WO2021149996A1 - 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질 - Google Patents

규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질 Download PDF

Info

Publication number
WO2021149996A1
WO2021149996A1 PCT/KR2021/000734 KR2021000734W WO2021149996A1 WO 2021149996 A1 WO2021149996 A1 WO 2021149996A1 KR 2021000734 W KR2021000734 W KR 2021000734W WO 2021149996 A1 WO2021149996 A1 WO 2021149996A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
composite
carbon
oxide
composite oxide
Prior art date
Application number
PCT/KR2021/000734
Other languages
English (en)
French (fr)
Inventor
이어랑
박헌수
임성우
오성민
임종찬
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to JP2022544356A priority Critical patent/JP2023511165A/ja
Priority to US17/794,332 priority patent/US20230049476A1/en
Priority to EP21744429.8A priority patent/EP4095947A1/en
Publication of WO2021149996A1 publication Critical patent/WO2021149996A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/22Magnesium silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicon-silicon composite oxide-carbon composite, a method for preparing the same, and an anode active material for a lithium secondary battery comprising the same.
  • a lithium secondary battery is a battery that can best meet these needs, and research on the application of small batteries using the lithium secondary battery to large electronic devices such as automobiles and power storage systems is being actively conducted.
  • the anode active material expands or contracts during charging and discharging, and cracks may occur on the surface or inside of the anode active material. Due to this, the reaction area of the negative electrode active material increases, the decomposition reaction of the electrolyte occurs, and a film is formed due to the decomposition product of the electrolyte during this decomposition reaction, and there may be a problem in that the cycle characteristics are deteriorated when applied to a secondary battery. Accordingly, attempts have been made to solve this problem.
  • Japanese Patent Laid-Open No. 2002-042806 discloses a negative active material including a carbon layer on the surface of silicon oxide particles in order to realize high battery capacity and safety of a secondary battery.
  • the negative active material may increase the charge/discharge capacity of the secondary battery and increase the energy density, the cycle characteristics may be insufficient or it may be difficult to implement an energy density satisfactory to the characteristics required by the market.
  • Japanese Patent Laid-Open No. 2014-67713 discloses a composite having a core-shell structure including a shell including a hollow carbon fiber and a core disposed in the hollow of the hollow carbon fiber, wherein the core includes a first metal nanostructure.
  • An anode active material and a method for manufacturing the same are disclosed.
  • Japanese Laid-Open Patent Publication No. 2013-41826 discloses a first silicon oxide (SiOx, where 0 ⁇ x ⁇ 2) and a second silicon oxide (SiOy, where 0 ⁇ x ⁇ 2) having a smaller particle diameter (D90) than the first silicon oxide (SiOy, in this case, 0 ⁇
  • an area ratio of a particle size distribution peak of a first silicon oxide to a second silicon oxide in a particle size distribution is 3 to 8, is disclosed.
  • the cumulative 90% diameter (D 90 ) of the particle size distribution by the laser diffraction scattering particle size distribution measurement method is 50 ⁇ m or less, and the fine powder A with a particle diameter of 2 ⁇ m or more and a particle diameter of less than 2 ⁇ m
  • an anode active material comprising a powder containing fine powder B, wherein the fine powder A is silicon oxide and the fine powder B is a powder containing silicon oxide.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-042806
  • Patent Document 2 Japanese Patent Publication No. 5406799
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2014-67713
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2013-41826
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2015-164139
  • An object of the present invention was designed to solve the problems of the prior art, and it is possible to improve not only the capacity of the secondary battery, but also cycle characteristics and initial efficiency, a silicon-silicon composite oxide-carbon composite for an anode active material of a lithium secondary battery is to provide
  • Another object of the present invention is to provide a method for preparing the silicon-silicon composite oxide-carbon composite.
  • Another object of the present invention is to provide an anode active material for a lithium secondary battery and a lithium secondary battery, including the silicon-silicon composite oxide-carbon composite.
  • the present invention is a silicon-silicon composite oxide-carbon composite having a core-shell structure, wherein the core includes silicon, a silicon oxide compound and magnesium silicate, the shell includes a carbon layer, and the cumulative volume in particle size distribution
  • the particle sizes at which the concentration (%) is 10%, 50% and 90% are D10, D50 and D90, respectively, the span value of the following formula 1 of the composite is 0.6 to 1.5
  • the present invention provides a first step of preparing a raw material obtained by using a silicon powder and a silicon oxide (SiOx (0.5 ⁇ x ⁇ 2) powder; after heating and evaporating the raw material and metallic magnesium at different temperatures, vapor deposition and a second step of cooling to obtain a silicon-silicon composite oxide composite of the core part, pulverizing and classifying the silicon-silicon composite oxide composite to have an average particle diameter of 0.5 ⁇ m to 10 ⁇ m to obtain a silicon-silicon composite oxide composite powder Third step; A fourth step of obtaining a core-shell structure composite by forming a carbon layer on the surface of the silicon-silicon composite oxide composite powder by using a chemical thermal decomposition deposition method; And pulverizing and classifying the core-shell structure composite It provides a method for producing the silicon-silicon composite oxide-carbon composite, comprising a fifth step of obtaining a silicon-silicon composite oxide-carbon composite by performing at least one or more of the processes.
  • SiOx silicon oxide
  • the present invention provides a negative active material comprising the silicon-silicon composite oxide-carbon composite.
  • the present invention provides a lithium secondary battery comprising the negative active material.
  • the silicon-silicon composite oxide-carbon composite according to the embodiment has a core-shell structure, wherein the core includes silicon, a silicon oxide compound, and magnesium silicate, the shell includes a carbon layer, and the particle size distribution of the composite is controlled.
  • the span value of Equation 1 in a specific range, it is possible to improve not only the capacity of the secondary battery, but also cycle characteristics and initial efficiency when used as an anode active material of a secondary battery.
  • FIG. 1 is a graph showing the result of measuring the particle size distribution of the silicon-silicon composite oxide-carbon composite of Example 1.
  • the present invention is not limited to the contents disclosed below, and may be modified in various forms as long as the gist of the present invention is not changed.
  • D10 is a value measured as a particle diameter when the cumulative volume concentration (%) in the particle size distribution measurement according to the laser light diffraction method is 10%.
  • D50 is a value measured as a particle diameter when the cumulative volume concentration (%) in the particle size distribution measurement according to the laser light diffraction method becomes 50%.
  • D90 is a value measured as a particle diameter when the cumulative volume concentration (%) in the particle size distribution measurement according to the laser light diffraction method becomes 90%.
  • a silicon-silicon composite oxide-carbon composite (hereinafter referred to as "the present composite") according to an embodiment of the present invention is a silicon-silicon composite oxide-carbon composite having a core-shell structure, wherein the core includes silicon and silicon oxide.
  • the shell includes a carbon layer, and the particle sizes at which the cumulative volume concentration (%) in the particle size distribution becomes 10%, 50%, and 90% are D10, D50 and D90, respectively.
  • the span value of the following formula 1 of the composite is 0.6 to 1.5.
  • the span value of Equation 1 is an index indicating the ratio of the distribution (particle size distribution) to the particle size of the present composite. That is, it is about the proportion of particles with different particle diameters. If the composition ratio of particles smaller than the average particle diameter and particles larger than the average particle diameter is high, it has a value higher than 1 and consists only of particles of the same size. In the case of a complex with an existing span, the span value is 1.
  • Equation 1 As the span value of Equation 1 is smaller, it means that the particle size distribution has a narrow width.
  • the span value of Equation 1 of the present composite may be 0.6 to 1.3, or 0.8 to 1.1.
  • the span value of the composite according to the embodiment of the present invention meets the above range, the viscoelasticity of the negative active material composition (negative electrode slurry) prepared by using the composite, the binder, and the conductive agent together becomes good, so that the secondary battery Performance can be improved.
  • anode active material composition when applied on a current collector, for example, a copper thin film, suitable viscoelasticity must be obtained to manufacture an anode having a uniform coating amount, which satisfies the span value of Equation 1 like this composite.
  • good viscoelasticity of the anode active material composition can be implemented, and thus a negative electrode having a uniform coating amount can be manufactured, thereby preventing a fire of the secondary battery due to overcharging, etc., thereby greatly contributing to the improvement of the stability of the secondary battery.
  • the density of a dry film can be improved by applying the negative active material composition, a negative electrode having a structure that is difficult to be destroyed by contraction and expansion during charging and discharging of a secondary battery can be realized.
  • the span value of Equation 1 satisfies the above range, it is possible to obtain a particle size distribution having a narrow base of a powder having a larger particle diameter and a smaller particle diameter than the average particle diameter of the composite. In addition, a particle size distribution having a particle size distribution close to left-right symmetry can be obtained. If the span value of Equation 1 is less than 0.6, the volume cumulative distribution curve of the present composite has a very sharp shape, and the density of the dry film is lowered by applying the negative active material composition, the capacity per unit volume of the secondary battery is reduced, and the cycle characteristics are can decrease.
  • D10 of the present composite may be 0.7 ⁇ m to 4.0 ⁇ m, 1.0 ⁇ m to 4.0 ⁇ m, or 2.0 ⁇ m to 3.5 ⁇ m.
  • the viscosity of the negative electrode slurry including the negative electrode active material may have viscoelasticity for easy coating.
  • the capacity retention rate is improved.
  • particularly small particles become a contact point between the anode active material particles, which has the effect of improving electrical conductivity and lithium detachability.
  • the D50 of the composite may be 0.5 ⁇ m to 10.0 ⁇ m, 1.0 ⁇ m to 8.0 ⁇ m, or 3.0 ⁇ m to 7.0 ⁇ m.
  • the D50 of the composite When the D50 of the composite is within the above range, it is easy to occlude and release lithium ions during charging and discharging, thereby reducing particle breakage.
  • the D50 When the D50 is 0.5 ⁇ m or more, the surface area per unit mass may be reduced, and an increase in the irreversible capacity of the secondary battery may be suppressed.
  • the BET specific surface area can be made sufficiently small, and the adverse effect caused by the excessively large BET specific surface area is not received.
  • the D50 when the D50 is 10.0 ⁇ m or less, it is easy to apply the negative active material when manufacturing the negative electrode, which may be advantageous in terms of process.
  • D50 when D50 is controlled within the above range, when the composite is used as an anode active material, uniform contraction and expansion may be accompanied, thereby improving cycle characteristics and initial charge/discharge characteristics of the secondary battery.
  • the D50 exceeds 10.0 ⁇ m, the expansion of the composite particles due to lithium ion charging becomes severe, and as the charging and discharging are repeated, the binding property between the particles of the composite and the binding property between the particles and the current collector are lowered. Characteristics can be greatly reduced. In addition, there is a risk of a decrease in activity due to excessive reduction of the specific surface area. When the D50 is less than 0.5 ⁇ m, there is a fear that dispersibility may be lowered during the preparation of the negative active material composition using the agglomeration of the particles of the composite.
  • the D90 of the composite may be 3.0 ⁇ m to 12.0 ⁇ m, 4.0 ⁇ m to 12.0 ⁇ m, or 4.0 ⁇ m to 10.0 ⁇ m.
  • the D90 of the present composite satisfies the above range, it is possible to prevent the destruction of the conduction path due to contraction and expansion during charging and discharging of the secondary battery.
  • the present composite does not contain excessively large particles (large particles), the lifespan characteristics of the secondary battery can be improved.
  • D90 exceeds 12.0 ⁇ m, it is not good because there is a risk of damaging the separation membrane due to the presence of large particles having an excessively large size in the present composite.
  • D90 is less than 3.0 ⁇ m, there may be a problem in that the packing density of the negative electrode of the secondary battery is lowered.
  • the ranges of D10 and D90 of the present composite may each approach the range of D50.
  • the particle size distribution becomes narrow, so that it is easy to control the particle size of the powder of the present composite, and a powder having a low agglomeration state can be obtained in the manufactured composite.
  • D90/D10 of the present composite may be 1.0 to 5.0. Specifically, D90/D10 of the present composite may be 2.0 to 4.5, specifically 2.0 to 4.2, or 2.0 to 4.1.
  • the viscoelasticity of the negative active material composition (negative electrode slurry) prepared by using the present composite, the binder, and the conductive agent together becomes good, so that the performance of the secondary battery can be improved.
  • the Dmin of the composite may be 0.1 to 3.0 ⁇ m, 0.2 to 2.2 ⁇ m, or 0.2 to 2.0 ⁇ m.
  • the above Dmin is a value measured by the particle size (particle diameter) when the cumulative volume concentration in the particle size distribution measurement according to the laser beam diffraction method is the minimum value, for example, D 0.01.
  • the Dmax of the composite may be 6.0 to 25 ⁇ m, 7 to 22 ⁇ m, or 7.45 to 21.9 ⁇ m.
  • the Dmax is a value measured as a particle diameter when the cumulative volume concentration in the particle size distribution measurement according to the laser light diffraction method is the maximum value, for example, D 99.9.
  • the packing density of the negative active material of the secondary battery is maximized, and the printing characteristics of the negative electrode slurry, that is, the thickness uniformity of the coating film when applied on the current collector, continuous printing workability, etc. are excellent. There may be advantages.
  • the ratio of the difference between Dmax and Dmin and D50 may be 2.0 to 5.0, 2.0 to 4.0, or 2.2 to 3.7.
  • the difference between Dmax and Dmin and the ratio of D50 means the content ratio of fine powder and coarse particles, and when it is out of the above range, the coating workability of the negative electrode slurry is poor and a uniform coating film cannot be obtained, so the lifespan characteristics of the secondary battery are poor. There may be a problem with a sharp decline.
  • the specific gravity of the composite may be 1.7 g/cm 3 to 2.6 g/cm 3 , specifically 2.0 g/cm 3 to 2.4 g/cm 3 .
  • the specific gravity is expressed in the same sense as true specific gravity, density, or true density.
  • the conditions for measuring specific gravity by a dry density meter according to an embodiment of the present invention for example, Ga-Q Peak II1340 manufactured by Shimadzu Corporation may be used as a dry density meter.
  • Helium gas can be used as the purge gas to be used, and after repeating 200 purges in the sample holder set at a temperature of 23 °C, measurements were made.
  • the specific gravity of the composite is 1.7 g/cm 3 or more, separation between the anode active material powders due to volume expansion of the anode active material during charging can be prevented and cycle deterioration can be suppressed, and the specific gravity is 2.6 g/cm 3 or less, thereby impregnating the electrolyte solution Since the performance is improved, the utilization rate of the anode active material is high, so that the initial charge/discharge capacity may be improved.
  • the rate characteristics of the secondary battery may be lowered, and when it exceeds 2.6 g/cm 3 , the contact area with the electrolyte increases, and the decomposition reaction of the electrolyte is promoted Or, a battery side reaction may occur.
  • the specific surface area of the composite may be 3 m 2 /g to 30 m 2 /g, 3 m 2 /g to 25 m 2 /g, or 3 m 2 /g to 20 m 2 /g.
  • the specific surface area of the present composite is less than 3 m 2 /g, the surface activity is low and the binding force of the binder during electrode fabrication is weak, and as a result, cycle characteristics when charging and discharging are repeated may decrease.
  • the specific surface area of the present composite exceeds 30 m 2 /g, a large amount of binder may be added in order to maintain binding properties because the amount of solvent absorbed during electrode fabrication is increased, and as a result, conductivity is lowered and cycle cycle There is a possibility that the characteristics may be deteriorated.
  • the contact area with the electrolyte increases, which may accelerate the decomposition reaction of the electrolyte or cause a side reaction of the battery.
  • the specific surface area can be measured by the BET method by nitrogen adsorption, for example, using a specific surface area measuring instrument commonly used in the art (such as Macsorb HM (model 1210) by MOUNTECH or Belsorp-mini II by MicrotracBEL) Available.
  • a specific surface area measuring instrument commonly used in the art such as Macsorb HM (model 1210) by MOUNTECH or Belsorp-mini II by MicrotracBEL) Available.
  • the electrical conductivity of the present composite may be 0.5 S/cm to 10 S/cm, specifically 0.8 S/cm to 8 S/cm, and more specifically 0.8 S/cm to 6 S/cm.
  • Electrical conductivity in the anode active material is an important factor that facilitates the movement of electrons during an electrochemical reaction.
  • the present invention provides a core-shell structure comprising a shell including a carbon layer on the surface of a core including silicon, a silicon oxide compound, and magnesium silicate, thereby increasing the range of electrical conductivity.
  • a satisfactory negative electrode active material can be implemented.
  • by controlling the particle size distribution of the composite it is possible to control the thickness expansion of the negative active material, thereby further improving the lifespan characteristics and capacity of the secondary battery.
  • the core of the silicon-silicon composite oxide-carbon composite according to an embodiment of the present invention includes silicon, a silicon oxide compound, and magnesium silicate.
  • silicon, a silicon oxide compound, and magnesium silicate are uniformly dispersed in the core and are firmly combined to form a core, so that it is possible to minimize the micronization of the core due to volume change during charging and discharging.
  • a thin film (oxide layer) made of silicon oxide may be formed on the surface of the silicon included in the present composite. Since the surface of the silicon can be easily oxidized, it is necessary to reduce the amount of oxygen in the silicon as much as possible. In addition, if moisture remains in the present composite even in a very small amount, it is not preferable because it causes surface oxidation.
  • the oxide layer formed on the surface of the silicon reduces the reactivity between the negative electrode active material and the electrolyte, thereby minimizing the formation of a side reaction product layer that may be formed on the surface of the negative electrode active material.
  • the silicon (Si) content in the core may be 30 to 80 wt%, specifically 40 to 70 wt%, more specifically 40 to 60 wt%, based on the total weight of the silicon-silicon composite oxide-carbon composite.
  • the silicon content is less than 30 wt%, since the amount of active material for lithium occlusion/release is small, the charge/discharge capacity of the lithium secondary battery may decrease, and when the silicon content exceeds 80 wt%, the charge/discharge of the lithium secondary battery Although the capacity may be increased, contraction and expansion of the electrode during charging and discharging may be excessively large, and the powder of the negative electrode active material may be further finely divided, thereby reducing cycle characteristics.
  • the content of magnesium (Mg) in the present composite is 2 wt% to 15 wt%, 2 wt% to 12 wt%, or 4 wt% to 10 wt% based on the total weight of the silicon-silicon composite oxide-carbon composite can be
  • the initial efficiency of the secondary battery can be improved, and when the magnesium content is 15 wt% or less, it is advantageous in terms of cycle characteristics or handling safety of the secondary battery.
  • the initial efficiency may be greatly increased to 85% or more due to an increase in the Mg 2 SiO 4 phase.
  • the content of magnesium (Mg) in the present composite is less than 2% by weight, there may be a problem in that the cycle characteristics of the secondary battery decrease, and when it exceeds 15% by weight, there may be a problem in that the charging capacity of the secondary battery decreases.
  • other metals other than magnesium may be included in the composite.
  • the other metal may be at least one selected from the group consisting of alkali metals, alkaline earth metals, Groups 13 to 16 elements, transition metals, rare earth elements, and combinations thereof, and specific examples thereof include Li, Ca, Sr, Ba , Y, Ti, Zr, Hf, V, Nb, Cr, Mo, W, Fe, Pb, Ru, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In , Ti, Ge, P, As, Sb, Bi, S, and Se.
  • the magnesium content satisfies the above range with respect to the total weight of the composite
  • the crystallite size of the composite including the carbon layer is 2 nm to 12 nm
  • silicon is the silicon oxide compound or silicic acid It may have a dispersed structure in magnesium.
  • the core contains silicon, a silicon oxide compound, and magnesium silicate, and these are dispersed to each other and the phase interfaces are bonded, that is, each phase is in a bonding state at the atomic level, so that when lithium ions are occluded and released.
  • the volume change is small, and cracks do not occur in the anode active material even when charging and discharging are repeated. Accordingly, since there is no sudden decrease in capacity according to the number of cycles, cycle characteristics of the secondary battery may be excellent.
  • the charge/discharge efficiency (%) is the ratio (y/x X 100) of the discharge capacity to the charge capacity (x), represents the ratio.
  • the average particle diameter (D 50 ) of the core of the present composite may be 0.5 ⁇ m to 10 ⁇ m, specifically 1.0 ⁇ m to 10.0 ⁇ m, or 2.0 ⁇ m to 9.0 ⁇ m.
  • the average particle diameter (D 50 ) of the core is less than 0.5 ⁇ m, the bulk density is too small, the charge/discharge capacity per unit volume may be reduced, and conversely, when the average particle diameter (D 50 ) exceeds 10 ⁇ m, the electrode film It becomes difficult to manufacture, and there exists a possibility of peeling from an electrical power collector.
  • the average particle diameter (D 50 ) of the core may be achieved by pulverizing the core particles.
  • classification may be performed to adjust the particle size distribution, and dry classification, wet classification, or sieve classification (filtration) may be used.
  • dry classification the processes of dispersion, separation (separation of fine particles and defective particles), collection (separation of solids and gases), and discharge are performed sequentially or simultaneously using airflow, so that particle interference, particle shape, and airflow are performed in sequence.
  • the moisture and oxygen concentration of the air stream used can be adjusted by performing pre-treatment (adjustment of moisture, dispersibility, humidity, etc.) prior to classification so as not to reduce the classification efficiency due to the influence of air flow, velocity distribution, static electricity, etc. . Further, pulverization and classification can be performed at a time to obtain a desired particle size distribution.
  • initial efficiency or cycle characteristics may be improved by about 10% to 20% compared to before classification.
  • the core powder after the pulverization and classification has a Dmax of about 10 ⁇ m or less, and in this case, the specific surface area of the core powder may decrease, and thus lithium supplemented in the solid electrolyte interface (SEI) layer may decrease.
