WO2024032382A1 - 耐热型uv减粘胶水及其在制备燃料电池中的应用 - Google Patents

耐热型uv减粘胶水及其在制备燃料电池中的应用 Download PDF

Info

Publication number
WO2024032382A1
WO2024032382A1 PCT/CN2023/109698 CN2023109698W WO2024032382A1 WO 2024032382 A1 WO2024032382 A1 WO 2024032382A1 CN 2023109698 W CN2023109698 W CN 2023109698W WO 2024032382 A1 WO2024032382 A1 WO 2024032382A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
resistant
heat
transfer film
frame
Prior art date
Application number
PCT/CN2023/109698
Other languages
English (en)
French (fr)
Inventor
邵孟
樊采薇
Original Assignee
江苏氢导智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏氢导智能装备有限公司 filed Critical 江苏氢导智能装备有限公司
Publication of WO2024032382A1 publication Critical patent/WO2024032382A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/50Adhesives in the form of films or foils characterised by a primer layer between the carrier and the adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • C09J2475/003Presence of polyurethane in the primer coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a heat-resistant UV viscosity-reducing glue and its application in preparing fuel cells.
  • the core component of the fuel cell is the MEA (Membrane Electrode Assembly) membrane electrode, also called a seven-in-one assembly.
  • the seven-in-one component includes CCM (catalyst coated membrane, catalytic layer/proton exchange membrane component), frames attached to both sides of the CCM, and gas diffusion layers.
  • the frame is first attached to both sides of the CCM to obtain a five-in-one module, and then the gas diffusion layer is attached to both sides of the five-in-one module to obtain a seven-in-one module.
  • the CCM layer includes a PEM membrane (i.e., proton exchange membrane) and catalytic layers on opposite sides of the PEM membrane.
  • CN112582654A discloses a method for manufacturing a membrane electrode.
  • the adhesive used in the preparation process sticks the frame on the supporting film layer (transfer film material belt) to transport the frame, and then separates the supporting film layer.
  • the inventor of the present disclosure found that when the above process or similar process is used to prepare related intermediate products, the CCM will be damaged to varying degrees when the transfer film strip is separated.
  • the present disclosure is proposed to provide a heat-resistant UV viscosity-reducing glue and its application in preparing fuel cells to overcome the above problems.
  • the present disclosure provides a heat-resistant UV tack-reducing glue whose raw materials include the following components in terms of mass percentage:
  • mercury lamp initiating conditions are likely to produce ozone and high ambient temperatures, which will affect the performance and life of the catalytic layer and membrane electrodes; in the heat-resistant UV viscosity-reducing glue raw materials provided by this disclosure, the initiator used is An initiator with fixed waveband and low energy initiating conditions does not contain functional groups or ions that affect the electrochemical performance of the catalytic layer, avoiding catalyst poisoning or activity reduction; using hydroxy acrylate oligomers and composite cross-linking systems, cross-linking agents Medium and large molecules are cross-linked and solidified during the drying process, which prevents the raw material components from jumping to the surface during the cross-linking process; the raw materials adopt a specific composition ratio to reduce the surface viscosity after UV, so that it can be hot-pressed with the surface of the catalytic layer that is easy to fall off.
  • the glass transition temperature of this heat-resistant UV tack-reducing glue after UV curing is greater than 130°C, ensuring hot pressing with PEM
  • the non-adhesive effect effectively solves the adhesion problem in the existing hot pressing process;
  • the main structure of the heat-resistant UV tack-reducing glue provided by the present disclosure has low hydroxyl groups, which avoids the hydroxyl groups in the structure and the sulfonate in PEM. Adhesion produced by reaction of acidic groups.
  • Using the heat-resistant UV viscosity-reducing glue provided by the present disclosure in the fuel cell preparation process can reduce CCM damage and improve product qualification rate.
  • the raw materials include the following components in terms of mass percentage: hydroxy acrylate oligomer, polyacrylate pressure-sensitive adhesive, first cross-linking agent, photoinitiator and solvent.
  • the mass percentage of the hydroxyacrylate oligomer, its monomer, or a combination of the two in the raw material is: 20%-30%.
  • the hydroxyl acrylate oligomer has a hydroxyl value ⁇ 20 mg KOH/g.
  • the hydroxyl value is determined by GB/T 12008.3 1989.
  • the hydroxyacrylate oligomer is polyhydroxyethyl acrylate.
  • the polyacrylate pressure-sensitive adhesive is aliphatic polyurethane acrylate, polyepoxy methacrylate, or a combination of both.
  • the polyacrylate pressure-sensitive adhesive has an Mw of 10,000-500,000, a solid content of 25%-50%, and a viscosity of 100cps-2000cps.
  • Mw is tested by viscometry or gel permeation chromatography, solid content is tested by moisture drying instrument, and viscosity is tested by viscometer.
  • the content of the polyacrylate pressure-sensitive adhesive in the raw material is 32%-40%.
  • the first cross-linking agent is selected from one or a combination of isocyanate cross-linking agents, amine cross-linking agents, and aziridine cross-linking agents.
  • the photoinitiator is selected from 1-hydroxycyclohexylphenylmethanone (184), 2,4,6-(trimethylbenzoyl)-diphenylphosphine oxide (TPO), 2-hydroxy-methylphenylpropan-1-one (1173), phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (819), diphenoxydiphenyl In methanone, 1,2-octanedione, 1-[4-(phenylthio)phenyl]-,2-(O-benzoyl oxime) (Irgacure OXE01), and benzophenone (BP) one or a combination of several.
  • TPO 2,4,6-(trimethylbenzoyl)-diphenylphosphine oxide
  • 2-hydroxy-methylphenylpropan-1-one 1173
  • phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide 819
  • the solvent is selected from the group consisting of ethyl acetate, butyl acetate, methanol, ethanol, propanol, isopropanol, isobutanol, n-butanol, methyl isobutyl ketone, acetone, One or a combination of butanone, cyclohexanone, propylene glycol methyl ether, and dipropylene glycol methyl ether.
  • the present disclosure provides a method for preparing the heat-resistant UV viscosity-reducing glue as described in any one of the above, which includes mixing and reacting each component in the raw materials to prepare the heat-resistant UV viscosity-reducing glue.
  • Thermal UV tack-reducing glue is a method for preparing the heat-resistant UV viscosity-reducing glue as described in any one of the above, which includes mixing and reacting each component in the raw materials to prepare the heat-resistant UV viscosity-reducing glue.
  • the reaction is performed in the absence of light.
  • the present disclosure provides the application of the heat-resistant UV viscosity-reducing glue as described in any one of the above items in the preparation of five-in-one components or seven-in-one components in the fuel cell industry.
  • the present disclosure provides a transfer film tape, which includes a transfer film tape body, and a heat-resistant UV viscosity-reducing adhesive layer coated on one side of the transfer film tape body.
  • the adhesive layer is formed of the heat-resistant UV tack-reducing glue described in any one of claims 1-7.
  • a primer layer is provided between the heat-resistant UV adhesion-reducing layer and the transfer film tape body.
  • the primer layer is formed from a composition including a primer, a second cross-linking agent, and water.
