WO2022127163A1 - 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法 - Google Patents

一种亚锡盐配合物催化剂及其生产l-丙交酯的方法 Download PDF

Info

Publication number
WO2022127163A1
WO2022127163A1 PCT/CN2021/113174 CN2021113174W WO2022127163A1 WO 2022127163 A1 WO2022127163 A1 WO 2022127163A1 CN 2021113174 W CN2021113174 W CN 2021113174W WO 2022127163 A1 WO2022127163 A1 WO 2022127163A1
Authority
WO
WIPO (PCT)
Prior art keywords
stannous salt
lactide
stannous
complex catalyst
salt complex
Prior art date
Application number
PCT/CN2021/113174
Other languages
English (en)
French (fr)
Inventor
吴迪
吴培龙
陆银秋
陈建国
刘鑫伟
宋阁
蔡昌旺
Original Assignee
江苏景宏新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏景宏新材料科技有限公司 filed Critical 江苏景宏新材料科技有限公司
Priority to US17/636,297 priority Critical patent/US20230338936A1/en
Publication of WO2022127163A1 publication Critical patent/WO2022127163A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • C07F9/142Esters of phosphorous acids with hydroxyalkyl compounds without further substituents on alkyl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides, epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the invention belongs to the technical field of L-lactide preparation, in particular to a stannous salt complex catalyst and a method for producing L-lactide by using the catalyst.
  • the commonly used cracking catalysts for the preparation of lactide are mainly metals such as zinc and tin and their metal salts, among which the most widely used are mainly stannous salts, including stannous octoate, stannous chloride, and stannous sulfate.
  • stannous salts are easily oxidized, especially under the conditions of cracking reaction (>200°C), which rapidly oxidize and decompose to generate tetravalent tin salts, thereby losing catalytic activity, and tin salts can also lead to the racemization of lactide. , so that the amount of meso-lactide is increased. At the same time, the color of lactide and residual liquid will be deepened.
  • CN101903370B discloses stannous phosphite as a cracking catalyst for synthesizing lactide. Using the reducibility of phosphorous acid prevents the oxidation of stannous ions to tin ions, thereby reducing the conversion rate of meso-lactide and improving the hue of lactide.
  • phosphite is highly toxic and can generate highly toxic phosphine under acidic conditions, which is less safe.
  • CN110156745A discloses a composite catalyst of zinc compounds and/or tin compounds and alkali metal compounds, but the addition of alkali metal compounds cannot improve the oxidation of stannous salts to tin salts.
  • GB2331986A discloses the compound use of stannous octoate and phosphite stabilizer for preparing lactide.
  • phosphite is only used as a stabilizer and does not undergo a coordination reaction with stannous salts, which cannot completely prevent stannous salts from being oxidized into tin salts, and only improves the hue of lactide, but does not reduce mesopropane The conversion rate of lactide.
  • the object of the present invention is to: provide a kind of preparation method of stannous salt complex catalyst and the technological process of using this catalyst to produce lactide, the catalyst preparation process provided by the invention is simple and pollution-free, has low requirement for equipment, is convenient for industrialization, and the catalyst High stability at high temperature, stannous salt will not be oxidized to tetravalent tin salt, and the L-lactide produced by using the catalyst provided by the invention has good color, small content of meso-lactide, and low residual liquid. Hue is good.
  • a stannous salt complex catalyst mainly comprises the following raw materials:
  • the mass ratio of stannous salt to phosphite is 5:1 to 20:1
  • the mass ratio of stannous salt to solvent is 2:1 to 1:5
  • the preparation steps of the stannous salt complex catalyst are as follows :
  • the stannous salt is dissolved in the solvent, heated to reflux for 30min, and the stannous salt is fully dissolved to obtain a stannous salt solution;
  • the stannous salt is composed of one or two or more of stannous isooctanoate, stannous chloride, stannous sulfate, stannous oxalate and stannous phosphate.
  • the phosphite is composed of one or two or more of triphenyl phosphite, tridecyl phosphite, diphenyl phosphite and pentaerythritol diisodecyl diphosphite.
  • the solvent is one or two or more of benzene, toluene, ethyl acetate, acetone and xylene.
  • the mass ratio of the stannous salt to the phosphite is 5:1, and the mass ratio of the stannous salt to the solvent is 2:1.
  • the present invention also provides the preparation method of the stannous salt complex catalyst described in the above technical scheme, and the preparation steps are as follows:
  • the stannous salt is dissolved in the solvent, heated to reflux for 30min, and the stannous salt is fully dissolved to obtain a stannous salt solution;
  • the invention provides a method for producing L-lactide with the stannous salt complex catalyst, comprising the following preparation steps:
  • the second reaction kettle is also provided with a rectifying device, and the oligomeric lactic acid is further polymerized at a temperature of 120 to 170 ° C and a vacuum degree of -0.1 MPa, and the polymerization degree of the oligomeric lactic acid is controlled to be 8 to 25.
  • the continuously injected stannous salt complex catalyst it is continuously transported to the static mixer by the pump to mix evenly, and then transported to the third reactor;
  • the oligomeric lactic acid is subjected to cracking reaction in the third reactor, the reaction temperature is 200 ⁇ 230 °C, the pressure is 50 ⁇ 500Pa, and the crude lactide vapor generated by the oligomeric lactic acid cracking is collected by condensation in the crude lactide storage tank At the same time, the unevaporated residual night flows into the residual liquid collection tank, and the crude lactide is purified to obtain the L-lactide with the required purity of the melt polymerization reaction.
  • the added amount of the stannous salt complex catalyst is 0.5-5% of the mass of the oligomeric lactic acid with a polymerization degree of 8-25.
  • the third reactor is a cage evaporation reactor, a wiped thin film evaporator, a falling film evaporator or a rising film evaporator.
  • the crude lactide is purified by one or more of melt crystallization, rectification and solvent recrystallization.
  • the present invention prepares the catalyst by utilizing the coordination reaction of stannous salt and phosphite, which can significantly improve the stability of the catalyst at high temperature, and can effectively inhibit the oxidation of divalent stannous ions into tetravalent ions.
  • tin ions effectively reduce the conversion rate of meso-lactide, improve the yield of L-lactide, and obtain a nearly white L-lactide, in the crude lactide generated after the depolymerization reaction,
  • the content of L-lactide is greater than or equal to 95%; the content of meso-lactide is less than or equal to 3.8%, while ensuring that the color of the residual liquid is close to milky white.
  • the L-lactic acid aqueous solution with a mass concentration of 90% was added to the first reactor at a rate of 15kg/h, the first reactor was provided with a rectifying tower, the reaction temperature was constant at 120°C, and the vacuum was -0.08MPa, and the reaction temperature was The time is 2h, the polymerization degree of oligomeric lactic acid is controlled to be 6-8, and the reaction product oligomeric lactic acid is continuously pumped into the second reaction kettle.
  • the second reaction kettle is also equipped with a rectifying device.
  • the oligomeric lactic acid is further polymerized at a temperature of 160 ° C and a vacuum degree of -0.1 MPa, and the polymerization degree of the oligomeric lactic acid is controlled to be 15-20. into the third reactor.
  • the oligomeric lactic acid from the second reaction kettle and the continuously injected stannous salt complex catalyst were mixed by a static mixer, and then added to a rising film evaporator with an evaporation area of 0.8m2 at a rate of 13kg/h, in which the sub
  • the usage amount of the tin salt complex catalyst is 1% of the mass of the oligomeric lactic acid, the reaction temperature of the evaporator is 230 ° C, and the control pressure is 500 Pa, the crude lactide is continuously produced, and is condensed and collected in the lactide storage tank.
  • the unevaporated heavy components flow into the raffinate collection tank, and the components of the crude lactide are shown in Table 1.
  • the residual liquid produced by the cracking is continuously injected with oligomeric lactic acid and stannous salt complex catalyst after being mixed with a static mixer, and then added to the rising film evaporator.
  • the components are shown in Table 2.
  • the catalyst used in the comparative example is stannous isooctanoate, and its consumption and the method for producing lactide are the same as in the examples.
  • the stannous salt complex catalyst As can be seen from Table 1, after using the stannous salt complex catalyst, the purity of L-lactide is significantly improved, while the meso-lactide is significantly reduced, and the color of the crude lactide and the raffinate is higher than it is good. As can be seen from Table 2, after the raffinate is all recycled and used for one month, the L-lactide purity in the embodiment is reduced to a certain extent, but the reduction in the L-lactide purity is more obvious in the comparative example, And the color of the crude lactide was darker, and the color of the residual liquid became brown. It can be seen that the stannous salt catalyst provided by the technology of the present invention can increase the purity of L-lactide, reduce the generation amount of meso-lactide, and improve the color of lactide and residual liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种亚锡盐配合物催化剂及其生产L-丙交酯的方法,所述催化剂是由亚锡盐和亚磷酸酯在溶剂中反应得到,其可以有效的抑制二价的亚锡离子氧化成四价的锡离子;有效降低内消旋丙交酯的转化率;提升L-丙交酯的产率;并获得接近白色的L-丙交酯。在解聚反应过后生成的粗丙交酯中,L-丙交酯的含量≥95%;内消旋丙交酯含量≤3.8%,时保证残液的颜色接近乳白色。

