WO2020259624A1 - Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 - Google Patents
Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 Download PDFInfo
- Publication number
- WO2020259624A1 WO2020259624A1 PCT/CN2020/098251 CN2020098251W WO2020259624A1 WO 2020259624 A1 WO2020259624 A1 WO 2020259624A1 CN 2020098251 W CN2020098251 W CN 2020098251W WO 2020259624 A1 WO2020259624 A1 WO 2020259624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iii
- quantum dots
- alloy quantum
- precursor
- solution
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
- C09K11/701—Chalcogenides
- C09K11/703—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
Definitions
- This application relates to the technical field of quantum dots, in particular to the preparation method and application of II-III-V-VI alloy quantum dots.
- III-V quantum dots such as InP
- the precursors of group V elements containing P are too active, it is easy to cause uneven crystal growth, wider III-V quantum dot size distribution and broad fluorescence emission peaks. .
- the quantum efficiency of the intrinsic III-V quantum dots is only about 1%.
- a layer of II-VI element shell with a wide band gap can be coated on the core of III-V quantum dots to form III-V/II-VI core-shell quantum dots .
- the III-V/II-VI core-shell quantum dots prepared by this method have the disadvantages of uneven size, large half-width of the fluorescence emission peak and low quantum efficiency.
- the preparation method is based on a II-III-V-VI nanocluster composite with mild reaction activity
- the nucleation growth rate and energy band structure of II-III-V-VI quantum dots are controlled by the activator to obtain II-III-V-VI with relatively uniform element composition and size. Alloy quantum dots.
- a method for preparing II-III-V-VI alloy quantum dots including:
- the first precursor containing elements of subgroup II, the second precursor containing elements of main group III, the third precursor containing elements of main group V, and the fourth precursor containing elements of main group VI The precursor and the ligand are mixed to form a precursor solution A, and the precursor solution A is heated to cause the precursor solution A to react to form a II-III-V-VI nanocluster composite solution;
- the molar ratio of the element of main group V to the element of main group III is 0.2:1 to 1:1.
- the molar ratio of the element of main group VI to the element of main group III is 0.2:1 to 2:1.
- the ligand includes at least one of trioctylphosphine, tributylphosphine, trioctylamine, dioctylamine, and octylamine.
- the molar ratio of the ligand to the element of main group III is 5:1-20:1.
- the heating temperature of the precursor solution A in step (1) is 50°C to 150°C.
- the II-III-V-VI nanocluster complex solution includes at least one of InZnPS nanocluster complex solution and InZnPSe nanocluster complex solution.
- the activator includes at least one of alkyl phosphine, alkyl amine, and fatty acid.
- the molar ratio of the activator to the group III element in the II-III-V-VI nanocluster complex solution is 40:1 to 200:1.
- the heating temperature in step (2) is 250°C to 310°C.
- step (2) a solvent is provided, the temperature of the solvent is heated to 250°C to 310°C, and the II-III-V-VI nanocluster complex solution and the activator are injected into the The reaction is carried out in the solvent.
- step (2) also includes providing a precursor solution B, mixing the precursor solution B with the II-III-V-VI nanocluster composite solution and the activator, and reacting to obtain II-III -V-VI alloy quantum dots;
- the precursor solution B includes at least one of the first precursor, the second precursor, and the fourth precursor.
- step (2) the following steps are included:
- the II-III-V-VI alloy quantum dots are coated with a shell layer, and the shell layer is a shell layer containing a II-VI compound to obtain a II-III-V-VI alloy quantum with a II-VI shell layer point.
- a photoelectric device which includes the II-III-V-VI alloy quantum dots prepared by the preparation method.
- nanocluster composites are used as multi-element precursors, compared to mono-precursors, especially Highly active precursors containing elements of main group V have milder reactivity. Therefore, after mixing the nano-cluster complex with the active agent, part of the nano-cluster complex aggregates and combines to form a seed crystal, and the rest is used as a multi-element precursor to decompose into quantum dot monomers under the promotion of the activator, and continue to grow To the seed crystal for nucleation growth.
- the nucleation growth rate and energy band structure of the II-III-V-VI alloy quantum dots are controlled by the activator, and the II-III-V-VI alloy quantum dots with uniform size and composition and few luminescence defects are obtained.
- the wavelength of the fluorescence emission peak of the II-III-V-VI alloy quantum dot is 500nm-580nm, the half-peak width is 35nm-40nm, and the quantum efficiency is 40%-50%.
- the II-III-V-VI alloy quantum dots After the II-III-V-VI alloy quantum dots are coated with the II-VI shell, the wavelength of the fluorescence emission peak is 510nm ⁇ 600nm, the half-peak width is 35nm ⁇ 40nm, and the quantum efficiency is increased to 60% ⁇ 70 %, the II-III-V-VI alloy quantum dots have a narrow fluorescence half-peak width and high quantum efficiency, and can be better used in optoelectronic devices to meet the requirements of the new display field for the narrow half-width of quantum dots.
- FIG. 1 is an ultraviolet absorption spectrum of the InZnPS nanocluster composite solution of Example 1 and the InZnPS quantum dots of Comparative Example 1 during the synthesis process;
- Example 2 is a transmission electron microscope picture of the InZnPS nanocluster composite solution of Example 1;
- Fig. 3 is a transmission electron microscope picture of the InZnPS alloy quantum dots of Example 1, wherein the inset is a high resolution electron microscope picture of a single InZnPS alloy quantum dot;
- Figure 4 shows the X-ray diffraction (XRD) patterns of the InZnPS quantum dots of Examples 1 to 2 and Comparative Examples 1 to 4.
- adding substance a to substance b to react means that two substances can be brought into contact with each other through a certain feeding method to cause a physical or chemical reaction.
- the feeding method can be adding substance a to the place where substance b is placed. In the container, either the substance b is added to the container where the substance a is placed, or the substance a and the substance b are added to the same container at the same time, unless there is a special description which only refers to which way of feeding.
- II-III-V-VI alloy quantum dots The preparation method and application of II-III-V-VI alloy quantum dots provided in this application will be further described below.
- the element order of II-III-V-VI only represents the element composition of II-III-V-VI alloy quantum dots, not the structural order of II-III-V-VI alloy quantum dots.
- the nanocluster complex is used as a precursor and mixed with an activator, it can be controlled by the activator II -III-V-VI alloy quantum dot nucleation growth rate and energy band structure, so as to obtain II-III-V-VI alloy quantum dots with uniform size and composition and few luminescence defects.
- the II-III-V-VI The alloy quantum dot has a narrow half-width of the fluorescence emission peak and high quantum efficiency, and can be better used in optoelectronic devices to meet the requirements of the new display field for the narrow half-width of the quantum dot.
- the preparation method of II-III-V-VI alloy quantum dots provided in this application includes:
- the first precursor containing elements of subgroup II, the second precursor containing elements of main group III, the third precursor containing elements of main group V, and the fourth precursor containing elements of main group VI The precursor and the ligand are mixed to form a precursor solution A, and the precursor solution A is heated to cause the precursor solution A to react to form a II-III-V-VI nanocluster composite solution;
- the precursor solution A can undergo a preliminary reaction during the heating process, including the relatively high-activity third precursor reacts with the second precursor to nucleate to form III-V quantum dot monomers, the first precursor
- the ligand, the fourth precursor and the ligand are coordinated on the surface of the III-V monomer to form a II-III-V-VI nanocluster complex as a whole.
- the ligand can surround the surface of the nano-cluster complex to improve its dispersion and inhibit further binding between the nano-cluster complex, thereby obtaining a II-III-V-VI nano-cluster complex with uniform size.
- a quantum dot monomer refers to a substance in an intermediate state between the precursor compound and the quantum dot core, and can be considered as the product of the preliminary reaction of the precursor compound, which is the same as the ordinary understanding of those skilled in the art.
- Nanocluster complex refers to a semiconductor compound with a size of less than 2 nm, or a semiconductor compound with a size of 1 nm or less.
- the relatively high activity of the V main group element that is, the third precursor
- the nanocluster composite is used as a multi-element precursor, its reactivity is milder than that of the unary precursor, and its stability is better. It can be stored for a long time after large-scale preparation. It can still be used stably after being placed for 60 days, and it has better repeatability in scale-up production.
- relatively active Group V element means that the third precursor containing the V main group element has higher activity than the fourth precursor containing the VI main group element.
- the second precursor containing elements of main group III has higher activity than the first precursor containing elements of subgroup II. On the whole, the activity of the third precursor containing elements of main group V It is the most active of all the precursors in step (1).
- the first precursor containing the element of subgroup II, the second precursor containing the element of main group III, the third precursor containing the element of main group V, and the The fourth precursor of the element of main group VI, the ligand and the solvent are mixed to form the precursor solution A.
- the above-mentioned solvent includes non-coordinating solvents such as octadecene or high boiling point solvents such as octadecane and isotriacontane.
- the solvent in step (1) is the same or different from the solvent in step (2) below.
- the heating temperature of the precursor solution A is 50°C to 150°C. At this heating temperature, the reaction rate of the four precursors participating in the formation of II-III-V-VI nanocluster complex is close, and the formation of II-III-V-VI nanocluster complex is slow, making the nanocluster composite
- the composition elements in the composition are relatively uniform in order to form II-III-V-VI alloy quantum dots with uniform size and composition and few luminescence defects during subsequent nucleation and growth.
- the heating time of the precursor solution A is controlled to be 20 minutes to 60 minutes.
- the heating temperature of the precursor solution A is 30°C to 200°C, or 30°C to 50°C, or 30 to 100°C, or 50 to 100°C.
- the amount ratio of the V-group element to the VI-main group element in the precursor solution A is necessary to control the amount ratio of the V-group element to the VI-main group element in the precursor solution A.
- the molar ratio of the element of main group V to the element of main group III is 0.2:1 to 1:1, and the molar ratio of the element of main group VI to the element of main group III is 0.2:1 ⁇ 2:1.
- the molar ratio of the element of main group V to the element of main group III is 0.2:1 to 1:2, and the molar ratio of the element of main group VI to the element of main group III is 0.2:1 ⁇ 1:1.
- the molar ratio of the element of main group V to the element of main group III is 1:2 to 1:1, and the molar ratio of the element of main group VI to the element of main group III is 1:1 ⁇ 2:1.
- the subgroup II elements in the first precursor mainly play an auxiliary regulatory role, which may inhibit the activity of III-V quantum dot monomers and prevent further nucleation and growth, so as to obtain II- with a suitable size.
- III-V-VI nanocluster complex in order to make the precursor solution A better form a II-III-V-VI nanocluster complex with uniform composition and uniform size, the second subgroup element and the third main The molar ratio of group elements is 0.25:1 to 2:1.
- the molar ratio of the element of the subgroup II to the element of the main group III is 0.25:1 to 1:1. In some embodiments, in the precursor solution A, the molar ratio of the element of the subgroup II to the element of the main group III is 1:1 to 2:1.
