WO2022127563A1 - 一种超薄高质子导率质子交换复合膜的制备方法 - Google Patents

一种超薄高质子导率质子交换复合膜的制备方法 Download PDF

Info

Publication number
WO2022127563A1
WO2022127563A1 PCT/CN2021/133547 CN2021133547W WO2022127563A1 WO 2022127563 A1 WO2022127563 A1 WO 2022127563A1 CN 2021133547 W CN2021133547 W CN 2021133547W WO 2022127563 A1 WO2022127563 A1 WO 2022127563A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
solution
proton exchange
nano
preparation
Prior art date
Application number
PCT/CN2021/133547
Other languages
English (en)
French (fr)
Inventor
郝金凯
张洪杰
邵志刚
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2022127563A1 publication Critical patent/WO2022127563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of fuel cells, in particular, to a preparation method of an ultrathin high proton conductivity proton exchange composite membrane.
  • Fuel cells can achieve zero pollution in terms of environmental protection, and have the advantages of short energy supply time and high energy density, making them one of the most effective power sources to replace internal combustion engines.
  • the performance of a fuel cell largely depends on one of its core components, the proton exchange membrane, which is required not only to provide efficient conduction channels for protons, but also to have efficient barrier properties and mechanical resistance.
  • High barrier properties can effectively prevent methanol or hydrogen from directly diffusing from anode to cathode through the membrane to produce unnecessary by-products, preventing catalyst poisoning; good mechanical tolerance ensures that it is not prone to mechanical damage during membrane electrode (MEA) preparation. , thereby improving the electrochemical performance of the fuel cell.
  • MEA membrane electrode
  • the most used proton exchange membrane is the Nafion membrane of Dupont in the United States.
  • This type of membrane material has good proton conductivity and chemical stability, but its high cost and high permeability have become the main reason for its wide application in the field of fuel cells. Obstacles, especially the operating temperature and ambient humidity, have a great influence on the uniformity of the battery, and the performance of the battery decreases significantly as the temperature increases.
  • porous polymer membranes such as PTFE microporous membranes, have good mechanical strength and dimensional stability.
  • the composite membrane prepared based on PTFE is expected to replace the Nafion membrane, which not only has low cost, but also can improve the mechanical properties and dimensional stability of the membrane, so that the performance of the fuel cell can be improved.
  • the prepared composite membrane is not only thick, but also obviously insufficient in proton conductivity, and the preparation process is complicated and cannot be mass-produced.
  • the prepared PTFE composite membrane is obviously poor in uniformity, and there are some There are defects such as pores.
  • the purpose of the present invention is to provide a preparation method of an ultra-thin high proton conductivity proton exchange composite membrane, which not only has high production efficiency, but also produces a composite membrane with high proton conductivity, high mechanical strength, thin thickness and good uniformity.
  • a proton exchange composite membrane is a hydrophilic PTFE microporous membrane as a base membrane, and the base membrane is coated with a proton conductor material composed of perfluorosulfonic acid resin liquid and nano-phosphorylated titanium dioxide , and then spray a free radical quencher on the proton conductor material; the thickness of the proton exchange composite membrane is 5-10 ⁇ m; the quality of the nano-phosphorylated titanium dioxide is 5-10% of the solid content of the perfluorosulfonic acid resin, and the The mass of the free radical quencher is 0.05-0.1% of the proton conductor material.
  • the thickness of the PTFE microporous membrane is 1-5 ⁇ m, and the porosity is 60-80%.
  • the free radical quencher is any one of nanometer ceria or nanometer manganese dioxide.
  • the present invention also provides a production method of the proton exchange composite membrane, comprising the following steps:
  • Hydrophilization treatment of PTFE microporous membrane spray a layer of hydrogen peroxide alcohol/water solution on the PTFE microporous membrane, and place it in an opaque dark space and irradiate it with an ultraviolet lamp to obtain a hydrophilic modified PTFE microporous membrane.
  • pore membrane
  • step (1) Coat the proton conductor material on the hydrophilically modified PTFE microporous membrane obtained in step (1) by using a preset coating process, and spray the free radical quencher solution through a spraying chamber using a preset spraying process , and then dried in a two-stage oven, and pressed by a rolling method to obtain the proton exchange composite membrane.
  • the hydrogen peroxide alcohol/water solution mass concentration concentration is 0.1wt%-10wt%, wherein the mass ratio of deionized water and ethanol is 1:1-10; the spray flow rate is 1 ⁇ 5mL/min , the spraying speed is 100 ⁇ 400mm/s.
  • the ultraviolet lamp light source is an LED lamp with a wavelength of 200-400 nm, the irradiation time is 1-10 min, and the irradiation distance is 1-10 cm.
  • step (2) the mass concentration of the n-butyl titanate ethanol solution is 6wt%-15wt%, and the mass concentration of the phosphoric acid aqueous solution is 10wt%-20wt%; the molar ratio of n-butyl titanate and phosphoric acid is 1-4:1.
  • step (4) the coating speed in the preset coating process is 1-4.9m/min, the coating thickness (wet thickness) is 10-20 ⁇ m; the spraying flow rate in the preset spraying process is 1-10mL/min. min, the spraying speed is 100-400mm/s.
  • the mass concentration of the free radical quencher solution is 0.1wt%-0.6wt%
  • the solute is any one of nano ceria or nano manganese dioxide
  • the solvent is deionized water and ethanol The mass ratio of the two is 1:0.1-1.
  • step (4) the first drying temperature is 40-80°C, the second drying temperature is 80-140°C, and the rolling pressure is 2-6MPa.
  • the production method of the present invention adopts continuous coating production equipment, and the continuous coating production equipment is sequentially provided with a spraying room 1, a dark room, a coating die head, a spraying room 2, an oven 1, and an oven 2 along the transmission direction of the proton exchange composite membrane. , pressure roller and rewinding roller; the spraying chamber one is provided with a nozzle one; the dark chamber is provided with an ultraviolet lamp; the spraying chamber two is provided with a nozzle two; the pressing roller is a pair of composite rollers; production The equipment is also provided with a plurality of conveying rollers for conveying the proton exchange composite membrane forward.