  • SEI solid electrolyte interface
  • the respective sizes of the silicon, silicon oxide compound, and magnesium silicate particles are too large, it becomes difficult to exist inside the core, and the function as the core cannot be sufficiently exhibited.
  • the present composite can suppress volume expansion by including the core, and has an effect of preventing or reducing side reactions with the electrolyte. As a result, it is possible to improve the discharge capacity, lifespan characteristics, and thermal stability of the secondary battery.
  • the core since the core includes silicon, a high capacity may be realized when applied to a secondary battery.
  • the silicon may be formed by being dispersed in a silicon oxide compound or magnesium silicate.
  • the silicon charges lithium, when silicon is not included, the capacity of the secondary battery may decrease.
  • the silicon may be crystalline or amorphous (amorphous, amorphous), specifically, may be amorphous or a similar phase.
  • the silicon is crystalline, the smaller the size of the crystallites, the higher the density of the matrix and the stronger the strength, so that cracks can be prevented, so that the initial efficiency or cycle life characteristics of the secondary battery can be further improved.
  • silicon is an amorphous or similar phase, expansion or contraction during charging and discharging of the lithium secondary battery is small, and battery performance such as capacity characteristics can be further improved.
  • the silicon has high initial efficiency and battery capacity, but it involves a very complex crystal change by electrochemically absorbing, storing, and releasing lithium atoms.
  • the composition and crystal structure of silicon are Si (crystal structure: Fd3m), LiSi (crystal structure: 141/a), Li 2 Si (crystal structure: C2/) m), Li 7 Si 2 (Pbam), Li 22 Si 15 (F23), and the like.
  • the volume of silicon can expand by about 4 times (400%). Therefore, if the charge/discharge cycle is repeated, silicon is destroyed and a bond between lithium atoms and silicon is formed, thereby damaging the insertion sites of lithium atoms that silicon had in the beginning, thereby significantly reducing the cycle life.
  • the silicon may be uniformly distributed in the interior of the composite, and in this case, excellent mechanical properties such as strength may be exhibited.
  • the structure may have a structure in which silicon is uniformly dispersed in a silicon oxide compound or magnesium silicate.
  • silicon oxide compound or magnesium silicate By dispersing the silicon in magnesium silicate and surrounding it, it is possible to suppress expansion and contraction of silicon to obtain high secondary battery performance.
  • the silicon included in the present complex may be in an amorphous form, a crystalline form having a crystallite size of 2 nm to 20 nm, or a mixture thereof.
  • silicon is close to 100% amorphous, since it is difficult to obtain completely amorphous silicon in the process, the silicon may be a mixture of amorphous and crystalline forms.
  • the ratio of the amorphous form of silicon should just be 50 % or more.
  • the crystallite size of the silicon is less than 2 nm, the charging and discharging capacity of the secondary battery may decrease, and since the reactivity increases, the properties of the material may change during storage and there may be problems in the process.
  • the crystallite size of the silicon is 2 nm or more, there is little possibility that the charge/discharge capacity will be reduced, and if the crystallite size of the silicon is 20 nm or less, the possibility of generating a region that does not contribute to discharge is low, so that the charge capacity and the discharge capacity A decrease in the efficiency of the Coulomb representing the ratio can be suppressed.
  • the silicon is fine particles, it is preferable to form a lithium alloy with a large specific surface area to suppress destruction of the bulk.
  • the silicon fine particles react with lithium during charging to form Li 4.2 Si, and return to silicon upon discharging. At this time, when the silicon fine particles are frequently subjected to X-ray diffraction, the silicon exhibits a broad pattern, and a structural change may occur to amorphous silicon.
  • the density of the present composite increases, may approach the theoretical density, and pores may be greatly reduced. For this reason, the density of the matrix is improved and the strength is strengthened to prevent cracking, so that the initial efficiency or cycle life characteristics of the secondary battery can be further improved.
  • the silicon-silicon composite oxide-carbon composite may include a silicon oxide compound to improve capacity and reduce volume expansion when applied to a secondary battery.
  • the silicon oxide compound may be a silicon-based oxide represented by the general formula SiOx (0.5 ⁇ x ⁇ 1.5).
  • the silicon oxide compound may be specifically SiOx (0.8 ⁇ x ⁇ 1.2), more specifically SiOx (0.9 ⁇ x ⁇ 1.1).
  • SiOx when the x value is less than 0.5, it may be difficult to manufacture SiOx, and when the x value exceeds 1.5, the ratio of inert silicon dioxide generated during heat treatment is large, and when used as a lithium secondary battery There is a possibility that the charge/discharge capacity may decrease.
  • the silicon oxide compound may have an amorphous structure or a structure in which silicon is dispersed in an amorphous silicon oxide compound as confirmed by a transmission electron microscope.
  • the silicon oxide compound can be obtained by a method comprising heating a mixture of silicon powder and silicon oxide powder (or silicon dioxide powder) and cooling and precipitating the silicon oxide gas produced thereby.
  • the silicon oxide compound may be included in an amount of 5 mol% to 45 mol% based on the entire silicon-silicon composite oxide-carbon composite.
  • the content of the silicon oxide compound is less than 5 mol%, the volume expansion and lifespan characteristics of the secondary battery may be reduced, and when it exceeds 45 mol%, the initial irreversible reaction of the secondary battery may increase.
  • a non-conductive side reaction product (SEI) layer may be thickly formed on the surface of the negative active material during charging and discharging of a secondary battery due to a continuous reaction with the electrolyte.
  • SEI non-conductive side reaction product
  • the negative active material may be electrically short-circuited within the electrode, resulting in deterioration of lifespan characteristics, and a further increase in the volume expansion of the electrode due to the side reaction product layer.
  • the ratio of the number of oxygen atoms to the number of silicon atoms may be 0.45 to 1.2. Specifically, the ratio of the number of oxygen atoms to the number of silicon atoms (O/Si) may be 0.45 to 1.0, or 0.45 to 0.80. It is preferable that the O/Si is lower, and in this case, since the active phase due to silicon increases, the initial charge/discharge capacity may be improved.
  • O/Si is less than 0.45, there may be difficulties in the process, and silicon clusters are formed to easily expand during charging, and cycle characteristics of the secondary battery may be deteriorated.
  • O/Si exceeds 1.2, the specific gravity of inactive silicon dioxide, silicon oxide, or magnesium silicate increases, and there is a fear that the charge/discharge capacity may decrease.
  • the SiO 2 film formed on the surface of the silicon oxide may become thick and the conductivity of the silicon oxide may be reduced. For this reason, when used as a negative electrode active material of a lithium secondary battery, sufficient current cannot flow, resulting in an increase in internal resistance of the battery due to the resistance of the negative electrode, and the performance of the obtained lithium secondary battery may be significantly reduced.
  • the core of the composite includes magnesium silicate, it is possible to improve charge/discharge capacity characteristics and cycle characteristics when applied to a secondary battery.
  • the magnesium silicate Since it is difficult for the magnesium silicate to react with lithium ions during charging and discharging of the secondary battery, it is possible to reduce the amount of expansion and contraction of the electrode when lithium ions are occluded in the electrode, thereby improving the cycle characteristics of the secondary battery. there is.
  • the strength of the matrix which is a continuous phase surrounding the silicon, may be strengthened by the magnesium silicate.
  • the magnesium silicate may be represented by the following formula (1):
  • x 0.5 ⁇ x ⁇ 2
  • y is 2.5 ⁇ y ⁇ 4.
  • the magnesium silicate may include at least one selected from among MgSiO 3 crystals (enstatite) and Mg 2 SiO 4 crystals (foresterite).
  • the magnesium silicate may include MgSiO 3 crystals, and may further include Mg 2 SiO 4 crystals.
  • the magnesium silicate substantially contains a large amount of MgSiO 3 crystals in order to improve charge/discharge capacity and initial efficiency.
  • substantially included may mean to include or mainly include as a main component.
  • the content of magnesium with respect to SiO X may affect initial discharge characteristics or cycle characteristics at the time of charging and discharging.
  • Silicon in SiO X may be alloyed with lithium atoms to improve initial discharge characteristics.
  • the improvement effect of the cycle during charging and discharging may be increased.
  • magnesium silicate includes Mg 2 SiO 3 crystal and Mg 2 SiO 4 crystal together, initial efficiency may be improved. If the Mg 2 SiO 4 crystal contains more Mg 2 SiO 4 crystal than the Mg 2 SiO 3 crystal, the degree of alloying of silicon with lithium atoms is lowered, and thus initial discharge characteristics may be deteriorated.
  • magnesium silicate is included with the MgSiO 3 crystal and Mg 2 SiO 4 crystal, it is preferable that the crystal MgSiO 3 and Mg 2 SiO 4 crystal is uniformly dispersed in said core.
  • Their crystallite size may be 30 nm or less, specifically 20 nm or less.
  • the magnesium silicate silicon reacts with lithium during charging to form Li 4.2 Si, and returns to lithium during discharge.
  • the capacity may decrease due to volume change, but in particular, in the case of MgSiO 3 crystal, since the volume change rate is smaller than that of Mg 2 SiO 4 crystal, the cycle characteristics of the secondary battery can be further improved.
  • the MgSiO 3 crystal and the Mg 2 SiO 4 crystal may act as a diluent or an inert material in the negative active material.
  • the reaction occurs as shown in Scheme 4, and until it reaches 1/3 mol%, the Si phase, MgSiO 3 and unreacted SiO are generated, but 1/ If it is 3 mol%, Si and MgSiO 3 may be produced.
  • Mg 2 SiO 4 As described above, as the doping amount of magnesium increases, a large amount of Mg 2 SiO 4 may be generated, but the crystallite size of silicon may also increase. It is considered that since the molar ratio of magnesium to silicon is large, the amount of evaporation of magnesium increases, the reaction temperature rises by that amount, and the crystallite size of silicon increases. When the crystallite size is increased, the amount of silicon alloying with lithium atoms is small, and the initial efficiency of the secondary battery may be reduced. Therefore, it may be undesirable for Mg 2 SiO 4 to be formed in an excessive amount. At the same time, since the silicon atom and the added magnesium atom react to generate Mg 2 SiO 4 which is difficult to react with the lithium atom, the initial efficiency of the secondary battery may be reduced.
  • magnesium silicate when MgSiO 3 is formed more than Mg 2 SiO 4 , since the ratio of magnesium to silicon is small, a temperature increase due to evaporation of Mg may be reduced. As a result, the growth of silicon may be suppressed, and the crystallite size may be 20 nm or less, thereby improving cycle characteristics and initial efficiency of the secondary battery.
  • SiO is a mixture of Si and SiO 2 (1/2Si+1/2SiO 2 ), as shown in the Reaction Scheme of Scheme 7 below, in an actual reaction, SiO 2 can be produced by disproportionation reaction:
  • SiO 2 generated by the disproportionation reaction may cause an irreversible reaction to generate lithium silicate when reacted with Li, thereby lowering the initial efficiency.
  • MgSiO 3 and Mg 2 SiO 4 may be produced as Mg-containing compounds.
  • the doping amount of magnesium is important for the generation of the MgSiO 3 crystal (s) and the Mg 2 SiO 4 crystal (s), but the degree of uniformity of the element concentration distribution of magnesium may also be important.
  • the element concentration distribution of magnesium is non-uniform, it is not preferable because silicon dioxide (SiO 2 ) may be generated.
  • silicon dioxide, metallic magnesium, or an MgSi alloy when silicon dioxide, metallic magnesium, or an MgSi alloy is generated, the initial efficiency or capacity retention rate of the secondary battery may be reduced. Accordingly, the performance of the secondary battery can be improved by uniformizing the element concentration distribution of magnesium.
  • the ratio of Mg atoms to Si atoms of the silicon-silicon composite oxide may be 1:1 to 1:100 atomic ratio.
  • the Mg atom:Si atom may have an atomic ratio of 1:1 to 1:50, 1:2 to 1:50 atomic ratio, or 1:2 to 1:20 atomic ratio. If the atomic ratio of Mg and Si is less than the above range (when the amount of Mg added is too large) , an excessive amount of Mg 2 SiO 4 may be formed, so that the initial charge/discharge efficiency may be improved, but the charge/discharge cycle characteristics may be reduced. . In addition, when the atomic ratio of Mg atoms to Si atoms exceeds the above range (when the amount of Si added is excessively large), the effect of improving the initial efficiency may be small.
  • a diffraction angle of 30.5° ⁇ 2 ⁇ 31 in X-ray diffraction analysis, a diffraction angle of 30.5° ⁇ 2 ⁇ 31.
  • a peak for the MgSiO 3 crystal may appear in the range of 5°.
  • a peak for Mg 2 SiO 4 crystals may appear in the range of a diffraction angle of 22.3° ⁇ 2 ⁇ 23.3° during X-ray diffraction analysis.
  • the core of the present composite contains magnesium silicate, it is difficult to react with lithium ions even when lithium ions are rapidly increased during charging and discharging, thereby reducing the amount of expansion and contraction of the electrode. As a result, cycle characteristics of the secondary battery can be improved.
  • the core of the present composite includes magnesium silicate and has a small irreversible capacity, charge/discharge efficiency may be improved.
  • the shell of the silicon-silicon composite oxide-carbon composite according to an embodiment of the present invention includes a carbon layer (carbon film), thereby realizing a high capacity of the secondary battery.
  • a carbon layer carbon film
  • the carbon layer is uniformly formed over the entire surface of the core.
  • a uniform carbon coating it is possible to suppress the occurrence of cracks due to stress generation due to the rapid volume expansion of silicon. Since cracks occur irregularly, there is a possibility that a portion that is electrically blocked may occur, which may lead to battery failure. Accordingly, when the carbon layer is uniformly formed, the initial efficiency and lifespan characteristics of the negative active material may be improved.
  • the core may have a structure in which amorphous silicon having a size of several nm to several tens of nm is finely dispersed in a silicon oxide compound or magnesium silicate.
  • silicon oxide compounds have advantages of 5 to 6 times higher battery capacity and small volume expansion compared to silicon or carbon, but have a large irreversible capacity due to an irreversible reaction, a short lifespan, and a very low initial efficiency of 70% or less.
  • the irreversible reaction means that Li-Si-O or Si+Li 2 O is formed by reacting with lithium ions during discharge.
  • the problem of the low lifespan and initial efficiency may be due to a decrease in the diffusion rate of lithium atoms, that is, a decrease in electrical conductivity, because structural stability is low during charging and discharging.
  • the present composite according to an embodiment of the present invention has a core-shell structure including a shell including a carbon layer by covering the surface of the core of the composite with carbon in order to solve the problem of the decrease in conductivity.
  • the carbon layer may be formed uniformly and thinly. In this case, the initial efficiency and lifespan characteristics of the secondary battery can be further improved.
  • a carbon layer is formed thinly and uniformly as a shell on the surface of the core.
  • a carbon layer of the structure can be formed.
  • the so-called double-structured carbon layer may be formed, for example, by repeatedly performing carbon deposition several times. Thereafter, since a double carbon layer having a shell function is formed on the surface of the core on which the carbon layer is formed, it is possible to prevent each particle from being exposed to the outside.
  • the electrical connection can be maintained despite the volume change of silicon, silicon oxide compound, or magnesium silicate.
  • the method of coating the surface of the core with carbon is a method of chemical vapor deposition (CVD) of the core of the silicon-silicon composite oxide complex in an organic gas and/or vapor, or introducing an organic gas and/or vapor into the reactor during heat treatment. how to do it, etc.
  • CVD chemical vapor deposition
  • the thickness of the carbon layer or the amount of carbon may be important to affect the conductivity. For example, even if a sufficient amount of carbon can be obtained, if the film is non-uniform, the surface of the silicon oxide is partially exposed, or if a part has insulation, the charge/discharge capacity or cycle characteristics of the secondary battery may be adversely affected.
  • the electrical conductivity of the carbon can be adjusted by selecting the type of carbon source material, the type and content of the mixed gas, the reaction time and the reaction temperature, respectively.
  • the content of the carbon (C) is 2 wt% to 30 wt%, 2 wt% to 15 wt%, or 4 wt% to 10 wt% based on the total weight of the silicon-silicon composite oxide-carbon composite % can be
  • the content of the carbon (C) is less than 2% by weight, a sufficient effect of improving conductivity cannot be expected, and there is a risk that the electrode life of the lithium secondary battery may be reduced.
  • the discharge capacity of the secondary battery may decrease and the bulk density may decrease, thereby reducing the charge/discharge capacity per unit volume.
  • the average thickness of the carbon layer may be 1 nm to 300 nm, specifically 5 nm to 200 nm or 10 nm to 150 nm, more specifically 10 nm to 100 nm.
  • the thickness of the carbon layer is 1 nm or more, it is possible to obtain an effect of improving conductivity, and when it is 300 nm or less, it is possible to suppress a decrease in the capacity of the secondary battery.
  • the average thickness of the carbon layer can be calculated, for example, by the following procedure.
  • the negative active material is observed at an arbitrary magnification by a transmission electron microscope (TEM).
  • the magnification is preferably, for example, a degree that can be confirmed with the naked eye.
  • 15 arbitrary points WHEREIN The thickness of a carbon layer is measured. In this case, it is preferable to set the measurement position at random widely, without concentrating on a specific place as much as possible. Finally, the average value of the thicknesses of the 15 carbon layers is calculated.
  • the carbon layer may include at least one selected from graphene, reduced graphene oxide, carbon nanotubes, and carbon nanofibers, and specifically may include graphene.
  • the carbon layer may further include graphite.
  • the carbon layer may improve the electrical contact between the particles while maintaining the outer shape of the shell portion.
  • excellent electrical conductivity can be ensured even after the electrode is expanded during charging and discharging, the performance of the lithium secondary battery can be further improved.
  • the present invention may provide a method for preparing the silicon-silicon composite oxide-carbon composite according to an embodiment.
  • the silicon-silicon composite oxide-carbon composite manufacturing method is a first step of preparing a raw material obtained by using a silicon powder and a silicon oxide (SiOx (0.5 ⁇ x ⁇ 2) powder; After heating and evaporating at a temperature, deposition and cooling to obtain a silicon-silicon composite oxide composite of the core part; pulverizing and classifying the silicon-silicon composite oxide composite to have an average particle diameter of 0.5 ⁇ m to 10 ⁇ m.
  • a third step of obtaining a silicon-silicon composite oxide composite powder A fourth step of obtaining a composite having a core-shell structure by forming a carbon layer on the surface of the silicon-silicon composite oxide composite powder using a chemical thermal decomposition deposition method; And the core a fifth step of obtaining a silicon-silicon composite oxide-carbon composite by performing at least one process of pulverizing and classifying the composite having a shell structure.
  • the first step includes preparing a raw material obtained by using a silicon powder and a silicon oxide powder.
  • the raw material may be a mixture obtained by mixing silicon powder and silicon oxide powder, or a compound obtained by heating the mixture and cooling and precipitating a gas produced thereby. Also, a mixture obtained by mixing the above mixture and the above compound may be used.
  • a mixture obtained by mixing silicon powder and silicon oxide powder may be used as the raw material.
  • the silicon oxide powder may be expressed as SiOx, in which case x may be 0.5 or more and 2 or less.
  • the mixing may be performed by mixing the silicon powder and the silicon oxide powder so that the molar ratio of the oxygen element per 1 mole of the silicon element in the mixture is 0.8 to 1.2, specifically, the molar ratio of the oxygen element per 1 mole of the silicon element is 0.9
  • a silicon powder and a silicon oxide powder may be mixed so that it may become a ratio of 1.1 to 1.1.
  • the mixing may be performed by mixing in a ratio of 0.8 to 1.2 moles of silicon dioxide powder per 1 mole of silicon powder.
  • silicon powder and the silicon dioxide powder are mixed, considering the presence of surface oxygen of the silicon powder and trace oxygen in the reaction furnace, 0.9 to 1.1 moles of silicon dioxide powder, or 0.95 to 1.05 moles per mole of silicon powder may be there is. Also, it is possible to use a mixed granular raw material made by mixing, mixing, granulating and drying silicon powder and silicon dioxide powder.
  • a compound obtained by a method comprising mixing and heating the silicon powder and the silicon oxide powder, and cooling and precipitating the silicon oxide gas produced thereby can be used, and the compound may be a SiO X (0.9 ⁇ x ⁇ 1.1) compound.
  • the reaction for generating the silicon oxide gas may be performed by heating the precipitation raw material under reduced pressure. At this time, the reaction temperature may be 1000 °C or higher, for example, 1200 °C to 1500 °C.
  • the deposition unit for cooling and recovering the silicon oxide gas may be maintained at a low temperature of 25 ° C to 80 ° C, and the silicon oxide gas is cooled and maintained at a low temperature after cooling at the same time, and a homogenized amorphous silicon oxide compound is precipitated to be produced.
  • a silicon oxide compound can be obtained by collect
  • the value of x can be adjusted in the range of 0.5 to 2 by further adding an appropriate amount of silicon dioxide powder. .
  • the mixture and the compound when using a mixture of the mixture and the compound, may be mixed so that the molar ratio of the oxygen element per 1 mole of the silicon element in the mixture is 0.8 to 1.2, specifically, 1 mole of the silicon element
  • the mixture and the compound may be mixed so that the molar ratio of the sugar oxygen element is 0.9 to 1.1.
  • the raw material may have a molar ratio of elemental oxygen per mole of elemental silicon of 0.8 to 1.2.
  • the molar ratio of oxygen element per mole of silicon element in the raw material of the first step is less than 0.8 or greater than 1.2, a large amount of reaction residues may remain after performing the second step reaction, and the production yield may decrease.
