CN112599793A - 一种用保护背膜实现抗溶胀的ccm涂布工艺 - Google Patents

一种用保护背膜实现抗溶胀的ccm涂布工艺 Download PDF

Info

Publication number
CN112599793A
CN112599793A CN202011476843.0A CN202011476843A CN112599793A CN 112599793 A CN112599793 A CN 112599793A CN 202011476843 A CN202011476843 A CN 202011476843A CN 112599793 A CN112599793 A CN 112599793A
Authority
CN
China
Prior art keywords
coating
protective film
ccm
proton exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011476843.0A
Other languages
English (en)
Other versions
CN112599793B (zh
Inventor
郝金凯
张洪杰
邵志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202011476843.0A priority Critical patent/CN112599793B/zh
Publication of CN112599793A publication Critical patent/CN112599793A/zh
Priority to PCT/CN2021/112979 priority patent/WO2022127159A1/zh
Application granted granted Critical
Publication of CN112599793B publication Critical patent/CN112599793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种用保护背膜实现抗溶胀的CCM涂布工艺,将催化剂浆料涂布在质子交换膜的第一面,干燥后形成第一催化剂层;制备具有柔性载体层的保护膜,在含有第一催化剂层的质子交换膜第一面上贴合一层设有柔性载体层的保护膜,并将其和质子交换膜压合;将催化剂浆料涂布于质子交换膜的第二面,干燥形成第二催化剂层,得到带有临时保护膜的膜电极;最后将带有临时保护膜的膜电极经过热处理或紫外光(UV)照射,剥离临时保护层,得膜电极;若选择热处理处理时,在第一催化层干燥之前需在第一催化层表面喷涂纳米氧化物溶液。本发明制备膜电极过程中有效避免了质子交换膜的溶胀,并且制备工艺简单,生产效率高且电池性能优异。

Description

一种用保护背膜实现抗溶胀的CCM涂布工艺
技术领域
本发明涉及燃料电池技术领域,具体而言,尤其涉及一种用保护背膜实现抗溶胀的CCM涂布工艺。
背景技术
质子交换膜燃料电池是一种能将储存在氢燃料和氧化剂中的化学能通过电化学反应的方式直接转换为电能的能量转化装置。燃料电池具有能量转化效率高、无废气排放等特点,被认为是解决能源危机和环境污染的最具前景的方案之一,特别是交通运输如汽车、船舶和备用电源等方面极具应用前景。正是由于这些突出的优越性,燃料电池技术的开发与应用备受各国政府与大公司的重视,被认为是21世纪首选的洁净高效发电方式。
膜电极组件是质子交换膜燃料电池的核心元件,造价占总成本的三分之一。当前被广泛应用的膜电极制备方法主要是涂布法,分为催化剂直接涂布质子交换膜法和间接涂布。催化剂涂布质子交换膜法制备的膜电极催化层与膜接触紧密,使得内阻减小,性能最优。但是质子交换膜对醇类有机溶剂比较敏感,特别是第二面涂布催化剂时,容易引起质子交换膜的溶胀和褶皱,导致催化层脱落和涂布失败,因此大量涂布工作主要选择涂布质子交换膜的第一面,而第二催化层涂布在离型膜上进行热转移,但是此种方式在催化层热转移的过程中,催化层仍有大量残留在离型膜上,并且工艺复杂,成本较高。目前采用的对质子交换膜第二面涂布时选择设置保护膜对第一次涂布的催化剂涂层加以保护,然而并没有具体公开保护膜的制备以及在制备CCM中的应用,而且现有保护膜在第二面涂布结束后难以剥离,会带走大量催化剂涂层。
发明内容
根据上述提出的在涂布过程中涂布第二面引起的质子交换膜溶胀以及剥离时催化层掉落等技术问题,本发明提供一种用保护背膜实现抗溶胀的CCM涂布工艺,解决了连续涂布过程中质子交换膜的溶胀和收缩问题,避免了催化剂层脱落和出现裂纹,且制备的膜电极表面平整度高、均匀性好,电化学性能优异。
本发明采用的技术手段如下:
一种CCM涂布工艺,包括以下步骤:
(1)制备催化剂浆料,将制备所得的催化剂浆料涂布在质子交换膜的第一面,干燥后在质子交换膜的第一面形成第一催化剂层;
(2)制备临时保护膜:采用UV涂层或者热降解功能涂层作为柔性载体层,涂布在保护膜上,形成具有柔性载体层的临时保护膜;
(3)将临时保护膜热压贴合于质子交换膜的第一催化剂层上;
(4)将催化剂浆料涂布于质子交换膜的第二面,烘箱干燥后,形成带有临时保护膜的CCM;
(5)将带有临时保护膜的CCM进行降粘处理,降低临时保护膜和第一催化剂层之间的粘着力,剥离临时保护膜,即得到CCM。
进一步地,步骤(1)中,催化剂浆料由固体催化剂颗粒、分散剂和粘结剂组成,固体催化剂颗粒、粘结剂和分散剂的质量比为1:2-10:40-60;所述固体催化剂颗粒为碳载Pt或碳载Pt合金,金属Pt含量为10-90wt%;所述分散剂为乙醇、甲醇、异丙醇或正丙醇中的一种或多种;所述粘结剂为5wt%的全氟磺酸树脂液。
进一步地,步骤(2)的具体制备步骤为,以涂布速度为4m/min,湿厚为80-200μm的工艺,将具有热降解功能的化合物溶液或具有UV功能的化合物溶液均匀涂布在保护膜上,在40℃下烘干得到具有柔性载体层的临时保护膜;
