WO2022127159A1 - 一种用保护背膜实现抗溶胀的ccm涂布工艺 - Google Patents

一种用保护背膜实现抗溶胀的ccm涂布工艺 Download PDF

Info

Publication number
WO2022127159A1
WO2022127159A1 PCT/CN2021/112979 CN2021112979W WO2022127159A1 WO 2022127159 A1 WO2022127159 A1 WO 2022127159A1 CN 2021112979 W CN2021112979 W CN 2021112979W WO 2022127159 A1 WO2022127159 A1 WO 2022127159A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
protective film
ccm
proton exchange
exchange membrane
Prior art date
Application number
PCT/CN2021/112979
Other languages
English (en)
French (fr)
Inventor
郝金凯
张洪杰
邵志刚
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2022127159A1 publication Critical patent/WO2022127159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, in particular, to a CCM (catalyst coated membrane) coating process for realizing anti-swelling with a protective back film.
  • CCM catalyst coated membrane
  • Proton exchange membrane fuel cell is an energy conversion device that can directly convert chemical energy stored in hydrogen fuel and oxidant into electrical energy through electrochemical reaction.
  • Fuel cells have the characteristics of high energy conversion efficiency and no exhaust emissions, and are considered to be one of the most promising solutions to solve the energy crisis and environmental pollution, especially in transportation such as automobiles, ships and backup power sources. It is precisely because of these outstanding advantages that the development and application of fuel cell technology has attracted the attention of governments and large companies, and is considered to be the preferred clean and efficient power generation method in the 21st century.
  • the membrane electrode assembly is the core component of the proton exchange membrane fuel cell, and its cost accounts for one-third of the total cost.
  • the widely used membrane electrode preparation method is mainly coating method, which is divided into direct coating of catalyst and proton exchange membrane method and indirect coating.
  • the catalyst layer of the membrane electrode prepared by the catalyst-coated proton exchange membrane method is in close contact with the membrane, so that the internal resistance is reduced and the performance is optimal.
  • the proton exchange membrane is sensitive to alcoholic organic solvents, especially when the catalyst is coated on the second surface, it is easy to cause swelling and wrinkling of the proton exchange membrane, resulting in the peeling off of the catalytic layer and the failure of coating, so a large number of coating work mainly choose coating
  • the first side of the proton exchange membrane, and the second catalytic layer is coated on the release membrane for thermal transfer, but in this way, during the thermal transfer of the catalytic layer, a large amount of the catalytic layer still remains on the release membrane, and The process is complicated and the cost is high.
  • a protective film is selected to protect the catalyst coating coated for the first time.
  • the preparation of the protective film and its application in the preparation of CCM are not specifically disclosed, and there are existing The protective film is difficult to peel off after the second side coating is completed, and a large amount of catalyst coating will be taken away.
  • the present invention provides a CCM coating process that uses a protective back film to achieve anti-swelling, which solves the problem.
  • the problems of swelling and shrinkage of the proton exchange membrane in the continuous coating process are avoided, the catalyst layer is prevented from falling off and the occurrence of cracks, and the prepared membrane electrode has high surface flatness, good uniformity and excellent electrochemical performance.
  • a CCM coating process comprising the following steps:
  • the CCM with the temporary protective film is subjected to viscosity reduction treatment to reduce the adhesive force between the temporary protective film and the first catalyst layer, and the temporary protective film is peeled off to obtain the CCM.
  • the catalyst slurry is composed of solid catalyst particles, a dispersant and a binder, and the mass ratio of the solid catalyst particles, the binder and the dispersant is 1:2-10:40-60;
  • the solid catalyst particles are carbon-supported Pt or carbon-supported Pt alloy, and the metal Pt content is 10-90 wt%;
  • the dispersant is one or more of ethanol, methanol, isopropanol or n-propanol;
  • the binder is 5 wt% perfluorosulfonic acid resin liquid.
  • step (2) is, with a coating speed of 4m/min and a wet thickness of 80-200 ⁇ m, uniformly coating the compound solution with thermal degradation function or the compound solution with UV function on the surface. On the protective film, drying at 40 ° C to obtain a temporary protective film with a flexible carrier layer;
  • the protective film is one of polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyethylene film (PE) or polypropylene film (PP), with a thickness of 10- 80 ⁇ m.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PE polyethylene film
  • PP polypropylene film
  • the mass concentration of the compound solution with thermal degradation function is 15%, the solvent is ethanol, and the solute is self-crosslinking acrylic acid, ethylene phthalate, polyimide or polydimethylsiloxane. one or more;
  • the mass concentration of the compound solution with UV function is 15%, the solvent is ethanol, and the solute is one or more of epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate or acrylic resin.
  • step (3) the pressing pressure between the first catalyst layer and the flexible carrier layer is 0.1-10MPa.
  • step (4) the oven drying temperature is 40-80°C.
  • the spraying flow rate is 5mL/min, and the spraying speed is 200mm/s.
  • the nano-oxide solution is a mixed solution of nano-compound and solvent, and the content of nano-compound in the mixed solution is 0.01-1wt%; the nano-compound is one or more combinations of SiO 2 , TiO 2 or Al 2 O 3 ;
  • the solvent is a mixed solvent of water and isopropanol, and the ratio of water and isopropanol is 1:0.1-1.
  • the viscosity reduction treatment adopts a heat treatment method, and the heat treatment temperature is 90-180 ° C; the dry thickness of the thermally degradable functional coating is 0.1-5 ⁇ m, and the adhesion is 1-25gf/25mm, Adhesion after viscosity reduction treatment is 0-1gf/25mm.
  • the viscosity reduction treatment adopts ultraviolet light irradiation; the dry thickness of the UV coating is 5-40 ⁇ m, the adhesive force is 1-20gf/25mm, and the adhesive force after the viscosity reduction treatment is 0-1gf /25mm.
  • the viscosity reduction treatment adopts the ultraviolet irradiation method, it is firstly dried in an oven at 80-120° C., and then entered into a dark room and irradiated by an ultraviolet irradiation lamp for 1-5 minutes.
  • the above-mentioned CCM coating process adopts a roll-to-roll continuous coating machine for coating, and the roll-to-roll continuous coating machine is sequentially provided with a peeling roll 1, a coating die 1, a spraying chamber, Oven 1, hot pressing roller, peeling roller 2, coating die 2, oven 2, oven 3, peeling roller 3 and CCM winding roller;
  • the temporary protective film is hot-pressed; when the viscosity reduction treatment is UV irradiation, the oven 3 can be replaced with a dark room;
  • the outer side of peeling roller 1 is provided with a corresponding surface protective film winding roller 1; the outer side of peeling roller 2 is provided with a corresponding surface protective film winding roller 2; the outer side of peeling roller 3 is provided with a corresponding temporary protective film winding roller;
  • a CCM coating process using the above-mentioned roll-to-roll continuous coating machine comprising the following steps:
  • the CCM with the temporary protective film is subjected to viscosity reduction treatment by oven 3 or darkroom; the temporary protective film is peeled off by peeling roller 3 and collected by the temporary protective film winding roller; the obtained CCM is collected by the CCM winding roller.