  • the present invention also provides a proton exchange composite membrane production method utilizing the above-mentioned production equipment, comprising the following steps:
  • Hydrophilization treatment of PTFE microporous film spray a layer of hydrogen peroxide alcohol/water solution on the PTFE microporous film through spraying chamber 1, and place it in a dark room and irradiate it with an ultraviolet lamp to obtain a hydrophilic modified PTFE microporous film.
  • membrane
  • the present invention has the following advantages:
  • the surface of the PTFE microporous membrane is selected to be sprayed with hydrogen peroxide alcohol/water solution to increase the contact between the hydrogen peroxide and the PTFE microporous membrane, and then it is placed in an ultraviolet lamp. in the irradiated opaque space.
  • This process does not require vacuum conditions, nor does it require an oxygen environment, and the processing conditions are simple, and can be modified through irradiation time and irradiation distance.
  • the hydrophilicity and wettability of the treated PTFE microporous membrane are greatly improved on the basis of maintaining the original mechanical properties.
  • the wettability of the microporous membrane prevents defects such as uneven surface and micropores of the proton exchange composite membrane.
  • phosphorylated titanium dioxide nanoparticles are added in the preparation of the casting solution.
  • the nano-titanium dioxide has a strong moisturizing performance, which improves the operating temperature of the proton exchange composite membrane during the operation of the fuel cell.
  • the oxidized titanium dioxide has strong proton conductivity, which further improves the proton conductivity of the proton exchange composite membrane, and the mechanical properties of the proton exchange composite membrane are further improved due to the addition of nanocompounds.
  • a layer of free radical quencher solution is sprayed on its surface, and after drying and rolling, the use of the proton exchange composite membrane is further improved. life, to avoid defects such as free radical attack during battery operation.
  • the present invention adopts the coating process to prepare the proton exchange composite membrane.
  • the preparation process is simple and continuous, and is suitable for large-scale production. It does not need multiple dipping, one coating and molding, and the proton exchange composite membrane prepared by the continuous coating method is uniform. better.
  • FIG. 1 is a schematic structural diagram of the preparation process of the proton exchange composite membrane of the present invention.
  • (1) take by weighing the hydrogen peroxide of 10g 30wt% and join in 495g deionized water and 495g ethanol mixed solution, stir 10min, mix homogeneously, pack into spraying chamber-2, with flow 1mL/min, nozzle-2- 1.
  • (1) take by weighing the hydrogen peroxide of 100g 30wt% and join in 18g deionized water and 180g ethanol mixed solution, stir 10min, mix homogeneously, pack into spraying chamber-2; With flow 1mL/min, nozzle-2- 1. Spray the surface of PTFE microporous membrane 1 with a thickness of 3 ⁇ m and a porosity of 60% at a speed of 400 mm/s, and place it in a dark room 3 equipped with a UV lamp 3-1 for irradiation, and control the traction speed to be 4.9 m/min , to ensure that the irradiation time is 1min and the irradiation distance is 1cm;
  • the casting liquid 5 in (4) is coated on the hydrophilic treated PTFE microporous membrane in (1) using the coating die 4 at a coating speed of 4.9 m/min and a coating thickness of 10 ⁇ m.
  • spray the nano manganese dioxide dispersion liquid in (3) with the spraying speed of 400mm/s of spraying head 26-1 and the spraying flow rate of 10mL/min; 7-1, drying in an oven 2 7-2 at a temperature of 140 °C, and then pressing under a 6 MPa pressure roller 8 to obtain a high proton conductivity proton exchange composite membrane with a thickness of 8 ⁇ m, which is wound through the winding roller 9. in roll form.
  • the spraying moving speed of 200mm/s was sprayed on the surface of the PTFE microporous film 1 with a thickness of 1 ⁇ m and a porosity of 70%, and it was placed in an opaque dark room 3 equipped with a UV lamp 3-1 for irradiation, and the traction speed was controlled to 3m/ min, ensure that the irradiation time is 5min and the irradiation distance is 5cm;
  • the casting solution 5 in (4) is coated on the hydrophilic-treated PTFE microporous membrane 1 in (1) using a coating die 4 at a coating speed of 3 m/min and a coating thickness of 15 ⁇ m.
  • spraying chamber two 6 spray the nanometer manganese dioxide dispersion liquid in (3) with the process of spraying moving speed 200mm/s, spraying flow rate 5mL/min of nozzle two 6-1; 7-1, drying in oven 2 7-2 at a temperature of 120°C, and then pressing under a 4MPa pressing roller 8 to obtain a high proton conductivity proton exchange composite membrane with a thickness of 5 ⁇ m, which is wound through a winding roller 9 into a in roll form.
  • (1) take by weighing the hydrogen peroxide of 50g 30wt% and join in 100g deionized water and 150g ethanol mixed solution, stir 10min, mix and pack into spraying chamber-2; Mixed solution with flow 5mL/min, nozzle-2- 1. Spray the surface of the PTFE microporous membrane 1 with a thickness of 1 ⁇ m and a porosity of 80% at a speed of 200 mm/s, and place it in an opaque dark room 3 equipped with a UV lamp 3-1 for irradiation, and control the traction speed to 3 m /min, ensure that the irradiation time is 5min and the irradiation distance is 5cm;
  • the casting liquid 5 in (3) is coated on the hydrophilic-treated PTFE microporous membrane 1 in (1) using the coating die 4 at a coating speed of 3 m/min and a coating thickness of 15 ⁇ m.
  • spraying chamber two 6 spray the nanometer manganese dioxide dispersion liquid in (3) with the process of spraying moving speed 200mm/s, spraying flow rate 5mL/min of nozzle two 6-1; 7-1, drying in oven 2 7-2 at a temperature of 120°C, and then pressing under a 4MPa pressing roller 8 to obtain a high proton conductivity proton exchange composite membrane with a thickness of 5 ⁇ m, which is wound through a winding roller 9 into a in roll form.