保护膜为聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯膜(PE)或聚丙烯膜(PP)中的一种,厚度为10-80μm。
进一步地,具有热降解功能的化合物溶液的质量浓度为15%,溶剂为乙醇,溶质为自交联丙烯酸、苯二甲酸乙二醇酯、聚酰亚胺或聚二甲基硅氧烷中的一种或多种;
所述具有UV功能的化合物溶液的质量浓度为15%,溶剂为乙醇,溶质为环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯或丙烯酸树脂中的一种或多种。
进一步地,步骤(3)中,第一催化剂层与柔性载体层之间的压合压力为0.1-10MPa。
进一步地,步骤(4)中,烘箱干燥温度为40-80℃。
进一步地,所述步骤(3)中,将临时保护膜热压贴合于膜电极前,在第一催化剂层上喷涂纳米氧化物溶液,喷涂流量为5mL/min,喷涂速度200mm/s。
进一步地,纳米氧化物溶液为纳米化合物和溶剂的混合液,混合液中,纳米化合物含量为0.01-1wt%;纳米化合物为SiO2、TiO2或Al2O3中的一种或多种组合;溶剂为水和异丙醇的混合溶剂,水和异丙醇的比例为1:0.1-1。
进一步地,柔性载体层为热降解功能涂层时,降粘处理采用热处理方式,热处理温度为90-180℃;热降解功能涂层干厚为0.1-5μm,粘着力为1-25gf/25mm,降粘处理后粘着力为0-1gf/25mm。
进一步地,柔性载体层为UV涂层时,降粘处理采用紫外光照射方式;UV涂层干厚为5-40μm,粘着力为1-20gf/25mm,降粘处理后粘着力为0-1gf/25mm。
进一步地,降粘处理采用紫外光照射方式时,先进入80-120℃的烘箱内烘干,再进入暗室中经紫外照射灯照射1-5min。
上述CCM涂布工艺采用卷对卷连续涂布机进行涂布,所述卷对卷连续涂布机中沿质子交换膜传送方向上依次设置有剥离辊一、涂布模头一、喷涂室、烘箱一、热压辊、剥离辊二、涂布模头二、烘箱二、烘箱三、剥离辊三和CCM收卷辊;所述热压辊为一对复合轧辊,用于将质子交换膜与临时保护膜热压贴合;当降粘处理为紫外光照射方式时,可将烘箱三替换为暗室;
剥离辊一外侧设有对应的表面保护膜收卷辊一;剥离辊二外侧设有对应的表面保护膜收卷辊二;剥离辊三外侧设有对应的临时保护膜收卷辊;喷涂室内设有喷头;暗室内设有紫外照射灯;涂布设备还设置有多个传送辊,用以将质子交换膜向前传送。
一种使用上述卷对卷连续涂布机的CCM涂布工艺,包括以下步骤:
(1)通过剥离辊一剥离质子交换膜第一面上的表面保护膜,由表面保护膜收卷辊一收集;将催化剂浆料通过涂布模头一涂布在质子交换膜的第一面,由烘箱一干燥后在质子交换膜的第一面形成第一催化剂层;
(2)制备临时保护膜:在保护膜上涂布柔性载体层,形成具有柔性载体层的临时保护膜,所述柔性载体层为UV涂层或者热降解功能涂层;
(3)将所述临时保护膜通过热压辊热压贴合于质子交换膜的第一催化剂层上;
(4)通过剥离辊二剥离质子交换膜第二面上的表面保护膜,由表面保护膜收卷辊二收集;将催化剂浆料通过涂布模头二涂布在质子交换膜的第二面,由烘箱二干燥后,形成带有临时保护膜的CCM;
(5)通过烘箱三或暗室对带有临时保护膜的CCM进行降粘处理;通过剥离辊三剥离临时保护膜,由临时保护膜收卷辊收集;得到CCM由CCM收卷辊收集。
较现有技术相比,本发明具有以下优点:
1、本发明选择在保护膜上附着一层柔性载体层,保护膜选择价格低廉的塑料膜,柔性载体层选择比较常见的涂料或胶粘树脂等,制备的具有柔性载体层的临时保护膜成本低,制作简单。临时保护膜通过一定压力与质子交换膜第一催化剂层之间紧密接触,柔性载体层在热处理或者紫外光照射下发泡,粘着力大幅度降低,能够很好的从第一催化剂层表面剥离,不会残留催化剂,不会造成催化剂的浪费和对质子交换膜产生粘附损伤,解决了连续涂布过程中质子交换膜的溶胀和收缩问题,避免了催化剂层脱落和出现裂纹。
对于热降解剥离工艺选择得自交联丙烯酸、苯二甲酸乙二醇酯、聚酰亚胺、聚二甲基硅氧烷柔性载体层,在加热过程中具有很好的剥离效果,不会产生皲裂以及脱胶损伤催化层的缺陷并且剥离时不会带走催化层;对于UV照射剥离工艺选择的环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯、丙烯酸树脂灯柔性载体,在UV光照射下具有和热降解相同的功效;这些化合物的选择一方面不会残留在催化层表面,另一方面无毒无害,不会产生污染。
2、本发明制备的临时保护膜,在贴合前对第一催化层进行喷涂一层薄的纳米氧化物,一方面可以起到对催化剂层保水的功能,另一方面纳米颗粒会形成凹凸不平的接触点,使得临时保护膜与质子交换膜为点接触,大大降低了接触面积,从而粘性降低,有效避免了临时保护膜难以剥离或者剥离时带走涂布在质子交换膜上的催化剂的问题,有效提高了分离效果和分离成品率。此外,在本发明中选择无机纳米氧化物而不选择有机聚合物颗粒,如聚甲基丙烯酸甲酯颗粒,主要是有机聚合物颗粒在电池运行过程中容易遭受电化学降解,影响电池性能和使用寿命。
3、本发明制备膜电极时,工艺流程简单,生产效率高,节约了生产工序和成本,并且制备的膜电极表面平整度高、均匀性好,电化学性能优异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请膜电极连续涂布制备工艺示意图,其中降粘处理为热处理;
图2为本申请膜电极连续涂布制备工艺示意图,其中降粘处理为紫外光照射处理。
