CN100359738C - 高温质子交换膜燃料电池用复合质子交换膜及制备方法 - Google Patents

高温质子交换膜燃料电池用复合质子交换膜及制备方法 Download PDF

Info

Publication number
CN100359738C
CN100359738C CNB200510018749XA CN200510018749A CN100359738C CN 100359738 C CN100359738 C CN 100359738C CN B200510018749X A CNB200510018749X A CN B200510018749XA CN 200510018749 A CN200510018749 A CN 200510018749A CN 100359738 C CN100359738 C CN 100359738C
Authority
CN
China
Prior art keywords
proton exchange
exchange membrane
solution
solid polyelectrolyte
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200510018749XA
Other languages
English (en)
Other versions
CN1694290A (zh
Inventor
木士春
陈磊
唐浩林
潘牧
袁润章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CNB200510018749XA priority Critical patent/CN100359738C/zh
Publication of CN1694290A publication Critical patent/CN1694290A/zh
Application granted granted Critical
Publication of CN100359738C publication Critical patent/CN100359738C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

一种高温质子交换膜燃料电池用复合质子交换膜,其特征在于复合质子交换膜是由多层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜。多孔聚合物为膨体聚四氟乙烯微孔膜。多孔聚合物增强复合质子交换膜由膨体聚四氟乙烯微孔膜及无机纳米粒子与固体聚电解质填充体构成。复层质子交换膜的制备方法是:膨体聚四氟乙烯微孔膜经预处理及紧固处理,无机纳米粒子与固体聚电解质填充,然后滚压膜成单层多孔聚合物增强复合质子交换膜,再将多层多孔聚合物增强复合质子交换膜叠成叠置件,经热压即制成复层质子交换膜。本复层质子交换膜具有较好的高温保水性能、抗反应气体渗透性及较高的力学强度。