  • the spraying moving speed of 200mm/s was sprayed on the surface of the PTFE microporous film 1 with a thickness of 1 ⁇ m and a porosity of 70%, and it was placed in an opaque dark room 3 equipped with a UV lamp 3-1 for irradiation, and the traction speed was controlled to 3m/ min, ensure that the irradiation time is 5min and the irradiation distance is 5cm;
  • the casting liquid 5 in (3) is coated on the hydrophilic-treated PTFE microporous membrane 1 in (1) using the coating die 4 at a coating speed of 3 m/min and a coating thickness of 15 ⁇ m. Then it was dried in oven 1 7-1 with a temperature of 60 °C and oven 2 7-2 with a temperature of 120 °C, and then pressed under a pressure roller 8 of 4 MPa to obtain a high proton conductivity proton exchange composite with a thickness of 5 ⁇ m. The film is wound into a roll shape through a winding roll 9 .
  • the proton conductivity, tensile strength, hydrogen permeation current and dimensional change rate of the proton exchange composite membranes prepared in Examples 1-3 and Comparative Examples 1-3 were tested.
  • the test conditions for proton conductivity are: 95°C, 80wt% humidity and 40°C, 80wt% humidity, the test method for tensile strength is the national standard method (GB/T20042.3-2009); the test method for hydrogen permeation current is electrical Chemical methods, test results are shown in the table below.
  • Comparative Example 1 unphosphorylated titanium dioxide nanoparticles were added to the casting solution, and the proton conductivity was low, because the phosphoric acid group had the effect of enhancing proton conductivity; in Comparative Example 2, PTFE microparticles The porous membrane has not been hydrophilized, and the prepared proton exchange composite membrane has poor uniformity, high hydrogen permeability, and low battery performance. It is caused by the poor wettability of the membrane liquid; in Comparative Example 3, the free radical quencher was not sprayed, and the free radicals generated during the operation of the fuel cell were not eliminated, so the proton conductor (perfluorosulfonic acid resin) in the composite membrane was Attacked by free radicals, degradation occurs, resulting in a greatly shortened membrane life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开一种超薄高质子导率质子交换复合膜,以PTFE微孔膜为基膜,以全氟磺酸树脂液和纳米磷酸化二氧化钛为质子导体材料,以自由基淬灭剂为添加剂制备而成。首先在PTFE微孔膜上喷涂过氧化氢醇/水溶液,并置于暗室经紫外线灯照射得到亲水化改性的PTFE微孔膜;然后将钛酸正丁酯乙醇溶液滴入磷酸水溶液中回流,经过离心、洗涤、干燥,得到纳米磷酸化二氧化钛;在全氟磺酸树脂液中加入纳米磷酸化二氧化钛,经过静置脱泡,得到铸膜液;最后将铸膜液涂布在亲水化改性的PTFE微孔膜上,喷涂自由基淬灭剂溶液,经干燥和压合,得超薄、高质子导率质子交换复合膜;本发明制备的质子交换复合膜表面平整、无孔隙,制备工艺简单、连续,适合大规模生产。

Description

一种超薄高质子导率质子交换复合膜的制备方法 技术领域
本发明涉及燃料电池技术领域,具体而言,尤其涉及一种超薄高质子导率质子交换复合膜的制备方法。
背景技术