图中:1:质子交换膜;2:剥离辊一;2-1:剥离辊二;2-2:剥离辊三;3:表面保护膜收卷辊一;3-1:表面保护膜收卷辊二;3-2:临时保护膜收卷辊;4:涂布模头一;4-1:涂布模头二;5:第一催化剂层;5-1:第二催化剂层;6:喷涂室;6-1:喷头;7:烘箱一;7-1:烘箱二;7-2:烘箱三;8:临时保护膜;9:热压辊;10:暗室;10-1:紫外照射灯;11:CCM收卷辊。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本发明中连续涂布工艺主要采用连续涂布设备,例如卷对卷连续涂布机,卷对卷连续涂布机上设有传送线,延其传送线的传送方向,质子交换膜1在传送过程中由剥离辊一2剥离第一面上的保护膜,被剥离的保护膜被保护膜收卷辊一3收卷;之后经过涂布模头一4涂布催化浆料后形成第一催化剂层5,再经过喷涂室6、烘箱一7后,第一催化剂层5与一临时保护膜8由一对复合辊9实现热压贴合,之后通过剥离辊二2-1剥离质子交换膜1上第二面的保护膜,该保护膜由保护膜收卷辊二3-1收卷,质子交换膜1继续传送至由涂布模头二4-1对其第二面涂布催化剂浆料,形成第二催化剂层5-1,在此过程中,临时保护膜8起到对第一催化剂层5的保护作用同时也对质子交换膜1第二面涂布工序起到支撑防溶胀作用,涂布完成后的质子交换膜1经过烘箱二7-1烘干后,可以经过一个暗室10,暗室内设置紫外照射灯10-1,经过紫外照射灯10-1的照射,实现对临时保护膜8的降粘处理,最后由剥离辊三2-2剥离临时保护膜8,临时保护膜8由临时保护膜收卷辊3-2收卷,最终形成两面均涂布由催化剂的CCM膜电极11,如图2所示。
本卷对卷连续涂布机针对临时保护膜的材料,除上述在质子交换膜的第二面涂布完催化剂浆料形成第二催化剂层5-1后传送至暗室10,也可以根据不同的柔性载体层选择设置另一种结构,即将暗室10替换成高温的烘箱三7-2,如图1所示。
以下针对不同的材料选择举例说明。
实施例1
(1)称取20g苯二甲酸乙二醇酯溶解在113g乙醇中,得到15wt%的苯二甲酸乙二醇酯的溶液,以涂布速度为4m/min、涂布厚度80μm的工艺均匀涂布在厚度为10μm聚萘二甲酸乙二醇酯膜上,在40℃烘干得具有热降解功能柔性载体层得临时保护膜,备用;
(2)称取15g Pt含量为10wt%的Pt/C催化剂颗粒、30g 5wt%的全氟磺酸树脂溶液和600g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)称取0.5g纳米TiO2置于玻璃容器中,加入455g去离子水和45.5g异丙醇,磁力搅拌均匀,制成0.1wt%的纳米TiO2溶液,通入喷涂室6,备用;
(4)如图1所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,然后经过喷涂室6,以喷涂流量5mL/min,喷头6-1喷涂移动速度200mm/s进行喷涂纳米TiO2溶液,确保喷涂速度和涂布牵引速度相匹配,喷涂结束后进入40℃的烘箱一7进行干燥处理,得含有纳米TiO2薄层的第一催化剂层;
(5)在烘箱尾部装有表面涂有热降解功能涂层的临时保护膜8,对干燥后的含有纳米TiO2薄层第一催化剂层在压力为0.1MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,温度为40℃烘箱二7-1和温度为90℃的烘箱三7-2热处理,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
实施例2
(1)称取20g聚酰亚胺溶解在113g乙醇中,得到15wt%的聚酰亚胺的溶液,以涂布速度为4m/min、涂布厚度200μm的工艺均匀涂布在厚度为80μm聚对苯二甲酸乙二醇酯膜上,在40℃烘干得具有热降解功能柔性载体层得临时保护膜,备用;
(2)称取10g Pt含量为90wt%的Pt/C催化剂颗粒、100g 5wt%的全氟磺酸树脂溶液和600g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)称取0.5g纳米SiO2置于玻璃容器中,加入249.5g去离子水和249.5g异丙醇,磁力搅拌均匀,制备成0.1wt%的纳米SiO2溶液,存储于喷涂室6,备用;
(4)如图1所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,然后经过喷涂室6,以喷涂流量5mL/min,喷头6-1喷涂移动速度200mm/s进行喷涂纳米SiO2溶液,确保喷涂速度和涂布牵引速度相匹配,喷涂结束后进入80℃的烘箱一7进行干燥处理,得含有纳米SiO2薄层的第一催化剂层;
(5)在烘箱尾部装有表面涂有热降解功能涂层的临时保护膜8,对干燥后的含有纳米SiO2薄层第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为80℃烘箱二7-1和温度为180℃的烘箱三7-2热处理,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
实施例3
(1)称取20g环氧丙烯酸酯溶解在113g乙醇中,得到15wt%的环氧丙烯酸酯的溶液,以涂布速度为4m/min、涂布厚度150μm的工艺均匀涂布在厚度为20μm聚乙烯膜膜上,在40℃烘干得具有UV功能柔性载体层得临时保护膜,备用;
(2)称取10g Pt含量为40wt%的Pt/C催化剂颗粒、20g 5wt%的全氟磺酸树脂溶液和500g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)称取0.5g纳米Al2O3置于玻璃容器中,加入416.25g去离子水和83.25g异丙醇,磁力搅拌均匀,制备成0.1wt%的纳米Al2O3溶液,存储于喷涂室6,备用;
(4)如图2所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入80℃的烘箱一7进行干燥处理得到第一催化剂层;
(5)在烘箱尾部装有表面涂有UV降解功能涂层的临时保护膜8,对干燥后形成第一催化剂层在压力为0.1MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为40℃烘箱二7-1干燥,并在传输至设有紫外灯照射的暗室10进行紫外照射灯10-1照射1min,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