Description

高温质子交换膜燃料电池用复合质子交换膜及制备方法
技术领域
本发明涉及一种高温质子交换膜燃料电池用复合质子交换膜及制备方法,特别涉及由多层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜及制备方法,制备的复层质子交换膜具有较好的高温保水性能、抗反应气体渗透性能及力学性能。
背景技术
燃料电池(Fuel Cell,FC)是一种清洁、高效、安静运行的电化学发电装置。而质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)以运行温度低,比功率密度大而在移动电器、汽车等行业有很好的应用前景。
当前,提高质子交换膜燃料电池的操作温度已受人们的普遍关注,因为燃料电池在高于100℃的条件下工作,可以大大简化质子交换膜(PEM)燃料电池的水管理系统,而且可提高铂黑等催化剂的反应活性。因此,燃料电池在高温条件下工作有利于提高其工作效率。由于全氟磺酸膜的质子传导强烈地依赖水进行,因此当温度大于100℃时,质子电导率会因膜的脱水而降低,同时膜的机械强度也会下降,引起反应气体的渗透性增加,从而影响燃电池的性能。因此有必要提高全氟磺酸膜的高温保水率及机械强度。
为此,国内外学者开展了对杂多酸/全氟磺酸复合膜、磷酸锆/全氟磺酸复合膜、咪唑嗡盐或吡唑嗡盐与全氟磺酸复合膜,以及无机氧化物SiO2、TiO2或ZrO2与全氟磺酸复合膜等无机-有机复合膜的研究。研究表明,在Nafion膜中掺杂纳米SiO2等无机纳米氧化物粒子制得的复合膜在100~130℃高温下具有较好的保水功能。Mauritzt(1995)及Miyake等(2001)将原位合成的SiO2粒子扩散到经溶胀的Nafion膜中制得了复合膜。此膜在120℃时含水率较高,质子导电率接近于Nafion膜的水平。但这种复合膜的缺点是掺杂的SiO2含量存在着从膜表面向膜中心递减的现象,SiO2颗粒在膜内外分布极不均匀。在EP0926754中,AricoAntonino和Antonucci Vincenzo则将预先合成的纳米SiO2粉掺杂到质子交换树脂溶液中共混成膜。此膜中的纳米SiO2分散度有所提高,在145℃时还能保持较高的电导率,但纳米SiO2粉在发生相转移过程中,很容易发生团聚,其粒径难以控制,而且膜的机械强度也尚待提高。Masahiro Watanabe等人(J.Electrochem.Soc,1996,143,3847-3852)把含氧化钛的胶体和Nafion树脂溶液重铸成膜,制得了Nafion/TiO2的复合膜,但复合膜中二氧化钛的粒径及分散度均难以控制。
多孔聚合物膜,如膨体聚四氟乙烯(e-PTFE)微孔膜,具有较高的机械强度和尺寸稳定性,因此,应用以膨体聚四氟乙烯微孔膜为基底的复合膜代替Nafion膜不仅可以节省材料,降低成本,而且还可大大提高膜的机械强度及尺寸稳定性。美国的W.L.Gore and Association(简称Gore)公司已于1997年成功开发出基于e-PTFE微孔膜的55系列复合质子交换膜,随后开发出了应于固定电站的5621系列及56X系列复合质子交换膜,以及应于车载燃料电池的57系列和应于便携式燃料电池的58系列的复合质子交换膜,并已实现商业化。
目前已商业化的多孔聚合物增强复合质子交换膜通常是通过向单一的多孔膜填充固体聚电解质(Solid polyelectrdyte,SPE)获得,但填充后复合膜中仍残留有5-10%的孔隙,而这些残余孔隙很难消除。因而在结合多孔聚合物膜及无机纳米粒子/固体聚电解质复合膜的各自优点制备无机纳米粒子/固体聚电解质填充的多孔聚合物增强复合膜,在获得较好的高温保水性能及力学强度的同时,也应考虑复合膜的反应气体渗透性问题。否则燃料电池长时间运行后,其阴阳两极间反应气体氧气与氢气发生窜气的几率就会大增,对燃料电池的耐久性能产生不利的影响。
发明内容
本发明的目的是提供一种高温质子交换膜燃料电池用复合质子交换膜及制备方法,特别是由多层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜及制备方法。
本发明的一种高温质子交换膜燃料电池用复合质子交换膜,为多层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜。本发明所述的多孔聚合物是膨体聚四氟乙烯微孔膜,其平均孔径为0.2~1μm,平均厚度为1-25μm,孔隙率大于70%。本发明所述的多孔聚合物增强复合质子交换膜是由膨体聚四氟乙烯微孔膜及无机纳米粒子与固体聚电解质填充体组成的一种复合膜,其中多孔聚合物膜起增强作用;无机纳米粒子是SiO2、TiO2、Zr(HPO4)2或ZrO2粒子起保水作用,防止高温下因膜脱水而引起膜的质子导电率下降;固体聚电解质是质子的导体,同时还可作为填料对基体孔隙进行填充,增加膜材料的气密性。固体聚电解质是具有磺酸基团的全氟磺酸树脂类的Nafion树脂、Flemion质子导体聚合物,或是具有质子交换功能的磺化热稳定性聚合物;所述的无机纳米粒子与固体聚电解质填充体,其无机纳米粒子所占填充体比例为1wt%~20wt%。