  • the present invention has the following advantages:
  • a layer of flexible carrier layer is selected to be attached to the protective film.
  • the protective film is selected from a low-cost plastic film, and the flexible carrier layer is selected from relatively common coatings or adhesive resins.
  • the cost of the temporary protective film with the flexible carrier layer is prepared. Low and easy to make.
  • the temporary protective film is in close contact with the first catalyst layer of the proton exchange membrane through a certain pressure, and the flexible carrier layer is foamed under heat treatment or ultraviolet light irradiation, and the adhesive force is greatly reduced, which can be well peeled off from the surface of the first catalyst layer. No catalyst remains, no catalyst waste and no adhesion damage to the proton exchange membrane, which solves the problem of swelling and shrinkage of the proton exchange membrane in the continuous coating process, and prevents the catalyst layer from falling off and cracking.
  • the flexible carrier layer obtained from cross-linked acrylic acid, ethylene phthalate, polyimide and polydimethylsiloxane has a good peeling effect during the heating process and will not produce Cracks and degumming damage the defects of the catalytic layer and the catalytic layer will not be taken away when peeling off;
  • the epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate, and acrylic resin lamp flexible carriers selected for the UV irradiation stripping process It has the same effect as thermal degradation under UV light irradiation; on the one hand, the choice of these compounds will not remain on the surface of the catalytic layer, on the other hand, it is non-toxic and harmless, and will not cause pollution.
  • the temporary protective film prepared by the present invention sprays a thin layer of nano oxide on the first catalytic layer before lamination. On the one hand, it can play the function of retaining water for the catalyst layer, and on the other hand, the nanoparticles will form unevenness.
  • the contact point between the temporary protective film and the proton exchange membrane is point contact, which greatly reduces the contact area, thereby reducing the viscosity, effectively avoiding the problem that the temporary protective film is difficult to peel off or the catalyst coated on the proton exchange membrane is taken away when peeling off. , effectively improve the separation effect and separation yield.
  • inorganic nano-oxides are selected instead of organic polymer particles, such as polymethyl methacrylate particles, mainly organic polymer particles are susceptible to electrochemical degradation during battery operation, which affects battery performance and use. life.
  • the membrane electrode is prepared by the present invention, the process flow is simple, the production efficiency is high, the production process and cost are saved, and the prepared membrane electrode has high surface flatness, good uniformity and excellent electrochemical performance.
  • 1 is a schematic diagram of the preparation process for continuous coating of membrane electrodes of the present application, wherein the viscosity reduction treatment is heat treatment;
  • FIG. 2 is a schematic diagram of the preparation process of continuous coating of membrane electrodes of the present application, wherein the viscosity reduction treatment is ultraviolet light irradiation treatment.
  • 1 proton exchange membrane
  • 2 peeling roller one
  • 2-1 peeling roller two
  • 2-2 peeling roller three
  • 3 surface protection film winding roller one
  • 3-1 surface protection film winding Roller 2
  • 3-2 Temporary protective film winding roller
  • 4 Coating die 1
  • 4-1 Coating die 2
  • 5 First catalyst layer
  • 5-1 Second catalyst layer
  • 6 Spraying room
  • 6-1 Nozzle
  • 7 Oven 1
  • 7-1 Oven 2
  • 7-2 Oven 3
  • 8 Temporary protective film
  • 9 Hot pressing roller
  • 10 Dark room
  • 10-1 UV irradiation Lamp
  • 11 CCM winding roller.
  • the continuous coating process in the present invention mainly adopts continuous coating equipment, such as a roll-to-roll continuous coating machine.
  • the roll-to-roll continuous coating machine is provided with a conveying line, and along the conveying direction of the conveying line, the proton exchange membrane 1 is in the conveying process.
  • the protective film on the first side is peeled off by the peeling roller 1 2, and the peeled protective film is wound up by the protective film winding roller 1 3; after that, the first catalyst layer is formed after coating the catalytic slurry through the coating die 1 4 5.
  • the first catalyst layer 5 and a temporary protective film 8 are bonded by a pair of composite rollers 9 to achieve thermal pressure bonding, and then the proton exchange membrane 1 is peeled off by the peeling roller 2 2-1.
  • the protective film on the second side, the protective film is wound by the protective film winding roller 2 3-1, and the proton exchange membrane 1 continues to be transported to the second surface of the coating die head 4-1 to coat the catalyst slurry,
  • the second catalyst layer 5-1 is formed.
  • the temporary protective film 8 plays a protective role for the first catalyst layer 5 and also plays a supporting and anti-swelling role for the coating process of the second surface of the proton exchange membrane 1.
  • the proton exchange membrane 1 After the proton exchange membrane 1 is dried in the oven 2 7-1, the proton exchange membrane 1 can pass through a dark room 10, in which an ultraviolet irradiation lamp 10-1 is set, and the temporary protective film 8 is irradiated by the ultraviolet irradiation lamp 10-1. Finally, the temporary protective film 8 is peeled off by the peeling roller 3 2-2, and the temporary protective film 8 is wound by the temporary protective film winding roller 3-2, finally forming a CCM membrane electrode 11 coated with a catalyst on both sides, as shown in picture 2.
  • This roll-to-roll continuous coating machine is aimed at the material of the temporary protective film, except that the catalyst slurry is coated on the second surface of the proton exchange membrane to form the second catalyst layer 5-1 and then transferred to the dark room 10.
  • Another structure is selected for the flexible carrier layer, that is, the darkroom 10 is replaced with a high-temperature oven 37-2, as shown in FIG. 1 .
  • both sides of the existing proton exchange membrane 1 coil finished product are provided with protective films, and during coating, a peeling roller 2 is used to tear off the protective film on the first side of the proton exchange membrane 1 and use the protective film to collect Roller one 3 is rolled up, and the catalyst slurry of (1) is evenly coated on the first surface using a coating die head one 4 to form a first catalyst layer 5, and then passes through the spraying chamber 6 to spray flow rate 5mL/min , Nozzle 6-1 spraying moving speed of 200mm/s to spray nano- TiO2 solution, to ensure that the spraying speed and coating traction speed match, after spraying, enter the oven at 40 ° C for drying treatment, to obtain a thin layer containing nano- TiO2 the first catalyst layer;
  • a temporary protective film 8 coated with a thermally degradable functional coating is installed at the end of the oven, and the dried first catalyst layer containing the nano- TiO thin layer is pressed under a composite roller 9 with a pressure of 0.1 MPa;
  • the peeling roller 2-1 to tear off the protective film on the second side of the proton exchange membrane 1, and wind it up through the protective film winding roller 2 3-1, and apply the catalyst slurry of (1) using the coating method.
  • the cloth die head 24-1 is evenly coated on the second side, and the temperature is 40°C in the oven 27-1 and the temperature at 90°C in the oven 37-2.
  • the roll 11 is wound up to obtain a membrane electrode in a web.