  • the compound when using a mixture of the mixture and the compound, may be further added in an amount of 20 wt% to less than 100 wt% based on the total weight of the mixture.
  • the average particle diameter of the silicon powder and the silicon oxide powder used as the raw material is not limited, respectively, but, for example, the average particle diameter of the silicon powder is 5 ⁇ m to 50 ⁇ m, 10 ⁇ m to 40 ⁇ m, or 15 ⁇ m to 30 ⁇ m. ⁇ m, and the average particle diameter of the silicon oxide powder may be 5 nm to 50 nm, 10 nm to 40 nm, or 15 nm to 30 nm.
  • silicon oxide deposition and evaporation become uniform, and fine silicon can be obtained.
  • the second step may include heating and evaporating the raw material and the metal magnesium at different temperatures, and then depositing and cooling to obtain a silicon-silicon composite oxide composite (composite A). there is.
  • the raw material and the metallic magnesium may be put into a crucible of a vacuum reactor, respectively, and this may be performed by heating and evaporating at different temperatures.
  • Heating/evaporation of the raw material in the second step may be performed at 900°C to 1800°C, 1000°C to 1600°C, or 1200°C to 1600°C under a pressure of 0.0001 torr to 2 torr. If the temperature is less than 900 °C, the reaction may be difficult to proceed and productivity may be reduced, if the temperature exceeds 1800 °C, the reactivity may be reduced.
  • the heating/evaporation of the metallic magnesium in the second step may be performed at 500 °C to 1100 °C, 600 °C to 1000 °C, or 650 °C to 900 °C under a pressure of 0.0001 torr to 2 torr.
  • the deposition of the second step may be performed at 300°C to 800°C, specifically, 400°C to 700°C.
  • the cooling can be rapidly cooled to room temperature by water cooling. Also, it may be performed at room temperature while injecting an inert gas.
  • the inert gas may be at least one selected from carbon dioxide gas, argon (Ar), helium (He), nitrogen (N 2 ), and hydrogen (H).
  • a silicon-silicon composite oxide composite can be synthesized by a uniform vapor-phase reaction of particles, so that magnesium is locally It is possible to prevent the rapid growth of silicon due to an exothermic reaction during excessive mixing.
  • the third step is pulverizing and classifying the silicon-silicon composite oxide composite to have an average particle diameter of 0.5 ⁇ m to 10 ⁇ m to obtain a silicon-silicon composite oxide composite powder (composite B).
  • composite B may include.
  • the pulverization may be performed so that the average particle diameter (D 50 ) of the core is 2 ⁇ m to 10 ⁇ m, specifically 3 ⁇ m to 8 ⁇ m.
  • the pulverization may be performed using a pulverizing apparatus well known in the art.
  • the pulverization is a jet mill, a ball mill, a stirred media mill, a roll mill, a hammer mill, a pin mill, a disk mill. (disk mill), colloid mill (colloid mill) and atomizer mill (atomizer mill) may be performed using at least one selected from.
  • the pulverization is performed by moving a pulverizing medium such as balls and beads, and pulverizing using a ball mill, a medium stirring mill, or a compression force by a roller, which pulverizes the crushed object by using the impact force, friction force, and compression force by the kinetic energy
  • a roll mill may be used.
  • a jet mill may be used in which the crushed object is collided with the interior material at high speed or the particles collide with each other, and the crushing is performed by the impact force caused by the impact.
  • a hammer mill, a pin mill, or a disk mill for crushing the to-be-printed object using the impact force caused by the rotation of a rotor with a hammer, a blade, or a pin, etc. may be used.
  • a colloid mill using shear force or an atomizer mill, which is a high-pressure wet opposing impact type disperser may be used.
  • the classification may be performed using one or more selected from dry classification, wet classification, and sieve classification.
  • the present invention may use a dry classification equipped with a cyclone (Cyclone) together with a jet mill according to an embodiment.
  • the processes of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solids and gases), and discharge can be sequentially performed using airflow.
  • the dry type such as a cyclone
  • grinding and classification are performed at once, and it becomes possible to implement
  • the fourth step may include a step of forming a carbon layer on the surface of the silicon-silicon composite oxide composite powder by using chemical thermal decomposition deposition (CVD) to obtain a composite having a core-shell structure.
  • CVD chemical thermal decomposition deposition
  • a carbon layer is formed on the surface of the silicon-silicon composite oxide composite, and electrical contact between the particles can be improved through the carbon layer.
  • excellent electrical conductivity can be provided even after the electrode is expanded by charging and discharging, the performance of the lithium secondary battery can be further improved.
  • the carbon layer may increase the conductivity of the negative active material to improve the output characteristics and cycle characteristics of the secondary battery, and may increase the stress relaxation effect when the volume of the negative active material is changed.
  • the type of the carbon source material, the type of the mixed gas, the content, the reaction time, and the reaction temperature can be adjusted by selecting each.
  • the carbon layer may include at least one selected from graphene, reduced graphene oxide, carbon nanotubes, and carbon nanofibers.
  • At least one carbon source gas of the compounds represented by the following Chemical Formulas 2 to 4 is added to the silicon-silicon composite oxide composite powder obtained in the third step to form a gaseous state at 600° C. to 1200° C. It can be carried out by reacting with:
  • N is an integer from 1 to 20
  • A is 0 or 1
  • N is an integer from 2 to 6
  • x is an integer from 1 to 20,
  • y is an integer from 0 to 25,
  • z is an integer from 0 to 5;
  • x may be the same as or smaller than y.
  • the compound represented by Formula 2 may be at least one selected from the group consisting of methane, ethane, propane, butane, methanol, ethanol, propanol, propanediol, and butanediol, and the compound represented by Formula 3 is ethylene, propylene, butyl It may be at least one selected from the group consisting of ene, butadiene and cyclopentene, and the compound represented by Formula 4 is acetylene, benzene, toluene, xylene, ethylbenzene, naphthalene, anthracene and dibutyl hydroxy toluene (BHT). It may be at least one selected from the group consisting of.
  • the carbon source gas may further include at least one inert gas selected from hydrogen, nitrogen, helium, and argon.
  • one or more gases selected from water vapor, carbon monoxide, and carbon dioxide may be further added together with the carbon source gas.
  • the silicon-silicon composite oxide-carbon composite may exhibit higher conductivity.
  • a highly crystalline carbon layer is formed on the surface of the present composite when water vapor is included in the reaction, high conductivity can be exhibited even when a smaller amount of carbon is coated.
  • the content of the water vapor is not limited, but may be, for example, 0.01 to 10% by volume based on 100% by volume of the total carbon source gas.
  • the carbon source gas may be, for example, methane, a mixed gas containing methane and an inert gas, an oxygen-containing gas, or a mixed gas including methane and an oxygen-containing gas.
  • the carbon source gas may be a CH 4 :CO 2 mixed gas or a CH 4 :CO 2 :H 2 O mixed gas.
  • the CH 4 :CO 2 mixed gas may be provided in an amount of about 1:0.20 to 0.50 molar ratio.
  • the CH 4 :CO 2 gas mixture may be in a molar ratio of 1:0.25 to 0.45. More specifically, the molar ratio may be about 1:0.30 to 0.40.
  • the CH 4 :CO 2 :H 2 O mixed gas may be in a molar ratio of about 1:0.20 to 0.50:0.01 to 1.45, specifically 1:0.25 to 0.45:0.10 to 1.35, in particular about 1:0.30 to 0.40: It may be 0.50 to 1.0 molar ratio.
  • the carbon source gas may be a mixed gas of CH 4 and N 2 .
  • the CH 4 :N 2 gas mixture may be in a molar ratio of about 1:0.20 to 0.50, specifically about 1:0.25 to 0.45, and more specifically 1:0.30 to 0.40 molar ratio.
  • the carbon source gas may not include an inert gas such as nitrogen.
  • the reaction may be carried out at 600 °C to 1200 °C, specifically 700 °C to 1100 °C, more specifically 700 °C to 1000 °C.
  • the pressure during the heat treatment may be selected in consideration of the heat treatment temperature, the composition of the gas mixture, the amount of carbon coating, and the like.
  • the pressure during the heat treatment may be controlled by adjusting the amount of the gas mixture flowing in and the amount of the gas mixture flowing out.
  • the heat treatment pressure may be 0.1 atm or more, for example, 0.5 atm or more, 1 atm or more, 2 atm or more, 3 atm or more, or 5 atm or more, but is not limited thereto.
  • the reaction time can be appropriately adjusted according to the heat treatment temperature, the pressure during the heat treatment, the composition of the gas mixture, and the desired amount of carbon coating.
  • the reaction time may be 10 minutes to 100 hours, specifically 30 minutes to 90 hours, more specifically 50 minutes to 40 hours, but is not limited thereto.
  • the thickness of the carbon layer formed increases, and thus electrical properties of the composite may be improved.
  • Silicon-silicon composite oxide-carbon composite manufacturing method through the gas phase reaction of the carbon source gas, graphene, reduced on the surface of the silicon-silicon composite oxide composite even at a relatively low temperature It is possible to form a thin and uniform carbon layer mainly composed of graphene oxide, carbon nanotubes, and carbon nanofibers. In addition, the desorption reaction does not substantially occur in the formed carbon layer.
  • a silicon-silicon composite oxide composite comprising silicon, a silicon oxide compound, and magnesium silicate is obtained by reacting a raw material obtained using a silicon powder and a silicon oxide powder with a metal magnesium (core),
  • a composite having a core-shell structure may be obtained by forming a carbon layer on the surface of the silicon-silicon composite oxide composite.
  • magnesium or an oxide component thereof may not be substantially included in the carbon layer.
  • the carbon layer is uniformly formed over the entire surface of the silicon-silicon composite oxide composite powder through the gas phase reaction, a carbon film (carbon layer) having high crystallinity can be formed. Therefore, when the present composite is used as an anode active material, the electrical conductivity of the anode active material can be improved without changing the structure.
  • the specific surface area of the silicon-silicon composite oxide-carbon composite may decrease according to the amount of carbon coating.
  • the structure of the graphene-containing material may be a layer or a nanosheet type, or a structure in which several flakes are mixed.
  • the core of the silicon-silicon composite oxide-carbon composite is immobilized by the shell of the graphene-containing material, structural collapse due to volume expansion of silicon, silicon oxide compound, and magnesium silicate is suppressed without a binder when preparing the anode active material composition And by minimizing the increase in resistance, it can be usefully used in the manufacture of electrodes and lithium secondary batteries having excellent electrical conductivity and capacity characteristics.
  • the fifth step may include performing at least one process of pulverizing and classifying the composite having the core-shell structure to obtain a silicon-silicon composite oxide-carbon composite (composite C). there is.
  • the particle size distribution desired in the present invention may be realized.
  • the composite having the core-shell structure may be classified.
  • the composite having the core-shell structure may be pulverized.
  • the composite having the core-shell structure may be pulverized and classified. Specifically, the composite having the core-shell structure may be classified and pulverized as necessary.
  • the pulverization and classification may be used in the same manner as the pulverization and classification used in the third step.
  • the silicon-silicon composite oxide-carbon composite may have an average particle diameter of 0.5 ⁇ m to 10 ⁇ m, specifically 3.0 ⁇ m to 8.0 ⁇ m, and more specifically 3.0 ⁇ m to 7.0 ⁇ m. It may be pulverized and/or classified.
  • the span value of Equation 1 may be controlled in the range of 0.6 to 1.5 through the grinding and/or classification step.
  • D50, D10, and D90 of the silicon-silicon composite oxide-carbon composite may be controlled in an optimal range.
  • the negative active material may include the silicon-silicon composite oxide-carbon composite.
  • the negative active material is a silicon-silicon composite oxide-carbon composite having a core-shell structure, wherein the core includes silicon, a silicon oxide compound, and magnesium silicate, the shell includes a carbon layer, and the particle size distribution
  • the span value of Formula 1 of the composite is 0.6 to 1.5 silicon- It may include a silicon composite oxide-carbon composite.
  • the negative active material may further include a carbon-based negative electrode material, specifically, a graphite-based negative electrode material.
  • the negative active material may be a mixture of the silicon-silicon composite oxide-carbon composite and the carbon-based negative electrode material, for example, a graphite-based negative electrode material.
  • the carbon-based negative electrode material is, for example, natural graphite, artificial graphite, soft carbon, hard carbon, mesocarbon, carbon fiber, carbon nanotube, pyrolytic carbon, coke, glass-clad carbon fiber, organic polymer compound fired body and at least one selected from the group consisting of carbon black.
  • the silicon-silicon composite oxide-carbon composite may be included in an amount of 5 wt% to 90 wt%, specifically 20 wt% to 60 wt%, more specifically 30 wt% to 50 wt%, based on the total weight of the negative active material can
  • the carbon-based negative electrode material may be included in an amount of 30% to 90% by weight, specifically 40% to 80% by weight, more specifically 50% to 80% by weight based on the total weight of the negative active material.
  • the present invention can provide a negative electrode including the negative active material, and a secondary battery including the same.
  • the secondary battery may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte in which lithium salt is dissolved, and the negative electrode includes a negative active material comprising a silicon-silicon composite oxide-carbon composite can do.
  • the negative electrode may be composed of only the negative electrode mixture, or may include the negative electrode current collector and the negative electrode mixture layer (negative electrode active material layer) supported thereon.
  • the positive electrode may be composed of only the positive electrode mixture, or may be composed of the positive electrode current collector and the positive electrode mixture layer (positive electrode active material layer) supported thereon.
  • the negative electrode mixture and the positive electrode mixture may further include a conductive agent and a binder.
  • Materials known in the field may be used as the material constituting the negative electrode current collector and the material constituting the positive electrode current collector, and materials known in the field as a binder and conductive agent added to the negative electrode and the positive electrode is available.
  • the negative electrode When the negative electrode is composed of a current collector and an active material layer supported thereon, the negative electrode may be manufactured by coating the negative electrode active material composition including the silicon-silicon composite oxide-carbon composite on the surface of the current collector and drying it. .
  • the secondary battery includes a non-aqueous electrolyte
  • the non-aqueous electrolyte may include a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • a solvent generally used in the field may be used, and specifically, an aprotic organic solvent may be used.
  • aprotic organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, cyclic carboxylic acid esters such as furanone, chain carbonates such as diethyl carbonate, ethylmethyl carbonate, and dimethyl carbonate, 1 Chain ethers, such as ,2-methoxyethane, 1,2-ethoxyethane, and ethoxymethoxyethane, and cyclic ethers, such as tetrahydrofuran and 2-methyltetrahydrofuran, can be used, either alone or in two types. It can be used by mixing the above.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate
  • cyclic carboxylic acid esters such as furanone
  • chain carbonates such as diethyl carbonate, ethylmethyl carbonate, and dimethyl carbonate
  • 1 Chain ethers such as ,2-methoxyethane, 1,2-eth
  • the secondary battery may include a non-aqueous secondary battery.
  • the negative active material and the secondary battery using the silicon-silicon composite oxide-carbon composite according to the embodiment of the present invention can improve not only the charge/discharge capacity, but also the initial charge/discharge efficiency and capacity retention rate.
  • Step 1 Put 11 kg of silicon powder having an average particle diameter of 20 ⁇ m and 15 kg of silicon dioxide powder having an average particle diameter of 20 nm into 60 kg of water and stirred with a PL mixer for 12 hours to uniformly mix, It was dried at 250° C. for 20 hours under a nitrogen atmosphere. Thereafter, the resultant was dried again at 600° C. for 12 hours to form a raw material powder mixture (raw material).
  • Step 2 Put the raw material powder mixture and 3 kg of magnesium metal into crucible-A and crucible-B of the vacuum reactor, respectively, and after reducing the pressure to reach 0.01 torr, crucible-A up to 1400 °C, crucible-B After raising the temperature to 700 °C, they were reacted for 5 hours, and deposited on the deposition substrate in the reactor.
  • the deposited substrate was rapidly cooled to room temperature by water cooling to obtain a silicon-silicon composite oxide composite (composite A1) in the core portion.
  • Step 3 The silicon-silicon composite oxide composite (composite A1) is pulverized once in a jet mill (Nets) under the conditions of air pressure 7.5 Bar, classifier rotation speed 1,300 rpm, and feeder speed 216 rpm. It was recovered by cyclone. A silicon-silicon composite oxide composite powder (composite B1) having a D10 of 3.2 ⁇ m, a D50 of 6.0 ⁇ m, and a D90 of 9.5 ⁇ m of the recovered pulverized product was obtained.
  • Step 4 The silicon-silicon composite oxide composite powder (composite B1) After depressurizing the inside of the electric furnace to 0.2 torr with a rotary vacuum pump, the argon gas was made to normal pressure while flowing at a flow rate of 0.3 L/min. After reaching normal pressure, the temperature in the electric furnace was raised to 1,000 °C at a rate of 200 °C. After reaching 1,000 °C, carbon coating treatment was performed for 10 hours while injecting methane gas into the electric furnace at a flow rate of 0.3 L/min. After stopping the supply of methane gas, the inside of the electric furnace is cooled to room temperature. A composite having a core-shell structure having an average particle diameter of 6.7 ⁇ m was obtained.
  • Step 5 The composite of the core-shell structure is passed through a vibrating filter equipped with a 420 mesh sieve to have D10 3.85 ⁇ m, D50 5.96 ⁇ m, and D90 9.08 ⁇ m, the final silicon-silicon composite with a controlled particle size distribution.
  • An oxide-carbon composite (composite C1) was obtained.
  • a negative electrode and a battery (coin cell) including the final silicon-silicon composite oxide-carbon composite (composite C1) having a core-shell structure with the particle size distribution controlled as an anode active material were manufactured.
  • a negative active material composition having a solid content of 45% was prepared by mixing SUPER-P and polyacrylic acid as the negative active material and conductive material with water so that the weight ratio was 80:10:10.
  • the negative electrode active material composition was applied to a copper foil having a thickness of 18 ⁇ m and dried to prepare an electrode having a thickness of 70 ⁇ m, and the copper foil coated with the electrode was punched into a circle having a diameter of 14 mm to prepare a negative electrode plate for a coin cell.
  • the positive electrode plate a metallic lithium foil having a thickness of 0.3 mm was used.
  • a porous polyethylene sheet with a thickness of 25 ⁇ m was used as the separator, and 1M concentration of LiPF 6 was dissolved in a solution of ethylene carbonate (EC) and diethylene carbonate (DEC) in a volume ratio of 1:1 as an electrolyte was used as an electrolyte,
  • EC ethylene carbonate
  • DEC diethylene carbonate
  • a coin cell (battery) having a thickness of 3.2 mm and a diameter of 20 mm was manufactured by applying the above components.
  • the composite C1 was classified once using an air classifier (TC model, Nissin Corporation) under the conditions of a blower flow rate of 4.5 m 3 /min, and a rotor speed of 3000 rpm. was carried out in the same manner as in Example 1, except that the silicon-silicon composite oxide-carbon composite (composite C2) having the particle size distribution of Table 1 was prepared by performing a cyclone recovery. A carbon composite material and a secondary battery were manufactured.
  • TC model Nissin Corporation
  • the composite C1 was classified once using an air classifier (TC model, Nissin Corporation) under the conditions of a blower flow rate of 4.7 m 3 /min, and a rotor speed of 6500 rpm. was carried out in the same manner as in Example 1, except that a silicon-silicon composite oxide-carbon composite (composite C3) having the particle size distribution of Table 1 was prepared by performing a cyclone recovery. A carbon composite material and a secondary battery were manufactured.
  • TC model Nissin Corporation
  • the composite C1 was classified once using an air classifier (TC model, Nissin Corporation) under the conditions of a blower flow rate of 4.2 m 3 /min, and a rotor speed of 4000 rpm. was carried out in the same manner as in Example 1, except that the silicon-silicon composite oxide-carbon composite (composite C4) having the particle size distribution of Table 1 was prepared by carrying out recovery with a cyclone. A carbon composite material and a secondary battery were manufactured.
  • TC model Nissin Corporation
  • the composite C1 was classified once using an air classifier (TC model, Nissin Corporation) under the conditions of a blower flow rate of 6.5 m 3 /min, and a rotor speed of 6500 rpm. was carried out in the same manner as in Example 1, except that the silicon-silicon composite oxide-carbon composite (composite C5) having the particle size distribution of Table 1 was prepared by carrying out recovery with a cyclone. A carbon composite material and a secondary battery were manufactured.
  • TC model Nissin Corporation
  • Example 2 Performed in the same manner as in Example 1, except that in the third step of Example 1, the pulverization recovery was performed twice to prepare a silicon-silicon composite oxide composite powder (composite B2) having an average particle diameter of about 4.9 ⁇ m.
  • a silicon-silicon composite oxide-carbon composite (composite C6) and a secondary battery having the particle size distribution of Table 1 were prepared.
  • Example B3 a silicon-silicon composite oxide composite powder having an average particle diameter of about 1.9 ⁇ m.
  • a silicon-silicon composite oxide-carbon composite (composite C7) and a secondary battery having the particle size distribution of Table 1 were prepared.
  • the silicon-silicon composite oxide composite (composite A1) was mixed with a jet mill (large powder, small size) at an air pressure of 8.0 bar, the number of revolutions of the classifier was 2,200 rpm, and the feeder speed was 600 Performed in the same manner as in Example 1, except that a silicon-silicon composite oxide composite powder (composite B4) having an average particle diameter of the recovered pulverized product was prepared by grinding once under the condition of rpm and recovering with a cyclone. Thus, a silicon-silicon composite oxide-carbon composite (composite C8) and a secondary battery having the particle size distribution of Table 1 were prepared.