本发明所述的复合质子交换膜,其表面具有由无机纳米粒子与固体聚电解质组成的薄层,它是在对膨体聚四氟乙烯微孔膜进行无机纳米粒子与固体聚电解质填充的过程中形成并保留的,厚度为1~5μm,主要作为导质子层及反应气体的气密层,同时还是复层质子交换膜的层间粘结剂。
本发明所述的复层质子交换膜是由2~4层多孔聚合物增强复合质子交换膜构成。多孔聚合物增强复合质子交换膜的层数由膨体聚四氟乙烯微孔膜厚度决定,若膨体聚四氟乙烯微孔膜厚度为1-5μm,则复层质子交换膜由3~4层多孔聚合物增强复合质子交换膜构成,厚度为5~10μm,则复层质子交换膜由2~3层多孔聚合物增强复合质子交换膜构成,厚度为10~25μm,则复层质子交换膜由2层多孔聚合物增强复合质子交换膜构成。多孔聚合物增强复合质子交换膜层数的选定原则是:在达到抗反应气体渗透性要求的条件下,复合膜的层数越少越好,以降低电池的内阻。
本发明的复层复合质子交换膜的制备过程依次为:
1)将膨体聚四氟乙烯微孔膜浸入用乙醇、异丙醇或醇水溶液中进行清洗和预溶胀处理,醇水溶液中醇与水的质量比为1~100∶1,充分干燥后,采用薄形铝框、不锈钢框或聚脂框将膜紧固;
2)无机纳米粒子与固体聚电解质溶液的制备:制备纳米SiO2与固体聚电解质溶液,或纳米TiO2与固体聚电解质溶液,或纳米Zr(HPO4)2与固体聚电解质溶液,或纳米ZrO2与固体聚电解质溶液,溶液中无机纳米粒子所占比例为1wt%~20wt%.
3)将膨体聚四氟乙烯微孔膜浸入到无机纳米粒子与固体聚电解质溶液中,5~20分钟后,将膜取出,水平放置于加热板上干燥,其间用胶辊对膜进行滚压;
4)将滚压膜按步骤3重复2~5次,对于厚度为1~5μm的膨体聚四氟乙烯微孔膜,重复2~3次,厚度为5~10μm的膨体聚四氟乙烯微孔膜,重复3~4次,厚度为10~25μm的膨体聚四氟乙烯微孔膜,重复4~5次,制得所述的多孔聚合物增强复合质子交换膜;
5)将步骤4制备的2~4张相同尺寸的多孔聚合物增强复合质子交换膜叠置整齐,并在其底部和上部各放置一张相同尺寸的聚四氟乙烯膜,制得叠置件;若膨体聚四氟乙烯微孔膜厚度为2~5μm,叠置件中多孔聚合物增强复合质子交换膜的层数为2~4,若膨体聚四氟乙烯微孔膜厚度为5~10μm,叠置件中多孔聚合物增强复合质子交换膜的层数为2~3,若膨体聚四氟乙烯微孔膜厚度为10~25μm,叠置件中多孔聚合物增强复合质子交换膜的层数为2;
6)对叠置件进行热压,压力为0.5~5MPa,时间为1~5分钟,温度为120~135℃,之后取出叠置件,揭去聚四氟乙烯膜,制得本发明所述的复层质子交换膜。
本发明的纳米SiO2与固体聚电解质溶液的制备方法是:将正硅酸乙酯与无水乙醇混合均匀,然后加入无水乙醇和摩尔浓度为0.3M盐酸的混合溶液,并在40~60℃下持续搅拌1 2-48h,制得含有纳米SiO2的水溶液;上述添加物的体积比为:正硅酸乙酯∶无水乙醇∶0.3M盐酸=1∶2~30∶0.2~4,其中1/2体积的乙醇与正硅酸乙酯混合,另1/2体积的乙醇与盐酸混合;将纳米SiO2水溶液与固体聚电解质溶液混合,超声10~60min。在纳米SiO2和固体聚电解质混合物中,纳米SiO2所占比例为1wt%~20wt%.
本发明的纳米纳米TiO2与制备固体聚电解质溶液制备方法是:在钛酸四丁酯中加入冰醋酸,混合均匀,在剧烈搅拌下缓慢倒入蒸馏水中,持续搅拌2-6h,待水解完全后,加入70wt%的硝酸,加热到60~90℃后继续搅拌1~5h,制得纳米TiO2胶体溶液;上述添加物的体积比为:钛酸四丁酯∶冰醋酸∶蒸馏水∶70wt%硝酸=1∶0.05~0.51~12。然后,将纳米TiO2胶体溶液与固体聚电解质溶液混合,超声10~60min;在纳米TiO2和固体聚电解质混合物中,纳米TiO2所占比例为1wt%~20wt%;
本发明的纳米Zr(HPO4)2与固体聚电解质溶液的制备方法是:取摩尔浓度为1.5M的氯氧化锆(ZrOCl2)溶液与无水乙醇混合均匀,然后逐滴加入无水乙醇和摩尔浓度为1M磷酸的混合液,在60~90℃下持续搅拌12~24h,得到含有纳米Zr(HPO4)2的水溶液;上述添加物的体积比为:1.5M氯氧化锆∶无水乙醇∶1M磷酸=1∶3~60∶0.05~1。其中1/2体积乙醇与氧氯化锆混合,另1/2体积乙醇与磷酸混合;将含有纳米Zr(HPO4)2的水溶液与固体聚电解质溶液混合,超声10~60min;在纳米Zr(HPO4)2和固体聚电解质混合物中,纳米Zr(HPO4)2所占比例为1wt%~20wt%;
本发明的纳米ZrO 2与固体聚电解质溶液的制备方法是:取摩尔浓度为1.5M的氯氧化锆(ZrOCl2)溶液与无水乙醇溶液,在50~90℃持续搅拌12~24h,同时缓慢倒入蒸馏水,得到含有纳米ZrO2的水溶液。上述添加物的体积比为:1.5M氯氧化锆∶无水乙醇∶蒸馏水=1∶3~60∶1~10。将含有纳米ZrO2的水溶液与固体聚电解质溶液混合,超声10~60min。在纳米ZrO2和固体聚电解质混合物中,纳米ZrO2所占比例为1wt%~20w%;