对比例1
(1)称取20g聚醚丙烯酸酯溶解在113g乙醇中,得到15wt%的聚醚丙烯酸酯的溶液,以涂布速度为4m/min、涂布厚度80μm的工艺均匀涂布在厚度为60μm聚丙烯膜上,在40℃烘干得具有UV功能柔性载体层得临时保护膜,备用;
(2)称取15g Pt含量为70wt%的Pt/C催化剂颗粒、50g 5wt%的全氟磺酸树脂溶液和600g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)如图2所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入80℃的烘箱一7进行干燥处理得到第一催化剂层;
(4)在烘箱尾部装有表面涂有UV降解功能涂层的临时保护膜8,对干燥后形成第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为40℃烘箱二7-1干燥,并在传输至设有紫外灯照射的暗室10进行紫外照射灯10-1照射5min,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
对比例2
(1)称取10g Pt含量为40wt%的Pt/C催化剂颗粒、20g 5wt%的全氟磺酸树脂溶液和500g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(2)现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入40℃的烘箱一7进行干燥处理得到第一催化剂层;
(3)在烘箱尾部装有临时保护膜8(普通的PET膜),对干燥后形成第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为40℃烘箱二7-1干燥,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
对比例3
称取20g苯二甲酸乙二醇酯溶解在113g乙醇中,得到15wt%的苯二甲酸乙二醇酯的溶液,以涂布速度为4m/min、涂布厚度200μm的工艺均匀涂布在厚度为10μm聚萘二甲酸乙二醇酯膜上,在40℃烘干得具有热降解功能柔性载体层得临时保护膜,备用;
(2)称取12g Pt含量为70wt%的Pt/C催化剂颗粒、60g 5wt%的全氟磺酸树脂溶液和620g异丙醇混合,在25℃下高速搅拌分散60min,并使用超声震荡10min,消泡气泡,得到催化剂浆料;
(3)如图1所示,现有质子交换膜1卷材成品的两面均设置保护膜,涂布时采用剥离辊一2撕掉质子交换膜1第一面的保护膜并使用保护膜收卷辊一3收卷,将(1)的催化剂浆料使用涂布模头一4均匀涂布在第一面上,形成第一催化剂层5,涂布结束后进入80℃的烘箱一7进行干燥处理得到第一催化剂层;
(4)在烘箱尾部装有表面涂有热降解功能涂层的临时保护膜8,对干燥后形成第一催化剂层在压力为10MPa的复合辊9下进行压合;压合结束后,使用剥离辊二2-1撕掉质子交换膜1第二面保护膜,并将其通过保护膜收卷辊二3-1收卷,将(1)的催化剂浆料使用涂布模头二4-1均匀涂布在第二面,经过温度为80℃烘箱二7-1和温度为180℃的烘箱三7-2热处理,通过保护膜剥离辊剥离临时保护膜8,CCM收卷辊11收卷得到卷材膜电极。
测试例
本发明制备的膜电极其催化层均匀性和电化学性能都很好,通过对比发现,本发明采用热处理或者紫外灯照射对临时保护膜进行降黏处理后,一方面临时保护膜更容易从催化层上撕裂,另一方面保护膜上并未残留有催化剂,没有造成催化层破裂和掉落等缺陷。没有经过降粘处理的临时保护膜,在撕掉时会带走大量催化剂层,并且较难撕下来。对比发现本发明采用的卷对卷连续化操作,从催化剂浆料涂布到干燥,再到临时保护膜的贴合以及质子交换膜第二面涂布,最后热处理或紫外光照射处理,得到膜电极,整个工艺流程简单,无须分步进行,节约了生产工序和成本,并且制备的膜电极表面平整度高、均匀性好且电化学性能优异。
本发明制备的膜电极均匀性测试:采用测厚仪对膜电极中催化剂层厚度及进行均匀性测试,长度方向每隔2cm取一个点,取5个点,宽度方向均匀取5个点,检测厚度值,本发明制备的催化剂层厚度均匀性佳,结果见表1。
本发明通过单面转印法生产的膜电极其成品率通过以下方式计算:裁剪大小、尺寸完全一样的空白膜10*50cm,进行催化剂浆料涂布,经过临时保护膜压合后,再称重空临时保护膜的重量,通过质量差的方式计算催化剂层是否残留在临时保护膜上,所得残留率通过变革中的成品率反应,例如成品率97%,那么残留率即为3%。
通过测厚比较发现,本发明制备CCM过程中,催化剂层在临时保护膜上的残留量非常小,其结果见表1。
将本发明所制备的催化剂浆料制备成膜电极组装成电池,然后评价其氢氧条件下的电池性能。测试条件:电池运行温度:60℃,H2/O2 100RH%,流量40/100mL/min,进气口均为常压,结果发现本发明制备的膜电极组装成电池后,电化学性能优异,测试结果见表2。
表1
Figure BDA0002835818430000111
表2
Figure BDA0002835818430000112
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种CCM涂布工艺,其特征在于,包括以下步骤:
(1)制备催化剂浆料,将制得的催化剂浆料涂布在质子交换膜的第一面,干燥后在质子交换膜的一面形成第一催化剂层;
(2)制备临时保护膜:在保护膜上涂布柔性载体层,形成具有柔性载体层的临时保护膜,所述柔性载体层为UV涂层或者热降解功能涂层;
(3)将步骤(2)中临时保护膜热压贴合于步骤(1)中质子交换膜的第一催化剂层上;
(4)将催化剂浆料涂布于质子交换膜的第二面,干燥后,形成带有临时保护膜的CCM;
(5)将步骤(4)带有临时保护膜的CCM进行降粘处理后剥离临时保护膜。