燃料电池在环保方面可以达到零污染,而且具备能源补给时间短、能量密度高等优势,成为替代内燃机最为有效的动力源之一。燃料电池的性能很大程度上取决于其核心部件之一质子交换膜,它除了被要求为质子提供有效地传导通道,还需要有高效的阻隔性和机械耐受性。高阻隔性可有效阻止甲醇或氢气直接通过膜从阳极扩散到阴极产生不必要的副产物,防止催化剂中毒;良好的机械耐受性可保证其在膜电极(MEA)制备过程中不易出现机械损伤,从而提高燃料电池的电化学性能。
目前,质子交换膜使用最多的是美国Dupont的Nafion膜,该类型的膜材料具有良好的质子传导性和化学稳定性,但高成本和高透过性成为了其在燃料电池领域广泛应用的主要障碍,特别是操作温度和环境湿度对电池的匀性影响非常大,随着温度的升高,电池性能明显下降。目前对孔聚合物膜,如聚四氟乙烯微孔膜,具有较好的机械强度和尺寸稳定性。基于PTFE制备的复合膜有望代替Nafion膜,不仅成本低,而且可以改善膜的力学性能和尺寸稳定性,使得燃料电池性能得到提高,但是目前PTFE复合膜的制备过程中主要通过浸渍全氟磺酸树脂溶液,制备的复合膜不仅厚度大,而且质子导率明显不足,并且制备工艺繁杂,无法大规模生产,另一方面由于PTFE强疏水性,制备的PTFE复合膜明显均匀性差,并且有部分地方存在孔隙等缺陷。
发明内容
本发明的目的是提供一种超薄高质子导率质子交换复合膜的制备方法,不仅生产效率高,而且制备的复合膜质子导率高、机械强度大、厚度薄、均匀性好。
本发明采用的技术手段如下:
一种质子交换复合膜,所述质子交换复合膜是以亲水性PTFE微孔膜为基膜,在基膜上涂布有以全氟磺酸树脂液和纳米磷酸化二氧化钛组成的质子导体材料,然后在质子导体材料上喷涂有自由基淬灭剂;质子交换复合膜的厚度为5-10μm;所述纳米磷酸化二氧化钛的质量是全氟磺酸树脂固含量的5-10%,所述自由基淬灭剂的质量为质子导体材料的0.05-0.1%。
进一步地,PTFE微孔膜的厚度为1-5μm,孔隙率为60-80%。
进一步地,自由基淬灭剂为纳米二氧化铈或纳米二氧化锰任意一种。
本发明还提供了一种质子交换复合膜的生产方法,包括以下步骤:
(1)PTFE微孔膜亲水化处理:在PTFE微孔膜上喷涂一层过氧化氢醇/水溶液,并置于不透光黑暗空间内经紫外线灯照射,得到亲水化改性的PTFE微孔膜;
(2)纳米磷酸化二氧化钛的制备:将钛酸正丁酯乙醇溶液滴入50-100℃的磷酸水溶液中回流,经过离心、洗涤,得到胶体,将所得胶体在200-500℃下加热干燥,得到所述纳米磷酸化二氧化钛;
(3)质子导体材料的制备:在5-20wt%的全氟磺酸树脂液中加入纳米磷酸化二氧化钛,在30-50℃下匀速搅拌1-3h,得到混合溶液,经过静置脱泡,得到质子导体材料;
(4)将质子导体材料采用预设涂布工艺涂布在步骤(1)中所得亲水化改性的PTFE微孔膜上,经过喷涂室,采用预设喷涂工艺喷涂自由基淬灭剂溶液,然后经过两段式烘箱干燥,用辊压的方式进行压合处理,得到所述质子交换复合膜。
进一步地,步骤(1)中,过氧化氢醇/水溶液质量浓度浓度为0.1wt%-10wt%,其中去离子水和乙醇的质量比为1:1-10;喷涂流量为1~5mL/min,喷涂速度为100~400mm/s。
进一步地,步骤(1)中,紫外线灯灯源为波长为200-400nm的LED灯,照射时间为1-10min,照射距离为1-10cm。
进一步地,步骤(2)中,钛酸正丁酯乙醇溶液的质量浓度浓度为6wt%-15wt%,磷酸水溶液的质量浓度为10wt%-20wt%;钛酸正丁酯和磷酸的摩尔比为1-4:1。
进一步地,步骤(4)中,预设涂布工艺中涂布速度为1-4.9m/min,涂布厚度(湿厚)为10-20μm;预设喷涂工艺中喷涂流量为1-10mL/min,喷涂速度为 100-400mm/s。
进一步地,步骤(4)中,自由基淬灭剂溶液的质量浓度为0.1wt%-0.6wt%,溶质为纳米二氧化铈或纳米二氧化锰中任意一种,溶剂为去离子水和乙醇的混合物,二者质量比为1:0.1-1。
进一步地,步骤(4)中,第一次烘干温度为40-80℃,第二次烘干温度为80-140℃;辊压压力为2-6MPa。
本发明生产方式采用连续涂布生产设备,所述连续涂布生产设备中沿质子交换复合膜传送方向上依次设置有喷涂室一、暗室、涂布模头、喷涂室二、烘箱一、烘箱二、压辊和收卷辊;所述喷涂室一内设置有喷头一;所述暗室内设置有紫外灯;所述喷涂室二内设置有喷头二;所述压辊为一对复合辊;生产设备还设置有多个传送辊,用以将质子交换复合膜向前传送。
本发明还提供了一种利用上述生产设备的质子交换复合膜生产方法,包括以下步骤:
(1)PTFE微孔膜亲水化处理:通过喷涂室一在PTFE微孔膜上喷涂一层过氧化氢醇/水溶液,置于暗室内经紫外线灯照射,得到亲水化改性的PTFE微孔膜;
(2)纳米磷酸化二氧化钛的制备:将钛酸正丁酯乙醇溶液滴入50-100℃的磷酸水溶液中回流,经过离心、洗涤,得到胶体,将所得胶体在200-500℃下加热干燥2-8h,得到所述纳米磷酸化二氧化钛;
(3)铸膜液的制备:在5wt%-20wt%的全氟磺酸树脂液中加入纳米磷酸化二氧化钛,在30-50℃下匀速搅拌1-3h,得到混合溶液,经过静置脱泡,得到铸膜液;
(4)通过涂布模头将铸膜液涂布在亲水化改性的PTFE微孔膜上,经过喷涂室二,喷涂自由基淬灭剂溶液,然后分别经过烘箱一、烘箱二干燥,通过压辊进行压合处理,得到所述质子交换复合膜用收卷辊收卷。
较现有技术相比,本发明具有以下优点:
1、本发明对PTFE微孔膜进行亲水性处理时,选择在PTFE微孔膜表面喷涂过氧化氢醇/水溶液,增加过氧化氢和PTFE微孔膜的接触,然后将其置于紫外灯照射的不透光空间内。此过程不需要真空条件,也不需要氧气环境,处理条件简单,通过照射时间和照射距离就可以改性化处理。处理后的PTFE微孔膜在保持原有力学性能的基 础上亲水性、润湿性大幅度提高,在铸膜液涂布在其表面时接触性更好,有利于提高铸膜液和PTFE微孔膜浸润性,避免质子交换复合膜出现表面不平整和微孔等缺陷。
2、本发明在铸膜液的制备中加入磷酸化的二氧化钛纳米颗粒,一方面纳米二氧化钛具有很强的保湿性能,提高质子交换复合膜在燃料电池运行过程中的使用温度,另一方面,磷酸化的二氧化钛具有很强的质子导率,进一步提高质子交换复合膜的质子导率,并且由于纳米化合物的添加,质子交换复合膜的机械性能进一步提高。
3、本发明在将铸膜液涂布在PTFE微孔膜上后,再在其表面喷涂一层自由基淬灭剂溶液,经过干燥和辊压压合,进一步提高了质子交换复合膜的使用寿命,避免其在电池运行过程中遭受自由基进攻等缺陷。