本发明的复层质子交换膜与单层多孔聚合物增强复合质子交换膜相比,具有以下优点:
1)具有较好的抗反应气体渗透性;
2)具有较好的力学性能,抗拉强度大于25MPa;
3)具有较好的高温保水性能,组装的燃料电池可在100℃以上的温度工作;
因此,采用本发明制备的质子交换膜将具有较好的耐久性,有利于推动燃料电池商业化的发展。
附图说明
图1为复层质子交换膜的合成及组成示意图。
图中标号含义:A-膨体聚四氟乙烯微孔膜,B-经无机纳米粒子/固体聚电解质填充的单层多孔聚合物增强复合质子交换膜,C、D、E-复层质子交换膜,其中C为由二个单层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜,D为由三个单层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜,E为由四个单层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜。
具体实施方式
下面通过实施例详述本发明。
实施例1
单层多孔聚合物增强复合质子交换膜的制备:选取平均厚度为3μm、平均孔径0.2μm及孔隙率为85%的膨体聚四氟乙烯微孔膜,浸入异丙醇中清洗和预溶胀处理,取出干燥后,用薄形铝框将膜夹紧;将33ml的正硅酸乙酯与300ml的无水乙醇混合均匀,然后滴加240ml的无水乙醇和摩尔浓度为0.3M盐酸60ml的混合液,在50℃的温度下持续搅拌12h,得到含有纳米SiO2的水溶液;按SiO2∶Nafion树脂为1∶10的质量比将纳米SiO2水溶液和5wt%Nafion溶液(DuPont公司产品)混合,超声30min,制得SiO2与Nafion溶液;将多孔聚合物膜浸入到SiO2与Nafion溶液中,20分钟后,将膜取出,水平放置于加热板上干燥,其间用胶辊对膜两侧进行滚压;将滚压后的膜重复前一步骤2次,制得多孔聚合物增强复合质子交换膜。
复层质子交换膜的制备:将制备的4张具有相同尺寸的多孔聚合物增强复合质子交换膜叠置整齐,并在底部和上部各放置一张相同尺寸的聚四氟乙烯膜,制得叠置件;采用平板热压机对叠置件进行热压,压力为2MPa,时间为2分钟,温度为125℃,热压后取出叠置件,揭去聚四氟乙烯膜,即制得复层质子交换膜。
采用按照GB1040标准设计的CMT系列拉力机(深圳新三思材料检测公司生产),测得的抗拉强度分别为10MPa、14MPa、26MPa。
将制备的质子交换膜与催化剂层组装燃料电池核心芯片CCM(Catalyst coatedmembrane),CCM阴阳两极催化剂层的同载量合计为0.4mg/cm2;将CCM、气体扩散层、集流板、端板及密封材料组装成单电池,进行电性能测试,单电池的工作条件为:H2/Air,压力为0.2MPa;阴、阳极增湿,增湿度为75%;单电池工作温度为110℃,增湿温度为90℃。下表1为复合质子交换膜的电池性能测试结果,不难看出,复层质子交换膜(简写为复层PEM,下同)的高温电性能总体优于单层多孔聚合物增强复合质子交换膜(简写为单层PEM,下同)。
表1
Figure C20051001874900081
采用Gore公司制定的燃料电池寿命加速试验协议(Liu W,etc.,J.New Mater.electrochem.Syst.,4,227,2001;Cleghom S,etc.,Handbook of Fuel Cells-Fundamentals,Technology and Applications,Volume 3,Part 3,pp566-575)对制备的多孔聚合物增强复合质子交换膜进行加速失效试验。试验条件:电池工作温度为90℃,H2/Air过量系数为1.2/2.0,H2/Air的相对湿度75%,阴与阳极相对压力为5/15psig,恒定电流为800mA/cm2。考虑到高温膜的工作特性,将电池工作温度由90℃提高到130℃。测定氢气的电化学透过率CRXH2(Electrochemical H2 Crossover rate),测定条件:电池工作温度80℃,H2/Air流量比为50/50cc/min,阴与阳极相对压力为0/0psig,当CFXH2>15mA/cm2,认为膜的氢气透过率较大,停止测试,但并不表示膜已失效而不能继续工作。下表2为复合质子交换膜寿命加速试验结果,不难看出,复层PEM的氢气透过率小于单层PEM。
表2
Figure C20051001874900091
实施例2
单层PEM与实施例1基本相同,不同之处在于:采用的膨体聚四氟乙烯微孔膜的平均厚度为5μm,平均孔径0.5μm,且孔隙率为80%以上;将滚压后的膜重复前一次步骤3次。复层PEM的制备方法与实施例1基本相同,不同之处在于:叠置件中多多孔聚合物增强复合质子交换膜的层数为3,热压压力为2.5MPa。膜的拉伸、单电池性能及寿命加速试验的实验方法与实施例1相同。经测定,膨体聚四氟乙烯微孔膜、单层PEM及复层PEM的抗拉强度分别为15MPa、19MPa、37MPa。表3、表4分别为复合膜的电池性能测试及寿命加速试验结果,不难看出,复层PEM的高温电性能及抗反应气体渗透性均优于单层PEM。