- the ligand and the third The molar ratio of the main group elements is 5:1-20:1, and the above ligands include at least one of alkylphosphine, alkylamine, phenylphosphine, and phenylamine; or the ligand includes trioctylphosphine, trioctylphosphine, At least one of butylphosphine, trioctylamine, dioctylamine, and octylamine.
- the amount of ligand added in step (1) is too large, it will be difficult to form II-III-V-VI nanocluster complexes.
- the molar ratio of the ligand to the III main group element is 5:1-10:1, or 10:1-15:1, or 15:1-20:1.
- the first precursor includes a zinc precursor and a cadmium precursor.
- the first precursor is preferably a zinc precursor, and the zinc precursor includes zinc acetate, zinc propionate, and chloride At least one of zinc, zinc bromide, zinc iodide, and zinc carboxylate, and the carbon chain length of the carboxylate of the zinc carboxylate is 12 or more.
- the second precursor includes an indium precursor
- the indium precursor includes at least one of indium acetate, indium chloride, indium bromide, indium iodide, indium acetylacetonate, and indium carboxylate.
- the carbon chain length of the carboxylate of indium is 12 or more.
- the third precursor includes a phosphorus precursor
- the phosphorus precursor includes tris(trimethylsilyl)phosphorus, tris(triethylsilyl)phosphorus, tris(diethylamine)phosphorus, and tris(dimethylsilyl)phosphorus. At least one of amine) phosphorus.
- the fourth precursor includes one of a sulfur precursor and a selenium precursor
- the sulfur precursor includes at least one of sulfur-octadecene, tris(trimethylsilyl)sulfur, and a selenium precursor It includes at least one of selenium-octadecene and tris(trimethylsilyl)selenium.
- the above-mentioned sulfur precursors and selenium precursors are both highly active sulfur precursors and selenium precursors. During the nucleation and growth of alloy quantum dots, more sulfur or selenium can participate in the nucleation growth of quantum dots. The effective doping and the formation of alloy structure have a promoting effect.
- the zinc precursor is preferably zinc carboxylate
- the indium precursor is preferably indium carboxylate
- zinc acetate, indium acetate, etc. can also be used as precursors to be dissolved in a solvent, and then combined with dodecanoic acid, myristic acid, hexadecanoic acid, octadecanoic acid, oleic acid, etc., with a carbon chain length of 12
- the long-chain carboxylic acid reacts to form long-chain zinc carboxylate and long-chain indium carboxylate.
- step (1) if indium acetate, indium chloride, indium bromide, indium iodide, indium acetylacetonate, etc. are used as the indium precursor, zinc acetate, zinc propionate, zinc chloride, zinc bromide, iodide
- the method is: dissolving the indium precursor, zinc precursor and long-chain carboxylic acid in a solvent.
- the solvent includes non-coordinating solvents such as octadecene or octadecane and isotriacontane.
- the high boiling point solvent is then heated to 150°C to 200°C and reacted for 20min to 60min to fully react to form indium carboxylate and zinc carboxylate. After that, the reaction system is reduced to below 50° C., and one of a sulfur precursor, a selenium precursor, and a phosphorus precursor are added to avoid InP self-nucleation at high temperatures.
- the II-III-V-VI nanocluster complex solution preferably includes at least one of the InZnPS nanocluster complex solution and the InZnPSe nanocluster complex solution.
- step (2) after mixing the II-III-V-VI nanocluster complex with mild reaction activity and the activator, part of the II-III-V-VI nanocluster complex aggregates and combines to form a seed crystal.
- the multiple precursors are decomposed into quantum dot monomers under the promotion of the activator, and continue to grow on the seed crystals for nucleation growth.
- a single quantum dot nanocrystal may be accompanied by an alloying process of ion exchange, forming alloy quantum dots with uniform composition and uniform size, and there may be a process of atom migration between similar quantum dot nanocrystals, so The size distribution of different quantum dots is more uniform.
- the nucleation growth rate and energy band structure of II-III-V-VI quantum dots can be controlled by the activator, so that the II-III-V-VI nanoclusters are gradually transformed into uniform size and composition, with fewer luminescence defects II-III-V-VI alloy quantum dots.
- the activator mainly activates the II-III-V-VI nanocluster complex at high temperature, and regulates the decomposition of the II-III-V-VI nanocluster complex into monomers, and then the monomers aggregate to the crystals.
- the seed nucleation grows, and the activator has little effect on the activity of the unreacted unreacted unreacted precursor in the precursor solution A and the unreacted unreacted precursor used to adjust the element composition of the alloy quantum dots.
- the activator and II -III-V-VI in order to better control the decomposition of the II-III-V-VI nanocluster complex into quantum dot monomers and then the monomers reassemble on the seed crystals to nucleate and grow, the activator and II -III-V-VI
- the molar ratio of the group III elements in the nanocluster composite solution is 40:1 ⁇ 200:1.
- the molar ratio of the activator to the group III element in the II-III-V-VI nanocluster complex solution is 40:1 to 70:1, or 70:1 to 100:1, Or 40:1 ⁇ 100:1, or 100:1 ⁇ 150:1, or 150:1 ⁇ 200:1.
- the activator includes at least one of alkyl phosphine, alkyl amine, and fatty acid.
- alkyl phosphines may include trioctyl phosphine, tributyl phosphine and other alkyl phosphines having 2 to 10 carbon atoms in the alkyl group.
- alkyl amines may include alkyl amines such as octyl amine and dioctyl amine.
- fatty acids include oleic acid, capric acid, and other fatty acids with 8-22 carbon atoms in the carboxylic acid group.
- the fatty acid is selected from fatty acids with 10-22 carbon atoms in the carboxylic acid group.
- the temperature of the reaction is 250°C to 310°C.
- the reaction time is preferably controlled to be 10 minutes to 30 minutes.
- this application preferably injects the II-III-V-VI nanocluster composite solution and the activator into the solvent. Of course, both can also be used.
- the mixed liquid is injected into the solvent.
- the temperature of the above-mentioned solvent is 250°C to 310°C.
- the solvent includes non-coordinating solvents such as octadecene or high boiling point solvents such as octadecane and isotriacontane.
- step (2) further includes providing precursor solution B, mixing the precursor solution B with the II-III-V-VI nanocluster complex solution and the activator, and reacting to obtain II-III-V- VI alloy quantum dots. Therefore, during the nucleation and growth of quantum dots, the precursor in the precursor solution B can continue to adjust the element composition and nanocrystalline size of the alloy quantum dots to adjust the band structure and fluorescence emission wavelength.
- the precursor solution B includes the first precursor, the second precursor, and the fourth precursor. At least one of the precursors.
- the wavelength of the fluorescence emission peak of the II-III-V-VI alloy quantum dots obtained by the preparation method of the present application is 500nm-580nm, the half-value width is 35nm-40nm, and the quantum efficiency is 40%-50%. %, the average particle size is 3.0nm ⁇ 3.8nm.
- II-III-V-VI alloy quantum dots have uniform size, narrow half-width of fluorescence emission peak, and high quantum efficiency.
- the II-III-V-VI alloy quantum dots include one of InZnPS alloy quantum dots and InZnPSe alloy quantum dots, which can be used in the display field instead of cadmium-containing quantum dots.
- the lattice constant of the II-III-V-VI alloy quantum dots obtained by the preparation method of this application is between the lattice constant of the III-V structure and the lattice constant of the II-VI structure, according to the element
- the composition and ratio are slightly different, but they are closer to the lattice constant of the II-VI structure. Therefore, the II-III-V-VI alloy quantum dots obtained by the preparation method of the present application can be better coated with the shell layer to form quantum dots with better luminescence performance and higher stability.
- step (2) after step (2), the following step is further included: coating the II-III-V-VI alloy quantum dots with a shell layer, and the shell layer is a shell layer containing II-VI compound to obtain -II-III-V-VI alloy quantum dots with shell layer to improve quantum efficiency.
- the II-VI shell layer may include a ZnS shell layer.
- the above-mentioned shell coating process is: mixing II-III-V-VI alloy quantum dots with ligands, precursors containing elements of subgroup II, and precursors containing elements of main group VI A mixed solution is formed, and the mixed solution is reacted to obtain II-III-V-VI alloy quantum dots with a II-VI shell layer.
- the shell coating method of the prior art can also be referred to.
- step (2) coating the II-III-V-VI alloy quantum dots with a shell layer, and the shell layer includes ZnSe, ZnSeS, ZnS, or a combination thereof.
- the molar ratio of the element of subgroup II to the element of main group VI in the mixed solution is 2:1 to 1:2.
- the temperature of the shell coating reaction is 230°C ⁇ 300°C.
- the reaction time can be controlled to be 20 minutes to 60 minutes.
- step (2) reacting II-III-V-VI alloy quantum dots with other nanocluster composites to obtain alloy quantum dots, the other nanocluster composites mentioned above include At least one of II-VI group, III-V group, II-III-V group, II-III-VI group, III-V-VI group nanocluster composite.
- Examples of the aforementioned other nanocluster complexes may include at least one of ZnSe, ZnS, InP, GaP, InAs, AlP, InZnP, GaZnP, InZnS, InZnSe, GaZnS, GaZnSe, InPS, InPSe, GaPS, GaPSe, InAsS, InAsSe, etc.
- ZnSe ZnSe
- ZnS ZnS, ZnS, InP, GaP, InAs, AlP
- InZnP GaZnP
- InZnS, InZnSe GaZnS, GaZnSe
- InPS InPSe
- GaPS GaPSe
- InAsS InAsSeSe, etc.
- the following step is further included after step (2): doping the II-III-V-VI alloy quantum dots with metal elements or non-metal elements to improve quantum efficiency or reduce the half-width of fluorescence emission .
- Metal elements that can be doped include Al, Ga, Tl, Li, Na, K, Rb, Cs, Be, Mg, Sr, Ba, V, Fe, Co, Zr, W, Ti, Mn, Ni, Sn, or In combination, the non-metallic elements that can be doped include B, O, S, Se, Te, F, Cl, Br, I, Si, or a combination thereof.
- the II-III-V-VI alloy quantum dots obtained by the preparation method of the present application can also have a II-VI shell layer, and the lattice constants of the II-III-V-VI alloy quantum dots and the II-VI structure are matched. High, good shell coating effect.
- the wavelength of the fluorescence emission peak of the II-III-V-VI alloy quantum dots with the II-VI shell layer is 510nm ⁇ 600nm
- the half-peak width is 35nm ⁇ 40nm
- the quantum efficiency is 60% ⁇ 70%
- the average particle size The size is 4.5nm ⁇ 5nm.
- II-III-V-VI alloy quantum dots it has better luminescence performance and higher stability.
- This application also provides a photoelectric device, including the II-III-V-VI alloy quantum dots prepared by the above-mentioned preparation method.