4、本发明采用涂布工艺进行制备质子交换复合膜,制备工艺简单、连续,适合大规模生产,不需要多次浸渍,一次涂布成型,并且连续涂布法制备的质子交换复合膜均匀性更好。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明质子交换复合膜制备工艺结构示意图。
图中:1、PTFE微孔膜;2、喷涂室一;2-1、喷头一;3、暗室;3-1、紫外灯;4、涂布模头;5、铸膜液;6、喷涂室二;6-1、喷头二;7-1、烘箱一;7-2、烘箱二;8、压辊;9、收卷辊。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1
(1)称取10g 30wt%的过氧化氢加入到495g去离子水和495g乙醇混合溶液中,搅拌10min,混合均匀,装入喷涂室一2,将其以流量1mL/min、喷头一2-1喷涂移动速度100mm/s喷涂在5μm厚、孔隙率80%的PTFE微孔膜1表面,并将其置于装有紫 外灯3-1的不透光暗室3内照射,控制牵引速度为1m/min,确保照射时间为10min,照射距离1cm。
(2)称取5g钛酸正丁酯溶于78g乙醇中,用恒压滴液漏斗逐滴滴入52g 10wt%的磷酸水溶液中,在50℃下搅拌4h,然后进行离心,将沉淀物使用去离子水洗涤,得到胶体,并将胶体置于200℃的烘箱干燥2h,得到纳米磷酸化二氧化钛;
(3)称取1g纳米二氧化铈分散在908g去离子水和91g乙醇中,超声分散均匀,成0.1wt%的纳米二氧化铈分散液,装入喷涂室二6;
(4)称取1.25g(2)中的纳米磷酸化二氧化钛加入到500g 5wt%的全氟磺酸树脂溶液中,在30℃下搅拌1h,经过静置脱泡,得到铸膜液5;
(5)将(4)中的铸膜液5以涂布速度为1m/min,涂布厚度20μm的工艺使用涂布模头4涂布在(1)中亲水处理的PTFE微孔膜1上,经过喷涂室二6,以喷头二6-1喷涂移动速度100mm/s、喷涂流量1mL/min的工艺喷涂(3)中的纳米二氧化铈分散液;然后经过温度为40℃的烘箱一7-1,温度为80℃的烘箱二7-2干燥,然后在2MPa的压辊8下压合,得到厚度为10μm的高质子导率质子交换复合膜,并经过收卷辊9成卷材状。
实施例2
(1)称取100g 30wt%的过氧化氢加入到18g去离子水和180g乙醇混合溶液中,搅拌10min,混合均匀,装入喷涂室一2;将其以流量1mL/min、喷头一2-1喷涂移动速度400mm/s喷涂在3μm厚、孔隙率60%的PTFE微孔膜1表面,并将其置于装有紫外灯3-1的暗室3内照射,控制牵引速度为4.9m/min,确保照射时间为1min,照射距离1cm;
(2)称取5g钛酸正丁酯溶于45g乙醇中,用恒压滴液漏斗逐滴滴入2.9g 15wt%的磷酸水溶液中,在80℃下搅拌6h,然后进行离心,将沉淀物使用去离子水洗涤,得到胶体,并将胶体置于300℃的烘箱干燥6h,得到纳米磷酸化二氧化钛;
(3)称取3g纳米二氧化锰分散在665g去离子水和332g乙醇中,超声分散均匀,成0.3wt%的纳米二氧化锰分散液,装入喷涂室二6;
(4)称取2g(2)中的纳米磷酸化二氧化钛加入到200g 10wt%的全氟磺酸树脂溶液中,在50℃下搅拌3h,经过静置脱泡,得到铸膜液5;
(5)将(4)中的铸膜液5以涂布速度为4.9m/min,涂布厚度10μm的工艺使用涂布模头4涂布在(1)中亲水处理的PTFE微孔膜1上,经过喷涂室二6,以喷头二6-1喷涂速度400mm/s、喷涂流量10mL/min的工艺喷涂(3)中的纳米二氧化锰分散液;然后经过温度为80℃的烘箱一7-1,温度为140℃的烘箱二7-2干燥,然后在6MPa的压辊8下压合,得到厚度为8μm的高质子导率质子交换复合膜,并经过收卷辊9收卷成卷材状。
实施例3
(1)称取50g 30wt%的过氧化氢加入到100g去离子水和150g乙醇混合溶液中,搅拌10min,混合均匀装入喷涂室一2;将其以流量5mL/min、喷头一2-1喷涂移动速度200mm/s喷涂在1μm厚、孔隙率70%的PTFE微孔膜1表面,并将其置于装有紫外灯3-1的不透光暗室3内照射,控制牵引速度为3m/min,确保照射时间为5min,照射距离5cm;
(2)称取5g钛酸正丁酯溶于28g乙醇中,用恒压滴液漏斗逐滴滴入7.3g 20wt%的磷酸水溶液中,在100℃下搅拌8h,然后进行离心,将沉淀物使用去离子水洗涤,得到胶体,并将胶体置于500℃的烘箱干燥8h,得到纳米磷酸化二氧化钛;
(3)称取6g纳米二氧化锰分散在497g去离子水和497g乙醇中,超声分散均匀,成0.6wt%的纳米二氧化锰分散液,装入喷涂室二6;
(4)称取1.6g(2)中的纳米磷酸化二氧化钛加入到100g 20wt%的全氟磺酸树脂溶液中,在40℃下搅拌2h,经过静置脱泡,得到铸膜液5;
(5)将(4)中的铸膜液5以涂布速度为3m/min,涂布厚度15μm的工艺使用涂布模头4涂布在(1)中亲水处理的PTFE微孔膜1上,经过喷涂室二6,以喷头二6-1喷涂移动速度200mm/s、喷涂流量5mL/min的工艺喷涂(3)中的纳米二氧化锰分散液;然后经过温度为60℃的烘箱一7-1,温度为120℃的烘箱二7-2干燥,然后在4MPa的压辊8下压合,得到厚度为5μm的高质子导率质子交换复合膜,并经过收卷辊9收卷成卷材状。
对比例1
(1)称取50g 30wt%的过氧化氢加入到100g去离子水和150g乙醇混合溶液中,搅拌10min,混合均匀装入喷涂室一2;将混合溶液以流量5mL/min、喷头一2-1喷涂 移动速度200mm/s喷涂在1μm厚、孔隙率80%的PTFE微孔膜1表面,并将其置于装有紫外灯3-1的不透光暗室3内照射,控制牵引速度为3m/min,确保照射时间为5min,照射距离5cm;
(2)称取6g纳米二氧化锰分散在497g去离子水和497g乙醇中,超声分散均匀,成0.6wt%的纳米二氧化锰分散液,装入喷涂室二6;
(3)称取1.6g纳米二氧化钛加入到100g 20wt%的全氟磺酸树脂溶液中,在40℃下搅拌2h,经过静置脱泡,得到铸膜液5;
(4)将(3)中的铸膜液5以涂布速度为3m/min,涂布厚度15μm的工艺使用涂布模头4涂布在(1)中亲水处理的PTFE微孔膜1上,经过喷涂室二6,以喷头二6-1喷涂移动速度200mm/s、喷涂流量5mL/min的工艺喷涂(3)中的纳米二氧化锰分散液;然后经过温度为60℃的烘箱一7-1,温度为120℃的烘箱二7-2干燥,然后在4MPa的压辊8下压合,得到厚度为5μm的高质子导率质子交换复合膜,并经过收卷辊9收卷成卷材状。