  • a silicon-silicon composite oxide-carbon having a particle size distribution in Table 1 in the same manner as in Example 1, except that a SiOx (x 1.08) compound was used instead of the raw powder mixture in the first step of Example 1
  • a composite (composite C9) and a secondary battery were prepared.
  • Example 1 in the same manner as in Example 1, except that the carbon coating treatment was performed through a stirring reaction at 0.1 rpm for 10 hours while passing methane at 0.3 L/min in the electric furnace.
  • a silicon-silicon composite oxide-carbon composite (composite C10) and a secondary battery having the particle size distribution of Table 1 were prepared.
  • the silicon-silicon composite oxide composite (composite A1) was pulverized at an air pressure of 0.58 MPa in a jet mill (large powder, small size), and the recovered pulverized product had an average particle diameter of 12.8 ⁇ m.
  • a silicon-silicon composite oxide-carbon composite and a secondary battery having the particle size distribution of Table 1 were prepared in the same manner as in Example 1, except that a silicon composite oxide composite powder (composite B5) was prepared.
  • the silicon-silicon composite oxide composite (composite A1) was classified with an air flow classifier without pulverizing by a jet mill at an air flow rate of 2.5 Nm 3 / min and a rotor rotation speed of 10,000 rpm, A composite and a secondary battery having the particle size distribution of Table 1 were prepared in the same manner as in Comparative Example 1, except that the fourth and fifth steps were not performed.
  • D10, D50, and D90 of the analysis values are the particle diameter (D10) when the cumulative volume concentration (%) becomes 10% in the particle size distribution measurement by laser light diffraction method, respectively, and the cumulative volume concentration (%) is 50% It was measured as a particle diameter (D50) when it became, and a particle diameter (D90) when the cumulative volume concentration (%) became 90%.
  • 1 is a graph showing the result of measuring the particle size distribution of the silicon-silicon composite oxide-carbon composite of Example 1, and the cumulative volume concentration (%) and volume concentration (%) according to the particle size of the silicon-silicon composite oxide-carbon composite. indicates
  • Example 1 As shown in FIG. 1 , in Example 1, D10 was 3.85 ⁇ m, D50 was 5.96 ⁇ m, and D90 was 9.08 ⁇ m.
  • the specific surface area of the composites prepared in Examples and Comparative Examples was determined by degassing the prepared composite at 350° C. for 2 hours, and then using MOUNTECH’s Macsorb HM (model 1210) as a mixed gas of nitrogen and helium (N 2 : 30 volume). %, He: 70% by volume) was measured by the BET one-point method while flowing.
  • a cell was completed by depositing gold (Au) to a thickness of 100 nm in an atmosphere of 100 W and argon (Ar) using a hard mask on the upper and lower portions of the composites prepared in Examples and Comparative Examples. Ionic conductivity at 25 °C was measured from the response obtained by applying alternating current with two blocking electrodes using an impedance analyzer (Zahner, IM6).
  • Magnesium (Mg) content was analyzed by inductively coupled plasma (ICP) emission spectroscopy, and oxygen (O) and carbon (C) content was analyzed by elemental analyzer, respectively.
  • the coin cells (secondary batteries) prepared in the above Examples and Comparative Examples were charged at a constant current of 0.1 C until the voltage became 0.005 V, and discharged at a constant current of 0.1 C until the voltage became 2.0 V, so that the charging capacity (mAh /g), the discharge capacity (mAh/g) was calculated, and the initial efficiency (%) was calculated according to Equation 2 below, and the results are shown in Table 1 below.
  • Capacity retention rate (%) after 100 cycles 101 times discharge capacity/2 times discharge capacity X 100
  • the secondary batteries prepared by using the silicon-silicon composite oxide-carbon composites of Examples 1 to 10 in which the particle size distribution of the present invention is controlled have initial efficiency, initial capacity, and cycle characteristics (lifetime). characteristics) was significantly improved compared to Comparative Examples 1 to 3.
  • the composites of Examples 1 to 10 all satisfies the span values of Equation 1 from 0.6 to 1.5, and the secondary batteries manufactured using them had an initial capacity of mostly 1400 mAh/g to 1424 mAh/g. It was excellent, and the initial efficiency was 78.5% or more, and in particular, the capacity retention rate was 90% or more after 100 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

본 발명은 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질을 제공한다. 보다 구체적으로 본 발명의 규소-규소 복합산화물-탄소 복합체는 코어-쉘 구조로, 코어가 규소, 산화 규소 화합물, 및 규산 마그네슘을 포함하고, 쉘이 탄소층을 포함하며, 복합체의 입도 분포를 조절하여 특정 범위의 스팬(Span) 값을 가짐으로써, 이차전지의 음극 활물질로 이용시 이차전지의 용량뿐만 아니라, 사이클 특성 및 초기 효율을 향상시킬 수 있다.

Description

규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
본 발명은 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질에 관한 것이다.
최근 정보 통신 산업의 발전에 따라 전자 기기가 소형화, 경량화, 박형화 및 휴대화됨에 따라, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 이를 이용한 소형 전지뿐만 아니라 자동차 등 대형의 전자기기 및 전력저장 시스템의 적용에 대한 연구가 활발히 진행되고 있다.
이러한 리튬 이차전지의 음극 활물질로서는, 탄소 재료가 널리 사용되고 있지만, 전지의 용량을 한층 더 향상시키기 위해 규소계 음극 활물질이 연구되고 있다. 규소의 이론 용량(4199 mAh/g)은 흑연의 이론 용량(372 mAh/g)보다 10배 이상 크기 때문에, 전지 용량의 대폭적인 향상을 기대할 수 있기 때문이다.
하지만, 음극 활물질로서 규소를 주원료로 사용할 경우, 충방전시 음극 활물질이 팽창 또는 수축하게 되어, 음극 활물질의 표면 또는 내부에 균열이 발생할 수 있다. 이로 인해 음극 활물질의 반응 면적이 증가하게 되고, 전해액의 분해 반응이 일어나게 되며, 이 분해 반응시 전해액의 분해물로 인해 피막이 형성되어, 이차전지에 적용시 사이클 특성이 저하되는 문제점이 있을 수 있다. 따라서, 이를 해결하려는 시도가 계속되어 왔다.
구체적으로, 일본 공개특허공보 제2002-042806호에는, 이차전지의 높은 전지 용량과 안전성을 구현하기 위해, 규소 산화물 입자의 표면에 탄소층을 포함하는 음극 활물질이 개시되어 있다. 그러나, 상기 음극 활물질은 이차전지의 충방전 용량이 증가하고 에너지 밀도가 상승할 수는 있지만, 사이클 특성이 불충분하거나 시장의 요구 특성에 만족할만한 에너지 밀도의 구현이 어려울 수 있다.
일본 등록특허공보 제5406799호에는, 이산화 규소의 비가역반응을 줄이기 위해서 탄소가 코팅된 산화 규소 분말을 수소화 마그네슘(MgH2)또는 수소화 칼슘(CaH2)과 반응시켜서 마그네슘이나 칼슘이 함유된 규소-규소 산화물 복합체의 제조방법이 개시되어 있다. 이 방법에서는, 산화 규소 분말과 MgH2 또는 CaH2의 반응 시에 산소의 양이 감소되지만 국부적인 발열 반응에 의해서 규소 결정자 크기가 급격히 성장하고 마그네슘이나 칼슘이 불균일하게 분포될 수 있으므로 산화 규소의 비용량 유지율이 저하하는 문제점이 있다.
일본 공개특허공보 제2014-67713호에는, 중공 탄소 섬유를 포함한 쉘과 그 중공 탄소 섬유의 중공 내에 배치된 코어를 포함하고, 상기 코어가 제1 금속 나노 구조체를 포함하는 코어-쉘 구조를 가진 복합 음극 활물질 및 그 제조 방법이 개시되어 있다.
또한, 일본 공개특허공보 제2013-41826호에는 제1 규소 산화물(SiOx, 이때, 0<x<2)과 상기 제1 규소 산화물보다 입경(D90)이 작은 제2 규소 산화물(SiOy, 이때 0<y<2)을 포함하는 음극 활물질에 있어서, 입도 분포에서 제2 규소 산화물에 대한 제1 규소 산화물의 입도 분포 피크의 면적비가 3 내지 8인 음극 활물질이 개시되어 있다.
일본 공개특허공보 제2015-164139호에는, 레이저 회절 산란식 입도 분포 측정법에 의한 입도 분포로 누적 90% 지름(D90)이 50 ㎛ 이하이며 입자 지름 2 ㎛ 이상의 미분말 A와 입자 지름 2 ㎛미만의 미분말 B를 포함하는 분말로서, 상기 미분말 A가 산화 규소이며 상기 미분말 B가 산화 규소인 분말로 구성되는 음극 활물질이 개시되어 있다.
그러나, 이들 선행기술들은 규소와 탄소를 포함하는 음극 활물질, 또는 규소 산화물의 입도 분포를 조절한 음극 활물질에 관한 것이나, 이차전지의 용량뿐만 아니라, 사이클 특성 및 초기 효율을 동시에 향상시키는데 여전히 한계가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 공개특허공보 제2002-042806호
(특허문헌 2) 일본 등록특허공보 제5406799호
(특허문헌 3) 일본 공개특허공보 제2014-67713호
(특허문헌 4) 일본 공개특허공보 제2013-41826호
(특허문헌 5) 일본 공개특허공보 제2015-164139호
본 발명의 목적은 상기 종래 기술의 문제를 해결하기 위해 고안된 것으로, 이차전지의 용량뿐만 아니라, 사이클 특성 및 초기 효율을 향상시킬 수 있는, 리튬 이차전지의 음극 활물질용 규소-규소 복합산화물-탄소 복합체를 제공하는 것이다.
본 발명의 다른 목적은 상기 규소-규소 복합산화물-탄소 복합체의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 규소-규소 복합산화물-탄소 복합체를 포함하는, 리튬 이차전지용 음극 활물질 및 리튬 이차전지를 제공하는 것이다.
본 발명은 코어-쉘 구조를 가진 규소-규소 복합산화물-탄소 복합체로서, 상기 코어가 규소, 산화 규소 화합물 및 규산 마그네슘을 포함하고, 상기 쉘이 탄소층을 포함하며, 입도 분포에 있어서의 누적 부피농도(%)가 10%, 50% 및 90%가 되는 입도를 각각 D10, D50 및 D90이라 할 때, 상기 복합체의 하기 식 1의 스팬(Span) 값이 0.6 내지 1.5인, 규소-규소 복합산화물-탄소 복합체를 제공한다:
[식 1]
스팬(Span) = (D90-D10)/D50.
또한 본 발명은 규소 분말과 산화 규소(SiOx(0.5≤x≤2) 분말을 이용하여 얻은 원료 물질을 준비하는 제 1 단계; 상기 원료 물질과 금속 마그네슘을 각각 다른 온도에서 가열·증발시킨 후, 증착 및 냉각시켜 코어부의 규소-규소 복합산화물 복합체를 얻는 제 2 단계; 상기 규소-규소 복합산화물 복합체를 평균 입경이 0.5 ㎛ 내지 10 ㎛이 되도록 분쇄 및 분급을 수행하여 규소-규소 복합산화물 복합체 분말을 얻는 제 3 단계; 상기 규소-규소 복합산화물 복합체 분말의 표면에 화학적 열분해 증착법을 이용하여 탄소층을 형성하여 코어-쉘 구조의 복합체를 얻는 제 4 단계; 및 상기 코어-쉘 구조의 복합체를 분쇄 및 분급 중 적어도 하나 이상의 공정을 수행하여 규소-규소 복합산화물-탄소 복합체를 얻는 제 5 단계를 포함하는, 상기 규소-규소 복합산화물-탄소 복합체의 제조방법을 제공한다.
아울러, 본 발명은 상기 규소-규소 복합산화물-탄소 복합체를 포함하는, 음극 활물질을 제공한다.
나아가, 본 발명은 상기 음극 활물질을 포함하는, 리튬 이차전지를 제공한다.
상기 구현예에 따른 규소-규소 복합산화물-탄소 복합체는 코어-쉘 구조로, 코어가 규소, 산화 규소 화합물, 및 규산 마그네슘을 포함하고, 쉘이 탄소층을 포함하며, 상기 복합체의 입도 분포를 조절하여 특정 범위의 상기 식 1의 스팬(Span) 값을 만족함으로써, 이차전지의 음극 활물질로 이용시 이차전지의 용량뿐만 아니라, 사이클 특성 및 초기 효율을 향상시킬 수 있다.
도 1은 실시예 1의 규소-규소 복합산화물-탄소 복합체의 입도 분포를 측정한 결과 그래프이다.
본 발명은 이하에 개시된 내용에 한정되는 것이 아니라, 발명의 요지가 변경되지 않는 한 다양한 형태로 변형될 수 있다.
본 명세서에서 "포함"한다는 것은 특별한 기재가 없는 한 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로써 수식되는 것으로 이해하여야 한다.
본 명세서에서 D10은 레이저광 회절법에 따르는 입도 분포 측정에 있어서의 누적 부피농도(%)가 10 %가 될 때의 입자 지름으로 측정한 값이다.
본 명세서에서 D50은 레이저광 회절법에 따르는 입도 분포 측정에 있어서의 누적 부피농도(%)가 50 %가 될 때의 입자 지름으로 측정한 값이다.
본 명세서에서 D90은 레이저광 회절법에 따르는 입도 분포 측정에 있어서의 누적 부피농도(%)가 90 %가 될 때의 입자 지름으로 측정한 값이다.
이하 본 발명에 대해 보다 구체적으로 설명한다.
[규소-규소 복합산화물-탄소 복합체]
본 발명의 일 구현예에 따른 규소-규소 복합산화물-탄소 복합체(이하, "본 복합체"라 칭함)는 코어-쉘 구조를 가진 규소-규소 복합산화물-탄소 복합체로서, 상기 코어가 규소, 산화 규소 화합물 및 규산 마그네슘을 포함하고, 상기 쉘이 탄소층을 포함하며, 입도 분포에 있어서의 누적 부피농도(%)가 10%, 50% 및 90%가 되는 입도를 각각 D10, D50 및 D90이라 할 때, 상기 복합체의 하기 식 1의 스팬(Span) 값이 0.6 내지 1.5이다.
[식 1]
스팬(Span) = (D90-D10)/D50.
상기 식 1의 스팬 값은 본 복합체의 입경에 대한 분포(입도 분포) 비율을 나타내는 지표이다. 즉, 입경이 다른 입자들이 어느 정도의 비율로 구성되어 있는지에 관한 것이며, 평균 입경보다 작은 입자와 평균 입경보다 큰 입자의 구성비율이 높으면 1보다 높은 값을 가지고 입자의 크기가 같은 입자만으로 구성되어 있는 복합체일 경우 스팬 값은 1이 된다.
또한, 상기 식 1의 스팬 값이 작을수록 입자 크기 분포의 폭이 좁은 입도를 갖추고 있음을 의미한다.
본 복합체의 상기 식 1의 스팬 값은 0.6 내지 1.3, 또는 0.8 내지 1.1일 수 있다. 본 발명의 구현예에 따른 본 복합체의 스팬 값이 상기 범위를 충족하는 경우, 본 복합체, 결합제, 및 도전제를 함께 사용하여 제조한 음극 활물질 조성물(음극 슬러리)의 점탄성이 양호하게 되어 이차전지의 성능이 향상될 수 있다.
구체적으로, 음극 활물질 조성물을 집전체, 예를 들어 구리박막 위에 도포할 때 적합한 점탄성을 얻을 수 있어야 균일한 도포량을 갖는 음극을 제조할 수 있는데, 본 복합체와 같이 상기 식 1의 스팬 값을 만족하는 경우 음극 활물질 조성물의 양호한 점탄성을 구현할 수 있고, 이로 인해 균일한 도포량을 가진 음극을 제조할 수 있어서 과충전에 의한 이차전지의 화재 등을 방지할 수 있으므로, 이차전지의 안정성 향상에 크게 기여할 수 있다. 뿐만 아니라, 상기 음극 활물질 조성물을 도포하여 건조한 막의 밀도를 향상시킬 수 있으므로, 이차전지의 충방전시의 수축 및 팽창에 의해 파괴되기 어려운 구조의 음극을 구현할 수 있다.
또한, 상기 식 1의 스팬 값이 상기 범위를 만족하는 경우, 본 복합체의 평균 입경보다 큰 입경의 분말과 작은 입경의 분말의 저변이 좁은 입도 분포를 얻을 수 있다. 또한 입도 분포가 좌우 대칭에 가까운 입경 분포를 얻을 수 있다. 만일, 상기 식 1의 스팬 값이 0.6 미만인 경우, 본 복합체의 부피 누적 분포 곡선은 아주 날카로운 형상을 가지며 음극 활물질 조성물을 도포하여 건조한 막의 밀도가 낮아지며, 이차전지의 단위 부피당 용량이 감소하며 사이클 특성이 감소할 수 있다.
본 발명의 구현예에 따르면, 본 복합체의 D10은 0.7 ㎛ 내지 4.0 ㎛, 1.0 ㎛ 내지 4.0 ㎛, 또는 2.0 ㎛ 내지 3.5 ㎛일 수 있다.
본 복합체의 D10이 상기 범위를 만족하는 경우, 상기 복합체의 미분 함량이 적절하여 이차전지의 음극에 적용하는 경우, 음극 활물질을 포함한 음극 슬러리의 점도가 코팅에 용이한 점탄성을 가질 수 있다. 이 경우, 이차전지의 충방전 사이클을 반복했을 때 용량 유지율이 향상된다. 또한, 음극 활물질 입자 중에서도 특히 입경이 작은 미립자가 음극 활물질 입자끼리의 접점이 되어, 전기 전도도 및 리튬의 탈착성을 향상시키는 효과가 있다.
본 발명의 구현예에 따르면, 본 복합체의 D50은 0.5 ㎛ 내지 10.0 ㎛, 1.0 ㎛ 내지 8.0 ㎛, 또는 3.0 ㎛ 내지 7.0 ㎛일 수 있다.
본 복합체의 D50이 상기 범위 이내이면 충방전 시, 리튬 이온의 흡장 및 방출이 쉬워 입자 깨짐이 감소할 수 있다. 상기 D50이 0.5 ㎛ 이상인 경우 단위 질량당 표면적을 줄일 수 있으며, 이차전지의 비가역 용량 증가를 억제할 수 있다. 또한, BET 비표면적을 충분히 작게 할 수 있어 BET 비표면적이 지나치게 커지는 것에 의한 악영향을 받지 않게 된다. 또한 D50이 10.0 ㎛ 이하면 음극을 제작할 때의 음극 활물질의 도포가 쉬워져 공정면에서 유리할 수 있다. 뿐만 아니라, D50을 상기 범위 내로 제어하는 경우, 본 복합체를 음극 활물질로 이용하였을 때, 균일한 수축 및 팽창을 수반할 수 있으므로, 이차전지의 사이클 특성 및 초기 충방전 특성을 향상시킬 수 있다.
만일, D50이 10.0 ㎛을 초과할 경우 리튬 이온 충전에 의한 복합체 입자의 팽창이 심해지게 되고, 충방전이 반복됨에 따라 복합체의 입자 간의 결착성 및 입자와 집전체와의 결착성이 저하되기 때문에 수명 특성이 크게 감소할 수 있다. 또한 비표면적의 지나친 감소에 의한 활성 저하의 우려가 있다. D50이 0.5 ㎛ 미만인 경우 상기 복합체의 입자들끼리의 응집에 의해 이를 이용한 음극 활물질 조성물의 제조시 분산성이 저하될 우려가 있다.
본 발명의 구현예에 따르면, 본 복합체의 D90은 3.0 ㎛ 내지 12.0 ㎛, 4.0 ㎛ 내지 12.0 ㎛, 또는 4.0 ㎛ 내지 10.0 ㎛일 수 있다.
 본 복합체의 D90이 상기 범위를 만족하는 경우, 이차전지의 충방전 시 수축 및 팽창에 따른 전도 경로의 파괴를 방지할 수 있다. 또한, 본 복합체에 크기가 지나치게 큰 입자(대형 입자)가 포함하지 않기 때문에, 이차전지의 수명 특성을 향상시킬 수 있다.
만일 D90이 12.0 ㎛를 초과하는 경우, 본 복합체에 크기가 지나치게 큰 대형 입자가 존재하여 분리막을 훼손할 우려가 있으므로 좋지 않다. 반면, D90이 3.0 ㎛ 미만인 경우, 이차전지 음극의 충전밀도가 낮아지는 문제가 있을 수 있다.
또한, 본 발명의 구현예에 따라, 본 복합체의 D10 및 D90의 범위가 각각 D50의 범위에 근접할 수 있다. 이 경우, 입도 분포가 좁아지게 되어 본 복합체 분말의 입도의 제어가 용이하게 되며, 제조된 복합체에는 응집 상태가 적은 분말을 얻을 수 있다.
한편, 본 복합체의 D90/D10은 1.0 내지 5.0 일 수 있다. 구체적으로, 본 복합체의 D90/D10은 2.0 내지 4.5, 구체적으로 2.0 내지 4.2, 또는 2.0 내지 4.1일 수 있다. 상기 D90/D10가 상기 범위에 있는 경우, 본 복합체, 결합제, 및 도전제를 함께 사용하여 제조한 음극 활물질 조성물(음극 슬러리)의 점탄성이 양호하게 되어 이차전지의 성능이 향상될 수 있다.
