球状。
采用上述的Mn 2+:(HCO 3-+CO 3 2-)摩尔比,可以保证Mn 2+充分沉淀,若比例过低,Mn 2+则可能不完全沉淀,若比例过高,未反应的HCO 3-/CO 3 2-过多,可能影响MnCO 3的形貌,并且造成试剂浪费。
所述步骤A)中的搅拌老化时间为1~10h。
优选的是,所述步骤A)包含如下步骤:
A1)称取锰前驱体和水溶性碳酸盐或碳酸氢盐,量取无水乙醇;
A2)将称取的锰前驱体溶解于去离子水中,搅拌至完全溶解,后加入量取的无水乙醇,继续搅拌均匀;
A3)将称取的水溶性碳酸盐或碳酸氢盐溶解于去离子水中,搅拌至完全溶解;
A4)将A2)所得的水溶性碳酸盐或碳酸氢盐的溶液与A3)所得的溶液混合,持续搅拌,使所得MnCO 3晶体充分沉淀、生长;
A5)将步骤A4)所得固体用去离子水进行洗涤、离心分离,重复洗涤-离心1-10次。
步骤A)结束后,进行步骤B),将所述MnCO 3分离后经干燥和煅烧得到球状多孔Mn 2O 3
所述步骤B)中干燥时间为4~24h,干燥温度为80~120℃;所述煅烧为空气下煅烧,煅烧时间为1~6h,煅烧温度为550~700℃;
在上述温度范围内,能够保证MnCO 3完全分解为Mn 2O 3,并且在保持球状形貌的同时形成比较均匀的孔结构。
步骤B)结束后,进行步骤C),将KMnO 4、铜前驱体和无机酸溶解混合,得到含Cu 2+的酸性KMnO 4处理液;
步骤C)结束后,进行步骤D),将球状多孔Mn 2O 3超声分散至去离子水中,获得球状多孔Mn 2O 3悬浊液;
超声能够使球状多孔Mn 2O 3良好的分散在水中,避免团聚,使后续步骤中的含Cu 2+的酸性KMnO 4处理液能够与Mn 2O 3的表面充分接触并反应。
所述步骤D)中球状多孔Mn 2O 3悬浊液中Mn 2O 3质量浓度为1~10mg/mL;
在上述浓度范围内,能保证含Cu 2+的酸性KMnO 4处理液能够与Mn 2O 3的表面充分接触并反应,浓度过低会导致处理液浪费,浓度过高会使反应不完全。
步骤D)结束后,进行步骤E),在水浴环境下使用含Cu 2+的酸性KMnO 4处理液处理上述球状多孔Mn 2O 3悬浊液,持续搅拌。
所述步骤E)中含Cu 2+的酸性KMnO 4处理液与球状多孔Mn 2O 3悬浊液中的Mn 3+:MnO 4 -摩尔比为1:0.8~1:2。
含Cu 2+的酸性KMnO 4处理液中的H +摩尔浓度为0.01~0.1mol/L。
使用Cu 2+的酸性KMnO 4处理液逐滴加入至球状多孔Mn 2O 3悬浊液。
所述步骤E)中水浴温度为70~95℃,搅拌时间为0.15~3h。
在上述水浴温度范围内,可以合理加速含Cu 2+的酸性KMnO 4处理液与Mn 2O 3的表面反应的速率,温度过低时MnO 2壳层生成速率过慢。
步骤E)结束后,进行步骤F)将处理后的固体分离、干燥并煅烧,得到所述用于催化氧化挥发性有机物的催化剂。
优选地,将步骤F)所得的固体用去离子水进行洗涤、离心分离,重复洗涤-离心步骤1-10次。
所述步骤F)中干燥时间为4~24h,干燥温度为80~120℃,所述煅烧为在空气下煅烧,煅烧时间为0.5~4h,煅烧温度为300~400℃。
在上述煅烧时间的范围内,能保证催化剂被充分活化并且不会因长时间的高温而发生烧结失活。
根据本发明所述的制备方法,所述水溶性碳酸盐或碳酸氢盐为碳酸铵、碳酸钠、碳酸钾、碳酸氢铵、碳酸氢钠、碳酸氢钾中的一种或多种混合物;所述锰前驱体为硫酸锰、氯化锰、硝酸锰、乙酸锰中的一种或多种混合物;所述铜前驱体为硫酸铜、硝酸铜、氯化铜中的一种或多种混合物;所述无机酸为硫酸、盐酸、硝酸中的一种或多种混合物。
本发明还提供一种本发明所述的催化剂用于烟气中的VOCs脱除的用途。
其中,所述烟气为石油化工、包装印刷、医药化工、纺织印染和皮革制造等VOCs排放行业集中排放及无组织排放的烟气。
其中,所述烟气含有的VOCs为脂肪烃、芳香烃、醛类、酯类、酮类、酸类或他们的卤代物中的一种或多种,优选包括甲苯与丙烯。
其中,本发明的催化剂的使用温度为100~400℃。
实施例
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
Cu0催化剂的制备:
A1)称取5.07g的MnSO 4·H 2O和23.718g的NH 4HCO 3,量取27mL的无水乙醇;
A2)将称取的MnSO 4·H 2O溶解于250mL去离子水中,搅拌至完全溶解,后加入27mL的无水乙醇,继续搅拌均匀;
A3)将称取的NH 4HCO 3溶解于250mL去离子水中,搅拌至完全溶解;