2.根据权利要求1所述的CCM涂布工艺,其特征在于:所述步骤(2)的具体制备步骤为,以涂布速度为4m/min,湿厚为80-200μm的工艺,将具有热降解功能的化合物溶液或具有UV功能的化合物溶液均匀涂布在保护膜上,在40℃下烘干得到具有柔性载体层的临时保护膜;
所述保护膜为聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯膜(PE)或聚丙烯膜(PP)中的任意一种,厚度为10-80μm。
3.根据权利要求2所述的CCM涂布工艺,其特征在于:具有热降解功能的化合物溶液的质量浓度为15wt%,溶剂为乙醇,溶质为自交联丙烯酸、苯二甲酸乙二醇酯、聚酰亚胺或聚二甲基硅氧烷中的一种或多种;
所述具有UV功能的化合物溶液的质量浓度为15wt%,溶剂为乙醇,溶质为环氧丙烯酸酯、聚氨酯丙烯酸酯、聚醚丙烯酸酯、聚酯丙烯酸酯或丙烯酸树脂中的一种或多种。
4.根据权利要求1所述的CCM涂布工艺,其特征在于:步骤(1)中,催化剂浆料由固体催化剂颗粒、分散剂和粘结剂组成;所述固体催化剂颗粒为碳载Pt或碳载Pt合金,金属Pt含量为10-90wt%;所述分散剂为乙醇、甲醇、异丙醇或正丙醇中的一种或多种;所述粘结剂为5wt%的全氟磺酸树脂液;所述催化剂浆料中固体催化剂颗粒、粘结剂和分散剂的质量比为1:2-10:40-60。
5.根据权利要求1所述的CCM涂布工艺,其特征在于:步骤(3)中,第一催化剂层与柔性载体层之间的压合压力为0.1-10MPa。
6.根据权利要求1所述的CCM涂布工艺,其特征在于:步骤(4)中,干燥温度为40-80℃。
7.根据权利要求1所述的CCM涂布工艺,其特征在于:所述步骤(3)中,将临时保护膜热压贴合于膜电极前,在第一催化剂层上喷涂纳米氧化物溶液,喷涂流量为5mL/min,喷涂速度200mm/s。
8.根据权利要求7所述的CCM涂布工艺,其特征在于:所述纳米氧化物溶液为纳米化合物和溶剂的混合液,纳米化合物含量为0.01-1wt%;所述纳米化合物为SiO2、TiO2或Al2O3的一种或多种组合;所述溶剂为水和异丙醇的混合溶剂,水和异丙醇的体积比为1:0.1-1。
9.根据权利要求1所述的CCM涂布工艺,其特征在于:所述柔性载体层为热降解功能涂层时,降粘处理采用热处理的方式,热处理温度为90-180℃;所述热降解功能涂层干厚为0.1-5μm,粘着力为1-25gf/25mm,降粘处理后粘着力为0-1gf/25mm;
所述柔性载体层为UV涂层时,降粘处理采用紫外光照射的方式,所述紫外光照射方式为先在80-120℃下烘干,再经紫外光照射1-5min;所述UV涂层干厚为5-40μm,粘着力为1-20gf/25mm,降粘处理后粘着力范围为0-1gf/25mm。
10.根据权利要求1-9任一权利要求所述的CCM涂布工艺,其特征在于:所述CCM涂布工艺采用卷对卷连续涂布机进行涂布,所述卷对卷连续涂布机中沿质子交换膜传送方向上依次设置有剥离辊一、涂布模头一、喷涂室、烘箱一、热压辊、剥离辊二、涂布模头二、烘箱二、烘箱三、剥离辊三和CCM收卷辊;所述热压辊为一对复合轧辊,用于将质子交换膜与临时保护膜热压贴合;当降粘处理为紫外光照射方式时,可将烘箱三替换为暗室;
所述剥离辊一外侧设有对应的表面保护膜收卷辊一;所述剥离辊二外侧设有对应的表面保护膜收卷辊二;所述剥离辊三外侧设有对应的临时保护膜收卷辊;所述喷涂室内设有喷头;所述暗室内设有紫外照射灯;所述涂布设备还设置有多个传送辊,用以将质子交换膜向前传送。
CN202011476843.0A 2020-12-14 2020-12-14 一种用保护背膜实现抗溶胀的ccm涂布工艺 Active CN112599793B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011476843.0A CN112599793B (zh) 2020-12-14 2020-12-14 一种用保护背膜实现抗溶胀的ccm涂布工艺
PCT/CN2021/112979 WO2022127159A1 (zh) 2020-12-14 2021-08-17 一种用保护背膜实现抗溶胀的ccm涂布工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011476843.0A CN112599793B (zh) 2020-12-14 2020-12-14 一种用保护背膜实现抗溶胀的ccm涂布工艺

Publications (2)

Publication Number Publication Date
CN112599793A true CN112599793A (zh) 2021-04-02
CN112599793B CN112599793B (zh) 2022-07-19

Family

ID=75195689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011476843.0A Active CN112599793B (zh) 2020-12-14 2020-12-14 一种用保护背膜实现抗溶胀的ccm涂布工艺

Country Status (2)

Country Link
CN (1) CN112599793B (zh)
WO (1) WO2022127159A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594521A (zh) * 2021-07-12 2021-11-02 南方科技大学 一种质子交换膜的制备方法及系统
CN114204052A (zh) * 2021-12-03 2022-03-18 中国科学院大连化学物理研究所 一种燃料电池高均匀性ccm连续涂布工艺
CN114204050A (zh) * 2021-12-03 2022-03-18 中国科学院大连化学物理研究所 一种燃料电池膜电极制备工艺及连续化产线