  • the primer is a water-based polyurethane acrylate.
  • the second cross-linking agent is a carboethylamine cross-linking agent.
  • the present disclosure discloses a transfer film composite tape for preparing a five-in-one module or a seven-in-one module, which includes a transfer film tape body and a transfer film tape body that is adhered to the transfer film tape body.
  • the frame tape on the side is pasted to the transfer film tape body through the heat-resistant UV viscosity-reducing glue as described in any one of the above.
  • a primer layer is provided between the UV viscosity-reducing layer formed of heat-resistant UV viscosity-reducing glue and the transfer film tape body.
  • the primer layer serves as the intermediate connecting layer between the transfer film tape body and the UV viscosity-reducing adhesive layer. It can modify the interface of the transfer film tape body.
  • the bonding force between the priming coating and the viscosity-reducing adhesive layer is strong and is not affected by The influence of high temperature can solve the problem of UV viscosity-reducing adhesive degumming from the interface with the transfer film tape during the high-temperature baking process.
  • the primer layer is formed from a composition including a primer, a second cross-linking agent, and water.
  • the primer is a water-based polyurethane acrylate.
  • the water-based polyurethane acrylate has a weight average molecular weight of 3000, a number average molecular weight of 18000, a Tg of 50°C, and an acid value of 6 mg KOH/g;
  • the weight average molecular weight is tested by viscometry or gel permeation chromatography, the number average molecular weight is tested by end group analysis or osmotic pressure method, and Tg is measured by DSC, DMA, and TMA testing methods.
  • the acid value is measured according to GB/T264-1983.
  • the second cross-linking agent is a carboethylamine cross-linking agent.
  • the transfer film composite tape is used as the initial raw material for preparation. After the transfer film tape body is separated and removed by lamination with the CCM and the frame, a five-in-one component can be obtained. If it is then laminated with the diffusion layer, a seven-in-one component can be obtained.
  • the present disclosure provides a five-in-one material tape for preparing a seven-in-one component, which includes a first frame material tape, a second frame material tape, clamped on the first frame material tape and the The CCM between the second frame strips, the first transfer film strip body adhered to the side of the first frame strip away from the CCM, and the second transfer film strip adhered to the side of the second frame strip away from the CCM film material belt body, the first transfer film material belt body and the The second transfer film tape body is respectively pasted on the first frame tape and the second frame tape through the heat-resistant UV tack-reducing glue as described in any one of the above.
  • the present disclosure provides a six-in-one material tape for use in preparing a seven-in-one material tape, which includes a first frame material tape, a second frame material tape, and is clamped to the first frame material tape and the third frame material tape.
  • the second transfer film tape body is pasted on the side of the diffusion layer sheet away from the second frame tape.
  • the first transfer film tape body is bonded with the heat-resistant UV tack-reducing glue as described above.
  • the first frame material is bonded; the second transfer film material belt body is bonded to the diffusion layer sheet material through the heat-resistant UV tack-reducing glue as mentioned above.
  • the present disclosure provides a seven-in-one material belt for preparing a fuel cell, which includes a first frame material belt, a second frame material belt, and is clamped between the first frame material belt and the second frame material belt.
  • the CCM between the frame strips, the first diffusion layer piece located on the side of the first frame strip away from the CCM, is pasted on the third piece of the first diffusion layer piece on the side away from the first frame strip.
  • Two transfer film tape bodies, the first transfer film tape body and the second transfer film tape body are respectively pasted on the first diffusion through the heat-resistant UV tack-reducing glue as described in any one of the above layer sheet material and said second diffusion layer sheet material.
  • the present disclosure provides a method for preparing a fuel cell, which includes: using the heat-resistant UV viscosity-reducing glue as described in any one of the above, the transfer film tape as described above, and the transfer film as described above
  • the composite material tape, the five-in-one material tape as mentioned above, the six-in-one material tape as mentioned above, or the seven-in-one material tape as mentioned above are used as raw materials to prepare the fuel cell.
  • the present disclosure provides a fuel cell, which is prepared by the method as described above.
  • Figure 1 is a schematic structural diagram of the heat-resistant UV tack-reducing protective film in Example 1.
  • Figure 2 is a schematic structural diagram of the transfer film belt in Example 4.
  • Figure 3 is a schematic structural diagram of the transfer film composite material belt in Example 5.
  • Figure 4 is a schematic structural diagram of the five-in-one material belt of Embodiment 6.
  • Figure 5 is a schematic structural diagram of the seven-in-one material belt in Embodiment 7.
  • connection may be a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium; it may be an internal connection between two components.
  • connection may be a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium; it may be an internal connection between two components.
  • the substrate thickness is 50 ⁇ m
  • the primer includes 50 parts of polycarbonate-modified aliphatic water-based polyurethane resin emulsion, 3 parts of carbon ethylamine cross-linking agent, and 10 parts of deionized water; Stir at 1000r/min, stir evenly and then vacuum defoaming. Scrape coating onto the corona surface of the PET substrate, with a heating temperature of 90°C and a drying time of 5 minutes. Dry to form a uniform coating with a thickness of 2 ⁇ m, which is the base coating;
  • Coating viscosity-reducing glue process On the corona substrate coated with the base coating, apply heat-resistant UV viscosity-reducing glue on the surface of the base coating. The heating temperature is 95°C and the drying time is 5 minutes to form a thickness of Uniform heat-resistant UV adhesive layer. Then attach 25 ⁇ m release PET on the surface to obtain a heat-resistant UV tack-reducing film.
  • the structure of the heat-resistant UV tack-reducing film in this embodiment is shown in 1, which includes a base material 10 (in other embodiments, the base material may be a transfer film tape body, etc.), a base coated on the surface of the base material 10 The coating 20, the heat-resistant UV adhesive reducing layer 30 and the release film 40 coated on the base coating 20.
  • a base material 10 in other embodiments, the base material may be a transfer film tape body, etc.
  • the coating 20 the heat-resistant UV adhesive reducing layer 30 and the release film 40 coated on the base coating 20.
  • the base material 10 is not limited to corona PET, and those skilled in the art can select any interesting material as the base material as needed.
  • the heat-resistant UV tack-reducing film of this embodiment is basically the same as that of Embodiment 1, except for the raw material ratio.
  • the raw material ratio used in this embodiment is as follows:
  • the heat-resistant UV tack-reducing film of this embodiment is basically the same as that of Embodiment 1, except for the raw material ratio.
  • the raw material ratio used in this embodiment is as follows:
  • Coating viscosity-reducing adhesive process Coat heat-resistant UV viscosity-reducing adhesive on the corona substrate, scrape the coating with No. 50 wire rod, bake at 95°C, and bake for 3 minutes to form a uniform UV viscosity-reducing adhesive. layer, and then cover the surface of the viscosity-reducing adhesive layer with 25 ⁇ m release PET to obtain a heat-resistant UV viscosity-reducing protective film.
  • PET primer Use corona PET, the substrate thickness is 50 ⁇ m, the primer is 50 parts of polycarbonate-modified aliphatic water-based polyurethane resin emulsion, 3 parts of carbon ethylamine cross-linking agent, and 10 parts of deionized water. Stir at 1000r/min, stir evenly and then vacuum defoaming. Scrape coating to the corona surface of the PET substrate, heating temperature is 90°C, drying time is 5 minutes, and drying to form a uniform coating with a thickness of 2 ⁇ m;
  • Coating viscosity-reducing adhesive process On the corona substrate coated with a primer, apply heat-resistant UV viscosity-reducing adhesive No. 50 wire rod scraping on the primer surface. The baking temperature is 95°C. The time is It takes 3 minutes to form a uniform UV tack-reducing adhesive layer, and then apply 25 ⁇ m release PET on the surface of the tack-reducing adhesive layer to obtain a heat-resistant UV tack-reducing protective film.
  • the test data of the above examples and comparative examples show that coating a primer on the surface of the substrate serves as an intermediate connecting layer between the substrate and the UV adhesive layer to modify the interface between the substrate and the UV adhesive layer.
  • the adhesive layer has strong bonding force and is not affected by high temperatures, which can solve the problem of UV adhesive debonding from the substrate during high-temperature baking.
  • mercury lamp initiating conditions are prone to produce ozone and high ambient temperatures, which will affect the performance and life of the catalytic layer and membrane electrodes.
  • the initiator should be fixed Initiators with low waveband and low energy initiating conditions; the raw material composition of the UV viscosity reducing glue in the above embodiment does not contain functional groups and ions that affect the electrochemical performance of the catalytic layer to avoid catalyst poisoning or activity reduction; use low polyfunctionality initiators Polymer or monomer and composite cross-linking system, the macromolecules in the cross-linking agent are cross-linked and solidified during the drying process, preventing the raw material components from jumping to the surface during the cross-linking process; the specific raw material composition ratio reduces the surface viscosity after UV , no adhesion will occur in hot-pressed contact with the surface of the catalytic layer that is easy to fall off; the glass transition temperature of UV viscosity-reducing glue after curing is greater than 130°C, ensuring the non-adhesive effect with PEM during hot-pressing, and solving the problem during the hot-pressing process.
  • the adhesion problem the main structure of the UV adhesive system has low hydroxyl groups and low
  • This embodiment provides a transfer film tape S100, which includes a transfer film tape body 50, and a heat-resistant UV tack-reducing adhesive layer 30 coated on one side of the transfer film tape body 50.
  • the heat-resistant UV viscosity-reducing adhesive layer The layer 30 is formed of the heat-resistant UV tack-reducing glue as described in any of the above embodiments (refer to Figure 2).
  • a primer layer as described in Embodiment 1 can also be provided between the transfer film strip body 50 and the heat-resistant UV tack-reducing adhesive layer 30 .
  • This embodiment provides a transfer film composite tape (refer to Figure 3) for preparing a five-in-one component or a seven-in-one component, which includes a transfer film tape body 50 and a frame adhered to one side of the transfer film tape body.
  • the frame material tape 60 is pasted on the transfer film tape body 50 through the heat-resistant UV viscosity-reducing adhesive layer 30 formed of the heat-resistant UV viscosity-reducing adhesive as described in any of the above embodiments.
  • This embodiment provides a five-in-one material tape S101 (refer to Figure 4), which can be used to prepare a seven-in-one component.
  • the five-in-one material tape includes a first frame material tape 502, a second frame material tape 602, and is clamped on CCM 700 between the first frame strip and the second frame strip, the first transfer film strip body 501 pasted on the side of the first frame strip away from the CCM 700, and the second frame strip 602 pasted away from the CCM
  • the second transfer film tape body 601 on the 700 side, the first transfer film tape body 501 and the second transfer film tape body 601 are formed by the heat-resistant UV tack-reducing glue as described in any of the above embodiments.
  • the heat-resistant UV adhesive layer 30 is respectively pasted on the first frame tape 502 and the second frame tape 602 .
  • a layer as described in Embodiment 1 can also be provided between the first transfer film tape body and/or the second transfer film tape body and the heat-resistant UV viscosity-reducing layer. Basecoat.
  • This embodiment provides a seven-in-one material tape S102 (refer to Figure 5), which can be used to prepare fuel cells.
  • the seven-in-one material tape includes a first frame material tape 502, a second frame material tape 602, and is clamped on the third frame material tape S102.
  • the second transfer film material belt body 601 is away from the second frame material 602 and away from the CCM 700 side.
  • the first diffusion layer sheet 801 and the second diffusion layer sheet 802 are respectively pasted on the first transfer film through the heat-resistant UV tack-reducing adhesive layer 30 formed by the heat-resistant UV tack-reducing adhesive as described in any of the above embodiments.
  • the seven-in-one tape of this embodiment can be prepared by using the five-in-one tape of Example 6.
  • the five-in-one tape is subjected to UV viscosity reduction, the transfer film tape body on one side is peeled off, and then the diffusion layer is attached sheet material (GDL) to obtain a six-in-one material belt, in which the diffusion layer sheet material is transported through the transfer film material belt body, and the diffusion layer sheet material and the transfer film material belt body are water-glued through the heat-resistant UV tack-reducing glue in the above embodiment.
  • peel off the transfer film tape body on the other side and then attach the diffusion layer sheet material to get a seven-in-one tape.
  • the relevant process preparation steps are well-known technologies in the art and will not be described in detail here.
  • the creativity of the embodiments of the present disclosure lies in using the heat-resistant UV viscosity-reducing glue of the above embodiments for bonding to prepare corresponding battery raw material components.
  • the five-in-one material of the embodiments of the present disclosure is used.
  • the tape or 7-in-1 tape will not cause CCM and PEM damage when the film tape body is transferred through UV viscosity reduction peeling, which greatly improves the qualification rate of downstream products such as 5-in-1 components, 7-in-1 components, etc., thus raw materials
  • the prepared battery has better performance and higher yield rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

耐热型UV减粘胶水及其在制备燃料电池中的应用,涉及燃料电池技术领域。本公开公开的耐热型UV减粘胶水的原料包括羟基丙烯酸酯低聚物、聚丙烯酸酯类压敏胶粘剂、交联剂、以及光引发剂等。

Description

耐热型UV减粘胶水及其在制备燃料电池中的应用
本公开要求于2022年08月08日提交中国专利局,申请号为202210941779.1,申请名称为“耐热型UV减粘胶水及其在制备燃料电池中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种耐热型UV减粘胶水及其在制备燃料电池中的应用。
背景技术
燃料电池的核心部件为MEA(Membrane Electrode Assembly)膜电极,也称之为七合一组件。七合一组件包括CCM(catalyst coated membrane,催化层/质子交换膜组件)、附着于CCM两侧的边框及气体扩散层。一般先在CCM的两侧贴合边框得到五合一组件,再在五合一组件的两侧贴合气体扩散层,即可得到七合一组件。CCM层包括PEM膜(即质子交换膜)以及PEM膜相对两侧的催化层。
发明内容
随着“双碳”目标牵引、国家政策支持、技术日趋成熟,对燃料电池产能要求越来越高,现有采用不同的设备分别对CCM进行分条 以及对边框进行冲切,再进行贴合的工艺渐渐无法满足工艺及产能迭代需求。
例如,CN112582654A公开了一种膜电极的制造方法,其制备工艺中采用的胶接剂将边框粘贴于托底膜层(转移膜料带)上以输送边框,后再分离托底膜层。
但本公开的发明人发现,使用上述工艺或类似工艺制备相关中间品时,在分离转移膜料带时,会不同程度地导致CCM的破损。
鉴于此,特提出本公开,提供一种耐热型UV减粘胶水及其在制备燃料电池中的应用,以克服上述问题。
本公开是这样实现的:
第一方面,本公开提供一种耐热型UV减粘胶水,其原料按质量百分比计,其包括如下组分:
基于燃料电池的应用场景要求,汞灯引发条件易产生臭氧、高环境温度进而影响催化层以及膜电极的性能和寿命;本公开提供的耐热型UV减粘胶水原料中,所用引发剂为具有固定波段、能量低的引发条件的引发剂,不含影响催化层电化学性能的官能团、离子,避免了催化剂中毒或活性降低;采用羟基丙烯酸酯低聚物和复合交联体系,交联剂中大分子在烘干过程中发生交联固化,避免原料组分在交联过程中向表面跃迁;原料采用特定组成比例,降低UV后的表面粘性,使得与极易脱落的催化层表面热压接触也不发生粘连;该耐热型UV减粘胶水UV固化后的玻璃化温度大于130℃,保证与PEM的热压 不粘连的效果,有效解决了现有热压工艺过程中的粘连问题;本公开提供的耐热型UV减粘胶水的胶系主体结构中羟基低,避免因结构中的羟基与PEM中磺酸基团发生反应而产生的粘连。
使用本公开提供的耐热型UV减粘胶水应用于燃料电池的制备工艺中,可以减少CCM的破损,提高产品合格率。
可选地,在一些实施方案中,其原料按质量百分比计,其包括如下组分:羟基丙烯酸酯低聚物、聚丙烯酸酯类压敏胶粘剂、第一交联剂、光引发剂以及溶剂。
可选地,在一些实施方案中,所述羟基丙烯酸酯低聚物、其单体或二者的组合在所述原料中的质量百分比为:20%-30%。
可选地,在一些实施方案中,所述羟基丙烯酸酯低聚物的羟值≤20mg KOH/g。
羟值通过GB/T 12008.3 1989测定。
可选地,在一些实施方案中,所述羟基丙烯酸酯低聚物为聚丙烯酸羟乙酯。
可选地,在一些实施方案中,所述聚丙烯酸酯类压敏胶粘剂为脂肪族聚氨酯丙烯酸酯、聚环氧甲基丙烯酸酯类、或二者的组合。
可选地,在一些实施方案中,所述聚丙烯酸酯类压敏胶粘剂的Mw为1万-50万、固含量为25%-50%之间、以及黏度为100cps-2000cps。
Mw通过粘度法或凝胶渗透色谱法测试,固含量通过水分干燥仪器测试,黏度通过粘度计测试得到。
可选地,在一些实施方案中,所述聚丙烯酸酯类压敏胶粘剂在所述原料中的含量为32%-40%。
可选地,在一些实施方案中,所述第一交联剂选自异氰酸酯类交联剂、胺类交联剂、和氮丙啶类交联剂中的一种或几种的组合。
可选地,在一些实施方案中,所述光引发剂选自1-羟基环己基苯基甲酮(184)、2,4,6-(三甲基苯甲酰基)-二苯基氧化膦(TPO)、2-羟基-甲基苯基丙烷-1-酮(1173)、苯基双(2,4,6-三甲基苯甲酰基)氧膦(819)、二苯氧基二苯甲酮、1,2-辛二酮,1-[4-(苯硫基)苯基]-,2-(O-苯甲酰肟)(Irgacure OXE01)、和二苯甲酮(BP)中的一种或几种的组合。
可选地,在一些实施方案中,所述溶剂选自乙酸乙酯、乙酸丁酯、甲醇、乙醇、丙醇、异丙醇、异丁醇、正丁醇、甲基异丁酮、丙酮、丁酮、环己酮、丙二醇甲醚、二丙二醇甲醚中的一种或几种的组合。
第二方面,本公开提供一种如上任一项所述的耐热型UV减粘胶水的制备方法,其包括将所述原料中的各组分混合进行反应,以制备得到的所述耐热型UV减粘胶水。
可选地,在一些实施方案中,所述反应在避光条件下进行。
第三方面,本公开提供如上任一项所述的耐热型UV减粘胶水在燃料电池行业中制备五合一组件或七合一组件中的应用。
第四方面,本公开提供一种转移膜料带,其包括转移膜料带本体,以及涂覆在所述转移膜料带本体一侧的耐热UV减粘胶层,所述耐热UV减粘胶层由权利要求1-7任一项所述的耐热型UV减粘胶水形成。
可选地,在一些实施方案中,所述耐热UV减粘胶层与所述转移膜料带本体之间设置有底涂层。
可选地,在一些实施方案中,所述底涂层由包括底涂剂、第二交联剂和水的组合物形成。
可选地,在一些实施方案中,所述底涂剂为水性聚氨酯丙烯酸酯。
可选地,在一些实施方案中,所述第二交联剂为碳乙胺交联剂。
第五方面,本公开一种用于制备五合一组件或七合一组件的转移膜复合料带,其包括转移膜料带本体和粘贴于所述转移膜料带本体一 侧的边框料带,所述边框料带通过如上任一项所述的耐热型UV减粘胶水粘贴于所述转移膜料带本体。
可选地,在一些实施方案中,在耐热型UV减粘胶水形成的UV减粘胶层与转移膜料带本体之间设置有底涂层。
底涂层作为转移膜料带本体与UV减粘胶层的中间连接层,可对转移膜料带本体的界面进行改性,底涂层与减粘胶层的结合力均较强,不受高温影响,可解决UV减粘胶在高温烘烤过程中与转移膜料带本体界面脱胶的问题。
可选地,在一些实施方案中,所述底涂层由包括底涂剂、第二交联剂和水的组合物形成。
可选地,在一些实施方案中,所述底涂剂为水性聚氨酯丙烯酸酯。
可选地,在一些实施方案中,所述水性聚氨酯丙烯酸酯的重均分子量为3000,数均分子量为18000,Tg为50℃,酸值为6mg KOH/g;
重均分子量通过粘度法或凝胶渗透色谱法测试,数均分子量通过端基分析法或渗透压法测试,Tg通过DSC、DMA、TMA测试方法测得。酸值按GB/T264-1983测定。
可选地,在一些实施方案中,所述第二交联剂为碳乙胺交联剂。
转移膜复合料带作为制备初始原料,通过与CCM和边框的压合在分离去除转移膜料带本体后,可得五合一组件,若再与扩散层压合,即得到七合一组件。
第六方面,本公开提供一种用于制备七合一组件的五合一料带,其包括第一边框料带、第二边框料带、夹持于所述第一边框料带和所述第二边框料带之间的CCM、粘贴于所述第一边框料带远离CCM一侧的第一转移膜料带本体、以及粘贴于所述第二边框料带远离CCM一侧的第二转移膜料带本体,所述第一转移膜料带本体和所述 第二转移膜料带本体通过如上任一项所述的耐热型UV减粘胶水分别粘贴于所述第一边框料带和所述第二边框料带。
第七方面,本公开提供用于制备的七合一料带的六合一料带,其包括第一边框料带、第二边框料带、夹持于所述第一边框料带和所述第二边框料带之间的CCM,粘贴于所述第一边框料带远离CCM一侧的第一转移膜料带本体,位于所述第二边框料带远离CCM一侧的扩散层片料,以及粘贴于所述扩散层片料远离所述第二边框料带一侧的第二转移膜料带本体,所述第一转移膜料带本体通过如上所述的耐热型UV减粘胶水与所述第一边框料粘合;所述第二转移膜料带本体通过如上所述的耐热型UV减粘胶水与所述扩散层片料粘合。
第八方面,本公开提供一种用于制备燃料电池的七合一料带,其包括第一边框料带、第二边框料带、夹持于所述第一边框料带和所述第二边框料带之间的CCM,位于所述第一边框料带远离CCM一侧的第一扩散层片料,粘贴于所述第一扩散层片料远离所述第一边框料带一侧的第一转移膜料带本体,位于所述第二边框料带远离CCM一侧的第二扩散层片料,以及粘贴于所述第二扩散层片料远离所述第二边框料带一侧的第二转移膜料带本体,所述第一转移膜料带本体和所述第二转移膜料带本体通过如上任一项所述的耐热型UV减粘胶水分别粘贴于所述第一扩散层片料和所述第二扩散层片料。
第九方面,本公开提供一种制备燃料电池的方法,其包括:使用如上任一项所述的耐热型UV减粘胶水、如上所述的转移膜料带、如上所述的转移膜复合料带、如上所述的五合一料带、如上所述的六合一料带、或如上所述的七合一料带作为原材料以制备所述燃料电池。
第十方面,本公开提供一种燃料电池,其由如上所述的方法制备而成。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1中的耐热型UV减粘保护膜的结构示意图。
图2为实施例4中的转移膜料带的结构示意图。
图3为实施例5中的转移膜复合料带的结构示意图。
图4为实施例6的五合一料带的结构示意图。
图5为实施例7的七合一料带的结构示意图。
附图标记:10-基材,20-底涂层,30-耐热UV减粘胶层,40-离型膜,50-转移膜料带本体,60-边框料带,501-第一转移膜料带本体,502-第一边框料带,601-第二转移膜料带本体,602-第二边框料带,700-CCM,801-第一扩散层片料,802-第二扩散层片料,S100-转移膜料带,S101-五合一料带,S102-七合一料带。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本申请实施例的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品 使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在此使用的术语仅用于描述各种示例,并非用于限制本公开。除非上下文另外清楚地指明,否则单数的形式也意图包括复数的形式。术语“包括”、“包含”和“具有”列举存在的所陈述的特征、数量、操作、构件、元件和/或它们的组合,但不排除存在或添加一个或更多个其他特征、数量、操作、构件、元件和/或它们的组合。
这里所描述的示例的特征可按照在理解本申请的公开内容之后将是显而易见的各种方式进行组合。此外,尽管这里所描述的示例具有各种各样的构造,但是如在理解本申请的公开内容之后将显而易见的,其他构造是可能。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1
涂PET底涂层:选用电晕PET,基材厚度50μm,底涂剂包括聚碳酸酯改性的脂肪族水性聚氨酯树脂乳液50份,碳乙胺交联剂3份,去离子水10份;1000r/min转速搅拌,搅拌均匀后真空脱泡。刮涂至PET基材的电晕面,加热温度为90℃,烘干时间5min,烘干形成厚度为2μm的均匀涂层,为底涂层;
配置耐热型UV减粘胶水:按照质量分数计,称取聚丙烯酸羟乙酯25份(羟值10-16mgKOH/g,脂肪族聚氨酯丙烯酸酯压敏胶35份(Mw为6万,固含量为40%,黏度为800cps),TPO 2份,184 1份,异氰酸酯1份,溶剂36份(异丙醇:水=7:3,质量比),混合均匀后加入遮光反应釜中,水浴搅拌反应60min,真空脱泡后制备得到待涂布的耐热型UV减粘胶水。
表1耐热型UV减粘胶水原料配比
涂布减粘胶工艺:在涂布有底涂层的电晕基材上,在底涂层表面在涂耐热型UV减粘胶水,加热温度为95℃,烘干时间5min,形成厚度均匀的耐热型UV减粘胶胶层。再在表面贴附25μm的离型PET,即可得到耐热型UV减粘膜。
本实施例耐热型UV减粘膜结构如1所示,其包括基材10(在其他实施例中,基材可以是转移膜料带本体等)、涂覆于所述基材10表面的底涂层20、涂覆在所述底涂层20上的耐热UV减粘胶层30和离型膜40。
需要说明的是,在其他实施例的应用中,基材10并不限于电晕PET,本领域技术人员可以根据需要选择任意感兴趣的材质作为基材。
实施例2
本实施例的耐热型UV减粘膜与实施例1基本相同,不同的是原料配比,本实施例所用原料配比如下:
表2耐热型UV减粘胶水原料配比
实施例3
本实施例的耐热型UV减粘膜与实施例1基本相同,不同的是原料配比,本实施例所用原料配比如下:
表3耐热型UV减粘胶水原料配比
对比例1
配制耐热型UV减粘胶水:在500mL遮光杯中投入28g 1,6己二醇二丙烯酸酯、8g三羟甲基丙烷三丙烯酸酯、120g热塑性丙烯酸树脂和118g乙酸乙酯,用分散机搅拌均匀,然后再按次序边搅拌边添加1.9g光引发剂184和8.5g N75(20%浓度的乙酸乙酯稀释液)及0.32g GA-240(5%浓度的乙酸乙酯稀释液),添加完后以500rpm的转速搅拌30min后,静置30min以上自然消泡,即可得到耐热型UV减粘胶组合物;
涂布减粘胶工艺:在电晕基材上涂布耐热型UV减粘胶,50号线棒刮涂,烘烤温度为95℃,烘烤时间为3min,形成均匀的UV减粘胶层,然后再在减粘胶层表面贴覆25μm的离型PET,即可得到耐热型UV减粘保护膜。
对比例2
涂PET底涂层:选用电晕PET,基材厚度50μm,底涂剂为聚碳酸酯改性的脂肪族水性聚氨酯树脂乳液50份,碳乙胺交联剂3份,去离子水10份,1000r/min转速搅拌,搅拌均匀后真空脱泡。刮涂至PET基材的电晕面,加热温度为90℃,烘干时间5min,烘干形成厚度为2μm的均匀涂层;
配制耐热型UV减粘胶水:在500mL遮光杯中投入30g脂肪族丙烯酸酯齐聚物、120g热塑性丙烯酸树脂和118g乙酸乙酯,用分散机搅拌均匀,然后再按次序边搅拌边添加1.9g光引发剂184和8.5g N75(20%浓度的乙酸乙酯稀释液),添加完后以500rpm的转速搅拌30min后,静置30min以上自然消泡,即可得到耐热型UV减粘胶水;
涂布减粘胶工艺:在涂布有底涂层的电晕基材上,在底涂面涂布耐热型UV减粘胶50号线棒刮涂,烘烤温度为95℃,烘烤时间为 3min,形成均匀的UV减粘胶层,然后再在减粘胶层表面贴覆25μm的离型PET,即可得到耐热型UV减粘保护膜。
实验例
测试实施例1-3,以及对比例1-2的耐热型UV减粘保护膜的性能,耐热型UV减粘保护膜与CCM粘贴测试方法:365nm波段LED灯照射30s减粘后,与CCM在120℃,2Mpa条件下,热压2min;结果见下表:
表4测试结果

可以看出对比例1和2的耐热型UV减粘保护膜UV后剥离后会导致CCM和PEM导致损坏;而使用实施例1-3的耐热型UV减粘保护膜UV后剥离后对CCM和PEM无损伤。
以上实施例和对比例的测试数据表明,在基材表面涂布底涂层,使之作为基材与UV减粘胶层的中间连接层,对基层的界面进行改性,底涂层与减粘胶层的结合力均较强,不受高温影响,可解决UV减粘胶在高温烘烤过程中与基材脱胶的问题。此外,从UV减粘胶水的原料组成来看,由于燃料电池的应用场景要求,汞灯引发条件易产生臭氧、高环境温度进而影响催化层以及膜电极的性能和寿命,引发剂应选择固定波段、能量低的引发条件的引发剂;上述实施例中的UV减粘胶水的原料组成中不含影响催化层电化学性能的官能团、离子,避免催化剂中毒或活性降低;采用多官能度低聚物或单体和复合交联体系,交联剂中大分子在烘干过程中发生交联固化,避免原料组分在交联过程中向表面跃迁;特定原料组成比例降低UV后的表面粘性,与极易脱落的催化层表面热压接触也不发生粘连;UV减粘胶水固化后的玻璃化温度大于130℃,保证与PEM的热压不粘连的效果,解决了热压工艺过程中的粘连问题;减粘胶UV的胶系主体结构中羟基低、羟值低,避免因结构中的羟基与PEM中磺酸基团发生反应而产生的粘连。
实施例4
本实施例提供一种转移膜料带S100,其包括转移膜料带本体50,以及涂覆在转移膜料带本体50一侧的耐热UV减粘胶层30,该耐热UV减粘胶层30由如上任一项实施例所述的耐热型UV减粘胶水形成(参考图2)。
需要说明的是,在其他的一些实施例中,转移膜料带本体50与耐热UV减粘胶层30之间还可以设置如实施例1所述的底涂层。
实施例5
本实施例提供一种用于制备五合一组件或七合一组件的转移膜复合料带(参考图3),其包括转移膜料带本体50和粘贴于转移膜料带本体一侧的边框料带60,该边框料带60通过如上任一项实施例所述耐热型UV减粘胶水形成的耐热UV减粘胶层30粘贴于转移膜料带本体50上。
实施例6
本实施例提供一种五合一料带S101(参考图4),可用于制备七合一组件,该五合一料带包括第一边框料带502、第二边框料带602、夹持于第一边框料带和第二边框料带之间的CCM 700,粘贴于第一边框料带远离CCM 700一侧的第一转移膜料带本体501,以及粘贴于第二边框料带602远离CCM 700一侧的第二转移膜料带本体601,第一转移膜料带本体501和第二转移膜料带本体601通过如上任一项实施例所述的耐热型UV减粘胶水形成的耐热UV减粘胶层30分别粘贴于第一边框料带502和第二边框料带602。
需要说明的是,在其他的一些实施例中,第一转移膜料带本体和、或第二转移膜料带本体与耐热UV减粘胶层之间还可以设置如实施例1所述的底涂层。
实施例7
本实施例提供一种七合一料带S102(参考图5),可用于制备燃料电池,该七合一料带包括第一边框料带502、第二边框料带602、夹持于该第一边框料带502和该第二边框料带602之间的CCM 700,位于该第一边框料带502远离CCM 700一侧的第一扩散层片料801,粘贴于该第一扩散层片料801远离该第一边框料带502一侧的第一转移膜料带本体501,位于该第二边框料带602外侧的第二扩散层片料802,以及粘贴于该第二扩散层片料802远离该第二边框料602带远离CCM 700一侧的第二转移膜料带本体601。第一扩散层片料801和第二扩散层片料802通过如上任一项实施例所述的耐热型UV减粘胶水形成的耐热UV减粘胶层30分别粘贴于第一转移膜料带本体501和第二转移膜料带本体601。
本实施例的七合一料带可以通过实施例6的五合一料带制备,通过对五合一料带进行UV减粘,剥离其中一侧的转移膜料带本体,然后贴合扩散层片料(GDL),得到六合一料带,其中,扩散层片料通过转移膜料带本体传送,扩散层片料与转移膜料带本体通过如上实施例的耐热型UV减粘胶水粘合传送;接着再剥离另一侧的转移膜料带本体,再贴合扩散层片料,即可得到七合一料带。需要说明的是,相关的工艺制备步骤属于本领域的公知技术,本文不详细描述。
本公开实施例相对于现有技术的创造性在于使用上述实施例的耐热型UV减粘胶水进行粘合制备相应的电池原料组件,相对于现有技术,使用本公开实施例五合一料带或七合一料带通过UV减粘剥离转移膜料带本体时不会导致CCM和PEM损伤,大大地提高了下游产品如五合一组件、七合一组件等的合格率,由此原料制备的电池性能更好,良品率更高。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种耐热型UV减粘胶水,其原料按质量百分比计,其包括如下组分:
  2. 根据权利要求1所述的耐热型UV减粘胶水,其中,其原料按质量百分比计,其包括如下组分:羟基丙烯酸酯低聚物、耐高温聚丙烯酸酯压敏胶粘剂、第一交联剂、光引发剂以及溶剂;
    优选地,所述羟基丙烯酸酯低聚物、其单体或二者的组合在所述原料中的质量百分比为:20%-30%。
  3. 根据权利要求1或2所述的耐热型UV减粘胶水,其中,所述羟基丙烯酸酯低聚物的羟值≤20mgKOH/g;
    优选地,所述羟基丙烯酸酯低聚物为聚丙烯酸羟乙酯。
  4. 根据权利要求1-3任一项所述的耐热型UV减粘胶水,其中,所述聚丙烯酸酯类压敏胶粘剂为脂肪族聚氨酯丙烯酸酯、聚环氧甲基丙烯酸酯类、或二者的组合;
    优选地,所述聚丙烯酸酯类压敏胶粘剂在所述原料中的含量为32%-40%。
  5. 根据权利要求1-4任一项所述的耐热型UV减粘胶水,其中,所述第一交联剂选自异氰酸酯类交联剂、胺类交联剂、和氮丙啶类交联剂中的一种或几种的组合。
  6. 根据权利要求1-5任一项所述的耐热型UV减粘胶水,其中,所述光引发剂选自1-羟基环己基苯基甲酮、2,4,6-(三甲基苯甲酰基)-二苯基氧化膦、2-羟基-甲基苯基丙烷-1-酮、苯基双(2,4,6-三甲基苯甲酰基)氧膦、二苯氧基二苯甲酮、1,2-辛二酮,1-[4-(苯硫基)苯基]-,2-(O-苯甲酰肟)、和二苯甲酮中的一种或几种的组合。
  7. 根据权利要求1-6任一项所述的耐热型UV减粘胶水,其中,所述溶剂选自乙酸乙酯、乙酸丁酯、甲醇、乙醇、丙醇、异丙醇、异丁醇、正丁醇、甲基异丁酮、丙酮、丁酮、环己酮、丙二醇甲醚、二丙二醇甲醚中的一种或几种的组合。
  8. 一种如权利要求1-7任一项所述的耐热型UV减粘胶水的制备方法,其包括将所述原料中的各组分混合进行反应,以制备得到的所述耐热型UV减粘胶水。
  9. 根据权利要求8所述的制备方法,其中,所述反应在避光条件下进行。
  10. 如权利要求1-7任一项所述的耐热型UV减粘胶水在燃料电池行业中制备五合一组件或七合一组件中的应用。
  11. 一种转移膜料带,其包括转移膜料带本体,以及涂覆在所述转移膜料带本体一侧的耐热UV减粘胶层,所述耐热UV减粘胶层由权利要求1-7任一项所述的耐热型UV减粘胶水形成。
  12. 根据权利要求11所述的转移膜料带,其中,所述耐热UV减粘胶层与所述转移膜料带本体之间设置有底涂层;
    优选地,所述底涂层由包括底涂剂、第二交联剂和水的组合物形成;
    优选地,所述底涂剂为水性聚氨酯丙烯酸酯;
    优选地,所述第二交联剂为碳乙胺交联剂。
  13. 一种用于制备五合一组件或七合一组件的转移膜复合料带,其包括转移膜料带本体和粘贴于所述转移膜料带本体一侧的边框料带,所述边框料带通过权利要求1-7任一项所述的耐热型UV减粘胶水粘贴于所述转移膜料带本体。
  14. 一种用于制备七合一组件的五合一料带,其包括第一边框料带、第二边框料带、夹持于所述第一边框料带和所述第二边框料带之间的CCM,粘贴于所述第一边框料带远离CCM一侧的第一转移膜料带本体,以及粘贴于所述第二边框料带远离CCM一侧的第二转移膜料带本体,所述第一转移膜料带本体和所述第二转移膜料带本体通过如权利要求1-7任一项所述的耐热型UV减粘胶水分别粘贴于所述第一边框料带和所述第二边框料带。
  15. 一种用于制备的七合一料带的六合一料带,其包括第一边框料带、第二边框料带、夹持于所述第一边框料带和所述第二边框料带之间的CCM,粘贴于所述第一边框料带远离CCM一侧的第一转移膜料带本体,位于所述第二边框料带远离CCM一侧的扩散层片料,以及粘贴于所述扩散层片料远离所述第二边框料带一侧的第二转移膜料带本体,所述第一转移膜料带本体通过如权利要求1-7任一项所述的耐热型UV减粘胶水与所述第一边框料带粘合;所述第二转移膜料带本体通过如权利要求1-7任一项所述的耐热型UV减粘胶水与所述扩散层片料粘合。
  16. 一种用于制备燃料电池的七合一料带,其包括第一边框料带、第二边框料带、夹持于所述第一边框料带和所述第二边框料带之间的CCM、位于所述第一边框料带远离CCM一侧的第一扩散层片料、粘贴于所述第一扩散层片料远离所述第一边框料带一侧的第一转移膜料带本体、位于所述第二边框料带远离CCM一侧的第二扩散层片料、 以及粘贴于所述第二扩散层片料远离所述第二边框料带一侧的第二转移膜料带本体,所述第一转移膜料带本体和
    所述第二转移膜料带本体通过如权利要求1-7任一项所述的耐热型UV减粘胶水分别粘贴于所述第一扩散层片料和所述第二扩散层片料。
  17. 一种制备燃料电池的方法,其包括:使用如权利要求1-7任一项所述的耐热型UV减粘胶水、如权利要求11或12所述的转移膜料带、如权利要求13所述的转移膜复合料带、如权利要求14所述的五合一料带、如权利要求15所述的六合一料带、或如权利要求16所述的七合一料带作为原材料以制备所述燃料电池。
  18. 一种燃料电池,其由权利要求17所述的方法制备而成。
PCT/CN2023/109698 2022-08-08 2023-07-27 耐热型uv减粘胶水及其在制备燃料电池中的应用 WO2024032382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210941779.1A CN115305043A (zh) 2022-08-08 2022-08-08 耐热型uv减粘胶水及其在制备燃料电池中的应用
CN202210941779.1 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024032382A1 true WO2024032382A1 (zh) 2024-02-15