  • both sides of the existing proton exchange membrane 1 coil finished product are provided with protective films, and during coating, a peeling roller 2 is used to tear off the protective film on the first side of the proton exchange membrane 1 and use the protective film to collect Roller one 3 is rolled up, and the catalyst slurry of (1) is evenly coated on the first surface using a coating die head one 4 to form a first catalyst layer 5, and then passes through the spraying chamber 6, with a spraying flow rate of 5mL/min , Nozzle 6-1 spraying moving speed of 200mm/s to spray nano-SiO 2 solution, to ensure that the spraying speed and coating traction speed match, after spraying, enter the oven at 80 ° C for drying treatment, to obtain a thin layer containing nano-SiO 2 the first catalyst layer;
  • a temporary protective film 8 coated with a thermally degradable functional coating is installed at the end of the oven, and the dried first catalyst layer containing nano-SiO 2 thin layer is pressed under a composite roller 9 with a pressure of 10 MPa; After the closing, use the peeling roller two 2-1 to tear off the protective film on the second surface of the proton exchange membrane 1, and wind it through the protective film winding roller two 3-1, and apply the catalyst slurry of (1) using coating. Die head 2 4-1 is evenly coated on the second side, after heat treatment in oven 2 7-1 at 80°C and oven 3 7-2 at 180°C, the temporary protective film 8 is peeled off by the protective film peeling roller, and the CCM is collected. The roll 11 is wound up to obtain a membrane electrode in a web.
  • protective films are provided on both sides of the finished product of the existing proton exchange membrane 1, and a peeling roller 2 is used to tear off the protective film on the first side of the proton exchange membrane 1 during coating and use the protective film to collect Roll-up roll one 3 is rolled up, and the catalyst slurry of (1) is evenly coated on the first surface using coating die head one 4 to form a first catalyst layer 5. drying to obtain the first catalyst layer;
  • a temporary protective film 8 coated with a UV degradation functional coating is installed at the end of the oven, and the first catalyst layer formed after drying is pressed under a composite roller 9 with a pressure of 0.1 MPa; after the pressing is completed, use Peeling roll 2 2-1 tear off the protective film on the second surface of proton exchange membrane 1, and wind it up through protective film winding roll 2 3-1, and apply the catalyst slurry of (1) using coating die 2 4- 1. Apply evenly on the second side, dry it in an oven with a temperature of 40°C for 27-1, and transfer it to a dark room 10 equipped with UV light for 10-1 irradiation with a UV light for 1 min. The protective film 8 is wound by the CCM winding roller 11 to obtain the membrane electrode of the coil.
  • protective films are provided on both sides of the finished product of the existing proton exchange membrane 1, and a peeling roller 2 is used to tear off the protective film on the first side of the proton exchange membrane 1 during coating and use the protective film to collect Roll-up roll one 3 is rolled up, and the catalyst slurry of (1) is evenly coated on the first surface using coating die head one 4 to form a first catalyst layer 5. drying to obtain the first catalyst layer;
  • a temporary protective film 8 coated with a UV-degradable functional coating is installed at the end of the oven, and the first catalyst layer formed after drying is pressed under a composite roller 9 with a pressure of 10 MPa; Roller two 2-1 tear off the protective film on the second surface of proton exchange membrane 1, and wind it up through protective film winding roller two 3-1, and apply the catalyst slurry of (1) using coating die two 4-1 It is evenly coated on the second side, dried in an oven 27-1 at a temperature of 40°C, and then transferred to a darkroom 10 equipped with UV lamp irradiation for 10-1 irradiation for 5 minutes, and the temporary protection is peeled off by a protective film peeling roller.
  • the film 8 is wound by the CCM winding roll 11 to obtain the membrane electrode of the coil.
  • a temporary protective film 8 (ordinary PET film) is installed at the end of the oven, and the first catalyst layer formed after drying is pressed under a composite roller 9 with a pressure of 10 MPa; after the pressing is completed, a peeling roller 2 is used.
  • -1 Tear off the protective film on the second side of the proton exchange membrane 1, and wind it up through the protective film winding roller 2 3-1, and uniformly coat the catalyst slurry of (1) using the coating die 2 4-1
  • the temporary protective film 8 is peeled off by a protective film peeling roller, and the CCM winding roller 11 is wound to obtain a coiled membrane electrode.
  • ethylene phthalate weigh 20g of ethylene phthalate and dissolve it in 113g of ethanol to obtain a solution of 15% by weight of ethylene phthalate, which is uniformly coated on a thickness of 4m/min with a coating speed of 4m/min and a coating thickness of 200 ⁇ m. It is a temporary protective film on a 10 ⁇ m polyethylene naphthalate film, which is dried at 40°C to obtain a flexible carrier layer with thermal degradation function, and is used for later use;
  • both sides of the existing proton exchange membrane 1 coil finished product are provided with protective films, and during coating, the protective film on the first side of the proton exchange membrane 1 is torn off using a peeling roller-2 and the protective film is used to collect Roll-up roll one 3 is rolled up, and the catalyst slurry of (1) is evenly coated on the first surface using coating die head one 4 to form a first catalyst layer 5. drying to obtain the first catalyst layer;
  • a temporary protective film 8 coated with a thermally degradable functional coating is installed at the end of the oven, and the first catalyst layer formed after drying is pressed under a composite roller 9 with a pressure of 10 MPa; Roller two 2-1 tear off the protective film on the second surface of proton exchange membrane 1, and wind it up through protective film winding roller two 3-1, and apply the catalyst slurry of (1) using coating die two 4-1 It is evenly coated on the second side, and after heat treatment in oven 2 7-1 at 80°C and oven 3 7-2 at 180°C, the temporary protective film 8 is peeled off by the protective film peeling roller, and the CCM winding roller 11 is wound to obtain Coiled membrane electrodes.
  • the uniformity and electrochemical performance of the catalytic layer of the membrane electrode prepared by the present invention are very good.
  • the temporary protective film is more easily removed from the catalyst.
  • there is no catalyst remaining on the protective film and there are no defects such as cracking and falling of the catalytic layer.
  • the temporary protective film without viscosity reduction treatment will take away a large amount of catalyst layer when it is torn off, and it is difficult to tear it off.
  • the roll-to-roll continuous operation adopted in the present invention is from the coating of the catalyst slurry to drying, to the bonding of the temporary protective film and the coating of the second surface of the proton exchange membrane, and finally to heat treatment or ultraviolet light irradiation to obtain a membrane
  • the whole process of the electrode is simple and does not need to be carried out step by step, which saves the production process and cost, and the prepared membrane electrode has high surface flatness, good uniformity and excellent electrochemical performance.
  • the uniformity test of the membrane electrode prepared by the invention a thickness gauge is used to test the thickness and uniformity of the catalyst layer in the membrane electrode, a point is taken every 2cm in the length direction, and 5 points are taken, and 5 points are evenly taken in the width direction, and the detection is carried out. Thickness value, the catalyst layer prepared by the present invention has good thickness uniformity, and the results are shown in Table 1.
  • the yield of the membrane electrode produced by the single-sided transfer method of the present invention is calculated by the following methods: cutting a blank membrane with the same size and size of 10*50cm, coating the catalyst slurry, pressing the temporary protective membrane, and then weighing it again.
  • the weight of the temporary protective film is heavy and the quality difference is used to calculate whether the catalyst layer remains on the temporary protective film.
  • the obtained residual rate is reflected by the yield in the transformation. For example, the yield is 97%, then the residual rate is 3%.
  • the catalyst slurry prepared by the present invention is used to prepare a film-forming electrode and assemble a battery, and then evaluate its battery performance under the condition of hydrogen and oxygen.
  • Test conditions battery operating temperature: 60° C., H 2 /O 2 100RH%, flow rate 40/100mL/min, and air inlets are at normal pressure. It is found that the membrane electrode prepared by the present invention has excellent electrochemical performance after being assembled into a battery , and the test results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种用保护背膜实现抗溶胀的CCM涂布工艺,将催化剂浆料涂布在质子交换膜的第一面,干燥后形成第一催化剂层;制备具有柔性载体层的保护膜,在含有第一催化剂层的质子交换膜第一面上贴合一层设有柔性载体层的保护膜,并将其和质子交换膜压合;将催化剂浆料涂布于质子交换膜的第二面,干燥形成第二催化剂层,得到带有临时保护膜的膜电极;最后将带有临时保护膜的膜电极经过热处理或紫外光(UV)照射,剥离临时保护层,得膜电极;若选择热处理处理时,在第一催化层干燥之前需在第一催化层表面喷涂纳米氧化物溶液。本发明制备膜电极过程中有效避免了质子交换膜的溶胀,并且制备工艺简单,生产效率高且电池性能优异。

Description

一种用保护背膜实现抗溶胀的CCM涂布工艺 技术领域
本发明涉及燃料电池技术领域,具体而言,尤其涉及一种用保护背膜实现抗溶胀的CCM(catalyst coated membrane)涂布工艺。
背景技术
质子交换膜燃料电池是一种能将储存在氢燃料和氧化剂中的化学能通过电化学反应的方式直接转换为电能的能量转化装置。燃料电池具有能量转化效率高、无废气排放等特点,被认为是解决能源危机和环境污染的最具前景的方案之一,特别是交通运输如汽车、船舶和备用电源等方面极具应用前景。正是由于这些突出的优越性,燃料电池技术的开发与应用备受各国政府与大公司的重视,被认为是21世纪首选的洁净高效发电方式。
膜电极组件是质子交换膜燃料电池的核心元件,造价占总成本的三分之一。当前被广泛应用的膜电极制备方法主要是涂布法,分为催化剂直接涂布质子交换膜法和间接涂布。催化剂涂布质子交换膜法制备的膜电极催化层与膜接触紧密,使得内阻减小,性能最优。但是质子交换膜对醇类有机溶剂比较敏感,特别是第二面涂布催化剂时,容易引起质子交换膜的溶胀和褶皱,导致催化层脱落和涂布失败,因此大量涂布工作主要选择涂布质子交换膜的第一面,而第二催化层涂布在离型膜上进行热转移,但是此种方式在催化层热转移的过程中,催化层仍有大量残留在离型膜上,并且工艺复杂,成本较高。目前采用的对质子交换膜第二面涂布时选择设置保护膜对第一次涂布的催化剂涂层加以保护,然而并没有具体公开保护膜的制备以及在制备CCM中的应用,而且现有保护膜在第二面涂布结束后难以剥离,会带走大量催化剂涂层。
发明内容
根据上述提出的在涂布过程中涂布第二面引起的质子交换膜溶胀以及剥离时催化层掉落等技术问题,本发明提供一种用保护背膜实现抗溶胀的CCM涂布工艺,解决了连续涂布过程中质子交换膜的溶胀和收缩问题,避免了催化剂层脱落和出现裂纹,且制备的膜电极表面平整度高、均匀性好,电化学性能优异。
本发明采用的技术手段如下:
一种CCM涂布工艺,包括以下步骤:
(1)制备催化剂浆料,将制备所得的催化剂浆料涂布在质子交换膜的第一面,干燥后在质子交换膜的第一面形成第一催化剂层;
(2)制备临时保护膜:采用UV涂层或者热降解功能涂层作为柔性载体层,涂布在保护膜上,形成具有柔性载体层的临时保护膜;
(3)将临时保护膜热压贴合于质子交换膜的第一催化剂层上;
(4)将催化剂浆料涂布于质子交换膜的第二面,烘箱干燥后,形成带有临时保护膜的CCM;
(5)将带有临时保护膜的CCM进行降粘处理,降低临时保护膜和第一催化剂层之间的粘着力,剥离临时保护膜,即得到CCM。
进一步地,步骤(1)中,催化剂浆料由固体催化剂颗粒、分散剂和粘结剂组成,固体催化剂颗粒、粘结剂和分散剂的质量比为1:2-10:40-60;所述固体催化剂颗粒为碳载Pt或碳载Pt合金,金属Pt含量为10-90wt%;所述分散剂为乙醇、甲醇、异丙醇或正丙醇中的一种或多种;所述粘结剂为5wt%的全氟磺酸树脂液。
进一步地,步骤(2)的具体制备步骤为,以涂布速度为4m/min,湿厚为80-200μm的工艺,将具有热降解功能的化合物溶液或具有UV功能的化合物溶液均匀涂布在保护膜上,在40℃下烘干得到具有柔性载体层的临时保护膜;
保护膜为聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯膜(PE)或聚丙烯膜(PP)中的一种,厚度为10-80μm。
进一步地,具有热降解功能的化合物溶液的质量浓度为15%,溶剂为乙醇,溶质为自交联丙烯酸、苯二甲酸乙二醇酯、聚酰亚胺或聚二甲基硅氧烷中的一种或多种;
所述具有UV功能的化合物溶液的质量浓度为15%,溶剂为乙醇,溶质为环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯或丙烯酸树脂中的一种或多种。
进一步地,步骤(3)中,第一催化剂层与柔性载体层之间的压合压力为 0.1-10MPa。
进一步地,步骤(4)中,烘箱干燥温度为40-80℃。
进一步地,所述步骤(3)中,将临时保护膜热压贴合于膜电极前,在第一催化剂层上喷涂纳米氧化物溶液,喷涂流量为5mL/min,喷涂速度200mm/s。
进一步地,纳米氧化物溶液为纳米化合物和溶剂的混合液,混合液中,纳米化合物含量为0.01-1wt%;纳米化合物为SiO 2、TiO 2或Al 2O 3中的一种或多种组合;溶剂为水和异丙醇的混合溶剂,水和异丙醇的比例为1:0.1-1。
进一步地,柔性载体层为热降解功能涂层时,降粘处理采用热处理方式,热处理温度为90-180℃;热降解功能涂层干厚为0.1-5μm,粘着力为1-25gf/25mm,降粘处理后粘着力为0-1gf/25mm。
进一步地,柔性载体层为UV涂层时,降粘处理采用紫外光照射方式;UV涂层干厚为5-40μm,粘着力为1-20gf/25mm,降粘处理后粘着力为0-1gf/25mm。
进一步地,降粘处理采用紫外光照射方式时,先进入80-120℃的烘箱内烘干,再进入暗室中经紫外照射灯照射1-5min。
上述CCM涂布工艺采用卷对卷连续涂布机进行涂布,所述卷对卷连续涂布机中沿质子交换膜传送方向上依次设置有剥离辊一、涂布模头一、喷涂室、烘箱一、热压辊、剥离辊二、涂布模头二、烘箱二、烘箱三、剥离辊三和CCM收卷辊;所述热压辊为一对复合轧辊,用于将质子交换膜与临时保护膜热压贴合;当降粘处理为紫外光照射方式时,可将烘箱三替换为暗室;
剥离辊一外侧设有对应的表面保护膜收卷辊一;剥离辊二外侧设有对应的表面保护膜收卷辊二;剥离辊三外侧设有对应的临时保护膜收卷辊;喷涂室内设有喷头;暗室内设有紫外照射灯;涂布设备还设置有多个传送辊,用以将质子交换膜向前传送。
一种使用上述卷对卷连续涂布机的CCM涂布工艺,包括以下步骤:
(1)通过剥离辊一剥离质子交换膜第一面上的表面保护膜,由表面保护膜收卷辊一收集;将催化剂浆料通过涂布模头一涂布在质子交换膜的第一面,由烘箱一干燥后在质子交换膜的第一面形成第一催化剂层;
(2)制备临时保护膜:在保护膜上涂布柔性载体层,形成具有柔性载体层的临时保护膜,所述柔性载体层为UV涂层或者热降解功能涂层;
(3)将所述临时保护膜通过热压辊热压贴合于质子交换膜的第一催化剂层上;