또한, 본 발명의 구현예에 따라, 본 복합체의 Dmin는 0.1 내지 3.0 ㎛, 0.2 내지 2.2 ㎛, 또는 0.2 내지 2.0 ㎛일 수 있다. 상기 Dmin는 레이저광 회절법에 따르는 입도 분포 측정에 있어서의 누적 부피농도가 최소값, 예컨대 D0.01일 때의 입도(입자 지름)로 측정한 값이다.
또한, 본 복합체의 Dmax는 6.0 내지 25 ㎛, 7 내지 22 ㎛, 또는 7.45 내지 21.9 ㎛일 수 있다. 상기 Dmax는 레이저광 회절법에 따르는 입도 분포 측정에 있어서의 누적 부피농도가 최대값, 예컨대 D99.9일 때의 입자 지름으로 측정한 값이다.
상기 Dmin 및 Dmax가 상기 범위를 만족하는 경우, 이차전지의 음극 활물질의 충전밀도가 극대화되며, 음극 슬러리의 인쇄특성, 즉 집전체 상에 도포시 도막의 두께 균일성, 연속 인쇄 작업성 등이 우수한 이점이 있을 수 있다.
또한, 상기 Dmax와 Dmin의 차와 D50의 비율((Dmax-Dmin) / D50)은 2.0 내지 5.0, 2.0 내지 4.0, 또는 2.2 내지 3.7일 수 있다. 상기 Dmax와 Dmin의 차와 D50의 비율은 미분과 조대화 입자의 함유 비율을 의미하며, 상기 범위를 벗어나는 경우 음극 슬러리의 코팅 작업성이 불량하여 균일한 코팅막을 얻을 수 없어 이차전지의 수명 특성이 급격히 감소하는 문제가 있을 수 있다.
본 복합체의 비중은 1.7 g/㎤ 내지 2.6 g/㎤, 구체적으로 2.0 g/㎤ 내지 2.4 g/㎤일 수 있다.
상기 비중은 진비중이나 밀도, 진밀도와 같은 의미로 표현된다. 본 발명의 일 구현예에 따른 건식 밀도계에 의한 비중의 측정 조건은, 예를 들면, 건식 밀도계로서 주식회사 시마즈 제작소 제의 가 큐 피크 II1340을 사용할 수 있다. 사용하는 퍼지 가스는 헬륨 가스를 사용할 수 있으며, 23 ℃의 온도에서 설정한 샘플 홀더 내에서 200번의 퍼지를 반복한 후, 측정하였다.
본 복합체의 비중이 1.7 g/㎤ 이상인 경우 충전시 음극 활물질의 부피 팽창에 의한 음극 활물질 분말끼리의 괴리가 방지되고 사이클 열화가 억제될 수 있으며, 상기 비중이 2.6 g/㎤ 이하로 함으로써 전해액의 함침성이 향상되어 음극 활물질의 이용률이 높아 초기 충방전 용량이 향상될 수 있다.
이에 반해, 본 복합체의 비중이 1.7 g/㎤ 미만인 경우, 이차전지의 레이트 특성이 저하될 수 있으며, 2.6 g/㎤을 초과하는 경우, 전해액과의 접촉 면적이 증가하여, 전해액의 분해 반응이 촉진되거나, 또는 전지 부반응이 일어날 수 있다.
또한, 본 복합체의 비표면적은 3 ㎡/g 내지 30 ㎡/g, 3 ㎡/g 내지 25 ㎡/g, 또는 3 ㎡/g 내지 20 ㎡/g 일 수 있다. 본 복합체의 비표면적이 3 ㎡/g 미만인 경우, 표면 활성이 적어 전극 제작시의 결합제의 결합력이 약해 결과적으로 충방전을 반복했을 때의 사이클 특성이 감소할 수 있다. 반면, 본 복합체의 비표면적이 30 ㎡/g을 초과하는 경우, 전극 제작시에 용매 흡수량이 커지기 때문에 결합성을 유지하기 위해서 결합제를 대량으로 첨가하는 경우가 생길 수 있고, 결과적으로 전도성이 떨어져 사이클 특성이 저하될 우려가 있다. 게다가 전해액과의 접촉 면적이 증가해, 전해액의 분해 반응이 촉진되거나 전지 부반응을 일으킬 수 있다.
상기 비표면적은 질소 흡착에 의한 BET법에 의해 측정할 수 있고, 예를 들어 당업계에서 일반적으로 사용하는 비표면적 측정 기기(MOUNTECH사의 Macsorb HM(model 1210) 또는 MicrotracBEL사의 Belsorp-mini Ⅱ등)를 이용할 수 있다.
본 복합체의 전기 전도도는 0.5 S/cm 내지 10 S/cm, 구체적으로 0.8 S/cm 내지 8 S/cm, 더욱 구체적으로 0.8 S/cm 내지 6 S/cm일 수 있다. 음극 활물질에 있어서의 전기 전도도는 전기 화학 반응시에 전자의 이동을 용이하게 하는 중요한 요소이다. 그러나, 규소나 산화 규소 화합물을 이용하여 고용량의 음극 활물질을 제조하는 경우, 전기 전도도가 적정 수치에 이르기 용이하지 않다. 따라서, 본 발명은 일 구현예에 따라 규소, 산화 규소 화합물 및 규산 마그네슘을 포함한 코어의 표면에 탄소층을 포함하는 쉘을 포함하는 코어-쉘 구조의 본 복합체를 형성함으로써, 상기 전기 전도도의 범위를 만족하는 음극 활물질을 구현할 수 있다. 나아가 상기 복합체의 입도 분포를 제어함으로써, 음극 활물질의 두께 팽창을 제어할 수 있어서, 이차전지의 수명 특성 및 용량을 더욱 향상시킬 수 있다.
이하, 상기 규소-규소 복합산화물-탄소 복합체의 구성을 상세히 설명한다.
코어
본 발명의 일 구현예에 따른 규소-규소 복합산화물-탄소 복합체의 코어는 규소, 산화 규소 화합물, 및 규산 마그네슘을 포함한다.
본 복합체의 코어는 규소, 산화 규소 화합물 및 규산 마그네슘이 코어 내부에 균일하게 분산되어 있고 견고하게 결합되어 코어를 형성하고 있으므로, 충방전시 부피 변화로 인한 코어의 미분화를 최소화할 수 있다.
한편, 본 복합체에 포함되는 상기 규소의 표면에는 산화 규소로 이루어진 얇은 피막(산화막층)을 형성할 수 있다. 상기 규소의 표면은 쉽게 산화될 수 있으므로, 규소의 산소량을 가능한 한 줄일 필요가 있다. 또한, 본 복합체 중에 극히 미량이라도 수분이 잔존하면, 표면 산화를 일으키는 원인이 되므로 바람직하지 않다.
한편, 상기 규소의 표면에 형성되는 산화막층은 음극 활물질과 전해액과의 반응성을 감소시켜, 음극 활물질의 표면에 형성될 수 있는 부반응 생성물층의 형성을 최소화할 수 있다.
상기 코어 중의 규소(Si) 함량은 규소-규소 복합산화물-탄소 복합체의 총 중량에 대해 30 내지 80 중량%, 구체적으로 40 내지 70 중량%, 더욱 구체적으로 40 내지 60 중량%일 수 있다. 상기 규소 함량이 30 중량% 미만인 경우, 리튬 흡장·방출의 활물질량이 적기 때문에, 리튬 이차전지의 충방전 용량이 저하될 수 있고, 규소 함량이 80 중량%를 초과하는 경우, 리튬 이차전지의 충방전 용량은 증가할 수 있지만, 충방전시의 전극의 수축 및 팽창이 지나치게 커지며, 음극 활물질의 분말이 더욱 미분화될 수 있어, 사이클 특성이 저하될 수 있다.
한편, 본 복합체내의 마그네슘(Mg)의 함량은 상기 규소-규소 복합산화물-탄소 복합체 총 중량을 기준으로 2 중량% 내지 15 중량%, 2 중량% 내지 12 중량%, 또는 4 중량% 내지 10 중량%일 수 있다.
상기 마그네슘 함량이 2 중량% 이상인 경우 이차전지의 초기 효율을 향상시킬 수 있고, 15 중량% 이하인 경우 이차전지의 사이클 특성 또는 취급의 안전성 측면에서 유리하다. 또한, 상기 마그네슘 함량이 상기 범위를 만족하는 경우, Mg2SiO4상의 증가로 특히 초기 효율이 85 % 이상으로 크게 증가할 수 있다.
그러나, 본 복합체 내에서 마그네슘(Mg) 함량이 2 중량% 미만이면, 이차전지의 사이클 특성이 감소하는 문제가 있을 수 있고, 15 중량%를 초과하는 경우 이차전지의 충전 용량이 감소하는 문제가 있을 수 있다.
한편, 본 발명의 구현예에 따르면 본 복합체내에 상기 마그네슘 외에 다른 금속을 포함할 수 있다. 상기 다른 금속은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 이들의 구체예로는, Li, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Cr, Mo, W, Fe, Pb, Ru, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, 및 Se를 들 수 있다.
본 발명의 일 구현예에 따르면, 본 복합체 총 중량에 대해 상기 마그네슘 함량이 상기 범위를 만족하고, 탄소층을 포함하는 복합체의 결정자 크기가 2 nm 내지 12 nm이며, 규소가 상기 산화 규소 화합물이나 규산 마그네슘 중에 분산된 구조를 가질 수 있다.
본 복합체에 있어서, 상기 코어는 규소, 산화 규소 화합물 및 규산 마그네슘을 포함하고, 이들이 서로 분산되어 상 계면이 결합하고 있는 상태, 즉 각 상이 원자 레벨로 결합 상태에 있기 때문에 리튬 이온의 흡장 및 방출시 부피 변화가 작고, 충방전의 반복시에도 음극 활물질 내에 크랙이 발생하지 않는다. 따라서, 사이클 수에 따른 급격한 용량의 저하가 없기 때문에 이차전지의 사이클 특성이 우수할 수 있다.
또한, 규소, 산화 규소 화합물 및 규산 마그네슘의 각 상이 원자 레벨로 결합 상태에 있기 때문에 이차전지의 방전시 리튬 이온의 탈리가 순조로워지므로, 리튬 이온의 충전량과 방전량의 밸런스가 좋고, 충방전 효율이 증가할 수 있다. 여기서 충방전 효율(%)이란, 충전 용량(x)에 대한 방전 용량의 비율(y/x X 100)이며, 충전시에 음극 활물질에 받아들여진 리튬 이온 중 방전시에 방출할 수 있는 리튬 이온의 비율을 나타낸다.
 본 복합체의 코어의 평균 입경(D50)은 0.5 ㎛ 내지 10 ㎛, 구체적으로 1.0 ㎛ 내지 10.0 ㎛, 또는 2.0 ㎛ 내지 9.0 ㎛일 수 있다. 상기 코어의 평균 입경(D50)이 0.5 ㎛ 미만인 경우, 벌크 밀도가 너무 작아져, 단위 부피 당 충방전 용량이 저하될 수 있고, 반대로 평균 입경(D50)이 10 ㎛를 초과하는 경우 전극막 제작이 곤란하게 되어, 집전체로부터 박리 할 우려가 있다.
상기 코어의 평균 입경(D50)은 코어 입자의 분쇄에 의해 이루어질 수 있다. 또한, 상기 평균 입경(D50)으로 분쇄한 후에 입도 분포를 정돈하기 위해 분급이 이루어질 수 있으며, 이는 건식분급, 습식분급 또는 체분급(여과) 등이 이용될 수 있다. 상기 건식분급은 주로 기류를 이용해 분산, 분리(세입자와 결점 입자의 분리), 포집(고체와 기체의 분리), 배출의 프로세스가 순서대로 혹은 동시에 행해져 입자 상호간의 간섭, 입자의 형상, 기류의 흐름의 혼란, 속도 분포, 정전기의 영향 등으로 분급 효율을 저하시키지 않도록 분급을 하기 전에 사전 처리(수분, 분산성, 습도등의 조정)를 실시함으로써, 사용되는 기류의 수분이나 산소 농도를 조정할 수 있다. 또한, 분쇄 및 분급을 한 번에 수행하여 소망하는 입도 분포로 얻을 수 있다.
상기 분쇄 및 분급 처리에 의해, 평균 입경이 0.5 ㎛ 내지 10 ㎛의 코어 분말을 이용하게 되면, 초기 효율이나 사이클 특성이 분급전에 비해 약 10 % 내지 20 % 향상될 수 있다. 상기 분쇄 및 분급 후의 코어 분말은, Dmax가 약 10 ㎛ 이하이며, 이 경우 코어 분말의 비표면적이 감소할 수 있고, 이로 인해 고체 전해질 계면(SEI; Solid Electrolyte Interface)층에 보충되는 리튬이 감소할 수 있다.
또한, 일 구현예에 따라, 상기 코어 내부에 폐쇄된 기공이나 공극을 도입하고, 규소, 산화 규소 화합물 및 규산 마그네슘을 동시에 함유하면서, 원자 오더로 균일하게 분산시킨 코어 구조를 형성할 수 있다. 또한, 코어 내에 있는 규소, 산화 규소 화합물 및 규산 마그네슘 각각의 입자의 크기를 미립화 할 수 있다. 상기 규소, 산화 규소 화합물 및 규산 마그네슘 입자 각각의 크기가 너무 크면 코어 내부에 존재하기 어려워져, 코어로서의 기능을 충분히 발휘할 수 없다.
본 복합체는 코어를 포함함으로써 부피 팽창을 억제할 수 있으며, 전해액과의 부반응을 방지 또는 감소시키는 효과가 있다. 그 결과, 이차전지의 방전 용량, 수명 특성 및 열안정성을 향상시킬 수 있다.
이하, 상기 코어에 포함되는 각각의 성분을 상세히 설명한다.
규소
상기 규소-규소 복합산화물-탄소 복합체에 있어서, 상기 코어는 규소를 포함함으로써 이차전지에 적용시 고용량을 구현할 수 있다.
상기 규소는 산화 규소 화합물이나 규산 마그네슘 중에 분산되어 형성될 수 있다.
상기 규소는 리튬을 충전하므로, 규소를 포함하지 않는 경우, 이차전지의 용량이 저하될 수 있다. 상기 규소는 결정질 또는 무정형(amorphous, 비정질)일 수 있으며, 구체적으로 무정형 또는 이와 유사한 상일 수 있다. 상기 규소가 결정질일 경우, 결정자의 크기가 작을수록 매트릭스의 밀도가 향상되고 강도가 강화되어 균열을 방지할 수 있으므로, 이차전지의 초기 효율이나 사이클 수명 특성이 더욱 향상될 수 있다. 또한, 규소가 무정형 또는 이와 유사한 상인 경우, 리튬 이차전지의 충방전 시의 팽창 또는 수축이 작고, 용량 특성 등의 전지 성능을 더욱 향상시킬 수 있다.
상기 규소는 높은 초기 효율과 전지용량을 겸비하지만, 리튬 원자를 전기화학적으로 흡수 및 저장해 방출하는 반응으로 매우 복잡한 결정변화를 수반한다. 리튬 원자를 전기화학적으로 흡수 및 저장하고 방출하는 반응이 진행되면서 규소의 조성과 결정 구조는 Si(결정 구조:Fd3m), LiSi(결정 구조:141/a), Li2Si(결정 구조:C2/m), Li7Si2(Pbam), Li22Si15(F23)등으로 변화할 수 있다. 또한, 복잡한 결정 구조의 변화에 따른, 규소의 부피는 약 4배(400 %)까지 팽창할 수 있다. 따라서 충방전 사이클을 반복하게 되면 규소가 파괴되어 리튬 원자와 규소의 결합이 형성됨에 따라 규소가 초기에 가지고 있던 리튬 원자의 삽입 사이트가 손상되어 사이클 수명이 현저하게 저하되게 된다.
상기 규소는 본 복합체의 내부에 균일하게 분포될 수 있으며, 이 경우 강도 등의 우수한 기계적 특성을 나타낼 수 있다.
또한, 본 복합체에서, 규소가 산화 규소 화합물이나 규산 마그네슘에 균일하게 분산된 구조를 가진 구조일 수 있다. 또한, 상기 규소가 규산 마그네슘 중에 분산하여 이를 둘러쌈으로써, 규소의 팽창 및 수축을 억제하여 높은 이차전지 성능을 얻을 수 있다
본 발명의 일 구현예에 따른 본 복합체에 있어서, 구리를 음극 타겟으로 한 X선 회절(Cu-Kα) 분석시, 2θ=47.5°부근을 중심으로 한 Si(220)의 회절 피크의 반가폭(FWHM, Full Width at Half Maximum)을 기초로 시라법(sherrer equation)에 의해 구한 상기 규소의 결정자 크기는 2 nm 내지 20 nm, 2 nm 내지 12 nm, 또는 2 nm 내지 10 nm일 수 있다.
또한, 본 복합체에 포함되는 상기 규소는 무정형, 2 nm 내지 20 nm의 결정자 크기를 갖는 결정형, 또는 이들의 혼합 형태일 수 있다. 규소가 100% 가까이 무정형인 것이 좋지만 공정상 완전한 무정형의 규소를 얻기가 어려우므로, 상기 규소가 무정형과 결정형의 혼합 형태일 수 있다. 이 경우에도 규소의 무정형의 비율이 50% 이상이면 좋다. 상기 규소가 무정형, 상기 범위의 결정자 크기를 갖는 결정형, 또는 이들의 혼합 형태인 경우, 이차전지의 첫 회 충방전 시에 있어서, 균열 발생이 억제될 수 있다. 만일, 첫 회의 충방전 시에 약간의 균열이 생길 경우, 반복적인 충방전 시, 이러한 균열이 기점이 되어 확대되어 큰 균열로 이어질 우려가 있으므로, 규소가 상기 범위를 벗어나는 경우 이차전지의 성능에 문제가 생길 수 있다. 또한, 상기 규소가 무정형이나 상기 범위의 결정자 크기를 갖는 규소인 경우, 반복적인 충방전에 의한 부피 팽창에 대한 손상을 완화할 수 있다.
만일, 상기 규소의 결정자 크기가 2 nm 미만이면 이차전지의 충방전 용량이 감소할 수 있고, 반응성이 높아지기 때문에 보관 중에 물질의 특성 변화가 생기고 공정상 문제가 있을 수 있다.
또한, 상기 규소의 결정자 크기가 2 nm 이상이면 충방전 용량이 작아질 우려가 거의 없으며, 상기 규소의 결정자 크기가 20 nm 이하이면, 방전에 기여하지 않는 영역이 생길 가능성이 낮아 충전 용량과 방전 용량 비율을 나타내는 쿨롱의 효율의 저하를 억제할 수 있다.
또한, 상기 규소가 미립자라면 큰 비표면적으로 리튬 합금을 형성하여 벌크의 파괴를 억제하기 때문에 바람직하다. 상기 규소 미립자는 충전 시 리튬과 반응하여 Li4.2Si를 형성하고, 방전 시에 규소로 되돌아간다. 이 때, 규소 미립자는 X선 회절을 자주 실시할 경우, 규소가 브로드한 패턴을 나타내어, 무정형의 규소로 구조 변화가 생길 수 있다.
상기 규소 미립자를 한층 더 미립화하여 무정형 또는 결정자 크기를 더 미립화할 경우, 본 복합체의 밀도가 커져, 이론 밀도에 근접할 수 있으며, 기공이 크게 감소할 수 있다. 이로 인해, 매트릭스의 밀도가 향상되고 강도가 강화되어, 균열을 방지할 수 있으므로, 이차전지의 초기 효율이나 사이클 수명 특성이 더욱 향상될 수 있다.
산화 규소 화합물
상기 규소-규소 복합산화물-탄소 복합체는 산화 규소 화합물을 포함함으로써 이차전지에 적용시 용량을 향상시키고 부피 팽창을 감소시킬 수 있다.
상기 산화 규소 화합물은 일반식 SiOx(0.5≤x≤1.5)로 표시되는 규소계 산화물일 수 있다. 상기 산화 규소 화합물은 구체적으로 SiOx(0.8<x≤1.2), 더욱 구체적으로 SiOx(0.9<x≤1.1)일 수 있다. 상기 일반식 SiOx에서, 상기 x 값이 0.5 미만인 경우, SiOx 제조가 곤란할 수 있고, 상기 x 값이 1.5를 초과하는 경우 열처리시에 생성하는 불활성 이산화 규소의 비율이 크고, 리튬 이차전지로 사용하는 경우 충방전 용량이 저하될 우려가 있다.
상기 산화 규소 화합물은 무정형이거나 투과 전자현미경에 의해 확인 시 규소가 무정형의 산화 규소 화합물에 분산된 구조일 수 있다.
상기 산화 규소 화합물은 규소 분말과 산화 규소 분말(혹는 이산화 규소 분말)의 혼합물을 가열하고 이에 의해 생성된 산화 규소 가스를 냉각 및 석출하는 단계를 포함하는 방법에 의해 얻을 수 있다.
상기 산화 규소 화합물은 규소-규소 복합산화물-탄소 복합체 전체에 대해 5 몰% 내지 45 몰%의 양으로 포함될 수 있다.
상기 산화 규소 화합물의 함량이 5 몰% 미만인 경우, 이차전지의 부피 팽창 및 수명 특성이 저하될 수 있고, 45 몰%를 초과하는 경우, 이차전지의 초기 비가역반응이 증가할 수 있다.
한편, 규소와 산화 규소 화합물을 포함하는 음극 활물질의 경우, 전해질과 지속적인 반응으로 이차전지의 충방전 시, 음극 활물질 표면에 비 전도성을 가진 부반응 생성물(SEI)층이 두껍게 형성될 수 있다. 이에 의해, 음극 활물질은 전극내에서 전기적으로 단락하여 수명 특성이 저하되고, 부반응 생성물층에 의해서 전극의 체적 팽창이 한층 더 증가하는 문제가 생길 수 있다.