对比例2
(1)称取5g钛酸正丁酯溶于45g乙醇中,用恒压滴液漏斗逐
滴滴入2.9g 15wt%的磷酸水溶液中,在80℃下搅拌6h,然后进行离心,将沉淀物使用去离子水洗涤,得到胶体,并将胶体置于300℃的烘箱干燥6h,得到纳米磷酸化二氧化钛;
(2)称取3g纳米二氧化锰分散在665g去离子水和332g乙醇中,超声分散均匀,成0.3wt%的纳米二氧化锰分散液,装入喷涂室二6;
(3)称取2g(2)中的纳米磷酸化二氧化钛加入到200g 10wt%的全氟磺酸树脂溶液中,在50℃下搅拌3h,经过静置脱泡,得到铸膜液5;
(4)将(3)中的铸膜液5以涂布速度为4.9m/min,涂布厚度10μm的工艺使用涂布模头4涂布在3μm厚、孔隙率60%的PTFE微孔膜1上,经过喷涂室二6,以喷头二6-1喷涂移动速度400mm/s、喷涂流量10mL/min的工艺喷涂(3)中的纳米二氧化锰分散液;然后经过温度为80℃的烘箱一7-1,温度为140℃的烘箱二7-2干燥,然后在6MPa的压辊8下压合,得到厚度为8μm的高质子导率质子交换复合膜,并经过收卷辊9收卷成卷材状。
对比例3
(1)称取50g 30wt%的过氧化氢加入到100g去离子水和150g乙醇混合溶液中,搅拌10min,混合均匀装入喷涂室一2;将其以流量5mL/min、喷头一2-1喷涂移动速度200mm/s喷涂在1μm厚、孔隙率70%的PTFE微孔膜1表面,并将其置于装有紫外灯3-1的不透光暗室3内照射,控制牵引速度为3m/min,确保照射时间为5min,照射距离5cm;
(2)称取5g钛酸正丁酯溶于28g乙醇中,用恒压滴液漏斗逐滴滴入7.3g 20wt%的磷酸水溶液中,在100℃下搅拌8h,然后进行离心,将沉淀物使用去离子水洗涤,得到胶体,并将胶体置于500℃的烘箱干燥8h,得到纳米磷酸化二氧化钛;
(3)称取1.6g(2)中的纳米磷酸化二氧化钛加入到100g 20wt%的全氟磺酸树脂溶液中,在40℃下搅拌2h,经过静置脱泡,得到铸膜液5;
(4)将(3)中的铸膜液5以涂布速度为3m/min,涂布厚度15μm的工艺使用涂布模头4涂布在(1)中亲水处理的PTFE微孔膜1上;然后经过温度为60℃的烘箱一7-1,温度为120℃的烘箱二7-2干燥,然后在4MPa的压辊8下压合,得到厚度为5μm的高质子导率质子交换复合膜,并经过收卷辊9收卷成卷材状。
测试例
测试实施例1-3和对比例1-3制备的质子交换复合膜的质子传导率、拉伸强度、氢气渗透电流和尺寸变化率。其中质子传导率测试条件为:95℃、80wt%湿度以及40℃、80wt%湿度下,拉伸强度的测试方法为国标法(GB/T20042.3-2009);氢气渗透电流的测试方法为电化学方法,测试结果见下表。
Figure PCTCN2021133547-appb-000001
实施例1、2和3中通过控制不同铸膜液的含量制备不同厚度的质子交换复合膜,其质子导率有较小的差别,但是在燃料电池的运行过程中均表现出较高的质子导率,随着运行温度逐渐上升至95℃,其质子传导率的衰减很小。
而在对比例1中,铸膜液中添加的是未经过磷酸化的二氧化钛纳米颗粒,质子传导率偏小,这是由于磷酸基团具有增强质子传导率的作用;对比例2中,PTFE微孔膜没有经过亲水化处理,制备的率质子交换复合膜其均匀性较差,并且氢气渗透率较高,而且电池性能偏小,这是由于PTFE微孔膜的强疏水性导致其和铸膜液的浸润性较差所致;对比例3为没有喷涂自由基淬灭剂,此时就未消除燃料电池运行过程中产生的自由基,因此复合膜中质子导体(全氟磺酸树脂)受到自由基的攻击产生降解,导致膜的寿命大大缩短。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种质子交换复合膜,其特征在于:所述质子交换复合膜以亲水性PTFE微孔膜为基膜,所述基膜上涂布质子导体材料;所述质子导体材料上喷涂有自由基淬灭剂;所述质子交换复合膜的厚度为5-10μm;所述质子导体材料包括全氟磺酸树脂液和纳米磷酸化二氧化钛;所述质子导体材料中,纳米磷酸化二氧化钛的质量为全氟磺酸树脂液固含量的5-10%;所述自由基淬灭剂的质量为质子导体材料的0.05-0.1%。
  2. 根据权利要求1所述的质子交换复合膜,其特征在于:所述基膜厚度为1-5μm,孔隙率为60-80%;所述自由基淬灭剂为纳米二氧化铈或纳米二氧化锰中任意一种。
  3. 一种质子交换复合膜的制备方法,其特征在于,包括以下步骤:
    (1)PTFE微孔膜亲水化处理:在PTFE微孔膜上喷涂一层过氧化氢醇/水溶液,置于不透光黑暗空间内经紫外线灯照射,得到亲水化改性的PTFE微孔膜;
    (2)纳米磷酸化二氧化钛的制备:将钛酸正丁酯乙醇溶液滴入50-100℃的磷酸水溶液中回流,经过离心、洗涤,得到胶体,将所得胶体在200-500℃下加热,得到所述纳米磷酸化二氧化钛;
    (3)质子导体材料的制备:在5-20wt%的全氟磺酸树脂液中加入纳米磷酸化二氧化钛,在30-50℃下匀速搅拌1-3h,得到混合溶液,经过静置脱泡,得到质子导体材料;
    (4)将质子导体材料涂布在亲水化改性的PTFE微孔膜上,再喷涂自由基淬灭剂溶液,经过两次烘干后进行压合处理,得到所述质子交换复合膜。
  4. 根据权利要求3所述的制备方法,其特征在于:所述步骤(1)中,喷涂流量为1~5mL/min,喷涂速度为100~400mm/s;所述过氧化氢醇/水溶液浓度为0.1wt%-10wt%,其中去离子水和乙醇的质量比为1:1-10。
  5. 根据权利要求3所述的制备方法,其特征在于:所述步骤(1)中,紫外线灯灯源为波长为200-400nm的LED灯,照射时间为1-10min,照射距离为1-10cm。
  6. 根据权利要求3所述的制备方法,其特征在于:所述步骤(2)中,钛酸正丁酯和磷酸的摩尔比为1-4:1;所述钛酸正丁酯乙醇溶液的质量浓度为6wt%-15wt%,磷酸水溶液的质量浓度为10wt%-20wt%。
  7. 根据权利要求3所述的制备方法,其特征在于:所述步骤(4)中,涂布速度为1-4.9m/min,涂布厚度为10-20μm;喷涂流量为1-10mL/min,喷涂速度为 100-400mm/s。
