WO2020088418A1 - 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件 - Google Patents

有机阻隔膜、有机阻隔膜的制备方法以及量子点器件 Download PDF

Info

Publication number
WO2020088418A1
WO2020088418A1 PCT/CN2019/113738 CN2019113738W WO2020088418A1 WO 2020088418 A1 WO2020088418 A1 WO 2020088418A1 CN 2019113738 W CN2019113738 W CN 2019113738W WO 2020088418 A1 WO2020088418 A1 WO 2020088418A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier film
organic barrier
quantum dot
adhesive layer
Prior art date
Application number
PCT/CN2019/113738
Other languages
English (en)
French (fr)
Inventor
王海琳
胡奇乐
康永印
叶佳敏
Original Assignee
纳晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳晶科技股份有限公司 filed Critical 纳晶科技股份有限公司
Priority to US17/285,920 priority Critical patent/US20210347957A1/en
Publication of WO2020088418A1 publication Critical patent/WO2020088418A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • C08G18/833Chemically modified polymers by nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/054Forming anti-misting or drip-proofing coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/064Copolymers with monomers not covered by C09J133/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2502/00Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2505/00Polyamides
    • B05D2505/50Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • B05D2506/15Polytetrafluoroethylene [PTFE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to the field of quantum dot materials, in particular to an organic barrier film, a method for preparing the organic barrier film, and a quantum dot device.
  • quantum dot synthesis technology has been relatively mature, and the efficiency and stability of quantum dots have reached the level of industrialization, but the unique surface effects of quantum dots also determine their sensitivity to water vapor and oxygen, which will destroy quantum dots. Surface ligands reduce the efficiency of quantum dots. Therefore, quantum dots can only exert their high luminous efficiency and stability under the conditions of water and oxygen barrier.
  • the mainstream use methods of quantum dots include quantum dot tubes and quantum dot films. Quantum dot tubes encapsulate quantum dot materials in glass tubes, and quantum dot films use a barrier film to wrap the quantum dot materials in the middle to form a sandwich structure. Because the production process of quantum dot film materials is simple, bendable, and can significantly improve the color gamut and color saturation of liquid crystal displays, quantum dot films have gradually become hot materials for quantum dot TVs.
  • the barrier film is also very important.
  • the current mainstream barrier film preparation methods are generally: first laying an inorganic oxide layer on a polyester film substrate by evaporation, magnetron sputtering, or vacuum chemical deposition, and then coating the inorganic oxide layer with an organic substance Floor.
  • a barrier film including both an organic layer and an inorganic oxide layer has good barrier properties. The process of this kind of barrier film is complicated and the cost is high, and the barrier film is easy to cause the inorganic oxide layer to rupture and lose its barrier performance during the curling process.
  • an object of the present invention is to provide an organic barrier film, a method for preparing the organic barrier film, and a quantum dot device.
  • the obtained organic barrier film has good oxygen and water resistance.
  • the present invention provides an organic barrier film, comprising a substrate layer, an adhesive layer and an oxygen barrier layer stacked in this order, the oxygen barrier layer includes polyvinyl alcohol, formed between the adhesive layer and the oxygen barrier layer Chemical cross-linking.
  • the organic barrier film further includes a hydrophobic layer, and the hydrophobic layer is disposed on the side of the base material layer away from the adhesive layer.
  • the hydrophobic layer includes one or more of the following hydrophobic polymers: polyvinylidene chloride, poly Vinylidene fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene; or, the organic barrier film further includes a frosted layer, the frosted layer is disposed on the side of the substrate layer away from the adhesive layer, preferably, the frosted layer includes a carrier and a transparent Particles.
  • the raw materials for preparing the adhesive layer include: a polymer binder, a cross-linking agent and a chelating agent, the chelating agent forms a chemical bond with polyvinyl alcohol to crosslink; preferably, the polymer binder includes hydroxyl, carboxyl and amino groups At least one group; more preferably, the polymer binder is selected from one or more of polyester, polyurethane or polyacrylate.
  • the chelating agent is selected from one or more of boric acid, sodium borate, sodium acrylate and titanate.
  • cross-linking agent is selected from one or more of polycarbodiimide, aziridine, and methylated hexamethylolmelamine.
  • the glass transition temperature of the polymer binder is less than 50 ° C.
  • the present invention provides a method for preparing an organic barrier film, including the following steps:
  • the base material layer having opposite first and second sides;
  • An adhesive layer is provided on the first side of the substrate layer, and an oxygen barrier layer is provided on the side of the adhesive layer away from the substrate layer.
  • the oxygen barrier layer includes polyvinyl alcohol, and a chemical crosslink is formed between the adhesive layer and the oxygen barrier layer .
  • the preparation method of the adhesive layer includes: setting a first mixture including a polymer binder, a cross-linking agent and a chelating agent on the first side, the chelating agent is used to form a chemical bond cross-linking with polyvinyl alcohol; preferably
  • the polymer binder includes at least one group among hydroxyl group, carboxyl group and amino group; more preferably, the polymer binder is selected from one or more of polyester, polyurethane and polyacrylate.
  • the chelating agent is selected from one or more of boric acid, sodium borate, sodium acrylate and titanate; preferably, the mass percentage of the chelating agent in the first mixture is 1% -10%.
  • cross-linking agent is selected from one or more of polycarbodiimide, aziridine, and methylated hexamethylolmelamine.
  • the preparation method further includes the following steps: a hydrophobic layer is provided on the second side, preferably, the hydrophobic layer includes a hydrophobic polymer selected from polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, and poly One or more of chlorotrifluoroethylene; alternatively, a frosted layer is provided on the second side.
  • the frosted layer includes a carrier and transparent particles.
  • the preparation method of the oxygen barrier layer includes: disposing a second mixture including polyvinyl alcohol, water, defoaming agent and leveling agent on the side of the adhesive layer away from the substrate layer.
  • the present invention provides a quantum dot device, including a quantum dot layer and an organic barrier film disposed on at least one side of the quantum dot layer, the organic barrier film is the above-mentioned organic barrier film, including sequentially stacked arrangement
  • the base material layer, the adhesive layer and the oxygen barrier layer are arranged on the side of the adhesive layer close to the quantum dot layer.
  • the oxygen barrier layer including polyvinyl alcohol is bonded to the substrate layer through an adhesive layer. Form chemical crosslinks between them, which improves the adhesion of the oxygen barrier layer on the surface of the substrate layer;
  • polyvinyl alcohol has excellent gas barrier
  • the regular molecular chain of polyvinyl alcohol makes its crystallinity high
  • the molecules form dense crosslinks Network, so it has super strong barrier properties for most gases, but its cross-linked hydrogen bonds are easily damaged by water vapor, which affects the barrier properties of the oxygen barrier layer
  • the present invention provides a hydrophobic layer on the outside of the substrate layer
  • the layer and the hydrophobic layer can effectively prevent the adsorption and dissolution of water vapor on the surface of the organic barrier film, which reduces the water vapor penetration of the system.
  • the substrate layer also has a certain water blocking function. The combination of the hydrophobic layer and the substrate layer can greatly Reduce the water vapor that penetrates into the oxygen barrier layer, so that the polyvinyl alcohol of the oxygen barrier layer maintains good barrier properties.
  • 1 is a schematic diagram of an embodiment of the organic barrier film of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of the organic barrier film of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of the organic barrier film of the present invention.
  • the present invention provides an organic barrier film, which includes a substrate layer 2, an adhesive layer 3, and an oxygen barrier layer 4 stacked in this order.
  • the oxygen barrier layer 4 includes polyvinyl alcohol, the adhesive layer 3 and the barrier layer
  • the oxygen layer 4 forms chemical crosslinks.
  • the main function of the base material layer 2 is to protect the oxygen barrier layer 4.
  • the adhesive layer 3 is used to improve the adhesion between the base material layer 2 and the oxygen barrier layer 4. Since the polyvinyl alcohol of the oxygen barrier layer 4 has poor adhesion with the general adhesive, the present invention makes the adhesion A chemical crosslink is formed between the layer 3 and the oxygen barrier layer 4 to improve the adhesion between the oxygen barrier layer 4 and the adhesive layer 3.
  • the organic barrier film further includes a hydrophobic layer 1.
  • the hydrophobic layer 1 is disposed on a side of the substrate layer 2 away from the adhesive layer 3.
  • the hydrophobic layer 1 may include one or more of the following Hydrophobic polymers: polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polytrifluorochloroethylene.
  • the water-repellent layer 1 can effectively prevent the adsorption and dissolution of water vapor on the surface of the organic barrier film, and reduces the infiltration of water vapor.
  • the organic barrier film further includes a frosted layer 5 disposed on the side of the base material layer 2 away from the adhesive layer 3, the frosted layer 5 may include a carrier and transparent particles,
  • the carrier may be selected from one or more of epoxy resin, acrylate resin, silicone resin and polyurethane resin, and the material of the transparent particles may be selected from polyacrylate, polystyrene, polypropylene, polycarbonate, methyl One or more of methyl acrylate-butadiene-styrene terpolymer and styrene-acrylonitrile copolymer.
  • the frosted layer 5 is beneficial to increase the light entering rate of the organic barrier film.
  • the material of the substrate layer 2 is polyethylene terephthalate (PET).
  • the raw materials of the adhesive layer 3 include: a polymer binder, a cross-linking agent, and a chelating agent.
  • the chelating agent forms a chemical bond with polyvinyl alcohol to cross-link, wherein the polymer binder may be selected from polyester , One or more of polyurethane or polyacrylate, the polymer binder may include at least one of the following groups: hydroxyl, carboxyl, amino.
  • the number of polar groups such as hydroxyl, carboxyl, and amino groups in the polymer binder is higher.
  • these polarities The group can help the liquid polymer binder spread on the polyvinyl alcohol layer to achieve a larger area of bonding.
  • the chelating agent and crosslinking agent need to be more uniformly dispersed in the liquid polymer binder, preferably the chelating agent and crosslinking agent can Dissolved in liquid polymer binder to achieve uniform and reliable bonding.
  • the main function of the chelating agent is to form a bridge between the adhesive layer 3 and the oxygen barrier layer 4, thereby improving the adhesion between the adhesive layer 3 and the oxygen barrier layer 4.
  • the chelating agent is selected from one or more of the following: boric acid, sodium borate, sodium acrylate, titanate.
  • boric acid sodium borate
  • sodium acrylate sodium acrylate
  • titanate titanium dioxide
  • the chelating agent forms a chemical bond with the polyvinyl alcohol to cross-link, so that the bonding layer 3 and the oxygen barrier layer 4 Chemical crosslinks are formed between them, which improves the adhesion between the bonding layer 3 and the oxygen barrier layer 4.
  • the chelating agent as boric acid as an example, the chelating agent and polyvinyl alcohol are suitable for forming the chemical structure as shown below:
  • the mass percentage of the chelating agent in the adhesive layer 3 is 1% to 10%, and as the amount of the chelating agent increases, the peeling force between the substrate layer 2 and the oxygen barrier layer 4 increases greatly.
  • the main function of the crosslinking agent is to improve the cohesive force of the adhesive layer 3, thereby improving the water resistance and solvent resistance of the adhesive layer 3.
  • the cross-linking agent can be selected from one or more of the following: polycarbodiimide, aziridine, methyletherified hexamethylolmelamine.
  • the polymer binder is selected from one or more of hydroxyl-containing polyester, hydroxyl-containing polyurethane, and polyacrylate; preferably, the polymer binder has a glass transition temperature of less than 50 °C.
  • the polymer binder selects an emulsion with a low glass transition temperature and a large loss modulus, which helps to improve its initial adhesion with the PET substrate layer 2.
  • the invention also provides a method for preparing an organic barrier film, which includes the following steps:
  • a base material layer 2 is provided, the base material layer 2 having opposing first and second sides;
  • An adhesive layer 3 is provided on the first side of the base material layer 2, and an oxygen barrier layer 4 is provided on the side of the adhesive layer 3 away from the base material layer 2, the oxygen barrier layer 4 includes polyvinyl alcohol, the adhesive layer 3 and the oxygen barrier Chemical crosslinks are formed between the layers 4.
  • the preparation method of the adhesive layer 3 includes: setting a first mixture including a polymer binder, a cross-linking agent, and a chelating agent on the first side of the substrate layer 2, the chelating agent is used to Vinyl alcohol forms chemical bonds and crosslinks.
  • the polymer binder includes at least one of the following groups: hydroxyl, carboxyl, and amino; preferably, the polymer binder is selected from one of polyester, polyurethane, and polyacrylate One or more.
  • the first mixture when the adhesive layer 3 is prepared, the first mixture further includes a leveling agent and an antifoaming agent.
  • the chelating agent may be selected from one or more of the following: boric acid, sodium borate, sodium acrylate, titanate, chelating agent; preferably, the mass percentage of the chelating agent in the above mixture is 1% -10%.
  • the cross-linking agent can be selected from one or more of the following: polycarbodiimide, aziridine, methyletherified hexamethylolmelamine.
  • a hydrophobic layer 1 is provided on the first side of the substrate layer 2.
  • the hydrophobic layer 1 is disposed on the side of the base material layer 2 away from the adhesive layer 3.
  • the hydrophobic layer 1 may include one or more of the following hydrophobic polymers: polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, poly Trifluorochloroethylene.
  • the water-repellent layer 1 can effectively prevent the adsorption and dissolution of water vapor on the surface of the organic barrier film, and reduces the infiltration of water vapor.
  • a frosted layer 5 is provided on the first side of the substrate layer 2, and the frosted layer 5 is provided on the side of the substrate layer 2 away from the adhesive layer 3.
  • One or more selected from epoxy resin, acrylate resin, silicone resin and polyurethane resin, the material of the transparent particles can be selected from polyacrylate, polystyrene, polypropylene, polycarbonate, methacrylic acid One or more of ester-butadiene-styrene terpolymer and styrene-acrylonitrile copolymer.
  • the matte layer 5 is beneficial to improve the light entering rate of the organic barrier film.
  • the preparation method of the hydrophobic layer 1 may include: disposing a second mixture including a hydrophobic polymer, scattering particles, a leveling agent, and an antifoaming agent on the second side of the base material layer 2.
  • the preparation method of the matte layer 5 is the prior art, and the present invention will not be described in detail.
  • the present invention also provides a quantum dot device, which includes a quantum dot layer and the above organic barrier film disposed on one side or both sides of the quantum dot layer, including a substrate layer 2, a bonding layer 3, and an oxygen barrier layer that are sequentially stacked 4.
  • the oxygen barrier layer 4 is disposed on the side of the bonding layer 3 close to the quantum dot layer.
  • the hydrophobic layer 1 or the frosted layer 5 is disposed on the side of the substrate layer 2 away from the quantum dot layer.
  • a second adhesive layer for improving adhesion is further provided between the quantum dot layer and the oxygen barrier layer 4.
  • the raw material of the oxygen barrier layer can be prepared by the following steps: take 10 g of fully hydrolyzed polyvinyl alcohol with a polymerization degree of 1700, add 90 g of deionized water, heat at 95 ° C. for 1 h, add an appropriate amount of leveling agent and defoamer after cooling, and prepare a solid PVA coating solution with 10% content.
  • the raw material of the hydrophobic layer can be prepared by the following steps: diluting the PVDC emulsion (Solva 193D) to 30% solid content, adding 10% PMMA diffusion particles with a particle size of about 5 ⁇ m, and an appropriate amount of wetting and dispersing agent, defoaming agent, and leveling agent, Anti-settling agent, ultrasonically stirred for 30 min to obtain a water-blocking emulsion coating solution.
  • the self-made red and green quantum dot UV glue is coated on the oxygen barrier layer of the organic barrier film to prepare another piece of the same organic barrier film, and the two pieces are relatively pasted into a sandwich structure, and the quantum dot film is obtained after UV curing.
  • the oxygen barrier layer of the organic barrier film is coated with the red and green quantum dot UV glue as in Example 1, another piece of the same organic barrier film is prepared, and the two pieces are relatively laminated into a sandwich structure, and the quantum dot film is obtained after UV curing.
  • the oxygen barrier layer of the organic barrier film is coated with the red and green quantum dot UV glue as in Example 1, another piece of the same organic barrier film is prepared, and the two pieces are relatively laminated into a sandwich structure, and the quantum dot film is obtained after UV curing.
  • the oxygen barrier layer of the organic barrier film is coated with the red and green quantum dot UV glue as in Example 1, another piece of the same organic barrier film is prepared, and the two pieces are relatively laminated into a sandwich structure, and the quantum dot film is obtained after UV curing.
  • the oxygen barrier layer of the organic barrier film is coated with the red and green quantum dot UV glue as in Example 1, another piece of the same organic barrier film is prepared, and the two pieces are relatively laminated into a sandwich structure, and the quantum dot film is obtained after UV curing.
  • the oxygen barrier layer of the organic barrier film is coated with the red and green quantum dot UV glue as in Example 1, another piece of the same organic barrier film is prepared, and the two pieces are relatively laminated into a sandwich structure, and the quantum dot film is obtained after UV curing.
  • Obtained organic barrier film measured its oxygen transmission rate is 0.305cm 3 / m 2 ⁇ 24h ⁇ 0.1MPa, water vapor transmission rate is 0.427g / m 2 ⁇ 24h, the test method of coating adhesion is 2 grade .
  • the oxygen transmission rate is tested according to GB / T 1038-2000, the condition is 38 ° C / 0% RH; the water vapor transmission rate is tested according to the GB / T 21529 standard, and the condition is 38 ° C / 90% RH.
  • the quantum dot films produced in the above examples and comparative examples were tested for luminous efficiency and stability. The test results are shown in Table 1. Among them, the detection method of quantum dot luminous efficiency is: using 450nm blue LED as the backlight source, using an integrating sphere to test the blue backlight spectrum and the spectrum through the quantum dot film, and using the integrated area of the spectrum to calculate the quantum dot luminous efficiency.
  • Quantum dot luminous efficiency (red quantum dot emission peak area + green quantum dot emission peak area) / (blue backlight peak area-blue peak area that is not absorbed through the quantum dot film) * 100%.
  • the detection method of aging stability is: the detection method of aging stability mainly includes high temperature blue light (70 °C, 0.5W / cm 2 ), high temperature and humidity (65 °C / 95% RH) and high temperature storage (85 °C), etc. Under aging conditions, the luminous efficiency of the quantum dot film is detected. Since quantum dots are very sensitive to moisture and oxygen, we focused on the detection of high temperature and high humidity (65 °C / 95% RH) aging and the decay of quantum dot luminous efficiency after high temperature aging. RH refers to relative humidity.
  • Example 5 The difference between Example 5 and Comparative Example 1 is that the polymer binder is different.
  • the polymer binder in Example 5 includes a hydroxyl group, while the polymer binder of Comparative Example 1 does not contain a hydroxyl group. It can be seen from the experimental data It is shown that the adhesion of the organic barrier film of Comparative Example 1 (level 3) is worse than the adhesion of the organic barrier film of Example 5 (level 0), and the peel force of the quantum dot film of Comparative Example 1 is smaller, showing that the polymer
  • the binder contains hydroxyl groups or functional groups similar to the hydroxyl groups, which plays an important role in improving the bonding performance of the bonding layer.
  • the quantum dot stability of the quantum dot film of Example 5 is also better than that of Comparative Example 1. It can be seen that the polymer binder contains a hydroxyl group or a functional group similar to the hydroxyl group, which has the effect of improving the water and oxygen barrier properties of the organic barrier film. Important role.
  • Example 5 The difference between Example 5 and Comparative Example 2 is that no crosslinking agent or chelating agent is added to the adhesive layer of Comparative Example 2. It can be seen from the experimental data that the adhesion of the organic barrier film of Comparative Example 2 is poor. The peel force of the prepared quantum dot film is very small, and the stability of the quantum dot is poor. It can be seen that the crosslinking agent and chelating agent play an important role in improving the adhesion of the organic barrier film and the barrier property of water and oxygen.
  • Example 5 The difference between Example 5 and Comparative Example 3 is that the cross-linking agent and chelating agent are not added to the adhesive layer of Comparative Example 3, and the organic barrier film does not include a hydrophobic layer, and the oxygen permeability of the organic barrier film of Example 5 is experimentally measured
  • the over-rate is 0.410cm 3 / m 2 ⁇ 24h ⁇ 0.1MPa
  • the water vapor transmission rate is 0.198g / m 2 ⁇ 24h
  • the organic barrier film of Comparative Example 3 has an oxygen transmission rate of 0.588cm 3 / m 2 ⁇ 24h ⁇ 0.1MPa
  • water vapor transmission rate is 1.207g / m 2 ⁇ 24h
  • Example 5 Comparative Example 4
  • the hydrophobic layer of the quantum dot film of Comparative Example 4 is on the side close to the quantum dot glue, and the oxygen barrier layer is outside the hydrophobic layer. From the experimental data, it can be seen that the peel strength of the quantum dot film of Comparative Example 4 is poor, and the stability of the quantum dot is also poor, indicating that the hydrophobic layer disposed outside the oxygen barrier layer is beneficial to improve the barrier properties of the organic barrier film; On the one hand, the adhesion of the quantum dot glue to the oxygen barrier layer is better, so the peel force of the quantum dot film of Example 5 is higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了有机阻隔膜、有机阻隔膜的制备方法以及量子点器件。其中,有机阻隔膜包括顺序层叠设置的基材层、粘结层以及阻氧层,阻氧层包括聚乙烯醇,粘结层与阻氧层之间形成化学交联。本发明的有益效果在于:粘结层与阻氧层之间形成化学交联,提高了阻氧层在基材层表面的附着力。

Description

有机阻隔膜、有机阻隔膜的制备方法以及量子点器件 技术领域
本发明涉及量子点材料领域,尤其涉及有机阻隔膜、有机阻隔膜的制备方法以及量子点器件。
背景技术
目前,量子点合成技术已经相对成熟,量子点的效率和稳定性均到达了产业化水平,但是量子点独特的表面效应也决定了其对水汽和氧气的敏感性,水汽和氧气会破坏量子点表面的配体,降低量子点的效率。因此,量子点需要在隔水隔氧的条件下才能发挥其高发光效率和稳定性。目前量子点主流的使用方法包括量子点管和量子点膜,量子点管是将量子点材料封装在玻璃管中,而量子点膜是利用阻隔膜将量子点材料包覆在中间形成三明治结构。由于量子点膜材料的生产工艺简单、可弯折、且能显著提高液晶显示的色域和颜色饱和度,量子点膜逐渐成为量子点电视的热点材料。
然而,量子点膜材料中除了极为重要的量子点材料以外,阻隔膜也至关重要。目前主流的阻隔膜的制备方法一般为:先在聚酯膜的基材上通过蒸镀、磁控溅射或真空化学沉积等方法铺设无机氧化物层,再在无机氧化物层上涂覆有机物层。同时包括有机物层和无机氧化物层的阻隔膜具有较好的阻隔性能。这种阻隔膜的工艺较为复杂,成本较高,而且阻隔膜在卷曲过程中易导致无机氧化物层破裂进而失去阻隔性能。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种有机阻隔膜、有机阻隔膜的制备方法以及量子点器件,制得的有机阻隔膜具有良好的阻氧阻水性 能。
根据本发明的一个方面,本发明提供一种有机阻隔膜,包括顺序层叠设置基材层、粘结层以及阻氧层,阻氧层包括聚乙烯醇,粘结层与阻氧层之间形成化学交联。
进一步地,有机阻隔膜还包括疏水层,疏水层设置于基材层的远离粘结层的一侧,优选地,疏水层包括以下一种或多种疏水聚合物:聚偏二氯乙烯、聚偏氟乙烯、聚四氟乙烯、聚三氟氯乙烯;或者,有机阻隔膜还包括磨砂层,磨砂层设置于基材层的远离粘结层的一侧,优选地,磨砂层包括载体以及透明颗粒。
进一步地,制备粘结层的原料包括:高分子粘结剂、交联剂和螯合剂,螯合剂与聚乙烯醇形成化学键交联;优选地,高分子粘结剂包括羟基、羧基和氨基中的至少一种基团;更为优选地,高分子粘结剂选自聚酯、聚氨酯或聚丙烯酸酯中的一种或多种。
进一步地,螯合剂选自硼酸、硼酸钠、丙烯酸钠和钛酸酯中的一种或多种。
进一步地,交联剂选自聚碳二亚胺、氮丙啶和甲醚化六羟甲基三聚氰胺中的一种或多种。
进一步地,高分子粘结剂的玻璃化转变温度小于50℃。
根据本发明的另一方面,本发明提供一种有机阻隔膜的制备方法,包括以下步骤:
提供基材层,基材层具有相对的第一侧和第二侧;
在基材层的第一侧设置粘结层,在粘结层远离基材层的一侧设置阻氧层,阻氧层包括聚乙烯醇,粘结层与阻氧层之间形成化学交联。
进一步地,粘结层的制备方法包括:将包括高分子粘结剂、交联剂和螯合 剂的第一混合物设置于第一侧,螯合剂用于与聚乙烯醇形成化学键交联;优选地,高分子粘结剂包括羟基、羧基和氨基中的至少一种基团;更为优选地,高分子粘结剂选自聚酯、聚氨酯、聚丙烯酸酯中的一种或多种。
进一步地,螯合剂选自硼酸、硼酸钠、丙烯酸钠和钛酸酯中的一种或多种;优选地,螯合剂在第一混合物中的质量百分数为1%~10%。
进一步地,交联剂选自聚碳二亚胺、氮丙啶和甲醚化六羟甲基三聚氰胺中的一种或多种。
进一步地,制备方法还包括以下步骤:在第二侧设置疏水层,优选地,疏水层包括疏水聚合物,疏水聚合物选自聚偏二氯乙烯、聚偏氟乙烯、聚四氟乙烯和聚三氟氯乙烯中的一种或多种;或者,在第二侧设置磨砂层,优选地,磨砂层包括载体以及透明颗粒。
进一步地,阻氧层的制备方法包括:将包括聚乙烯醇、水、消泡剂和流平剂的第二混合物设置于粘结层的远离基材层的一侧。
根据本发明的另一方面,本发明提供一种量子点器件,包括量子点层以及设置在量子点层至少一侧的有机阻隔膜,该有机阻隔膜为上述的有机阻隔膜,包括顺序层叠设置的基材层、粘结层以及阻氧层,阻氧层设置在粘结层靠近量子点层的一侧。
相比现有技术,本发明的有益效果在于:
(1)聚乙烯醇很难在大部分聚酯膜片的表面有效附着,本发明通过粘结层将包括聚乙烯醇的阻氧层与基材层粘结,粘结层与阻氧层之间形成化学交联,提高了阻氧层在基材层表面的附着力;
(2)聚乙烯醇之所以具有优良的气体阻隔性,一方面聚乙烯醇规整的分子 链使得其结晶度很高,另一方面是由于大量的羟基氢键使得分子之间形成致密的交联网络,因此其对大多数气体有超强的阻隔性能,但是,其交联的氢键容易受到水汽的破坏,从而影响阻氧层的阻隔性,因此本发明在基材层的外侧设置了疏水层,疏水层可以有效防止水汽在有机阻隔膜表面的吸附和溶解,降低了体系的水汽渗透,此外,基材层也具有一定的阻水功能,通过疏水层与基材层的组合,可以大幅降低渗透到阻氧层的水汽,使阻氧层的聚乙烯醇保持良好的阻隔性。
附图说明
图1为本发明的有机阻隔膜的一个实施例的示意图;
图2为本发明的有机阻隔膜的另一个实施例的示意图;
图3为本发明的有机阻隔膜的再一个实施例的示意图;
图中:1、疏水层;2、基材层;3、粘结层;4、阻氧层;5、磨砂层。
具体实施方式
下面,结合具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
如图1所示,本发明提供一种有机阻隔膜,其包括顺序层叠设置基材层2、粘结层3以及阻氧层4,阻氧层4包括聚乙烯醇,粘结层3与阻氧层4之间形成化学交联。
基材层2的主要作用是保护阻氧层4。粘结层3用于提高基材层2与阻氧层4之间的粘结性,由于阻氧层4的聚乙烯醇与一般的粘结剂粘结性较差,因此本发明使粘结层3与阻氧层4之间形成化学交联,以提高阻氧层4与粘结层3的 粘结性。
在一些实施例中,如图2所示,有机阻隔膜还包括疏水层1,疏水层1设置在基材层2远离粘结层3的一侧,疏水层1可以包括以下一种或多种疏水聚合物:聚偏二氯乙烯、聚偏氟乙烯、聚四氟乙烯、聚三氟氯乙烯。疏水层1可以有效防止水汽在有机阻隔膜表面的吸附和溶解,降低了水汽向内渗透。
在另一些实施例中,如图3所示,有机阻隔膜还包括磨砂层5,磨砂层5设置在基材层2远离粘结层3的一侧,磨砂层5可以包括载体和透明颗粒,载体可以选自环氧树脂、丙烯酸酯树脂、有机硅树脂与聚氨酯树脂中的一种或多种,透明颗粒的材料可以选自聚丙烯酸酯、聚苯乙烯、聚丙烯、聚碳酸酯、甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物与苯乙烯-丙烯腈共聚物中的一种或多种。磨砂层5有利于提高有机阻隔膜的进光率。
在一些实施例中,基材层2的材料为聚对苯二甲酸乙二醇酯(PET)。
在一些实施例中,粘结层3的原料包括:高分子粘结剂、交联剂和螯合剂,上述螯合剂与聚乙烯醇形成化学键交联,其中高分子粘结剂可以选自聚酯、聚氨酯或聚丙烯酸酯中的一种或多种,高分子粘结剂可以包括以下基团中的至少一种:羟基、羧基、氨基。
在一些实施例中,为了提高高分子粘结剂与聚乙烯醇的粘结力,高分子粘结剂中的羟基、羧基、氨基等极性基团的数量要多一些,另外,这些极性基团能帮助液态高分子粘结剂在聚乙烯醇层上的铺展,实现更大面积的粘结。当高分子粘结剂极性基团多至表现出一定的亲水性时,螯合剂和交联剂需要能较均匀地分散在液态高分子粘结剂中,优选螯合剂和交联剂能溶解在液态的高分子粘结剂中,从而实现均匀的粘结和可靠的粘结。
螯合剂的主要作用是在粘结层3与阻氧层4之间形成桥梁,从而提高了粘 结层3与阻氧层4之间的粘结力。
在一些实施例中,螯合剂选自以下一种或多种:硼酸、硼酸钠、丙烯酸钠、钛酸酯。一方面,螯合剂与高分子粘结剂之间产生一定的相互作用,使得螯合剂不易与高分子粘结剂分离,螯合剂与高分子粘结剂之间的相互作用可以是结晶嵌入,还可以是螯合剂与高分子粘结剂之间发生化学交联,也可以是其他的形式;另一方面螯合剂与聚乙烯醇形成化学键交联,从而使粘结层3与阻氧层4之间形成化学交联,提高了粘结层3与阻氧层4之间的粘结力。
以螯合剂为硼酸为例,螯合剂与聚乙烯醇之间适于形成如下所示的化学结构:
Figure PCTCN2019113738-appb-000001
优选地,螯合剂在粘结层3中的质量百分数为1%~10%,且随着螯合剂添加量的增加,基材层2与阻氧层4之间的剥离力大幅增加。
交联剂的主要作用是提高粘结层3的内聚力,从而提高粘结层3的耐水性和耐溶剂性。交联剂可以选自以下一种或多种:聚碳二亚胺、氮丙啶、甲醚化六羟甲基三聚氰胺。
在一些实施例中,高分子粘结剂选自含羟基的聚酯、含羟基的聚氨酯、聚丙烯酸酯中的一种或多种;优选地,高分子粘结剂的玻璃化转变温度小于50℃。高分子粘结剂选用玻璃化转变温度低、损耗模量较大的乳液,有助于提高其与PET基材层2的初粘力。
本发明还提供一种有机阻隔膜的制备方法,包括以下步骤:
提供基材层2,该基材层2具有相对的第一侧和第二侧;
在基材层2的第一侧设置粘结层3,在粘结层3远离基材层2的一侧设置阻氧层4,阻氧层4包括聚乙烯醇,粘结层3与阻氧层4之间形成化学交联。
在一些实施例中,粘结层3的制备方法包括:将包括高分子粘结剂、交联剂、螯合剂的第一混合物设置于基材层2的第一侧,螯合剂用于与聚乙烯醇形成化学键交联。
在一些实施例中,上述高分子粘结剂包括以下基团中的至少一种:羟基、羧基、氨基;优选地,上述高分子粘结剂选自聚酯、聚氨酯、聚丙烯酸酯中的一种或多种。
在一些实施例中,上述制备粘结层3时,上述第一混合物中还包括流平剂与消泡剂。
螯合剂可以选自以下一种或多种:硼酸、硼酸钠、丙烯酸钠、钛酸酯,螯合剂;优选地,螯合剂在上述混合物中的质量百分数为1%~10%。交联剂可以选自以下一种或多种:聚碳二亚胺、氮丙啶、甲醚化六羟甲基三聚氰胺。
在一些实施例中,在基材层2的第一侧设置疏水层1。疏水层1设置在基材层2远离粘结层3的一侧,疏水层1可以包括以下一种或多种疏水聚合物:聚偏二氯乙烯、聚偏氟乙烯、聚四氟乙烯、聚三氟氯乙烯。疏水层1可以有效防止水汽在有机阻隔膜表面的吸附和溶解,降低了水汽向内渗透。
在一些实施例中,在基材层2的第一侧设置磨砂层5,磨砂层5设置在基材层2远离粘结层3的一侧,磨砂层5可以包括载体和透明颗粒,载体可以选自环氧树脂、丙烯酸酯树脂、有机硅树脂与聚氨酯树脂中的一种或多种,透明颗粒的材料可以选自聚丙烯酸酯、聚苯乙烯、聚丙烯、聚碳酸酯、甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物与苯乙烯-丙烯腈共聚物中的一种或多种。磨砂层5 有利于提高有机阻隔膜的进光率。
疏水层1的制备方法可以包括:将包括疏水聚合物、散射粒子、流平剂、消泡剂的第二混合物设置于基材层2的第二侧。磨砂层5的制备方法为现有技术,本发明不再详述。
本发明还提供一种量子点器件,其包括量子点层以及设置在量子点层一侧或两侧的上述有机阻隔膜,包括顺序层叠设置的基材层2、粘结层3以及阻氧层4,阻氧层4设置在粘结层3靠近量子点层的一侧。
在一些实施例中,疏水层1或磨砂层5设置在基材层2远离量子点层的一侧。
在一些实施例中,量子点层与阻氧层4之间还设置用于提高粘结性的第二粘结层。
阻氧层原料可以通过以下步骤制备:取10g聚合度1700的完全水解型聚乙烯醇加入90g去离子水中,于95℃下加热1h,冷却后加入适量流平剂及消泡剂,配制成固含量10%的PVA涂布液。
疏水层原料可以通过以下步骤制备:将PVDC乳液(苏威193D)稀释至30%固含量,加入10%粒径5μm左右的PMMA扩散粒子以及适量润湿分散剂、消泡剂、流平剂,防沉剂,超声搅拌30min,得阻水乳液涂布液。
【实施例1】
将丙烯酸、丙烯酸丁酯、丙烯酸羟乙酯和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸钾水溶液,保温8h,降温至30℃出料,测定固含量,然后加入质量百分数为0.2%流平剂、0.1%的消泡剂、0.5%的聚碳二亚胺和3%的硼酸,得丙烯酸酯粘结 乳液。
将上述丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,于120℃烘烤固化3min,形成厚度为1μm的粘结层,再在粘结层上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。得有机阻隔膜,测得其氧气透过率为0.323cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.548g/m 2·24h,百格法测试涂层附着力为1级。
将上述有机阻隔膜的阻氧层上涂布自制的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【实施例2】
将脱水处理过的聚已二酸乙二醇酯、二环己基甲烷二异氰酸酯加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至65℃,加入二月桂酸二丁基锡催化剂,保温15min,再升温至85℃,保温1h,加入二羟甲基丙酸,保温1h,降温至50℃,向体系内加入三乙胺,反应30min,再取适量去离子水在室温下3000rpm搅拌乳化1h,得均一的蓝白色乳液,然后添加质量百分数为0.1%的消泡剂、0.3%的氮丙啶和1%的硼酸,得聚氨酯粘结乳液。
将上述聚氨酯粘结乳液涂布于厚度为100μm的PET基材一侧,于120℃烘烤固化3min,形成厚度为1μm的粘结层,再在粘结层上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。得有机阻隔膜,测得其氧气透过率为0.284cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.641g/m 2·24h,百格法测试涂层附着力为1级。
将有机阻隔膜的阻氧层上涂布如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【实施例3】
将新戊二醇、邻苯二甲酸酐、己二酸、间苯二甲酸-5-磺酸钠、三羟甲基丙烷以及催化剂氧化二丁基锡加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至150℃保温1h,再升至180℃保温1h,最后升至200℃,真空抽去体系内小分子产物水,反应完全后,降温至80℃,加入去离子水,然后再加入质量百分数为0.2%的流平剂、0.1%的消泡剂、3%甲醚化六羟甲基三聚氰胺和10%的硼酸钠,得聚酯粘结乳液。
将上述聚酯粘结乳液涂布于厚度为100μm的PET基材一侧,于120℃烘烤固化3min,形成厚度为1μm的粘结层,再在粘结层上涂布一层前述阻氧层原料,140℃烘烤固化3min,形成厚度为5μm的阻氧层。得有机阻隔膜,测得其氧气透过率为0.351cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.488g/m 2·24h,百格法测试涂层附着力为0级。
将有机阻隔膜的阻氧层上涂布如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【实施例4】
将丙烯酸、丙烯酸丁酯、丙烯腈和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸钾水溶液,保温8h,降温至30℃出料,测定固含量,加入质量百分数为0.2%的流平剂、0.1%的消泡剂、0.5%的聚碳二亚胺和3%的丙烯酸钠,得丙烯酸酯粘结乳液。
将上述丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,120℃烘烤固化3min,形成厚度为1μm的粘结层,再在粘结层上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。在PET基材的另一侧涂 布前述疏水层原料,同样120℃烘烤固化3min,得到厚度为5μm的疏水层。最后得有机阻隔膜,测得其氧气透过率为0.302cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.224g/m 2·24h,百格法测试涂层附着力为1级。
将有机阻隔膜的阻氧层上涂布如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【实施例5】
将丙烯酸、丙烯酸丁酯、丙烯酸羟乙酯和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸钾水溶液,保温8h,降温至30℃出料,测定固含量,加入质量百分数为0.2%的流平剂、0.1%的消泡剂、0.5%的聚碳二亚胺和3%的水溶性钛酸酯螯合剂,得丙烯酸酯粘结乳液。
将上述丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,120℃烘烤固化3min,形成厚度为1μm的粘结层,再在粘结层上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。在PET基材的另一侧涂布前述疏水层原料,同样120℃烘烤固化3min,得到厚度为5μm的疏水层。最后得有机阻隔膜,测得其氧气透过率为0.410cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.198g/m 2·24h,百格法测试涂层附着力为0级。
将有机阻隔膜的阻氧层上涂布如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,UV固化后即得量子点膜。
【对比例1】
将丙烯酸甲酯、丙烯酸丁酯、苯乙烯和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸 钾水溶液,保温8h,降温至30℃出料,测定固含量,加入质量百分数为0.2%的流平剂、0.1%的消泡剂、0.5%的聚碳二亚胺和3%的水溶性钛酸酯螯合剂,得丙烯酸酯粘结乳液。
将丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,120℃烘烤固化3min,形成厚度为1μm的粘结层,再在粘结层上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。在PET基材的另一侧涂布前述疏水层原料,同样120℃烘烤固化3min,得到厚度为5μm的疏水层。最后得有机阻隔膜,测得其氧气透过率为0.422cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.178g/m 2·24h,百格法测试涂层附着力为3级。
将有机阻隔膜的阻氧层上涂布如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【对比例2】
将丙烯酸、丙烯酸丁酯、丙烯酸羟乙酯和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸钾水溶液,保温8h,降温至30℃出料,测定固含量,加入适量流平剂、消泡剂,得丙烯酸酯粘结乳液。
将丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,120℃烘烤固化3min,形成厚度为1μm粘结层,再在粘结层上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。在PET基材的另一侧涂布前述疏水层原料,同样120℃烘烤固化3min,得到厚度为5μm的疏水层。最后得有机阻隔膜,测得其氧气透过率为0.387cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.256g/m 2·24h,百格法测试涂层附着力为3级。
将有机阻隔膜的阻氧层上涂布如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【对比例3】
将丙烯酸、丙烯酸丁酯、丙烯酸羟乙酯和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸钾水溶液,保温8h,降温至30℃出料,测定固含量,然后加入质量百分数为0.2%流平剂、0.1%的消泡剂,得丙烯酸酯粘结乳液。
将丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,120℃烘烤固化3min,形成厚度为1μm粘结层,再在粘结剂上涂布一层前述阻氧层原料,120℃烘烤固化3min,形成厚度为5μm的阻氧层。得有机阻隔膜,测得其氧气透过率为0.588cm 3/m 2·24h·0.1MPa,水蒸气透过率为1.207g/m 2·24h,百格法测试涂层附着力为4级。
将有机阻隔膜的阻氧层上涂布本公司的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
【对比例4】
将丙烯酸、丙烯酸丁酯、丙烯酸羟乙酯和定量的去离子水加入带搅拌和冷凝回流管的三口烧瓶中,通氮气10min,搅拌并升温至75℃,加入定量的过硫酸钾水溶液,保温8h,降温至30℃出料,测定固含量,然后加入质量百分数为0.2%流平剂、0.1%的消泡剂、0.5%的聚碳二亚胺和3%的水溶性钛酸酯螯合剂,得丙烯酸酯粘结乳液。
将丙烯酸酯粘结乳液涂布于厚度为100μm的PET基材一侧,120℃烘烤固化3min,形成厚度为1μm粘结层,再在粘结剂上涂布一层前述阻氧层原料,120℃ 烘烤固化3min,形成厚度为5μm的阻氧层。再在该阻氧层上涂布前述疏水层原料,同样120℃烘烤固化3min,得到厚度为5μm的疏水层。得有机阻隔膜,测得其氧气透过率为0.305cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.427g/m 2·24h,百格法测试涂层附着力为2级。
将有机阻隔膜的疏水层上涂布本公司的如实施例1的红绿量子点UV胶水,准备另一片相同的有机阻隔膜,并两片相对贴合成三明治结构,UV固化后即得量子点膜。
氧气透过率按GB/T 1038-2000测试,条件为38℃/0%RH;水蒸气透过率按GB/T 21529标准测试,条件为38℃/90%RH。对以上各实施例以及对比例制作的量子点膜进行发光效率以及稳定性测试,测试结果见表1。其中,量子点发光效率的检测方法是:以450nm蓝色LED作为背光源,利用积分球分别测试蓝色背光光谱和透过量子点膜的光谱,利用谱图的积分面积计算量子点发光效率。量子点发光效率=(红色量子点发射峰面积+绿色量子点发射峰面积)/(蓝色背光峰面积-透过量子点膜未被吸收的蓝色峰面积)*100%。老化稳定性的检测方法是:老化稳定性的检测方法主要包括在高温蓝光光照(70℃,0.5W/cm 2),高温高湿(65℃/95%RH)和高温储存(85℃)等老化条件下,检测量子点膜的发光效率变化。由于量子点对湿气和氧气非常敏感,因此重点检测了高温高湿(65℃/95%RH)老化和高温老化后量子点发光效率衰减。RH指的是相对湿度。
表1各量子点膜发光性能
Figure PCTCN2019113738-appb-000002
Figure PCTCN2019113738-appb-000003
实施例5与对比例1的区别在于高分子粘结剂的不同,实施例5中的高分子粘结剂包括羟基,而对比例1的高分子粘结剂不含羟基,通过实验数据可以看出,对比例1的有机阻隔膜的附着力(3级)比实施例5的有机阻隔膜的附着力(0级)差,而且对比例1的量子点膜的剥离力更小,可见高分子粘结剂中含有羟基或者与羟基活性类似的官能团,对提高粘结层的粘结性能具有重要的作用。此外,实施例5的量子点膜的量子点稳定性也较对比例1更好,可见高分子粘结剂中含有羟基或者与羟基活性类似的官能团,对提高有机阻隔膜的水氧阻隔性能具有重要的作用。
实施例5与对比例2的区别在于:对比例2的粘结层中不添加交联剂以及螯合剂,通过实验数据可以看出,对比例2的有机阻隔膜的附着力较差,由其制备的量子点膜的剥离力很小,且量子点稳定性差。可见交联剂以及螯合剂对提高有机阻隔膜的附着力以及水氧阻隔性具有重要的作用。
实施例5与对比例3的区别在于:对比例3的粘结层中不添加交联剂以及螯合剂,且有机阻隔膜不包括疏水层,实验测得实施例5的有机阻隔膜的氧气透过率为0.410cm 3/m 2·24h·0.1MPa,水蒸气透过率为0.198g/m 2·24h,对比例3 的有机阻隔膜的氧气透过率为0.588cm 3/m 2·24h·0.1MPa、水蒸气透过率为1.207g/m 2·24h,可见在没有疏水层的情况下,不添加交联剂和螯合剂会导致有机阻隔膜的阻氧性,特别是导致阻水性急剧下降。通过表1的数据,也可以看出,对比例3的量子点膜的稳定性及剥离力比实施例5更差,而且在湿度较高的环境下,对比例3的量子点膜的稳定性更差,原因是在没有阻水层的情况下,水汽渗透通过膜片到达没有螯合剂及交联剂的粘结层,导致粘结层胶体溶胀完全失去和阻氧层的粘结性,加速水汽及氧气从侧面渗透到三明治结构量子点胶层中导致量子点快速失效。
实施例5与对比例4的区别在于:对比例4的量子点膜的疏水层在靠近量子点胶水的一侧,而阻氧层则在疏水层的外侧。通过实验数据可以看出,对比例4的量子点膜的剥离力差,且量子点的稳定性也差,说明将疏水层设置在阻氧层的外侧有利于提高有机阻隔膜的阻隔性;另一方面,量子点胶水与阻氧层的粘结性更好,因此实施例5的量子点膜的剥离力更高。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (13)

  1. 一种有机阻隔膜,其特征在于,包括顺序层叠设置的基材层、粘结层以及阻氧层,所述阻氧层包括聚乙烯醇,所述粘结层与所述阻氧层之间形成化学交联。
  2. 根据权利要求1所述的有机阻隔膜,其特征在于,所述有机阻隔膜还包括:
    疏水层,设置于所述基材层的远离所述粘结层的一侧,优选地,所述疏水层包括疏水聚合物,更为优选地,所述疏水聚合物选自聚偏二氯乙烯、聚偏氟乙烯、聚四氟乙烯和聚三氟氯乙烯中的一种或多种;或者,
    磨砂层,设置于所述基材层的远离所述粘结层的一侧,优选地,所述磨砂层包括载体以及透明颗粒。
  3. 根据权利要求1所述的有机阻隔膜,其特征在于,制备所述粘结层的原料包括高分子粘结剂、交联剂和螯合剂,所述螯合剂与所述聚乙烯醇形成化学键交联;优选地,所述高分子粘结剂包括羟基、羧基和氨基中的至少一种基团;更为优选地,所述高分子粘结剂选自聚酯、聚氨酯或聚丙烯酸酯中的一种或多种。
  4. 根据权利要求3所述的有机阻隔膜,其特征在于,所述螯合剂选自硼酸、硼酸钠、丙烯酸钠和钛酸酯中的一种或多种。
  5. 根据权利要求3所述的有机阻隔膜,其特征在于,所述交联剂选自聚碳二亚胺、氮丙啶和甲醚化六羟甲基三聚氰胺中的一种或多种。
  6. 根据权利要求3所述的有机阻隔膜,其特征在于,所述高分子粘结剂的玻璃化转变温度小于50℃。
  7. 一种有机阻隔膜的制备方法,其特征在于,包括以下步骤:
    提供基材层,所述基材层具有相对的第一侧和第二侧;
    在所述第一侧设置粘结层,在所述粘结层远离所述基材层的一侧设置阻氧层,所述阻氧层包括聚乙烯醇,所述粘结层与所述阻氧层之间形成化学交联。
  8. 根据权利要求7所述的制备方法,其特征在于,所述粘结层的制备方法包括:
    将包括高分子粘结剂、交联剂和螯合剂的第一混合物设置于所述第一侧,所述螯合剂用于与所述聚乙烯醇形成化学键交联;优选地,所述高分子粘结剂包括羟基、羧基和氨基中的至少一种基团;更为优选地,所述高分子粘结剂选自聚酯、聚氨酯、聚丙烯酸酯中的一种或多种。
  9. 根据权利要求8所述的制备方法,其特征在于,所述螯合剂选自硼酸、硼酸钠、丙烯酸钠和钛酸酯中的一种或多种;优选地,所述螯合剂在所述第一混合物中的质量百分数为1%~10%。
  10. 根据权利要求8所述的制备方法,其特征在于,所述交联剂选自聚碳二亚胺、氮丙啶和甲醚化六羟甲基三聚氰胺中的一种或多种。
  11. 根据权利要求7-10中任一所述的制备方法,其特征在于,所述制备方法还包括以下步骤:
    在所述第二侧设置疏水层,优选地,所述疏水层包括疏水聚合物,所述疏水聚合物选自聚偏二氯乙烯、聚偏氟乙烯、聚四氟乙烯和聚三氟氯乙烯中的一种或多种;或者,
    在所述第二侧设置磨砂层,优选地,所述磨砂层包括载体以及透明颗粒。
  12. 根据权利要求7-10中任一所述的制备方法,其特征在于,所述阻氧层的制备方法包括:将包括聚乙烯醇、水、消泡剂和流平剂的第二混合物设置于所述粘结层的远离所述基材层的一侧。
  13. 一种量子点器件,包括量子点层以及设置在所述量子点层至少一侧的有机阻隔膜,其特征在于,所述有机阻隔膜为权利要求1-6中任一所述的有机阻隔膜,包括顺序层叠设置的基材层、粘结层以及阻氧层,所述阻氧层设置在所述粘结层靠近所述量子点层的一侧。
PCT/CN2019/113738 2018-10-29 2019-10-28 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件 WO2020088418A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/285,920 US20210347957A1 (en) 2018-10-29 2019-10-28 Organic barrier film, preparation method of organic barrier film, and quantum dot device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811267839.6A CN109638169B (zh) 2018-10-29 2018-10-29 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
CN201811267839.6 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020088418A1 true WO2020088418A1 (zh) 2020-05-07

Family

ID=66066754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113738 WO2020088418A1 (zh) 2018-10-29 2019-10-28 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件

Country Status (3)

Country Link
US (1) US20210347957A1 (zh)
CN (1) CN109638169B (zh)
WO (1) WO2020088418A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638169B (zh) * 2018-10-29 2021-02-23 纳晶科技股份有限公司 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
CN112322279A (zh) * 2020-10-21 2021-02-05 宁波东旭成新材料科技有限公司 一种光致发光增强型量子点膜
CN112277416A (zh) * 2020-10-29 2021-01-29 合肥乐凯科技产业有限公司 一种阻隔膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590663A (zh) * 2016-12-05 2017-04-26 纳晶科技股份有限公司 量子点膜及含其的背光模组
CN106626574A (zh) * 2016-12-05 2017-05-10 纳晶科技股份有限公司 有机阻隔膜、量子点膜、背光模组与发光装置
CN109638169A (zh) * 2018-10-29 2019-04-16 纳晶科技股份有限公司 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060144514A1 (en) * 2005-01-03 2006-07-06 Yongcai Wang Polarizing plate laminated with an improved glue composition and a method of manufacturing the same
JP6498602B2 (ja) * 2014-05-27 2019-04-10 日本合成化学工業株式会社 接着剤組成物、偏光板用接着剤組成物、偏光板用接着剤、およびそれを用いてなる偏光板
CN107650452B (zh) * 2017-01-05 2019-10-22 武汉保丽量彩科技有限公司 一种抗氧化的量子点聚合物光学膜及其制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590663A (zh) * 2016-12-05 2017-04-26 纳晶科技股份有限公司 量子点膜及含其的背光模组
CN106626574A (zh) * 2016-12-05 2017-05-10 纳晶科技股份有限公司 有机阻隔膜、量子点膜、背光模组与发光装置
CN109638169A (zh) * 2018-10-29 2019-04-16 纳晶科技股份有限公司 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件

Also Published As

Publication number Publication date
CN109638169A (zh) 2019-04-16
US20210347957A1 (en) 2021-11-11
CN109638169B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2020088418A1 (zh) 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
TWI316531B (en) Acrylic pressure-sensitive adhesive composition for polarizing film
KR102165441B1 (ko) 양자점 필름
US6451156B2 (en) Pressure-sensitive adhesive sheets and method of fixing functional film
JP4734480B2 (ja) 太陽電池用裏面保護シート及びその製造方法
KR20150016880A (ko) 점착제 조성물, 점착 필름 및 이를 이용한 유기전자장치의 봉지방법
JP4734468B1 (ja) 太陽電池モジュール用基材及びその製造方法
TW201410455A (zh) 阻隔膜構造及其製備方法
WO2014119662A1 (ja) ガスバリアフィルム
TW201236731A (en) Vacuum chamber method to form polymer coatings on porous support
JP4811973B2 (ja) 粘着型光学フィルム
WO2023103323A1 (zh) 一种粘接剂、芯片键合膜及其制备方法
JP2549388B2 (ja) 感圧接着型偏光板
WO2018153066A1 (zh) 封框胶、液晶面板、液晶显示器及其制备方法
US6208397B1 (en) Optical member cell substrate and liquid-crystal display
WO2024032382A1 (zh) 耐热型uv减粘胶水及其在制备燃料电池中的应用
JP4766582B2 (ja) 粘着型光学フィルムおよび液晶表示装置
CN110845986B (zh) 胶水组合物、量子点组合物、量子点复合材料及其应用
JP2000007978A (ja) コーティング材及び積層体
JP2002539973A (ja) 欠陥のない積層に有用な可塑剤補助接着層形成
JP4230609B2 (ja) セル基板、液晶セル及び液晶表示装置
WO2012096216A1 (ja) 太陽電池用裏面保護シート
WO2012096215A1 (ja) 太陽電池用裏面保護シート
JP2024038311A (ja) 光学部材およびその保護方法
TW201233539A (en) Back surface protective sheet for solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877662

Country of ref document: EP

Kind code of ref document: A1