따라서, 상기 음극 활물질과 전해액과의 반응성을 감소시키고, 음극 활물질의 표면에 형성될 수 있는 부반응 생성물층의 형성을 최소화할 필요가 있다. 이를 위해 규소나 산화 규소 화합물 입자 표면에 있는 산소 함유량을 가능한 한 적게 제어할 필요가 있다.
이를 위해, 규소, 산화 규소 화합물, 및 규산 마그네슘을 포함하는 본 복합체에서 규소 원자수에 대한 산소 원자수의 비율(O/Si)이 0.45 내지 1.2일 수 있다. 구체적으로, 규소 원자수에 대한 산소 원자수의 비율(O/Si)은 0.45 내지 1.0, 또는 0.45 내지 0.80일 수 있다. 상기 O/Si가 낮을수록 바람직하며, 이 경우 규소에 기인하는 활성상이 증가하므로, 초기 충방전 용량이 향상될 수 있다.
한편, 규소 함유량이 증가하는 경우, 규소에 의한 체적 팽창의 비율(팽창율)이 증가하여, 균열 발생이 많이 생기기 때문에 바람직하지 않다. 이 균열 발생을 완화하기 위해서는 복합체중에 기공을 형성시키거나 또는 강고한 결합제를 사용하여 매트릭스의 강도를 높일 필요가 있다. O/Si를 낮추기 위해서도 산화 규소나 이산화 규소의 비율을 최대한 줄이는 것이 충방전용량이나 사이클 특성을 향상시키는데 바람직하다.
만일, 상기 O/Si가 0.45 미만인 경우, 공정에 어려움이 있을 수 있으며 규소 클러스터가 형성되어 충전 시에 팽창하기 쉽고, 이차전지의 사이클 특성이 저하될 수 있다. 반면, O/Si가 1.2를 초과하는 경우, 불활성인 이산화 규소, 산화 규소, 또는 규산 마그네슘의 비중이 커지고 충방전 용량이 저하할 우려가 있다. 또한, 산화 규소의 표면에 형성되는 SiO2막이 두꺼워지며 산화 규소의 전도율이 저하될 수 있다. 이 때문에 리튬 이차전지의 음극 활물질로서 이용한 경우에 충분한 전류를 흘릴 수 없어 음극의 저항에 의한 전지 내부 저항의 상승으로 나타나고 얻어지는 리튬 이차전지의 성능이 현저히 저하될 수 있다.
[규산 마그네슘]
본 복합체의 코어는 규산 마그네슘을 포함함으로써 이차전지에 적용시 충방전 용량 특성 및 사이클 특성을 향상시킬 수 있다.
상기 규산 마그네슘은 이차전지의 충방전시 리튬 이온과 반응하기 어렵기 때문에, 전극에서 리튬 이온이 흡장 될 때의 전극의 팽창 및 수축량을 저감시킬 수 있으며, 이로 인해 이차전지의 사이클 특성을 향상시킬 수 있다. 또한, 상기 규소를 둘러싸는 연속상인 매트릭스가 상기 규산 마그네슘에 의해 강도가 강화될 수 있다.
상기 규산 마그네슘은 하기 화학식 1로 나타낼 수 있다:
[화학식 1]
MgxSiOy
상기 화학식 1에서,
x는 0.5≤x≤2이고,
y는 2.5≤y≤4이다.
상기 규산 마그네슘은 MgSiO3 결정(enstatite) 및 Mg2SiO4 결정(foresterite) 중에서 선택된 1종 이상을 포함할 수 있다.
또한, 일 구현예에 따라, 상기 규산 마그네슘은 MgSiO3 결정을 포함하며, Mg2SiO4 결정을 더 포함할 수 있다.
또한, 일 구현예에 따라, 상기 규산 마그네슘은 MgSiO3 결정을 포함하며, 상기 규산 마그네슘이 Mg2SiO4 결정을 더 포함하고, 이때 X선 회절 분석에서 2θ=22.3° 내지 23.3°의 범위에 나타나는 Mg2SiO4 결정에 해당하는 X선 회절 피크의 강도(IF) 및 2θ=30.5° 내지 31.5° 범위에 나타나는 MgSiO3 결정에 해당하는 X선 회절 피크의 강도(IE)의 비율인 IF/IE가 0 초과 내지 1 이하일 수 있다.
또한, 상기 규산 마그네슘은 충방전 용량과 초기 효율을 향상시키기 위해서 MgSiO3 결정을 실질적으로 많이 포함하는 것이 바람직할 수 있다.
본 명세서에서 "실질적으로 많이 포함"은 주성분으로서 포함하거나, 또는 주로 포함하는 것을 의미할 수 있다.
상기 규산 마그네슘에 있어서, SiOX에 대한 마그네슘의 함유량은, 초기의 방전 특성이나 충방전 시의 사이클 특성에 영향을 줄 수 있다. SiOX 중의 규소는 리튬 원자와 합금화하여 초기의 방전 특성을 향상시킬 수 있다. 구체적으로, Mg2SiO3 결정이 상기 규산 마그네슘에 실질적으로 많이 포함되면, 충방전 시 사이클의 개선 효과가 커질 수 있다.
상기 규산 마그네슘이 Mg2SiO3 결정 및 Mg2SiO4 결정을 함께 포함하는 경우, 초기 효율이 향상될 수 있다. 만일, Mg2SiO3 결정에 비해 Mg2SiO4 결정을 더 많이 포함하게 되면, 규소의 리튬 원자와의 합금화 정도가 낮아지므로, 초기 방전 특성이 저하될 수 있다.
 상기 규산 마그네슘이 MgSiO3 결정 및 Mg2SiO4 결정을 함께 포함하는 경우, 상기 코어 중에 MgSiO3 결정 및 Mg2SiO4 결정이 균일하게 분산하고 있는 것이 바람직하다. 이들의 결정자 크기는, 30 nm 이하, 구체적으로 20 nm 이하일 수 있다.
상기 규산 마그네슘에서 규소는 충전시 리튬과 반응하여 Li4.2Si를 형성하고, 방전시에 리튬으로 되돌아간다. 이차전지의 충방전 반복시, 부피 변화에 의해 용량이 감소할 수 있지만, 특히, MgSiO3 결정의 경우, Mg2SiO4 결정에 비해 부피 변화율이 적기 때문에 이차전지의 사이클 특성이 더욱 향상될 수 있다. 또한, 상기 MgSiO3 결정 및 Mg2SiO4 결정은 음극 활물질 중에서 희석제나 불활성 물질로서 작용할 수 있다.
일 구현예에 따라, 상기 SiOX에 마그네슘이 도핑될 때, 예를 들어 SiO와 마그네슘과 반응 시, 마그네슘의 도핑량이 증가함에 따라, 하기 반응식 1 내지 3의 순서로 진행될 수 있다:
[반응식 1]
3Si(s)+3SiO2(s)+2Mg(s) → 6SiO(g)+2Mg(g) 
[반응식 2]
3SiO(g)+ Mg(g) → 2Si(s)+MgSiO3(s)
[반응식 3]
4SiO(g)+2Mg(g) → 3Si(s)+Mg2SiO4(s)
상기의 반응에 있어서, MgSiO3(s) 및 Mg2SiO4(s)의 생성 기구를 하기 반응식 4 내지 6과 같이 나타낼 수 있다:
[반응식 4]
SiO+1/3Mg → 2/3Si+1/3MgSiO3
[반응식 5]
SiO+1/2Mg → 3/4Si+1/4Mg2SiO4  
[반응식 6]
SiO+Mg → Si+MgO
구체적으로, SiO에 대한 Mg 함량이 1/3 몰%이면, 상기 반응식 4와 같이 반응이 일어나, 1/3 몰%에 이를 때까지는 Si상과 MgSiO3와 미반응의 SiO가 생기지만, 1/3 몰% 라면 Si 및 MgSiO3가 생성될 수 있다.
전술한 바와 같이, 마그네슘의 도핑량이 증가함에 따라 Mg2SiO4가 많이 생성될 수 있지만, 규소의 결정자 크기도 커질 수 있다. 이는, 규소에 대한 마그네슘의 몰비가 많기 때문에, 마그네슘의 증발량이 많아지고 그 만큼 반응 온도가 상승하여 규소의 결정자 크기가 커지는 것으로 생각된다. 결정자 크기가 커지면, 본래 리튬 원자와 합금화하는 규소의 양이 적어, 이차전지의 초기 효율이 저하될 수 있다. 따라서, Mg2SiO4가 과잉량 형성되는 것은 바람직하지 않을 수 있다. 동시에, 규소 원자와 첨가된 마그네슘 원자가 반응하여 리튬 원자와 반응하기 어려운 Mg2SiO4가 생성되기 때문에 이차전지의 초기 효율이 저하될 수 있다.
 한편, 상기 규산 마그네슘에 있어서, Mg2SiO4에 비해 MgSiO3가 더 많이 형성될 경우, 규소에 대한 마그네슘의 비율이 적기 때문에 Mg의 증발에 의한 온도 상승이 저감될 수 있다. 그 결과, 규소의 성장이 억제되어, 그 결정자 크기가 20 nm 이하로 될 수 있으며, 이로 인해 이차전지의 사이클 특성 및 초기 효율이 향상될 수 있다.
한편, SiO는 하기 반응식 7의 반응식에 나타낸 바와 같이, Si와 SiO2의 혼합물(1/2Si+1/2SiO2)이므로, 실제의 반응에서는 불균화 반응에 의해 SiO2를 생성할 수 있다:
[반응식 7]
Si(s)+SiO2(s) → 2SiO(g)
2SiO(g) → 2SiO(s) → Si(s)+SiO2(s)[불균화 반응]
상기 반응식 7에서, 불균화 반응에 의해서 생성된 SiO2는 Li와 반응했을 때 규산 리튬을 생성하는 비가역반응을 일으켜 초기 효율을 저하시키는 원인이 될 수 있다.
예를 들면, SiO 1 몰에 대해 Mg를 0.4 몰 첨가하면, Mg 함량은 18 중량%이며, 원소 농도 분포가 균일하여 Mg 함량 대로의 반응이 일어날 수 있으며, 전술한 바와 같이 Si가 생성됨과 동시에, Mg 함유 화합물로서 MgSiO3 및 Mg2SiO4가 생성될 수 있다.
전술 한 바와 같이, MgSiO3 결정(s) 및 Mg2SiO4 결정(s)의 생성에는 마그네슘의 도핑량이 중요하지만, 마그네슘의 원소 농도 분포의 균일화 정도도 중요할 수 있다. 마그네슘의 원소 농도 분포가 불균일할 경우, 이산화 규소(SiO2)가 생성할 수 있으므로 바람직하지 않다. 또한, 본 복합체의 코어에 있어서, 이산화 규소나 금속 마그네슘, MgSi 합금이 생성하게 되는 경우 이차전지의 초기 효율이나 용량 유지율이 저하될 수 있다. 따라서, 마그네슘의 원소 농도 분포를 균일화함으로써 이차전지의 성능을 향상시킬 수 있다.
구체적으로, 본 복합체에서 규소-규소복합산화물의 Si 원자에 대한 Mg 원자의 비율, 즉 Mg 원자:Si 원자는 1:1 내지 1 : 100 원자비일 수 있다. 구체적으로, Mg 원자:Si 원자는 1:1 내지 1:50 원자비, 1:2 내지 1:50 원자비, 또는 1:2 내지 1:20 원자비일 수 있다. 상기 Mg와 Si의 원자비가 상기 범위 미만이면 (Mg의 첨가량이 지나치게 많은 경우) Mg2SiO4가 과잉량 형성될 수 있으므로, 초기 충방전 효율은 향상될 수 있으나 충방전 사이클 특성은 저하될 수 있다. 또한, Mg 원자와 Si 원자의 원자비가 상기 범위를 초과하는 경우(Si의 첨가량이 지나치게 많은 경우)는 초기 효율의 개선 효과가 적을 수 있다.
일 구현예에 따른 본 복합체는, X선 회절 분석시, 회절각 30.5°≤2θ≤31. 5°의 범위에서 MgSiO3 결정에 대한 피크가 나타날 수 있다. 또한, 본 복합체는, X선 회절 분석시, 회절각 22.3°≤2θ≤23.3°의 범위에서 Mg2SiO4 결정에 대한 피크가 나타날 수 있다.  
 MgSiO3 결정에 대해서는, 예를 들어, 2θ=31.8°에 있어서의 회절 강도와 2θ=33.8°에 있어서의 회절 강도를 직선으로 하고, 그 직선을 베이스 강도로 하였을 때, 2θ=32.8±0.2°에 있어서의 최대 강도 P1과 최대 강도 각도에 있어서의 베이스 강도 B1과의 비가, P1/B1>1.1인 경우에 MgSiO3 결정이 존재한다고 판단할 수 있다.
Mg2SiO4에 대해서는, 예를 들어, 2θ=31.3°에 있어서의 회절 강도와 2θ=33.3°에 있어서의 회절 강도를 직선으로 하고, 그 직선을 베이스 강도로 하였을 때, 2θ=32.3±0.3°에 있어서의 최대 강도 P2와 최대 강도 각도에 있어서의 베이스 강도 B2와의 비가, P2/B2>1.1인 경우에 Mg2SiO4 결정이 존재한다고 판단할 수 있다.
 일 구현예에 따른 본 복합체의 코어는 규산 마그네슘을 포함함으로써, 충방전시 리튬 이온이 급증되는 경우에도 리튬 이온과 반응하기 어렵기 때문에 전극의 팽창 및 수축량을 저감 시키는 효과가 있다. 그 결과, 이차전지의 사이클 특성을 향상시킬 수 있다. 또한, 본 복합체의 코어는 규산 마그네슘을 포함함으로써 비가역용량이 작기 때문에 충방전 효율이 향상될 수 있다.
본 발명의 일 구현예에 따른 규소-규소 복합산화물-탄소 복합체의 쉘은 탄소층(탄소 피막)을 포함함으로써, 이차전지의 고용량을 구현할 수 있다. 특히, 규소를 포함함으로써 발생 가능한 부피 팽창 및 안정성 저하의 문제를 해결할 수 있으며, 전기 전도도를 향상시킬 수 있다.
본 복합체는 전기 전도도를 더욱 향상시키기 위해서 코어의 표면 전체에 걸쳐서, 탄소층이 균일하게 형성되는 것이 바람직하다. 균일한 탄소 피복을 형성할 경우, 규소의 급격한 부피 팽창으로 인한 응력 발생에 의한 크랙 발생을 억제시킬 수 있다. 크랙은 불규칙하게 발생하므로, 전기적으로 차단되는 부분이 생길 수 있기 때문에, 전지의 불량으로 연결될 우려가 있다. 따라서, 상기 탄소층이 균일하게 형성되는 경우, 음극 활물질의 초기 효율 및 수명 특성을 개선할 수 있다.
구체적으로, 본 복합체의 코어에 포함되는 규소, 산화 규소 화합물 및 규산 마그네슘의 각각의 표면 일부 또는 전체, 구체적으로 전체에 걸쳐서 도전성 탄소층을 포함하는 쉘을 포함함으로써 전기 전도도를 향상시킬 수 있다.
예를 들면, 상기 코어는 수 nm 내지 수십 nm 정도의 무정형 규소가 산화 규소 화합물이나 규산 마그네슘 중에 미분산된 구조일 수 있다. 일반적으로 산화 규소 화합물은 규소 또는 탄소에 비해 전지 용량이 5 내지 6배 높고, 부피 팽창도 작은 장점이 있지만, 비가역반응에 의해 비가역용량이 크고, 수명이 짧으며 초기 효율이 70 % 이하로 매우 낮은 문제가 있다. 여기서, 비가역반응이란, 방전시에 리튬 이온과 반응을 일으켜 Li-Si-O 또는 Si+Li2O를 형성하는 것을 의미한다. 상기 낮은 수명 및 초기 효율의 문제는 충방전시, 구조적인 안정성이 낮기 때문에, 리튬 원자의 확산 속도 저하, 즉 전기 전도도 저하로 인한 것일 수 있다.
따라서, 본 발명의 일 구현예에 따른 본 복합체는 상기 도전성 저하의 문제를 해결하기 위해 복합체의 코어의 표면을 탄소로 피복하여 탄소층을 포함하는 쉘을 포함하는 코어-쉘 구조를 갖는다.
또한, 상기 코어의 표면에 쉘을 형성함으로써 코어에 포함된 규소 및 전해질과의 부반응을 방지할 수 있으며, 규소, 산화 규소 화합물 및 규산 마그네슘이 오염되는 것을 방지 또는 완화할 수 있다.
또한, 도전성을 더욱 향상하기 위해서, 상기 탄소층을 균일하고 얇게 형성할 수 있다. 이 경우, 이차전지의 초기 효율 및 수명 특성을 더욱 향상시킬 수 있다.
본 발명은 일 구현예에 따라, 규소, 산화 규소 화합물 및 규산 마그네슘의 각각의 표면에 균일한 탄소층을 형성한 코어를 제작 후, 코어의 표면에 쉘로서 탄소층을 얇고 균일하게 형성하는 이른바 이중구조의 탄소층을 형성할 수 있다. 상기 이중구조의 탄소층을 형성하는 경우 규소, 산화 규소 화합물 또는 규산 마그네슘 각각이 외부에 노출되는 것을 방지할 수 있는 효과가 있다. 이른바 이중구조의 탄소층 형성은, 예를 들어 탄소 증착을 몇 차례 반복 실시하면서 이루어질 수 있다. 이 후, 상기 탄소층이 형성된 코어의 표면에, 쉘의 기능을 가지는 이중의 탄소층을 형성하므로, 각각의 입자가 외부에 노출되는 것을 방지할 수 있다. 이 경우, 충방전시에, 규소, 산화 규소 화합물 또는 규산 마그네슘의 부피 변화에도 불구하고, 전기적 연결이 유지될 수 있다. 또한, 상기 탄소층의 표면에 균열이 발생해도, 상기 탄소층이 완전하게 분리되기 전에는, 탄소층과 전기적으로 연결된 상태를 유지할 수 있다.
상기 코어의 표면을 탄소로 피복하는 하는 방법은 규소-규소 복합산화물 복합체의 코어를 유기물 가스 및/또는 증기중에서 화학 증착(CVD)하는 방법, 또는 열처리시에 반응기내에 유기물 가스 및/또는 증기를 도입하는 방법 등을 들 수 있다.
또한, 도전성에 영향을 미치는 것은, 탄소층의 두께 또는 탄소의 양뿐만이 아니라, 그 피막의 균일성도 중요할 수 있다. 예를 들면 충분한 탄소량을 얻을 수 있어도, 피막이 불균일한 경우 산화 규소의 표면이 부분적으로 노출되거나, 일부가 절연성을 가질 경우 이차전지의 충방전 용량이나 사이클 특성에 악영향을 미칠 수 있다.
상기 탄소의 전기 도전성은 탄소원 물질의 종류, 혼합가스의 종류 및 함량, 반응시간과 반응온도를 각각 선택함으로써 조정할 수 있다.
일 구현예에 따르면, 상기 탄소(C)의 함량은 상기 규소-규소 복합산화물-탄소 복합체 총 중량에 대해 2 중량% 내지 30 중량%, 2 중량% 내지 15 중량%, 또는 4 중량% 내지 10 중량% 일 수 있다.
상기 탄소(C)의 함량이 2 중량% 미만인 경우, 충분한 도전성 향상 효과를 기대할 수 없고, 리튬 이차전지의 전극 수명이 저하될 우려가 있다. 또한, 30 중량%를 초과하는 경우, 이차전지의 방전 용량이 감소하고 벌크 밀도가 작아져, 단위 부피 당의 충방전 용량이 저하될 수 있다.
상기 탄소층의 평균 두께는 1 nm 내지 300 nm, 구체적으로 5 nm 내지 200 nm 또는 10 nm 내지 150 nm, 더욱 구체적으로 10 nm 내지 100 nm일 수 있다. 상기 탄소층의 두께가 1 nm 이상인 경우 도전성 향상 효과를 얻을 수 있고, 300 nm 이하이면, 이차전지의 용량의 저하를 억제할 수 있다.
상기 탄소층의 평균 두께는, 예를 들면, 이하의 순서에 의해 산출할 수 있다.
우선, 투과형 전자현미경(TEM)에 의해 임의의 배율로 음극 활물질을 관찰한다. 상기 배율은 예를 들어 육안으로 확인할 수 있는 정도가 바람직하다. 이어서, 임의의 15 점에 있어서, 탄소층의 두께를 측정한다. 이 경우, 가능한 한 특정의 장소에 집중하지 않고, 넓게 랜덤으로 측정 위치를 설정하는 것이 바람직하다. 마지막으로, 상기 15 점의 탄소층의 두께의 평균치를 산출한다.
상기 탄소층은, 그래핀, 환원된 산화 그래핀, 탄소나노 튜브 및 탄소 나노 섬유로부터 선택된 1종 이상을 포함할 수 있으며, 구체적으로 그래핀을 포함할 수 있다. 또한, 상기 탄소층은 흑연을 더 포함할 수 있다.
상기 탄소층은 쉘부의 외형은 유지하면서도, 입자와 입자와의 사이의 전기적 접촉을 향상시킬 수가 있다. 또한, 충방전시 전극이 팽창된 후에도 뛰어난 전기 전도도를 확보할 수 있으므로, 리튬 이차전지의 성능을 한층 더 향상시킬 수가 있다.
[규소-규소 복합산화물-탄소 복합체의 제조방법]
본 발명은 일 구현예에 따라 상기 규소-규소 복합산화물-탄소 복합체의 제조방법을 제공할 수 있다.