WO2022127159A1 (zh) * 2020-12-14 2022-06-23 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN117080511A (zh) * 2023-10-18 2023-11-17 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305043A (zh) * 2022-08-08 2022-11-08 江苏氢导智能装备有限公司 耐热型uv减粘胶水及其在制备燃料电池中的应用
CN116759590B (zh) * 2023-08-17 2023-10-31 安徽明天新能源科技有限公司 一种多层催化层结构ccm的制备方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202970A (ja) * 2000-01-17 2001-07-27 Asahi Glass Co Ltd 固体高分子電解質型燃料電池用ガス拡散電極及びその製造方法
US20030068544A1 (en) * 2001-10-10 2003-04-10 Alan Cisar Bifunctional catalytic electrode
WO2004091024A1 (en) * 2003-04-07 2004-10-21 Umicore Ag & Co. Kg Catalyst-coated ionomer membranes and membrane-electrode assemblies with components having different colours
CN1581546A (zh) * 2004-05-14 2005-02-16 武汉理工大学 一种高温质子交换膜燃料电池膜电极及制备方法
CN1719653A (zh) * 2005-05-19 2006-01-11 武汉理工大学 具有保水功能的质子交换膜燃料电池芯片的制备方法
EP1645001A2 (en) * 2003-06-27 2006-04-12 Umicore AG & Co. KG Process for manufacturing a catalyst-coated polymer electrolyte membrane
US20070072056A1 (en) * 2005-09-23 2007-03-29 Samsung Sdi Co., Ltd. Membrane electrode assembly and fuel cell system including the same
CN101702439A (zh) * 2009-10-26 2010-05-05 新源动力股份有限公司 具有自增湿功能的燃料电池催化剂涂层膜电极及制备方法
US20100227254A1 (en) * 2006-06-23 2010-09-09 Atomic Energy Council-Institute Of Nuclear Energy Research Decal method for transferring platinum-and platinum alloy-based catalysts with nanonetwork structures
JP2011076907A (ja) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd 触媒転写フィルム及びその製造方法、並びに該転写フィルムを用いて製造される触媒層−電解質膜積層体、膜−電極接合体及び固体高分子形燃料電池
US20110294037A1 (en) * 2010-05-27 2011-12-01 Gm Global Technology Operations, Inc. Electrode containing nanostructured thin catalytic layers and method of making
CN102544558A (zh) * 2012-01-17 2012-07-04 武汉理工新能源有限公司 一种燃料电池三层核心组件的连续化制造方法
US20140127542A1 (en) * 2012-11-05 2014-05-08 Battelle Memorial Institute Composite Separators and Redox Flow Batteries Based on Porous Separators
CN103855408A (zh) * 2012-12-04 2014-06-11 中国科学院大连化学物理研究所 一种改善质子交换膜燃料电池阳极水管理的膜电极
CN110137512A (zh) * 2019-05-16 2019-08-16 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110265671A (zh) * 2019-07-08 2019-09-20 南京大学昆山创新研究院 一种燃料电池膜电极的制备方法及装置
CN110459774A (zh) * 2019-08-12 2019-11-15 南京大学昆山创新研究院 一种燃料电池膜电极的制备方法
CN110828869A (zh) * 2019-10-21 2020-02-21 东莞市魔方新能源科技有限公司 一种燃料电池膜电极及其制备方法、燃料电池
CN111224111A (zh) * 2018-11-23 2020-06-02 中国科学院大连化学物理研究所 一种燃料电池膜电极批量生产装置及方法