(4)通过剥离辊二剥离质子交换膜第二面上的表面保护膜,由表面保护膜收卷辊二收集;将催化剂浆料通过涂布模头二涂布在质子交换膜的第二面,由烘箱二干燥后,形成带有临时保护膜的CCM;
(5)通过烘箱三或暗室对带有临时保护膜的CCM进行降粘处理;通过剥离辊三剥离临时保护膜,由临时保护膜收卷辊收集;得到CCM由CCM收卷辊收集。
较现有技术相比,本发明具有以下优点:
1、本发明选择在保护膜上附着一层柔性载体层,保护膜选择价格低廉的塑料膜,柔性载体层选择比较常见的涂料或胶粘树脂等,制备的具有柔性载体层的临时保护膜成本低,制作简单。临时保护膜通过一定压力与质子交换膜第一催化剂层之间紧密接触,柔性载体层在热处理或者紫外光照射下发泡,粘着力大幅度降低,能够很好的从第一催化剂层表面剥离,不会残留催化剂,不会造成催化剂的浪费和对质子交换膜产生粘附损伤,解决了连续涂布过程中质子交换膜的溶胀和收缩问题,避免了催化剂层脱落和出现裂纹。
对于热降解剥离工艺选择得自交联丙烯酸、苯二甲酸乙二醇酯、聚酰亚胺、聚二甲基硅氧烷柔性载体层,在加热过程中具有很好的剥离效果,不会产生皲裂以及脱胶损伤催化层的缺陷并且剥离时不会带走催化层;对于UV照射剥离工艺选择的环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯、丙烯酸树脂灯柔性载体,在UV光照射下具有和热降解相同的功效;这些化合物的选择一方面不会残留在催化层表面,另一方面无毒无害,不会产生污染。
2、本发明制备的临时保护膜,在贴合前对第一催化层进行喷涂一层薄的纳米氧化物,一方面可以起到对催化剂层保水的功能,另一方面纳米颗粒会形成凹凸不平的接触点,使得临时保护膜与质子交换膜为点接触,大大降低了接触面积,从而粘性降低,有效避免了临时保护膜难以剥离或者剥离时带走涂布在质子交换膜上的催化剂的问题,有效提高了分离效果和分离成品率。此外,在本发明中选择 无机纳米氧化物而不选择有机聚合物颗粒,如聚甲基丙烯酸甲酯颗粒,主要是有机聚合物颗粒在电池运行过程中容易遭受电化学降解,影响电池性能和使用寿命。
3、本发明制备膜电极时,工艺流程简单,生产效率高,节约了生产工序和成本,并且制备的膜电极表面平整度高、均匀性好,电化学性能优异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请膜电极连续涂布制备工艺示意图,其中降粘处理为热处理;
图2为本申请膜电极连续涂布制备工艺示意图,其中降粘处理为紫外光照射处理。
图中:1:质子交换膜;2:剥离辊一;2-1:剥离辊二;2-2:剥离辊三;3:表面保护膜收卷辊一;3-1:表面保护膜收卷辊二;3-2:临时保护膜收卷辊;4:涂布模头一;4-1:涂布模头二;5:第一催化剂层;5-1:第二催化剂层;6:喷涂室;6-1:喷头;7:烘箱一;7-1:烘箱二;7-2:烘箱三;8:临时保护膜;9:热压辊;10:暗室;10-1:紫外照射灯;11:CCM收卷辊。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本发明中连续涂布工艺主要采用连续涂布设备,例如卷对卷连续涂布机,卷对卷连续涂布机上设有传送线,延其传送线的传送方向,质子交换膜1在传送过程中由剥离辊一2剥离第一面上的保护膜,被剥离的保护膜被保护膜收卷辊一3收卷;之后经过涂布模头一4涂布催化浆料后形成第一催化剂层5,再经过喷涂室6、烘箱一7后,第一催化剂层5与一临时保护膜8由一对复合辊9实现热压贴合,之后通过剥离辊二2-1剥离质子交换膜1上第二面的保护膜,该保护膜由保护膜收卷辊二3-1收卷,质子交换膜1继续传送至由涂布模头二4-1对其第二面涂布催化剂浆料,形成第二催化剂层5-1,在此过程中,临时保护膜8起到对第一催化剂层5的保护作用同时也对质子交换膜1第二面涂布工 序起到支撑防溶胀作用,涂布完成后的质子交换膜1经过烘箱二7-1烘干后,可以经过一个暗室10,暗室内设置紫外照射灯10-1,经过紫外照射灯10-1的照射,实现对临时保护膜8的降粘处理,最后由剥离辊三2-2剥离临时保护膜8,临时保护膜8由临时保护膜收卷辊3-2收卷,最终形成两面均涂布由催化剂的CCM膜电极11,如图2所示。
本卷对卷连续涂布机针对临时保护膜的材料,除上述在质子交换膜的第二面涂布完催化剂浆料形成第二催化剂层5-1后传送至暗室10,也可以根据不同的柔性载体层选择设置另一种结构,即将暗室10替换成高温的烘箱三7-2,如图1所示。
以下针对不同的材料选择举例说明。
实施例1
(1)称取20g苯二甲酸乙二醇酯溶解在113g乙醇中,得到15wt%的苯二甲酸乙二醇酯的溶液,以涂布速度为4m/min、涂布厚度80μm的工艺均匀涂布在厚度为10μm聚萘二甲酸乙二醇酯膜上,在40℃烘干得具有热降解功能柔性载体层得临时保护膜,备用;
(2)称取15g Pt含量为10wt%的Pt/C催化剂颗粒、30g 5wt%的全氟磺酸树脂溶液和600g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)称取0.5g纳米TiO 2置于玻璃容器中,加入455g去离子水和45.5g异丙醇,磁力搅拌均匀,制成0.1wt%的纳米TiO 2溶液,通入喷涂室6,备用;
(4)如图1所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,然后经过喷涂室6,以喷涂流量5mL/min,喷头6-1喷涂移动速度200mm/s进行喷涂纳米TiO 2溶液,确保喷涂速度和涂布牵引速度相匹配,喷涂结束后进入40℃的烘箱一7进行干燥处理,得含有纳米TiO 2薄层的第一催化剂层;
(5)在烘箱尾部装有表面涂有热降解功能涂层的临时保护膜8,对干燥后的含有纳米TiO 2薄层第一催化剂层在压力为0.1MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过 保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,温度为40℃烘箱二7-1和温度为90℃的烘箱三7-2热处理,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
实施例2
(1)称取20g聚酰亚胺溶解在113g乙醇中,得到15wt%的聚酰亚胺的溶液,以涂布速度为4m/min、涂布厚度200μm的工艺均匀涂布在厚度为80μm聚对苯二甲酸乙二醇酯膜上,在40℃烘干得具有热降解功能柔性载体层得临时保护膜,备用;
(2)称取10g Pt含量为90wt%的Pt/C催化剂颗粒、100g 5wt%的全氟磺酸树脂溶液和600g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)称取0.5g纳米SiO 2置于玻璃容器中,加入249.5g去离子水和249.5g异丙醇,磁力搅拌均匀,制备成0.1wt%的纳米SiO 2溶液,存储于喷涂室6,备用;
(4)如图1所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,然后经过喷涂室6,以喷涂流量5mL/min,喷头6-1喷涂移动速度200mm/s进行喷涂纳米SiO 2溶液,确保喷涂速度和涂布牵引速度相匹配,喷涂结束后进入80℃的烘箱一7进行干燥处理,得含有纳米SiO 2薄层的第一催化剂层;
(5)在烘箱尾部装有表面涂有热降解功能涂层的临时保护膜8,对干燥后的含有纳米SiO 2薄层第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为80℃烘箱二7-1和温度为180℃的烘箱三7-2热处理,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
实施例3
(1)称取20g环氧丙烯酸酯溶解在113g乙醇中,得到15wt%的环氧丙烯酸酯的溶液,以涂布速度为4m/min、涂布厚度150μm的工艺均匀涂布在厚度为 20μm聚乙烯膜膜上,在40℃烘干得具有UV功能柔性载体层得临时保护膜,备用;
(2)称取10g Pt含量为40wt%的Pt/C催化剂颗粒、20g 5wt%的全氟磺酸树脂溶液和500g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)称取0.5g纳米Al 2O 3置于玻璃容器中,加入416.25g去离子水和83.25g异丙醇,磁力搅拌均匀,制备成0.1wt%的纳米Al 2O 3溶液,存储于喷涂室6,备用;
(4)如图2所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入80℃的烘箱一7进行干燥处理得到第一催化剂层;
(5)在烘箱尾部装有表面涂有UV降解功能涂层的临时保护膜8,对干燥后形成第一催化剂层在压力为0.1MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为40℃烘箱二7-1干燥,并在传输至设有紫外灯照射的暗室10进行紫外照射灯10-1照射1min,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
对比例1
(1)称取20g聚醚丙烯酸酯溶解在113g乙醇中,得到15wt%的聚醚丙烯酸酯的溶液,以涂布速度为4m/min、涂布厚度80μm的工艺均匀涂布在厚度为60μm聚丙烯膜上,在40℃烘干得具有UV功能柔性载体层得临时保护膜,备用;
(2)称取15g Pt含量为70wt%的Pt/C催化剂颗粒、50g 5wt%的全氟磺酸树脂溶液和600g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)如图2所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一 催化剂层5,涂布结束后进入80℃的烘箱一7进行干燥处理得到第一催化剂层;
(4)在烘箱尾部装有表面涂有UV降解功能涂层的临时保护膜8,对干燥后形成第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为40℃烘箱二7-1干燥,并在传输至设有紫外灯照射的暗室10进行紫外照射灯10-1照射5min,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
对比例2
(1)称取10g Pt含量为40wt%的Pt/C催化剂颗粒、20g 5wt%的全氟磺酸树脂溶液和500g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(2)现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入40℃的烘箱一7进行干燥处理得到第一催化剂层;
(3)在烘箱尾部装有临时保护膜8(普通的PET膜),对干燥后形成第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为40℃烘箱二7-1干燥,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
对比例3
称取20g苯二甲酸乙二醇酯溶解在113g乙醇中,得到15wt%的苯二甲酸乙二醇酯的溶液,以涂布速度为4m/min、涂布厚度200μm的工艺均匀涂布在厚度为10μm聚萘二甲酸乙二醇酯膜上,在40℃烘干得具有热降解功能柔性载体层得临时保护膜,备用;
(2)称取12g Pt含量为70wt%的Pt/C催化剂颗粒、60g 5wt%的全氟磺酸树脂溶液和620g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)如图1所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入80℃的烘箱一7进行干燥处理得到第一催化剂层;
(4)在烘箱尾部装有表面涂有热降解功能涂层的临时保护膜8,对干燥后形成第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为80℃烘箱二7-1和温度为180℃的烘箱三7-2热处理,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
测试例
本发明制备的膜电极其催化层均匀性和电化学性能都很好,通过对比发现,本发明采用热处理或者紫外灯照射对临时保护膜进行降黏处理后,一方面临时保护膜更容易从催化层上撕裂,另一方面保护膜上并未残留有催化剂,没有造成催化层破裂和掉落等缺陷。没有经过降粘处理的临时保护膜,在撕掉时会带走大量催化剂层,并且较难撕下来。对比发现本发明采用的卷对卷连续化操作,从催化剂浆料涂布到干燥,再到临时保护膜的贴合以及质子交换膜第二面涂布,最后热处理或紫外光照射处理,得到膜电极,整个工艺流程简单,无须分步进行,节约了生产工序和成本,并且制备的膜电极表面平整度高、均匀性好且电化学性能优异。
本发明制备的膜电极均匀性测试:采用测厚仪对膜电极中催化剂层厚度及进行均匀性测试,长度方向每隔2cm取一个点,取5个点,宽度方向均匀取5个点,检测厚度值,本发明制备的催化剂层厚度均匀性佳,结果见表1。
本发明通过单面转印法生产的膜电极其成品率通过以下方式计算:裁剪大小、尺寸完全一样的空白膜10*50cm,进行催化剂浆料涂布,经过临时保护膜压合后,再称重空临时保护膜的重量,通过质量差的方式计算催化剂层是否残留在临时保护膜上,所得残留率通过变革中的成品率反应,例如成品率97%,那么残留率即为3%。
通过测厚比较发现,本发明制备CCM过程中,催化剂层在临时保护膜上的残留量非常小,其结果见表1。
将本发明所制备的催化剂浆料制备成膜电极组装成电池,然后评价其氢氧条件下的电池性能。测试条件:电池运行温度:60℃,H 2/O 2 100RH%,流量40/100mL/min,进气口均为常压,结果发现本发明制备的膜电极组装成电池后,电化学性能优异,测试结果见表2。
表1
Figure PCTCN2021112979-appb-000001
表2
Figure PCTCN2021112979-appb-000002
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种CCM涂布工艺,其特征在于,包括以下步骤:
    (1)制备催化剂浆料,将制得的催化剂浆料涂布在质子交换膜的第一面,干燥后在质子交换膜的一面形成第一催化剂层;
    (2)制备临时保护膜:在保护膜上涂布柔性载体层,形成具有柔性载体层的临时保护膜,所述柔性载体层为UV涂层或者热降解功能涂层;
    (3)将步骤(2)中临时保护膜热压贴合于步骤(1)中质子交换膜的第一催化剂层上;
    (4)将催化剂浆料涂布于质子交换膜的第二面,干燥后,形成带有临时保护膜的CCM;
    (5)将步骤(4)带有临时保护膜的CCM进行降粘处理后剥离临时保护膜。
  2. 根据权利要求1所述的CCM涂布工艺,其特征在于:所述步骤(2)的具体制备步骤为,以涂布速度为4m/min,湿厚为80-200μm的工艺,将具有热降解功能的化合物溶液或具有UV功能的化合物溶液均匀涂布在保护膜上,在40℃下烘干得到具有柔性载体层的临时保护膜;
    所述保护膜为聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯膜(PE)或聚丙烯膜(PP)中的任意一种,厚度为10-80μm。
  3. 根据权利要求2所述的CCM涂布工艺,其特征在于:具有热降解功能的化合物溶液的质量浓度为15wt%,溶剂为乙醇,溶质为自交联丙烯酸、苯二甲酸乙二醇酯、聚酰亚胺或聚二甲基硅氧烷中的一种或多种;
    所述具有UV功能的化合物溶液的质量浓度为15wt%,溶剂为乙醇,溶质为环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯或丙烯酸树脂中的一种或多种。
  4. 根据权利要求1所述的CCM涂布工艺,其特征在于:步骤(1)中,催化剂浆料由固体催化剂颗粒、分散剂和粘结剂组成;所述固体催化剂颗粒为碳载Pt或碳载Pt合金,金属Pt含量为10-90wt%;所述分散剂为乙醇、甲醇、异丙醇或正丙醇中的一种或多种;所述粘结剂为5wt%的全氟磺酸树脂液;所述催化剂浆料中固体催化剂颗粒、粘结剂和分散剂的质量比为1:2-10:40-60。
  5. 根据权利要求1所述的CCM涂布工艺,其特征在于:步骤(3)中,第一催化剂层与柔性载体层之间的压合压力为0.1-10MPa。
  6. 根据权利要求1所述的CCM涂布工艺,其特征在于:步骤(4)中, 干燥温度为40-80℃。
  7. 根据权利要求1所述的CCM涂布工艺,其特征在于:所述步骤(3)中,将临时保护膜热压贴合于膜电极前,在第一催化剂层上喷涂纳米氧化物溶液,喷涂流量为5mL/min,喷涂速度200mm/s。
  8. 根据权利要求7所述的CCM涂布工艺,其特征在于:所述纳米氧化物溶液为纳米化合物和溶剂的混合液,纳米化合物含量为0.01-1wt%;所述纳米化合物为SiO 2、TiO 2或Al 2O 3的一种或多种组合;所述溶剂为水和异丙醇的混合溶剂,水和异丙醇的体积比为1:0.1-1。
  9. 根据权利要求1所述的CCM涂布工艺,其特征在于:所述柔性载体层为热降解功能涂层时,降粘处理采用热处理的方式,热处理温度为90-180℃;所述热降解功能涂层干厚为0.1-5μm,粘着力为1-25gf/25mm,降粘处理后粘着力为0-1gf/25mm;
    所述柔性载体层为UV涂层时,降粘处理采用紫外光照射的方式,所述紫外光照射方式为先在80-120℃下烘干,再经紫外光照射1-5min;所述UV涂层干厚为5-40μm,粘着力为1-20gf/25mm,降粘处理后粘着力范围为0-1gf/25mm。
  10. 根据权利要求1-9任一权利要求所述的CCM涂布工艺,其特征在于:所述CCM涂布工艺采用卷对卷连续涂布机进行涂布,所述卷对卷连续涂布机中沿质子交换膜传送方向上依次设置有剥离辊一、涂布模头一、喷涂室、烘箱一、热压辊、剥离辊二、涂布模头二、烘箱二、烘箱三、剥离辊三和CCM收卷辊;所述热压辊为一对复合轧辊,用于将质子交换膜与临时保护膜热压贴合;当降粘处理为紫外光照射方式时,可将烘箱三替换为暗室;
    所述剥离辊一外侧设有对应的表面保护膜收卷辊一;所述剥离辊二外侧设有对应的表面保护膜收卷辊二;所述剥离辊三外侧设有对应的临时保护膜收卷辊;所述喷涂室内设有喷头;所述暗室内设有紫外照射灯;所述涂布设备还设置有多个传送辊,用以将质子交换膜向前传送。
PCT/CN2021/112979 2020-12-14 2021-08-17 一种用保护背膜实现抗溶胀的ccm涂布工艺 WO2022127159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011476843.0A CN112599793B (zh) 2020-12-14 2020-12-14 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN202011476843.0 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022127159A1 true WO2022127159A1 (zh) 2022-06-23

Family

ID=75195689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112979 WO2022127159A1 (zh) 2020-12-14 2021-08-17 一种用保护背膜实现抗溶胀的ccm涂布工艺

Country Status (2)

Country Link
CN (1) CN112599793B (zh)
WO (1) WO2022127159A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759590A (zh) * 2023-08-17 2023-09-15 安徽明天新能源科技有限公司 一种高耐久低活化时间不同催化层复合ccm的制备方法
CN117080511A (zh) * 2023-10-18 2023-11-17 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法
WO2024032382A1 (zh) * 2022-08-08 2024-02-15 江苏氢导智能装备有限公司 耐热型uv减粘胶水及其在制备燃料电池中的应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599793B (zh) * 2020-12-14 2022-07-19 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN113594521B (zh) * 2021-07-12 2023-03-24 氢辉能源(深圳)有限公司 一种质子交换膜的制备方法及系统
CN114204050B (zh) * 2021-12-03 2023-11-07 中国科学院大连化学物理研究所 一种燃料电池膜电极制备工艺及连续化产线
CN114204052B (zh) * 2021-12-03 2023-11-10 中国科学院大连化学物理研究所 一种燃料电池高均匀性ccm连续涂布工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091767A1 (en) * 2002-09-30 2004-05-13 Ralf Zuber Catalyst-coated ionomer membrane with protective film layer and membrane-electrode-assembly made thereof
CN108448139A (zh) * 2018-05-16 2018-08-24 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110137512A (zh) * 2019-05-16 2019-08-16 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110265675A (zh) * 2019-07-12 2019-09-20 深圳市信宇人科技股份有限公司 氢燃料电池ccm膜电极的复合涂布设备
CN110364741A (zh) * 2019-07-12 2019-10-22 深圳市信宇人科技股份有限公司 氢燃料电池ccm膜电极的复合涂布方法
CN110828869A (zh) * 2019-10-21 2020-02-21 东莞市魔方新能源科技有限公司 一种燃料电池膜电极及其制备方法、燃料电池
CN111009667A (zh) * 2019-12-23 2020-04-14 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种燃料电池膜电极的制备方法
CN112599793A (zh) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202970A (ja) * 2000-01-17 2001-07-27 Asahi Glass Co Ltd 固体高分子電解質型燃料電池用ガス拡散電極及びその製造方法
US6838205B2 (en) * 2001-10-10 2005-01-04 Lynntech, Inc. Bifunctional catalytic electrode
DE10315796B4 (de) * 2003-04-07 2009-06-04 Umicore Ag & Co. Kg Schichtenaufbau für eine elektrochemische Zelle, Verfahren zu seiner Herstellung und Verwendung desselben
EP1492184A1 (de) * 2003-06-27 2004-12-29 Umicore AG & Co. KG Verfahren zur Herstellung einer katalysatorbeschichteten Polymerelektrolyt-Membran
CN1256783C (zh) * 2004-05-14 2006-05-17 武汉理工大学 一种高温质子交换膜燃料电池膜电极及制备方法
CN100345332C (zh) * 2005-05-19 2007-10-24 武汉理工大学 具有保水功能的质子交换膜燃料电池芯片的制备方法
KR100723385B1 (ko) * 2005-09-23 2007-05-30 삼성에스디아이 주식회사 연료전지용 막전극 접합체 및 이를 채용한 연료전지 시스템
US7842153B2 (en) * 2006-06-23 2010-11-30 Atomic Energy Council-Institute Of Nuclear Energy Research Decal method for transferring platinum-and platinum alloy-based catalysts with nanonetwork structures
JP2011076907A (ja) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd 触媒転写フィルム及びその製造方法、並びに該転写フィルムを用いて製造される触媒層−電解質膜積層体、膜−電極接合体及び固体高分子形燃料電池
CN101702439B (zh) * 2009-10-26 2012-01-11 新源动力股份有限公司 具有自增湿功能的燃料电池催化剂涂层膜电极及制备方法
US8445164B2 (en) * 2010-05-27 2013-05-21 GM Global Technology Operations LLC Electrode containing nanostructured thin catalytic layers and method of making
CN102544558A (zh) * 2012-01-17 2012-07-04 武汉理工新能源有限公司 一种燃料电池三层核心组件的连续化制造方法
US9236620B2 (en) * 2012-11-05 2016-01-12 Battelle Memorial Institute Composite separators and redox flow batteries based on porous separators
CN103855408B (zh) * 2012-12-04 2016-08-10 中国科学院大连化学物理研究所 一种改善质子交换膜燃料电池阳极水管理的膜电极
CN111224111B (zh) * 2018-11-23 2021-04-02 中国科学院大连化学物理研究所 一种燃料电池膜电极批量生产装置及方法
CN110265671A (zh) * 2019-07-08 2019-09-20 南京大学昆山创新研究院 一种燃料电池膜电极的制备方法及装置
CN110459774A (zh) * 2019-08-12 2019-11-15 南京大学昆山创新研究院 一种燃料电池膜电极的制备方法
CN111777961B (zh) * 2020-07-15 2022-05-17 宁波东旭成新材料科技有限公司 一种uv减粘保护膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091767A1 (en) * 2002-09-30 2004-05-13 Ralf Zuber Catalyst-coated ionomer membrane with protective film layer and membrane-electrode-assembly made thereof
CN108448139A (zh) * 2018-05-16 2018-08-24 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110137512A (zh) * 2019-05-16 2019-08-16 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110265675A (zh) * 2019-07-12 2019-09-20 深圳市信宇人科技股份有限公司 氢燃料电池ccm膜电极的复合涂布设备
CN110364741A (zh) * 2019-07-12 2019-10-22 深圳市信宇人科技股份有限公司 氢燃料电池ccm膜电极的复合涂布方法
CN110828869A (zh) * 2019-10-21 2020-02-21 东莞市魔方新能源科技有限公司 一种燃料电池膜电极及其制备方法、燃料电池
CN111009667A (zh) * 2019-12-23 2020-04-14 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种燃料电池膜电极的制备方法
CN112599793A (zh) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032382A1 (zh) * 2022-08-08 2024-02-15 江苏氢导智能装备有限公司 耐热型uv减粘胶水及其在制备燃料电池中的应用
CN116759590A (zh) * 2023-08-17 2023-09-15 安徽明天新能源科技有限公司 一种高耐久低活化时间不同催化层复合ccm的制备方法
CN116759590B (zh) * 2023-08-17 2023-10-31 安徽明天新能源科技有限公司 一种多层催化层结构ccm的制备方法
CN117080511A (zh) * 2023-10-18 2023-11-17 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法
CN117080511B (zh) * 2023-10-18 2024-03-08 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法

Also Published As

Publication number Publication date
CN112599793A (zh) 2021-04-02
CN112599793B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2022127159A1 (zh) 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN112599794B (zh) 一种燃料电池高成品率催化电极批量制备方法及其设备
WO2022127563A1 (zh) 一种超薄高质子导率质子交换复合膜的制备方法
CN109585859A (zh) 一种质子交换膜燃料电池膜电极组件的制备方法
CN102544558A (zh) 一种燃料电池三层核心组件的连续化制造方法
CN112592673B (zh) 一种保护膜及其批量制备方法与应用
CN110890556A (zh) 一种质子交换膜燃料电池ccm的生产装置及方法
Sun et al. Fabrication and performance test of a catalyst-coated membrane from direct spray deposition
WO2020010751A1 (zh) 3d气凝胶喷射打印制备可卷曲式纳米纸基柔性太阳能电池的方法
CN109411789A (zh) 用于燃料电池膜电极制备的卷对卷涂布系统
JP5044062B2 (ja) 膜−触媒層接合体の製造方法
CN114006018A (zh) 一种燃料电池用复合质子交换膜的制备方法
WO2020258842A1 (zh) 超薄锂膜预制件及其制备方法
CN108767297B (zh) 一种燃料电池膜电极的制备方法
CN112980247A (zh) 一种燃料电池用高稳定性喷墨打印墨水及其制备与应用
CN111326775B (zh) 一种基于超薄膜直接甲醇燃料电池膜电极及其制备方法
CN110416417A (zh) 一种基于透明复合导电薄膜的柔性太阳能电池制备方法
CN106299380B (zh) 一种紫外光固化涂碳铝箔集流体及制备方法
WO2020252606A1 (zh) 一种燃料电池用膜电极结构、燃料电池膜电极的制备方法及质子交换膜燃料电池系统
JP2002280012A (ja) 燃料電池用電解質膜電極接合体の製造方法
JP4391067B2 (ja) 色素増感型太陽電池の製造方法
CN112993350A (zh) 一种燃料电池膜电极连续批量化生产方法和装置
CN112054216A (zh) 燃料电池用的电极浆料及其制造方法
CN212894552U (zh) 一种燃烧电池专用pi热固型胶带
CN114204050B (zh) 一种燃料电池膜电极制备工艺及连续化产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905092

Country of ref document: EP

Kind code of ref document: A1