Description

一种亚锡盐配合物催化剂及其生产L-丙交酯的方法
本申请要求于2020年12月15日提交中国专利局、申请号为CN202011480932.2、发明名称为“一种亚锡盐配合物催化剂及其生产L-丙交酯的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于L-丙交酯制备技术领域,具体涉及一种亚锡盐配合物催化剂及采用所述催化剂生产L-丙交酯的方法。
背景技术
目前制备丙交酯常用的裂解催化剂主要为锌、锡等金属及其金属盐,其中应用范围最广的主要是亚锡盐,包括辛酸亚锡、氯化亚锡、硫酸亚锡等。但是,亚锡盐极易被氧化,特别是在裂解反应条件下(>200℃),快速氧化分解,生成四价锡盐,从而失去催化活性,而锡盐还会导致丙交酯的消旋,使得生成内消旋丙交酯的量增加。同时,还会造成丙交酯和残液的颜色加深。
CN101903370B公开了亚磷酸亚锡作为合成丙交酯的裂解催化剂。采用亚磷酸的还原性阻止了亚锡离子氧化成锡离子,从而降低内消旋丙交酯的转化率,并改善了丙交酯的色相。但亚磷酸盐的毒性较大,可在酸性条件下生成剧毒的磷化氢,安全性较差。CN110156745A公开了一种锌类化合物和/或锡类化合物与碱金属化合物的复合催化剂,但碱金属化合物的加入并不能改善亚锡盐被氧化成锡盐。GB2331986A公开了辛酸亚锡与亚磷酸酯稳定剂复配使用,用于制备丙交酯。但亚磷酸酯仅作为稳定剂,并没有与亚锡盐进行配位反应,并不能完全阻止亚锡盐被氧化成锡盐,并且只是提升的丙交酯的色相,并未降低内消旋丙交酯的转化率。
发明内容
本发明的目的在于:提供一种亚锡盐配合物催化剂的制备方法及使用该催化剂生产丙交酯的工艺流程,本发明提供的催化剂制备过程简单无污 染、对设备要求低、便于工业化,催化剂在高温下稳定性高,亚锡盐不会被氧化成四价的锡盐,且使用本发明提供的催化剂生产的L-丙交酯色相好、内消旋丙交酯含量小、残液的色相好。
为了达到上述发明目的,本发明采取了如下技术方案:
一种亚锡盐配合物催化剂,主要包括以下原料:
(1)亚锡盐
(2)亚磷酸酯
(3)溶剂
其中,亚锡盐与亚磷酸酯的质量比为5:1~20:1,亚锡盐与溶剂的质量比为2:1~1:5,所述亚锡盐配合物催化剂的制备步骤如下:
(1)将亚锡盐溶于溶剂中,加热回流30min,使亚锡盐充分溶解得到亚锡盐溶液;
(2)在氮气保护下,将亚磷酸酯滴加至所述亚锡盐溶液中,并回流反应2h;
(3)反应结束后,将溶剂从体系中抽出并回收再利用,最终生成的淡黄色粘稠液体即为亚锡盐配合物催化剂成品。
优选地,所述亚锡盐为异辛酸亚锡、氯化亚锡、硫酸亚锡、草酸亚锡和磷酸亚锡中的一种或两种及以上组成。
优选地,所述亚磷酸酯为亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸二苯酯和二亚磷酸季戊四醇二异癸酯中的一种或两种及以上组成。
优选地,所述溶剂为苯、甲苯、乙酸乙酯、丙酮和二甲苯中的一种或两种及以上组成。
优选地,所述亚锡盐与亚磷酸酯的质量比为5:1,亚锡盐与溶剂的质量比为2:1。
本发明还提供了上述技术方案所述的亚锡盐配合物催化剂的制备方法,制备步骤如下:
(1)将亚锡盐溶于溶剂中,加热回流30min,使亚锡盐充分溶解得到亚锡盐溶液;
(2)在氮气保护下,将亚磷酸酯滴加至所述亚锡盐溶液中,并回流 反应2h;
(3)反应结束后,将溶剂从体系中抽出并回收再利用,最终生成的淡黄色粘稠液体为亚锡盐配合物催化剂。
本发明提供了一种所述亚锡盐配合物催化剂生产L-丙交酯的方法,包括如下制备步骤:
(1)将质量浓度为80~98%的L-乳酸水溶液连续加入到带有精馏装置的第一反应釜中,在温度80~120℃,真空度-0.05~-0.09MPa下,脱出游离水和结合水,反应产生的水、乳酸蒸汽经精馏塔分离,塔顶水蒸气经冷凝后流入收集罐中,控制低聚乳酸聚合度为2~8,将低聚乳酸通过泵连续输送到第二反应釜中;
(2)第二反应釜也带有精馏装置,低聚乳酸在温度120~170℃,真空度-0.1MPa下,进一步聚合,控制低聚乳酸的聚合度为8~25,将低聚乳酸与连续注入的亚锡盐配合物催化剂,通过泵连续输送至静态混合器混合均匀后,输送到第三反应器中;
(3)低聚乳酸在第三反应器中进行裂解反应,反应温度为200~230℃,压力为50~500Pa,低聚乳酸裂解生成的粗丙交酯蒸汽经冷凝收集在粗交酯储罐中,同时未蒸发的残夜流入残液收集罐中,对粗丙交酯进行提纯,得到达到熔融聚合反应所需纯度的L-丙交酯。
优选地,所述亚锡盐配合物催化剂的加入量为聚合度为8~25的低聚乳酸质量的0.5~5%。
优选地,所述第三反应器为笼式蒸发反应器、刮板式薄膜蒸发器、降膜式蒸发器或升膜式蒸发器。
优选地,所述粗丙交酯通过熔融结晶、精馏和溶剂重结晶中的一种方式或几种方式进行提纯。
本发明的有益效果:本发明通过利用亚锡盐与亚磷酸酯的配位反应制备催化剂,能够显著地提高催化剂在高温下的稳定性,可以有效的抑制二价的亚锡离子氧化成四价的锡离子;有效降低内消旋丙交酯的转化率,提升L-丙交酯的产率,并获得接近白色的L-丙交酯,在解聚反应过后生成的粗丙交酯中,L-丙交酯的含量≥95%;内消旋丙交酯含量≤3.8%,同时保 证残液的颜色接近乳白色。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明不仅仅限定于这些实施例。
实施例
1.亚锡盐配合物催化剂的制备:
将100g异辛酸亚锡加入50g甲苯中,110℃下,回流溶解30min,将20g亚磷酸三癸酯加入到异辛酸亚锡和甲苯的混合溶液中,继续回流反应2h,反应结束后,在真空下抽出反应体系中的甲苯,并回收再利用,最后得到的淡黄色粘稠液体即为亚锡盐配合物催化剂。
2.低聚乳酸的制备:
将质量浓度为90%的L-乳酸水溶液以15kg/h的速率加入到第一反应釜中,第一反应釜带有精馏塔,反应温度恒定为120℃,真空度为-0.08MPa,停留时间为2h,控制低聚乳酸聚合度为6-8,将反应产物低聚乳酸用泵连续输送到第二反应釜中。
第二反应釜也带有精馏装置,低聚乳酸在温度160℃,真空度-0.1MPa下,进一步聚合,控制低聚乳酸的聚合度为15-20,反应产物低聚乳酸用泵连续输送到第三反应器中。
3.低聚乳酸裂解生成粗丙交酯:
来自第二反应釜的低聚乳酸与连续注入的亚锡盐配合物催化剂经静态混合器混合后,以13kg/h的速率加入到蒸发面积为0.8m 2的升膜式蒸发器中,其中亚锡盐配合物催化剂的使用量为低聚乳酸质量的1%,蒸发器反应温度为230℃,并控制压力为500Pa,粗丙交酯不断产生,并冷凝收集在丙交酯储罐中,同时未蒸发的重组分流入残液收集罐中,所述粗丙交酯的组分如表1所示。
4.残液的循环使用:
将裂解产生的残液采用连续注入的方式与低聚乳酸、亚锡盐配合物催化剂经静态混合器混合后,重新加入到升膜式蒸发器中,循环运行一个月后,粗丙交酯的组分如表2所示。
对比例
对比例使用的催化剂为异辛酸亚锡,其用量及用于生产丙交酯的方法与实施例相同。
表1粗丙交酯的组分
粗丙交酯的组成(重量%) 实施例 对比例
L-丙交酯 94.7 87.8
内消旋丙交酯 3.1 10.0
乳酸 0.7 0.7
乳酸低聚物 1.0 1.1
粗丙交酯的颜色 白色 微黄色
产率%(L-丙交酯/低聚乳酸) 88.26 80.96
残液的颜色 白色浑浊 褐色浑浊
表2残液回收循环运行一个月粗丙交酯的组分
粗丙交酯的组成(重量%) 实施例 对比例
L-丙交酯 91.0 80.2
内消旋丙交酯 5.9 15.4
乳酸 0.9 1.2
乳酸低聚物 1.4 1.5
粗丙交酯的颜色 淡黄色 暗黄色
产率%(L-丙交酯/低聚乳酸) 83.72 73.78
残液的颜色 暗白色浑浊 褐色浑浊
从表1中可以看出,使用亚锡盐配合物催化剂后,L-丙交酯的纯度有明显的提升,同时内消旋丙交酯明显降低,粗丙交酯及残液的颜色均较好。从表2中可以看出,在残液全部回收循环使用运行一个月之后,实施例中的L-丙交酯纯度有一定程度降低,但对比例中L-丙交酯纯度降低更为明显,且粗丙交酯的颜色较深,残液的颜色变为褐色。由此可见,本发明技术提供的亚锡盐催化剂生产丙交酯能够增加L-丙交酯的纯度,降低内消旋丙交酯的生成量,提升丙交酯及残液的颜色。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种亚锡盐配合物催化剂,其特征在于:主要包括以下原料:
    (1)亚锡盐
    (2)亚磷酸酯
    (3)溶剂
    其中,亚锡盐与亚磷酸酯的质量比为5:1~20:1,亚锡盐与溶剂的质量比为2:1~1:5,所述亚锡盐配合物催化剂的制备步骤如下:
    (1)将亚锡盐溶于溶剂中,加热回流30min,使亚锡盐充分溶解得到亚锡盐溶液;
    (2)在氮气保护下,将亚磷酸酯滴加至所述亚锡盐溶液中,并回流反应2h;
    (3)反应结束后,将溶剂从体系中抽出并回收再利用,最终生成的淡黄色粘稠液体为亚锡盐配合物催化剂。
  2. 如权利要求1所述一种亚锡盐配合物催化剂,其特征在于:所述亚锡盐为异辛酸亚锡、氯化亚锡、硫酸亚锡、草酸亚锡和磷酸亚锡中的一种或两种及以上组成。
  3. 如权利要求1所述一种亚锡盐配合物催化剂,其特征在于:所述亚磷酸酯为亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸二苯酯和二亚磷酸季戊四醇二异癸酯中的一种或两种及以上组成。
  4. 如权利要求1所述一种亚锡盐配合物催化剂,其特征在于:所述溶剂为苯、甲苯、乙酸乙酯、丙酮和二甲苯中的一种或两种及以上组成。
  5. 如权利要求1所述一种亚锡盐配合物催化剂,其特征在于:所述亚锡盐与亚磷酸酯的质量比为5:1,亚锡盐与溶剂的质量比为2:1。
  6. 权利要求1~5任一项所述的亚锡盐配合物催化剂的制备方法,其特征在于,制备步骤如下:
    (1)将亚锡盐溶于溶剂中,加热回流30min,使亚锡盐充分溶解得到亚锡盐溶液;
    (2)在氮气保护下,将亚磷酸酯滴加至所述亚锡盐溶液中,并回流反应2h;
    (3)反应结束后,将溶剂从体系中抽出并回收再利用,最终生成的淡黄色粘稠液体为亚锡盐配合物催化剂。
  7. 一种如权利要求1~5任意一项所述亚锡盐配合物催化剂生产L-丙交酯的方法,其特征在于:包括如下制备步骤:
    (1)将质量浓度为80~98%的L-乳酸水溶液连续加入到带有精馏装置的第一反应釜中,在温度80~120℃,真空度-0.05~-0.09MPa下,脱出游离水和结合水,反应产生的水、乳酸蒸汽经精馏塔分离,塔顶水蒸气经冷凝后流入收集罐中,控制低聚乳酸聚合度为2~8,将低聚乳酸通过泵连续输送到第二反应釜中;
    (2)第二反应釜也带有精馏装置,低聚乳酸在温度120~170℃,真空度-0.1MPa下,进一步聚合,控制低聚乳酸的聚合度为8~25,将低聚乳酸与连续注入的亚锡盐配合物催化剂,通过泵连续输送至静态混合器混合均匀后,输送到第三反应器中;
    (3)低聚乳酸在第三反应器中进行裂解反应,反应温度为200~230℃,压力为50~500Pa,低聚乳酸裂解生成的粗丙交酯蒸汽经冷凝收集在粗交酯储罐中,同时未蒸发的残夜流入残液收集罐中,对粗丙交酯进行提纯,得到达到熔融聚合反应所需纯度的L-丙交酯。
  8. 如权利要求7所述一种亚锡盐配合物催化剂生产L-丙交酯的方法,其特征在于:所述亚锡盐配合物催化剂的加入量为聚合度为8~25的低聚乳酸质量的0.5~5%。
  9. 如权利要求7所述一种亚锡盐配合物催化剂生产L-丙交酯的方法,其特征在于:所述第三反应器为笼式蒸发反应器、刮板式薄膜蒸发器、降膜式蒸发器或升膜式蒸发器。
  10. 如权利要求7所述一种亚锡盐配合物催化剂生产L-丙交酯的方法,其特征在于:所述粗丙交酯通过熔融结晶、精馏和溶剂重结晶中的一种方式或几种方式进行提纯。
PCT/CN2021/113174 2020-12-15 2021-08-18 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法 WO2022127163A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/636,297 US20230338936A1 (en) 2020-12-15 2021-08-18 Stannous salt complex catalyst and method for producing l-lactide by using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011480932.2 2020-12-15
CN202011480932.2A CN112427048A (zh) 2020-12-15 2020-12-15 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法

Publications (1)

Publication Number Publication Date
WO2022127163A1 true WO2022127163A1 (zh) 2022-06-23

Family

ID=74691302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113174 WO2022127163A1 (zh) 2020-12-15 2021-08-18 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法

Country Status (3)

Country Link
US (1) US20230338936A1 (zh)
CN (2) CN112427048A (zh)
WO (1) WO2022127163A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112427048A (zh) * 2020-12-15 2021-03-02 江苏景宏新材料科技有限公司 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法
CN114634526B (zh) * 2022-03-10 2024-04-02 江苏景宏新材料科技有限公司 一种Ti-P配合物的制备方法及其应用
CN114957197A (zh) * 2022-05-11 2022-08-30 普立思生物科技有限公司 一种丙交酯制备方法
CN115010695A (zh) * 2022-05-31 2022-09-06 江苏景宏新材料科技有限公司 一种利用回收聚乳酸制备高纯度丙交酯的方法
CN115160289B (zh) * 2022-07-27 2023-11-24 中国科学院青岛生物能源与过程研究所 一种镁催化剂及其解聚无规聚乳酸回收丙交酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331986A (en) * 1997-12-03 1999-06-09 Kobe Steel Europ Ltd Stabiliser for cyclic lactone production
US20090247710A1 (en) * 2008-03-31 2009-10-01 Purac Biochem B.V. Method for manufacturing stable polylactide
CN101903370A (zh) * 2007-12-19 2010-12-01 富特罗股份有限公司 获得丙交酯的方法
CN112427048A (zh) * 2020-12-15 2021-03-02 江苏景宏新材料科技有限公司 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257919A (en) * 1979-11-01 1981-03-24 Phillips Petroleum Company Method of transferring a passivating agent to or from a cracking catalyst
US5770682A (en) * 1995-07-25 1998-06-23 Shimadzu Corporation Method for producing polylactic acid
DE10256084A1 (de) * 2002-11-29 2004-06-17 Crompton Gmbh Katalysatoren für die Herstellung von Polyestern, insbesondere Poly(alkylenterephthalaten), deren Verwendung und Verfahren zu deren Anwendung
CN102333785B (zh) * 2009-02-09 2015-06-10 Lg化学株式会社 聚乳酸树脂及其制备方法
CN102921414B (zh) * 2012-10-17 2015-01-21 江苏景宏新材料科技有限公司 一种苯环烷基酯加氢催化剂及其制备方法
CN103788351B (zh) * 2012-10-31 2016-02-24 中国石油化工股份有限公司 一种聚乳酸的连续聚合方法
CN103193759B (zh) * 2013-04-24 2014-11-26 南京大学 生物质有机胍催化法合成光学纯l-/d-丙交酯的工艺方法
PL3288930T3 (pl) * 2015-04-30 2021-11-08 Purac Biochem Bv Sposób i urządzenie do wytwarzania laktydu