CN111777961A (zh) * 2020-07-15 2020-10-16 宁波东旭成新材料科技有限公司 一种uv减粘保护膜的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE396507T1 (de) * 2002-09-30 2008-06-15 Umicore Ag & Co Kg Mit katalysator beschichtete ionomer-membran mit schutzfilm und daraus hergestellte membran- elektroden-anordnung
CN108448139A (zh) * 2018-05-16 2018-08-24 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110265675B (zh) * 2019-07-12 2024-01-23 深圳市信宇人科技股份有限公司 氢燃料电池ccm膜电极的复合涂布设备
CN110364741B (zh) * 2019-07-12 2023-04-18 深圳市信宇人科技股份有限公司 氢燃料电池ccm膜电极的复合涂布方法
CN111009667B (zh) * 2019-12-23 2021-08-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种燃料电池膜电极的制备方法
CN112599793B (zh) * 2020-12-14 2022-07-19 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202970A (ja) * 2000-01-17 2001-07-27 Asahi Glass Co Ltd 固体高分子電解質型燃料電池用ガス拡散電極及びその製造方法
US20030068544A1 (en) * 2001-10-10 2003-04-10 Alan Cisar Bifunctional catalytic electrode
WO2004091024A1 (en) * 2003-04-07 2004-10-21 Umicore Ag & Co. Kg Catalyst-coated ionomer membranes and membrane-electrode assemblies with components having different colours
EP1645001A2 (en) * 2003-06-27 2006-04-12 Umicore AG & Co. KG Process for manufacturing a catalyst-coated polymer electrolyte membrane
CN1581546A (zh) * 2004-05-14 2005-02-16 武汉理工大学 一种高温质子交换膜燃料电池膜电极及制备方法
CN1719653A (zh) * 2005-05-19 2006-01-11 武汉理工大学 具有保水功能的质子交换膜燃料电池芯片的制备方法
US20070072056A1 (en) * 2005-09-23 2007-03-29 Samsung Sdi Co., Ltd. Membrane electrode assembly and fuel cell system including the same
US20100227254A1 (en) * 2006-06-23 2010-09-09 Atomic Energy Council-Institute Of Nuclear Energy Research Decal method for transferring platinum-and platinum alloy-based catalysts with nanonetwork structures
JP2011076907A (ja) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd 触媒転写フィルム及びその製造方法、並びに該転写フィルムを用いて製造される触媒層−電解質膜積層体、膜−電極接合体及び固体高分子形燃料電池
CN101702439A (zh) * 2009-10-26 2010-05-05 新源动力股份有限公司 具有自增湿功能的燃料电池催化剂涂层膜电极及制备方法
US20110294037A1 (en) * 2010-05-27 2011-12-01 Gm Global Technology Operations, Inc. Electrode containing nanostructured thin catalytic layers and method of making
CN102544558A (zh) * 2012-01-17 2012-07-04 武汉理工新能源有限公司 一种燃料电池三层核心组件的连续化制造方法
US20140127542A1 (en) * 2012-11-05 2014-05-08 Battelle Memorial Institute Composite Separators and Redox Flow Batteries Based on Porous Separators
CN103855408A (zh) * 2012-12-04 2014-06-11 中国科学院大连化学物理研究所 一种改善质子交换膜燃料电池阳极水管理的膜电极
CN111224111A (zh) * 2018-11-23 2020-06-02 中国科学院大连化学物理研究所 一种燃料电池膜电极批量生产装置及方法
CN110137512A (zh) * 2019-05-16 2019-08-16 深圳市善营自动化股份有限公司 一种燃料电池膜电极的制作方法及设备
CN110265671A (zh) * 2019-07-08 2019-09-20 南京大学昆山创新研究院 一种燃料电池膜电极的制备方法及装置
CN110459774A (zh) * 2019-08-12 2019-11-15 南京大学昆山创新研究院 一种燃料电池膜电极的制备方法