表3
表4
Figure C20051001874900093
说明书
复层PEM(mA/cm<sup>2</sup>) 3.76   5.33   9.32   11.87   13.28   14.96   16.90
实施例3
单层PEM与实施例1基本相同,不同之处在于:采用的膨体聚四氟乙烯微孔膜的平均厚度为10μm,平均孔径0.5μm,孔隙率大于80%;将滚压后的膜重复前一步骤4次。复层PEM的制备方法与实施例1基本相同,不同之处在于:叠置件中多孔聚合物增强复合质子交换膜的层数为2,热压压力为5MPa。膜的拉伸、单电池性能及寿命加速试验的实验方法与实施例1相同。膨体聚四氟乙烯微孔膜、单层PEM及复层PEM的抗拉强度分别为22MPa、28MPa、47MPa。表5、表6分别为复合质子交换膜的电池性能测试及寿命加速试验结果,不难看出,复层PEM的高温电性能及抗反应气体渗透性均优于单层PEM。
表5
Figure C20051001874900101
表6
Figure C20051001874900102
实施例4
单层PEM的制备方法与实施例1基本相同,不同之处在于:膨体聚四氟乙烯微孔膜的平均厚度为25μm,平均孔径0.5μm,孔隙率80%;将滚压后的膜重复前一步骤5次。复层PEM的制备方法与实施例1基本相同,不同之处在于:叠置件中多孔聚合物增强复合质子交换膜的层数为2.膜的拉伸、单电池性能及寿命加速试验的实验方法与实施例1相同。膨体聚四氟乙烯微孔膜、单层PEM及复层PEM的抗拉强度分别为31MPa、38MPa、62MPa。表7、表8分别为复合质子交换膜的电池性能测试及寿命加速试验结果,不难看出,复层PEM的高温电性能及抗反应气体渗透性均优于单层PEM。
表7、
Figure C20051001874900103
说明书
Figure C20051001874900111
表8
Figure C20051001874900112
实施例5
单层PEM及复层PEM制备方法与实施例3基本相同,不同之处在于:采用的无机纳米粒子是TiO2。纳米TiO2的制备方法如下:在100ml的钛酸四丁酯中加入25ml的冰醋酸,并混合均匀,在剧烈搅拌下慢慢倒入600ml水中,继续搅拌3h,水解完全后,加入10ml70wt%的硝酸,加热到80℃后继续搅拌2h,制得纳米TiO2胶体溶液。按TiO2∶Nafion树脂为1∶5的质量比将纳米TiO2水溶液与5wt%Nafion溶液混合,超声30min。膜的拉伸、单电池性能及寿命加速试验的实验方法与实施例1相同。膨体聚四氟乙烯微孔膜、单层PEM及复层PEM的抗拉强度分别为23MPa、27MPa、48MPa.表9、表10分别为复合质子交换膜的电池性能测试及寿命加速试验结果,可以看出,复层PEM的高温电性能及抗反应气体渗透性均优于单层PEM。
表9
Figure C20051001874900113
表10
Figure C20051001874900114
实施例6
单层PEM及复层PBM的制备方法与实施例3基本相同,不同之处在于:采用的无机纳米粒子是Zr(HPO4)2。纳米Zr(HPO4)2的制备方法如下:取摩尔浓度为1.5M的氯氧化锆(ZrOCl2)溶液100ml与400ml的无水乙醇均匀混合,然后滴加400ml的无水乙醇和摩尔浓度为1M磷酸20ml的混合液,在80℃的温度下持续搅拌24h,得到含纳米Zr(HPO4)2的水溶液。按Zr(HPO4)2与Nafion树脂的质量比为1∶100的关系将纳米Zr(HPO4)2水溶液和5wt%Nafion溶液混合,超声10min。膜的拉伸、单电池性能及寿命加速试验的实验方法与实施例l相同。膨体聚四氟乙烯微孔膜、单层PEM及复层PEM的抗拉强度分别为24MPa、26MPa、49MPa。表11、表12分别为复合质子交换膜的电池性能测试及寿命加速试验结果,不难看出,复层PEM的高温电性能及抗反应气体渗透性要优于单层PEM。
表11、
Figure C20051001874900121
表12
实施例7
单层PEM及复层PBM的制备方法与实施例3基本相同,不同之处在于:采用的无机纳米粒子是ZrO2。纳米ZrO2的制备方法如下:取摩尔浓度为1.5M的氯氧化锆(ZrOCl2)溶液100ml与300ml的无水乙醇均匀混合,然后缓慢滴加50ml蒸馏水,在80℃下持续搅拌24h,得到含纳米ZrO2的水溶液。按ZrO2与Nafion树脂的质量比为1∶10的关系将纳米ZrO2水溶液和5wt%Nafion溶液混合,超声10min。膜的拉伸、单电池性能及寿命加速试验的实验方法与实施例1相同。膨体聚四氟乙烯微孔膜、单层PEM及复层PEM的抗拉强度分别为22MPa、29MP%、46MPa。表13表、14分别为复合质子交换膜的电池性能测试及寿命加速试验结果,可以看出,复层PEM的高温电性能及抗反应气体渗透性要优于单层PEM。
表13
说明书
Figure C20051001874900131
表14
Figure C20051001874900132