CN105859512B (zh) * 2016-04-19 2019-01-22 浙江衢州巨新氟化工有限公司 一种1,1,1,3,3-五氯丙烷的制备方法
CN110156745A (zh) * 2019-06-20 2019-08-23 南京大学 一种催化合成丙交酯的工艺方法
CN111450792B (zh) * 2020-05-20 2020-12-15 吉林中粮生化有限公司 聚乳酸以及制备聚乳酸的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331986A (en) * 1997-12-03 1999-06-09 Kobe Steel Europ Ltd Stabiliser for cyclic lactone production
CN101903370A (zh) * 2007-12-19 2010-12-01 富特罗股份有限公司 获得丙交酯的方法
US20090247710A1 (en) * 2008-03-31 2009-10-01 Purac Biochem B.V. Method for manufacturing stable polylactide
CN112427048A (zh) * 2020-12-15 2021-03-02 江苏景宏新材料科技有限公司 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法

Also Published As

Publication number Publication date
CN112427048A (zh) 2021-03-02
CN114315789A (zh) 2022-04-12
US20230338936A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022127163A1 (zh) 一种亚锡盐配合物催化剂及其生产l-丙交酯的方法
IL262406A (en) A method for the preparation of intermediate azoxytrobin
CN108946802B (zh) 提高钛渣酸解率的方法
WO2023241727A1 (zh) 以环丁砜作为夹带剂分离乙二醇和乙二醇二乙酸酯的方法
CN105084656B (zh) 蛋氨酸生产废水的处理方法
CN112479847B (zh) 一种利用醋酸裂解制备双乙烯酮的方法
CN102794185B (zh) 制备1,3-二氧戊环的方法及所用催化剂和装置
CN105084657B (zh) 蛋氨酸生产废水的生化预处理方法
CN104829029B (zh) 一种合成尿囊素的工业废水的处理方法
CN106632532A (zh) 一种三氯蔗糖生产中三氯乙烷的回收处理方法
CN114644549A (zh) 一种甲酸的生产系统及生产工艺
CN110627743B (zh) 一种用n-乙基吗啉制备吗啉和一乙胺的方法
CN110451684B (zh) 十二碳醇酯生产工艺废水的处理方法
CN113004168A (zh) 一种呋喃铵盐合成用甲氧胺的生产工艺
CN111808005A (zh) 一种2-氯-3-异硫氰-1-丙烯连续化合成方法
CN111848355A (zh) 一种从松节油异构反应液中提取正龙脑的方法
CN109503332B (zh) 一种利用水杨酸残渣分解回收苯酚钠的方法
CN112457170B (zh) 一种2,2,4,4-四甲基-1,3-环丁二醇的制备方法
US3067107A (en) Propionic acid fermentation
CN113248363B (zh) 甲酸甲酯废液的再利用方法
DE3035809A1 (de) Verfahren zur kontinuierlichen herstellung von gesaettigten, aliphatischen polycarbonsaeuren in einem siedereaktor
CN108455656B (zh) 一种活性氧化锌的制备方法
CN115894209A (zh) 一种回收利用电石渣生产新戊二醇和甲酸钙的方法
CN113636930A (zh) 一种醋酸酐的生产工艺
CN117986131A (zh) 一种制备1,5-戊二胺碳酸(氢)盐的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905096

Country of ref document: EP

Kind code of ref document: A1