A4)将NH 4HCO 3溶液快速倒入A2)所得溶液,持续搅拌3h;
A5)将A4)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;
B)将分离后的固体80℃干燥12h并在空气气氛下600℃煅烧3h,得到球状多孔Mn 2O 3
C)称取1.5g的KMnO 4,量取400μL的浓盐酸(37wt%);将称取的KMnO 4溶解于150mL去离子水中,搅拌至完全溶解,后加入量取的浓盐酸,继续搅拌均匀;
D):将0.6g步骤C)所得Mn 2O 3超声分散20min在150mL去离子水中获得悬浊液;
E):将所得悬浊液放入90℃水浴并持续搅拌,后将步骤C)所得溶液逐滴加入悬浊液中,在90℃水浴中继续搅拌0.5h;
F):将步骤E)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;所得固体80℃干燥12h并在空气气氛下350℃煅烧2h,即 得到Cu0催化剂。
实施例2
Cu5催化剂的制备:
A1)称取5.07g的MnSO 4·H 2O和23.718g的NH 4HCO 3,量取27mL的无水乙醇;
A2)将称取的MnSO 4·H 2O溶解于250mL去离子水中,搅拌至完全溶解,后加入27mL的无水乙醇,继续搅拌均匀;
A3)将称取的NH 4HCO 3溶解于250mL去离子水中,搅拌至完全溶解;
A4)将NH 4HCO 3溶液快速倒入A2)所得溶液,持续搅拌3h;
A5)将A4)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;
B)将分离后的固体80℃干燥12h并在空气气氛下600℃煅烧3h,得到球状多孔Mn 2O 3
C)称取1.5g的KMnO 4,0.1147g的Cu(NO 3)·3H 2O,量取400μL的浓盐酸(37wt%);将称取的KMnO 4与Cu(NO 3)·3H 2O溶解于150mL去离子水中,搅拌至完全溶解,后加入量取的浓盐酸,继续搅拌均匀;
D):将0.6g步骤C)所得Mn 2O 3超声分散20min在150mL去离子水中获得悬浊液;
E):将所得悬浊液放入90℃水浴并持续搅拌,后将步骤C)所得溶液逐滴加入悬浊液中,在90℃水浴中继续搅拌0.5h;
F):将步骤E)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;所得固体80℃干燥12h并在空气气氛下350℃煅烧2h,即得到Cu5催化剂。
实施例3
Cu25催化剂的制备:
A1)称取5.07g的MnSO 4·H 2O和23.718g的NH 4HCO 3,量取27mL的无水乙醇;
A2)将称取的MnSO 4·H 2O溶解于250mL去离子水中,搅拌至完全溶解,后加入27mL的无水乙醇,继续搅拌均匀;
A3)将称取的NH 4HCO 3溶解于250mL去离子水中,搅拌至完全溶解;
A4)将NH 4HCO 3溶液快速倒入A2)所得溶液,持续搅拌3h;
A5)将A4)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;
B)将分离后的固体80℃干燥12h并在空气气氛下600℃煅烧3h,得到球状多孔Mn 2O 3
C)称取1.5g的KMnO 4,0.5734g的Cu(NO 3)·3H 2O,量取400μL的浓盐酸(37wt%);将称取的KMnO 4与Cu(NO 3)·3H 2O溶解于150mL去离子水中,搅拌至完全溶解,后加入量取的浓盐酸,继续搅拌均匀;
D):将0.6g步骤C)所得Mn 2O 3超声分散20min在150mL去离子水中获得悬浊液;
E):将所得悬浊液放入90℃水浴并持续搅拌,后将步骤C)所得溶液逐滴加入悬浊液中,在90℃水浴中继续搅拌0.5h;
F):将步骤E)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;所得固体80℃干燥12h并在空气气氛下350℃煅烧2h,即得到Cu25催化剂。
实施例4
Cu10催化剂的制备:
采用与实施例2相同的步骤,仅将加入的Cu(NO 3)·3H 2O变为0.2294g,得到Cu10催化剂。
实施例5
Cu2催化剂的制备:
采用与实施例2相同的步骤,仅将加入的Cu(NO 3)·3H 2O变为0.0459g,得到Cu2催化剂。
实施例6
Cu40催化剂的制备:
采用与实施例2相同的步骤,仅将加入的Cu(NO 3)·3H 2O变为0.9176g,得到Cu40催化剂。
对比例1
A1)称取5.07g的MnSO 4·H 2O和23.718g的NH 4HCO 3,量取27mL的无水乙醇;
A2)将称取的MnSO 4·H 2O溶解于250mL去离子水中,搅拌至完全溶解,后加入27mL的无水乙醇,继续搅拌均匀;
A3)将称取的NH 4HCO 3溶解于250mL去离子水中,搅拌至完全溶解;
A4)将NH 4HCO 3溶液快速倒入A2)所得溶液,持续搅拌3h;
A5)将A4)所得固体用去离子水进行洗涤、离心分离,重复洗涤、离心步骤5次;
B)将分离后的固体80℃干燥12h并在空气气氛下600℃煅烧3h,得到球状多孔Mn 2O 3
催化活性测试
测试条件:将实施例1-3得到的催化剂Cu0、Cu5、Cu25粉末压片、破碎、筛分,选取40-60目的催化剂颗粒用于VOCs催化氧化活性评价,采用0.1g催化剂,烟气选择氧化甲苯和丙烯,烟气总流量为100ml/min,气体空速GHSV 60,000mL/(gh),烟气浓度为1000ppm甲苯或1000ppm丙烯,O 2 21vol.%,N 2 79vol.%,结果示于图1。
从测试结果可以看出,Cu0催化剂在催化氧化丙烯及甲苯活性随温度升高而上升,在温度高于220℃时其丙烯氧化活性较对比例1略低,但在200~270℃范围内其甲苯氧化活性优于对比例1。
从测试结果可以看出,Cu5催化剂在催化氧化丙烯及甲苯活性随温度升高而上升,在120~280℃范围内其丙烯氧化活性较对比例1提高,在200~270℃范围内其甲苯氧化活性同样优于对比例1。
从测试结果可以看出,Cu25催化剂在催化氧化丙烯及甲苯活性随温度 升高而上升,在120~280℃范围内其丙烯氧化活性较对比例1明显提高,在200~270℃范围内其甲苯氧化活性同样明显优于对比例1。
微观形貌测试
图2为催化剂Cu0、Cu5、Cu25的微观结构扫描电镜照片。
Cu0的微观形貌为片层状的MnO 2包裹生长在多孔Mn 2O 3纳米球的外围,单片片层较厚,MnO 2包层厚度较厚。
Cu5的微观形貌为片层状的MnO 2包裹生长在多孔Mn 2O 3纳米球的外围,单片片层较薄,MnO 2包层厚度较薄。
Cu25微观形貌为片层状的MnO 2包裹生长在多孔Mn 2O 3纳米球的外围,单片片层较薄,MnO 2包层厚度较薄。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种用于催化氧化挥发性有机物的催化剂,其特征在于,所述催化剂具有核-壳结构;
    其中,核为球状多孔Mn 2O 3
    壳为未掺杂或Cu掺杂的片状MnO 2
  2. 根据权利要求1所述的催化剂,其特征在于,所述球状多孔Mn 2O 3的直径为400~1500nm。
  3. 根据权利要求1或2所述的催化剂,其特征在于,所述球状多孔Mn 2O 3的孔径为5~20nm。
  4. 根据权利要求1或2所述的催化剂,其特征在于,所述壳的厚度为50~200nm。
  5. 根据权利要求1或2所述的催化剂,其特征在于,所述催化剂在壳的合成过程中的处理液中以Mn的摩尔总数计,Cu的摩尔百分比为0~40%。
  6. 一种权利要求1-5任一项所述的催化剂的制备方法,其特征在于,包含如下步骤:
    A)将锰前驱体、水溶性碳酸盐或碳酸氢盐和无水乙醇溶解混合,搅拌老化得到MnCO 3晶体;
    B)将所述MnCO 3分离后经干燥和煅烧得到球状多孔Mn 2O 3
    C)将KMnO 4、铜前驱体和无机酸溶解混合,得到含Cu 2+的酸性KMnO 4处理液;
    D)将球状多孔Mn 2O 3超声分散至去离子水中,获得球状多孔Mn 2O 3悬浊液;
    E)在水浴环境下使用含Cu 2+的酸性KMnO 4处理液处理上述球状多孔Mn 2O 3悬浊液,持续搅拌;
    F)将处理后的固体分离、干燥并煅烧,得到用于催化氧化挥发性有机物的催化剂。
  7. 根据权利要求6所述的制备方法,其特征在于,所述水溶性碳酸盐或碳酸氢盐为碳酸铵、碳酸钠、碳酸钾、碳酸氢铵、碳酸氢钠、碳酸氢钾中的 一种或多种混合物;所述锰前驱体为硫酸锰、氯化锰、硝酸锰、乙酸锰中的一种或多种混合物;所述铜前驱体为硫酸铜、硝酸铜、氯化铜中的一种或多种混合物;所述无机酸为硫酸、盐酸、硝酸中的一种或多种混合物。
  8. 根据权利要求6或7所述的制备方法,其特征在于,
    步骤A)中混合后无水乙醇的体积浓度为7%~20%,Mn 2+:(HCO 3-+CO 3 2-)摩尔比为1:7~1:15;
    步骤D)中球状多孔Mn 2O 3悬浊液中Mn 2O 3质量浓度为1~10mg/mL;
    步骤E)中含Cu 2+的酸性KMnO 4处理液与球状多孔Mn 2O 3悬浊液中的Mn 3+:MnO 4 -摩尔比为1:0.8~1:2;含Cu 2+的酸性KMnO 4处理液中的H +摩尔浓度为0.01~0.1mol/L;使用Cu 2+的酸性KMnO 4处理液逐滴加入至球状多孔Mn 2O 3悬浊液。
  9. 根据权利要求6或7所述的制备方法,其特征在于,
    步骤A)中的搅拌老化时间为1~10h;
    步骤B)中干燥时间为4~24h,干燥温度为80~120℃;所述煅烧为空气下煅烧,煅烧时间为1~6h,煅烧温度为550~700℃;
    步骤E)中水浴温度为70~95℃,搅拌时间为0.15~3h;
    步骤F)中干燥时间为4~24h,干燥温度为80~120℃,所述煅烧为在空气下煅烧,煅烧时间为0.5~4h,煅烧温度为300~400℃。
  10. 一种权利要求1-5任一项所述的催化剂用于固定源烟气中的VOCs脱除的用途。
PCT/CN2021/139203 2020-12-18 2021-12-17 一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用 WO2022127911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011502820.2 2020-12-18
CN202011502820.2A CN114643053A (zh) 2020-12-18 2020-12-18 一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用

Publications (1)

Publication Number Publication Date
WO2022127911A1 true WO2022127911A1 (zh) 2022-06-23

Family

ID=81991432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139203 WO2022127911A1 (zh) 2020-12-18 2021-12-17 一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用

Country Status (2)

Country Link
CN (1) CN114643053A (zh)
WO (1) WO2022127911A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487826A (zh) * 2022-09-26 2022-12-20 江苏中江材料技术研究院有限公司 银掺杂锰钴水滑石催化剂及其制备方法与降解甲醛的方法
CN115888694A (zh) * 2022-10-31 2023-04-04 电子科技大学长三角研究院(湖州) 一种低温等离子体功能催化剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532273B (zh) * 2022-10-17 2023-12-05 清华大学 催化剂及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104841451A (zh) * 2015-05-11 2015-08-19 北京林业大学 一种MnO2掺杂Cu介孔材料的制备及其在类芬顿水处理高级氧化技术中的应用
CN106179393A (zh) * 2016-06-28 2016-12-07 四川大学 一种用于降解VOCs的锰铜基催化剂的制备方法
CN106853996A (zh) * 2016-12-26 2017-06-16 武汉理工大学 一种制备形貌可控的三氧化二锰多孔微纳结构材料的方法
CN111686754A (zh) * 2020-07-07 2020-09-22 四川大学 用于催化燃烧挥发性有机物的非贵金属催化剂及制备方法
CN113941323A (zh) * 2021-02-10 2022-01-18 桂林电子科技大学 核壳结构片状二氧化锰包覆三氧化二锰复合材料及其制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890591B1 (ko) * 2016-12-16 2018-08-23 한국기초과학지원연구원 코어-쉘 형태의 망간산화물 나노로드, 그 제조방법 및 이를 포함하는 이차전지용 활물질
CN110102290B (zh) * 2019-04-24 2021-02-12 华南理工大学 一种K掺杂α-MnO2/Mn3O4高效光热催化剂及制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104841451A (zh) * 2015-05-11 2015-08-19 北京林业大学 一种MnO2掺杂Cu介孔材料的制备及其在类芬顿水处理高级氧化技术中的应用
CN106179393A (zh) * 2016-06-28 2016-12-07 四川大学 一种用于降解VOCs的锰铜基催化剂的制备方法
CN106853996A (zh) * 2016-12-26 2017-06-16 武汉理工大学 一种制备形貌可控的三氧化二锰多孔微纳结构材料的方法
CN111686754A (zh) * 2020-07-07 2020-09-22 四川大学 用于催化燃烧挥发性有机物的非贵金属催化剂及制备方法
CN113941323A (zh) * 2021-02-10 2022-01-18 桂林电子科技大学 核壳结构片状二氧化锰包覆三氧化二锰复合材料及其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAO JIE, MAO QINGHE, SHI LIANG, QIAN YITAI: "Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 40, 1 January 2011 (2011-01-01), GB , pages 16210 - 16215, XP055943257, ISSN: 0959-9428, DOI: 10.1039/c1jm10862j *
SAPUTRA EDY, ZHANG HUAYANG, LIU QIAORAN, SUN HONGQI, WANG SHAOBIN: "Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions", CHEMOSPHERE, vol. 159, 1 September 2016 (2016-09-01), GB , pages 351 - 358, XP055943255, ISSN: 0045-6535, DOI: 10.1016/j.chemosphere.2016.06.021 *
YANG WENHAO, PENG YUE, WANG YA, WANG YUN, LIU HAO, SU ZI’ANG, YANG WEINAN, CHEN JIANJUN, SI WENZHE, LI JUNHUA: "Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces", APPLIED CATALYSIS B. ENVIRONMENTAL, vol. 278, 1 December 2020 (2020-12-01), AMSTERDAM, NL , pages 1 - 11, XP055943235, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2020.119279 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487826A (zh) * 2022-09-26 2022-12-20 江苏中江材料技术研究院有限公司 银掺杂锰钴水滑石催化剂及其制备方法与降解甲醛的方法
CN115888694A (zh) * 2022-10-31 2023-04-04 电子科技大学长三角研究院(湖州) 一种低温等离子体功能催化剂及其制备方法

Also Published As

Publication number Publication date
CN114643053A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2022127911A1 (zh) 一种用于催化氧化挥发性有机物的催化剂及其制备方法、应用
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
Reddy et al. Investigation of surface structures of dispersed V2O5 on CeO2− SiO2, CeO2− TiO2, and CeO2− ZrO2 mixed oxides by XRD, Raman, and XPS techniques
JPS63252908A (ja) 金超微粒子固定化酸化物、その製造法、酸化触媒、還元触媒、可燃性ガスセンサ素子、及び電極用触媒
CN108380221A (zh) 一种层状钴锰双金属氧化物的制备方法及其产品
CN104646001B (zh) 一种可见光响应型铁酸铋‑氧化铋复合材料及其制备方法
AU2020103244A4 (en) Preparation of CuO-LaCoO3 mesoporous supported catalyst
Feng et al. Rationally designed Bi@ BiOCl/g-C3N4 heterostructure with exceptional solar-driven photocatalytic activity
CN110201680B (zh) 一种用于α,β-不饱和醛/酮选择性加氢的催化剂、制备方法及催化方法
Yang et al. Generation of abundant oxygen vacancies in Fe doped δ-MnO2 by a facile interfacial synthesis strategy for highly efficient catalysis of VOCs oxidation
Peng et al. Double-shelled hollow LaNiO3 nanocage as nanoreactors with remarkable catalytic performance: Illustrating the special morphology and performance relationship
WO2021022988A1 (zh) 一种Co 3O 4/CuMoO 4复合物及其制备方法和应用
US20190100440A1 (en) Method for the synthesis of nanoparticles of heterometallic nanocomposite materials
Song et al. Recent progresses in the synthesis of MnO 2 nanowire and its application in environmental catalysis
CN106984324A (zh) 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法
JP2004160327A (ja) MOx−ZnO複合酸化亜鉛光触媒とその製造方法
JP3718092B2 (ja) 水素含有ガス中の一酸化炭素選択酸化触媒、及び当該触媒を用いた一酸化炭素選択除去方法並びに固体高分子電解質型燃料電池システム
CN113083324B (zh) 一种用于室温甲醛氧化催化剂及其制备方法
Xiang et al. ZIF-67-derived hierarchical hollow Co3O4@ CoMn2O4 nanocages for efficient catalytic oxidation of formaldehyde at low temperature
JP2003320254A (ja) 水性ガスシフト反応及びメタノール水蒸気改質反応用触媒
Li et al. Cobalt doped Fe-Mn@ CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NO x
KR100475687B1 (ko) 티타니아계 촉매의 제조방법
Bhunia et al. Exposed facets-dependent catalytic properties of nanocrystals: noble metals (Pd, Pt, and Au) and oxides of first row d-block elements
JP4298425B2 (ja) 一酸化炭素酸化触媒および該触媒の製造方法
WO2020125183A9 (zh) yolk/shell型催化剂及其制备方法与催化产氢应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905835

Country of ref document: EP

Kind code of ref document: A1