- Optoelectronic devices include quantum dot films, quantum dot tubes, quantum dot color films and devices used in combination with LEDs, and quantum dot light-emitting diodes.
- the specific optoelectronic device structure can refer to the prior art. Due to the narrow half-width of fluorescence of the II-III-V-VI alloy quantum dots and high quantum efficiency, the photoelectric device of the present application has high luminous efficiency, which can better meet the requirements of the new display field for the narrow half-width of quantum dots.
- the InZnPS nanocluster composite solution began to lift at the wavelength of 400nm in the UV absorption spectrum, but there was no obvious exciton peak.
- the transmission electron microscope (TEM) showed InZnPS nano The cluster is about 1nm, indicating that InZnPS is not completely crystallized at this time, and it is a nanocluster composite structure.
- the average size of the InZnPS alloy quantum dots is 3.0 nm, with high size uniformity and good morphology.
- the inset of Fig. 3 is a high-resolution electron microscope picture of a single InZnPS alloy quantum dot. Its lattice arrangement is orderly and uniform, showing a good single-phase alloy structure.
- the reaction temperature was lowered to 250°C, and 6mL of octylamine, 1.5mmol Zn(OA) 2 (zinc oleate) and 1.5mmol S-TOP (sulfur-trioctylphosphine) were added to the InZnPS alloy quantum dot solution at 250°C.
- the reaction time is 30 minutes, and the temperature is lowered to room temperature to obtain a product system of InZnPS alloy quantum dots coated with a ZnS shell.
- Two extractions were performed with methanol, and acetone was used for precipitation and centrifugation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, and the fluorescence emission spectroscopy and transmission electron microscopy tests were performed.
- 0.3mmol In(Ac) 3 , 0.3mmol Zn(Ac) 2 , 1.5mmol hexadecanoic acid and 12mL ODE were added to a 100mL three-necked flask, and the three-necked flask was heated to 180°C under N 2 exhaust. After being kept at 180°C for 30 minutes, it was reduced to 30°C, 0.3mmol TMS-P, 0.6mmol S-ODE and 3mmol TBP (tributyl phosphine) were added to form precursor solution A, and then raised to 80°C and reacted for 30 minutes to form InZnPS nano The cluster complex solution is cooled to room temperature for later use.
- TMS-P 0.6mmol S-ODE
- 3mmol TBP tributyl phosphine
- the reaction temperature was adjusted to 270° C., 6 mL of dioctylamine, 3 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS alloy quantum dot solution, and the reaction was carried out at 270° C. for 20 min.
- the product system of InZnPS alloy quantum dots coated with ZnS shell layer is obtained by lowering to room temperature. Two extractions were performed with methanol, and centrifuged with acetone precipitation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- the reaction temperature was adjusted to 300° C., 6 mL of octylamine, 3 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS alloy quantum dot solution, and the reaction was carried out at 300° C. for 40 min.
- the product system of InZnPS alloy quantum dots coated with ZnS shell layer is obtained by lowering to room temperature. Two extractions were performed with methanol, and centrifuged with acetone precipitation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- the reaction temperature was adjusted to 300° C., 4 mL of octylamine, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS alloy quantum dot solution, and the reaction was carried out at 300° C. for 60 min.
- the product system of InZnPS alloy quantum dots coated with ZnS shell layer is obtained by lowering to room temperature. Two extractions were performed with methanol, and centrifuged with acetone precipitation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- precursor solution B is formed.
- the precursor solution B was heated to 300° C., and a mixed solution of InZnPS nanocluster composite solution containing 0.15 mmol In element and 15 mmol oleic acid was injected, and maintained at 300° C. for 20 minutes to obtain an InZnPS alloy quantum dot solution. Fluorescence emission spectroscopy and transmission electron microscopy tests were performed on the InZnPS alloy quantum dot solution. The test results are shown in Table 1.
- 0.3mmol indium myristate, 0.6mmol zinc oleate and 12mL ODE were added to a 100mL three-necked flask, and the three-necked flask was heated to 100°C under N 2 exhaust, and after keeping it at 100°C for 10 minutes, it was reduced to 30 °C, then add 0.15mmol TMS-P, 0.3mmol S-ODE and 3mmol TOP to form precursor solution A, then raise it to 120°C and react for 30min to form InZnPS nanocluster complex solution, which is lowered to room temperature for later use.
- 0.3mmol indium myristate, 0.6mmol zinc myristate and 12mL ODE were added to a 100mL three-necked flask, and the three-necked flask was heated to 100°C under N 2 exhaust and kept at 100°C for 10 min. 30°C.
- Add 0.15mmol TMS-P, 0.3mmol S-ODE and 3mmol TOP to form precursor solution A, and then raise it to 150°C to react for 30 minutes to form InZnPS nanocluster composite solution, which is lowered to room temperature for later use.
- 0.6 mmol of Zn(OA) 2 and 0.6 mmol of S-TBP (sulfur-tributylphosphine) are mixed in a state of N 2 exhaust to form a precursor solution B.
- 15mL of octadecene was added to a 50mL three-necked flask, the three-necked flask was heated to 300 °C under the state of N 2 exhaust, the precursor solution B, the InZnPS nanocluster composite solution containing 0.15mmol In element and 15mmol of two
- the mixed solution of octylamine was kept at 300°C for 30 minutes to obtain an InZnPS alloy quantum dot solution. Fluorescence emission spectroscopy and transmission electron microscopy tests were performed on the InZnPS alloy quantum dot solution. The test results are shown in Table 1.
- the reaction temperature was lowered to 270°C, and 6mL capric acid, 1.5mmol Zn(OA) 2 and 1.5mmol S-TOP were added to the InZnPS alloy quantum dot solution, and reacted at 270°C for 30min.
- the product system of InZnPS alloy quantum dots coated with ZnS shell layer is obtained by lowering to room temperature. Two extractions were performed with methanol, and centrifuged with acetone precipitation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- 0.3mmol indium hexadecanoate, 0.6mmol zinc oleate and 12mL ODE were added to a 100mL three-necked flask, and the three-necked flask was heated to 100°C under N 2 exhaust, and after keeping it at 100°C for 10 minutes, it was reduced to 30 °C, then add 0.15mmol TMS-P, 0.3mmol S-ODE and 3mmol TOP to form precursor solution A, and then raise to 150°C to react for 30min to form InZnPS nanocluster complex solution, then cool to room temperature for later use.
- a precursor solution B 15mL of octadecene was added to a 50mL three-necked flask, the three-necked flask was heated to 300°C under N 2 exhaust, and the precursor solution B, the InZnPS nanocluster composite solution containing 0.15mmol In element and 15mmol three After the mixed solution of octylphosphine is kept at 300°C for 30 minutes, an InZnPS alloy quantum dot solution is obtained. Fluorescence emission spectroscopy and transmission electron microscopy tests were performed on the InZnPS alloy quantum dot solution. The test results are shown in Table 1.
- the reaction temperature was reduced to 250°C, and 2 mL of capric acid, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS alloy quantum dot solution, and the reaction was carried out at 250°C for 30 min.
- the product system of InZnPS alloy quantum dots coated with ZnS shell layer is obtained by lowering to room temperature. Two extractions were performed with methanol, and centrifuged with acetone precipitation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- 0.3mmol indium hexadecanoate, 0.6mmol zinc hexadecanoate and 12mL ODE were added to a 100mL three-necked flask, and the three-necked flask was heated to 100°C under N 2 exhaust and kept at 100°C for 10 min.
- 0.15mmol TMS-P, 0.3mmol Se-ODE suspension and 3mmol TOP were added to form precursor solution A, which was then raised to 50°C to react for 30 minutes to form InZnPSe nanocluster complex solution, which was lowered to room temperature for later use.
- the reaction temperature was reduced to 230°C, and 6 mL of octylamine, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPSe alloy solution, and the reaction was carried out at 230°C for 30 min.
- the product system of InZnPSe alloy quantum dots coated with ZnS shell layer is obtained by lowering to room temperature. Two extractions were performed with methanol, and centrifuged with acetone precipitation, and the precipitate was dissolved in toluene to obtain a quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- the reaction temperature was lowered to 250° C., 6 mL of octylamine, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS solution, and the reaction was carried out at 250° C. for 30 min.
- the product system containing InZnPS/ZnS was obtained by lowering to room temperature. Two extractions were performed with methanol, precipitated with acetone and centrifuged, and the precipitate was dissolved in toluene to obtain an InZnPS/ZnS quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- the reaction temperature was lowered to 250° C., 6 mL of octylamine, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InP quantum dot solution, and the reaction was carried out at 250° C. for 30 min.
- the product system containing InP/ZnS was obtained by lowering to room temperature. Extract twice with methanol, precipitate with acetone and centrifuge, and dissolve the precipitate in toluene to obtain an InP/ZnS quantum dot solution, and perform fluorescence emission spectroscopy and transmission electron microscopy tests.
- the test results are shown in Table 3, and the element composition test results are specific See Table 2.
- the reaction temperature was lowered to 250° C., 6 mL of octylamine, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS solution, and the reaction was carried out at 250° C. for 30 min.
- the product system containing InZnPS/ZnS was obtained by lowering to room temperature. Two extractions were performed with methanol, precipitated with acetone and centrifuged, and the precipitate was dissolved in toluene to obtain an InZnPS/ZnS quantum dot solution, which was subjected to fluorescence emission spectroscopy and transmission electron microscopy tests. The test results are shown in Table 3.
- the reaction temperature was lowered to 250° C., 6 mL of octylamine, 1.5 mmol Zn(OA) 2 and 1.5 mmol S-TOP were added to the InZnPS solution, and the reaction was carried out at 250° C. for 30 min.
- the product system containing InZnPS/ZnS was obtained by lowering to room temperature. Extracted twice with methanol, precipitated with acetone and centrifuged, and dissolved the precipitate in toluene to obtain an InZnPS/ZnS quantum dot solution, which was tested by fluorescence emission spectroscopy and transmission electron microscopy, as shown in Table 3.
- Figure 4 is used to characterize and analyze the nanocrystalline form and crystal structure of the InZnPS quantum dots obtained in Examples 1 to 2 and Comparative Examples 1 to 4.
- the black straight line and the dotted line are the standard card peaks of the sphalerite structure of InP and ZnS respectively.
- the data in Table 2 is obtained through ICP-AES (Inductively Coupled Plasma Emission Spectroscopy) test, which lists the molar ratios of In, Zn, P, and S elements, which are used to characterize and analyze Examples 1 to 2 and Comparative Examples 1 to 4 The elemental composition analysis of the obtained InZnPS quantum dots.
- ICP-AES Inductively Coupled Plasma Emission Spectroscopy
- the peak intensities of the three characteristic peaks are relatively high, and they are all single peaks with high symmetry, and the positions of the three peaks of the InZnPS alloy quantum dots are respectively regular
- the ground is between the standard peaks of InP and ZnS, such as the main peak (27.4 degrees) between the main peak of InP (26.3 degrees) and the main peak of ZnS (28.6 degrees).