Claims (10)

1、一种高温质子交换膜燃料电池用复合质子交换膜,其特征在于该复合质子交换膜为多层多孔聚合物增强复合质子交换膜复合而成的复层质子交换膜,所述的多孔聚合物是膨体聚四氟乙烯微孔膜,多孔聚合物增强复合质子交换膜是由膨体聚四氟乙烯微孔膜及无机纳米粒子与固体聚电解质填充体构成,所述的无机纳米粒子是纳米SiO2、纳米TiO2、纳米Zr(HPO4)2或纳米ZrO2粒子,所述的固体聚电解质是具有磺酸基团的全氟磺酸树脂类的Nafion树脂、Flemion质子导体聚合物,或是具有质子交换功能的磺化热稳定性聚合物。
2、根据权利要求1所述的复合质子交换膜,其特征在于所述的膨体聚四氟乙烯微孔膜的厚度为1~25μm,孔径为0.2~1μm,孔隙率大于70%。
3、根据权利要求1所述的复合质子交换膜,其特征在于所述的无机纳米粒子与固体聚电解质填充体中,无机纳米粒子所占比例为1wt%~20wt%。
4、根据权利要求1所述的复合质子交换膜,其特征在于所述的多孔聚合物增强复合质子交换膜表面具有1~5μm的无机纳米粒子与固体聚电解质薄层。
5、根据权利要求1所述的复合质子交换膜,其特征在于多层多孔聚合物增强复合质子交换膜中的多层是2~4层,若膨体聚四氟乙烯微孔膜厚度为1-3μm,则多层是3~4层,若膨体聚四氟乙烯微孔膜厚度是5~10μm,则多层为2~3层,若膨体聚四氟乙烯微孔膜厚度为10~25,则多层为2层。
6、权利要求1所述的复合质子交换膜的制备方法,其制备步骤依次为:
1)将膨体聚四氟乙烯微孔膜浸入乙醇、异丙醇或醇水溶液中进行清洗及预溶胀,醇水溶液中醇与水的质量比为1~100∶1,充分干燥后,用薄形铝框、不锈钢框或聚脂框将膜紧固;
2)制备无机纳米粒子与固体聚电解质溶液:制备纳米SiO2与固体聚电解质溶液,或纳米TiO2与固体聚电解质溶液,或纳米Zr(HPO4)2与固体聚电解质溶液,或纳米ZrO2与固体聚电解质溶液,溶液中,无机纳米粒子所占比例为1wt%~20wt%;
3)将膨体聚四氟乙烯微孔膜浸入到无机纳米粒子与固体聚电解质溶液中,5~20分钟后,将膜取出,水平放置于加热板上干燥,其间对膜进行滚压;
4)将滚压膜按步骤3重复2~5次,对于厚度为1~5μm的膨体聚四氟乙烯微孔膜,重复2~3次,厚度为5~10μm的膨体聚四氟乙烯微孔膜,重复3~4次,厚度为10~25μm的膨体聚四氟乙烯微孔膜,重复4~5次,制得多孔聚合物增强复合质子交换膜;
5)将步骤4制备的2~4张相同尺寸的多孔聚合物增强复合质子交换膜叠置整齐,并在其底部和上部各放置一张相同尺寸的聚四氟乙烯膜,制得叠置件,若膨体聚四氟乙烯微孔膜厚度为2~5μm,叠置件中多孔聚合物增强复合质子交换膜的层数为2~4,若膨体聚四氟乙烯微孔膜厚度为5~10μm,叠置件中多孔聚合物增强复合质子交换膜的层数为2~3,若膨体聚四氟乙烯微孔膜厚度为10~25μm,叠置件多孔聚合物增强复合质子交换膜的层数为2;
6)对制得的叠置件进行热压,压力为0.5~5MPa,时间为1~5分钟,温度为120~135℃,之后取出叠置件,揭去聚四氟乙烯膜,即制得复层质子交换膜。
7.根据权利要求6所述的制备方法,其特征在于纳米SiO2与固体聚电解质溶液的制备方法是:将正硅酸乙酯与无水乙醇混合均匀,然后加入无水乙醇和摩尔浓度为0.3M盐酸的混合溶液,并在40-60℃下持续搅拌12-48h,制得含有纳米SiO2的水溶液,上述添加物的体积比为:正硅酸乙酯∶无水乙醇∶0.3M盐酸=1∶2~30∶0.2~4,其中1/2体积的乙醇与正硅酸乙酯混合,另1/2体积的乙醇与盐酸混合,将纳米SiO2水溶液与固体聚电解质溶液混合,超声1~60min;在纳米SiO2和固体聚电解质混合物中,纳米SiO2所占比例为1wt%~20wt%。
8、根据权利要求6所述的制备方法,其特征在于纳米TiO2与固体聚电解质溶液的制备方法是:在100ml的钛酸四丁酯中加入25ml的冰醋酸,并混合均匀,在剧烈搅拌下慢慢倒入600ml水中,继续搅拌3h,水解完全后,加入10ml 70wt%的硝酸,加热到80℃后继续搅拌2h,制得纳米TiO2胶体溶液,按TiO2∶Nafion树脂为1∶5的质量比将纳米TiO2水溶液与5wt%Nafion溶液混合,超声30min。
9、根据权利要求6所述的制备方法,其特征在于纳米Zr(HPO4)2与固体聚电解质溶液制备方法是:取摩尔浓度为1.5M的氯氧化锆溶液与无水乙醇混合均匀,然后逐滴加入无水乙醇和1M磷酸的混合液,在60-90℃下持续搅拌12-24h,得到含有纳米Zr(HPO4)2的水溶液,上述添加物的体积比为:1.5M氯氧化锆∶无水乙醇∶1M磷酸=1∶3~60∶0.05~1,其中1/2体积乙醇与氧氯化锆混合,另1/2体积乙醇与磷酸混合,将含有纳米Zr(HPO4)2的水溶液与固体聚电解质溶液混合,超声10~60min;在纳米Zr(HPO4)2和固体聚电解质混合物中,纳米Zr(HPO4)2所占比例为1wt%~20wt%。
10、根据权利要求6所述的制备方法,其特征在于纳米ZrO2与固体聚电解质溶液的制备方法是:取摩尔浓度为1.5M的氯氧化锆(ZrOCl2)溶液与无水乙醇溶液,在50~90℃持续搅拌12~24h,同时缓慢倒入蒸馏水,得到含有纳米ZrO2的水溶液,上述添加物的体积比为:1.5M氯氧化锆∶无水乙醇∶蒸馏水=1∶3~60∶1~10,将含有纳米ZrO2的水溶液与固体聚电解质溶液混合,超声10~60min;在纳米ZrO2和固体聚电解质混合物中,纳米ZrO2所占比例为1wt%~20w%。
CNB200510018749XA 2005-05-20 2005-05-20 高温质子交换膜燃料电池用复合质子交换膜及制备方法 Expired - Fee Related CN100359738C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200510018749XA CN100359738C (zh) 2005-05-20 2005-05-20 高温质子交换膜燃料电池用复合质子交换膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200510018749XA CN100359738C (zh) 2005-05-20 2005-05-20 高温质子交换膜燃料电池用复合质子交换膜及制备方法