CN110828869A (zh) * 2019-10-21 2020-02-21 东莞市魔方新能源科技有限公司 一种燃料电池膜电极及其制备方法、燃料电池
CN111777961A (zh) * 2020-07-15 2020-10-16 宁波东旭成新材料科技有限公司 一种uv减粘保护膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIEN LIANG LIN,ET AL.: ""Embedding TiO2 Nanopowder in Anode Catalyst Layers to Fabricate Self-Humidifying Proton Exchange Membrane Fuel Cells"", 《ADVANCED MATERIALS RESEARCH》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127159A1 (zh) * 2020-12-14 2022-06-23 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN113594521A (zh) * 2021-07-12 2021-11-02 南方科技大学 一种质子交换膜的制备方法及系统
CN114204052A (zh) * 2021-12-03 2022-03-18 中国科学院大连化学物理研究所 一种燃料电池高均匀性ccm连续涂布工艺
CN114204050A (zh) * 2021-12-03 2022-03-18 中国科学院大连化学物理研究所 一种燃料电池膜电极制备工艺及连续化产线
CN114204050B (zh) * 2021-12-03 2023-11-07 中国科学院大连化学物理研究所 一种燃料电池膜电极制备工艺及连续化产线
CN114204052B (zh) * 2021-12-03 2023-11-10 中国科学院大连化学物理研究所 一种燃料电池高均匀性ccm连续涂布工艺
CN117080511A (zh) * 2023-10-18 2023-11-17 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法
CN117080511B (zh) * 2023-10-18 2024-03-08 国家电投集团氢能科技发展有限公司 质子交换膜加工装置及加工方法

Also Published As

Publication number Publication date
WO2022127159A1 (zh) 2022-06-23
CN112599793B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN112599793B (zh) 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN110247062B (zh) 一种燃料电池膜电极的制备方法
CN112599794B (zh) 一种燃料电池高成品率催化电极批量制备方法及其设备
CN112599791B (zh) 一种高成品率燃料电池催化电极涂布生产方法及其设备
CN109585859A (zh) 一种质子交换膜燃料电池膜电极组件的制备方法
KR20140026404A (ko) 고체 고분자형 연료 전지용 막·전극 접합체의 제조 방법 및 제조 장치, 고체 고분자형 연료 전지
US7285307B2 (en) Process for producing catalyst-coated membranes and membrane-electrode assemblies for fuel cells
CN111063925B (zh) 催化剂涂覆膜、燃料电池及制备方法
CN112592673B (zh) 一种保护膜及其批量制备方法与应用
CN113517449A (zh) 一种膜电极组件及制备方法
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
CN102496726B (zh) 质子交换膜燃料电池膜电极的制备方法和质子交换膜燃料电池膜电极成型夹具
CN100505395C (zh) 一种自增湿质子交换膜燃料电池膜电极的制备方法
CN106164147A (zh) 基材膜、催化剂转印片材、膜电极复合体的制造方法及被覆有催化剂层的电解质膜的制造方法
JP2009514140A (ja) 触媒でコーティングされたポリマー電解質膜を製造するためのプロセス
CN105633420A (zh) 一种纳米多孔金用于燃料电池薄层电极的制备方法
JP5044062B2 (ja) 膜−触媒層接合体の製造方法
US9276281B2 (en) Manufacturing a fuel cell membrane-electrode assembly
CN108767297B (zh) 一种燃料电池膜电极的制备方法
JP2009117350A (ja) 電気化学セルの製造方法
CN110828869A (zh) 一种燃料电池膜电极及其制备方法、燃料电池
CN112713292B (zh) 一种适用于批量化生产的氢燃料电池膜电极组件及其生产工艺
US11075395B2 (en) Fuel cell membrane electrode assembly (MEA) with hexagonal boron nitride thin film
CN112536193A (zh) 燃料电池催化层连续化涂布生产设备及工艺
US11424467B2 (en) Method for manufacturing membrane electrode assembly, and stack

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant