WO2022127672A1 - 一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置 - Google Patents

一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置 Download PDF

Info

Publication number
WO2022127672A1
WO2022127672A1 PCT/CN2021/136565 CN2021136565W WO2022127672A1 WO 2022127672 A1 WO2022127672 A1 WO 2022127672A1 CN 2021136565 W CN2021136565 W CN 2021136565W WO 2022127672 A1 WO2022127672 A1 WO 2022127672A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium phosphide
phosphide quantum
quantum dots
precursor
blue light
Prior art date
Application number
PCT/CN2021/136565
Other languages
English (en)
French (fr)
Inventor
单玉亮
王允军
Original Assignee
苏州星烁纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州星烁纳米科技有限公司 filed Critical 苏州星烁纳米科技有限公司
Priority to US18/266,611 priority Critical patent/US20240043274A1/en
Publication of WO2022127672A1 publication Critical patent/WO2022127672A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/082Other phosphides of boron, aluminium, gallium or indium
    • C01B25/087Other phosphides of boron, aluminium, gallium or indium of gallium or indium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the invention belongs to the field of nanotechnology, and in particular relates to a blue light indium phosphide quantum dot and a preparation method thereof, an electroluminescence device and a display device.
  • Quantum dots have the advantages of narrow half-peak width and high quantum yield, and have great application prospects in the fields of display and lighting. Compared with group II-VI element quantum dots, such as cadmium selenide quantum dots, cadmium telluride quantum dots, etc., group III-V element quantum dots represented by indium phosphide quantum dots do not contain highly toxic heavy metal elements such as cadmium. It has a wider range of applications and is gradually attracting attention from the scientific research community and industry.
  • the purpose of the present invention is to provide a blue light indium phosphide quantum dot and a preparation method thereof, an electroluminescent device and a display device prepared from the blue light indium phosphide quantum dot, and the blue light indium phosphide quantum dot has
  • the wavelength is pure, and when used in electroluminescent devices, it has high brightness and high external quantum efficiency.
  • the technical scheme adopted in the present invention is:
  • the first object of the present invention is to provide a preparation method of blue light indium phosphide quantum dots, comprising the following steps:
  • the reactivity of the anion precursor is lower than that of the thiol.
  • the molar ratio of the core of the indium phosphide quantum dot to the first zinc precursor is 1:(10-100);
  • the molar ratio of the first zinc precursor and the thiol is 1:(1-5).
  • the molar ratio of the thiol to the anion precursor is 1:(2-10), which does not include 1:2, and the reaction temperature in the S3 step is 280-340° C., which does not include 280 °C.
  • the molar ratio of the thiol to the anion precursor is 1:(0-2), excluding 1:0, and/or the reaction temperature in the S3 step is 240-280°C.
  • the first zinc precursor will not decompose into zinc oxide above 300°C;
  • the first zinc precursor is halogenated zinc or fatty acid zinc.
  • the anion precursor is a coordinated or non-coordinated solution of elemental selenium and/or elemental sulfur.
  • the preparation method of the cores of the indium phosphide quantum dots is as follows: the indium precursor, the phosphorus precursor, the second zinc precursor and the organic solvent are mixed, and reacted at 110-160° C. to obtain the indium phosphide quantum dots containing the indium phosphide quantum dots.
  • the solution of the nuclei of the dots is purified to obtain the nuclei of the indium phosphide quantum dots, wherein the chemical structural formula of the phosphorus precursor is M—(O—C ⁇ P)n, wherein M is a metal element, and n is 1, 2 or 3; preferably, M is one of metal elements Li, Na, K, Zn and Ga; more preferably, the phosphorus precursor is Li—O—C ⁇ P, Na—O—C ⁇ P, K—O—C ⁇ P, Zn—(O—C ⁇ P) 2 or Ga—(O—C ⁇ P) 3 .
  • the second object of the present invention is to provide a blue light indium phosphide quantum dot, which is prepared by the above-mentioned preparation method, and the wavelength of the blue light indium phosphide quantum dot is 450-480 nm.
  • the third object of the present invention is to provide an electroluminescent device, comprising a light-emitting layer, using the blue light indium phosphide quantum dots as the light-emitting layer, the external quantum efficiency of the electroluminescent device is greater than 0.5%, the maximum brightness Greater than 100nits.
  • a third object of the present invention is to provide a display device including the electroluminescent device as described above.
  • the present invention has at least the following advantages: through the preparation method of the present application, at a predetermined temperature, the core of the indium phosphide quantum dot is mixed with the first zinc precursor, and the thiol is added to react to form a A second mixed solution of an intermediate product of indium phosphide quantum dots; and then adding an anion precursor whose reactivity is lower than that of thiol to continue the reaction to obtain blue light indium phosphide quantum dots with a wavelength range of 450-480 nm, the blue light indium phosphide quantum dots
  • the wavelength is pure, when used in electroluminescent devices, the brightness is high (greater than 100 nits), and the external quantum efficiency is also high (up to 1.8%), which broadens the application range of indium phosphide quantum dots.
  • Example 4 is a voltage-brightness change diagram of the electroluminescent device prepared in Example 1;
  • FIG. 7 is a voltage-brightness change diagram of the electroluminescent device prepared in Example 2.
  • the word “comprising” and the word “comprising” when used in this specification indicate that the stated features, regions, integers, steps, operations, elements, and/or components are present, but not excluding One or more other features, regions, integers, steps, operations, elements, components, and/or collections thereof are present or added. Accordingly, the above phrases will be understood to mean the inclusion of stated elements, but not the exclusion of any other elements.
  • indium quantum dots In order to solve the difficulty in the synthesis of blue indium phosphide quantum dots in the prior art, the wavelength regulation of indium phosphide quantum dots is difficult in the prior art, especially the preparation of blue indium phosphide quantum dots is very difficult.
  • indium quantum dots it is necessary to control the size of indium phosphide quantum dots first, but this will also bring about the problems of low brightness and poor external quantum efficiency in electro-optical devices, which cannot meet the application requirements.
  • the invention provides a new preparation method of blue indium phosphide quantum dots.
  • the prepared blue indium phosphide quantum dots have pure wavelengths, the wavelength range is 450-480 nm, the half-peak width is less than 50 nm, and the QY is greater than 40%.
  • the preparation method of blue indium phosphide quantum dots specifically includes the following steps:
  • the indium phosphide quantum dot core mix the indium precursor (indium halide), the phosphorus precursor (the molar amount of the charge is greater than that of the indium precursor), the second zinc precursor (zinc halide) and the coordination solvent , react at 110-160 °C to obtain a solution containing the nucleus of indium phosphide quantum dots, and obtain the nucleus of indium phosphide quantum dots after purification, wherein the chemical structural formula of the phosphorus precursor is M—(O—C ⁇ P) n , where M is one of the metal elements Li, Na, K, Zn and Ga, and n is 1, 2 or 3 (it should be noted that the value of n depends on the valence state of M. For example, if M is Li, then n is 1; M is Zn, then n is 2).
  • the above purification method is a commonly used purification method in the prior art, which is not limited here, as long as the method can achieve the purification effect.
  • the inventors found that since the surface ligand of the intermediate product of indium phosphide quantum dots is a highly active thiol, if it is directly applied to an electroluminescent device, the device has poor conductivity and low external quantum efficiency. Therefore, the inventors add an anion precursor whose reactivity is lower than that of thiol and steric hindrance to the second mixed solution, and the reaction occurs at a preset temperature, so that the anion precursor has higher reaction energy, The anion precursor with small steric hindrance makes the quantum dots easier to conduct electricity, thus forming blue indium phosphide quantum dots with good electrical performance.
  • the first zinc precursor that will not decompose above 300°C
  • the first zinc precursor is halogenated zinc or fatty acid zinc; preferably, the first zinc precursor is selected from zinc chloride, stearic acid At least one of zinc, zinc undecylenate, zinc myristate, and zinc oleate.
  • the anion precursor is a coordinated or non-coordinated solution of elemental selenium and/or elemental sulfur.
  • the shell layer of the indium phosphide quantum dot is at least one of ZnS, ZnSe and ZnSeS. The inventors found that growing ZnS and/or ZnSe and/or ZnSeS shell layers on the surface of indium phosphide quantum dots is beneficial to obtain indium phosphide quantum dots with better stability and better electrical properties.
  • the sulfur precursor (coordinating or non-coordinating solution of elemental sulfur described above) is at least one of sulfur organophosphorus complexes, sulfur aliphatic amine compounds, and sulfur long-chain alkene solutions; selenium precursor (mentioned above)
  • the coordination or non-coordination solution of elemental selenium is at least one of an organophosphorus complex of selenium, an aliphatic amine compound of selenium, and a long-chain alkene solution of selenium.
  • M—(O—C ⁇ P) n is selected as a new phosphorus source for synthesizing the nucleus of indium phosphide quantum dots, and the nucleus of indium phosphide quantum dots is prepared.
  • the indium phosphide quantum dot core composed of , Zn, P and metal element M further optimizes the optical properties of the subsequently obtained indium phosphide quantum dots.
  • the phosphorus precursor is Li—O—C ⁇ P, Na—O—C ⁇ P, K—O—C ⁇ P, Zn—(O—C ⁇ P) 2 or Ga—(O—C ⁇ P ) 3.
  • the present invention selects the molar ratio of the core of the indium phosphide quantum dots to the first zinc precursor to be 1:(10-100), and the molar ratio of the first zinc precursor to the thiol. is 1:(1-5).
  • the size of the indium phosphide quantum dot nucleus can be controlled, and the indium phosphide quantum dot nucleus of the blue light wavelength can be obtained.
  • the purified indium phosphide quantum dot core and the first zinc precursor are mixed, and then reacted with thiol with high reactivity at high temperature to obtain phosphide containing pure wavelength and fluorescence emission peak-to-peak range of 450-480nm.
  • a second mixed solution of indium quantum dot intermediates In S2 of this application, the high temperature reaction conditions and the thiol with high reactivity are selected, so that the ZnS shell can be quickly wrapped on the core of blue indium phosphide, preventing the nucleus of blue indium phosphide from continuing to grow, so as to obtain pure wavelength. intermediate product of indium phosphide quantum dots.
  • the molar ratio of thiol and anion precursor is 1:(2-10), excluding 1:2, and the reaction temperature in step S3 is 280-340°C, excluding 280°C.
  • the blue indium phosphide quantum dots prepared by the method are applied to electroluminescence devices, and the EQE of the device reaches more than 1.1%.
  • the high temperature conditions cause the thiol and the metal coordination bond to be broken, and then by controlling the amount of the anion precursor to be much larger than the amount of the thiol, the anion precursor can undergo a coordination reaction with the metal. Specifically, there are the following situations:
  • the first type the anion precursor completely replaces the thiol formed outside the core of the indium phosphide quantum dot and the coordination reaction with the first zinc precursor, so that only a shell layer is formed outside the core of the indium phosphide quantum dot, that is, the anion The first shell layer in which the precursor coordinates and reacts with the first zinc precursor.
  • second shell The anion precursor in the second shell layer and the coordination-binding unit of the first zinc precursor, and the thiol and the coordination-binding unit of the first zinc precursor are in a relationship of doping with each other.
  • the third type the anion precursor partially replaces the thiol formed outside the core of the indium phosphide quantum dot to coordinate reaction with the first zinc precursor to form an anion precursor and a thiol that coordinates and reacts with the first zinc precursor respectively.
  • second shell The anion precursor in the second shell layer and the coordination-binding unit of the first zinc precursor, and the thiol and the coordination-binding unit of the first zinc precursor are in a relationship of doping with each other.
  • the anionic precursor complex reacts with the excess first zinc precursor to form a third shell wrapped around the second shell.
  • the molar ratio of thiol and anion precursor is 1:(0-2), excluding 1:0, and/or the reaction temperature in step S3 is 240-280°C.
  • the blue indium phosphide quantum dots prepared under the above conditions have an EQE of 0.5-1.1% when applied to electroluminescent devices, and the conductivity is far superior to the EQE of the devices in the prior art.
  • the inventor believes that when the addition amount of the anion precursor is insufficient and/or the reaction temperature is insufficient, the anion precursor cannot completely replace the sulfur formed outside the core of the indium phosphide quantum dot to coordinate reaction with the first zinc precursor alcohol.
  • the anion precursor reacts with the redundant first zinc precursor to form a fourth shell layer, and the fourth shell layer coats the shell layer formed by the coordination reaction of the thiol and the first zinc precursor.
  • excess first zinc precursor is required to participate in the reaction.
  • the first zinc precursor is added again.
  • sufficient first zinc precursor can be added at one time in step S1, or the first zinc precursor can be added in stages in steps S1 and S3 respectively. The way of adding the first zinc precursor in batches makes the reaction of each step more sufficient.
  • the steps of removing unreacted raw materials and other impurities are also included, specifically including separation and purification. These steps are well-known methods in the art and will not be repeated here.
  • the third object of the present invention is to provide an electroluminescent device including a light-emitting layer, using the above blue indium phosphide quantum dots as the light-emitting layer, the external quantum efficiency of the electroluminescent device is greater than 0.5%, and the maximum brightness is greater than 100nits.
  • the preparation method may adopt a known method in the art, which will not be repeated here.
  • a fourth object of the present invention is to provide a display device including the above electroluminescent device.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, and the specific steps are as follows:
  • indium phosphide quantum dot cores Preparation of indium phosphide quantum dot cores: Mix 0.5 mmol of indium chloride, 0.75 mmol of Na-O-C ⁇ P, 1 mmol of zinc chloride with 10 mL of oleylamine, and react at 160 °C for 30 min to obtain indium phosphide quantum dot cores The solution is purified to obtain indium phosphide quantum dot cores, which are ready for use.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is nucleated in the same manner as in Embodiment 1, and the remaining steps are as follows:
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the addition amount of the first zinc precursor is different: in S1, the octadecene of zinc stearate is The concentration of the solution was adjusted from 0.05M to 0.0125M, that is, the molar ratio of the indium phosphide quantum dot core and the first zinc precursor was 1:10.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the addition amount of the first zinc precursor is different: in S1, the octadecene of zinc stearate is The concentration of the solution was adjusted from 0.5M to 0.125M, that is, the molar ratio of the indium phosphide quantum dot core and the first zinc precursor was 1:100.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that in S1, the solvent is changed from octadecene to trioctylamine, and the temperature is adjusted from 310° C. to 340° C. °C.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the amount of thiol added is different: in S2, the dropping rate of dodecanethiol is 2 mL/h , dropwise for 0.3 hours, that is, the molar ratio of the first zinc precursor and thiol is about 1:1.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the amount of thiol added is different: in S2, the dropping rate of dodecanethiol is 2 mL/h , dropwise for 1.4 hours, that is, the molar ratio of the first zinc precursor and thiol is about 1:5.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the addition amount of anion precursor is different: in S3, the trioctylphosphine solution of elemental sulfur (concentration 2M) to react, the speed is 10ml/h, and it is added dropwise for 0.8 hours, that is, the molar ratio of thiol and TOP-S is 1:2.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the addition amount of anion precursor is different: in S3, the trioctylphosphine solution of elemental sulfur (concentration 2M) to react, the speed is 10ml/h, and it is added dropwise for 4 hours, that is, the molar ratio of thiol and TOP-S is 1:10.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 5, except that the temperature at which TOP-S is added is changed: in S3, the temperature is raised to 340° C., and then TOP-S is added. .
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the addition amount of anion precursor is different: in S3, the trioctylphosphine solution of elemental sulfur (concentration 2M) to carry out the reaction, the speed is 1ml/h, and it is added dropwise for 0.5 hours, that is, the molar ratio of thiol and TOP-S is 1:0.25.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the addition amount of anion precursor is different: in S3, the trioctylphosphine solution of elemental sulfur (concentration 2M) to react at a rate of 10ml/h, dropwise for 0.2 hours, that is, the molar ratio of thiol and TOP-S is 1:1, and the temperature drops to 240°C.
  • concentration 2M concentration
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of Embodiment 2, except that Na—O—C ⁇ P is replaced by K—O—C ⁇ P.
  • This embodiment provides a method for preparing blue light indium phosphide quantum dots, which is basically the same as that in Embodiment 2, except that Na—O—C ⁇ P is replaced by Zn—(O—C ⁇ P) 2 .
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as that of embodiment 2, except that the temperature at which the anion precursor participates in the reaction is different: in S3, the temperature is lowered to 285°C, and then TOP- S.
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as embodiment 5, except that the temperature at which thiol participates in the reaction is different: in S2, dodecanethiol is added dropwise at 240°C The reaction was carried out at a dropping rate of 5 mL/h, and the mixture was added dropwise for 1 hour, while the temperature was continued to rise to 340° C., and the temperature was maintained until the dropwise addition of dodecanethiol was completed to form a second mixed solution.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of embodiment 1, except that the addition amount of anion precursor is different: in S3, add TOP-S (concentration is 2M), The rate was 10ml/h, and the dropwise addition was performed for 4.5 hours.
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as Embodiment 1, except that the addition amount of anion precursor is different: in S3, add TOP-S (concentration is 2M), The rate was 10ml/h, and it was added dropwise for 9 hours.
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as Embodiment 1, except that the addition amount of anion precursor is different: in S3, add TOP-S (concentration is 2M), The rate was 10ml/h, and it was added dropwise for 0.5 hours.
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as Embodiment 1, except that the addition amount of anion precursor is different: in S3, add TOP-S (concentration is 2M), The rate was 10ml/h, and it was added dropwise for 1.8 hours.
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as Embodiment 1, except that the temperature at which the anion precursor participates in the reaction is different: in S3, the temperature is lowered to 240° C., and then TOP- S.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of Embodiment 1, except that the types of anion precursors are different: in S3, the added anion precursor is TOP-Se (concentration is 2M).
  • This embodiment provides a preparation method of blue-light indium phosphide quantum dots, which is basically the same as Embodiment 1, except that the types of anion precursors are different: in S3, the anion precursors added are TOP-Se, TOP -S (concentration of 2M), the rate of each is 5ml/h, dropwise for 2 hours.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 1, the difference is that the dosage of dodecanethiol is increased: in S2, the dropping rate of dodecanethiol is 10mL/ h, dropwise for 1 hour.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as that of embodiment 1, the difference is that the dosage of dodecanethiol is reduced: in S2, the dropping rate of dodecanethiol is 3mL/ h, dropwise for 1 hour.
  • This embodiment provides a preparation method of blue light indium phosphide quantum dots, which is basically the same as embodiment 1, except that the thiol is changed to a short-chain thiol: in S2, the dropwise thiol is n-octane Thiol.
  • This embodiment provides a preparation method of blue indium phosphide quantum dots, which is basically the same as that of embodiment 17, the difference is that the zinc source is added twice, and the specific steps are as follows: S1.
  • the octadecene solution of zinc stearate, in S3, be cooled to 290 °C, add the octadecene solution of the 0.5M zinc stearate of 20ml, then drip TOP-S (concentration is 2M in the second mixed solution. ) to react.
  • This comparative example provides a preparation method of indium phosphide quantum dots.
  • the specific steps are as follows: prepare 40 mL of an octadecene solution of zinc stearate with a concentration of 0.5 M, evacuate at 120° C. for 30 minutes, turn into argon gas, and heat up.
  • To 240 °C add one-tenth of the above-mentioned standby core (the preparation method is the same as that of Example 1), after the temperature is re-warmed to 240 °C, start to drip TOP-S (concentration is 2M), the rate of addition is 5mL/h, Add dropwise for 1 hour, while continuing to heat up to 310°C, and keep the temperature until the dropwise addition of TOP-S is completed. Cool down and purify to obtain indium phosphide quantum dots.
  • the blue light indium phosphide quantum dots prepared above are prepared into electroluminescent devices and display devices, and the preparation method adopts conventional methods in the prior art, which will not
  • This comparative example provides a preparation method of indium phosphide quantum dots.
  • the specific steps are as follows: prepare 40 mL of an octadecene solution of zinc stearate with a concentration of 0.5 M, evacuate at 120° C. for 30 minutes, turn into argon gas, and heat up. To 240 ° C, add one-tenth of the above-mentioned standby core (the preparation method is the same as in Example 1), and after the temperature is re-warmed to 240 ° C, start to add dodecyl mercaptan dropwise at a rate of 5 mL/h, and add dropwise for 1 hour.
  • the blue light indium phosphide quantum dots prepared above are prepared into electroluminescent devices and display devices, and the preparation method adopts conventional methods in the prior art, which will not be repeated here.
  • the blue light indium phosphide quantum dots obtained in Examples 1-27 and the indium phosphide quantum dots obtained in Comparative Examples 1-2 were prepared into electroluminescent devices respectively, and their fluorescence spectra and fluorescence quantum yields were tested.
  • Example 4 is a voltage-brightness change diagram of the electroluminescent device prepared in Example 1;
  • FIG. 7 is a voltage-brightness change diagram of the electroluminescent device prepared in Example 2.
  • the wavelength of the blue indium phosphide quantum dots prepared by the method of the present application is pure, and it can be seen from FIG.
  • the brightness is high and greater than 100 nits, and the external quantum efficiency is up to 1.8%, which broadens the application range of the indium phosphide quantum dots.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种蓝光磷化铟量子点的制备方法,包括如下步骤:S1、将磷化铟量子点的核和第一锌前体混合,形成第一混合溶液;S2、在300-340℃下,向第一混合溶液中加入硫醇进行反应,形成第二混合溶液;S3、在240-340℃下,向第二混合溶液中加入阴离子前驱体进行反应,得到蓝光磷化铟量子点。本发明在预定温度下,将磷化铟量子点的核和第一锌前体混合,加入硫醇进行反应,形成含有磷化铟量子点中间产物的第二混合溶液;再加入反应活性低于硫醇的阴离子前驱体继续反应,得到波长范围在450~480nm的蓝光磷化铟量子点,该蓝光磷化铟量子点的波长纯正,在应用于电致发光器件中时,亮度大于100nits、外量子效率最高达到1.8%,拓宽了磷化铟量子点的应用范围。

Description

一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置 技术领域
本发明属于纳米技术领域,尤其涉及一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置。
背景技术
量子点具有半峰宽窄、量子产率高等优点,在显示、照明等领域有着巨大的应用前景。与II-VI族元素量子点,如硒化镉量子点、碲化镉量子点等相比,以磷化铟量子点为代表的III-V族元素量子点不含镉等高毒性重金属元素,应用范围更广,正逐渐受到科研界和产业界的关注。
然而,现有技术中合成蓝光磷化铟量子点比较困难,所合成的量子点质量差,在应用于电致器件中时,器件的导电性差、效率低、亮度低,完全不能满足应用使用的需求。因此,优化磷化铟量子点的制备方法,特别是蓝光磷化铟量子点的制备方法,具有非常重要的意义。
发明内容
有鉴于此,本发明的目的是提供一种蓝光磷化铟量子点及其制备方法,由该蓝光磷化铟量子点制备得到的电致发光器件及显示装置,该蓝光磷化铟量子点的波长纯正,在应用于电致发光器件中时,亮度高、外量子效率也高。
为达到上述目的,本发明采用的技术方案是:
本发明的第一个目的在于提供一种蓝光磷化铟量子点的制备方法,包括如下步骤:
S1、将磷化铟量子点的核和第一锌前体混合,形成第一混合溶液;
S2、在300-340℃下,向所述第一混合溶液中加入硫醇进行反应,形成含有磷化铟量子点中间产物的第二混合溶液;
S3、在240-340℃下,向所述第二混合溶液中加入阴离子前驱体进行反应,得到所述蓝光磷化铟量子点;
其中,所述阴离子前驱体的反应活性低于所述硫醇的反应活性。
具体的,所述磷化铟量子点的核和第一锌前体的摩尔比为1:(10-100);
优选地,所述第一锌前体和所述硫醇的摩尔比为1:(1-5)。
具体的,所述硫醇和所述阴离子前驱体的摩尔比为1:(2-10),其中不包含1:2,且所述S3步骤中的反应温度为280-340℃,其中不包含280℃。
具体的,所述硫醇和所述阴离子前驱体的摩尔比为1:(0-2),其中不包含1:0,和/或,所述S3步骤中反应温度为240-280℃。
具体的,所述第一锌前体在300℃以上不会分解成氧化锌;
优选地,所述第一锌前体为卤代锌或脂肪酸锌。
具体的,所述阴离子前驱体为单质硒和/或单质硫的配位或者非配位溶液。
具体的,所述磷化铟量子点的核的制备方法如下,使铟前体、磷前体、第二锌前体与有机溶剂混合,于110~160℃下反应,得到包含磷化铟量子点的核的溶液,经纯化得到所述磷化铟量子点的核,其中,所述磷前体的化学结构式为M—(O—C≡P)n,其中,M为金属元素,n为1、2或者3;优选地,M为金属元素Li、Na、K、Zn和Ga中的一种;更优选地,所述磷前体为Li—O—C≡P、Na—O—C≡P、K—O—C≡P、Zn—(O—C≡P) 2或Ga—(O—C≡P) 3
本发明的第二个目在于提供一种蓝光磷化铟量子点,采用如上所述的制备方法制备得到,所述蓝光磷化铟量子点的波长为450-480nm。
本发明的第三个目的在于提供一种电致发光器件,包括发光层,采用如上所述蓝光磷化铟量子点作为发光层,所述电致发光器件的外量子效率大于0.5%,最大亮度大于100nits。
本发明的第三个目的在于提供一种显示装置,包括如上所述的电致发光器件。
与现有技术相比,本发明至少具有如下优点:通过本申请的制备方法,在预定温度下,将磷化铟量子点的核和第一锌前体混合,加入硫醇进行反应,形成含有磷化铟量子点中间产物的第二混合溶液;再加入反应活性低于硫醇的阴离子前驱体继续反应,得到波长范围在450~480nm的蓝光磷化铟量子点,该蓝光磷化铟量子点的波长纯正,在应用于电致发光器件中时,亮度高(大于100nits)、外量子效率也高(最高达到1.8%),拓宽了磷化铟量子点的应用范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图1为实施例1的蓝光磷化铟量子点溶液的荧光发射光谱图;
附图2为实施例1的蓝光磷化铟量子点溶液制备成器件的荧光发射光谱图;
附图3为实施例1制备得到电致发光器件的电压-EQE变化图;
附图4为实施例1制备得到的电致发光器件的电压-亮度变化图;
附图5为实施例1的蓝光磷化铟量子点的透射电镜图;
附图6为实施例2制备得到电致发光器件的电压-EQE变化图;
附图7为实施例2制备得到的电致发光器件的电压-亮度变化图。
具体实施方式
下面将结合本申请的实施方式,对实施例中的技术方案进行详细地描述。应注意的是,该实施方式仅仅是部分方式,而不是全部。
如本文中表述例如“的至少一种(个)”当在要素列表之前或之后时修饰整个要素列表而不修饰列表的单独要素。如果未另外定义,说明书中的所有术语(包括技术和科学术语)可如本领域技术人员通常理解的那样定义。常用字典中定义的术语应被解释为与它们在相关领域的背景和本公开内容中的含义一致,并且不可以理想方式或者过宽地解释,除非清楚地定义。此外,除非明确地相反描述,措辞“包括”和措辞“包含”当用于本说明书中时表明存在所陈述的特征、区域、整体、步骤、操作、要素、和/或组分,但是不排除存在或添加一个或多个其它特征、区域、整体、步骤、操作、要素、组分、和/或其集合。因此,以上措辞将被理解为意味着包括所陈述的要素,但不排除任何其它要素。
如本文中使用的,术语“和/或”包括相关列举项目的一个或多个的任何和全部组合。术语“或”意味着“和/或”。
将理解,尽管术语第一、第二、第三等可在本文中用于描述各种元件、组分、区域、层和/或部分,但这些元件、组分、区域、层和/或部分不应受这些术语限制。
如本文中使用的“约”或“大约”包括所陈述的值且意味着在如由本领域普通技术人员考虑到所讨论的测量和与具体量的测量有关的误差(即,测量系统的限制)而确定的对于具体值的可接受的偏差范围内。例如,“约”可意味着相对于所陈述的值的偏差在一种或多种标准偏差范围内,或者在±10%、±5%范围内。
为了解决现有技术中,蓝光磷化铟量子点合成困难,现有技术中,磷化铟量子点波长调控难,尤其是蓝光磷化铟量子点的制备很困难,为了获得蓝光波长的磷化铟量子点,需要首要控制磷化铟量子点尺寸,但这也会带来应用于电致器件中,亮度低、外量子效率差的问题,不能满足应用要求的问题。
本发明提供了一种新的蓝光磷化铟量子点的制备方法,制备得到的蓝光磷化铟量子点的波长纯正,波长范围为450~480nm,半峰宽小于50nm,QY大于40%。
蓝光磷化铟量子点的制备方法具体包括如下步骤:
首先制备磷化铟量子点核:使铟前体(卤化铟)、磷前体(投料摩尔量大于铟前体的投料摩尔量)、第二锌前体(卤代锌)与配位溶剂混合,于110~160℃下反应,得到包含磷化铟量子点的核的溶液,经纯化得到磷化铟量子点的核,其中磷前体的化学结构式为M—(O—C≡P) n, 其中,M为金属元素Li、Na、K、Zn和Ga中的一种,n为1、2或者3(需说明的是,n的值取决于M的价态,比如M为Li,则n为1;M为Zn,则n为2)。上述纯化方法为现有技术中常用纯化方法,此处不作限定,只要能够达到纯化效果的方法即可。
接着,通过下述步骤继续反应:
S1、将磷化铟量子点的核和第一锌前体混合,形成第一混合溶液;
S2、在300-340℃下,向第一混合溶液中加入硫醇进行反应,形成含有磷化铟量子点中间产物的第二混合溶液;
S3、在240-340℃下,向第二混合溶液中加入阴离子前驱体进行反应,得到蓝光磷化铟量子点;阴离子前驱体的反应活性低于硫醇的反应活性。
发明人发现,由于磷化铟量子点的中间产物的表面配体为活性高的硫醇,若直接应用于电致发光器件中,器件的导电性差,外量子效率低。因此,发明人通过向第二混合溶液中加入反应活性低于硫醇、位阻小于硫醇的阴离子前驱体,在预设温度下发生反应,以使让阴离子前驱体具有更高的反应能量,位阻小的阴离子前驱体使得量子点更易于导电,从而形成电致性能好的蓝光磷化铟量子点。
本申请中,优选在300℃以上不会分解的第一锌前体,第一锌前体为卤代锌或脂肪酸锌;优选地,第一锌前体为选自氯化锌、硬脂酸锌、十一烯酸锌、十四酸锌、油酸锌中的至少一种。
阴离子前驱体为单质硒和/或单质硫的配位或者非配位溶液。磷化铟量子点的壳层为ZnS、ZnSe和ZnSeS中的至少一种。发明人发现,将ZnS和/或ZnSe和/或ZnSeS壳层生长在磷化铟量子点的表面,有利于获得具有更好稳定性和更优良电学性质的磷化铟量子点。
硫前体(前文所述单质硫的配位或非配位溶液)为硫的有机磷配合物、硫的脂肪胺化合物、硫的长链烯溶液中的至少一种;硒前体(前文所述单质硒的配位或非配位溶液)为硒的有机磷配合物、硒的脂肪胺化合物、硒的长链烯溶液中的至少一种。
本发明中,选择M—(O—C≡P) n作为合成磷化铟量子点的核的新磷源,制备得到磷化铟量子点核,金属元素M的引入,使得制备出具有由In、Zn、P和金属元素M构成的磷化铟量子点核,进一步优化后续得到的磷化铟量子点的光学性能。优选地,磷前体为Li—O—C≡P、Na—O—C≡P、K—O—C≡P、Zn—(O—C≡P) 2或Ga—(O—C≡P) 3。
为了获得蓝光波长的磷化铟量子点,本发明选择磷化铟量子点的核和第一锌前体的摩尔比为1:(10-100),第一锌前体和硫醇的摩尔比为1:(1-5)。通过上述原材料的摩尔比的选择,并在预设温度下反应,可以控制磷化铟量子点核的尺寸,获得蓝光波长的磷化铟量子点核。
将经纯化的磷化铟量子点核和第一锌前体混合,再在高温下与反应活性大的硫醇发生反应,可以获得含有波长纯正、荧光发射峰峰值范围在450~480nm的磷化铟量子点中间产物的第二混合溶液。本申请S2中,选择高温的反应条件和反应活性大的硫醇,是为了让ZnS壳层 能够快速包裹到蓝光磷化铟的核上,防止蓝光磷化铟的核继续生长,从而获得波长纯正的磷化铟量子点的中间产物。
本发明的一个实施方式中,硫醇和阴离子前驱体的摩尔比为1:(2-10),其中不包含1:2,且S3步骤中反应温度为280-340℃,其中不包含280℃。通过本方法制备得到的蓝光磷化铟量子点应用于电致发光器件,器件的EQE达到1.1%以上。发明人认为,本实施方式中通过高温条件,使得硫醇与金属配位键断裂,再通过控制阴离子前驱体的用量远远大于硫醇的用量,使得阴离子前驱体能够与金属发生配位反应。具体有以下几种情况:
第一种:阴离子前驱体完全置换掉形成在磷化铟量子点核外与第一锌前体配位反应的硫醇,以在磷化铟量子点核外仅形成一层壳层,即阴离子前驱体与第一锌前体配位反应的第一壳层。
第二种:阴离子前驱体部分置换掉形成在磷化铟量子点核外与第一锌前体配位反应的硫醇,形成阴离子前驱体、硫醇分别与第一锌前体配位反应的第二壳层。第二壳层中的阴离子前驱体和第一锌前体的配位结合单元、硫醇和第一锌前体的配位结合单元是互相掺杂的关系。
第三种:阴离子前驱体部分置换掉形成在磷化铟量子点核外与第一锌前体配位反应的硫醇,形成阴离子前驱体、硫醇分别与第一锌前体配位反应的第二壳层。第二壳层中的阴离子前驱体和第一锌前体的配位结合单元、硫醇和第一锌前体的配位结合单元是互相掺杂的关系。此外,阴离子前驱体与多余的第一锌前体配位反应形成包裹在第二壳层外的第三壳层。
本发明的另一个实施方式中,硫醇和阴离子前驱体的摩尔比为1:(0-2),其中不包含1:0,和/或,S3步骤中反应温度为240-280℃。通过上述条件制备得到的蓝光磷化铟量子点,在应用于电致发光器件,器件的EQE达到0.5-1.1%,导电性远远优于现有技术中器件的EQE。
第四种:发明人认为,当阴离子前驱体的添加量不足和/或反应温度不足时,阴离子前驱体完全不能置换形成在磷化铟量子点核外与第一锌前体配位反应的硫醇。阴离子前驱体与多余的第一锌前体配位反应形成第四壳层,第四壳层包覆在硫醇与第一锌前体配位反应形成的壳层上。
因形成了第三壳层或第四壳层,需要多余的第一锌前体参与反应。优选地,S3中,再次加入第一锌前体。本发明中,可以在S1步骤中一次性加入足够的第一锌前体,也可以分别在S1和S3步骤中分次加入第一锌前体。分次加入第一锌前体的方式,使得每步反应更加充分。
为了进一步提高所制备的蓝光磷化铟量子点光学性能,在得到上述蓝光磷化铟量子点后,还包括除去未反应的原料及其他杂质的步骤,具体包括分离和提纯。这些步骤是本领域的公知方法,这里不再赘述。
本发明的第三个目的在于提供一种电致发光器件,包括发光层,采用如上蓝光磷化铟量子点作为发光层,电致发光器件的外量子效率大于0.5%,最大亮度大于100nits。制备方法采用本领域公知方法即可,这里不再赘述。
本发明的第四个目的在于提供一种显示装置,包括如上电致发光器件。
以下将以具体的实施例对本申请做出详细的阐述。
实施例1
本实施例提供一种蓝光磷化铟量子点的制备方法,具体步骤如下:
制备磷化铟量子点核:将0.5mmol氯化铟、0.75mmol Na—O—C≡P、1mmol的氯化锌与10mL油胺混合,于160℃下反应30min,得到磷化铟量子点核溶液,经纯化得到磷化铟量子点核,待用。
S1、配制40mL浓度为0.5M的硬脂酸锌的十八烯溶液,120℃抽真空30分钟,转成氩气,升温到240℃,加入上述制备得到的磷化铟量子点核的十分之一中,形成第一混合溶液;
S2、在240℃下滴加十二硫醇进行反应,滴加速度为5mL/h,滴加1小时,同时继续升温到310℃,保温至十二硫醇滴加完毕,形成第二混合溶液;
S3、降温至290℃,向第二混合溶液中滴加TOP-S(浓度为2M,单质硫的三辛基膦溶液)进行反应,速度为10ml/h,滴加2小时,降温,纯化,得到蓝光磷化铟量子点。将上述制备得到的蓝光磷化铟量子点制备成电致发光器件、显示装置,制备方法采用现有技术中常规方法,此处不赘述。
实施例2
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1使用相同的方式成核,其余步骤如下:
S1、配制40mL浓度为0.05M的硬脂酸锌的十八烯溶液,120℃抽真空30分钟,转成氩气,升温到240℃,加入上述制备得到的磷化铟量子点核的十分之一中(磷化铟量子点核与第一锌前驱体的摩尔比为1:40),形成第一混合溶液;
S2、在310℃下滴加十二硫醇进行反应,滴加速度为2mL/h,滴加1小时,保温至十二硫醇滴加完毕,形成第二混合溶液;
S3、降温至290℃,向第二混合溶液中滴加单质硫的三辛基膦溶液(浓度为2M)进行反应,速度为10ml/h,滴加2小时,降温,纯化,得到蓝光磷化铟量子点。将上述制备得到的蓝光磷化铟量子点制备成电致发光器件、显示装置,制备方法采用现有技术中常规方法,此处不赘述。
实施例3
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,第一锌前驱体的添加量不同:S1中,硬脂酸锌的十八烯溶液浓度由0.05M调整为0.0125M,即磷化铟量子点核与第一锌前驱体的摩尔比为1:10。
实施例4
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,第一锌前驱体的添加量不同:S1中,硬脂酸锌的十八烯溶液浓度由0.5M调整为0.125M,即磷化铟量子点核与第一锌前驱体的摩尔比为1:100。
实施例5
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于:S1中,溶剂由十八烯换成三辛胺,温度由310℃调整为340℃。
实施例6
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,硫醇的添加量不同:S2中,十二硫醇的滴加速度为2mL/h,滴加0.3小时,即第一锌前体和硫醇的摩尔比约为1:1。
实施例7
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,硫醇的添加量不同:S2中,十二硫醇的滴加速度为2mL/h,滴加1.4小时,即第一锌前体和硫醇的摩尔比约为1:5。
实施例8
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,单质硫的三辛基膦溶液(浓度为2M)进行反应,速度为10ml/h,滴加0.8小时,即硫醇与TOP-S的摩尔比为1:2。
实施例9
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,单质硫的三辛基膦溶液(浓度为2M)进行反应,速度为10ml/h,滴加4小时,即硫醇与TOP-S的摩尔比为1:10。
实施例10
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例5基本相同,不同之处在于改变TOP-S滴加的温度:S3中,升温至340℃,再加入TOP-S。
实施例11
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,单质硫的三辛基膦溶液(浓度为2M)进行反应,速度为1ml/h,滴加0.5小时,即硫醇与TOP-S的摩尔比为1:0.25。
实施例12
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,单质硫的三辛基膦溶液(浓度为2M)进行反应,速度为10ml/h,滴加0.2小时,即硫醇与TOP-S的摩尔比为1:1,温度降到240℃。
实施例13
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,将Na—O—C≡P替换为K—O—C≡P。
实施例14
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,将Na—O—C≡P替换为Zn—(O—C≡P) 2
实施例15
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例2基本相同,不同之处在于,阴离子前驱体参与反应的温度不同:S3中,降温至285℃,再加入TOP-S。
实施例16
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例5基本相同,不同之处在于,硫醇参与反应的温度不同:S2中,在240℃下滴加十二硫醇进行反应,滴加速度为5mL/h,滴加1小时,同时继续升温到340℃,保温至十二硫醇滴加完毕,形成第二混合溶液。
实施例17
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,添加TOP-S(浓度为2M),速度为10ml/h,滴加4.5小时。
实施例18
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,添加TOP-S(浓度为2M),速度为10ml/h,滴加9小时。
实施例19
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,添加TOP-S(浓度为2M),速度为10ml/h,滴加0.5小时。
实施例20
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体的添加量不同:S3中,添加TOP-S(浓度为2M),速度为10ml/h,滴加1.8小时。
实施例21
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体参与反应的温度不同:S3中,降温至240℃,再加入TOP-S。
实施例22
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体的种类不同:S3中,加入的阴离子前驱体为TOP-Se(浓度为2M)。
实施例23
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,阴离子前驱体的种类不同:S3中,加入的阴离子前驱体为TOP-Se、TOP-S(浓度为2M),速度各为5ml/h,滴加2小时。
实施例24
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,增加十二硫醇的用量:S2中,十二硫醇的滴加速度为10mL/h,滴加1小时。
实施例25
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,降低十二硫醇的用量:S2中,十二硫醇的滴加速度为3mL/h,滴加1小时。
实施例26
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例1基本相同,不同之处在于,将硫醇改变为短链硫醇:S2中,滴加的硫醇为正辛硫醇。
实施例27
本实施例提供一种蓝光磷化铟量子点的制备方法,其与实施例17基本相同,不同之处在于,分两次加入锌源,具体步骤如下:S1、配制20mL,浓度为0.5M的硬脂酸锌的十八烯溶液,S3中,降温至290℃,加入20ml的0.5M的硬脂酸锌的十八烯溶液,再向第二混合溶液中滴加TOP-S(浓度为2M)进行反应。
对比例1
本对比例提供一种磷化铟量子点的制备方法,具体步骤如下:配制40mL,浓度为0.5M的硬脂酸锌的十八烯溶液,120℃抽真空30分钟,转成氩气,升温到240℃,加入上述备用的核(制备方法同实施例1)十分之一,待温度重新升温到240℃后,开始滴加TOP-S(浓度为 2M),滴加速度为5mL/h,滴加1小时,同时继续升温到310℃,保温至TOP-S滴加完毕。降温,纯化,得到磷化铟量子点。将上述制备得到的蓝光磷化铟量子点制备成电致发光器件、显示装置,制备方法采用现有技术中常规方法,此处不赘述。
对比例2
本对比例提供一种磷化铟量子点的制备方法,具体步骤如下:配制40mL,浓度为0.5M的硬脂酸锌的十八烯溶液,120℃抽真空30分钟,转成氩气,升温到240℃,加入上述备用的核(制备方法同实施例1)十分之一,待温度重新升温到240℃后,开始滴加十二硫醇,滴加速度为5mL/h,滴加1小时,同时继续升温到310℃,保温至十二硫醇滴加完毕。降温,纯化,得到磷化铟量子点。将上述制备得到的蓝光磷化铟量子点制备成电致发光器件、显示装置,制备方法采用现有技术中常规方法,此处不赘述。
将实施例1-27获得的蓝光磷化铟量子点和对比例1-2中获得的磷化铟量子点分别制备成电致发光器件,测试其荧光光谱和荧光量子产率。
具体测试结果如下表所示。
Figure PCTCN2021136565-appb-000001
Figure PCTCN2021136565-appb-000002
附图1为实施例1的蓝光磷化铟量子点溶液的荧光发射光谱图;
附图2为实施例1的蓝光磷化铟量子点溶液制备成器件的荧光发射光谱图;
附图3为实施例1制备得到电致发光器件的电压-EQE变化图;
附图4为实施例1制备得到的电致发光器件的电压-亮度变化图;
附图5为实施例1的蓝光磷化铟量子点的透射电镜图;
附图6为实施例2制备得到电致发光器件的电压-EQE变化图;
附图7为实施例2制备得到的电致发光器件的电压-亮度变化图。
从上述实施例及对比例可以看出,经本申请的方法制备得到的蓝光磷化铟量子点的波长纯正,从附图2中可看出,荧光发射峰峰值范围在450~480nm。在应用于电致发光器件中时,亮度高且大于100nits、外量子效率最高达到1.8%,拓宽了磷化铟量子点的应用范围。
附图3为实施例1制备得到电致发光器件的电压-EQE变化图,能够看出最大EQE为1.5%;附图6为实施例2制备得到电致发光器件的电压-EQE变化图,能够看出最大EQE为1.8%。
附图4为实施例1制备得到的电致发光器件的电压-亮度变化,可以看出最大亮度为124nits;附图7为实施例2制备得到的电致发光器件的电压-亮度变化图,可以看出最大亮度为132nits。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种蓝光磷化铟量子点的制备方法,其特征在于,包括如下步骤:
    S1、将磷化铟量子点的核和第一锌前体混合,形成第一混合溶液;
    S2、在300-340℃下,向所述第一混合溶液中加入硫醇进行反应,形成含有磷化铟量子点中间产物的第二混合溶液;
    S3、在240-340℃下,向所述第二混合溶液中加入阴离子前驱体进行反应,得到所述蓝光磷化铟量子点;
    其中,所述阴离子前驱体的反应活性低于所述硫醇的反应活性。
  2. 根据权利要求1所述蓝光磷化铟量子点的制备方法,其特征在于:所述磷化铟量子点的核和所述第一锌前体的摩尔比为1:(10-100);
    优选地,所述第一锌前体和所述硫醇的摩尔比为1:(1-5)。
  3. 根据权利要求1所述蓝光磷化铟量子点的制备方法,其特征在于:所述硫醇和所述阴离子前驱体的摩尔比为1:(2-10),其中不包含1:2,且所述S3步骤中的反应温度为280-340℃,其中不包含280℃。
  4. 根据权利要求1所述蓝光磷化铟量子点的制备方法,其特征在于:所述硫醇和所述阴离子前驱体的摩尔比为1:(0-2),其中不包含1:0,和/或,所述S3步骤中反应温度为240-280℃。
  5. 根据权利要求1至4中任一项所述蓝光磷化铟量子点的制备方法,其特征在于:所述第一锌前体为在300℃以上不会分解成氧化锌的锌前体;
    优选地,所述第一锌前体为卤代锌或脂肪酸锌。
  6. 根据权利要求1至4中任一项所述蓝光磷化铟量子点的制备方法,其特征在于:所述阴离子前驱体为单质硒和/或单质硫的配位或者非配位溶液。
  7. 根据权利要求1至4中任一项所述蓝光磷化铟量子点的制备方法,其特征在于:所述磷化铟量子点的核的制备方法如下,使铟前体、磷前体、第二锌前体与有机溶剂混合,于110~160℃下反应,得到包含磷化铟量子点的核的溶液,经纯化得到所述磷化铟量子点的核,其中,所述磷前体的化学结构式为M—(O—C≡P) n,其中,M为金属元素,n为1、2或者3;优选地,M为金属元素Li、Na、K、Zn和Ga中的一种;更优选地,所述磷前体为Li—O—C≡P、Na—O—C≡P、K—O—C≡P、Zn—(O—C≡P) 2或Ga—(O—C≡P) 3
  8. 一种蓝光磷化铟量子点,其特征在于:采用如权利要求1-7中任一所述的制备方法制备得到,所述蓝光磷化铟量子点的波长为450-480nm。
  9. 一种电致发光器件,包括发光层,其特征在于:采用如权利要求8中所述蓝光磷化铟量子点作为发光层,所述电致发光器件的外量子效率大于0.5%,最大亮度大于100nits。
  10. 一种显示装置,其特征在于:包括如权利要求9所述的电致发光器件。
PCT/CN2021/136565 2020-12-15 2021-12-08 一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置 WO2022127672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/266,611 US20240043274A1 (en) 2020-12-15 2021-12-08 Blue indium phosphide quantum dot and preparation method therefor, electroluminescent device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011468865.2A CN113956879A (zh) 2020-12-15 2020-12-15 一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置
CN202011468865.2 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022127672A1 true WO2022127672A1 (zh) 2022-06-23

Family

ID=79460079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136565 WO2022127672A1 (zh) 2020-12-15 2021-12-08 一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置

Country Status (3)

Country Link
US (1) US20240043274A1 (zh)
CN (1) CN113956879A (zh)
WO (1) WO2022127672A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576106A (zh) * 2016-01-13 2016-05-11 中国计量学院 一种基于白光LED用InP/ZnS量子点和CIS/ZnS量子点及其制备方法
CN107312534A (zh) * 2017-07-10 2017-11-03 南京大学 制备正四面体形发光磷化铟/硫化锌核壳结构量子点方法
CN109575913A (zh) * 2019-01-22 2019-04-05 深圳扑浪创新科技有限公司 一种具有核壳结构的磷化铟量子点及其制备方法和用途
CN110846038A (zh) * 2019-10-21 2020-02-28 深圳市卓翼科技股份有限公司 核壳量子点及其制备方法、发光器件
CN111117602A (zh) * 2019-12-30 2020-05-08 上海大学 具有梯度核壳结构的大尺寸磷化铟量子点的制备方法
WO2020163075A1 (en) * 2019-02-05 2020-08-13 Nanosys, Inc. Methods for synthesis of inorganic nanostructures using molten salt chemistry

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433640A (zh) * 2016-09-07 2017-02-22 苏州星烁纳米科技有限公司 一种InP量子点及其制备方法
CN107098324A (zh) * 2017-05-08 2017-08-29 苏州星烁纳米科技有限公司 一种磷化铟量子点的制备方法
CN111826158B (zh) * 2019-04-18 2021-08-20 苏州星烁纳米科技有限公司 磷化铟纳米晶的制备方法
CN111849483B (zh) * 2019-04-26 2022-09-02 纳晶科技股份有限公司 一种蓝光无镉量子点及其制备方法、量子点光电器件
CN110157407B (zh) * 2019-05-14 2022-05-13 上海交通大学 一种InP量子点及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576106A (zh) * 2016-01-13 2016-05-11 中国计量学院 一种基于白光LED用InP/ZnS量子点和CIS/ZnS量子点及其制备方法
CN107312534A (zh) * 2017-07-10 2017-11-03 南京大学 制备正四面体形发光磷化铟/硫化锌核壳结构量子点方法
CN109575913A (zh) * 2019-01-22 2019-04-05 深圳扑浪创新科技有限公司 一种具有核壳结构的磷化铟量子点及其制备方法和用途
WO2020163075A1 (en) * 2019-02-05 2020-08-13 Nanosys, Inc. Methods for synthesis of inorganic nanostructures using molten salt chemistry
CN110846038A (zh) * 2019-10-21 2020-02-28 深圳市卓翼科技股份有限公司 核壳量子点及其制备方法、发光器件
CN111117602A (zh) * 2019-12-30 2020-05-08 上海大学 具有梯度核壳结构的大尺寸磷化铟量子点的制备方法

Also Published As

Publication number Publication date
CN113956879A (zh) 2022-01-21
US20240043274A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2019214358A1 (zh) 一种ii-ii-vi合金量子点、其制备方法及其应用
JP5739152B2 (ja) 量子ドットの製造方法
CN108239535B (zh) 具有核-壳结构的Ga掺杂的InP量子点及其制备方法
CN109796976B (zh) 一种铜掺杂红光钙钛矿量子点及其制备方法
US20200318002A1 (en) Group III-V Quantum Dots, Method for Preparing the Same
WO2020224439A1 (zh) 一种核壳量子点、其制备方法及量子点光电器件
CN112266791B (zh) 一种量子点及其制备方法、量子点膜、显示装置
CN114606004B (zh) 一种窄线宽红、绿、蓝光CdZnSe/ZnSe量子点及其制备方法
WO2022111520A1 (zh) 一种铟氧簇合物及其制备方法、由其制备的量子点及该量子点的制备方法
WO2022127672A1 (zh) 一种蓝光磷化铟量子点及其制备方法、电致发光器件和显示装置
CN108929691B (zh) 一种量子点及其合成方法与应用
CN112143496B (zh) 红光磷化铟纳米晶的制备方法及由其制备的产品
CN109880624B (zh) 超小型PbSe量子点的制备方法
KR101444236B1 (ko) 가압합성법을 이용한 양자점의 합성방법
KR20180105503A (ko) 양자점의 제조 방법 및 이로 제조된 양자점
CN114736684A (zh) 零维双金属全无机三重配位卤化物簇、其制备方法及应用
WO2022134044A1 (zh) ZnSe量子点的制备方法、ZnSe量子点、ZnSe结构以及显示装置
WO2020259624A1 (zh) Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用
CN111849456B (zh) 一种ii-iii-v-vi族量子点及其制备方法
JP7475839B2 (ja) 亜鉛含有ナノ粒子の合成方法
CN110408392B (zh) 掺Fe离子的蓝光量子点及其合成方法
JP7470135B2 (ja) 新規リン前駆体でリン化インジウムナノ結晶を製造する方法、及びその製造されたリン化インジウムナノ結晶
KR102236316B1 (ko) 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자
KR102236315B1 (ko) 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자
KR101334694B1 (ko) 두꺼운 껍질을 가지는 핵-껍질 구조의 양자점 제조방법 및 이를 포함하는 광변환 발광다이오드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18266611

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905601

Country of ref document: EP

Kind code of ref document: A1