WO2022124867A1 - 탄소나노튜브 제조장치 및 제조방법 - Google Patents

탄소나노튜브 제조장치 및 제조방법 Download PDF

Info

Publication number
WO2022124867A1
WO2022124867A1 PCT/KR2021/018803 KR2021018803W WO2022124867A1 WO 2022124867 A1 WO2022124867 A1 WO 2022124867A1 KR 2021018803 W KR2021018803 W KR 2021018803W WO 2022124867 A1 WO2022124867 A1 WO 2022124867A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
catalyst
carbon nanotube
gas
diameter
Prior art date
Application number
PCT/KR2021/018803
Other languages
English (en)
French (fr)
Inventor
윤광우
황두성
박혜진
김세현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210171133A external-priority patent/KR20220083595A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US18/027,595 priority Critical patent/US20230398510A1/en
Priority to EP21903912.0A priority patent/EP4261185A1/en
Priority to CN202180062684.6A priority patent/CN116600884A/zh
Publication of WO2022124867A1 publication Critical patent/WO2022124867A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1946Details relating to the geometry of the reactor round circular or disk-shaped conical

Definitions

  • the present invention relates to a carbon nanotube manufacturing apparatus and manufacturing method.
  • a fluidized bed reactor is a reactor apparatus that can be used to carry out a variety of multiphase chemical reactions.
  • a fluid gas or liquid
  • the solid material is a catalyst having a small sphere shape, and the fluid flows at a speed sufficient to suspend the solid material. This causes the solid material to behave like a fluid.
  • carbon nanostructures refer to nano-sized carbon structures having various shapes such as nanotubes, nanofibers, fullerenes, nanocones, nanohorns, and nanorods. It is highly useful in various technical fields.
  • Carbon nanotubes which are representative carbon nanostructures, are a material in which three adjacent carbon atoms are bonded to each other in a hexagonal honeycomb structure to form a carbon plane, and the carbon plane is rolled into a cylindrical shape to have a tube shape.
  • Carbon nanotubes have the characteristics of being a conductor or a semiconductor according to a structure, that is, a diameter of a tube, and can be widely applied in various technical fields, so that it is in the spotlight as a new material.
  • carbon nanotubes may be applied to an electrode of an electrochemical storage device such as a secondary battery, a fuel cell, or a super capacity, electromagnetic wave shielding, a field emission display, or a gas sensor.
  • Patent Document Korean Patent Publication No. 10-2010-0108599
  • One aspect of the present invention is to provide an apparatus for producing carbon nanotubes capable of producing carbon nanotubes using only a catalyst without a flow for securing reactor temperature, and a method for producing carbon nanotubes using the production apparatus.
  • a carbon nanotube manufacturing apparatus is a carbon nanotube manufacturing apparatus, comprising: a cylindrical reactor body in which a accommodating part is formed as a space in which a reaction occurs; and a dispersion plate positioned below the receiving part of the reactor body to disperse the reaction gas supplied to the receiving part, wherein the reactor body includes: a lower reactor; an upper reactor having a larger diameter than the lower reactor; and an extension part connecting between the upper reactor and the lower reactor and gradually expanding in diameter.
  • the carbon nanotube manufacturing method according to an embodiment of the present invention is a carbon nanotube manufacturing method using the carbon nanotube manufacturing apparatus, the step of introducing a catalyst into the lower reactor (S1); raising the internal temperature of the lower reactor and the upper reactor (S2); and injecting a carbon source gas into the lower reactor (S3), wherein the internal temperature of the upper reactor is higher than the internal temperature of the lower reactor.
  • the carbon nanotube according to the embodiment of the present invention can be manufactured through the carbon nanotube manufacturing apparatus according to the embodiment of the present invention.
  • the present invention it is possible to increase the reactor usage rate and reduce the quality deviation between the reactants by using only the catalyst without a flow for securing the reactor temperature through the reactor with the diameter extending upward. That is, it is easy to secure the reaction temperature by supplying the catalyst to the lower reactor having a smaller diameter than the upper reactor and supplying the reaction gas from the lower part of the lower reactor, and this makes it possible to manufacture carbon nanotubes using only the catalyst. It can significantly increase the usage rate and reduce the quality deviation of reactants.
  • the extension of the reactor is formed so that the inclination angle is 5 to 45° with respect to the vertical direction to reduce the decrease in the flow rate at the edge of the extension, thereby reducing the amount of CNT aggregates generated by the decrease in the flow rate. and, accordingly, it is possible to prevent the CNT production from being reduced.
  • the extension of the reactor is formed so that the inclination angle is 10 to 30° with respect to the vertical direction to minimize the decrease in flow rate, thereby remarkably reducing the amount of CNT aggregates.
  • the diameter ratio of the lower reactor to the upper reactor is formed to be 1/5 to 1/1.5, so it is easier to secure the reaction temperature of the lower reactor, and the reaction gas contact time can be improved, thereby CNT production and optimization of production efficiency.
  • the diameter ratio of the lower reactor to the upper reactor is formed to be 1/3 to 1/2, so that it is remarkably easy to secure the reaction temperature of the lower reactor, and the reaction gas contact time can be further improved, so that the CNT Productivity and production efficiency can be further optimized.
  • FIG. 1 is a perspective view showing a main part of a carbon nanotube manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the main part concept of the carbon nanotube manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a perspective view schematically illustrating an apparatus for manufacturing carbon nanotubes according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a main part of a carbon nanotube manufacturing apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a main part concept of a carbon nanotube manufacturing apparatus according to an embodiment of the present invention
  • FIG. 3 is the present invention It is a perspective view schematically showing a carbon nanotube manufacturing apparatus according to an embodiment.
  • the carbon nanotube manufacturing apparatus 100 is a carbon nanotube manufacturing apparatus 100 , and includes a reactor body 110 in which an accommodating part 114 is formed, and and a dispersion plate 120 for dispersing the reaction gas supplied to the accommodating part 114 of the reactor body 110, and the reactor body 110 includes a lower reactor 112, an upper reactor 111, and an expansion part ( 113).
  • the carbon nanotube manufacturing apparatus 100 according to the first embodiment of the present invention recovers the catalyst supply unit 130 for supplying the catalyst (S), the gas supply unit 140 for supplying the reaction gas, and the reactant (P). It may further include a recovery unit 150, and a gas discharge unit 160 for discharging gas.
  • the reactor body 110 may have a accommodating part 114 that is a space in which a reaction occurs. At this time, the reactor body 110 may be formed in a cylindrical shape.
  • the reactor body 110 includes an upper reactor 111 having a larger diameter than the lower reactor 112, and an extension 113 that connects between the upper reactor 111 and the lower reactor 112 and gradually expands in diameter.
  • the reactor body 110 includes an upper reactor 111 having a larger diameter than the lower reactor 112, and an extension 113 that connects between the upper reactor 111 and the lower reactor 112 and gradually expands in diameter.
  • the height (h1) of the accommodating part 114 which is the total height of the interior of the reactor body 110, may be formed, for example, in 1 m to 10 m, but the receiving part of the present invention ( 114)
  • the height h1 is not necessarily limited thereto.
  • the upper reactor 111 may have a diameter (a) of, for example, 2 m or less. Specifically, the upper reactor 111 may have a diameter (a) of 0.4 to 2 m. However, the diameter (a) of the upper reactor 111 of the present invention is not necessarily limited thereto.
  • the diameter (b) of the lower reactor 112 may be, for example, 1/2 or less of the diameter (a) of the upper reactor 111 .
  • the diameter (b) of the lower reactor 112 may be specifically, for example, 1/5 to 1/2 of the diameter (a) of the upper reactor 111 .
  • the diameter (b) of the lower reactor 112 is formed to be 1/2 or less, which is the upper limit of the diameter (a) of the upper reactor 111, so that the temperature can be secured.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that there is an effect of preventing particle separation.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that there is an effect of preventing particle separation.
  • the gas flow rate increases, the particles depart from the lower reactor 112 and pass to the upper reactor 111 .
  • the gas flow rate is reduced, there is a problem that the catalyst/CNT circulation does not occur.
  • particle separation occurs at a gas linear velocity of 250 cm/s or more, and particles circulate only when it is 10 cm/s or more.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, to prevent particle separation and to circulate the particles.
  • the height h2 of the lower reactor 112 may be 1/150 to 1/8 with respect to the height h1 of the reactor body 110 .
  • the height h2 of the lower reactor 112 and the height h1 of the reactor body 110 may be the height of the section in which the accommodating part 114 is formed.
  • the upper reactor 111 and the lower reactor 112 may each have a constant diameter.
  • the dispersion plate 120 may be located under the receiving part 114 of the reactor body 110 to disperse the reaction gas supplied to the receiving part 114 .
  • the dispersion plate 120 may be located below the lower reactor 112 .
  • the dispersion plate 120 may be formed in the form of a disk in which a plurality of dispersion holes are formed.
  • the reaction gas flowing in from the lower part of the dispersion plate 120 may pass through the plurality of dispersion holes and may be dispersed to the receiving part 114 located on the upper part of the dispersion plate 120 .
  • the catalyst supply unit 130 may be connected to the lower reactor 112 to supply the catalyst S to the lower reactor 112 .
  • the catalyst supply unit 130 may supply the catalyst S into the lower reactor 112 so that the height h3 of the catalyst S is lower than the height h2 of the lower reactor 112 .
  • the catalyst supply unit 130 may supply the height h3 of the catalyst S to be 1/150 to 1/10 with respect to the total height h1 of the accommodation unit 114 of the reactor body 110 .
  • the height (h3) of the catalyst (S) before the reaction is supplied at 1/150 or more, which is the lower limit with respect to the total height (h1) of the accommodating part 114 of the reactor body 110, to secure the temperature and contact the gas It has the effect of saving time. That is, when the height of the catalyst S is too low, it is difficult to secure the temperature due to a large amount of catalyst relative to the adiabatic area, and the gas passage time of the catalyst layer is shortened, thereby preventing a decrease in reaction efficiency.
  • the height (h3) of the catalyst (S) before the reaction is supplied at 1/10 or less, which is the upper limit with respect to the total height (h1) of the accommodating part 114 of the reactor body 110, so that the reactants are transferred from the reactor body 110 It has the effect of preventing it from breaking out.
  • the volume grows by 250 to 2500 times when the reactant carbon nanotube (CNT) is grown in the catalyst (S).
  • the diameter of the lower reactor 112 compared to the upper reactor 111 is 1/5 (cross-sectional area 1/25)
  • the volume is 250 times * 1/25, and the upper limit is calculated as 1/10, in this case the catalyst height is 1/ If it is 10 or more, more than the volume of the accommodating part 114 of the reactor body 110 is produced.
  • the type of the catalyst (S) may be made of, for example, any one or more of Fe, Co, Ni, Cu, Cr, and Mn.
  • the gas supply unit 140 may be connected to the lower end of the lower reactor 112 to supply a reaction gas to the lower reactor 112 .
  • a carbon structure may be manufactured in the reactor body 110 accommodating unit 114 .
  • the carbon structure may be, for example, carbon nanotubes (CNTs).
  • reaction gas may be, for example, at least one of nitrogen (N2), ethylene (C 2 H 4 ), acetylene, methane, or carbon monoxide.
  • the gas supply unit 140 may supply the amount of ethylene into the reactor in an amount of 20 to 1000 (m 3 /hr).
  • the gas supply unit 140 may include a preheater.
  • the reaction gas may be preheated in the preheater S1 before being supplied to the inside of the reactor body 110 .
  • the recovery unit 150 may be connected to the lower reactor 112 to recover the reactant P located inside the receiving unit 114 .
  • the recovery unit 150 is connected to the lower reactor 112 to receive a recovery line 151 from which the reactant P is recovered, and a storage tank 153 for storing the recovered reactant P connected to the recovery line 151 .
  • the recovery unit 150 may further include a cooler 152 (Cooler) positioned on the recovery line 151 to cool the reactant P.
  • the high-temperature reactant P accommodated in the reactor body 110 may be recovered through the recovery line 151 , cooled through the cooler 152 , and then stored in the storage tank 153 .
  • the gas discharge unit 160 may be connected to the upper portion of the upper reactor 111 to discharge the reaction-completed gas located in the receiving unit 114 of the reactor body 110 .
  • the gas discharge unit 160 may be connected to an end or a side surface of the upper reactor 111 .
  • the carbon nanotube manufacturing apparatus 100 may further include a heating unit, a heat exchanger 170 , a cyclone 180 , an incinerator 190 , and a fine distribution unit J. have.
  • the heating unit may be provided on the outside of the reactor body 110 to heat the reactor body 110 to a high temperature.
  • the heat exchanger 170 may be connected to the gas discharge unit 160 provided on the upper portion of the reactor body 110 to exchange heat with the discharged gas. That is, the high-temperature gas discharged from the reactor body 110 may be heat-exchanged to transfer the high-temperature heat to another device for use.
  • the heat exchanger 170 may include a steam pipe, and may be used for preheating the reaction gas when the reaction gas is supplied from the gas supply unit 140 by receiving heat through the steam pipe.
  • the cyclone 180 may be connected to the heat exchanger 170 to separate fine powder (powder) and gas from the heat-exchanged gas.
  • the incinerator 190 may be connected to one side of the cyclone 180 to incinerate the gas separated from the cyclone 180 .
  • the fine distribution unit J may be connected to the other side of the cyclone 180 to collect fines separated from the cyclone 180 .
  • the operation of the carbon nanotube manufacturing apparatus 100 according to the first embodiment of the present invention will be described in detail by way of example.
  • the reactor body 110 is accommodated Nitrogen is supplied to the unit 114 , the temperature of the reactor body 110 is raised through a heating unit, and a catalyst is supplied into the lower reactor 112 through the catalyst supply unit 130 .
  • ethylene is supplied to the receiving part 114 of the reactor body 110 to react with the catalyst S at a high temperature.
  • the reacted reactant P may be recovered from the receiving part 114 of the reactor body 110 through the recovery part 150 .
  • the reactor body 110 has a diameter larger than that of the lower reactor 112 and the lower reactor 112 .
  • the catalyst (S) is supplied to the lower reactor 112 having a smaller diameter than the upper reactor 111, and the reaction gas is supplied from the lower part of the lower reactor 112 through the dispersion plate 120 to secure the reaction temperature.
  • the lower reactor of the present invention the upper reactor having a diameter larger than that of the lower reactor, and a multi-stage reactor body including an extension part connecting between the upper reactor and the lower reactor and gradually expanding in diameter are provided.
  • the lower reactor and the upper reactor are each formed to have a constant diameter. Nitrogen is supplied to the lower part of the lower reactor, the temperature of the reactor body is raised through the heating unit, and the catalyst is supplied into the lower reactor through the catalyst supply unit.
  • the diameter of the lower reactor is 0.05 m
  • the diameter of the upper reactor is 0.1 m
  • the height of the reactor body is 2 m.
  • the extension is expanded from 0.3m in height.
  • ethylene is supplied to the lower part of the lower reactor to react with the catalyst at a high temperature to produce a reactant.
  • the reacted reactant is recovered through a recovery unit inside the reactor body.
  • carbon nanotubes were prepared by repeating the catalyst injection step.
  • reaction temperature was maintained at 700° C.
  • ethylene flow rate was 5 [L/min]
  • nitrogen flow rate was 15 [L/min].
  • the specific surface area was measured by the BET method.
  • the reactor usage rate in Comparative Examples A1 and A3 was 66%, whereas in Preparation Examples A1 and A2, the reactor usage rate was 100%. In addition, in Comparative Example A2, no reaction occurred. That is, in Preparation Example A1 and Preparation Example A2 prepared according to the present invention, all of the reactors can be used, but in Comparative Examples A1 and A3, due to the volume occupied by the internal flow, there is a difference in the reactor usage rate of only 66%.
  • Comparative Example A4 in which the reactor body is formed in a one-stage shape, the lower part is expanded, and does not use an internal flow to ensure temperature, whereas the CNT production amount is only 50 [g]. It can be seen that in Preparation Example A2 in which the reactor body is formed in multiple stages and provided with an extension part that expands toward the upper part, the CNT production amount is remarkably large as 415 [g]. That is, it can be seen that the CNT production increased about 8 to 9 times in Preparation Example A2 than in Comparative Example A4.
  • Comparative Example A4 in which the lower diameter is expanded without using an internal fluid, is a method in which the tube is expanded directly from the lowermost side of the reactor body, which is unfavorable to heat transfer, and thus it can be seen that the CNT production is only 50 [g]. That is, in Comparative Example A4, the linear velocity (cm/s) is changed from just above the dispersion plate by expansion of the reaction gas at the same volumetric flow rate (cm3/s). Therefore, the upper part of the dispersion plate is the section most vulnerable to Cake (CNT agglomerate), and since the linear velocity decreases due to expansion of the tube, the cake (CNT agglomerate) production is accelerated.
  • the carbon nanotube manufacturing apparatus 100 is a carbon nanotube manufacturing apparatus 100 , and includes a reactor body 110 in which a receiving part 114 is formed, and and a dispersion plate 120 for dispersing the reaction gas supplied to the accommodating part 114 of the reactor body 110, and the reactor body 110 includes a lower reactor 112, an upper reactor 111, and an expansion part ( 113).
  • the carbon nanotube manufacturing apparatus 100 according to the second embodiment of the present invention recovers the catalyst supply unit 130 for supplying the catalyst (S), the gas supply unit 140 for supplying the reaction gas, and the reactant (P). It may further include a recovery unit 150, and a gas discharge unit 160 for discharging gas.
  • the carbon nanotube manufacturing apparatus according to the second embodiment of the present invention is different from the carbon nanotube manufacturing apparatus according to the above-described first embodiment, in that the inclination angle of the extension part 113 is further limited.
  • the reactor body 110 may have a accommodating part 114 that is a space in which a reaction occurs. At this time, the reactor body 110 may be formed in a cylindrical shape.
  • the reactor body 110 includes an upper reactor 111 having a larger diameter than the lower reactor 112, and an extension 113 connecting between the upper reactor 111 and the lower reactor 112 and gradually expanding in diameter.
  • the reactor body 110 includes an upper reactor 111 having a larger diameter than the lower reactor 112, and an extension 113 connecting between the upper reactor 111 and the lower reactor 112 and gradually expanding in diameter.
  • the height (h1) of the accommodating part 114 which is the total height of the interior of the reactor body 110, may be formed, for example, in 1 m to 10 m, but the receiving part of the present invention ( 114)
  • the height h1 is not necessarily limited thereto.
  • the upper reactor 111 may have a diameter (a) of, for example, 2 m or less. Specifically, the upper reactor 111 may have a diameter (a) of 0.4 to 2 m. However, the diameter (a) of the upper reactor 111 of the present invention is not necessarily limited thereto.
  • the diameter (b) of the lower reactor 112 may be, for example, 1/2 or less of the diameter (a) of the upper reactor 111 .
  • the diameter (b) of the lower reactor 112 may be specifically, for example, 1/5 to 1/2 of the diameter (a) of the upper reactor 111 .
  • the diameter (b) of the lower reactor 112 is formed to be 1/2 or less, which is the upper limit of the diameter (a) of the upper reactor 111, so that the temperature can be secured.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that there is an effect of preventing particle separation.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that there is an effect of preventing particle separation.
  • the gas flow rate increases, the particles depart from the lower reactor 112 and pass to the upper reactor 111 .
  • the gas flow rate is reduced, there is a problem that the catalyst/CNT circulation does not occur.
  • particle separation occurs at a gas linear velocity of 250 cm/s or more, and particles circulate only when it is 10 cm/s or more.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, to prevent particle separation and to circulate the particles.
  • the height h2 of the lower reactor 112 may be 1/150 to 1/8 with respect to the height h1 of the reactor body 110 .
  • the height h2 of the lower reactor 112 and the height h1 of the reactor body 110 may be the height of the section in which the accommodating part 114 is formed.
  • the upper reactor 111 and the lower reactor 112 may each have a constant diameter.
  • the extension part 113 is provided between the lower reactor 112 and the upper reactor 111, and the inclined surface 111a in the form of a taper gradually expands in diameter toward the lower reactor 112 and the upper reactor 111. ) can be formed.
  • the inclination angle ⁇ of the extension 113 may be formed to be, for example, 5 to 45° with respect to the vertical direction V.
  • the vertical direction V refers to a direction parallel to a straight line extending in the vertical direction when referring to FIG. 1 , and may be an extension direction of the upper reactor 111 . That is, the inclination angle ⁇ of the extension 113 may be an angle between a straight line in the vertical direction V and the inclined surface 113a of the extension 113 . Accordingly, a phenomenon in which the inclination angle ⁇ of the extension 113 is formed to be 45° or less and the flow velocity of the edge of the extension 113 is reduced can be significantly reduced.
  • the inclination angle ⁇ of the extension 113 is formed to be 5° or more, so that the upper reactor 111 can form the lower reactor 112 with a smaller diameter, so that the heat transfer area in the lower reactor 112 is It can be made to react even if only the catalyst is injected by securing enough.
  • the inclination angle ( ⁇ ) of the extension part 113 may be specifically, for example, formed to be 5 to 30° with respect to the vertical direction (V). Accordingly, a phenomenon in which the inclination angle ⁇ of the extended part 113 is formed to be 30° or less and the flow velocity of the edge of the extended part 113 is reduced can be significantly reduced.
  • the inclination angle ⁇ of the extension part 113 may be formed to be more specifically, for example, 10 to 30° with respect to the vertical direction V.
  • the dispersion plate 120 may be located under the receiving part 114 of the reactor body 110 to disperse the reaction gas supplied to the receiving part 114 .
  • the dispersion plate 120 may be located below the lower reactor 112 .
  • the dispersion plate 120 may be formed in the form of a disk in which a plurality of dispersion holes are formed.
  • the reaction gas flowing in from the lower part of the dispersion plate 120 may pass through the plurality of dispersion holes and may be dispersed to the receiving part 114 located on the upper part of the dispersion plate 120 .
  • the catalyst supply unit 130 may be connected to the lower reactor 112 to supply the catalyst S to the lower reactor 112 .
  • the catalyst supply unit 130 may supply the catalyst S into the lower reactor 112 so that the height h3 of the catalyst S is lower than the height h2 of the lower reactor 112 .
  • the catalyst supply unit 130 may supply the height h3 of the catalyst S to be 1/150 to 1/10 with respect to the total height h1 of the accommodation unit 114 of the reactor body 110 .
  • the height (h3) of the catalyst (S) before the reaction is supplied at 1/150 or more, which is the lower limit with respect to the total height (h1) of the accommodating part 114 of the reactor body 110, to secure the temperature and contact the gas It has the effect of saving time. That is, when the height of the catalyst (S) is too low, it is difficult to secure the temperature due to a large amount of catalyst relative to the adiabatic area, and the gas passage time of the catalyst layer is shortened, thereby preventing a decrease in reaction efficiency.
  • the height (h3) of the catalyst (S) before the reaction is supplied at 1/10 or less, which is the upper limit with respect to the total height (h1) of the accommodating part 114 of the reactor body 110, so that the reactants are transferred from the reactor body 110 It has the effect of preventing it from breaking out.
  • the volume grows by 250 to 2500 times when the reactant carbon nanotube (CNT) is grown in the catalyst (S).
  • the diameter of the lower reactor 112 compared to the upper reactor 111 is 1/5 (cross-sectional area 1/25)
  • the volume is 250 times * 1/25, and the upper limit is calculated as 1/10, in this case the catalyst height is 1/ If it is 10 or more, more than the volume of the accommodating part 114 of the reactor body 110 is produced.
  • the type of the catalyst (S) may be made of, for example, any one or more of Fe, Co, Ni, Cu, Cr, and Mn.
  • the gas supply unit 140 may be connected to the lower end of the lower reactor 112 to supply a reaction gas to the lower reactor 112 .
  • a carbon structure may be manufactured in the reactor body 110 accommodating unit 114 .
  • the carbon structure may be, for example, carbon nanotubes (CNTs).
  • reaction gas may be, for example, at least one of nitrogen (N2), ethylene (C 2 H 4 ), acetylene, methane, or carbon monoxide.
  • the gas supply unit 140 may supply the amount of ethylene into the reactor in an amount of 20 to 1000 (m 3 /hr).
  • the gas supply unit 140 may include a preheater.
  • the reaction gas may be preheated in the preheater S1 before being supplied to the inside of the reactor body 110 .
  • the recovery unit 150 may be connected to the lower reactor 112 to recover the reactant P located inside the receiving unit 114 .
  • the recovery unit 150 is connected to the lower reactor 112 to receive a recovery line 151 from which the reactant P is recovered, and a storage tank 153 for storing the recovered reactant P connected to the recovery line 151 .
  • the recovery unit 150 may further include a cooler 152 (Cooler) positioned on the recovery line 151 to cool the reactant P.
  • the high-temperature reactant P accommodated in the reactor body 110 may be recovered through the recovery line 151 , cooled through the cooler 152 , and then stored in the storage tank 153 .
  • the gas discharge unit 160 may be connected to the upper portion of the upper reactor 111 to discharge the reaction-completed gas located in the receiving unit 114 of the reactor body 110 .
  • the gas discharge unit 160 may be connected to an end or a side surface of the upper reactor 111 .
  • the carbon nanotube manufacturing apparatus 100 may further include a heating unit, a heat exchanger 170 , a cyclone 180 , an incinerator 190 , and a fine distribution unit J. have.
  • the heating unit may be provided on the outside of the reactor body 110 to heat the reactor body 110 to a high temperature.
  • the heat exchanger 170 may be connected to the gas discharge unit 160 provided on the upper portion of the reactor body 110 to exchange heat with the discharged gas. That is, the high-temperature gas discharged from the reactor body 110 may be heat-exchanged to transfer the high-temperature heat to another device for use.
  • the heat exchanger 170 may include a steam pipe, and may be used for preheating the reaction gas when the reaction gas is supplied from the gas supply unit 140 by receiving heat through the steam pipe.
  • the cyclone 180 may be connected to the heat exchanger 170 to separate fine powder (powder) and gas from the heat-exchanged gas.
  • the incinerator 190 may be connected to one side of the cyclone 180 to incinerate the gas separated from the cyclone 180 .
  • the fine distribution unit J may be connected to the other side of the cyclone 180 to collect fines separated from the cyclone 180 .
  • the operation of the carbon nanotube manufacturing apparatus 100 according to the second embodiment of the present invention will be described in detail as an example.
  • Nitrogen is supplied to the unit 114 , the temperature of the reactor body 110 is raised through the heating unit, and the catalyst is supplied into the lower reactor 112 through the catalyst supply unit 130 .
  • ethylene is supplied to the receiving part 114 of the reactor body 110 to react with the catalyst S at a high temperature.
  • the reacted reactant P may be recovered from the receiving part 114 of the reactor body 110 through the recovery part 150 .
  • the reactor body 110 has a diameter larger than that of the lower reactor 112 and the lower reactor 112 .
  • the large upper reactor 111, and an extension 113 that connects between the upper reactor 111 and the lower reactor 112 and gradually expands in diameter only the catalyst (S) without a flow for securing temperature It can be used to manufacture carbon nanotubes.
  • the catalyst (S) is supplied to the lower reactor 112, which has a smaller diameter than the upper reactor 111, and the reaction gas is supplied from the lower part of the lower reactor 112 through the dispersion plate 120 to secure the reaction temperature.
  • the expanded portion 113 of the reactor body 110 is formed so that the inclination angle is 5 to 45° with respect to the vertical direction, thereby reducing the flow rate reduction phenomenon of the edge portion of the expanded portion 113 , thereby reducing the flow rate It is possible to reduce the amount of unnecessary CNT aggregates generated by the reduction, and thus, it is possible to prevent the CNT production from being reduced.
  • the extension 113 is formed so that the inclination angle is 10 to 30 ° with respect to the vertical direction to minimize the decrease in flow rate, thereby remarkably reducing the amount of CNT aggregates.
  • the upper reactor having a larger diameter than the lower reactor, and the multi-stage reactor body including an extension part connecting between the upper reactor and the lower reactor and gradually expanding in diameter, nitrogen is supplied to the lower part of the lower reactor, , to increase the temperature of the reactor body through the heating unit, and supply the catalyst into the lower reactor through the catalyst supply unit.
  • the diameter of the lower reactor is 0.05 m
  • the diameter of the upper reactor is 0.1 m
  • the height of the reactor body is 2 m.
  • the extension part is expanded from a height of 0.3m, and it is expanded to have a 45° inclination with respect to the vertical direction.
  • ethylene is supplied to the lower part of the lower reactor to react with the catalyst at a high temperature to produce a reactant.
  • the reacted reactant is recovered through a recovery unit inside the reactor body.
  • carbon nanotubes were prepared by repeating the catalyst injection step.
  • CNT carbon nanotubes
  • the specific surface area was measured by the BET method.
  • Comparative Examples B1, B4, and B5 in which the reactor body was formed in a single stage, produced only 50 to 276 [g] of CNT, whereas the reactor body was formed in multiple stages and the upper part It can be seen that the production examples B1 to B4 provided with an extension that expands toward the .
  • Comparative Example B5 in which the lower diameter is expanded without using an internal fluid, is a method in which the tube is expanded directly from the lowermost side of the reactor body, which is unfavorable to heat transfer, so that the CNT production is only 50 [g]. That is, in Comparative Example B5, the linear velocity (cm/s) is changed from just above the dispersion plate by expansion of the reaction gas at the same volumetric flow rate (cm3/s). Therefore, the upper part of the dispersion plate is the section most vulnerable to Cake (CNT agglomerate), and since the linear velocity is reduced by expansion, the cake (CNT agglomerate) production is accelerated.
  • the height of the initial injection catalyst layer decreases as the diameter increases, and thus the temperature security and reactivity (production amount) decrease.
  • cake (CNT aggregate) formation when the reactor is formed in an expanded tube shape with an enlarged diameter, when gas enters from the bottom to the top due to inertia, the amount of gas flowing toward the slope is relatively small. In addition, gas descends at a slow flow rate on the wall of the inclined part, which causes catalyst/carbon stagnation and unnecessary cake (carbon aggregate, CNT aggregate).
  • CNTs are not produced in Comparative Example B2 in which the reactor body is formed in a single-stage type having a uniform diameter as a whole, but has no internal flow. Therefore, in Comparative Example B2, when the reactor body is formed in a single-stage type having a constant diameter, CNTs are not produced without a flow for ensuring temperature, but as in Preparation Examples B1 to B4, the reactor body is formed in multiple stages, but expands toward the top It can be seen that CNTs are produced even by using only the catalyst without a flow for securing the temperature when the auxiliary is provided.
  • Comparative Example B3 in which the reactor body is formed in multiple stages and the inclination angle of the extension part whose diameter is gradually expanded is 60°, the amount of CNT aggregates is generated as much as 10 [g], whereas the reactor body is formed in multiple stages but the diameter is It can be seen that in Preparation Examples B1 to B4 in which the inclination angle of the gradually expanding extension was formed to be 10 to 45°, the amount of CNT aggregates was significantly reduced to 2 to 7 [g]. That is, it can be seen that as the inclination angle of the extension increases, the flow velocity of the edge portion of the extension decreases, thereby increasing the amount of CNT aggregates.
  • a carbon nanotube manufacturing apparatus 100 is a carbon nanotube manufacturing apparatus 100 , and includes a reactor body 110 in which a receiving part 114 is formed, and and a dispersion plate 120 for dispersing the reaction gas supplied to the accommodating part 114 of the reactor body 110, and the reactor body 110 includes a lower reactor 112, an upper reactor 111, and an expansion part ( 113).
  • the carbon nanotube manufacturing apparatus 100 according to the third embodiment of the present invention recovers the catalyst supply unit 130 for supplying the catalyst (S), the gas supply unit 140 for supplying the reaction gas, and the reactant (P). It may further include a recovery unit 150, and a gas discharge unit 160 for discharging gas.
  • the carbon nanotube production apparatus according to the third embodiment of the present invention is compared with the carbon nanotube production apparatus according to the first and second embodiments described above, the lower reactor 112 directly to the upper reactor 111. There is a difference in the cost limit.
  • the reactor body 110 may have a accommodating part 114 that is a space in which a reaction occurs. At this time, the reactor body 110 may be formed in a cylindrical shape.
  • the reactor body 110 includes an upper reactor 111 having a larger diameter than the lower reactor 112, and an extension 113 that connects between the upper reactor 111 and the lower reactor 112 and gradually expands in diameter.
  • the reactor body 110 includes an upper reactor 111 having a larger diameter than the lower reactor 112, and an extension 113 that connects between the upper reactor 111 and the lower reactor 112 and gradually expands in diameter.
  • the height (h1) of the accommodating part 114 which is the total height of the interior of the reactor body 110, may be formed, for example, in 1 m to 10 m, but the receiving part of the present invention ( 114)
  • the height h1 is not necessarily limited thereto.
  • the diameter ratio of the lower reactor 112 to the upper reactor 111 may be, for example, 1/5 to 1/1.5. That is, the diameter (b) of the lower reactor 112 may be formed to be 1/5 to 1/1.5 of the diameter (a) of the upper reactor 111 .
  • the diameter (b) of the lower reactor 112 is formed to be 1/1.5 or less, which is the upper limit of the diameter (a) of the upper reactor 111, so that the temperature can be secured.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that there is an effect of preventing particle separation.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that there is an effect of preventing particle separation.
  • the gas flow rate increases, the particles depart from the lower reactor 112 and pass to the upper reactor 111 .
  • the gas flow rate is reduced, there is a problem that the catalyst/CNT circulation does not occur.
  • particle separation occurs at a gas linear velocity of 250 cm/s or more, and particles circulate only when it is 10 cm/s or more.
  • the diameter (b) of the lower reactor 112 is formed to be 1/5 or more, which is the lower limit of the diameter (a) of the upper reactor 111, to prevent particle separation and to circulate the particles.
  • the diameter ratio of the lower reactor 112 to the upper reactor 111 may be, for example, 1/3 to 1/2. That is, the diameter (b) of the lower reactor 112 may be 1/3 to 1/2 of the diameter (a) of the upper reactor 111 .
  • the diameter (b) of the lower reactor 112 is formed to be 1/2 or less, which is the upper limit of the diameter (a) of the upper reactor 111, so that it is significantly easier to secure the temperature.
  • the diameter (b) of the lower reactor 112 is formed to be 1/3 or more, which is the lower limit of the diameter (a) of the upper reactor 111, so that the effect of preventing particle separation is remarkable.
  • the height h2 of the lower reactor 112 may be, for example, 1/150 to 1/2 with respect to the height h1 of the reactor body 110 .
  • the height h2 of the lower reactor 112 may be specifically, for example, 1/150 to 1/8 with respect to the height h1 of the reactor body 110, but the present invention is necessarily limited thereto. it's not going to be
  • the height h2 of the lower reactor 112 and the height h1 of the reactor body 110 may be the height of the section in which the accommodating part 114 is formed.
  • the upper reactor 111 and the lower reactor 112 may each have a constant diameter.
  • the expansion part 113 is provided between the lower reactor 112 and the upper reactor 111, and the inclined surface 111a in the form of a taper gradually expands in diameter toward the lower reactor 112 and the upper reactor 111. ) can be formed.
  • the dispersion plate 120 may be located under the receiving part 114 of the reactor body 110 to disperse the reaction gas supplied to the receiving part 114 .
  • the dispersion plate 120 may be located below the lower reactor 112 .
  • the dispersion plate 120 may be formed in the form of a disk in which a plurality of dispersion holes are formed.
  • the reaction gas flowing in from the lower part of the dispersion plate 120 may pass through the plurality of dispersion holes and may be dispersed to the receiving part 114 located on the upper part of the dispersion plate 120 .
  • the catalyst supply unit 130 may be connected to the lower reactor 112 to supply the catalyst S to the lower reactor 112 .
  • the catalyst supply unit 130 may supply the catalyst (S) to the lower reactor 112 to form a fluidized bed of the catalyst (S) in the lower reactor 112 .
  • the catalyst supply unit 130 may supply the catalyst S into the lower reactor 112 so that the height h3 of the fluidized bed of the catalyst S is lower than the height h2 of the lower reactor 112 .
  • the catalyst supply unit 130 may supply the catalyst S so that, for example, the height h3 of the fluidized bed of the catalyst S is 1/330 to 1/30 compared to the height h4 of the upper reactor 111 .
  • the catalyst supply unit 130 specifically supplies the catalyst (S) so that, for example, the height (h3) of the fluidized bed of the catalyst (S) becomes 1/200 to 1/50 of the height (h4) of the upper reactor 111.
  • the catalyst supply unit 130 supplies the height (h3) of the fluidized bed of the catalyst (S) before the reaction at 1/330 or more, which is the lower limit with respect to the height (h4) of the upper reactor 111, to secure temperature and contact time with gas It has the effect of securing it. That is, when the height of the fluidized bed of the catalyst (S) is too low, it is difficult to secure the temperature due to the large amount of catalyst relative to the adiabatic area, and the gas passage time of the fluidized bed of the catalyst (S) is shortened, thereby preventing a decrease in reaction efficiency.
  • the catalyst supply unit 130 supplies the height (h3) of the fluidized bed of the catalyst (S) before the reaction to 1/30 or less, which is an upper limit with respect to the height (h4) of the upper reactor 111, so that the reactants are transferred to the reactor body (110) It has the effect of preventing it from being separated.
  • the type of the catalyst (S) may be made of, for example, any one or more of Fe, Co, Ni, Cu, Cr, and Mn.
  • the gas supply unit 140 may be connected to the lower end of the lower reactor 112 to supply a reaction gas to the lower reactor 112 .
  • a carbon structure may be manufactured in the reactor body 110 accommodating unit 114 .
  • the carbon structure may be, for example, carbon nanotubes (CNTs).
  • reaction gas may be, for example, at least one of nitrogen (N2), ethylene (C 2 H 4 ), acetylene, methane, or carbon monoxide.
  • the gas supply unit 140 may supply the amount of ethylene into the reactor in an amount of 1.2 to 500 (m 3 /hr).
  • the gas supply unit 140 may include a preheater.
  • the reaction gas may be preheated in the preheater S1 before being supplied to the inside of the reactor body 110 .
  • the recovery unit 150 may be connected to the lower reactor 112 to recover the reactant P located inside the receiving unit 114 .
  • the recovery unit 150 is connected to the lower reactor 112 to receive a recovery line 151 from which the reactant P is recovered, and a storage tank 153 for storing the recovered reactant P connected to the recovery line 151 .
  • the recovery unit 150 may further include a cooler 152 (Cooler) positioned on the recovery line 151 to cool the reactant P.
  • the high-temperature reactant P accommodated in the reactor body 110 may be recovered through the recovery line 151 , cooled through the cooler 152 , and then stored in the storage tank 153 .
  • the gas discharge unit 160 may be connected to the upper portion of the upper reactor 111 to discharge the reaction-completed gas located in the receiving unit 114 of the reactor body 110 .
  • the gas discharge unit 160 may be connected to an end or a side surface of the upper reactor 111 .
  • the carbon nanotube manufacturing apparatus 100 may further include a heating unit, a heat exchanger 170 , a cyclone 180 , an incinerator 190 , and a fine distribution unit J. have.
  • the heating unit may be provided on the outside of the reactor body 110 to heat the reactor body 110 to a high temperature.
  • the heat exchanger 170 may be connected to the gas discharge unit 160 provided on the upper portion of the reactor body 110 to exchange heat with the discharged gas. That is, the high-temperature gas discharged from the reactor body 110 may be heat-exchanged to transfer the high-temperature heat to another device for use.
  • the heat exchanger 170 may include a steam pipe, and may be used for preheating the reaction gas when the reaction gas is supplied from the gas supply unit 140 by receiving heat through the steam pipe.
  • the cyclone 180 may be connected to the heat exchanger 170 to separate fine powder (powder) and gas from the heat-exchanged gas.
  • the incinerator 190 may be connected to one side of the cyclone 180 to incinerate the gas separated from the cyclone 180 .
  • the fine distribution unit J may be connected to the other side of the cyclone 180 to collect fines separated from the cyclone 180 .
  • the operation of the carbon nanotube manufacturing apparatus 100 according to the third embodiment of the present invention will be described in detail as an example.
  • Nitrogen is supplied to the unit 114 , the reactor body 110 is heated through the heating unit, and the catalyst S is supplied into the lower reactor 112 through the catalyst supply unit 130 .
  • ethylene is supplied to the receiving part 114 of the reactor body 110 to react with the catalyst S at a high temperature.
  • the reacted reactant P may be recovered from the receiving part 114 of the reactor body 110 through the recovery part 150 .
  • the reactor body 110 has a diameter larger than that of the lower reactor 112 and the lower reactor 112 .
  • the catalyst (S) is supplied to the lower reactor 112 having a smaller diameter than the upper reactor 111, and the reaction gas is supplied from the lower part of the lower reactor 112 through the dispersion plate 120 to secure the reaction temperature.
  • the diameter ratio of the lower reactor 112 to the upper reactor 111 is formed to be 1/5 to 1/1.5, so that it is easier to secure the reaction temperature of the lower reactor 112 and the reaction gas contact time is improved can be used, which can optimize CNT production and production efficiency.
  • the diameter ratio of the lower reactor 112 to the upper reactor 111 is formed to be 1/3 to 1/2, so that it is remarkably easy to secure the reaction temperature of the lower reactor 112, and the reaction gas contact time is longer. can be improved, thereby further optimizing CNT production and production efficiency. Ethylene selectivity efficiency can be optimized.
  • the upper reactor having a larger diameter than the lower reactor, and the multi-stage reactor body including an extension part connecting between the upper reactor and the lower reactor and gradually expanding in diameter, nitrogen is supplied to the lower part of the lower reactor, , the reactor body is heated through a heating unit, and a catalyst is supplied into the lower reactor through a catalyst supply unit to form a catalyst fluidized bed.
  • the diameter ratio of the lower reactor to the upper reactor is 1/3, and the height of the catalyst fluidized bed is 1/77 compared to the height of the upper reactor. At this time, the diameter of the lower reactor is formed to be 3 cm.
  • ethylene is supplied to the lower part of the lower reactor to react with the catalyst at a high temperature to produce a reactant.
  • the reacted reactant is recovered through a recovery unit inside the reactor body.
  • carbon nanotubes were prepared by repeating the catalyst injection step.
  • CNT carbon nanotubes
  • the specific surface area was measured by the BET method.
  • Comparative Example C2 in which the internal flow was not used but the reactor body was formed in the form of one stage, produced only 0 [g] of CNT, but did not use an internal flow, and the reactor body was multistage. It can be seen that the production examples C1 and C2 of Preparation C1 and Preparation C2, which are formed as , and provided with an extension that expands toward the top, have a significantly higher CNT production of 293 to 321 [g].
  • Comparative Example C2 in which the reactor body is formed in a single stage having a uniform diameter as a whole, but has no internal flow. Therefore, in Comparative Example C2, when the reactor body is formed in a single-stage type with a constant diameter, CNTs are not produced without a flow for ensuring temperature, but as in Preparation Examples C1 and 2, the reactor body is formed in multiple stages, but expands toward the top It can be seen that CNTs are produced even by using only the catalyst without a flow for securing the temperature when the auxiliary is provided.
  • the present invention provides a method for producing carbon nanotubes using the carbon nanotube production apparatus described above, and specifically, the present invention provides a method for producing carbon nanotubes using the carbon nanotube production apparatus described above. Including the step (S1) of introducing a catalyst (S1) raising the internal temperature of the lower reactor and the upper reactor (S2) and the step of injecting a carbon source gas into the lower reactor (S3), wherein the upper temperature is higher than the internal temperature of the lower reactor It provides a method for producing carbon nanotubes, characterized in that the internal temperature of the reactor is higher.
  • the characteristic of the carbon nanotube manufacturing method provided by the present invention is, as described above, the upper reactor and the lower reactor are divided, and the carbon nanotube uses a fluidized bed reactor having a structure in which the diameter of the upper reactor is larger than the diameter of the lower reactor.
  • the sintering phenomenon of the catalyst is suppressed by adjusting the temperature of the upper reactor region and the lower reactor region differently, more specifically, the temperature of the upper reactor region is higher than the temperature of the lower reactor region, Through this, it is possible to reduce the time of one cycle consumed for carbon nanotube synthesis and to increase the amount of production per unit time.
  • the internal temperature of the lower reactor may be 500 to 800 °C, preferably 600 to 700 °C.
  • the internal temperature of the upper reactor may be 600 to 900 °C, preferably 700 to 800 °C.
  • the difference between the internal temperature of the upper reactor and the internal temperature of the lower reactor may be 50 to 150 °C, preferably 70 to 130 °C.
  • the difference between the internal temperature of the upper reactor and the internal temperature of the lower reactor is smaller than this, the technical advantage of setting the temperature of the upper reactor and the lower reactor differently appears less, and when the internal temperature difference is larger than this, the lower reactor and the upper reactor During the process of moving to the furnace, as the temperature of the catalyst particles on which the carbon nanotubes grow rapidly changes, aggregates (Cake) are formed inside the reactor, or amorphous carbon is formed, so that the quality of the finally obtained product is uneven.
  • the catalyst sintering phenomenon in the initial stage of the reaction increases rapidly, so that the unit cycle
  • the amount of carbon nanotubes produced by sugar is rapidly reduced, and carbon nanotubes with low bulk density and low specific surface area can be synthesized in terms of physical properties of the finally produced carbon nanotubes.
  • the input catalyst can be used without particular limitation, as long as it is known in the art to be used for carbon nanotube production using a fluidized bed reactor, and can be used with active metals and carriers that can be commonly used. It may be a heterogeneous catalyst having a complex structure of members, and more specifically, a catalyst in the form of a supported catalyst or a co-precipitation catalyst may be used.
  • the bulk density is higher than that of the co-precipitation catalyst, and unlike the co-precipitation catalyst, the fine particles of 10 microns or less are small, so the occurrence of agglomeration of fine particles can be suppressed, and abrasion that may occur during the fluidization process It is advantageous in that it is possible to reduce the possibility of generation of fine powder due to the catalyst itself and to stabilize the reactor operation due to excellent mechanical strength of the catalyst itself.
  • the method for preparing the catalyst is simple, the cost of metal salts suitable as catalyst raw materials is low, which is advantageous in terms of manufacturing cost, and the specific surface area is wide and thus catalytic activity is high.
  • the catalyst may include at least one selected from Co, Fe, Ni, Mo and V as an active component, and more preferably, at least one or more selected from Co, Fe and Ni as a main catalyst component, Mo And at least one selected from V may be included as a co-catalyst component.
  • the activation energy of the carbon nanotube synthesis reaction is greatly lowered, so that carbon nanotubes can be efficiently synthesized.
  • the carbon source gas injected in the carbon nanotube manufacturing method of the present invention is a carbon-containing gas capable of decomposing at a high temperature to form carbon nanotubes, and specific examples include various carbon-containing compounds such as aliphatic alkanes, aliphatic alkenes, aliphatic alkynes, and aromatic compounds.
  • the linear velocity of the carbon source gas injected into the lower reactor may be 5 to 200 cm/s, preferably 10 to 20 cm/s. If the linear velocity of the carbon source gas injected into the lower reactor is too low, there may be a problem that the catalyst particles remain in the lower reactor region for too long and cannot move to the upper reactor region, and if the linear velocity of the carbon source gas is too high, Rather, even though the carbon nanotube growth in the lower reactor area is not sufficiently achieved, the catalyst particles are transferred to the upper reactor area, and thus the finally obtained carbon nanotubes may not be sufficiently grown.
  • the carbon source gas may be injected together with the flowing gas.
  • the fluidizing gas is for further improving the fluidity of the carbon source gas and the catalyst particles, and a gas with little or no reactivity may be used as the fluidizing gas, and specifically, nitrogen gas or argon gas may be used as the fluidizing gas.
  • a flow ratio between the carbon source gas and the flowing gas may be 1:1 to 1:8, preferably 1:2 to 1:5.
  • the effect of improving the flowability may be small, and when the amount of the flowing gas is too much, the amount of the carbon source gas is relatively insufficient, so that the relative ratio of the carbon source gas in contact with the catalyst surface is There may be problems with shrinking.
  • the carbon nanotube produced through the carbon nanotube manufacturing method of the present invention as described above may have a bulk density of 30 to 40 kg/m 3 , preferably 33 to 37.5 kg/m 3 .
  • the specific surface area of the carbon nanotubes may be 200 m 2 /g or more, preferably 230 to 270 m 2 /g.
  • the purity of the carbon nanotubes may be 95% or more, preferably 96% or more.
  • Carbon nanotubes manufactured through the method of the present invention have high bulk density, high specific surface area, and high purity, and are characterized by excellent quality.
  • a carbon nanotube manufacturing apparatus of the form as shown in FIG. 1 was prepared.
  • the diameter of the lower reactor is 0.05 m
  • the diameter of the upper reactor is 0.1 m
  • the height of the reactor body is 2 m
  • the extension part is expanded from the height of 0.3 m.
  • ethylene gas was injected as a carbon source gas at a flow rate of 5 L/min
  • nitrogen gas was injected as a flow rate of 15 L/min as a flow gas.
  • the linear velocity of the injected carbon source gas was 12 cm/s.
  • the lower reactor and the upper reactor were heated so that the temperature of the lower reactor was 650 °C and the upper reactor was 750 °C, respectively, and the reaction was carried out. After the reaction was completed, the obtained carbon nanotubes were recovered through the recovery tube of the carbon nanotube manufacturing apparatus.
  • Carbon nanotubes were obtained in the same manner as in Preparation Example D1, except that 650° C. as the temperature of the lower reactor and 800° C. as the temperature of the upper reactor were set.
  • Carbon nanotubes were synthesized using a conventional single-bed fluidized bed reactor, not the carbon nanotube manufacturing apparatus shown in FIG. 1 .
  • the specific shape of the fluidized bed reactor is in the form of a cylinder with a diameter of 0.1 m and a height of 2 m, and the total volume inside the reactor is larger than that used in Preparation Example.
  • 150 g of previously synthesized carbon nanotubes were charged together as an internal flow to carry out the reaction.
  • the amount of catalyst used and the injection flow rates of ethylene and nitrogen gas were the same as in Preparation Example D1, and the temperature inside the reactor was set to 750°C.
  • the carbon nanotubes prepared in Preparation Examples D1 and D2 of the present invention exhibited high bulk density, purity, and specific surface area.
  • Preparation Examples D1 and D2 as the temperature of the upper reactor was slightly higher in Preparation Example D2, the bulk density of the carbon nanotubes finally obtained compared to Preparation Example D1 was increased, and the specific surface area was low.
  • Comparative Example D1 synthesized using an existing reactor the bulk density of the carbon nanotubes was higher than that of Preparation Example D1 due to the carbon nanotubes initially introduced into the internal flow, and the specific surface area was lower than that of Preparation Example D1. The results are shown.
  • Comparative Example D2 in which a conventional reactor was used, but an operation of increasing the temperature during the reaction was additionally performed, carbon nanotubes having bulk density and specific surface area similar to those of Preparation Example D1 were prepared.
  • Comparative Example D2 showed inferior results compared to Preparation Examples D1 and D2 in terms of productivity.
  • Comparative Example D3 using the same reactor as used in Preparation Example of the present invention, but having the same temperature of the upper reactor and the lower reactor, the advantage of distinguishing the upper reactor and the lower reactor is relatively poor, compared to Comparative Example D1 Similar carbon nanotubes were prepared.
  • the time consumed until the completion of the reaction and recovery (one cycle time) and the production amount per cycle were measured.
  • the time consumed until the completion of the reaction and recovery is the starting point of ethylene input, and the time when the carbon nanotubes obtained after the reaction is completed are transferred to the recovery unit as the end point, the consumption time between the time point and the end point was measured.
  • the yield per cycle was measured by measuring the mass of carbon nanotubes recovered after one cycle was completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 탄소나노튜브 제조장치 및 제조방법에 관한 것으로서, 본 발명에 따른 탄소나노튜브 제조장치는 탄소나노튜브 제조장치로서, 내부에 반응이 일어나는 공간인 수용부가 형성된 원통형의 반응기 본체; 및 상기 반응기 본체의 수용부 하부에 위치되어 상기 수용부로 공급되는 반응 기체를 분산시키는 분산판을 포함하고, 상기 반응기 본체는, 하부 반응기; 상기 하부 반응기 보다 지름이 크게 형성된 상부 반응기; 및 상기 상부 반응기와 상기 하부 반응기 사이를 연결하며 지름이 점차 확장되는 확장부를 포함한다.

Description

탄소나노튜브 제조장치 및 제조방법
관련출원과의 상호인용
본 출원은 2020년 12월 11일자 한국특허출원 제10-2020-0173069호, 2021년 12월 02일자 한국특허출원 제10-2021-0171323호, 2021년 12월 02일자 한국특허출원 제10-2021-0171324호, 2021년 12월 02일자 한국특허출원 제10-2021-0171325호, 및 2021년 12월 02일자 한국특허출원 제10-2021-0171133호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 탄소나노튜브 제조장치 및 제조방법에 관한 것이다.
유동층 반응기는 다양한 다중상(multiphase) 화학 반응을 수행하도록 이용될 수 있는 반응기 장치이다. 유동층 반응기에서는 유체(기체 또는 액체)가 미립자 상태의 고체 물질과 반응하게 되는데, 통상적으로 상기 고체 물질은 작은 구(sphere)의 형상을 가지는 촉매이고, 유체는 고체 물질을 부유시키기에 충분한 속도로 유동함으로써 고체 물질이 유체와 유사하게 거동하게 된다.
한편, 탄소나노구조물(carbon nanostructures, CNS)은 나노튜브, 나노파이버, 풀러렌, 나노콘, 나노호른, 나노로드 등 다양한 형상을 갖는 나노크기의 탄소구조물을 지칭하며, 여러 가지 우수한 성질을 보유하기 때문에 다양한 기술분야에서 활용도가 높다. 대표적인 탄소나노구조물인 탄소나노튜브(Carbon nanotubes; CNT)는 서로 이웃하는 3 개의 탄소 원자가 육각형의 벌집 구조로 결합되어 탄소 평면을 형성하고, 상기 탄소 평면이 원통형으로 말려서 튜브의 형상을 가지는 소재이다. 탄소나노튜브는 구조에 따라서, 즉, 튜브의 지름에 따라서 도체가되거나 또는 반도체가 되는 특성이 있으며, 다양한 기술 분야에서 광범위하게 응용될 수 있어서 신소재로 각광을 받는다. 예를 들어, 탄소나노튜브는 이차 전지, 연료 전지 또는 슈퍼 커패서티(super capacity)와 같은 전기 화학적 저장 장치의 전극, 전자파 차폐, 전계 방출 디스플레이, 또는 기체 센서 등에 적용될 수 있다.
탄소나노튜브의 경우 통상적으로 고온의 유동층 반응기 안에서 촉매(Seed)에 탄화수소를 반응시켜 고온에서 합성한다. 이때, 촉매 대비 탄소나노튜브의 부피 성장율은 40000% 이상이다. 최종 부피를 고려하여 반응기 사이즈(Size)를 결정할 경우, 촉매의 부피가 작기 때문에 반응기 대부분이 빈 상태이며, 탄소나토튜브 합성에 필요한 반응 온도 확보가 어렵다.
종래에는 온도 확보를 위해 제품을 유동매체를 사용하였다. 이때, 유동매체로 사용한 제품이 추가 성장을 하기 때문에 제품의 불균일성을 야기 하였으며, 반응기 전체 부피를 제품 생산하는데 사용할 수 없었다.
[특허문헌] 한국 공개특허 제10-2010-0108599호
본 발명의 하나의 관점은 반응기 온도 확보용 유동물 없이 촉매만을 이용하여 탄소나노튜브를 제조할 수 있는 탄소나노튜브 제조장치 및 상기 제조장치를 이용한 탄소나노튜브의 제조방법을 제공하기 위한 것이다.
본 발명의 실시예에 따른 탄소나노튜브 제조장치는 탄소나노튜브 제조장치로서, 내부에 반응이 일어나는 공간인 수용부가 형성된 원통형의 반응기 본체; 및 상기 반응기 본체의 수용부 하부에 위치되어 상기 수용부로 공급되는 반응 기체를 분산시키는 분산판을 포함하고, 상기 반응기 본체는, 하부 반응기; 상기 하부 반응기 보다 지름이 크게 형성된 상부 반응기; 및 상기 상부 반응기와 상기 하부 반응기 사이를 연결하며 지름이 점차 확장되는 확장부를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 탄소나노튜브 제조방법은 상기의 탄소나노튜브 제조장치를 이용한 탄소나노튜브의 제조방법으로서, 상기 하부 반응기로 촉매를 투입하는 단계(S1); 상기 하부 반응기 및 상부 반응기 내부 온도를 승온시키는 단계(S2); 및 상기 하부 반응기로 탄소원 가스를 주입하는 단계(S3);를 포함하고, 상기 하부 반응기의 내부 온도보다 상기 상부 반응기의 내부 온도가 더 높은 것을 특징으로 할 수 있다.
또한, 본 발명의 실시예에 따른 탄소나노튜브는 본 발명의 실시예에 따른 탄소나노튜브 제조장치를 통해 제조될 수 있다.
본 발명에 따르면, 지름이 상부로 확관된 반응기를 통해 반응기 온도 확보용 유동물 없이 촉매만을 사용하여 반응기 사용율을 높이고, 반응물간 품질 편차를 줄일 수 있다. 즉, 상부 반응기 보다 지름이 적게 형성된 하부 반응기에 촉매를 공급하고, 하부 반응기 하부로부터 반응 기체를 공급하여, 반응 온도를 확보하기 용이하고, 이로 인해 촉매만을 이용하여 탄소나노튜브의 제조가 가능하여 반응기 사용율을 현저히 높이며, 반응물의 품질 편차를 줄일 수 있다.
특히, 반응기의 확장부는 경사 각도가 수직방향을 기준으로 5~45°가 되도록 형성되어 확장부의 가장자리 부분의 유속 감소 현상을 줄일 수 있고, 이로 인해 유속 감소에 따라 발생되는 CNT 응집체 양을 감소시킬 수 있으며, 이에 따라, CNT 생산량이 감소되는 것을 방지할 수 있다. 이때, 반응기의 확장부는 경사 각도가 수직방향을 기준으로 10~30°가 되도록 형성되어 유속 감소를 최소화시킬 수 있고, 이로 인해 CNT 응집체 양을 현저히 감소시킬 수 있다.
특히, 상부 반응기에 대한 상기 하부 반응기의 직경비는 1/5 ~ 1/1.5가 되도록 형성되어, 하부 반응기의 반응 온도 확보가 보다 용이하고, 반응 가스 접촉 시간이 향상될 수 있으며, 이로 인해 CNT 생산량 및 생산 효율을 최적화 할 수 있다. 이때, 상부 반응기에 대한 상기 하부 반응기의 직경비는 1/3 ~ 1/2가 되도록 형성되어, 하부 반응기의 반응 온도 확보가 현저히 용이하고, 반응 가스 접촉 시간이 보다 향상될 수 있으며, 이로 인해 CNT 생산량 및 생산 효율을 보다 최적화 시킬 수 있다.
또한, 본 발명의 탄소나노튜브 제조방법을 이용할 경우, 동일 반응기 내에서 저온 반응 및 고온 반응을 연쇄적으로 수행하게 됨으로써, 촉매의 소결 현상을 억제하면서도 적절한 물성의 탄소나노튜브를 고효율로 생산할 수 있다. 또한, 유동매체 사용 없이 촉매만으로 반응을 진행시킬 수 있으므로, 최종적으로 생산되는 탄소나노튜브의 품질을 균일하게 유지할 수 있다.
도 1은 본 발명의 실시예에 따른 탄소나노튜브 제조장치의 요부를 나타낸 사시도이다.
도 2은 본 발명의 실시예에 따른 탄소나노튜브 제조장치의 요부 개념을 나타낸 사시도이다.
도 3은 본 발명의 실시예에 따른 탄소나노튜브 제조장치를 개략적으로 나타낸 사시도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
제1 실시예에 따른 탄소나노튜브 제조장치
도 1은 본 발명의 실시예에 따른 탄소나노튜브 제조장치의 요부를 나타낸 사시도이고, 도 2은 본 발명의 실시예에 따른 탄소나노튜브 제조장치의 요부개념을 나타낸 사시도이며, 도 3은 본 발명의 실시예에 따른 탄소나노튜브 제조장치를 개략적으로 나타낸 사시도이다.
도 1 내지 도 3을 참고하면, 본 발명의 제1 실시예에 따른 탄소나노튜브 제조장치(100)는 탄소나노튜브 제조장치(100)로서, 수용부(114)가 형성된 반응기 본체(110) 및 반응기 본체(110)의 수용부(114)로 공급되는 반응 기체를 분산시키는 분산판(120)을 포함하고, 반응기 본체(110)는 하부 반응기(112), 상부 반응기(111), 및 확장부(113)를 포함한다. 또한, 본 발명의 제1 실시예에 따른 탄소나노튜브 제조장치(100)는 촉매(S)를 공급하는 촉매 공급부(130), 반응 기체를 공급하는 기체 공급부(140), 반응물(P)을 회수하는 회수부(150), 및 가스를 배출시키는 가스 배출부(160)를 더 포함할 수 있다.
보다 상세히, 도 1을 참고하면, 반응기 본체(110)는 내부에 반응이 일어나는 공간인 수용부(114)가 형성될 수 있다. 이때, 반응기 본체(110)는 원통형으로 형성될 수 있다.
반응기 본체(110)는, 하부 반응기(112) 보다 지름이 크게 형성된 상부 반응기(111), 및 상부 반응기(111)와 하부 반응기(112) 사이를 연결하며 지름이 점차 확장되는 확장부(113)를 포함할 수 있다.
도 1 및 도 2(b)를 참고하면, 반응기 본체(110)의 내부 전체 높이인 수용부(114) 높이(h1)는 예를 들어 1m ~ 10m로 형성될 수 있지만, 본 발명의 수용부(114) 높이(h1)가 여기에 반드시 한정되는 것은 아니다.
상부 반응기(111)는 지름(a)이 예를 들어 2m 이하로 형성될 수 있다. 구체적으로 상부 반응기(111)는 지름(a)이 0.4 ~ 2m로 형성될 수 있다. 하지만, 본 발명의 상부 반응기(111)는 지름(a)이 여기에 반드시 한정되는 것은 아니다.
하부 반응기(112)의 지름(b)은 예를 들어 상부 반응기(111)의 지름(a)의 1/2 이하로 형성될 수 있다. 여기서, 하부 반응기(112)의 지름(b)은 구체적으로 예를 들어 상부 반응기(111)의 지름(a)의 1/5 ~ 1/2로 형성될 수 있다.
이때, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 상한값인 1/2 이하로 형성되어 온도 확보가 가능한 효과가 있다.
그리고, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 하한값인 1/5 이상으로 형성되어 입자 이탈 방지의 효과가 있다. 구체적으로, 가스 유량 증가 시 입자는 하부 반응기(112)에서 이탈하여 상부 반응기(111)로 넘어가게 된다. 가스 유량 감소 시 촉매/CNT 순환이 일어나지 않는 문제점이 발생한다. 통상적으로 촉매의 경우 가스 선속도 250cm/s 이상에서는 입자 이탈이 발생하며, 10cm/s 이상이 되어야 입자가 순환한다. 따라서, 하부 반응기(112)의 지름(b)이 상부 반응기(111) 지름(a)의 하한값인 1/5 이상으로 형성되어, 입자 이탈을 방지하며 입자가 순환될 수 있다.
또한, 하부 반응기(112)의 높이(h2)는 반응기 본체(110)의 높이(h1)에 대하여 1/150 ~ 1/8로 구비될 수 있다. 여기서, 하부 반응기(112)의 높이(h2) 및 반응기 본체(110)의 높이(h1)는 내측에 수용부(114)가 형성된 구간의 높이 일 수 있다.
한편, 상부 반응기(111) 및 하부 반응기(112)는 각각 지름이 일정하게 형성될 수 있다.
분산판(120)은 반응기 본체(110)의 수용부(114) 하부에 위치되어 수용부(114)로 공급되는 반응 기체를 분산시킬 수 있다.
여기서, 분산판(120)은 하부 반응기(112)의 하부에 위치될 수 있다.
이때, 분산판(120)은 다수개의 분산홀이 형성된 원판형태로 형성될 수 있다.
분산홀은 분산판(120)의 하부에서 유입되는 반응 기체가 다수개의 분산홀을 통과하며 분산판(120)의 상부에 위치된 수용부(114)로 분산될 수 있다.
촉매 공급부(130)는 하부 반응기(112)와 연결되어 하부 반응기(112)로 촉매(S)를 공급할 수 있다.
또한, 촉매 공급부(130)는 촉매(S)의 높이(h3)를 하부 반응기(112)의 높이(h2) 보다 낮게 형성되도록 촉매(S)를 하부 반응기(112)의 내부로 공급할 수 있다. 여기서, 촉매 공급부(130)는 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 1/150 ~ 1/10가 되도록 공급할 수 있다.
이때, 반응 전 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 하한값인 1/150 이상으로 공급하여, 온도 확보 및 가스(Gas) 접촉시간 확보를 할 수 있는 효과가 있다. 즉, 촉매(S) 높이가 너무 낮을 경우, 단열면적 대비 촉매량이 많아 온도 확보가 어렵고, 촉매층의 기체 통과 시간이 짧아져 반응 효율이 떨어지는 것을 방지할 수 있는 효과가 있다.
또한, 반응 전 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 상한값인 1/10 이하로 공급하여, 반응물이 반응기 본체(110)에서 이탈되는 것을 방지할 수 있는 효과가 있다.
보다 상세히, 촉매(S)에서 반응물인 탄소나노튜브(CNT) 성장 시 부피가 250 ~2500배까지 성장한다. 상부 반응기(111) 대비 하부 반응기(112) 지름이 1/5(단면적 1/25)로 고려할 경우, 부피가 250배 * 1/25로 상한값이 1/10으로 산출되며, 이 경우 촉매 높이 1/10 이상일 경우 반응기 본체(110)의 수용부(114) 부피 이상이 생산되게 된다. 따라서, 반응 전 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 상한값인 1/10 이하로 공급함에 따라, 반응물이 반응기 본체(110)의 부피 이상 생산되는 것을 방지할 수 있다. 촉매(S)의 종류는 예를들어 Fe, Co, Ni, Cu, Cr, Mn 중에서 어느 하나 이상으로 이루어질 수 있다.
기체 공급부(140)는 하부 반응기(112)의 하단부와 연결되어 하부 반응기(112)로 반응 기체를 공급할 수 있다.
아울러, 기체 공급부(140)는 탄화 수소 계열 원료 기체를 포함하는 반응 기체를 공급함에 따라 반응기 본체(110) 수용부(114) 내에서 탄소 구조물이 제조될 수 있다. 이때, 탄소 구조물은 예를 들어 탄소나노튜브(CNT; Carbon nanotubes)일 수 있다.
여기서, 반응 기체는 예를 들어 질소(N2), 에틸렌(C2H4), 아세틸렌, 메탄, 또는 일산화탄소 중 적어도 어느 하나 이상일 수 있다.
이때, 예를 들어 반응 기체가 에틸렌을 포함할 때, 기체 공급부(140)는 반응기 내부로 에틸렌의 량을 20 ~ 1000(m3/hr)로 공급할 수 있다.
한편, 기체 공급부(140)는 예열기를 포함할 수 있다. 이때, 반응 기체는 반응기 본체(110)의 내부로 공급되기 전에 예열기(S1)에서 예열될 수 있다.
도 1 및 도 3을 참고하면, 회수부(150)는 하부 반응기(112)와 연결되어 수용부(114)의 내부에 위치된 반응물(P)을 회수할 수 있다.
회수부(150)는 하부 반응기(112)와 연결되어 반응물(P)이 회수되는 회수라인(151), 및 회수라인(151)과 연결되어 회수되는 반응물(P)이 저장되는 저장 탱크(153)를 포함할 수 있다. 또한, 회수부(150)는 회수라인(151) 상에 위치되어 반응물(P)을 냉각 시키는 쿨러(152)(Cooler)를 더 포함할 수 있다.
이때, 반응기 본체(110)에 수용된 고온의 반응물(P)이 회수라인(151)을 통해 회수되어 쿨러(152)를 통해 냉각된 후 저장 탱크(153)에 저장될 수 있다.
가스 배출부(160)는 상부 반응기(111)의 상부와 연결되어, 반응기 본체(110)의 수용부(114)에 위치된 반응이 완료된 가스를 배출시킬 수 있다.
여기서, 가스 배출부(160)는 상부 반응기(111)의 상부에서 단부 또는 측면과 연결될 수 있다.
본 발명의 제1 실시예에 따른 탄소나노튜브 제조장치(100)는 가열부, 열교환기(170), 싸이클론(180), 소각로(190), 및 미분포집부(J)를 더 포함할 수 있다.
가열부는 반응기 본체(110)의 외측에 구비되어 반응기 본체(110)를 고온으로 가열할 수 있다.
열교환기(170)는 반응기 본체(110)의 상부에 구비된 가스 배출부(160)와 연결되어 배출되는 가스를 열교환할 수 있다. 즉, 반응기 본체(110)에서 배출되는 고온을 가스를 열교환하여 높은 온도의 열을 다른 장치로 전달하여 사용할 수 있다. 이때, 예를 들어 열교환기(170)는 스팀 파이프(Steam Pipe)를 포함하고, 스팀 파이프를 통해 열을 전달받아 기체 공급부(140)에서 반응 기체를 공급 시, 반응 기체의 예열에 사용할 수 있다.
싸이클론(180)은 열교환기(170)와 연결되어 열교환된 가스에서 미분(파우더) 및 가스를 분리할 수 있다.
소각로(190)는 싸이클론(180)의 일측과 연결되어 싸이클론(180)에서 분리된 가스를 소각할 수 있다.
미분포집부(J)는 싸이클론(180)의 타측과 연결되어 싸이클론(180)에서 분리된 미분을 포집할 수 있다.
도 2를 참고하여, 본 발명의 제1 실시예에 따른 탄소나노튜브 제조장치(100)의 작동을 구체적으로 예를 들어 설명하면, 도 2(a)를 참고할 때, 반응기 본체(110)의 수용부(114)로 질소를 공급하고, 가열부를 통해 반응기 본체(110)를 승온시키며, 촉매 공급부(130)를 통해 하부 반응기(112) 내부로 촉매를 공급한다.
그리고, 도 2(b)를 참고하면, 반응기 본체(110)의 수용부(114)로 에틸렌을 공급하여 촉매(S)와 고온에서 반응시킨다.
이후, 도 2(c)를 참고하면, 반응된 반응물(P)을 반응기 본체(110)의 수용부(114)에서 회수부(150)를 통해 회수할 수 있다.
도 1 및 도 2를 참고하면, 상기와 같이 구성된 본 발명의 제1 실시예에 따른 탄소나노튜브 제조장치(100)는 반응기 본체(110)를 하부 반응기(112), 하부 반응기(112) 보다 지름이 크게 형성된 상부 반응기(111), 및 상부 반응기(111)와 하부 반응기(112) 사이를 연결하며 지름이 점차 확장되는 확장부(113)로 구성함으로써, 온도 확보용 유동물 없이 촉매(S)만을 이용하여 탄소나노튜브를 제조할 수 있다. 특히, 상부 반응기(111) 보다 지름이 적게 형성된 하부 반응기(112)에 촉매(S)를 공급하고, 하부 반응기(112) 하부로부터 반응 기체를 분산판(120)을 통해 공급하여, 반응 온도를 확보하기 용이하고, 이로 인해 촉매(S)만을 이용하여 탄소나노튜브의 제조가 가능하여 반응기 사용율을 현저히 높이며, 반응물(P)간 품질 편차를 줄일 수 있다. 그리고, 하부 반응기(112) 보다 확관된 상부 반응기(111)를 구비하여 반응기의 생산량이 증가될 수 있다.
< 제조예 A1 >
본 발명의 하부 반응기, 하부 반응기 보다 지름이 크게 형성된 상부 반응기, 상부 반응기와 하부 반응기 사이를 연결하며 지름이 점차 확장되는 확장부를 포함하는 다단 형태의 반응기 본체를 구비시킨다. 이때, 하부 반응기와 상부 반응기는 지름이 각각 일정하게 형성된다. 하부 반응기의 하부로 질소를 공급하고, 가열부를 통해 반응기 본체를 승온시키며, 촉매 공급부를 통해 하부 반응기 내부로 촉매를 공급한다. 여기서, 하부 반응기의 지름은 0.05m, 상부 반응기의 지름은 0.1m, 반응기 본체의 높이는 2m 로 형성된다. 그리고 확장부는 높이 0.3m에서 확관된다.
그리고, 하부 반응기의 하부로 에틸렌을 공급하여 촉매와 고온에서 반응시켜 반응물을 생성시킨다.
그런 다음, 반응된 반응물을 반응기 본체의 내부에서 회수부를 통해 회수한다.
이후 촉매 주입단계부터 반복하며 탄소나노튜브를 제조하였다.
여기서, 반응 온도는 700℃, 에틸렌 유속은 5[L/min], 질소 유속은 15[L/min]를 유지하였다.
< 제조예 A2 >
촉매량 및 에틸렌 공급량을 제조예 A1 보다 증가시킨 것을 제외하고 제조예 A1과 동일과정을 수행하였다.
< 비교예 A1 >
지름이 일정한 기존의 반응기 본체를 사용하고, 온도 확보를 위해 내부유동물을 사용한 것을 제외하고 제조예 A1과 동일과정을 수행하였다. 내부유동물은 반응기 본체의 전체 Volume의 1/3을 채웠다.
< 비교예 A2 >
지름이 일정한 기존의 반응기 본체를 사용한 것을 제외하고 제조예 A1과 동일과정을 수행하였다.
< 비교예 A3 >
하부의 지름이 상측 방향으로 갈수록 확관된 반응기 본체를 사용하고, 온도 확보를 위해 내부유동물을 사용한 것을 제외하고 제조예 A1과 동일과정을 수행하였다. 즉, 반응기 본체가 1단으로 형성되되, 하부가 확관된 형태로 형성되었다.
< 비교예 A4 >
하부의 지름이 상측 방향으로 갈수록 확관된 반응기 본체를 사용한 것을 제외하고 제조예 A1과 동일과정을 수행하였다. 즉, 반응기 본체가 1단으로 형성되되, 하부가 확관된 형태로 형성되었다.
< 실험예 1>
탄소나뉴튜브의 생산량, 반응기 사용율, Bulk density, Purity, 비표면적 등을 측정하여 하기 표 1에 나타내었다.
Bulk density는 정량컵에 채우고 무게를 측정하여 부피로 나는 값을 사용하였다.
Purity는 CNT를 Air 분위기에서 700℃에서 2 시간(h) 가열하여 잔유물 무게를 측정하였다. (초기 무게 - 최종무게) / 초기무게 * 100
비표면적은 BET 법으로 측정하였다.
제조예 A1 제조예 A2 비교예 A1 비교예 A2 비교예 A3 비교예 A4
반응기 지름 타입 지름 확관 지름 확관 지름 일정 지름 일정 하부지름 확관 하부지름 확관
반응기 단수 다단 다단 1단 1단 1단확관(하부확관) 1단확관(하부확관)
내부유동물[g] - - 150 - 150 -
촉매량[g] 15 22.5 15 15 15 22.5
에틸렌 유속[L/min] 5 7.5 5 5 7.5 5
세팅 온도[℃] 750 750 750 750 750 750
촉매층 온도[℃] 710 710 710 350 556 710
반응+회수시간[min] 130 130 130 130 130 130
생산량[g] 280 415 276 - 258 50
Bulk density [kg/m3] 37.2 37.5 37.1 - 37 23.6
Purity[%] 95.54 95,52 95.53 - 95.4 59
비표면적[m2/g] 181 180 185 - 195 161
반응기 사용율[%] 100 100 66 - 66 100
상기 표 1에 나타난 바와 같이, 비교예 A1 및 비교예 A3에서의 반응기 사용율은 66%인 반면, 제조예 A1 및 제조예 A2에서는 100%의 반응기 사용율을 나타낸다. 아울러, 비교예 A2에서는 반응이 일어나지 않았다. 즉, 본 발명에 따라 제조된 제조예 A1 및 제조예 A2에서는 반응기를 전부 사용할 수 있지만, 비교예 A1 및 비교예 A3에서는 내부유동물이 차지하는 부피로 인해 반응기 사용율이 66%에 그친 차이가 있다. 또한, 반응기 본체의 지름이 전체적으로 일정한 1단형으로 형성되되, 온도 확보를 위한 내부 유동물이 없는 비교예 A2에서는 반응이 일어나지 않아 CNT가 생산되지 않지만, 제조예 A1 및 제조예 A2에서는 온도 확보를 위한 내부 유동물이 없이도 반응이 일어나 CNT가 생산되는 것을 알 수 있다.
한편, 상기 표 1에 나타난 바와 같이, 반응기 본체가 1단 형태로 형성되되 하부가 확관되고, 온도 확보를 위한 내부 유동물을 사용하지 않는 비교예 A4는 CNT 생산량이 50[g]에 불과한 반면, 반응기 본체가 다단으로 형성되되 상부로 갈수록 확관되는 확장부가 구비된 제조예 A2는 CNT 생산량이 415[g]으로 현저히 많은 것을 알 수 있다. 즉, 비교예 A4 보다 제조예 A2에서 CNT 생산량이 약 8~9배 증가한 것을 알 수 있다.
구체적으로, 내부 유동물을 사용하지 않고, 하부지름이 확관된 비교예 A4는 반응기 본체의 최하측에서 바로 확관하는 방식이라 열전달에 불리하여 CNT 생산량이 50[g]에 불과한 것을 알 수 있다. 즉, 비교예 A4는 동일 부피 유속(cm3/s)의 반응 가스 공급 시 확관에 의해 분산판 바로 위부터 선속도(cm/s)가 변화되게 된다. 따라서, 분산판 상부가 Cake(CNT 응집체)에 가장 취약한 구간인데, 확관에 의해 선속도가 감소하기 때문에 Cake(CNT 응집체) 생성이 가속되게 된다. 결국, 지름 증가에 따른 초기 주입 촉매층 높이가 감소하여, 온도 확보 및 반응성(생산량)이 감소하게 됨을 알 수 있다. 여기서, Cake(CNT 응집체) 생성 원리를 보다 구체적으로 설명하면, 반응기 본체가 지름이 확관되는 확관 형태로 형성될 때, 관성에 의해 하단에서 상단으로 가스 진입 시, 경사부 쪽으로 유입되는 가스량이 상대적으로 작으며 경사부 벽면에서는 느린 유속으로 가스 하강 현상이 발생되며, 이로 인해 촉매/Carbon 정체가 발생하고, 불필요한 Cake(Carbon 응집체, CNT 응집체)가 생성되게 된다.
제2 실시예에 따른 탄소나노튜브 제조장치
이하에서 본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치를 설명하기로 한다.
도 1 내지 도 3을 참고하면, 본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치(100)는 탄소나노튜브 제조장치(100)로서, 수용부(114)가 형성된 반응기 본체(110) 및 반응기 본체(110)의 수용부(114)로 공급되는 반응 기체를 분산시키는 분산판(120)을 포함하고, 반응기 본체(110)는 하부 반응기(112), 상부 반응기(111), 및 확장부(113)를 포함한다. 또한, 본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치(100)는 촉매(S)를 공급하는 촉매 공급부(130), 반응 기체를 공급하는 기체 공급부(140), 반응물(P)을 회수하는 회수부(150), 및 가스를 배출시키는 가스 배출부(160)를 더 포함할 수 있다.
본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치는 전술한 제1 실시예에 따른 탄소나노튜브 제조장치와 비교할 때, 확장부(113)의 경사 각도를 더 한정한 차이가 있다.
보다 상세히, 도 1을 참고하면, 반응기 본체(110)는 내부에 반응이 일어나는 공간인 수용부(114)가 형성될 수 있다. 이때, 반응기 본체(110)는 원통형으로 형성될 수 있다.
반응기 본체(110)는, 하부 반응기(112) 보다 지름이 크게 형성된 상부 반응기(111), 및 상부 반응기(111)와 하부 반응기(112) 사이를 연결하며 지름이 점차 확장되는 확장부(113)를 포함할 수 있다.
도 1 및 도 2(b)를 참고하면, 반응기 본체(110)의 내부 전체 높이인 수용부(114) 높이(h1)는 예를 들어 1m ~ 10m로 형성될 수 있지만, 본 발명의 수용부(114) 높이(h1)가 여기에 반드시 한정되는 것은 아니다.
상부 반응기(111)는 지름(a)이 예를 들어 2m 이하로 형성될 수 있다. 구체적으로 상부 반응기(111)는 지름(a)이 0.4 ~ 2m로 형성될 수 있다. 하지만, 본 발명의 상부 반응기(111)는 지름(a)이 여기에 반드시 한정되는 것은 아니다.
하부 반응기(112)의 지름(b)은 예를 들어 상부 반응기(111)의 지름(a)의 1/2 이하로 형성될 수 있다. 여기서, 하부 반응기(112)의 지름(b)은 구체적으로 예를 들어 상부 반응기(111)의 지름(a)의 1/5 ~ 1/2로 형성될 수 있다.
이때, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 상한값인 1/2 이하로 형성되어 온도 확보가 가능한 효과가 있다.
그리고, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 하한값인 1/5 이상으로 형성되어 입자 이탈 방지의 효과가 있다. 구체적으로, 가스 유량 증가 시 입자는 하부 반응기(112)에서 이탈하여 상부 반응기(111)로 넘어가게 된다. 가스 유량 감소 시 촉매/CNT 순환이 일어나지 않는 문제점이 발생한다. 통상적으로 촉매의 경우 가스 선속도 250cm/s 이상에서는 입자 이탈이 발생하며, 10cm/s 이상이 되어야 입자가 순환한다. 따라서, 하부 반응기(112)의 지름(b)이 상부 반응기(111) 지름(a)의 하한값인 1/5 이상으로 형성되어, 입자 이탈을 방지하며 입자가 순환될 수 있다.
또한, 하부 반응기(112)의 높이(h2)는 반응기 본체(110)의 높이(h1)에 대하여 1/150 ~ 1/8로 구비될 수 있다. 여기서, 하부 반응기(112)의 높이(h2) 및 반응기 본체(110)의 높이(h1)는 내측에 수용부(114)가 형성된 구간의 높이 일 수 있다.
한편, 상부 반응기(111) 및 하부 반응기(112)는 각각 지름이 일정하게 형성될 수 있다.
확장부(113)는 하부 반응기(112)와 상부 반응기(111) 사이에 구비되고, 하부 반응기(112)와 상부 반응기(111) 방향으로 갈수록 지름이 점차 확장되도록 테이퍼(taper) 형태의 경사면(111a)이 형성될 수 있다.
확장부(113)의 경사 각도(α)는 예를 들어 수직방향(V)을 기준으로 5~45°로 형성될 수 있다. 여기서, 수직방향(V)은 도 1을 참고할 때, 상하방향으로 연장된 직선과 나란한 방향을 말하며, 상부 반응기(111)의 연장방향일 수 있다. 즉, 확장부(113)의 경사 각도(α)는 수직방향(V)의 직선과 확장부(113)의 경사면(113a) 사이의 각도일 수 있다. 따라서, 확장부(113)의 경사 각도(α)가 45°이하로 형성되어 확장부(113) 가장자리의 유속이 감소되는 현상을 현저히 줄일 수 있다. 결국, 유속 감소에 따라 발생되는 CNT 응집체의 발생량을 현저히 감소시킬 수 있고, CNT 응집체의 발생량을 줄일 수 있어 CNT 생산량을 현저히 증가시킬 수 있다. 아울러, 확장부(113)의 경사 각도(α)가 5°이상으로 형성되어, 상부 반응기(111)가 보다 지름이 적은 하부 반응기(112)를 형성할 수 있어, 하부 반응기(112)에서 열전달 면적을 충분히 확보하여 촉매만 주입하여도 반응하게 할 수 있다.
또한, 확장부(113)의 경사 각도(α)는 구체적으로 예를 들어 수직방향(V)을 기준으로 5~30°로 형성될 수 있다. 따라서, 확장부(113)의 경사 각도(α)가 30°이하로 형성되어 확장부(113) 가장자리의 유속이 감소되는 현상을 보다 현저히 줄일 수 있다.
아울러, 확장부(113)의 경사 각도(α)는 보다 구체적으로 예를 들어 수직방향(V)을 기준으로 10~30°로 형성될 수 있다.
분산판(120)은 반응기 본체(110)의 수용부(114) 하부에 위치되어 수용부(114)로 공급되는 반응 기체를 분산시킬 수 있다.
여기서, 분산판(120)은 하부 반응기(112)의 하부에 위치될 수 있다.
이때, 분산판(120)은 다수개의 분산홀이 형성된 원판형태로 형성될 수 있다.
분산홀은 분산판(120)의 하부에서 유입되는 반응 기체가 다수개의 분산홀을 통과하며 분산판(120)의 상부에 위치된 수용부(114)로 분산될 수 있다.
촉매 공급부(130)는 하부 반응기(112)와 연결되어 하부 반응기(112)로 촉매(S)를 공급할 수 있다.
또한, 촉매 공급부(130)는 촉매(S)의 높이(h3)를 하부 반응기(112)의 높이(h2) 보다 낮게 형성되도록 촉매(S)를 하부 반응기(112)의 내부로 공급할 수 있다. 여기서, 촉매 공급부(130)는 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 1/150 ~ 1/10가 되도록 공급할 수 있다.
이때, 반응 전 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 하한값인 1/150 이상으로 공급하여, 온도 확보 및 가스(Gas) 접촉시간 확보를 할 수 있는 효과가 있다. 즉, 촉매(S) 높이가 너무 낮을 경우, 단열면적 대비 촉매량이 많아 온도 확보가 어렵고, 촉매층의 기체 통과 시간이 짧아져 반응 효율이 떨어지는 것을 방지할 수 있는 효과가 있다.
또한, 반응 전 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 상한값인 1/10 이하로 공급하여, 반응물이 반응기 본체(110)에서 이탈되는 것을 방지할 수 있는 효과가 있다.
보다 상세히, 촉매(S)에서 반응물인 탄소나노튜브(CNT) 성장 시 부피가 250 ~2500배까지 성장한다. 상부 반응기(111) 대비 하부 반응기(112) 지름이 1/5(단면적 1/25)로 고려할 경우, 부피가 250배 * 1/25로 상한값이 1/10으로 산출되며, 이 경우 촉매 높이 1/10 이상일 경우 반응기 본체(110)의 수용부(114) 부피 이상이 생산되게 된다. 따라서, 반응 전 촉매(S)의 높이(h3)를 반응기 본체(110)의 수용부(114) 전체 높이(h1)에 대하여 상한값인 1/10 이하로 공급함에 따라, 반응물이 반응기 본체(110)의 부피 이상 생산되는 것을 방지할 수 있다. 촉매(S)의 종류는 예를들어 Fe, Co, Ni, Cu, Cr, Mn 중에서 어느 하나 이상으로 이루어질 수 있다.
기체 공급부(140)는 하부 반응기(112)의 하단부와 연결되어 하부 반응기(112)로 반응 기체를 공급할 수 있다.
아울러, 기체 공급부(140)는 탄화 수소 계열 원료 기체를 포함하는 반응 기체를 공급함에 따라 반응기 본체(110) 수용부(114) 내에서 탄소 구조물이 제조될 수 있다. 이때, 탄소 구조물은 예를 들어 탄소나노튜브(CNT; Carbon nanotubes)일 수 있다.
여기서, 반응 기체는 예를 들어 질소(N2), 에틸렌(C2H4), 아세틸렌, 메탄, 또는 일산화탄소 중 적어도 어느 하나 이상일 수 있다.
이때, 예를 들어 반응 기체가 에틸렌을 포함할 때, 기체 공급부(140)는 반응기 내부로 에틸렌의 량을 20 ~ 1000(m3/hr)로 공급할 수 있다.
한편, 기체 공급부(140)는 예열기를 포함할 수 있다. 이때, 반응 기체는 반응기 본체(110)의 내부로 공급되기 전에 예열기(S1)에서 예열될 수 있다.
도 1 및 도 3을 참고하면, 회수부(150)는 하부 반응기(112)와 연결되어 수용부(114)의 내부에 위치된 반응물(P)을 회수할 수 있다.
회수부(150)는 하부 반응기(112)와 연결되어 반응물(P)이 회수되는 회수라인(151), 및 회수라인(151)과 연결되어 회수되는 반응물(P)이 저장되는 저장 탱크(153)를 포함할 수 있다. 또한, 회수부(150)는 회수라인(151) 상에 위치되어 반응물(P)을 냉각 시키는 쿨러(152)(Cooler)를 더 포함할 수 있다.
이때, 반응기 본체(110)에 수용된 고온의 반응물(P)이 회수라인(151)을 통해 회수되어 쿨러(152)를 통해 냉각된 후 저장 탱크(153)에 저장될 수 있다.
가스 배출부(160)는 상부 반응기(111)의 상부와 연결되어, 반응기 본체(110)의 수용부(114)에 위치된 반응이 완료된 가스를 배출시킬 수 있다.
여기서, 가스 배출부(160)는 상부 반응기(111)의 상부에서 단부 또는 측면과 연결될 수 있다.
본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치(100)는 가열부, 열교환기(170), 싸이클론(180), 소각로(190), 및 미분포집부(J)를 더 포함할 수 있다.
가열부는 반응기 본체(110)의 외측에 구비되어 반응기 본체(110)를 고온으로 가열할 수 있다.
열교환기(170)는 반응기 본체(110)의 상부에 구비된 가스 배출부(160)와 연결되어 배출되는 가스를 열교환할 수 있다. 즉, 반응기 본체(110)에서 배출되는 고온을 가스를 열교환하여 높은 온도의 열을 다른 장치로 전달하여 사용할 수 있다. 이때, 예를 들어 열교환기(170)는 스팀 파이프(Steam Pipe)를 포함하고, 스팀 파이프를 통해 열을 전달받아 기체 공급부(140)에서 반응 기체를 공급 시, 반응 기체의 예열에 사용할 수 있다.
싸이클론(180)은 열교환기(170)와 연결되어 열교환된 가스에서 미분(파우더) 및 가스를 분리할 수 있다.
소각로(190)는 싸이클론(180)의 일측과 연결되어 싸이클론(180)에서 분리된 가스를 소각할 수 있다.
미분포집부(J)는 싸이클론(180)의 타측과 연결되어 싸이클론(180)에서 분리된 미분을 포집할 수 있다.
도 2를 참고하여, 본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치(100)의 작동을 구체적으로 예를 들어 설명하면, 도 2(a)를 참고할 때, 반응기 본체(110)의 수용부(114)로 질소를 공급하고, 가열부를 통해 반응기 본체(110)를 승온시키며, 촉매 공급부(130)를 통해 하부 반응기(112) 내부로 촉매를 공급한다.
그리고, 도 2(b)를 참고하면, 반응기 본체(110)의 수용부(114)로 에틸렌을 공급하여 촉매(S)와 고온에서 반응시킨다.
이후, 도 2(c)를 참고하면, 반응된 반응물(P)을 반응기 본체(110)의 수용부(114)에서 회수부(150)를 통해 회수할 수 있다.
도 1 및 도 2를 참고하면, 상기와 같이 구성된 본 발명의 제2 실시예에 따른 탄소나노튜브 제조장치(100)는 반응기 본체(110)를 하부 반응기(112), 하부 반응기(112) 보다 지름이 크게 형성된 상부 반응기(111), 및 상부 반응기(111)와 하부 반응기(112) 사이를 연결하며 지름이 점차 확장되는 확장부(113)로 구성함으로써, 온도 확보용 유동물 없이 촉매(S)만을 이용하여 탄소나노튜브를 제조할 수 있다. 특히, 상부 반응기(111) 보다 지름이 적게 형성된 하부 반응기(112)에 촉매(S)를 공급하고, 하부 반응기(112) 하부로부터 반응 기체를 분산판(120)을 통해 공급하여, 반응 온도를 확보하기 용이하고, 이로 인해 촉매(S)만을 이용하여 탄소나노튜브의 제조가 가능하여 반응기 사용율을 현저히 높이며, 반응물(P)간 품질 편차를 줄일 수 있다. 그리고, 하부 반응기(112) 보다 확관된 상부 반응기(111)를 구비하여 반응기의 생산량이 증가될 수 있다.
특히, 반응기 본체(110)의 확장부(113)는 경사 각도가 수직방향을 기준으로 5~45°가 되도록 형성되어 확장부(113)의 가장자리 부분의 유속 감소 현상을 줄일 수 있고, 이로 인해 유속 감소에 따라 발생되는 불필요한 CNT 응집체 양을 감소시킬 수 있으며, 이에 따라, CNT 생산량이 감소되는 것을 방지할 수 있다. 이때, 확장부(113)는 경사 각도가 수직방향을 기준으로 10~30°가 되도록 형성되어 유속 감소를 최소화시킬 수 있고, 이로 인해 CNT 응집체 양을 현저히 감소시킬 수 있다.
< 제조예 B1 >
본 발명의 하부 반응기, 하부 반응기 보다 지름이 크게 형성된 상부 반응기, 상부 반응기와 하부 반응기 사이를 연결하며 지름이 점차 확장되는 확장부를 포함하는 다단 형태의 반응기 본체에서, 하부 반응기의 하부로 질소를 공급하고, 가열부를 통해 반응기 본체를 승온시키며, 촉매 공급부를 통해 하부 반응기 내부로 촉매를 공급한다. 여기서, 하부 반응기의 지름은 0.05m, 상부 반응기의 지름은 0.1m, 반응기 본체의 높이는 2m 형성된다. 그리고 확장부는 높이 0.3m에서 확관되되, 수직방향에 대하여 45°경사를 갖도록 확관된다.
그리고, 하부 반응기의 하부로 에틸렌을 공급하여 촉매와 고온에서 반응시켜 반응물을 생성시킨다.
그런 다음, 반응된 반응물을 반응기 본체의 내부에서 회수부를 통해 회수한다.
이후 촉매 주입단계부터 반복하며 탄소나노튜브를 제조하였다.
< 제조예 B2 >
확장부는 수직방향에 대하여 30°경사를 갖도록 확관된 것을 제외하고 제조예 B1과 동일과정을 수행하였다.
< 제조예 B3 >
확장부는 수직방향에 대하여 15°경사를 갖도록 확관된 것을 제외하고 제조예 B1과 동일과정을 수행하였다.
< 제조예 B4 >
확장부는 수직방향에 대하여 10°경사를 갖도록 확관된 것을 제외하고 제조예 B1과 동일과정을 수행하였다.
< 비교예 B1 >
지름이 0.1m로 일정한 기존의 1단 형태의 반응기 본체를 사용하고, 온도 확보를 위해 내부유동물을 사용한 것을 제외하고 제조예 B1과 동일과정을 수행하였다.
< 비교예 B2 >
지름이 0.1m로 일정한 기존의 1단 형태의 반응기 본체를 사용한 것을 제외하고 제조예 B1과 동일과정을 수행하였다. 즉, 온도 확보를 위한 내부유동물을 사용하지 않고, 종래의 1단 형태의 반응기 본체를 사용하였다.
< 비교예 B3 >
확장부는 수직방향에 대하여 60°경사를 갖도록 확관된 제외하고 제조예 B1과 동일과정을 수행하였다.
< 비교예 B4 >
하부의 지름이 상측 방향으로 갈수록 확관된 반응기 본체를 사용하고, 온도 확보를 위해 내부유동물을 사용한 것을 제외하고 제조예 B1과 동일과정을 수행하였다. 즉, 반응기 본체가 1단으로 형성되되, 하부가 확관된 형태로 형성되었다.
< 비교예 B5 >
하부의 지름이 상측 방향으로 갈수록 확관된 반응기 본체를 사용한 것을 제외하고 제조예 B1과 동일과정을 수행하였다. 즉, 반응기 본체가 1단으로 형성되되, 하부가 확관된 형태로 형성되었다.
< 실험예 2>
탄소나뉴튜브(CNT)의 생산량, CNT 응집체 양 등을 측정하여 하기 표 1에 나타내었다.
Bulk density는 정량컵에 채우고 무게를 측정하여 부피로 나는 값을 사용하였다.
Purity는 CNT를 Air 분위기에서 700℃에서 2 시간(h) 가열하여 잔유물 무게를 측정하였다. (초기 무게 - 최종무게) / 초기무게 * 100
비표면적은 BET 법으로 측정하였다.
제조예 B1 제조예 B2 제조예 B3 제조예 B4 비교예 B1 비교예 B2 비교예 B3 비교예 B4 비교예 B5
반응기 지름형태 지름 확관 지름 확관 지름 확관 지름 확관 지름 일정 지름 일정 지름확관 하부지름확관 하부지름확관
반응기 단수 다단 다단 다단 다단 1단 1단 다단 1단확관(하부확관) 1단확관(하부확관)
경사부 각도[°] 45 30 15 10 - - 60 45 45
내부유동물[g] - - - - 150 - - 150 -
촉매량[g] 22.5 22.5 22.5 15 22.5 22.5 15 22.5
에틸렌 유속[L/min] 7.5 7.5 7.5 5 5 7.5 5 7.5
세팅 온도[℃] 750 750 750 750 750 750 750 750 750
촉매층 온도[℃] 710 710 710 710 710 710 710 710 556
반응+회수시간
[min]
120 120 120 120 120 120 120 120 120
생산량[g] 466 491 530 540 276 - 415 258 50
CNT 응집체양 [g] 7 4 2 2 4 - 10 5 8
Bulk density [kg/m3] 37 36.5 36.9 36.8 37.5 - 36.1 37 23.6
Purity[%] 95.6 95.9 96.3 96.4 95.4 - 95.5 95.4 59
비표면적[m2/g] 184 178 182 181 185 - 180 195 161
상기 표 2에 나타난 바와 같이, 반응기 본체가 1단 형태로 형성된 비교예 B1, 비교예 B4, 및 비교예 B5는 CNT 생산량이 50~ 276[g]에 불과한 반면, 반응기 본체가 다단으로 형성되되 상부로 갈수록 확관되는 확장부가 구비된 제조예 B1 내지 B4는 CNT 생산량이 466 ~ 540[g]으로 현저히 많은 것을 알 수 있다.
구체적으로, 내부 유동물을 사용하지 않고, 하부지름이 확관된 비교예 B5는 반응기 본체의 최하측에서 바로 확관하는 방식이라 열전달에 불리하여 CNT 생산량이 50[g]에 불과한 것을 알 수 있다. 즉, 비교예 B5는 동일 부피 유속(cm3/s)의 반응 가스 공급 시 확관에 의해 분산판 바로 위부터 선속도(cm/s)가 변화되게 된다. 따라서, 분산판 상부가 Cake(CNT 응집체)에 가장 취약한 구간인데, 확관에 의해 선속도가 감소하기 때문에 Cake(CNT 응집체) 생성이 가속되게 된다. 결국, 지름 증가에 따른 초기 주입 촉매층 높이가 감소하여, 온도 확보 및 반응성(생산량)이 감소하게 됨을 알 수 있다. 여기서, Cake(CNT 응집체) 생성 원리를 보다 구체적으로 설명하면, 반응기가 지름이 확관되는 확관형태로 형성될 때, 관성에 의해 하단에서 상단으로 가스 진입 시, 경사부 쪽으로 유입되는 가스량이 상대적으로 작으며 경사부 벽면에서는 느린 유속으로 가스 하강 현상이 발생되며, 이로 인해 촉매/Carbon 정체가 발생하며, 불필요한 Cake(Carbon 응집체, CNT 응집체)가 생성되게 된다.
반응기 본체에 지름이 전체적으로 일정한 1단형으로 형성되되, 내부 유동물이 없는 비교예 B2에서는 CNT가 생산되지 않음을 알 수 있다. 따라서, 비교예 B2에서 반응기 본체가 지름이 일정한 1단형으로 형성될 때는 온도 확보용 유동물 없이는 CNT가 생산되지 않지만, 제조예 B1 내지 B4와 같이 반응기 본체가 다단으로 형성되되 상부로 갈수록 확관되는 확장부가 구비된 경우는 온도 확보용 유동물 없이 촉매만을 이용하여도 CNT가 생산되는 것을 알 수 있다.
아울러, 반응기 본체가 다단으로 형성되되 지름이 점차 확장되는 확장부의 경사 각도가 60°로 형성된 비교예 B3에서는 CNT 응집체 양이 10[g]으로 많이 발생되는 반면, 반응기 본체가 다단으로 형성되되 지름이 점차 확장되는 확장부의 경사 각도가 10~45°로 형성된 제조예 B1 내지 B4는 CNT 응집체 양이 2~7[g]으로 현저히 감소된 것을 알 수 있다. 즉, 확장부의 경사 각도가 증가할수록 확장부의 가장자리 부분의 유속이 감소되어 CNT 응집체 양이 증가되는 것을 알 수 있다. 따라서, 확장부의 경사 각도가 60°로 형성된 비교예 B3에서 확장부의 경사 각도가 10~45°로 형성된 제조예 B1 내지 B4 보다 CNT 생산량이 감소된 것을 알 수 있다. 이때, 확장부의 경사 각도가 30°이하로 형성된 제조예 B2 내지 B4는 CNT 응집체 양이 2~4[g]으로 보다 현저히 감소된 것을 알 수 있다.
제3 실시예에 따른 탄소나노튜브 제조장치
이하에서 본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치를 설명하기로 한다.
도 1 내지 도 3을 참고하면, 본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치(100)는 탄소나노튜브 제조장치(100)로서, 수용부(114)가 형성된 반응기 본체(110) 및 반응기 본체(110)의 수용부(114)로 공급되는 반응 기체를 분산시키는 분산판(120)을 포함하고, 반응기 본체(110)는 하부 반응기(112), 상부 반응기(111), 및 확장부(113)를 포함한다. 또한, 본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치(100)는 촉매(S)를 공급하는 촉매 공급부(130), 반응 기체를 공급하는 기체 공급부(140), 반응물(P)을 회수하는 회수부(150), 및 가스를 배출시키는 가스 배출부(160)를 더 포함할 수 있다.
본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치는 전술한 제1 실시예 및 제2 실시예에 따른 탄소나노튜브 제조장치와 비교할 때, 상부 반응기(111)에 대한 하부 반응기(112) 직경비 한정에 차이가 있다.
보다 상세히, 도 1을 참고하면, 반응기 본체(110)는 내부에 반응이 일어나는 공간인 수용부(114)가 형성될 수 있다. 이때, 반응기 본체(110)는 원통형으로 형성될 수 있다.
반응기 본체(110)는, 하부 반응기(112) 보다 지름이 크게 형성된 상부 반응기(111), 및 상부 반응기(111)와 하부 반응기(112) 사이를 연결하며 지름이 점차 확장되는 확장부(113)를 포함할 수 있다.
도 1 및 도 2(b)를 참고하면, 반응기 본체(110)의 내부 전체 높이인 수용부(114) 높이(h1)는 예를 들어 1m ~ 10m로 형성될 수 있지만, 본 발명의 수용부(114) 높이(h1)가 여기에 반드시 한정되는 것은 아니다.
상부 반응기(111)에 대한 하부 반응기(112)의 직경비는 예를 들어 1/5 ~ 1/1.5 일 수 있다. 즉, 하부 반응기(112)의 지름(b)은 상부 반응기(111)의 지름(a)의 1/5 ~ 1/1.5로 형성될 수 있다.
이때, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 상한값인 1/1.5 이하로 형성되어 온도 확보가 가능한 효과가 있다.
그리고, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 하한값인 1/5 이상으로 형성되어 입자 이탈 방지의 효과가 있다. 구체적으로, 가스 유량 증가 시 입자는 하부 반응기(112)에서 이탈하여 상부 반응기(111)로 넘어가게 된다. 가스 유량 감소 시 촉매/CNT 순환이 일어나지 않는 문제점이 발생한다. 통상적으로 촉매의 경우 가스 선속도 250cm/s 이상에서는 입자 이탈이 발생하며, 10cm/s 이상이 되어야 입자가 순환한다. 따라서, 하부 반응기(112)의 지름(b)이 상부 반응기(111) 지름(a)의 하한값인 1/5 이상으로 형성되어, 입자 이탈을 방지하며 입자가 순환될 수 있다.
한편, 상부 반응기(111)에 대한 하부 반응기(112)의 직경비는 구체적으로 예를 들어 1/3 ~ 1/2 일 수 있다. 즉, 하부 반응기(112)의 지름(b)은 상부 반응기(111)의 지름(a)의 1/3 ~ 1/2로 형성될 수 있다. 이때, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 상한값인 1/2 이하로 형성되어 현저히 온도 확보가 용이한 효과가 있다. 그리고, 하부 반응기(112)의 지름(b)은 상부 반응기(111) 지름(a)의 하한값인 1/3 이상으로 형성되어 입자 이탈 방지의 효과가 현저하다.
또한, 하부 반응기(112)의 높이(h2)는 예를 들어 반응기 본체(110)의 높이(h1)에 대하여 1/150 ~ 1/2로 구비될 수 있다. 이때, 하부 반응기(112)의 높이(h2)는 구체적으로 예를 들어 반응기 본체(110)의 높이(h1)에 대하여 1/150 ~ 1/8로 구비될 수 있지만, 본 발명이 여기에 반드시 한정되는 것은 아니다. 여기서, 하부 반응기(112)의 높이(h2) 및 반응기 본체(110)의 높이(h1)는 내측에 수용부(114)가 형성된 구간의 높이 일 수 있다.
한편, 상부 반응기(111) 및 하부 반응기(112)는 각각 지름이 일정하게 형성될 수 있다.
확장부(113)는 하부 반응기(112)와 상부 반응기(111) 사이에 구비되고, 하부 반응기(112)와 상부 반응기(111) 방향으로 갈수록 지름이 점차 확장되도록 테이퍼(taper) 형태의 경사면(111a)이 형성될 수 있다.
분산판(120)은 반응기 본체(110)의 수용부(114) 하부에 위치되어 수용부(114)로 공급되는 반응 기체를 분산시킬 수 있다.
여기서, 분산판(120)은 하부 반응기(112)의 하부에 위치될 수 있다.
이때, 분산판(120)은 다수개의 분산홀이 형성된 원판형태로 형성될 수 있다.
분산홀은 분산판(120)의 하부에서 유입되는 반응 기체가 다수개의 분산홀을 통과하며 분산판(120)의 상부에 위치된 수용부(114)로 분산될 수 있다.
촉매 공급부(130)는 하부 반응기(112)와 연결되어 하부 반응기(112)로 촉매(S)를 공급할 수 있다. 이때, 촉매 공급부(130)는 하부 반응기(112)로 촉매(S)를 공급하여 하부 반응기(112) 내부에 촉매(S) 유동층을 형성시킬 수 있다.
또한, 촉매 공급부(130)는 촉매(S) 유동층의 높이(h3)를 하부 반응기(112)의 높이(h2) 보다 낮게 형성되도록 촉매(S)를 하부 반응기(112)의 내부로 공급할 수 있다.
촉매 공급부(130)는 예를 들어 촉매(S) 유동층의 높이(h3)가 상부 반응기(111)의 높이(h4) 대비 1/330~1/30가 되도록 촉매(S)를 공급할 수 있다. 여기서, 촉매 공급부(130)는 구체적으로 예를 들어 촉매(S) 유동층의 높이(h3)가 상부 반응기(111)의 높이(h4) 대비 1/200~1/50가 되도록 촉매(S)를 공급할 수 있다.
촉매 공급부는(130) 반응 전 촉매(S) 유동층의 높이(h3)를 상부 반응기(111)의 높이(h4)에 대하여 하한값인 1/330 이상으로 공급하여, 온도 확보 및 가스(Gas) 접촉시간 확보를 할 수 있는 효과가 있다. 즉, 촉매(S) 유동층의 높이가 너무 낮을 경우, 단열면적 대비 촉매량이 많아 온도 확보가 어렵고, 촉매(S) 유동층의 기체 통과 시간이 짧아져 반응 효율이 떨어지는 것을 방지할 수 있는 효과가 있다.
또한, 촉매 공급부(130)는 반응 전 촉매(S) 유동층의 높이(h3)를 상부 반응기(111)의 높이(h4)에 대하여 상한값인 1/30 이하로 공급하여, 반응물이 반응기 본체(110)에서 이탈되는 것을 방지할 수 있는 효과가 있다.
촉매(S)의 종류는 예를들어 Fe, Co, Ni, Cu, Cr, Mn 중에서 어느 하나 이상으로 이루어질 수 있다.
기체 공급부(140)는 하부 반응기(112)의 하단부와 연결되어 하부 반응기(112)로 반응 기체를 공급할 수 있다.
아울러, 기체 공급부(140)는 탄화 수소 계열 원료 기체를 포함하는 반응 기체를 공급함에 따라 반응기 본체(110) 수용부(114) 내에서 탄소 구조물이 제조될 수 있다. 이때, 탄소 구조물은 예를 들어 탄소나노튜브(CNT; Carbon nanotubes)일 수 있다.
여기서, 반응 기체는 예를 들어 질소(N2), 에틸렌(C2H4), 아세틸렌, 메탄, 또는 일산화탄소 중 적어도 어느 하나 이상일 수 있다.
이때, 예를 들어 반응 기체가 에틸렌을 포함할 때, 기체 공급부(140)는 반응기 내부로 에틸렌의 량을 1.2 ~ 500(m3/hr)로 공급할 수 있다.
한편, 기체 공급부(140)는 예열기를 포함할 수 있다. 이때, 반응 기체는 반응기 본체(110)의 내부로 공급되기 전에 예열기(S1)에서 예열될 수 있다.
도 1 및 도 3을 참고하면, 회수부(150)는 하부 반응기(112)와 연결되어 수용부(114)의 내부에 위치된 반응물(P)을 회수할 수 있다.
회수부(150)는 하부 반응기(112)와 연결되어 반응물(P)이 회수되는 회수라인(151), 및 회수라인(151)과 연결되어 회수되는 반응물(P)이 저장되는 저장 탱크(153)를 포함할 수 있다. 또한, 회수부(150)는 회수라인(151) 상에 위치되어 반응물(P)을 냉각 시키는 쿨러(152)(Cooler)를 더 포함할 수 있다.
이때, 반응기 본체(110)에 수용된 고온의 반응물(P)이 회수라인(151)을 통해 회수되어 쿨러(152)를 통해 냉각된 후 저장 탱크(153)에 저장될 수 있다.
가스 배출부(160)는 상부 반응기(111)의 상부와 연결되어, 반응기 본체(110)의 수용부(114)에 위치된 반응이 완료된 가스를 배출시킬 수 있다.
여기서, 가스 배출부(160)는 상부 반응기(111)의 상부에서 단부 또는 측면과 연결될 수 있다.
본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치(100)는 가열부, 열교환기(170), 싸이클론(180), 소각로(190), 및 미분포집부(J)를 더 포함할 수 있다.
가열부는 반응기 본체(110)의 외측에 구비되어 반응기 본체(110)를 고온으로 가열할 수 있다.
열교환기(170)는 반응기 본체(110)의 상부에 구비된 가스 배출부(160)와 연결되어 배출되는 가스를 열교환할 수 있다. 즉, 반응기 본체(110)에서 배출되는 고온을 가스를 열교환하여 높은 온도의 열을 다른 장치로 전달하여 사용할 수 있다. 이때, 예를 들어 열교환기(170)는 스팀 파이프(Steam Pipe)를 포함하고, 스팀 파이프를 통해 열을 전달받아 기체 공급부(140)에서 반응 기체를 공급 시, 반응 기체의 예열에 사용할 수 있다.
싸이클론(180)은 열교환기(170)와 연결되어 열교환된 가스에서 미분(파우더) 및 가스를 분리할 수 있다.
소각로(190)는 싸이클론(180)의 일측과 연결되어 싸이클론(180)에서 분리된 가스를 소각할 수 있다.
미분포집부(J)는 싸이클론(180)의 타측과 연결되어 싸이클론(180)에서 분리된 미분을 포집할 수 있다.
도 2를 참고하여, 본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치(100)의 작동을 구체적으로 예를 들어 설명하면, 도 2(a)를 참고할 때, 반응기 본체(110)의 수용부(114)로 질소를 공급하고, 가열부를 통해 반응기 본체(110)를 승온시키며, 촉매 공급부(130)를 통해 하부 반응기(112) 내부로 촉매(S)를 공급한다.
그리고, 도 2(b)를 참고하면, 반응기 본체(110)의 수용부(114)로 에틸렌을 공급하여 촉매(S)와 고온에서 반응시킨다.
이후, 도 2(c)를 참고하면, 반응된 반응물(P)을 반응기 본체(110)의 수용부(114)에서 회수부(150)를 통해 회수할 수 있다.
도 1 및 도 2를 참고하면, 상기와 같이 구성된 본 발명의 제3 실시예에 따른 탄소나노튜브 제조장치(100)는 반응기 본체(110)를 하부 반응기(112), 하부 반응기(112) 보다 지름이 크게 형성된 상부 반응기(111), 및 상부 반응기(111)와 하부 반응기(112) 사이를 연결하며 지름이 점차 확장되는 확장부(113)로 구성함으로써, 온도 확보용 유동물 없이 촉매(S)만을 이용하여 탄소나노튜브를 제조할 수 있다. 특히, 상부 반응기(111) 보다 지름이 적게 형성된 하부 반응기(112)에 촉매(S)를 공급하고, 하부 반응기(112) 하부로부터 반응 기체를 분산판(120)을 통해 공급하여, 반응 온도를 확보하기 용이하고, 이로 인해 촉매(S)만을 이용하여 탄소나노튜브의 제조가 가능하여 반응기 사용율을 현저히 높이며, 반응물(P)간 품질 편차를 줄일 수 있다. 그리고, 하부 반응기(112) 보다 확관된 상부 반응기(111)를 구비하여 반응기의 생산량이 증가될 수 있다.
특히, 상부 반응기(111)에 대한 하부 반응기(112)의 직경비는 1/5 ~ 1/1.5가 되도록 형성되어, 하부 반응기(112)의 반응 온도 확보가 보다 용이하고, 반응 가스 접촉 시간이 향상될 수 있으며, 이로 인해 CNT 생산량 및 생산 효율을 최적화 할 수 있다. 이때, 상부 반응기(111)에 대한 하부 반응기(112)의 직경비는 1/3 ~ 1/2가 되도록 형성되어, 하부 반응기(112)의 반응 온도 확보가 현저히 용이하고, 반응 가스 접촉 시간이 보다 향상될 수 있으며, 이로 인해 CNT 생산량 및 생산 효율을 보다 최적화 시킬 수 있다. 에틸렌 선택도 효율이 최적화될 수 있다.
< 제조예 C1 >
본 발명의 하부 반응기, 하부 반응기 보다 지름이 크게 형성된 상부 반응기, 상부 반응기와 하부 반응기 사이를 연결하며 지름이 점차 확장되는 확장부를 포함하는 다단 형태의 반응기 본체에서, 하부 반응기의 하부로 질소를 공급하고, 가열부를 통해 반응기 본체를 승온시키며, 촉매 공급부를 통해 하부 반응기 내부로 촉매를 공급하여 촉매 유동층을 형성시킨다. 여기서, 상부 반응기에 대한 하부 반응기의 직경비는 1/3, 촉매 유동층의 높이가 상부 반응기의 높이 대비 1/77로 형성된다. 이때, 하부 반응기의 직경은 3cm로 형성된다.
그리고, 하부 반응기의 하부로 에틸렌을 공급하여 촉매와 고온에서 반응시켜 반응물을 생성시킨다.
그런 다음, 반응된 반응물을 반응기 본체의 내부에서 회수부를 통해 회수한다.
이후 촉매 주입단계부터 반복하며 탄소나노튜브를 제조하였다.
< 제조예 C2 >
상부 반응기에 대한 하부 반응기의 직경비는 1/2, 촉매 유동층의 높이가 상부 반응기의 높이 대비 1/197로 형성되되, 하부 반응기의 직경은 5cm로 형성된 것을 제외하고 제조예 C1과 동일과정을 수행하였다.
< 비교예 C1 >
지름이 0.1m로 일정한 기존의 1단 형태의 반응기 본체를 사용하고, 온도 확보를 위해 내부유동물을 사용한 것을 제외하고 제조예 C1과 동일과정을 수행하였다.
< 비교예 C2 >
지름이 0.1m로 일정한 기존의 1단 형태의 반응기 본체를 사용한 것을 제외하고 제조예 C1과 동일과정을 수행하였다. 즉, 온도 확보를 위한 내부유동물을 사용하지 않고, 종래의 1단 형태의 반응기 본체를 사용하였다.
< 실험예 3 >
탄소나뉴튜브(CNT)의 생산량, CNT 응집체 양 등을 측정하여 하기 표 1에 나타내었다.
Bulk density는 정량컵에 채우고 무게를 측정하여 부피로 나는 값을 사용하였다.
Purity는 CNT를 Air 분위기에서 700℃에서 2 시간(h) 가열하여 잔유물 무게를 측정하였다. (초기 무게 - 최종무게) / 초기무게 * 100
비표면적은 BET 법으로 측정하였다.
제조예 C1 제조예 C2 비교예 C1 비교예 C2
반응기 지름형태 지름 확관 지름 확관 지름 일정 지름 일정
반응기 단수 다단 다단 1단 1단
내부유동물[g] - - 150 -
촉매량[g] 15 15 9 15
촉매주입높이[cm] 3.4 1.2 102 102
반응물 유동층 높이비(h3/h4) 1/76.9 1/197.2 1/2.4 1/2.4
반응기 직경비(b/a) 1/3 1/2 1/1 1/1
촉매 유동층 온도[℃] 710 710 710 710
반응시간
[min]
120 120 70 120
생산량[g] 321 293 201 -
Bulk density [kg/m3] 32.4 31.7 37.8 -
Purity[%] 95.5 95.1 95.7 -
비표면적
[m2/g]
190.2 195.4 183.7 -
C2H4 선택도(%) 64 58 67 -
상기 표 3에 나타난 바와 같이, 내부유동물을 사용하지 않되 반응기 본체가 1단 형태로 형성된 비교예 C2는 CNT 생산량이 0[g]에 불과한 반면, 내부유동물을 사용하지 않고, 반응기 본체가 다단으로 형성되되 상부로 갈수록 확관되는 확장부가 구비된 제조예 C1 및 제조예 C2는 CNT 생산량이 293 ~ 321[g]으로 현저히 많은 것을 알 수 있다.
즉, 반응기 본체에 지름이 전체적으로 일정한 1단형으로 형성되되, 내부 유동물이 없는 비교예 C2에서는 CNT가 생산되지 않음을 알 수 있다. 따라서, 비교예 C2에서 반응기 본체가 지름이 일정한 1단형으로 형성될 때는 온도 확보용 유동물 없이는 CNT가 생산되지 않지만, 제조예 C1 및 2와 같이 반응기 본체가 다단으로 형성되되 상부로 갈수록 확관되는 확장부가 구비된 경우는 온도 확보용 유동물 없이 촉매만을 이용하여도 CNT가 생산되는 것을 알 수 있다.
또한, 내부유동물을 사용하고 반응기 본체가 1단 형태로 형성된 비교예 C1은 내부유동물이 차지하는 부피로 인해 CNT 생산량이 201[g]에 불과한 것을 알 수 있다. 즉, 본 발명에 따라 제조된 제조예 C1 및 제조예 C2에서는 반응기를 전부 사용하여 CNT 생산량이 현저히 증가 될 수 있지만, 종래 기술의 비교예 C1에서는 내부유동물이 차지하는 부피로 인해 CNT 생산량이 현저히 감소된 것을 알 수 있다.
탄소나노튜브의 제조방법
본 발명은 상기에서 설명한 탄소나노튜브 제조장치를 이용한 탄소나노튜브의 제조방법을 제공하며, 구체적으로 본 발명은 상기의 탄소나노튜브 제조장치를 이용한 탄소나노튜브의 제조방법에 있어서, 상기 하부 반응기로 촉매를 투입하는 단계(S1) 상기 하부 반응기 및 상부 반응기 내부 온도를 승온시키는 단계(S2) 및 상기 하부 반응기로 탄소원 가스를 주입하는 단계(S3)를 포함하고, 상기 하부 반응기의 내부 온도보다 상기 상부 반응기의 내부 온도가 더 높은 것을 특징으로 하는 탄소나노튜브의 제조방법을 제공한다.
본 발명이 제공하는 탄소나노튜브의 제조방법의 특징은, 앞서 설명한 것과 같이 상부 반응기와 하부 반응기가 구분되고, 상부 반응기의 지름이 하부 반응기의 지름보다 큰 구조를 가지는 유동층 반응기를 이용하여 탄소나노튜브를 합성하는 방법에 있어서, 상기 상부 반응기 영역과 하부 반응기 영역의 온도를 다르게, 더욱 구체적으로는 상부 반응기 영역의 온도가 하부 반응기 영역의 온도보다 높도록 조절함으로써, 촉매의 소결 현상을 억제하고, 이를 통해 탄소나노튜브 합성에 소모되는 1 사이클의 시간을 줄이고, 단위 시간 당 생산되는 생산량을 늘릴 수 있다는 것에 있다.
더욱 구체적으로, 상기 하부 반응기의 내부 온도는 500 내지 800℃, 바람직하게는 600 내지 700℃일 수 있다. 또한, 상기 상부 반응기의 내부 온도는 600 내지 900℃, 바람직하게는 700 내지 800℃일 수 있다. 상기 하부 반응기의 온도가 상술한 범위 보다 낮을 경우에는, 반응에 필요한 에너지가 충분히 공급되지 못해, 반응 개시에 어려움이 있을 수 있고, 하부 반응기의 온도가 상술한 범위 보다 높은 경우에는, 촉매의 소결 현상이 발생하여, 촉매의 활성점 크기가 증가하고, 이에 따라 최종적으로 제조되는 탄소나노튜브의 직경이 너무 커지는 문제가 발생할 수 있다. 상기 상부 반응기의 온도가 상술한 범위 보다 낮을 경우에는 앞서 설명한 하부 반응기의 온도의 경우와 마찬가지로, 반응이 원활하게 진행되지 않는 문제가 발생할 수 있고, 상부 반응기의 온도가 상술한 범위 보다 높을 경우에는 촉매 소결의 문제뿐 아니라, 합성된 탄소나노튜브가 일부 열분해 되는 등의 문제가 함께 발생할 수 있다.
본 발명의 탄소나노튜브 제조방법에 있어서, 상기 상부 반응기의 내부 온도와 상기 하부 반응기의 내부 온도 차이는 50 내지 150℃, 바람직하게는 70 내지 130℃일 수 있다. 상부 반응기의 내부 온도와 하부 반응기의 내부 온도 차이가 이보다 작은 경우에는, 상부 반응기와 하부 반응기의 온도를 다르게 설정하는 것에 대한 기술적 이점이 적게 나타나고, 내부 온도 차이가 이보다 큰 경우에는 하부 반응기에서 상부 반응기로 이동하는 과정 중, 탄소나노튜브가 성장하는 촉매 입자의 온도가 급격하게 변화함에 따라 반응기 내부에 응집체(Cake)이 형성되거나, 비정질 탄소가 형성되어 최종적으로 수득되는 제품의 품질이 고르지 못한 문제가 생길 수 있다. 나아가, 본 발명에서 하부 반응기의 온도가 상부 반응기의 온도보다 낮게 하는 것과는 반대로, 오히려 하부 반응기의 온도가 상부 반응기의 온도보다 높게하는 경우에는 반응 초기 단계에서의 촉매 소결 현상이 급격하게 증가하여 단위 사이클 당 생산되는 탄소나노튜브의 양이 급격하게 감소되고, 최종적으로 제조되는 탄소나노튜브의 물성 측면에서도 벌크 밀도 및 비표면적이 낮은 탄소나노튜브가 합성될 수 있다.
본 발명의 탄소나노튜브 제조방법에 있어서, 투입되는 촉매는 본 기술 분야에서 유동층 반응기를 이용한 탄소나노튜브 제조에 사용되는 것으로 알려진 것이라면, 특별한 제한 없이 사용 가능하며, 통상적으로 사용될 수 있는 활성금속과 담지체의 복합구조로 이루어진 불균일계 촉매일 수 있고, 보다 구체적으로는 담지촉매 또는 공침촉매 형태의 촉매를 사용할 수 있다.
상기 촉매로 담지촉매를 사용되는 경우 벌크 밀도가 공침촉매보다 높고, 공침촉매와 달리 10 미크론(micron) 이하의 미분이 적어 미세 입자의 뭉침 현상 발생을 억제 할 수 있으며, 유동화 과정에서 발생할 수 있는 마모에 의한 미분 발생 가능성을 줄일 수 있고, 촉매 자체의 기계적 강도도 우수하여 반응기 운전을 안정하게 할 수 있다는 점에서 장점이 있다.
한편, 상기 촉매로 공침촉매를 사용하는 경우, 촉매의 제조 방법이 간단하고, 촉매 원료로 바람직한 금속염들의 가격이 낮아 제조원가상 유리한 측면이 있으며, 비표면적이 넓어 촉매활성이 높은 장점이 있다.
상기 촉매는 활성 성분으로 Co, Fe, Ni, Mo 및 V 중 선택되는 적어도 1 이상을 포함하는 것일 수 있고, 더욱 바람직하게는 Co, Fe 및 Ni 중 선택되는 적어도 1 이상을 주촉매 성분으로, Mo 및 V 중 선택되는 적어도 1 이상을 조촉매 성분으로 포함하는 것일 수 있다. 상기 성분들을 활성 성분으로 포함하는 경우, 탄소나노튜브 합성 반응의 활성화 에너지를 크게 낮추어, 효율적으로 탄소나노튜브를 합성할 수 있다.
본 발명의 탄소나노튜브 제조방법에서 주입되는 탄소원 기체는 고온 상태에서 분해되어 탄소나노튜브를 형성할 수 있는 탄소 함유 기체이고, 구체적인 예로 지방족 알칸, 지방족 알켄, 지방족 알킨, 방향족 화합물 등 다양한 탄소 함유 화합물이 사용 가능하며, 보다 구체적으로는 메탄, 에탄, 에틸렌, 아세틸렌, 에탄올, 메탄올, 아세톤, 일산화탄소, 프로판, 부탄, 벤젠, 시클로헥산, 프로필렌, 부텐, 이소부텐, 톨루엔, 자일렌, 큐멘, 에틸벤젠, 나프탈렌, 페난트렌, 안트라센, 아세틸렌, 포름알데히드, 아세트알데히드 등의 화합물을 사용할 수 있다.
특히, 상기 탄소원 기체로 메탄, 에탄, 일산화탄소, 아세틸렌, 에틸렌, 프로필렌, 프로판, 부탄 및 혼합물인 액화석유가스(LPG)를 사용하는 경우, 반응기 내로의 투입이 용이하고, 공정 경제성 측면에서도 우수하다는 장점이 있다.
본 발명의 탄소나노튜브 제조방법에 있어서, 하부 반응기로 주입되는 탄소원 가스의 선속도는 5 내지 200cm/s, 바람직하게는 10 내지 20cm/s일 수 있다. 하부 반응기로 주입되는 탄소원 가스의 선속도가 너무 낮은 경우에는 촉매 입자가 하부 반응기 영역에서 너무 오랜 시간 잔류하여 상부 반응기 영역으로 이동되지 못하는 문제가 생길 수 있고, 탄소원 가스의 선속도가 너무 높은 경우에는 오히려 하부 반응기 영역에서의 탄소나노튜브 성장이 충분히 이뤄지지 않았음에도 불구하고, 촉매 입자가 상부 반응기 영역으로 이송되어, 최종적으로 얻어지는 탄소나노튜브가 충분히 성장하지 못한 것일 수 있다.
본 발명의 탄소나노튜브 제조방법에 있어서, 상기 탄소원 가스는 유동 가스와 함께 주입되는 것일 수 있다. 유동 가스는 탄소원 가스 및 촉매 입자의 유동성을 더욱 개선하기 위한 것으로, 반응성이 없거나 적은 가스를 상기 유동 가스로 사용할 수 있고, 구체적으로는 질소 가스 또는 아르곤 가스를 상기 유동 가스로 사용할 수 있다. 한편, 상기 탄소원 가스와 유동 가스 사이의 유량비는 1:1 내지 1:8, 바람직하게는 1:2 내지 1:5일 수 있다. 탄소원 가스와 유동 가스가 상술한 유량비 조건을 만족하면서 주입되는 경우, 유동 가스의 유동성 개선 효과가 극대화될 수 있다. 만약 유동 가스가 이보다 적게 투입되는 경우에는 상술한 유동성 개선 효과가 적을 수 있고, 유동 가스가 너무 많게 투입되는 경우에는 상대적으로 탄소원 가스의 양이 부족하여, 촉매 표면에 접촉하는 탄소원 가스의 상대적 비율이 줄어드는 문제가 생길 수 있다.
상술한 것과 같은 본 발명의 탄소나노튜브 제조방법을 통해 제조되는 탄소나노튜브는 벌크 밀도가 30 내지 40kg/m3, 바람직하게는 33 내지 37.5kg/m3일 수 있다. 또한, 상기 탄소나노튜브의 비표면적은 200m2/g 이상, 바람직하게는 230 내지 270m2/g 일 수 있다. 또한 상기 탄소나노튜브의 순도는 95% 이상, 바람직하게는 96% 이상일 수 있다. 본 발명의 제조방법을 통해 제조되는 탄소나노튜브는 벌크 밀도가 높으면서도, 비표면적이 높고, 순도 역시 높아 우수한 품질을 가지는 것이 특징이다.
< 제조예 D1 >
도 1과 같은 형태의 탄소나노튜브 제조장치를 준비하였다. 준비한 제조장치에서 하부 반응기의 지름은 0.05m, 상부 반응기의 지름은 0.1m, 반응기 본체의 높이는 2m 로 형성되며, 확장부는 높이 0.3m에서 확관된다. 준비된 제조장치 내 유동층 반응기에 Co 촉매를 15g 충전한 후, 탄소원 가스로 에틸렌 가스를 5L/min의 유량으로, 유동 가스로 질소 가스를 15L/min의 유량으로 주입하였다. 주입되는 탄소원 가스의 선속도는 12cm/s이었다. 또한, 상기 하부 반응기의 온도는 650℃, 상부 반응기의 온도는 750℃가 되도록 각기 하부 반응기 및 상부 반응기를 가열하여, 반응을 진행하였다. 반응이 완료된 후, 탄소나노튜브 제조장치의 회수브를 통해 수득된 탄소나노튜브를 회수하였다.
< 제조예 D2 >
하부 반응기의 온도로 650℃, 상부 반응기의 온도로 800℃를 세팅하였다는 점을 제외하고는 제조예 D1과 동일하게 실시하여 탄소나노튜브를 수득하였다.
< 비교예 D1 >
도 1에 따른 탄소나노튜브 제조장치가 아닌, 종래의 단층 유동층 반응기를 이용하여 탄소나노튜브를 합성하였다. 유동층 반응기의 구체적 형태는 지름 0.1m 및 높이 2m인 원기둥 형태로, 반응기 내부의 총 부피는 제조예에서 사용한 것 대비 큰 것을 사용하였으며, 반응 온도 확보를 위해 제조예에서는 촉매 입자만을 투입하여 반응을 진행한 것과 달리, 내부유동물로 기 합성된 탄소나노튜브 150g을 함께 충전하여 반응을 수행하였다. 이외 촉매의 사용량이나 에틸렌 및 질소 가스의 주입 유량 등은 제조예 D1과 동일하게 하였으며, 반응기 내부 온도는 750℃가 되도록 하였다.
< 비교예 D2 >
비교예 D1과 동일하게 실시하되, 반응기 내부 온도가 초기에는 650℃, 후기에는 750℃가 되도록 반응 도중 승온하는 조작을 추가로 수행하였다. 승온 시점은 에틸렌 주입 후 15분 후로 하였으며, 에틸렌 공급을 차단한 후, 승온한 후, 승온이 완료된 후 다시 에틸렌 공급을 재개하였다.
< 비교예 D3 >
제조예 D1과 동일하게 실시하되, 상부 반응기와 하부 반응기의 온도로 동일하게 750℃를 설정하였다.
< 비교예 D4 >
제조예 D1과 동일하게 실시하되, 제조예 D1과는 반대로, 하부 반응기의 온도는 750℃, 상부 반응기의 온도는 650℃로 설정하였다.
상기 제조예 및 비교예에서 사용한 반응기 구조 및 반응 조건을 하기 표 4로 요약하였다.
제조예 D1 제조예 D2 비교예 D1 비교예 D2 비교예 D3 비교예 D4
반응기 구조 2단 2단 단층 단층 2단 2단
내부유동물[g] - - 150 150 - -
촉매량[g] 15 15 15 15 15 15
에틸렌 유속[L/min] 5 5 5 5 5 5
하부 반응기 온도[℃] 650 650 750 초기 650
후기 750
750 750
상부 반응기 온도[℃] 750 800 750 650
< 실험예 4 > - 제조된 탄소나노튜브의 물성 확인
상기 제조예 및 비교예에서 제조된 탄소나노튜브의 물성을 확인하였으며, 각 물성 별 측정 방법은 아래와 같다.
1) 벌크 밀도: ASTM B329-06에 의거하여 부피가 확인된 컵에 탄소나노튜브를 가득 채운 후, 측정된 무게를 컵의 부피로 나누어 계산하였다.
2) 순도: 수득된 탄소나노튜브를 공기 중에서 700℃로 2시간 가열하여 잔유물의 무게를 측정하였다. 측정된 잔유물의 무게 및 초기 탄소나노튜브의 무게를 하기 식에 대입하여 순도를 계산하였다.
순도 = (초기 무게 - 잔유물의 무게)/초기 무게 * 100%
3) 비표면적: BET 법으로 측정하였으며, BELSorp-mini 장비(BEL Japan社)를 이용하여 측정하였다.
제조예 D1 제조예 D2 비교예 D1 비교예 D2 비교예 D3 비교예 D4
벌크 밀도 [kg/m3] 36.0 40 37.5 34.5 35.1 30.1
순도 [%] 96.2 96.5 95.4 96.4 95.2 94.5
비표면적 [m2/g] 240 210 185 259 181 200
상기 표 5에 나타난 바와 같이, 본 발명의 제조예 D1 및 D2에서 제조된 탄소나노튜브는 높은 벌크 밀도, 순도 및 비표면적을 나타내었다. 제조예 D1 및 D2 중에서는 제조예 D2에서 상부 반응기의 온도가 조금 더 높음에 따라, 제조예 D1 대비 최종적으로 수득되는 탄소나노튜브의 벌크 밀도가 높아지고, 비표면적은 낮은 결과가 나타났다. 한편, 기존의 반응기를 사용하여 합성된 비교예 D1의 경우, 초기에 내부유동물로 투입되는 탄소나노튜브로 인해 탄소나노튜브의 벌크 밀도가 제조예 D1 대비 높고, 비표면적은 제조예 D1 대비 낮은 결과를 나타내었다. 또한, 기존의 반응기를 사용하였으나, 반응 도중 온도를 상승시키는 조작을 추가로 수행한 비교예 D2의 경우, 제조예 D1과 유사한 정도의 벌크 밀도 및 비표면적을 갖는 탄소나노튜브가 제조되었다. 다만, 후술할 것과 같이 비교예 D2의 경우, 생산성 측면에서 제조예 D1 및 D2 대비 열위한 결과를 보였다. 본 발명의 제조예에서 사용한 것과 동일한 반응기를 이용하되, 상부 반응기 및 하부 반응기의 온도를 동일하게 한 비교예 D3의 경우에는, 상부 반응기 및 하부 반응기가 구분되는 이점이 상대적으로 떨어져, 비교예 D1과 유사한 탄소나노튜브가 제조되었다. 마지막으로, 본 발명의 제조예에서 사용한 것과 동일한 반응기를 이용하되, 상부 반응기와 하부 반응기의 온도를 본 발명의 제조예와는 반대로, 하부 반응기의 온도가 높고, 상부 반응기의 온도가 낮게 설정한 비교예 D4의 경우, 반응 초기 촉매의 소결 현상이 발생하여 탄소나노튜브가 충분히 성장하지 못함에 따라, 벌크 밀도 및 비표면적이 낮은 탄소나노튜브가 합성되었다.
< 실험예 5 > -탄소나노튜브 제조 공정의 생산성 비교
상기 제조예 및 비교예의 탄소나노튜브 제조 공정에서 반응 및 회수 완료까지 소모되는 시간(1 사이클 시간) 및 1 사이클 당 생산량을 측정하였다. 반응 및 회수 완료까지 소모되는 시간은 에틸렌 투입 개시 시점을 시점으로 하고, 반응이 완료되어 얻어진 탄소나노튜브가 회수부에 이송 완료되는 시점을 종점으로 하여, 상기 시점 및 종점 사이의 소모 시간을 측정하였으며, 1 사이클 당 생산량은 1 사이클 완료 후 회수된 탄소나노튜브의 질량을 측정하였다. 다만 미리 기합성된 탄소나노튜브를 내부유동물로 투입하는 비교예 D1 및 D2의 경우에는, 측정된 탄소나노튜브의 질량에서 최초 투입된 내부유동물의 질량인 150g을 제외한 잔여 질량을 상기 1 사이클 당 생산량으로 하였다. 측정 결과를 하기 표 6으로 요약하였다.
제조예 D1 제조예 D2 비교예 D1 비교예 D2 비교예 D3 비교예 D4
1 사이클 시간 [min] 130 130 130 170 130 130
1 사이클 당 생산량 [g] 290 310 280 280 280 210
상기 표 6을 통해 확인할 수 있는 바와 같이, 본 발명의 실시예에 따른 탄소나노튜브 제조방법을 이용할 경우, 1 사이클 당 시간이 짧으면서도, 1 사이클에서 생산되는 탄소나노튜브의 양이 많아, 전체적인 제조 공정의 생산이 높음을 확인하였다. 비교예 D1 및 D3의 경우, 본 발명의 제조예와 유사하거나 제조예 대비 약간 낮은 정도의 생산성을 나타내었으나, 앞서 밝힌 바와 같이 생산되는 탄소나노튜브의 물성 측면에서 비표면적이 떨어지는 문제점이 있고, 비교예 D2의 경우, 1 사이클 당 생산량 측면에서는 제조예와 유사하나, 1 사이클에 소모되는 시간이 제조예 D1 대비 약 30% 이상 길어서, 단위 시간 당 생산량으로 환산할 경우, 생산성이 크게 떨어지는 문제점이 있음을 확인하였다.
이외, 비교예 D4의 경우, 1 사이클 당 시간은 제조예 수준으로 짧았으나, 1 사이클 당 생산량이 다른 비교예와 비교하여 보더라도 크게 열위하였으며, 앞서 밝힌 바와 같이 생성되는 탄소나노튜브의 벌크 밀도 및 비표면적 측면에서도 제조예에서 제조된 탄소나노튜브 대비 낮다는 문제점이 있음을 확인하였다. 이로부터, 상부 및 하부 반응기와 확관부를 포함하는 유동층 반응기를 이용하여 탄소나노튜브를 제조함에 있어서, 상부 및 하부 반응기의 온도를 적절하게 제어함으로써 탄소나노튜브 물성의 손실 없이 전체적인 탄소나노튜브 제조 공정의 생산성을 극대화할 수 있음을 확인할 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
100: 탄소나노튜브 제조장치
110: 반응기 본체
111: 상부 반응기
112: 하부 반응기
113: 확장부
114: 수용부
120: 분산판
130: 촉매 공급부
140: 기체 공급부
150: 회수부
151: 회수라인
152: 쿨러
153: 저장 탱크
160: 가스 배출부
170: 열교환기
180: 싸이클론
190: 소각로
J: 미분포집부
S: 촉매
P: 반응물

Claims (27)

  1. 탄소나노튜브 제조장치로서,
    내부에 반응이 일어나는 공간인 수용부가 형성된 원통형의 반응기 본체; 및
    상기 반응기 본체의 수용부 하부에 위치되어 상기 수용부로 공급되는 반응 기체를 분산시키는 분산판을 포함하고,
    상기 반응기 본체는,
    하부 반응기;
    상기 하부 반응기 보다 지름이 크게 형성된 상부 반응기; 및
    상기 상부 반응기와 상기 하부 반응기 사이를 연결하며 지름이 점차 확장되는 확장부를 포함하는 탄소나노튜브 제조장치.
  2. 청구항 1에 있어서,
    상기 하부 반응기와 연결되어 상기 하부 반응기로 촉매를 공급하는 촉매 공급부를 더 포함하는 탄소나노튜브 제조장치.
  3. 청구항 1에 있어서,
    상기 분산판은 상기 하부 반응기의 하부에 위치되는 탄소나노튜브 제조장치.
  4. 청구항 1에 있어서,
    상기 하부 반응기의 하단부와 연결되어 상기 하부 반응기로 상기 반응 기체를 공급하는 기체 공급부를 더 포함하는 탄소나노튜브 제조장치.
  5. 청구항 1에 있어서,
    상기 하부 반응기와 연결되어 상기 수용부의 내부에 위치된 반응물을 회수하는 회수부를 더 포함하는 탄소나노튜브 제조장치.
  6. 청구항 5에 있어서,
    상기 회수부는
    상기 하부 반응기와 연결되어 상기 반응물이 회수되는 회수라인; 및
    상기 회수라인과 연결되어 회수되는 반응물이 저장되는 저장 탱크를 포함하는 탄소나노튜브 제조장치.
  7. 청구항 6에 있어서,
    상기 회수부는
    상기 회수라인 상에 위치되어 상기 반응물을 냉각 시키는 쿨러를 더 포함하는 탄소나노튜브 제조장치.
  8. 청구항 1에 있어서,
    상기 상부 반응기의 상부와 연결되어, 상기 수용부에 위치된 반응이 완료된 가스를 배출시키는 가스 배출부를 더 포함하는 탄소나노튜브 제조장치.
  9. 청구항 1에 있어서,
    상기 상부 반응기 및 상기 하부 반응기는 각각 지름이 일정하게 형성된 탄소나노튜브 제조장치.
  10. 청구항 1에 있어서,
    상기 하부 반응기의 지름은 상기 상부 반응기의 지름의 1/5 ~ 1/2로 된 탄소나노튜브 제조장치.
  11. 청구항 1에 있어서,
    상기 확장부는 지름이 점차 확장되는 경사를 형성하고,
    상기 확장부의 경사 각도는 수직방향을 기준으로 5~45°인 탄소나노튜브 제조장치.
  12. 청구항 11에 있어서,
    상기 확장부의 경사 각도는 수직방향을 기준으로 10~30°인 탄소나노튜브 제조장치.
  13. 청구항 1에 있어서,
    상기 상부 반응기에 대한 상기 하부 반응기의 직경비는 1/5 ~ 1/1.5인 탄소나노튜브 제조장치.
  14. 청구항 13에 있어서,
    상기 상부 반응기에 대한 상기 하부 반응기의 직경비는 1/3 ~ 1/2인 탄소나노튜브 제조장치.
  15. 청구항 13에 있어서,
    상기 하부 반응기와 연결되어 상기 하부 반응기로 촉매를 공급하는 촉매 공급부를 더 포함하는 탄소나노튜브 제조장치.
  16. 청구항 15에 있어서,
    상기 촉매 공급부는 상기 하부 반응기로 상기 촉매를 공급하여 상기 하부 반응기 내부에 촉매 유동층을 형성시키되,
    상기 촉매 공급부는 상기 촉매 유동층의 높이가 상기 상부 반응기의 높이 대비 1/330~1/30가 되도록 상기 촉매를 공급하는 탄소나노튜브 제조장치.
  17. 청구항 16에 있어서,
    상기 촉매 공급부는 상기 촉매 유동층의 높이가 상기 상부 반응기의 높이 대비 1/200~1/50가 되도록 상기 촉매를 공급하는 탄소나노튜브 제조장치.
  18. 청구항 1의 탄소나노튜브 제조장치를 이용한 탄소나노튜브의 제조방법으로서,
    상기 하부 반응기로 촉매를 투입하는 단계(S1);
    상기 하부 반응기 및 상부 반응기 내부 온도를 승온시키는 단계(S2); 및
    상기 하부 반응기로 탄소원 가스를 주입하는 단계(S3);를 포함하고,
    상기 하부 반응기의 내부 온도보다 상기 상부 반응기의 내부 온도가 더 높은 것을 특징으로 하는 탄소나노튜브의 제조방법.
  19. 청구항 18에 있어서,
    상기 하부 반응기의 내부 온도는 500 내지 800℃인 탄소나노튜브의 제조방법.
  20. 청구항 18에 있어서,
    상기 상부 반응기의 내부 온도는 600 내지 900℃인 탄소나노튜브의 제조방법.
  21. 청구항 18에 있어서,
    상기 상부 반응기의 내부 온도와 상기 하부 반응기의 내부 온도 차이는 50 내지 150℃인 탄소나노튜브의 제조방법.
  22. 청구항 18에 있어서,
    상기 탄소원 가스는 메탄, 에탄, 에틸렌, 아세틸렌, 에탄올, 메탄올, 아세톤, 일산화탄소, 프로판, 부탄, 벤젠, 시클로헥산, 프로필렌, 부텐, 이소부텐, 톨루엔, 자일렌, 큐멘, 에틸벤젠, 나프탈렌, 페난트렌, 안트라센, 아세틸렌, 포름알데히드 및 아세트알데히드로 이루어진 군에서 선택되는 1 이상인 탄소나노튜브의 제조방법.
  23. 청구항 18에 있어서,
    하부 반응기로 주입되는 탄소원 가스의 선속도는 5 내지 200cm/s인 탄소나노튜브의 제조방법.
  24. 청구항 18에 있어서,
    상기 탄소원 가스는 유동 가스와 함께 주입되는 것인 탄소나노튜브의 제조방법.
  25. 청구항 24에 있어서,
    상기 유동 가스는 질소 가스 또는 아르곤 가스인 탄소나노튜브의 제조방법.
  26. 청구항 24에 있어서,
    상기 탄소원 가스와 유동 가스 사이의 유량비는 1:1 내지 1:8인 탄소나노튜브의 제조방법.
  27. 청구항 1 내지 청구항 17 중 어느 한 항에 기재된 탄소나노튜브 제조장치를 통해 제조된 탄소나노튜브.
PCT/KR2021/018803 2020-12-11 2021-12-10 탄소나노튜브 제조장치 및 제조방법 WO2022124867A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/027,595 US20230398510A1 (en) 2020-12-11 2021-12-10 Carbon nanotube manufacturing apparatus and manufacturing method
EP21903912.0A EP4261185A1 (en) 2020-12-11 2021-12-10 Carbon nanotube manufacturing apparatus and manufacturing method
CN202180062684.6A CN116600884A (zh) 2020-12-11 2021-12-10 碳纳米管制造装置和碳纳米管制造方法

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20200173069 2020-12-11
KR10-2020-0173069 2020-12-11
KR1020210171133A KR20220083595A (ko) 2020-12-11 2021-12-02 탄소나노튜브의 제조방법
KR1020210171323A KR20220083596A (ko) 2020-12-11 2021-12-02 탄소나노튜브 제조장치
KR10-2021-0171323 2021-12-02
KR10-2021-0171324 2021-12-02
KR1020210171324A KR20220083597A (ko) 2020-12-11 2021-12-02 탄소나노튜브 제조장치
KR10-2021-0171325 2021-12-02
KR10-2021-0171133 2021-12-02
KR1020210171325A KR20220083598A (ko) 2020-12-11 2021-12-02 탄소나노튜브 제조장치

Publications (1)

Publication Number Publication Date
WO2022124867A1 true WO2022124867A1 (ko) 2022-06-16

Family

ID=81974475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018803 WO2022124867A1 (ko) 2020-12-11 2021-12-10 탄소나노튜브 제조장치 및 제조방법

Country Status (3)

Country Link
US (1) US20230398510A1 (ko)
EP (1) EP4261185A1 (ko)
WO (1) WO2022124867A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092912A (zh) * 2022-06-29 2022-09-23 清华大学 制备碳纳米管与中间相碳微球及其复合物的装置与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286015A (ja) * 2002-03-27 2003-10-07 Osaka Gas Co Ltd チューブ状炭素物質の製造装置、製造設備及びカーボンナノチューブの製造方法
KR20090027377A (ko) * 2007-09-12 2009-03-17 세메스 주식회사 탄소나노튜브 제조장치 및 그 방법
KR20100108599A (ko) 2008-01-21 2010-10-07 니기소 가부시키가이샤 카본나노튜브 제조장치
KR101102814B1 (ko) * 2008-12-22 2012-01-05 제일모직주식회사 탄소나노튜브 합성용 유동층 반응기, 그 제조방법 및 이를 통해 합성된 탄소나노튜브
KR101359415B1 (ko) * 2007-07-27 2014-02-06 금호석유화학 주식회사 탄소나노튜브 합성 방법 및 장치
KR102095517B1 (ko) * 2016-04-19 2020-04-01 주식회사 엘지화학 온도조절 수단이 구비된 유동층 반응기 및 이를 이용한 탄소나노구조물의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286015A (ja) * 2002-03-27 2003-10-07 Osaka Gas Co Ltd チューブ状炭素物質の製造装置、製造設備及びカーボンナノチューブの製造方法
KR101359415B1 (ko) * 2007-07-27 2014-02-06 금호석유화학 주식회사 탄소나노튜브 합성 방법 및 장치
KR20090027377A (ko) * 2007-09-12 2009-03-17 세메스 주식회사 탄소나노튜브 제조장치 및 그 방법
KR20100108599A (ko) 2008-01-21 2010-10-07 니기소 가부시키가이샤 카본나노튜브 제조장치
KR101102814B1 (ko) * 2008-12-22 2012-01-05 제일모직주식회사 탄소나노튜브 합성용 유동층 반응기, 그 제조방법 및 이를 통해 합성된 탄소나노튜브
KR102095517B1 (ko) * 2016-04-19 2020-04-01 주식회사 엘지화학 온도조절 수단이 구비된 유동층 반응기 및 이를 이용한 탄소나노구조물의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092912A (zh) * 2022-06-29 2022-09-23 清华大学 制备碳纳米管与中间相碳微球及其复合物的装置与方法
CN115092912B (zh) * 2022-06-29 2024-01-30 清华大学 制备碳纳米管与中间相碳微球及其复合物的装置与方法

Also Published As

Publication number Publication date
US20230398510A1 (en) 2023-12-14
EP4261185A1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2012138017A1 (en) Apparatus and method for continuously producing carbon nanotubes
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2021149996A1 (ko) 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2022124867A1 (ko) 탄소나노튜브 제조장치 및 제조방법
WO2018074652A1 (en) Catalyst and continuous process for mass production of multi-walled carbon nanotube
WO2015047042A1 (ko) 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법
WO2013025019A2 (ko) 중앙식 연속 아스콘 생산장치 및 그 방법
WO2012138018A1 (en) Continuous manufacturing apparatus and method for carbon nanotubes having gas seperation units
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2012091437A2 (ko) 일관제철시스템 및 일관제철방법
WO2017010600A1 (ko) 탄화수소의 탈수소화를 통해 올레핀을 제조하기 위한 촉매 및 그 제조방법
WO2019231164A1 (ko) 식각 특성이 향상된 화학기상증착 실리콘 카바이드 벌크
WO2018034549A1 (ko) 폴리케톤 화합물 제조용 촉매 조성물, 팔라듐 혼합 촉매 시스템, 이를 이용한 폴리케톤 화합물 제조 방법 및 폴리케톤 중합체
WO2014104756A1 (ko) 철광석 환원을 위한 환원 가스 제조용 니켈계 개질 촉매 및 그 제조방법, 에너지 효율을 극대화한 개질촉매 반응 공정 및 설비, 그리고, 이를 이용한 환원가스 제조방법
WO2022025675A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2023096443A1 (ko) 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2023101522A1 (ko) 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2022163997A1 (ko) 분체이송시스템과 분체이송방법
WO2022015003A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2020046064A1 (ko) 이산화탄소 환원용 복합 촉매 및 그 제조 방법
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2020045833A1 (ko) 반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치
WO2021086027A1 (ko) 메탈로센 담지 촉매의 제조방법 및 메탈로센 담지 촉매
WO2018169366A1 (ko) 번들형 탄소나노튜브 및 이의 제조방법
WO2023068497A1 (ko) 메탄 개질용 촉매 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180062684.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903912

Country of ref document: EP

Effective date: 20230711