상기 규소-규소 복합산화물-탄소 복합체의 제조방법은 규소 분말과 산화 규소(SiOx(0.5≤x≤2) 분말을 이용하여 얻은 원료 물질을 준비하는 제 1 단계; 상기 원료 물질과 금속 마그네슘을 각각 다른 온도에서 가열·증발시킨 후, 증착 및 냉각시켜 코어부의 규소-규소 복합산화물 복합체를 얻는 제 2 단계; 상기 규소-규소 복합산화물 복합체를 평균 입경이 0.5 ㎛ 내지 10 ㎛이 되도록 분쇄 및 분급을 수행하여 규소-규소 복합산화물 복합체 분말을 얻는 제 3 단계; 상기 규소-규소 복합산화물 복합체 분말의 표면에 화학적 열분해 증착법을 이용하여 탄소층을 형성하여 코어-쉘 구조의 복합체를 얻는 제 4 단계; 및 상기 코어-쉘 구조의 복합체를 분쇄 및 분급 중 적어도 하나 이상의 공정을 수행하여 규소-규소 복합산화물-탄소 복합체를 얻는 제 5 단계를 포함한다.
구체적으로 살펴보면, 본 복합체의 제조방법에 있어서, 제 1 단계는 규소 분말과 산화 규소 분말을 이용하여 얻은 원료 물질을 준비하는 단계를 포함한다.
상기 원료 물질은 규소 분말과 산화 규소 분말을 혼합하여 얻은 혼합체, 또는 상기 혼합체를 가열하고 이에 의해 생성된 가스를 냉각 및 석출하여 얻은 합성물일 수 있다. 또한 상기 혼합체와 상기 합성물을 혼합한 혼합물을 사용할 수 있다.
구체적으로, 본 발명의 일 구현예에 따르면, 상기 원료 물질로서, 규소 분말과 산화 규소 분말을 혼합하여 얻은 혼합체를 사용할 수 있다.
상기 산화 규소 분말은 SiOx로 표시할 수 있으며, 이때 x는 0.5 이상 내지 2 이하일 수 있다. 또한, 상기 혼합은 상기 혼합체의 규소 원소 1몰 당 산소 원소의 몰비가 0.8 내지 1.2이 되도록 규소 분말과 산화 규소 분말을 혼합하여 수행할 수 있으며, 구체적으로 규소 원소 1몰 당 산소 원소의 몰비가 0.9 내지 1.1의 비율이 되도록 규소 분말과 산화 규소 분말을 혼합할 수 있다.
예를 들면, 상기 혼합은 규소 분말 1몰 당 이산화 규소 분말 0.8 내지 1.2몰의 비율로 혼합하여 수행될 수 있다.
또한, 상기 규소 분말과 이산화 규소 분말의 혼합 시, 규소 분말의 표면 산소와 반응로 내에서의 미량 산소의 존재를 고려하면 규소 분말 1몰 당 이산화 규소 분말 0.9 내지 1.1 몰, 또는 0.95 내지 1.05 몰일 수 있다. 또한 규소 분말과 이산화 규소 분말을 배합, 혼합, 과립 및 건조과정을 통하여 만들어진 혼합 과립 원료를 이용할 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 원료 물질로서, 상기 규소 분말과 산화 규소 분말을 혼합하고 가열하고, 이에 의해 생성된 산화 규소 가스를 냉각 및 석출하는 단계를 포함하는 방법에 의해 얻은 합성물을 사용할 수 있으며, 상기 합성물은 SiOX(0.9≤x≤1.1) 합성물일 수 있다.
상기 산화 규소 가스 발생을 위한 반응은, 감압하에서 석출 원료를 가열하여 수행될 수 있다. 이때의 반응 온도는 1000 ℃ 이상, 예를 들면 1200 ℃ 내지 1500 ℃일 수 있다.
한편, 상기 산화 규소 가스를 냉각하고 회수하는 증착부는 25 ℃ 내지 80 ℃의 저온으로 유지될 수 있으며, 산화 규소 가스가 냉각되는 동시에 냉각 후의 저온으로 유지되고 균질화된 무정형 산화 규소 화합물이 석출되어 생성될 수 있다. 이 결과, 그 석출체를 회수하고 분쇄함으로써 산화 규소 합성물을 얻을 수 있으므로 바람직하다.
또한, 상기 규소 분말과 산화 규소 분말의 혼합체를 원료분말로 사용할 때 상기 산화 규소 SiOX에서 x가 0.5 미만인 경우, 이산화 규소 분말을 적당량 더 첨가함으로써 x의 값을 0.5 내지 2의 범위로 조절할 수 있다.
또한 상기 혼합체와 상기 합성물을 혼합한 혼합물을 사용할 시, 상기 혼합물의 규소 원소 1몰 당 산소 원소의 몰비가 0.8 내지 1.2이 되도록 상기 혼합체와 상기 합성물를 혼합하여 수행할 수 있으며, 구체적으로 규소 원소 1몰 당 산소 원소의 몰비가 0.9 내지 1.1의 비율이 되도록 상기 혼합체와 상기 합성물을 혼합할 수 있다.
또한, 상기 원료물질은 규소 원소 1몰 당 산소 원소의 몰비가 0.8 내지 1.2일 수 있다.
상기 제 1 단계의 원료 물질에 있어서 규소 원소 1몰 당 산소 원소의 몰비가 0.8 보다 작거나 1.2 보다 크면 제 2 단계 반응을 수행한 후 반응 잔류물이 많이 남을 수 있으며, 생산 수율이 감소할 수 있다.
또한, 상기 혼합체와 상기 합성물을 혼합한 혼합물을 사용할 시, 상기 혼합물 총 중량을 기준으로 상기 합성물을 20 중량% 내지 100 중량% 미만의 양으로 더 첨가할 수 있다.
한편, 상기 원료로 사용되는 규소 분말과 산화 규소 분말의 평균 입경은 각각 제한되지 않지만, 예를 들어, 상기 규소 분말의 평균 입경은 5 ㎛ 내지 50 ㎛, 10 ㎛ 내지 40 ㎛, 또는 15 ㎛ 내지 30 ㎛이고, 상기 산화 규소 분말의 평균 입경은 5 nm 내지 50 nm, 10 nm 내지 40 nm, 또는 15 nm 내지 30 nm 일 수 있다.
상기 평균 입경 범위를 갖는 분말을 이용하는 경우, 산화 규소의 증착 및 증발이 균일하게 되어, 미립의 규소를 얻을 수 있다.
본 복합체의 제조방법에 있어서, 제 2 단계는 상기 원료 물질과 금속 마그네슘을 각각 다른 온도에서 가열·증발시킨 후, 증착 및 냉각시켜 규소-규소 복합산화물 복합체(복합체 A)를 얻는 단계를 포함할 수 있다.
상기 원료 물질과 금속 마그네슘을 각각 진공 반응기의 도가니에 투입하고 이를 각각 다른 온도에서 가열·증발하여 수행할 수 있다.
상기 제 2 단계 중의 원료 물질의 가열·증발은 0.0001 torr 내지 2 torr의 압력 하에서 900 ℃ 내지 1800 ℃, 1000 ℃ 내지 1600 ℃ 또는 1200 ℃ 내지 1600 ℃에서 수행될 수 있다. 상기 온도가 900 ℃ 미만인 경우, 반응이 진행하기 어렵고 생산성이 저하될 수 있으며, 온도가 1800 ℃ 초과하는 경우, 반응성이 저하될 수 있다.
또한, 상기 제 2 단계 중의 금속 마그네슘의 가열·증발은 0.0001 torr 내지 2 torr의 압력 하에서 500 ℃ 내지 1100 ℃, 600 ℃ 내지 1000 ℃ 또는 650 ℃ 내지 900 ℃에서 수행될 수 있다.
상기 원료 물질 및 금속 마그네슘의 가열·증발이 상기 범위를 만족하는 경우, 미립의 규소와 미립의 규산 마그네슘이 생성될 수 있으며, 원하는 SiOX(0.5≤x≤1.5) 조성의 산화 규소 화합물을 얻을 수 있다.
한편, 상기 제 2 단계의 증착은 300 ℃ 내지 800 ℃, 구체적으로 400 ℃ 내지 700 ℃에서 수행될 수 있다.
상기 냉각은 수냉식으로 실온까지 급속히 냉각시킬 수 있다. 또한, 불활성 가스를 주입하면서 상온에서 이루어질 수 있다. 상기 불활성 가스는 탄산 가스, 아르곤(Ar), 헬륨(He), 질소(N2) 및 수소(H) 중에서 선택된 1종 이상일 수 있다.
본 발명은 상기 원료 물질 및 금속 마그네슘을 가열·증발하고 반응기의 내부의 기판에 증착시켜, 입자의 균일한 기상 반응으로 규소-규소 복합산화물 복합체를 합성할 수 있으므로, 고상 반응과 같이 마그네슘이 국부적으로 과잉 혼합되면서 발열 반응으로 규소가 급격하게 성장하는 것을 방지할 수 있다.
본 복합체의 제조방법에 있어서, 제 3 단계는 상기 규소-규소 복합산화물 복합체를 평균 입경이 0.5 ㎛ 내지 10 ㎛이 되도록 분쇄 및 분급을 수행하여 규소-규소 복합산화물 복합체 분말(복합체 B)을 얻는 단계를 포함할 수 있다.
더욱 구체적으로 상기 분쇄는 상기 코어의 평균 입경(D50)이 2 ㎛ 내지 10 ㎛, 구체적으로 3 ㎛ 내지 8 ㎛이 되도록 수행될 수 있다.
상기 분쇄는 본 분야에 잘 알려진 분쇄 장치를 사용할 수 있다. 예를 들면, 상기 분쇄는 제트밀(jet mill), 볼밀(ball mill), 매체 교반밀(stirred media mill), 롤밀(roll mill), 해머밀(hammer mill), 핀밀(pin mill), 디스크밀(disk mill), 콜로이드밀(colloid mill) 및 아토마이저밀(atomizer mill) 중에서 선택된 하나 이상을 이용하여 수행될 수 있다.
구체적으로 상기 분쇄는 볼 및 비즈 등의 분쇄 매체를 운동시켜 그 운동 에너지에 의한 충격력이나 마찰력 및 압축력을 이용하여 피쇄물을 분쇄하는 볼밀, 매체 교반밀, 또는 롤러에 의한 압축력을 이용하여 분쇄를 실시하는 롤밀이 사용될 수 있다. 또한, 피쇄물을 고속으로 내장재에 충돌 또는 입자 상호 충돌시켜, 그 충격에 의한 충격력에 의해서 분쇄를 실시하는 제트밀이 사용될 수 있다. 또한, 해머, 블레이드, 또는 핀 등을 고설한 로터의 회전에 의한 충격력을 이용해 피쇄물을 분쇄하는 해머밀, 핀밀 또는 디스크밀이 사용될 수 있다. 또한, 전단력을 이용하는 콜로이드밀 또는 고압 습식 대향 충돌식 분산기인 아토마이저밀 등이 이용될 수 있다.
또한, 상기 분급은 건식 분급, 습식 분급 및 체분급 중에서 선택된 하나 이상을 이용하여 수행될 수 있다.
본 발명은 일 구현예에 따라 제트밀과 함께 사이클론(Cyclone)을 갖춘 건식 분급을 사용할 수 있다.
상기 제트밀은 주로 기류를 이용해 분산, 분리(세립자와 조립자의 분리), 포집(고체와 기체의 분리), 배출의 프로세스가 순차적으로 이루어질 수 있다. 이 경우, 입자 상호간의 간섭, 입자의 형상, 기류의 흐름의 흐트러짐, 속도 분포, 정전기의 영향 등으로 분급 효율을 저하시키지 않도록 하여야 한다.
즉, 분급을 실시하기 전에 전처리(수분, 분산성, 습도등의 조정)를 실시해, 사용되는 기류의 수분이나 산소 농도를 조정해 이용된다. 또, 사이클론 등의 건식에서 분급기가 일체화된 타입에서는, 분쇄 및 분급이 한번에 행해져 소망하는 입도 분포를 구현하는 것이 가능해진다.
본 복합체의 제조방법에 있어서, 제 4 단계는 상기 규소-규소 복합산화물 복합체 분말의 표면에 화학적 열분해 증착법(CVD)을 이용하여 탄소층을 형성하여 코어-쉘 구조의 복합체를 얻는 단계를 포함할 수 있다.
본 단계는 상기 규소-규소 복합산화물 복합체의 표면에 탄소층을 형성하는 단계로, 상기 탄소층을 통해 입자와 입자 사이의 전기적 접촉을 향상시킬 수 있다. 또한 충방전에 의해 전극이 팽창된 뒤에도 우수한 전기 전도성을 부여할 수 있으므로, 리튬 이차전지의 성능을 더욱 향상시킬 수 있다.
상기 탄소층은 음극 활물질의 도전성을 높여 이차전지의 출력 특성 및 사이클 특성을 향상시킬 수 있고, 음극 활물질의 부피 변화시에 응력 완화 효과를 증대시킬 수 있다.
상기 규소-규소 복합산화물 복합체 분말의 표면에 화학적 열분해 화학 증착법에 의해 탄소층을 형성할 때, 상기 탄소원 물질의 종류, 혼합 가스의 종류, 함량, 반응 시간 및 반응 온도는 각각 선택함으로써 조절할 수 있다.
상기 탄소층은 그래핀, 환원된 산화 그래핀, 탄소나노 튜브 및 탄소 나노 섬유로부터 선택된 1종 이상을 포함할 수 있다.
상기 탄소층을 형성시키는 단계는 상기 제 3 단계에서 얻은 상기 규소-규소 복합산화물 복합체 분말을 하기 화학식 2 내지 화학식 4로 표시되는 화합물 중 적어도 하나 이상의 탄소원 가스를 투입하여 600 ℃ 내지 1200 ℃에서 가스 상태로 반응시켜 수행할 수 있다:
[화학식 2]
CNH(2N + 2-A)[OH]A
상기 화학식 2에서,
N은 1 내지 20의 정수이고,
A는 0 또는 1이며,
[화학식 3]
CNH(2N-B)
상기 화학식 3에서
N은 2 내지 6의 정수이고,
B는 0 내지 2이고,
[화학식 4]
CxHyOz
상기 화학식 4에서,
x는 1 내지 20의 정수이고,
y는 0 내지 25의 정수이며,
z는 0 내지 5의 정수이다.
또한, 상기 화학식 4에서, 상기 x는 y와 동일하거나 더 작을 수 있다.
상기 화학식 2로 표시되는 화합물은 메탄, 에탄, 프로판, 부탄, 메탄올, 에탄올, 프로판올, 프로판디올 및 부탄디올로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 화학식 3으로 표시되는 화합물은 에틸렌, 프로필렌, 부틸렌, 부타디엔 및 사이클로펜텐으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 상기 화학식 4로 표시되는 화합물은 아세틸렌, 벤젠, 톨루엔, 자이렌, 에틸벤젠, 나프탈렌, 안트라센 및 디부틸 하이드록시 톨루엔(BHT)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 탄소원 가스에 수소, 질소, 헬륨 및 아르곤 중에서 선택된 1종 이상의 불활성 가스를 더 포함할 수 있다. 또한, 상기 탄소원 가스와 함께 수증기, 일산화 탄소 및 이산화탄소 중에서 선택된 1종 이상의 가스를 더 첨가할 수 있다.
상기 반응에 수증기를 포함하고 있는 경우에는, 규소-규소 복합산화물-탄소 복합체가 보다 높은 전도도를 나타낼 수 있다.
본 발명의 일 구현예에 따라, 상기 반응에 수증기를 포함하는 경우 본 복합체의 표면에 고결정성의 탄소층이 형성되기 때문에, 보다 적은 양의 탄소가 코팅되는 경우에도, 높은 전도도를 나타낼 수 있다. 상기 수증기의 함유량은 제한되지 않으나, 예를 들면 상기 탄소원 가스 전체 100 부피%를 기준으로 0.01 내지 10 부피%를 사용할 수 있다.
상기 탄소원 가스는, 예를 들면 메탄, 메탄과 불활성 가스를 함유한 혼합 가스, 산소 함유 가스 또는 메탄과 산소 함유 가스를 포함한 혼합가스일 수 있다.
일 구현예에 따라, 상기 탄소원 가스는 CH4:CO2 혼합 기체 또는 CH4:CO2:H2O 혼합 기체일 수 있다.
상기 CH4:CO2 혼합 기체는 약 1:0.20 내지 0.50 몰비의 양으로 제공할 수 있다. 구체적으로 상기 CH4:CO2 혼합 기체는 1:0.25 내지 0.45 몰비일 수 있다. 보다 구체적으로는 약 1:0.30 내지 0.40 몰비일 수 있다.
또한, CH4:CO2:H2O 혼합 기체는 약 1:0.20 내지 0.50:0.01 내지 1.45 몰비, 구체적으로 1:0.25 내지 0.45:0.10 내지 1.35 몰비일 수 있으며, 특히 약 1:0.30 내지 0.40:0.50 내지 1.0 몰비일 수 있다.
또 다른 구현예에 따라, 상기 탄소원 가스는 CH4와 N2의 혼합 기체일 수 있다.
상기 CH4:N2 혼합 기체는 약 1:0.20 내지 0.50 몰비, 구체적으로 약 1:0.25 내지 0.45 몰비, 더욱 구체적으로 1:0.30 내지 0.40 몰비일 수 있다.
또한, 일 구현예에 따라, 상기 탄소원 가스는, 질소와 같은 불활성 가스를 포함하지 않을 수도 있다.
상기 반응을 600 ℃ 내지 1200 ℃, 구체적으로 700 ℃ 내지 1100 ℃, 더욱 구체적으로 700 ℃ 내지 1000 ℃에서 실시할 수 있다.
상기 열처리 시 압력은, 열처리 온도, 가스 혼합물의 조성 및 탄소 코팅량 등을 고려해 선택할 수 있다. 상기 열처리 시 압력은 유입되는 가스 혼합물의 양과 유출되는 가스 혼합물의 양을 조정하여 제어할 수 있다. 예컨대 열처리 시 압력은 0.1 atm 이상, 예를 들면, 0.5 atm 이상, 1 atm 이상, 2 atm 이상, 3 atm 이상, 또는 5 atm 이상일 수 있지만, 이에 한정되는 것은 아니다.
상기 반응 시간(열처리 시간)은 열처리 온도, 열처리 시의 압력, 가스 혼합물의 조성 및 원하는 탄소 코팅량에 따라 적절히 조정할 수 있다. 예를 들어 상기 반응 시간은 10 분 내지 100 시간, 구체적으로 30 분 내지 90 시간, 더 구체적으로는 50 분 내지 40 시간일 수 있지만, 이에 한정되는 것은 아니다. 특정 이론에 구속되는 것은 아니지만, 상기 반응 시간이 길어질수록 형성되는 탄소층의 두께가 두꺼워져 그에 따라 복합체의 전기적 물성이 향상될 수 있다.
본 발명의 구현예에 따른 규소-규소 복합산화물-탄소 복합체의 제조방법은, 상기 탄소원 가스의 기상반응을 개입시켜, 비교적 낮은 온도에서도 상기 규소-규소 복합산화물 복합체의 표면에, 그래핀, 환원된 산화 그래핀, 탄소나노 튜브 및 탄소 나노 섬유를 주성분으로 한 얇고 균일한 탄소층을 형성할 수 있다. 또한, 상기 형성된 탄소층에서 탈리반응은 실질적으로 일어나지 않는다.
본 발명의 제조방법에 따르면, 규소 분말과 산화 규소 분말을 이용하여 얻은 원료 물질과 금속 마그네슘을 반응시켜 규소, 산화 규소 화합물 및 규산 마그네슘을 포함하는 규소-규소 복합산화물 복합체를 얻은 후(코어), 상기 규소-규소 복합산화물 복합체의 표면에 탄소층을 형성하여 코어-쉘 구조의 복합체를 얻을 수 있다. 또한, 상기 탄소층 중에는 마그네슘 또는 그 산화물 성분을 실질적으로 포함하지 않을 수 있다.
또한 상기 기상반응을 통해 상기 규소-규소 복합산화물 복합체 분말의 표면 전체에 걸쳐 탄소층이 균일하게 형성되므로 높은 결정성을 가진 탄소피막(탄소층)을 형성할 수 있다. 따라서, 본 복합체를 음극 활물질로서 사용할 경우, 구조 변화 없이 음극 활물질의 전기 전도도를 향상시킬 수 있다.
상기 규소-규소 복합산화물-탄소 복합체는 탄소 코팅량에 따라 비표면적이 감소할 수 있다.
상기 그래핀 함유 물질의 구조는 막(layer) 또는 나노 시트(nanosheet) 타입이거나 또는 몇 개의 플레이크가 혼합된 구조일 수 있다.
상기 규소-규소복합산화물-탄소 복합체 분말의 표면 전체에 걸쳐서 균일한 그래핀 함유 물질을 포함하는 탄소층을 형성하는 경우, 규소, 산화 규소 화합물 및 규산마그네슘 표면에 전도성이 향상되고 부피 팽창에 유연한 그래핀 함유 물질을 직접 성장시킴으로써 부피 팽창을 억제할 수 있다. 또한, 상기 탄소층 코팅에 의해 규소가 전해질과 직접 만날 기회를 줄여 고체 전해질 계면층의 생성을 줄일 수 있다.