  8. 根据权利要求3所述的制备方法,其特征在于:所述步骤(4)中,自由基淬灭剂溶液的质量浓度为0.1wt%-0.6wt%,溶质为纳米二氧化铈或纳米二氧化锰中任意一种,溶剂为去离子水和乙醇的混合物,所述去离子水和乙醇的质量比为1:0.1-1。
  9. 根据权利要求3所述的制备方法,其特征在于:所述步骤(4)中,第一次烘干温度为40-80℃,第二次烘干温度为80-140℃;辊压压力为2-6MPa。
  10. 根据权利要求3-9所述的制备方法,其特征在于:采用连续涂布生产装置生产质子交换复合膜,所述连续涂布生产装置中沿质子交换复合膜传送方向上依次设置有喷涂室一、暗室、涂布模头、喷涂室二、烘箱一、烘箱二、压辊和收卷辊;所述喷涂室一内设置有喷头一;所述暗室内设置有紫外灯;所述喷涂室二内设置有喷头二;所述压辊为一对复合辊;所述生产设备还设置有多个传送辊,用以将质子交换复合膜向前传送。
PCT/CN2021/133547 2020-12-14 2021-11-26 一种超薄高质子导率质子交换复合膜的制备方法 WO2022127563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011475633.XA CN112582657B (zh) 2020-12-14 2020-12-14 一种超薄质子交换复合膜连续化制备方法
CN202011475633.X 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022127563A1 true WO2022127563A1 (zh) 2022-06-23

Family

ID=75136196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133547 WO2022127563A1 (zh) 2020-12-14 2021-11-26 一种超薄高质子导率质子交换复合膜的制备方法

Country Status (2)

Country Link
CN (1) CN112582657B (zh)
WO (1) WO2022127563A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584046A (zh) * 2022-11-25 2023-01-10 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN117543039A (zh) * 2022-08-02 2024-02-09 北京清驰科技有限公司 一种质子交换膜用涂布液及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582657B (zh) * 2020-12-14 2021-10-26 中国科学院大连化学物理研究所 一种超薄质子交换复合膜连续化制备方法
CN114108017B (zh) * 2021-12-03 2022-11-08 中国科学院大连化学物理研究所 一种增强型pem水电解质子交换膜及其连续化制备方法
CN114204050B (zh) * 2021-12-03 2023-11-07 中国科学院大连化学物理研究所 一种燃料电池膜电极制备工艺及连续化产线
CN114243070A (zh) * 2021-12-15 2022-03-25 中国科学院大连化学物理研究所 一种耦合导电高分子的质子交换复合膜及制备方法
CN117069988A (zh) * 2023-08-10 2023-11-17 山西国润储能科技有限公司 一种磺化聚醚醚酮基复合离子膜的制备方法及其产品和应用
CN116845308A (zh) * 2023-08-18 2023-10-03 山西国润储能科技有限公司 一种全氟磺酸类增强质子交换膜及其制备方法和应用
CN117080511B (zh) * 2023-10-18 2024-03-08 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法
CN117343369B (zh) * 2023-12-04 2024-03-12 武汉氢能与燃料电池产业技术研究院有限公司 一种全氟磺酸复合质子交换膜材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861668A (zh) * 2006-06-16 2006-11-15 武汉理工大学 基于亲水性多孔聚四氟乙烯基体的复合质子交换膜的制备方法
CN101752574A (zh) * 2008-11-28 2010-06-23 上海市凌桥环保设备厂有限公司 超薄增强型质子交换膜的制备方法
CN102304234A (zh) * 2011-07-15 2012-01-04 华南理工大学 一种密实复合型质子交换膜的制备方法
CN103304979A (zh) * 2013-07-26 2013-09-18 天津大学 磷酸化二氧化钛空心球填充磺化聚醚醚酮膜及制备和应用
CN105977515A (zh) * 2016-05-19 2016-09-28 南京理工大学 一种磁控溅射制备CeO2/PTFE/Nafion复合膜的方法
CN108242553A (zh) * 2016-12-27 2018-07-03 天津风伟雨众能源科技有限公司 燃料电池用保水型质子交换膜的制备方法
CN108878993A (zh) * 2017-05-12 2018-11-23 中国科学院大连化学物理研究所 一种减缓质子交换膜电化学降解的方法
CN112582657A (zh) * 2020-12-14 2021-03-30 中国科学院大连化学物理研究所 一种超薄高质子导率质子交换复合膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253952C (zh) * 2004-11-15 2006-04-26 武汉理工大学 具有自增湿功能的多层纳米复合质子交换膜的制备方法
CN100359738C (zh) * 2005-05-20 2008-01-02 武汉理工大学 高温质子交换膜燃料电池用复合质子交换膜及制备方法
JP4836172B2 (ja) * 2005-08-30 2011-12-14 独立行政法人産業技術総合研究所 金属酸化物ナノポーラス材料からなるプロトン伝導体、同伝導体を用いた燃料電池の電解質又はプロトン伝導性デバイス及び同伝導体の製造方法