Family

ID=83860542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109698 WO2024032382A1 (zh) 2022-08-08 2023-07-27 耐热型uv减粘胶水及其在制备燃料电池中的应用

Country Status (2)

Country Link
CN (1) CN115305043A (zh)
WO (1) WO2024032382A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305043A (zh) * 2022-08-08 2022-11-08 江苏氢导智能装备有限公司 耐热型uv减粘胶水及其在制备燃料电池中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778806A (zh) * 2016-03-18 2016-07-20 张家港康得新光电材料有限公司 耐热型uv减粘胶组合物及uv减粘保护膜
CN109266236A (zh) * 2018-09-18 2019-01-25 烟台德邦科技有限公司 一种高温减粘胶带及其制备方法
CN110256983A (zh) * 2019-06-21 2019-09-20 广东硕成科技有限公司 一种uv减粘保护膜及其制备方法
CN113897168A (zh) * 2021-10-26 2022-01-07 湖北大学 一种uv减粘胶液、单面uv减粘保护膜及制备方法
WO2022127159A1 (zh) * 2020-12-14 2022-06-23 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN115305043A (zh) * 2022-08-08 2022-11-08 江苏氢导智能装备有限公司 耐热型uv减粘胶水及其在制备燃料电池中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953050B (zh) * 2017-02-13 2019-08-06 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法
CN106995665B (zh) * 2017-04-11 2021-01-29 新纶科技(常州)有限公司 一种耐热型uv减粘膜及其制备方法
CN110408351A (zh) * 2019-06-28 2019-11-05 昆山博益鑫成高分子材料有限公司 一种耐高温的uv减粘胶黏剂及保护膜制备方法
CN110330919A (zh) * 2019-07-03 2019-10-15 昆山博益鑫成高分子材料有限公司 一种uv减粘胶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778806A (zh) * 2016-03-18 2016-07-20 张家港康得新光电材料有限公司 耐热型uv减粘胶组合物及uv减粘保护膜
CN109266236A (zh) * 2018-09-18 2019-01-25 烟台德邦科技有限公司 一种高温减粘胶带及其制备方法
CN110256983A (zh) * 2019-06-21 2019-09-20 广东硕成科技有限公司 一种uv减粘保护膜及其制备方法
WO2022127159A1 (zh) * 2020-12-14 2022-06-23 中国科学院大连化学物理研究所 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN113897168A (zh) * 2021-10-26 2022-01-07 湖北大学 一种uv减粘胶液、单面uv减粘保护膜及制备方法
CN115305043A (zh) * 2022-08-08 2022-11-08 江苏氢导智能装备有限公司 耐热型uv减粘胶水及其在制备燃料电池中的应用

Also Published As

Publication number Publication date
CN115305043A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2024032382A1 (zh) 耐热型uv减粘胶水及其在制备燃料电池中的应用
WO2017133121A1 (zh) 应用于聚氯乙烯绝缘胶带的紫外光交联热熔压敏胶黏剂
CN106634789A (zh) 紫外光固化型粘接剂及其制备方法
CN113122161B (zh) 一种锂离子电池用复合热熔双面胶带及其制备方法
CN115322740B (zh) 一种紫外光固化压敏胶粘剂及其制备方法
CN109868084A (zh) 一种uv聚合型poss改性丙烯酸酯压敏胶及制备方法
CN115172754A (zh) 水性粘结剂及制备方法、隔膜及锂离子电池
WO2020088418A1 (zh) 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
CN116525871B (zh) 一种丙烯酸酯型热熔边框膜及其制作方法
CN114015056B (zh) 一种耐电压耐电解液共聚物、极耳胶黏剂及极耳胶带
TWI575041B (zh) 接著劑、疊層體及前述二者之製造方法
WO2020133328A1 (zh) 一种锂电池铝塑膜复合用黑色胶黏剂及其制备方法
CN116285760B (zh) 一种触摸屏双面光学胶带及其制备方法
CN110117469B (zh) 保护膜在制备燃料电池膜电极的应用及燃料电池膜电极
CN111073558A (zh) 一种高抗剪切的丙烯酸酯压敏胶、压敏胶带及其制备方法
CN114106709B (zh) 一种防爆膜用光学胶粘剂及其制备方法
CN114058319B (zh) 一种锂电池铝塑膜用胶黏剂及其制备方法
CN115353819A (zh) 一种橡胶型锂电池用压敏胶胶带
CN108102571A (zh) 一种太阳能双玻光伏组件层压封边减粘胶带及其制备方法
CN114561164A (zh) 一种可后固化的光学透明胶带及其制备方法
CN112194988B (zh) 户外广告车身贴的制备方法
CN115340834B (zh) 一种防爆膜及其制备方法
CN115651554B (zh) 一种胶层可溶解的电池隔膜胶带及其制备方法
CN117343671A (zh) 动力电池用保护蓝膜压敏胶及其制备方法和应用
CN112194987B (zh) 易剥离户外广告车身贴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851603

Country of ref document: EP

Kind code of ref document: A1