Publications (2)

Publication Number Publication Date
CN1694290A CN1694290A (zh) 2005-11-09
CN100359738C true CN100359738C (zh) 2008-01-02

Family

ID=35353158

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510018749XA Expired - Fee Related CN100359738C (zh) 2005-05-20 2005-05-20 高温质子交换膜燃料电池用复合质子交换膜及制备方法

Country Status (1)

Country Link
CN (1) CN100359738C (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312262B1 (ko) * 2006-02-23 2013-09-25 삼성에스디아이 주식회사 고분자막, 그 제조방법 및 이를 채용한 연료전지
JP5151063B2 (ja) * 2006-04-19 2013-02-27 トヨタ自動車株式会社 燃料電池用電解質膜用多孔質材料、その製造方法、固体高分子型燃料電池用電解質膜、膜−電極接合体(mea)、及び燃料電池
CN100386366C (zh) * 2006-06-09 2008-05-07 清华大学 一种燃料电池用的复合氢型质子交换膜的制备方法
CN101210076B (zh) * 2006-12-25 2011-05-25 同济大学 质子交换膜、其制备方法及其用途
CN101440167B (zh) * 2007-11-19 2012-07-04 中国石油大学(北京) SiO2/有机聚合物复合质子交换膜的制备方法
CN101246966B (zh) * 2008-02-28 2010-11-03 武汉理工大学 具有反气体渗透层及增湿功能的质子交换膜及其制备方法
CN101237056B (zh) * 2008-02-28 2011-05-11 武汉理工大学 具有抗渗透层的燃料电池质子交换膜及其制备方法
CN101350415B (zh) * 2008-07-22 2010-06-23 山东东岳神舟新材料有限公司 一种微孔膜增强的含氟交联掺杂离子交换膜及其制备方法
CN101685867B (zh) * 2008-07-22 2011-09-28 山东东岳神舟新材料有限公司 一种微孔膜增强的多层含氟交联掺杂离子膜及其制备方法
CN101670246B (zh) * 2008-07-22 2011-11-23 山东东岳神舟新材料有限公司 一种微孔膜增强的多层含氟交联掺杂离子膜及其制备方法
CN101685866B (zh) * 2008-07-29 2012-07-04 山东华夏神舟新材料有限公司 一种多层含氟交联离子膜及其制备方法
CN101692496B (zh) * 2008-07-29 2013-09-25 山东华夏神舟新材料有限公司 一种多层含氟交联离子膜及其制备方法
CN101692497B (zh) * 2008-07-29 2012-02-22 山东华夏神舟新材料有限公司 一种多层含氟交联离子膜及其制备方法
CN101685865B (zh) * 2008-07-29 2011-08-17 山东东岳神舟新材料有限公司 一种多层含氟交联离子膜及其制备方法
CN101789512A (zh) * 2010-03-09 2010-07-28 申靓博 燃料电池用新型质子交换膜的制备方法
CN102268690B (zh) * 2011-06-15 2014-01-29 天津大学 电化学合成五氧化二氮用的隔膜及其制备方法
CN102296322B (zh) * 2011-06-15 2014-01-29 天津大学 一种电化学合成五氧化二氮用的隔膜及其制备方法
CN111048811B (zh) * 2019-01-29 2020-09-18 南京攀峰赛奥能源科技有限公司 一种复合质子交换膜、制备方法以及质子交换膜燃料电池
CN110112447B (zh) * 2019-05-09 2022-08-02 朝阳华鼎储能技术有限公司 含有全氟磺酸树脂的多层复合质子交换膜及其制备方法
CN110459790B (zh) * 2019-08-16 2020-09-04 上海博暄能源科技有限公司 一种改善ptfe微孔膜基体纤维特性的方法及复合膜
CN112582657B (zh) * 2020-12-14 2021-10-26 中国科学院大连化学物理研究所 一种超薄质子交换复合膜连续化制备方法
CN113903939A (zh) * 2021-09-27 2022-01-07 中汽创智科技有限公司 一种质子交换膜及其制备方法
CN116252538A (zh) * 2023-05-12 2023-06-13 深圳市通用氢能科技有限公司 一种电解水隔膜的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6562446B1 (en) * 1998-08-05 2003-05-13 Japan Storage Battery Co., Ltd. Multi-layer polymer electrolyte-membrane, electrochemical apparatus and process for the preparation of multi-layer polymer electrolyte membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6562446B1 (en) * 1998-08-05 2003-05-13 Japan Storage Battery Co., Ltd. Multi-layer polymer electrolyte-membrane, electrochemical apparatus and process for the preparation of multi-layer polymer electrolyte membrane

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"有机/无机纳米复合质子交换膜的研究进展". 浦鸿汀等.《材料科学与工程学报》,第23卷第1期. 2005 *
"燃料电池质子交换膜的研究进展". 卢婷利等.《化工新型材料》,第30卷第4期. 2002 *
"直接甲醇燃料电池用Nafion膜及其改性研究进展". 刘启志等.《胶体与聚合物》,第22卷第3期. 2004 *
沈春辉等. "燃料电池用非氟复合质子交换膜的研究进展".《精细化工》,第21卷第增刊期. 2004 *

Also Published As

Publication number Publication date
CN1694290A (zh) 2005-11-09

Similar Documents

Publication Publication Date Title
CN100359738C (zh) 高温质子交换膜燃料电池用复合质子交换膜及制备方法
CN100336257C (zh) 抗气体渗透的燃料电池用复合质子交换膜及制备
Sahu et al. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview
CN100409475C (zh) 聚合物电解质膜及采用它的燃料电池
CN100345332C (zh) 具有保水功能的质子交换膜燃料电池芯片的制备方法
CN1764001B (zh) 用于直接氧化燃料电池的聚合物电解液及其制备方法以及包含它的直接氧化燃料电池
CN100338807C (zh) 一种燃料电池用复合质子交换膜及制备方法
US7989117B2 (en) Fuel compositions
CN1725536A (zh) 自保湿质子交换膜及其制备方法
KR20120078363A (ko) 전기방사에 의한 연료전지용 술폰화 폴리에테르에테르케톤 나노 이온교환막의 제조방법
KR101142235B1 (ko) Dmfc용 고분자 나노복합막, 이를 이용한 막-전극 어셈블리 및 메탄올 연료전지
Ma et al. The research status of Nafion ternary composite membrane
Liu et al. A review of porous polytetrafluoroethylene reinforced sulfonic acid-based proton exchange membranes for fuel cells
Liu et al. An ePTFE-reinforced membrane electrode assembly based on a wet-contact interface design strategy for high-performance proton exchange membrane fuel cells
CN1256783C (zh) 一种高温质子交换膜燃料电池膜电极及制备方法
KR101441411B1 (ko) 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지
CN1300884C (zh) 低增湿长寿命燃料电池用复合质子交换膜及制备
CN100452501C (zh) 基于亲水区表面改性的阻醇质子交换膜及其制备方法
CN103490081B (zh) 改性全氟磺酸质子交换膜、其制备方法和直接甲醇燃料电池膜电极及其制备方法
CN100479242C (zh) 一种保水组分均匀分散的复合质子交换膜的制备方法
CN1750293A (zh) 可降低醇类透过的改性质子交换膜及其制备方法与应用
CN100398600C (zh) 用于燃料电池的聚合物电解质膜及包含它的燃料电池系统
US7547733B2 (en) Composite proton exchange membrane
CN114335564B (zh) 一种质子交换膜燃料电池用单层气体扩散层、制备方法及应用
TWI452072B (zh) 質子交換複合膜及其製備方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080102