CN110256913B (zh) * 2019-06-17 2021-11-30 深圳市通用氢能科技有限公司 一种抗氧化剂、保水剂、混合物、改性燃料电池膜电极的制备方法
CN110459790B (zh) * 2019-08-16 2020-09-04 上海博暄能源科技有限公司 一种改善ptfe微孔膜基体纤维特性的方法及复合膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861668A (zh) * 2006-06-16 2006-11-15 武汉理工大学 基于亲水性多孔聚四氟乙烯基体的复合质子交换膜的制备方法
CN101752574A (zh) * 2008-11-28 2010-06-23 上海市凌桥环保设备厂有限公司 超薄增强型质子交换膜的制备方法
CN102304234A (zh) * 2011-07-15 2012-01-04 华南理工大学 一种密实复合型质子交换膜的制备方法
CN103304979A (zh) * 2013-07-26 2013-09-18 天津大学 磷酸化二氧化钛空心球填充磺化聚醚醚酮膜及制备和应用
CN105977515A (zh) * 2016-05-19 2016-09-28 南京理工大学 一种磁控溅射制备CeO2/PTFE/Nafion复合膜的方法
CN108242553A (zh) * 2016-12-27 2018-07-03 天津风伟雨众能源科技有限公司 燃料电池用保水型质子交换膜的制备方法
CN108878993A (zh) * 2017-05-12 2018-11-23 中国科学院大连化学物理研究所 一种减缓质子交换膜电化学降解的方法
CN112582657A (zh) * 2020-12-14 2021-03-30 中国科学院大连化学物理研究所 一种超薄高质子导率质子交换复合膜的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543039A (zh) * 2022-08-02 2024-02-09 北京清驰科技有限公司 一种质子交换膜用涂布液及其制备方法和应用
CN115584046A (zh) * 2022-11-25 2023-01-10 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN115584046B (zh) * 2022-11-25 2023-02-28 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法

Also Published As

Publication number Publication date
CN112582657B (zh) 2021-10-26
CN112582657A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022127563A1 (zh) 一种超薄高质子导率质子交换复合膜的制备方法
CN110247062B (zh) 一种燃料电池膜电极的制备方法
CN1764001B (zh) 用于直接氧化燃料电池的聚合物电解液及其制备方法以及包含它的直接氧化燃料电池
JP4782102B2 (ja) 陽イオン伝導性高分子複合膜製造用のコーティング液及びこれを用いる陽イオン伝導性高分子複合膜の製造方法、膜−電極接合体並びに燃料電池
CN102437343A (zh) 阳极催化层含亲水性高分子聚合物的膜电极及其制备方法
JP5638692B2 (ja) イオン交換機能を有する複合体並びにその調製方法及び使用
JP2017168446A (ja) 高分子電解質膜の製造方法
KR20110006122A (ko) 연료전지용 고분자 전해질막 및 그 제조방법
WO2011124039A1 (zh) 一种燃料电池用膜-催化剂涂层膜电极的集成化制备方法
US11276871B2 (en) Electrolyte membrane and method for producing same
US10074866B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell, method of producing the same and polymer electrolyte fuel cell
US8815335B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
JP2001158806A (ja) スルホン基含有ポリビニルアルコール、固体高分子電解質、高分子複合膜、その製造方法、および電極
JP2000299119A (ja) 触媒層の製造方法
KR20090015891A (ko) 다이렉트 메탄올형 연료 전지용 전해질막·전극 접합체
CN109921077A (zh) 一种有机无机复合膜及制备和应用
CN107221692A (zh) 一种具有高抗氧化能力的聚苯并咪唑/磷酸多层复合高温质子交换膜及其制备方法
TW200525805A (en) Membrane electrode assembly, manufacturing process therefor and direct type fuel cell therewith
JP2003059507A (ja) 燃料電池用電解質膜−電極接合体、その製造方法、および高分子電解質型燃料電池
JP2019192501A (ja) 燃料電池用電極触媒
KR20080039615A (ko) 복합 전해질막 및 이를 이용한 연료전지
WO2020252606A1 (zh) 一种燃料电池用膜电极结构、燃料电池膜电极的制备方法及质子交换膜燃料电池系统
JP2007115647A (ja) プロトン伝導性コンポジット型電解質膜及びその製造方法
CN111048813B (zh) 一种铁铬液流电池用有机-无机复合膜及其制备方法
CN101733009A (zh) 一种微孔膜增强全氟交联离子交换膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905492

Country of ref document: EP

Kind code of ref document: A1