- the peak position in the XRD spectrum characterizes the structure of the bulk material, and the peak intensity characterizes the degree of crystallization of the bulk material.
- the single crystal structure will reflect a single peak structure, and the peak intensity will be relatively high.
- Example 1 shows that the InZnPS alloy quantum dots of Example 1 also have a zinc blende structure, and the degree of crystallization is relatively high, the alloying is relatively complete, and the InZnPS alloy structure with uniform element composition and uniform structure is reflected.
- the elemental composition tested by ICP-AES is In 0.2 Zn 0.45 P 0.15 S 0.2 , which is similar to In 0.22 Zn 0.45 P 0.11 S 0.22 of the precursors added in the synthesis, which shows that the technical solution of this application has an effect on the elemental composition of alloy quantum dots. Well regulated.
- the XRD spectrum of the InZnPS alloy quantum dots of Example 2 also shows a single peak with relatively high symmetry, and the main peak position is slightly shifted (27.7 degrees), which reflects the deviation of the peak position caused by the different element composition of Example 1.
- the elemental composition tested by ICP-AES is In 0.22 Zn 0.2 P 0.18 S 0.4 , which is similar to In 0.2 Zn 0.2 P 0.2 S 0.4 of the precursors added in the synthesis, which shows that the technical solution of this application has an effect on the elemental composition of alloy quantum dots.
- Comparative Example 1 is InZnPS quantum dots prepared by mixing In, Zn, P, and S precursors at low temperature and raising to high temperature.
- the main peak in the XRD spectrum is a single peak tailed on the right side, which is difficult to judge, but the second peak is reflected Obvious mixed peak structure (45.9 and 47.2 degrees), compared with InP sub-peak (43.6 degrees) and ZnS sub-peak (47.5 degrees), shows that its structure is closer to the uneven InZnPS/ZnS core-shell structure, due to the comparative example
- the element composition tested by ICP-AES is In 0.4 Zn 0.2 P 0.3 S 0.1 , which is quite different from the addition ratio of the precursors In 0.22 Zn 0.45 P 0.11 S 0.22 in the synthesis, and the content of Zn and S elements is less, which also reflects The method of Comparative Example 1 is more difficult to dope Zn and S into the InP lattice.
- Comparative Example 2 is InP/ZnS core-shell quantum dots.
- the peak intensity in the XRD spectrum is weak and is reflected in a mixed peak structure. This verifies that InP/ZnS is a core-shell quantum dot and the two-phase crystal structure of InP and ZnS is independent. And the degree of crystallization is low.
- the element composition tested by ICP-AES is In 0.3 Zn 0.25 P 0.2 S 0.25 . Although the content of Zn and S elements has increased, Zn and S are distributed in the shell layer and cannot form an alloy structure.
- Comparative example 3 is the InZnPS quantum dot prepared by the method of injecting the P precursor into the In, Zn, S mixed precursor at high temperature.
- the peak intensity in the XRD spectrum is lower, and the main peak position is closer to the peak position of the InP standard peak. It shows that the InZnPS quantum dots of Comparative Example 3 are closer to the InP/ZnS structure.
- the element composition tested by ICP-AES is In 0.4 Zn 0.1 P 0.4 S 0.1 , which is quite different from the addition ratio of the precursors In 0.28 Zn 0.28 P 0.28 S 0.16 in the synthesis, and the content of Zn and S elements is less, which also reflects Comparative Example 3 is difficult to dope Zn and S into the InP lattice.
- Comparative Example 4 is an InZnPS quantum dot prepared by first forming ZnS quantum dots as seed crystals, and then injecting In and P mixed precursors.
- the peak intensity in the XRD spectrum is lower, the main peak is close to the mixed peak structure and the peak position is more
- the peak position close to the ZnS standard peak indicates that the InZnPS quantum dots of Comparative Example 4 are closer to the ZnS/InP structure.
- the elemental composition tested by ICP-AES is In 0.1 Zn 0.5 P 0.1 S 0.3 .
- the In content is less, which shows that the method is difficult to control the elements well. composition.
- the InZnPS quantum dots prepared by the InZnPS nanocluster composite in this application have an alloy structure, and the composition element distribution is relatively uniform, and the crystallization degree is high. Compared with the various quantum dots prepared in the comparative example, the composition element distribution is quite different Among them, the structure obtained in Comparative Example 4 is more like a core-shell structure.
- Comparative Example 2 is InP quantum dots, which have too many intrinsic InP defects, weak fluorescence emission, and low quantum efficiency, so there is no fluorescence spectrum test and quantum efficiency results.
- the fluorescence emission peak wavelength of the II-III-V-VI alloy quantum dots prepared in the examples of this application is 500nm ⁇ 580nm, and its half-peak width is narrower than that of the comparative example, which is 35nm ⁇ 40nm.
- the quantum efficiency is higher than that of the comparative example.
- the ratio is 40%-50%, which can meet the requirements of the new display field for the narrow half-width of quantum dots.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Luminescent Compositions (AREA)
Abstract
本申请涉及一种Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法及其应用,制备方法包括:(1)将含第Ⅱ副族元素的第一前驱体、含第Ⅲ主族元素的第二前驱体、含第Ⅴ主族元素的第三前驱体、含第Ⅵ主族元素的第四前驱体和配体混合形成前驱体溶液A,将前驱体溶液A加热,以使前驱体溶液A反应形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液;(2)将Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与活化剂混合,反应得到Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。本申请将活性不同的四种前驱体反应形成反应活性温和的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物后再与活化剂混合,通过活化剂调控Ⅱ-Ⅲ-Ⅴ-Ⅵ量子点的成核生长速度以及能带结构,从而得到尺寸均一和组分均匀、发光缺陷少的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点,该Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点荧光半峰宽窄、量子效率高,可更好地应用于光电器件中。
Description
本申请涉及量子点技术领域,特别是涉及Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法及其应用。
在InP等Ⅲ-Ⅴ量子点合成中,由于含P等的V族元素前体活性过强,易导致不均匀的晶体生长、较宽的Ⅲ-Ⅴ量子点尺寸分布和较宽的荧光发射峰。另外,由于无辐射激子弛豫过程和不饱和悬键等原因,易造成本征Ⅲ-Ⅴ量子点的量子效率仅为1%左右。为了提高Ⅲ-Ⅴ量子点的荧光量子产率,可在Ⅲ-Ⅴ量子点核外包覆一层带隙较宽的Ⅱ-Ⅵ元素壳层,形成Ⅲ-Ⅴ/Ⅱ-Ⅵ核壳量子点,以使Ⅲ-Ⅴ/Ⅱ-Ⅵ核壳量子点的量子效率提升至40%左右。但是,该方法制备得到的Ⅲ-Ⅴ/Ⅱ-Ⅵ核壳量子点具有尺寸不均一、荧光发射峰半峰宽大和量子效率仍然较低等缺点。
发明内容
基于此,有必要针对上述问题,提供一种Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法及其应用;所述制备方法以反应活性温和的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物作为多元前驱体,与活化剂混合后,通过活化剂调控Ⅱ-Ⅲ-Ⅴ-Ⅵ量子点的成核生长速度以及能带结构,得到元素组成和尺寸均较均一的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
一种Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,包括:
(1)将含第Ⅱ副族元素的第一前驱体、含第Ⅲ主族元素的第二前驱体、含第 Ⅴ主族元素的第三前驱体、含第Ⅵ主族元素的第四前驱体和配体混合形成前驱体溶液A,将所述前驱体溶液A加热,以使所述前驱体溶液A反应形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液;
(2)将所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与活化剂混合并加热,反应得到Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
进一步地,所述前驱体溶液A中,第Ⅴ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~1:1。
进一步地,所述前驱体溶液A中,第Ⅵ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~2:1。
进一步地,所述配体包括三辛基膦、三丁基膦、三辛基胺、二辛基胺、辛胺中的至少一种。
进一步地,所述前驱体溶液A中,所述配体与第Ⅲ主族元素的摩尔比为5:1~20:1。
进一步地,步骤(1)中所述前驱体溶液A的加热温度为50℃~150℃。
进一步地,所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液包括InZnPS纳米团簇复合物溶液、InZnPSe纳米团簇复合物溶液中的至少一种。
进一步地,所述活化剂包括烷基膦、烷基胺、脂肪酸中的至少一种。
进一步地,所述活化剂与所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液中的第Ⅲ主族元素的摩尔比为40:1~200:1。
进一步地,步骤(2)中所述加热的温度为250℃~310℃。
进一步地,步骤(2)中,提供溶剂,将所述溶剂的温度加热至250℃~310℃,再将所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与所述活化剂注入所述溶剂中进行反应。
进一步地,步骤(2)还包括提供前驱体溶液B,将所述前驱体溶液B与所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液、所述活化剂混合,反应得到Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点;
其中,所述前驱体溶液B包括所述第一前驱体、所述第二前驱体、所述第四前驱体中的至少一种。
进一步地,在步骤(2)之后还包括以下步骤:
对所述Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行壳层包覆,所述壳层为含有Ⅱ-Ⅵ化合物的壳层,得到具有Ⅱ-Ⅵ壳层的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
根据本申请的又一方面,提供了一种光电器件,包括所述的制备方法制备的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
本申请的制备方法中,反应活性不同的四种前驱体反应形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物,该纳米团簇复合物作为多元前驱体,相较于一元前驱体,尤其是高活性的含第Ⅴ主族元素的前驱体,其反应活性更为温和。所以,在将该纳米团簇复合物与活性剂混合后,纳米团簇复合物部分聚集结合成为晶种,其余作为多元前驱体在活化剂的促进作用下分解为量子点单体,并继续生长至晶种上以进行成核生长。与此同时,单个量子点纳米晶中可能还存在离子交换的合金化过程,以及相近的量子点纳米晶之间可能还存在原子迁移过程。从而,通过活化剂调控Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的成核生长速度以及能带结构,得到尺寸和组分均匀、发光缺陷少的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。该Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的荧光发射峰的波长为500nm~580nm,半峰宽为35nm~40nm,量子效率为40%~50%。再将该Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行Ⅱ-Ⅵ壳层包覆后,其荧光发射峰的波长为510nm~600nm,半峰宽为35nm~40nm,量子效率提升至60%~70%,该Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的荧光半峰宽窄,量子效率高,可更好地应用于光电 器件中以满足新型显示领域对于量子点窄半峰宽的要求。
图1为实施例1的InZnPS纳米团簇复合物溶液和对比例1的InZnPS量子点合成中间过程的紫外吸收谱图;
图2为实施例1的InZnPS纳米团簇复合物溶液的透射电镜图片;
图3为实施例1的InZnPS合金量子点的透射电镜图片,其中插图为单个InZnPS合金量子点的高分辨率电镜图片;
图4为实施例1~2和对比例1~4的InZnPS量子点的X射线衍射(XRD)图谱。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本申请制备方法中“摩尔比”指的是原料状态时的物质的 量之比,并非反应过程中的物质的量之比。另外,本申请中将物质a加入物质b中反应,指的是通过一定加料方式使两种物质能够相互接触从而发生物理或化学反应,该加料方式可以是将物质a加入至放置有b物质的容器中,或将物质b加入至放置有物质a的容器中,或将物质a和物质b同时加入同一容器中,除非特殊说明仅指哪一种加料方式。
本申请中的任何原理解释属于理论推测,不得因此限制本申请的保护范围。
以下将对本申请提供的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法及其应用作进一步说明。其中,Ⅱ-Ⅲ-Ⅴ-Ⅵ的元素顺序仅表示Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的元素组成,不表示Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点结构次序。
本申请将活性不同的四种前驱体反应形成反应活性温和的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物,该纳米团簇复合物作为前驱体与活化剂混合后,可以通过活化剂调控Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的成核生长速度以及能带结构,从而得到尺寸和组分均匀、发光缺陷少的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点,该Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点荧光发射峰半峰宽窄、量子效率高,可更好地应用于光电器件中以满足新型显示领域对于量子点窄半峰宽的要求。
本申请提供的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,包括:
(1)将含第Ⅱ副族元素的第一前驱体、含第Ⅲ主族元素的第二前驱体、含第Ⅴ主族元素的第三前驱体、含第Ⅵ主族元素的第四前驱体和配体混合形成前驱体溶液A,将所述前驱体溶液A加热,以使所述前驱体溶液A反应形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液;
(2)将上述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与活化剂混合并加热,反应得到Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
上述步骤(1)中,前驱体溶液A在加热过程中可进行初步反应,包括活性相 对高的第三前驱体与第二前驱体初步反应成核形成Ⅲ-Ⅴ量子点单体,第一前驱体、第四前驱体和配体配位在Ⅲ-Ⅴ单体表面,整体形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物。其中,配体可以包围在纳米团簇复合物的表面,提高其分散度和抑制该纳米团簇复合物之间进一步结合,从而得到尺寸均一的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物。本申请中,量子点单体(monomer)是指处于前驱体化合物和量子点核之间的中间状态的物质,可以认为是前驱体化合物初步反应的产物,和本领域技术人员的通常理解相同。纳米团簇复合物指的是尺寸小于2nm的半导体化合物,或者尺寸小于等于1nm的半导体化合物。
另外,Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物中,活性相对高的第Ⅴ主族元素(即第三前驱体)被消耗形成Ⅲ-Ⅴ量子点单体的形式存在于Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物中,所以,该纳米团簇复合物作为多元前驱体时,其反应活性相对于一元前驱体更为温和,稳定性更好,可以大规模制备后长时间储存,放置60天仍可保证其稳定使用,在放大生产中重复性更好。
需要说明的是,上述“活性相对高的第Ⅴ主族元素”是指含第Ⅴ主族元素的第三前驱体相对于含第VI主族元素的第四前驱体活性较高。
在一些实施例中,含第III主族元素的第二前驱体相对于含第II副族元素的第一前驱体活性较高,整体上,含第Ⅴ主族元素的第三前驱体的活性是步骤(1)中所有前驱体中活性最高的。
在一些实施例中,步骤(1)中将含第Ⅱ副族元素的第一前驱体、含第Ⅲ主族元素的第二前驱体、含第Ⅴ主族元素的第三前驱体、含第Ⅵ主族元素的第四前驱体、配体和溶剂混合形成前驱体溶液A,上述溶剂包括十八烯等非配位溶剂或十八烷、异三十烷等高沸点溶剂。步骤(1)中的溶剂和下文步骤(2)中的溶剂相同或不同。
在一些实施例中,上述前驱体溶液A的加热温度为50℃~150℃。在该加热温度下,四种前驱体参与形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物的反应速度接近,Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物形成缓慢,使得该纳米团簇复合物中组成元素分布较为均一,以便于在后续成核生长时形成尺寸和组分均匀、发光缺陷少的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。优选的,控制前驱体溶液A的加热时间为20分钟~60分钟。
在一些实施例中,上所述前驱体溶液A的加热温度为30℃~200℃,或者30℃~50℃,或者30~100℃,或者50~100℃。
为了更好地形成组成成分均一的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物,需要控制前驱体溶液A中第Ⅴ主族元素与第Ⅵ主族元素的用量比例。在一些实施例中,前驱体溶液A中,第Ⅴ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~1:1,第Ⅵ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~2:1。在一些实施例中,前驱体溶液A中,第Ⅴ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~1:2,第Ⅵ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~1:1。在一些实施例中,前驱体溶液A中,第Ⅴ主族元素与第Ⅲ主族元素的摩尔比为1:2~1:1,第Ⅵ主族元素与第Ⅲ主族元素的摩尔比为1:1~2:1。
在一些实施例中,第一前驱体中的第Ⅱ副族元素主要起辅助调控作用,可能可以抑制III-V量子点单体的活性,避免其进一步成核生长,以得到尺寸合适的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物,为了使前驱体溶液A更好地形成组成成分均匀和尺寸均一的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物,第Ⅱ副族元素与第Ⅲ主族元素的摩尔比为0.25:1~2:1。
在一些实施例中,前驱体溶液A中,第Ⅱ副族元素与第Ⅲ主族元素的摩尔比为0.25:1~1:1。在一些实施例中,前驱体溶液A中,第Ⅱ副族元素与第Ⅲ主族 元素的摩尔比为1:1~2:1。
在一些实施例中,在形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物过程中,为了更好地抑制该纳米团簇复合物进一步成核生长,前驱体溶液A中,配体与第Ⅲ主族元素的摩尔比为5:1~20:1,上述配体包括烷基膦、烷基胺、苯基膦、苯基胺中的至少一种;或者配体包括三辛基膦、三丁基膦、三辛基胺、二辛基胺、辛胺中的至少一种。当步骤(1)中配体的加入量过多,将会导致Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物难以形成。
在一些实施例中,前驱体溶液A中,配体与第Ⅲ主族元素的摩尔比为5:1~10:1,或10:1~15:1,或15:1~20:1。
本申请中,第一前驱体包括锌前驱体和镉前驱体,考虑到镉存在环保政策限制,所以,第一前驱体优选为锌前驱体,锌前驱体包括醋酸锌、丙酸锌、氯化锌、溴化锌、碘化锌、羧酸锌中的至少一种,上述羧酸锌的羧酸根的碳链长度大于等于12。
在一些实施例中,第二前驱体包括铟前驱体,铟前驱体包括醋酸铟、氯化铟、溴化铟、碘化铟、乙酰丙酮铟、羧酸铟中的至少一种,上述羧酸铟的羧酸根的碳链长度大于等于12。
在一些实施例中,第三前驱体包括磷前驱体,磷前驱体包括三(三甲基硅)磷、三(三乙基硅)磷、三(二乙基胺)磷、三(二甲基胺)磷中的至少一种。
在一些实施例中,第四前驱体包括硫前驱体、硒前驱体中的一种,硫前驱体包括硫-十八烯、三(三甲基硅)硫中的至少一种,硒前驱体包括硒-十八烯、三(三甲基硅)硒中的至少一种。上述硫前驱体和硒前驱体均为高活性的硫前驱体和硒前驱体,在合金量子点成核生长时可以有更多的硫或硒元素参与量子点成核生长,对硫、硒元素的有效掺杂和合金结构的形成有促进作用。
在一些实施例中,考虑到采用羧酸锌和羧酸铟作为前驱体时,其在十八烯等溶剂中的溶解度更好,且没有羧酸等副产物(例如,醋酸)生成,所以,上述锌前驱体优选为羧酸锌,上述铟前驱体优选为羧酸铟。
在一些实施例中,也可以将醋酸锌、醋酸铟等作为前驱体溶于溶剂中,再与十二酸、十四酸、十六酸、十八酸、油酸等碳链长度大于等于12的长链羧酸反应,形成长链羧酸锌和长链羧酸铟。
具体的,步骤(1)若以醋酸铟、氯化铟、溴化铟、碘化铟、乙酰丙酮铟等作为铟前驱体,醋酸锌、丙酸锌、氯化锌、溴化锌、碘化锌等作为锌前驱体时,其方法为:将铟前驱体、锌前驱体和长链羧酸溶于溶剂中,上述溶剂包括十八烯等非配位溶剂或十八烷、异三十烷等高沸点溶剂,然后升温至150℃~200℃,反应20min~60min,以充分反应形成羧酸铟和羧酸锌。之后,将反应体系降至50℃以下,加入硫前驱体、硒前驱体中的一种和磷前驱体,以避免在高温下发生InP自成核。
所以,Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液优选包括InZnPS纳米团簇复合物溶液、InZnPSe纳米团簇复合物溶液中的至少一种。
步骤(2)中,将反应活性温和的Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物与活化剂混合后,Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物部分聚集结合成为晶种,其余作为多元前驱体在活化剂的促进作用下分解为量子点单体,并继续生长至晶种上以进行成核生长。与此同时,单个量子点纳米晶中可能伴随着离子交换的合金化过程,形成组成均一和尺寸均匀的合金量子点,以及,在相近的量子点纳米晶之间可能存在有原子迁移过程,让不同量子点的尺寸分布更为均一。从而,通过活化剂可以调控Ⅱ-Ⅲ-Ⅴ-Ⅵ量子点的成核生长速度以及能带结构,使Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇逐渐转化为尺寸均一和组分均匀、发光缺陷少的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
具体的,活化剂主要在高温下对Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物进行活化,调控Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物分解为单体,进而单体再聚集到晶种上成核生长,并且活化剂对前驱体溶液A中未反应的一元前驱体以及用于调节合金量子点的元素组成而补充添加的一元前驱体的活性影响较小。所以,在一些实施例中,为了更好地控制Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物分解为量子点单体进而单体再聚集到晶种上成核生长的过程,活化剂与Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液中的第Ⅲ主族元素的摩尔比为40:1~200:1。
在一些实施例中,活化剂与Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液中的第Ⅲ主族元素的摩尔比为40:1~70:1,或70:1~100:1,或40:1~100:1,或100:1~150:1,或150:1~200:1。
在一些实施例中,活化剂包括烷基膦、烷基胺、脂肪酸中的至少一种。烷基膦的实例可以包括三辛基膦、三丁基膦等烷基的碳原子个数为2~10的烷基膦,烷基胺的实例可以包括辛胺、二辛基胺等烷基的碳原子个数为2~10的烷基胺,脂肪酸的实例可以包括油酸、癸酸等羧酸基团的碳原子个数为8~22的脂肪酸。
在一些实施例中,脂肪酸选自羧酸基团的碳原子个数为10~22的脂肪酸。
在一些实施例中,步骤(2)中,反应的温度为250℃~310℃。在该反应温度下,优选控制反应时间为10min~30min。考虑到热注入法合成量子点具有迅速成核生长及合金化过程的优点,本申请优选将Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与活化剂注入溶剂中,当然也可将二者的混合液注入溶剂中,上述溶剂的温度为250℃~310℃,溶剂包括十八烯等非配位溶剂或十八烷、异三十烷等高沸点溶剂。
在一些实施例中,步骤(2)还包括提供前驱体溶液B,使前驱体溶液B与Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液、活化剂混合,反应得到Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。从而,在量子点成核生长时,前驱体溶液B中的前驱体可以继续调节合金 量子点的元素组成和纳米晶尺寸,以调控能带结构和荧光发射波长。
考虑到第三前驱体活性太高,不能单独与Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液、活化剂混合反应,所以前驱体溶液B包括第一前驱体、第二前驱体、第四前驱体中的至少一种。
在一些实施例中,通过本申请的制备方法得到的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的荧光发射峰的波长为500nm~580nm,半峰宽为35nm~40nm,量子效率为40%~50%,颗粒平均尺寸为3.0nm~3.8nm。Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点尺寸均一,荧光发射峰半峰宽窄,量子效率高。
在一些实施例中,Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点包括InZnPS合金量子点、InZnPSe合金量子点中的一种,可以代替含镉量子点应用于显示领域。
在一些实施例中,本申请的制备方法得到的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的晶格常数在Ⅲ-Ⅴ结构的晶格常数和Ⅱ-Ⅵ结构的晶格常数之间,根据元素组成和比例不同略有差别,但与Ⅱ-Ⅵ结构的晶格常数更加接近。所以,本申请的制备方法得到的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点可以更好地进行壳层包覆,以形成发光性能更好、稳定性更高的量子点。
在一些实施例中,在步骤(2)之后还包括以下步骤:对Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行壳层包覆,上述壳层为含有Ⅱ-Ⅵ化合物的壳层,得到具有Ⅱ-Ⅵ壳层的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点,以提高量子效率。在一些实施例中,Ⅱ-Ⅵ壳层可以包括ZnS壳层。
在一些实施例中,上述壳层包覆的过程为:将Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点与配体、含第Ⅱ副族元素的前驱体、含第Ⅵ主族元素的前驱体混合形成混合液,混合液经反应得到含具有Ⅱ-Ⅵ壳层的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。除了前述包覆方法外,也可以参考现有技术的壳层包覆方法。
在一些实施例中,在步骤(2)之后还包括以下步骤:对Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行壳层包覆,上述壳层包括ZnSe、ZnSeS、ZnS、或其组合。
在一些实施例中,混合液中第Ⅱ副族元素和第Ⅵ主族元素的摩尔比为2:1~1:2。
在一些实施例中,由于高温下易出现壳层外延生长过快,导致壳层元素分布不均匀的情况,所以,为了形成元素分布均匀的壳层包覆,上述壳层包覆反应的温度为230℃~300℃。在该反应温度下,反应时间可控制为20分钟~60分钟。
在一些实施例中,在步骤(2)之后还包括以下步骤:将Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点和其它纳米团簇复合物反应,得到合金量子点,上述其它纳米团簇复合物包括II-VI族、III-V族、II-III-V族、II-III-VI族、III-V-VI族纳米团簇复合物中的至少一种。
上述其它纳米团簇复合物的实例可以包括ZnSe、ZnS、InP、GaP、InAs、AlP、InZnP、GaZnP、InZnS、InZnSe、GaZnS、GaZnSe、InPS、InPSe、GaPS、GaPSe、InAsS、InAsSe等中的至少一种。
在一些实施例中,在步骤(2)之后还包括以下步骤:对Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行金属元素或者非金属元素的掺杂,以提高量子效率或者降低荧光发射半峰宽。可以掺杂的金属元素包括Al、Ga、Tl、Li、Na、K、Rb、Cs、Be、Mg、Sr、Ba、V、Fe、Co、Zr、W、Ti、Mn、Ni、Sn、或其组合,可以掺杂的非金属元素包括B、O、S、Se、Te、F、Cl、Br、I、Si、或其组合。
所以,本申请的制备方法得到的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点还可以具有Ⅱ-Ⅵ壳层,且Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点与Ⅱ-Ⅵ结构的晶格常数匹配度高,壳层包覆效果好。具体的,具有Ⅱ-Ⅵ壳层的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的荧光发射峰的波长为 510nm~600nm,半峰宽为35nm~40nm,量子效率为60%~70%,颗粒平均尺寸为4.5nm~5nm。与Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点相比发光性能更好、稳定性更高。
本申请还提供一种光电器件,包括上述的制备方法制备的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。光电器件包括量子点膜、量子点管、量子点彩膜及其与LED结合使用的器件、量子点发光二极管。具体的光电器件结构可以参考现有技术。由于Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的荧光半峰宽窄,量子效率高,因此,本申请光电器件的发光效率高,可更好地满足新型显示领域对于量子点窄半峰宽的要求。
以下,将通过以下具体实施例对Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法及其应用做进一步的说明。
实施例1:
将0.3mmol In(Ac)
3(醋酸铟)、0.6mmol Zn(Ac)
2(醋酸锌)、2.1mmol十六酸和12mL ODE(十八烯)加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,降至30℃,再加入0.15mmol TMS-P(三(三甲基硅)磷)、0.3mmol S-ODE和1.5mmol TOP(三辛基膦)形成前驱体溶液A,进而升至50℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。如图1所示,该InZnPS纳米团簇复合物溶液在紫外吸收谱图中400nm波长处开始抬起,但无明显激子峰,如图2所示,透射电镜图(TEM)中显示InZnPS纳米团簇约为1nm,说明此时InZnPS晶化不完全,为纳米团簇复合物结构。
将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状态下加热至300℃,注入含0.15mmol In元素的InZnPS纳米团簇复合物溶液和6mmol辛胺的混合液,在300℃保持10min后,得到InZnPS合金量子点溶液。对InZnPS 合金量子点溶液进行荧光发射光谱和透射电镜测试,测试所得数据具体见表1,其元素组成测试结果具体见表2。如图3透射电镜图片所示,该InZnPS合金量子点的平均尺寸为3.0nm,且尺寸均一度高,形貌较好。图3插图为单个InZnPS合金量子点的高分辨率电镜图片,其晶格排布有序均一,体现出良好的单相合金结构。
将反应温度降至250℃,向InZnPS合金量子点溶液中加入6mL辛胺、1.5mmol Zn(OA)
2(油酸锌)和1.5mmol S-TOP(硫-三辛基膦),在250℃下反应30min,降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,并进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
实施例2:
将0.3mmol In(Ac)
3、0.3mmol Zn(Ac)
2、1.5mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,降至30℃,再加入0.3mmol TMS-P、0.6mmol S-ODE和3mmol TBP(三丁基膦)形成前驱体溶液A,进而升至80℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。
将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状态下加热至250℃,注入含0.15mmol In元素的InZnPS纳米团簇复合物溶液和15mmol二辛基胺的混合液,在250℃保持10min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1,其元素组成测试结果具体见表2。
将反应温度调至270℃,向InZnPS合金量子点溶液中加入6mL二辛基胺、3mmol Zn(OA)
2和1.5mmol S-TOP,在270℃下反应20min。降至室温得到包覆 有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
实施例3:
将0.3mmol In(Ac)
3、0.075mmol Zn(Ac)
2、1.05mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,降至30℃,再加入0.06mmol TMS-P、0.06mmol S-TMS(三(三甲基硅)硫)和4.5mmol TOA(三辛基胺)形成前驱体溶液A,进而升至50℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。
将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状态下加热至270℃,注入含0.1mmol In元素的InZnPS纳米团簇复合物溶液和15mmol油酸的混合液,在270℃保持10min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度调至300℃,向InZnPS合金量子点溶液中加入6mL辛胺、3mmol Zn(OA)
2和1.5mmol S-TOP,在300℃下反应40min。降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
实施例4:
将0.3mmol In(Ac)
3、0.6mmol Zn(Ac)
2、2.1mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,降至30℃,再加入0.15mmol TMS-P、0.3mmol S-TMS和6mmol二辛基胺形成前驱体溶液A,进而升至50℃反应30min,形成InZnPS纳米团簇 复合物溶液,降至室温备用。
将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状态下加热至310℃,注入含0.05mmol In元素的InZnPS纳米团簇复合物溶液和10mmol癸酸的混合液,在310℃保持30min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度调至300℃,向InZnPS合金量子点溶液中加入4mL辛胺、1.5mmol Zn(OA)
2和1.5mmol S-TOP,在300℃下反应60min。降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
实施例5:
将0.3mmol In(Ac)
3、0.6mmol Zn(Ac)
2、2.1mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,降至30℃。加入0.15mmol TMS-P、0.3mmol S-TMS和3mmol辛胺形成前驱体溶液A,进而升至120℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。
将0.2mmol In(Ac)
3、0.2mmol Zn(Ac)
2、1.0mmol十八酸和20mL十八烯加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,形成前驱体溶液B。将该前驱体溶液B升温至300℃,注入含0.15mmol In元素的InZnPS纳米团簇复合物溶液和15mmol油酸的混合液,在300℃保持20min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度保持在300℃,向InZnPS合金量子点溶液中加入6mL油酸、 1.5mmol Zn(OA)
2和3mmol S-TOP,在300℃下反应30min。降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,具体见表3。
实施例6:
将0.3mmol十四酸铟、0.6mmol油酸锌和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至100℃,在100℃保持10min后,降至30℃,再加入0.15mmol TMS-P、0.3mmol S-ODE和3mmol TOP形成前驱体溶液A,进而升至120℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。
将0.4mmol In(Ac)
3、0.3mmol Zn(Ac)
2、1.8mmol十八酸和20mL十八烯加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,形成前驱体溶液B。将该前驱体溶液B升温至300℃,注入含0.15mmol In元素的InZnPS纳米团簇复合物溶液和15mmol油酸的混合液,在300℃保持20min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度保持在300℃,向InZnPS合金量子点溶液中加入6mL油酸、1.5mmol Zn(OA)
2和3mmol S-TOP,在300℃下反应30min。降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,具体见表3。
实施例7:
将0.3mmol十四酸铟、0.6mmol十四酸锌和12mL ODE加入到100mL三 口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至100℃,在100℃保持10min后,降至30℃。加入0.15mmol TMS-P、0.3mmol S-ODE和3mmol TOP形成前驱体溶液A,进而升至150℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。
将0.6mmol Zn(OA)
2、0.6mmol S-TBP(硫-三丁基膦)在N
2排气状态下混合,形成前驱体溶液B。将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状态下加热至300℃,注入前驱体溶液B、含0.15mmol In元素的InZnPS纳米团簇复合物溶液和15mmol二辛基胺的混合液,在300℃保持30min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度降至270℃,向InZnPS合金量子点溶液中加入6mL癸酸、1.5mmol Zn(OA)
2和1.5mmol S-TOP,在270℃下反应30min。降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
实施例8:
将0.3mmol十六酸铟、0.6mmol油酸锌和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至100℃,在100℃保持10min后,降至30℃,再加入0.15mmol TMS-P、0.3mmol S-ODE和3mmol TOP形成前驱体溶液A,进而升至150℃反应30min,形成InZnPS纳米团簇复合物溶液,降至室温备用。
将0.4mmol Zn(OA)
2、0.4mmol S-TOP在N
2排气状态下混合,形成前驱体溶液B。将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状 态下加热至300℃,注入前驱体溶液B、含0.15mmol In元素的InZnPS纳米团簇复合物溶液和15mmol三辛基膦的混合液,在300℃保持30min后,得到InZnPS合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度降至250℃,向InZnPS合金量子点溶液中加入2mL癸酸、1.5mmol Zn(OA)
2和1.5mmol S-TOP,在250℃下反应30min。降至室温得到包覆有ZnS壳层的InZnPS合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
实施例9:
将0.3mmol十六酸铟、0.6mmol十六酸锌和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至100℃,在100℃保持10min后,降至30℃,再加入0.15mmol TMS-P、0.3mmol Se-ODE悬浊液和3mmol TOP形成前驱体溶液A,进而升至50℃反应30min,形成InZnPSe纳米团簇复合物溶液,降至室温备用。
将15mL十八烯加入到50mL三口烧瓶中,将该三口烧瓶在N
2排气状态下加热至300℃,注入含0.15mmol In元素的InZnPSe纳米团簇复合物溶液和15mmol三辛基膦的混合液,在300℃保持10min后,得到InZnPSe合金量子点溶液。对InZnPS合金量子点溶液进行荧光发射光谱和透射电镜测试,具体见表1。
将反应温度降至230℃,向InZnPSe合金溶液中加入6mL辛胺、1.5mmol Zn(OA)
2和1.5mmol S-TOP,在230℃下反应30min。降至室温得到包覆有ZnS壳层的InZnPSe合金量子点的产物体系。用甲醇进行两次萃取,并用丙酮沉淀 离心,并将沉淀溶解在甲苯中,得到量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
对比例1:
将0.3mmol In(Ac)
3、0.6mmol Zn(Ac)
2、2.1mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,降至30℃,再加入0.15mmol TMS-P、0.3mmol DDT(正十二硫醇)形成多种前驱体混合液。再将该多种前驱体混合液加热至300℃反应20min,得到InZnPS量子点溶液。在上述合成中间过程中,取加热至200℃的样品进行紫外吸收谱图测试(参见图1),其抬起位置的波长约为500nm,且在约420nm处出现一宽峰,说明InP已初步反应成核,纳米晶尺寸较大,且尺寸分布不均一。与实施例1中的InZnPS纳米团簇复合物溶液相比,实施例1中在低温下进行前驱体溶液A中的反应,形成纳米团簇复合物溶液,更利于对团簇尺寸和结构的控制。对InZnPS量子点溶液进行荧光发射光谱和透射电镜测试,具体见表1,其元素组成测试结果具体见表2。
将反应温度降至250℃,向InZnPS溶液中加入6mL辛胺,1.5mmol Zn(OA)
2和1.5mmol S-TOP,在250℃下反应30min。降至室温得到含有InZnPS/ZnS的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到InZnPS/ZnS量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
对比例2:
将0.3mmol In(Ac)
3、0.9mmol十六酸、1mL三辛基膦和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,升至300℃。在300℃注入0.15mmol TMS-P,反应10min后得 到InP量子点溶液。对InP量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1。
将反应温度降至250℃,向InP量子点溶液中加入6mL辛胺,1.5mmol Zn(OA)
2和1.5mmol S-TOP,在250℃下反应30min。降至室温得到含有InP/ZnS的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到InP/ZnS量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3,其元素组成测试结果具体见表2。
对比例3:
将0.3mmol In(Ac)
3、0.3mmol Zn(Ac)
2、1.5mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,加入0.3mmol DDT,升至300℃。在300℃注入0.15mmol TMS-P,反应10min后得到InZnPS量子点溶液。对InZnPS量子点溶液进行荧光发射光谱和透射电镜测试,测试结果具体见表1,其元素组成测试结果具体见表2。
将反应温度降至250℃,向InZnPS溶液中加入6mL辛胺,1.5mmol Zn(OA)
2和1.5mmol S-TOP,在250℃下反应30min。降至室温得到含有InZnPS/ZnS的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到InZnPS/ZnS量子点溶液,进行荧光发射光谱和透射电镜测试,测试结果具体见表3。
对比例4:
将0.6mmol Zn(Ac)
2、1.2mmol十六酸和12mL ODE加入到100mL三口烧瓶中,并将该三口烧瓶在N
2排气状态下加热至180℃,在180℃保持30min后,加入0.3mmol S-ODE和5mmol TOP,升至250℃反应20min,形成ZnS量子点溶液。之后注入0.2mmol In(Ac)
3、0.1mmol TMS-P和3mL辛胺的混合液,升至 300℃保持10min后,得到InZnPS溶液。对InZnPS量子点溶液进行荧光发射光谱和透射电镜测试,具体见表1,其元素组成测试结果具体见表2。
将反应温度降至250℃,向InZnPS溶液中加入6mL辛胺,1.5mmol Zn(OA)
2和1.5mmol S-TOP,在250℃下反应30min。降至室温得到含有InZnPS/ZnS的产物体系。用甲醇进行两次萃取,并用丙酮沉淀离心,并将沉淀溶解在甲苯中,得到InZnPS/ZnS量子点溶液,进行荧光发射光谱和透射电镜测试,具体见表3。
图4用来表征分析实施例1~2和对比例1~4所获得的InZnPS量子点的纳米晶型和晶体结构。其中,黑色直线和点状线分别为InP和ZnS的闪锌矿结构标准卡片峰。表2数据通过ICP-AES(电感耦合等离子体发射光谱)测试得到,其中列出了In、Zn、P、S各元素的摩尔比例,用来表征分析实施例1~2和对比例1~4所获得的InZnPS量子点的元素组成分析。
从实施例1的InZnPS合金量子点XRD谱图可以看出,其三个特征峰的峰强度较高,均为对称度较高的单峰,且InZnPS合金量子点的三个峰的位置分别规律地在InP和ZnS标准峰之间,如其主峰(27.4度)在InP主峰(26.3度)和ZnS主峰(28.6度)之间。XRD谱图中峰位置表征体相材料的结构,峰强度表征体相材料的晶化程度,晶体结构单一,会体现出单峰结构,且峰强度会比较高。这说明实施例1的InZnPS合金量子点同样为闪锌矿结构,且晶化程度较高,合金化较为完全,体现出元素组成均一和结构均匀的InZnPS合金结构。通过ICP-AES测试其元素组成为In
0.2Zn
0.45P
0.15S
0.2,与合成中各前驱体加入比例In
0.22Zn
0.45P
0.11S
0.22相近,体现出本申请的技术方案对合金量子点元素组成的良好调控。
实施例2的InZnPS合金量子点XRD谱图中同样为对称度较高的单峰,且主峰位置略有偏移(27.7度),体现出与实施例1元素组成不同导致的峰位偏差。 通过ICP-AES测试其元素组成为In
0.22Zn
0.2P
0.18S
0.4,与合成中各前驱体加入比例In
0.2Zn
0.2P
0.2S
0.4相近,体现出本申请的技术方案对合金量子点元素组成的良好调控。
对比例1为将In、Zn、P、S前驱体低温混合后升至高温反应制备的InZnPS量子点,XRD谱图中的主峰为右侧拖尾的单峰,不好判断,但其次峰体现出明显的混合峰结构(45.9和47.2度),与InP次峰(43.6度)和ZnS次峰(47.5度)对比,说明其结构更接近结构不均匀的InZnPS/ZnS核壳结构,由于对比例1中可能存在两类结构,两种主峰位置比较接近造成混峰,即为右侧拖尾的单峰。通过ICP-AES测试其元素组成为In
0.4Zn
0.2P
0.3S
0.1,与合成中各前驱体加入比例In
0.22Zn
0.45P
0.11S
0.22相差较大,Zn和S元素含量较少,这也体现出对比例1的方法较难将Zn和S掺杂进入InP晶格中。
对比例2为InP/ZnS核壳量子点,XRD谱图中其峰强度较弱,且体现为混峰结构,这验证了InP/ZnS为核壳量子点,InP和ZnS两相晶体结构独立,且晶化程度低。通过ICP-AES测试其元素组成为In
0.3Zn
0.25P
0.2S
0.25,虽然Zn和S元素含量有所增加,但Zn和S分布在壳层,无法形成合金结构。
对比例3为采用将P前驱体高温注入In、Zn、S混合前驱体的方法制备的InZnPS量子点,XRD谱图中其峰强度较低,且主峰位置更接近InP标准峰的峰位,这说明对比例3的InZnPS量子点更接近InP/ZnS结构。通过ICP-AES测试其元素组成为In
0.4Zn
0.1P
0.4S
0.1,与合成中各前驱体加入比例In
0.28Zn
0.28P
0.28S
0.16相差较大,Zn和S元素含量较少,这也体现出对比例3较难将Zn和S掺杂进入InP晶格中。
对比例4为采用先形成ZnS量子点作为晶种,再将In、P混合前驱体注入的方法制备的InZnPS量子点,XRD谱图中其峰强度较低,主峰接近混峰结构且 峰位置更接近ZnS标准峰的峰位,说明对比例4的InZnPS量子点更接近ZnS/InP结构。通过ICP-AES测试其元素组成为In
0.1Zn
0.5P
0.1S
0.3,与合成中各前驱体加入比例In
0.16Zn
0.5P
0.09S
0.25相比,In含量偏少,这体现该方法难以良好调控元素组成。
因此,本申请通过InZnPS纳米团簇复合物制备的InZnPS量子点为合金结构,且组成元素分布较为均一,晶化程度高,与对比例制备的各种量子点相比组成元素分布有较大差别,其中,对比例4得到的结构更像核壳结构。
表1
其中,对比例2为InP量子点,本征InP缺陷过多,荧光发光很弱,量子效率过低,因此无荧光光谱测试和量子效率结果。
从表1可知,本申请实施例制备得到的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的荧光发射峰波长为500nm~580nm,其半峰宽窄于对比例,为35nm~40nm,量子效率高于对比例,为40%~50%,可满足新型显示领域对于量子点窄半峰宽的要求。
表2
表3
从表3可知,将该Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行Ⅱ-Ⅵ壳层包覆后,其量子效率提升至60%~70%,可更好地满足新型显示领域对于量子点窄半峰宽的要求。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (17)
- 一种Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,包括:(1)将含第Ⅱ副族元素的第一前驱体、含第Ⅲ主族元素的第二前驱体、含第Ⅴ主族元素的第三前驱体、含第Ⅵ主族元素的第四前驱体和配体混合形成前驱体溶液A,将所述前驱体溶液A加热,以使所述前驱体溶液A反应形成Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液;(2)将所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与活化剂混合并加热,反应得到Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,所述前驱体溶液A中,第Ⅴ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~1:1。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,所述前驱体溶液A中,第Ⅵ主族元素与第Ⅲ主族元素的摩尔比为0.2:1~2:1。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,所述配体包括三辛基膦、三丁基膦、三辛基胺、二辛基胺、辛胺中的至少一种。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,烷基膦、烷基胺、苯基膦、苯基胺中的至少一种。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,所述前驱体溶液A中,所述配体与第Ⅲ主族元素的摩尔比为5:1~20:1。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,步骤(1)中所述前驱体溶液A的加热温度为50℃~150℃。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液包括InZnPS纳米团簇复合物溶液、InZnPSe纳米团簇复合物溶液中的至少一种。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于, 所述活化剂包括烷基膦、烷基胺、脂肪酸中的至少一种。
- 根据权利要求9所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,所述活化剂与所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液中的第Ⅲ主族元素的摩尔比为40:1~200:1。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,步骤(2)中所述加热的温度为250℃~310℃。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,步骤(2)中,提供溶剂,将所述溶剂的温度加热至250℃~310℃,再将所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液与所述活化剂注入所述溶剂中进行反应。
- 根据权利要求1所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,步骤(2)还包括提供前驱体溶液B,将所述前驱体溶液B与所述Ⅱ-Ⅲ-Ⅴ-Ⅵ纳米团簇复合物溶液、所述活化剂混合,反应得到所述Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点;其中,所述前驱体溶液B包括所述第一前驱体、所述第二前驱体、所述第四前驱体中的至少一种。
- 根据权利要求1~13任一项所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,在步骤(2)之后还包括以下步骤:对所述Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行壳层包覆,所述壳层为含有Ⅱ-Ⅵ的壳层,得到具有Ⅱ-Ⅵ壳层的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
- 根据权利要求1~13任一项所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,在步骤(2)之后还包括以下步骤:将所述Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点和其它纳米团簇复合物反应,得到合金量子点,所述其它纳米团簇复合物包括II-VI族、III-V族、II-III-V族、II-III-VI族、III-V-VI族纳米团簇复合物中的至少一种。
- 根据权利要求1~13任一项所述的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点的制备方法,其特征在于,在步骤(2)之后还包括以下步骤:对所述Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点进行金属元素或者非金属元素的掺杂,其中掺杂的所述金属元素包括Al、Ga、Tl、Li、Na、K、Rb、Cs、Be、Mg、Sr、Ba、V、Fe、Co、Zr、W、Ti、Mn、Ni、Sn、或其组合,掺杂的所述非金属元素包括B、O、S、Se、Te、F、Cl、Br、I、Si、或其组合。
- 一种光电器件,其特征在于,包括权利要求1~16任一项所述的制备方法制备的Ⅱ-Ⅲ-Ⅴ-Ⅵ合金量子点。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910561708.7A CN110157411B (zh) | 2019-06-26 | 2019-06-26 | Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 |
CN201910561708.7 | 2019-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020259624A1 true WO2020259624A1 (zh) | 2020-12-30 |
Family
ID=67625594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/098251 WO2020259624A1 (zh) | 2019-06-26 | 2020-06-24 | Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110157411B (zh) |
WO (1) | WO2020259624A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110157411B (zh) * | 2019-06-26 | 2021-07-27 | 纳晶科技股份有限公司 | Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 |
CN116253300A (zh) * | 2023-02-13 | 2023-06-13 | 合肥福纳科技有限公司 | 合金量子点及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102199425A (zh) * | 2010-03-22 | 2011-09-28 | 三星电子株式会社 | 制造量子点的方法 |
CN105051153A (zh) * | 2013-03-15 | 2015-11-11 | 纳米技术有限公司 | 第iii-v族/锌硫属化物合金化的半导体量子点 |
CN105378027A (zh) * | 2013-03-14 | 2016-03-02 | 纳米技术有限公司 | 使用膦制造的量子点 |
CN106479482A (zh) * | 2016-09-20 | 2017-03-08 | 纳晶科技股份有限公司 | InP量子点及其制备方法 |
CN108546553A (zh) * | 2018-05-10 | 2018-09-18 | 纳晶科技股份有限公司 | 一种ii-ii-vi合金量子点、其制备方法及其应用 |
CN108659818A (zh) * | 2018-06-14 | 2018-10-16 | 嘉兴纳鼎光电科技有限公司 | 量子点的合成方法及应用该合成方法合成的量子点 |
CN108659817A (zh) * | 2018-06-14 | 2018-10-16 | 玻尔兹曼智能科技(苏州)有限公司 | 一种核壳量子点的合成方法及核壳量子点 |
CN108893119A (zh) * | 2018-07-18 | 2018-11-27 | 纳晶科技股份有限公司 | InP基合金量子点的制备方法及量子点、器件及组合物 |
WO2018215396A1 (en) * | 2017-05-23 | 2018-11-29 | Merck Patent Gmbh | Method for synthesizing a semiconducting nanosized material |
CN109337689A (zh) * | 2018-09-27 | 2019-02-15 | 纳晶科技股份有限公司 | 掺杂量子点及其制备方法 |
CN110157411A (zh) * | 2019-06-26 | 2019-08-23 | 纳晶科技股份有限公司 | Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 |
CN110746974A (zh) * | 2018-07-24 | 2020-02-04 | Tcl集团股份有限公司 | 量子点及其制备方法 |
-
2019
- 2019-06-26 CN CN201910561708.7A patent/CN110157411B/zh active Active
-
2020
- 2020-06-24 WO PCT/CN2020/098251 patent/WO2020259624A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102199425A (zh) * | 2010-03-22 | 2011-09-28 | 三星电子株式会社 | 制造量子点的方法 |
CN105378027A (zh) * | 2013-03-14 | 2016-03-02 | 纳米技术有限公司 | 使用膦制造的量子点 |
CN105051153A (zh) * | 2013-03-15 | 2015-11-11 | 纳米技术有限公司 | 第iii-v族/锌硫属化物合金化的半导体量子点 |
CN106479482A (zh) * | 2016-09-20 | 2017-03-08 | 纳晶科技股份有限公司 | InP量子点及其制备方法 |
WO2018215396A1 (en) * | 2017-05-23 | 2018-11-29 | Merck Patent Gmbh | Method for synthesizing a semiconducting nanosized material |
CN108546553A (zh) * | 2018-05-10 | 2018-09-18 | 纳晶科技股份有限公司 | 一种ii-ii-vi合金量子点、其制备方法及其应用 |
CN108659818A (zh) * | 2018-06-14 | 2018-10-16 | 嘉兴纳鼎光电科技有限公司 | 量子点的合成方法及应用该合成方法合成的量子点 |
CN108659817A (zh) * | 2018-06-14 | 2018-10-16 | 玻尔兹曼智能科技(苏州)有限公司 | 一种核壳量子点的合成方法及核壳量子点 |
CN108893119A (zh) * | 2018-07-18 | 2018-11-27 | 纳晶科技股份有限公司 | InP基合金量子点的制备方法及量子点、器件及组合物 |
CN110746974A (zh) * | 2018-07-24 | 2020-02-04 | Tcl集团股份有限公司 | 量子点及其制备方法 |
CN109337689A (zh) * | 2018-09-27 | 2019-02-15 | 纳晶科技股份有限公司 | 掺杂量子点及其制备方法 |
CN110157411A (zh) * | 2019-06-26 | 2019-08-23 | 纳晶科技股份有限公司 | Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 |
Non-Patent Citations (1)
Title |
---|
BROWN, RICHARD P.: "Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution", LANGMUIR, vol. 34, 23 October 2018 (2018-10-23), pages 13924 - 13934, XP055726904, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.8b02402 * |
Also Published As
Publication number | Publication date |
---|---|
CN110157411B (zh) | 2021-07-27 |
CN110157411A (zh) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Strategies for photoluminescence enhancement of AgInS 2 quantum dots and their application as bioimaging probes | |
TWI547540B (zh) | 第iii-v族/硫屬化鋅合金化之半導體量子點 | |
EP2171016B1 (en) | Nanoparticles | |
WO2017201967A1 (zh) | Iii-v族量子点、其制备方法及其应用 | |
US20150076494A1 (en) | Synthesis of Metal Oxide Semiconductor Nanoparticles from a Molecular Cluster Compound | |
WO2020259624A1 (zh) | Ⅱ-ⅲ-ⅴ-ⅵ合金量子点的制备方法及其应用 | |
CN110317609B (zh) | 量子点、其制备方法及光电器件 | |
CN106118216B (zh) | 一种Ga掺杂ZnO纳米墨水及其制备方法 | |
WO2021000892A1 (zh) | Iii-v族量子点的制备方法 | |
US20210024356A1 (en) | Method for preparing nanocrystal with core-shell structure | |
CN111849483B (zh) | 一种蓝光无镉量子点及其制备方法、量子点光电器件 | |
Abdelhady et al. | Colloidal Synthesis of ZnS, CdS and Zn x Cd 1− x S Nanoparticles from Zinc and Cadmium Thiobiuret Complexes | |
Singh et al. | Tapping the potential of trioctylphosphine (TOP) in the realization of highly luminescent blue-emitting colloidal indium phosphide (InP) quantum dots | |
Liu et al. | One-pot synthesis of CdSe magic-sized nanocrystals using selenium dioxide as the selenium source compound | |
CN112143496B (zh) | 红光磷化铟纳米晶的制备方法及由其制备的产品 | |
Kang et al. | Preparation of quasi-monodispersed CdxZn1− xS nanocrystals and their optical properties | |
WO2020216265A1 (zh) | 一种ii-iii-v-vi族量子点、其制备方法及量子点光电器件 | |
WO2022174778A1 (zh) | 合金纳米晶群、核壳纳米晶群及其应用、合成方法 | |
CN114958377B (zh) | 合金纳米晶群、核壳纳米晶群及其应用、合成方法 | |
CN113969161B (zh) | 量子点的制备方法、量子点及含其的组合物、发光器件 | |
KR102236316B1 (ko) | 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자 | |
KR102236315B1 (ko) | 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자 | |
WO2023040991A1 (zh) | 前驱体组合物及其制备方法、无机纳米晶的制备方法 | |
WO2020211834A1 (zh) | 利用新型磷前驱体制备磷化铟纳米晶的方法及其制备的磷化铟纳米晶 | |
Chen et al. | Synthesis, characterization and optical properties of CdS nanorods by a simple solution chemistry method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20831757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20831757 Country of ref document: EP Kind code of ref document: A1 |