이와 같이, 규소-규소 복합산화물-탄소 복합체의 코어가 그래핀 함유물질의 쉘에 의해 고정화되기 때문에, 음극 활물질 조성물 제조시 결합제 없이도 규소, 산화 규소 화합물 및 규산 마그네슘의 부피 팽창에 의한 구조 붕괴를 억제할 수 있으며, 저항의 증가를 최소화함으로써 전기 전도도 및 용량 특성이 우수한 전극 및 리튬 이차전지 제조에 유용하게 이용될 수 있다.
본 복합체의 제조방법에 있어서, 제 5 단계는 상기 코어-쉘 구조의 복합체를 분쇄 및 분급 중 적어도 하나 이상의 공정을 수행하여 규소-규소 복합산화물-탄소 복합체(복합체 C)를 얻는 단계를 포함할 수 있다.
본 발명의 구현예에 따르면, 상기 코어-쉘 구조의 복합체를 분쇄 및/또는 분급함으로써, 본 발명에서 목적하는 입도 분포를 구현할 수 있다.
상기 제 5 단계에서, 상기 코어-쉘 구조의 복합체를 분급할 수 있다. 또는, 상기 코어-쉘 구조의 복합체를 분쇄 할 수 있다. 또는, 상기 코어-쉘 구조의 복합체를 분쇄 및 분급할 수 있다. 구체적으로 상기 코어-쉘 구조의 복합체를 분급하고, 필요에 따라 분쇄할 수 있다.
상기 분쇄 및 분급은 제 3 단계에서 사용된 분쇄 및 분급과 동일하게 사용될 수 있다.
또한, 상기 규소-규소 복합산화물-탄소 복합체를 평균 입경이 0.5 ㎛ 내지 10 ㎛, 구체적으로 3.0 ㎛ 내지 8.0 ㎛, 더욱 구체적으로 3.0 ㎛ 내지 7.0 ㎛이 되도록 분쇄 및/또는 분급할 수 있다.
본 발명은 상기 분쇄 및/또는 분급 단계를 통해 상기 식 1의 스팬(Span) 값을 0.6 내지 1.5의 범위로 제어할 수 있다. 또한, 상기 규소-규소 복합산화물-탄소 복합체의 D50, D10 및 D90을 최적 범위로 제어할 수 있다. 또한, 상기 분쇄 후 분급기 또는 체로 미세입자와 조대입자를 삭감하는 것이 바람직하다.
음극 활물질
일 구현예에 따른 음극 활물질은 상기 규소-규소 복합산화물-탄소 복합체를 포함할 수 있다. 구체적으로, 상기 음극 활물질은 코어-쉘 구조를 가진 규소-규소 복합산화물-탄소 복합체로서, 상기 코어가 규소, 산화 규소 화합물 및 규산 마그네슘을 포함하고, 상기 쉘이 탄소층을 포함하며, 입도 분포에 있어서의 누적 부피농도(%)가 10%, 50% 및 90%가 되는 입도를 각각 D10, D50 및 D90이라 할 때, 상기 복합체의 상기 식 1의 스팬(Span) 값이 0.6 내지 1.5인 규소-규소 복합산화물-탄소 복합체를 포함할 수 있다.
또한, 상기 음극 활물질은 탄소계 음극 재료, 구체적으로 흑연계 음극 재료를 더 포함할 수 있다.
상기 음극 활물질은 상기 규소-규소 복합산화물-탄소 복합체 및 상기 탄소계 음극 재료, 예를 들어 흑연계 음극 재료를 혼합하여 사용할 수 있다. 이 경우, 음극 활물질의 전기 저항을 저감할 수 있는 동시에, 충전에 수반하는 팽창 응력을 완화시킬 수 있다. 상기 탄소계 음극 재료는, 예를 들면, 천연흑연, 인조흑연, 소프트카본, 하드카본, 메조카본, 탄소파이버, 탄소나노튜브, 열분해 탄소류, 코크스류, 유리장 탄소섬유, 유기 고분자 화합물 소성체 및 카본 블랙으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 규소-규소 복합산화물-탄소 복합체는 상기 음극 활물질 총 중량을 기준으로 5 중량% 내지 90 중량%, 구체적으로 20 중량% 내지 60 중량%, 더욱 구체적으로 30 중량% 내지 50 중량%의 양으로 포함될 수 있다.
또한, 상기 탄소계 음극 재료는 음극 활물질 총 중량에 대해 30 중량% 내지 90 중량%, 구체적으로 40 중량% 내지 80 중량%, 더욱 구체적으로 50 중량% 내지 80 중량%의 양으로 포함될 수 있다.
이차전지
본 발명의 일 구현예에 따르면, 본 발명은 상기 음극 활물질을 포함하는 음극, 및 이를 포함하는 이차전지를 제공할 수 있다.
상기 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막 및 리튬염이 용해되어 있는 비수 전해액을 포함할 수 있으며, 상기 음극은 규소-규소 복합산화물-탄소 복합체를 포함하는 음극 활물질을 포함할 수 있다.
상기 음극이 음극합제만으로 구성될 수 있고, 음극 집전체와 그 위에 담지된 음극합제층(음극 활물질층)으로 구성될 수도 있다. 마찬가지로, 양극이 양극합제만으로 구성될 수 있고, 양극 집전체와 그 위에 담지된 양극합제층(양극 활물질층)으로 구성될 수도 있다. 또한, 상기 음극합제 및 상기 양극합제는 도전제 및 결착제 등을 더 포함할 수 있다.
상기 음극 집전체를 구성하는 재료 및 상기 양극 집전체를 구성하는 재료로 해당 분야에서 공지의 재료를 이용할 수 있고, 상기 음극 및 상기 양극에 첨가되는 결착제 및 도전제 등으로 해당 분야에서 공지의 재료를 이용할 수 있다.
상기 음극이 집전체와 그 위에 담지된 활물질층으로 구성되는 경우, 상기 음극은 상기 규소-규소 복합산화물-탄소 복합체를 포함하는 음극 활물질 조성물을 집전체의 표면에 도포하고, 건조함으로써 제작될 수 있다.
또한, 이차전지는 비수 전해액을 포함하며, 상기 비수 전해액은 비수용매와 그 비수용매에 용해된 리튬염을 포함할 수 있다. 상기 비수용매로는 해당 분야에서 일반적으로 이용되고 있는 용매를 사용할 수 있으며, 구체적으로 비양자성 유기용매(aprotic organic solvent)를 이용할 수 있다. 상기 비양자성 유기용매로는, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트 등의 환상 카보네이트, 푸라논(furanone) 등의 환상 카르본산에스테르, 디에틸카보네이트, 에틸메틸카보네이트, 디메틸카보네이트 등의 쇄상 카보네이트, 1,2-메톡시에탄, 1,2-에톡시에탄, 에톡시메톡시에탄 등의 쇄상 에테르, 및 테트라히드로프란, 2-메틸테트라히드로프란 등의 환상 에테르를 사용할 수 있으며, 이를 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 이차전지는 비수계 이차전지를 포함할 수 있다.
본 발명에 구현예에 따른 상기 규소-규소 복합산화물-탄소 복합체를 이용한 음극 활물질 및 이차전지는 충방전 용량은 물론, 초기 충방전 효율 및 용량 유지율을 향상시킬 수 있다.
이하 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 이하의 실시예들은 본 발명을 예시하는 것일 뿐이며, 본 발명의 범위가 이들로 한정되지는 않는다.
<실시예 1>
규소-규소 복합산화물-탄소 복합체의 제조
제 1 단계 : 평균 입경이 20 ㎛인 규소 분말 11 kg과 평균 입경이 20 nm인 이산화 규소 분말 15 kg을 물 60 kg에 넣고 PL 혼합기(PL mixer)로 12 시간 동안 교반하여 균일하게 혼합한 후, 질소 분위기 하에서 250 ℃에서 20 시간 동안 건조하였다. 이 후, 상기 결과물을 600 ℃에서 12 시간 동안 다시 건조해서 원료 분말 혼합체(원료 물질)를 형성하였다.
제 2 단계 : 상기 원료 분말 혼합체와 금속 마그네슘 3 kg을 각각 진공 반응기의 도가니-A와 도가니-B에 투입하고, 압력을 감소시켜 0.01 torr에 도달한 후 도가니-A는 1400 ℃까지, 도가니-B는 700 ℃까지 승온시킨 후, 이들을 5시간 동안 반응시켜, 반응기 내의 증착 기판에 증착시켰다. 증착된 기판을 수냉식으로 실온까지 급속히 냉각하여 코어부의 규소-규소 복합산화물 복합체(복합체 A1)를 얻었다.
제 3 단계 : 규소-규소 복합산화물 복합체(복합체 A1)를 제트밀(넷츠사)에서 공기의 압력 7.5 Bar 분급기의 회전수 1,300 rpm, 피더 속도(Feeder Speed) 216 rpm의 조건에서 1회 분쇄하고 사이클론으로 회수하였다. 회수한 분쇄물의 D10이 3.2 ㎛, D50이 6.0㎛, D90이 9.5 ㎛인 규소-규소 복합산화물 복합체 분말(복합체 B1)을 얻었다.
제 4 단계 : 상기 규소-규소 복합산화물 복합체 분말(복합체 B1)을 회전식 진공 펌프로 전기로 내를 0.2 torr까지 감압 후 아르곤 가스를 0.3 L/min의 유량으로 흘러주면서 상압으로 만들었다. 상압 도달 후 전기로 내를 200 ℃의 속도로 1,000 ℃까지 승온시켰다. 1,000 ℃에 도달한 후, 전기로 내에 메탄 가스를 0.3 L/min의 유량으로 주입하면서 10 시간 동안 탄소 피복 처리를 수행하였다. 메탄 가스 공급을 중지한 후, 전기로 내를 상온까지 냉각하여 평균 입경이 6.7 ㎛인 코어-쉘 구조의 복합체를 얻었다.
제 5 단계 : 상기 코어-쉘 구조의 복합체를 420 mesh 체가 장착된 진동식 여과기를 통과시켜 D10 3.85 ㎛, D50 5.96 ㎛ 및 D90 9.08 ㎛인, 입경 분포가 조절된 코어-쉘 구조의 최종 규소-규소 복합산화물-탄소 복합체(복합체 C1)를 얻었다.
이차전지의 제작
상기 입경 분포가 조절된 코어-쉘 구조의 최종 규소-규소 복합산화물-탄소 복합체(복합체 C1)를 음극 활물질로서 포함하는 음극과 전지(코인셀)를 제작하였다.
상기 음극 활물질, 도전재로 SUPER-P, 폴리아크릴산을 중량비가 80:10:10이 되도록 물과 혼합하여 고형분 45 %의 음극 활물질 조성물을 제조하였다.
상기 음극 활물질 조성물을 두께 18 ㎛의 구리 호일에 도포해서 건조시킴으로써 두께 70 ㎛의 전극을 제조하였고, 상기 전극이 도포된 구리 호일을 직경 14 mm의 원형으로 펀칭해서 코인셀용 음극극판을 제조하였다.
한편, 양극 극판으로, 두께 0.3 ㎜의 금속 리튬 호일을 사용하였다.
분리막으로 두께 25 ㎛의 다공질 폴리에틸렌 시트를 사용하였고, 전해액으로 에틸렌카보네이트(EC)와 디에틸렌 카보네이트(DEC)를 부피비 1:1로 혼합한 용액에 1M 농도의 LiPF6를 용해시켜 전해질로 사용하였으며, 상기의 구성 요소들을 적용하여 두께 3.2 ㎜, 직경 20 ㎜의 코인셀(전지)을 제작하였다.
<실시예 2>
상기 실시예 1의 제 5 단계에서 복합체 C1을 공기 분급기(TC model, Nissin 社)를 이용하여 블로워(blower) 유량 4.5 m3/min, 및 로터(Roter) 속도 3000 rpm의 조건으로 1회 분급을 실시하여 사이클론으로 회수하여, 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C2)를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 규소-규소 복합산화물-탄소 복합체 및 이차전지를 제작하였다.
<실시예 3>
상기 실시예 1의 제 5 단계에서 복합체 C1을 공기 분급기(TC model, Nissin 社)를 이용하여 블로워(blower) 유량 4.7 m3/min, 및 로터(Roter) 속도 6500 rpm의 조건으로 1회 분급을 실시하여 사이클론으로 회수하여, 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C3)를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 규소-규소 복합산화물-탄소 복합체 및 이차전지를 제작하였다.
<실시예 4>
상기 실시예 1의 제 5 단계에서 복합체 C1을 공기 분급기(TC model, Nissin 社)를 이용하여 블로워(blower) 유량 4.2 m3/min, 및 로터(Roter) 속도 4000 rpm의 조건으로 1회 분급을 실시하여 사이클론으로 회수하여, 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C4)를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 규소-규소 복합산화물-탄소 복합체 및 이차전지를 제작하였다.
<실시예 5>
상기 실시예 1의 제 5 단계에서 복합체 C1을 공기 분급기(TC model, Nissin 社)를 이용하여 블로워(blower) 유량 6.5 m3/min, 및 로터(Roter) 속도 6500 rpm의 조건으로 1회 분급을 실시하여 사이클론으로 회수하여, 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C5)를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 규소-규소 복합산화물-탄소 복합체 및 이차전지를 제작하였다.
<실시예 6>
상기 실시예 1의 제 3 단계에서 분쇄 회수를 2회 실시하여 평균 입경이 약 4.9 ㎛인 규소-규소 복합산화물 복합체 분말(복합체 B2)을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C6) 및 이차전지를 제작하였다.
<실시예 7>
상기 실시예 1의 제 3 단계에서 분쇄 회수를 3회 실시하여 평균 입경이 약 1.9 ㎛인 규소-규소 복합산화물 복합체 분말(복합체 B3)을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C7) 및 이차전지를 제작하였다.
<실시예 8>
상기 실시예 1의 제 3 단계에서 규소-규소 복합산화물 복합체(복합체 A1)를 제트밀(대가분체, 소형)에서의 공기의 압력 8.0 bar 분급기의 회전수 2,200 rpm, 피더 속도(Feeder Speed) 600 rpm의 조건에서 1회 분쇄하고 사이클론으로 회수하고, 회수한 분쇄물의 평균 입경이 6.3 ㎛인 규소-규소 복합산화물 복합체 분말(복합체 B4)을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C8) 및 이차전지를 제작하였다.
<실시예 9>
상기 실시예 1의 제 1 단계에서 원료 분말 혼합체 대신 SiOx(x=1.08) 합성물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C9) 및 이차전지를 제작하였다.
<실시예 10>
상기 실시예 1의 제 4 단계에서, 전기로 내에 메탄 0.3 L/min로 통과하면서 0.1 rpm으로 10시간 동안 교반식 반응을 통해 탄소 피복 처리를 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체(복합체 C10) 및 이차전지를 제작하였다.
<비교예 1>
상기 실시예 1의 제 3 단계에서 규소-규소 복합산화물 복합체(복합체 A1)를 제트밀(대가분체, 소형)에서의 공기의 압력 0.58 MPa에서 분쇄하였고, 회수된 분쇄물의 평균 입경이 12.8 ㎛인 규소-규소 복합산화물 복합체 분말(복합체 B5)을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-규소 복합산화물-탄소 복합체 및 이차전지를 제작하였다.
<비교예 2>
상기 실시예 1의 제 2 단계에서 금속 마그네슘을 사용하지 않고, 제 3 단계에서 제 2 단계에서 얻은 SiOx(x=1.02)를 볼밀로 분쇄하여 평균 입경이 3.7 ㎛인 복합체 분말을 얻은 것을 제외하고, 실시예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 규소-산화 규소-탄소 복합체 및 이차전지를 제작하였다.
<비교예 3>
상기 실시예 1의 제 3 단계에서 규소-규소 복합산화물 복합체(복합체 A1)를 제트밀에 의해 분쇄하지 않고 기류식 분급기로 풍량 2.5 N㎥/분, 로터 회전수 10,000 rpm 조건에서 분급을 실시하고, 제 4 단계 및 제 5 단계를 수행하지 않은 것을 제외하고는, 비교예 1과 동일한 방법으로 수행하여 표 1의 입경 분포를 갖는 복합체 및 이차전지를 제작하였다.
실험예
실험예 1 : 최종 복합체 입자의 입경 측정
상기 실시예 및 비교예에서 제조된 최종 복합체 입자 0.2 g을 에탄올 10 ml에 분산시킨 후 3 분 동안 초음파 처리 후, Microtreac사의 S3500 장비를 이용하여 입경을 측정하였다. 분석값의 D10, D50 및 D90은 각각 레이저 광 회절법에 의한 입도 분포 측정에 있어서, 누적 부피농도(%)가 10%가 될 때의 입자 직경(D10), 누적 부피농도(%)가 50%가 될 때의 입자 직경(D50), 및 누적 부피농도(%)가 90%가 될 때의 입자 직경(D90)으로서 측정하였다.
도 1은 실시예 1의 규소-규소 복합산화물-탄소 복합체의 입도 분포를 측정한 결과 그래프로서, 규소-규소 복합산화물-탄소 복합체의 입자 크기에 따른 누적 부피농도(%) 및 부피농도(%)를 나타낸다.
도 1에 나타낸 바와 같이, 실시예 1의 D10은 3.85 ㎛, D50은 5.96 ㎛ 및 D90은 9.08 ㎛을 나타내었다
실험예 2 : 최종 복합체의 비표면적 측정
상기 실시예 및 비교예에서 제조된 복합체의 비표면적은, 제조된 복합체를 350 ℃에서 2 시간 동안 탈기한 후, MOUNTECH사의 Macsorb HM(model 1210)으로 질소와 헬륨의 혼합 가스(N2: 30 부피%, He: 70 부피%)를 흘리면서, BET 1점법에 의해 측정하였다.
실험예 3 : 최종 복합체의 전기 전도도 측정
실시예 및 비교예에서 제조된 복합체 상부 및 하부에 하드마스크를 사용하여 금(Au)을 100W, 아르곤(Ar) 분위기에서 100nm의 두께로 증착함으로써 셀을 완성하였다. 임피던스 분석기(Zahner, IM6)를 이용하여 두 개의 차단 전극을 두고 교류를 가하여 얻어진 응답으로부터 25 ℃ 에서의 이온 전도도를 측정하였다.
실험예 4 : 최종 복합체의 성분원소의 함량 및 비중 분석
상기 실시예 및 비교예에서 제조된 복합체 중 마그네슘(Mg), 산소(O) 및 탄소(C)의 각 성분원소의 함량을 분석하였다.
마그네슘(Mg) 함량은 유도결합플라즈마(ICP) 발광분광법에 의해 분석되었으며, 산소(O) 및 탄소(C) 함량은 원소분석기(Elemental Analyzer)에 의해 각각 분석되었다.
비중(진비중)은 Micromeritics사의 Accupyc II을 사용하고, 제조된 복합체 0.4g을 10ml 용기에 넣고 측정하였다.
실험예 5 : 이차전지의 용량, 초기 효율 및 용량 유지율 측정
상기 실시예 및 비교예에서 제조된 코인셀(이차전지)을 0.1 C의 정전류로 전압이 0.005 V가 될 때까지 충전하고 0.1 C의 정전류로 전압이 2.0 V가 될 때까지 방전하여 충전용량(mAh/g), 방전용량(mAh/g)을 구하고, 하기 식 2에 따른 초기효율(%)을 계산하여, 그 결과를 하기 표 1에 나타내었다.
[식 2]
초기효율(%)= 방전용량/충전용량 X 100
또한, 상기 실시예 및 비교예에서 제조된 코인셀을 상기와 같은 방법으로 1회 충전과 방전을 시킨 이후 2회부터의 충전과 방전에서는 0.5 C의 정전류로 전압이 0.005 V가 될 때까지 충전하고 0.5 C의 정전류로 전압이 2.0 V가 될 때까지 방전하여 하기 식 3에 따른 사이클 특성(100회 사이클 후 용량 유지율, %)을 구하고, 그 결과를 하기 표 1에 나타내었다.
[식 3]
100회 사이클 후 용량 유지율(%)= 101회 방전용량/2회 방전용량 X 100
Figure PCTKR2021000734-appb-T000001
상기 표 1에서 알 수 있는 바와 같이, 본 발명의 입도 분포가 조절된 실시예 1 내지 10의 규소-규소 복합산화물-탄소 복합체를 이용하여 제작한 이차전지는 초기 효율, 초기 용량 및 사이클 특성(수명 특성)이 비교예 1 내지 3에 비해 현저히 향상됨을 확인하였다.
구체적으로 살펴보면, 실시예 1 내지 10의 복합체는 식 1의 스팬 값이 모두 0.6 내지 1.5를 만족하였고, 이를 이용하여 제작된 이차전지는 초기 용량이 대부분 1400 mAh/g 내지 1424 mAh/g로 전반적으로 우수하였고, 초기 효율이 78.5 % 이상이었으며, 특히 100회 사이클 후 용량 유지율이 대부분 90 % 이상이었다.
이에 반해, 비교예 1 내지 3의 복합체는 식 1의 스팬 값이 모두 1.5를 초과하여 본 발명에서 목적하는 스팬 값의 범위에 벗어났다. 구체적으로, 스팬 값이 2를 초과한 복합체를 사용한 비교예 1의 이차전지는 초기 용량이 1358 mAh/g로 매우 낮았으며, 마그네슘을 함유하지 않고, 스팬 값이 1.59인 복합체를 이용한 비교예 2의 이차전지는 초기 효율이 75.4 %로 현저히 낮았으며, 탄소층을 포함하지 않고, 스팬 값이 1.68인 비교예 3의 이차전지는 수명 특성, 초기 용량 및 초기 효율이 모두 실시예의 이차전지에 비해 현저히 감소하였음을 알 수 있었다.

Claims (27)

  1. 코어-쉘 구조를 가진 규소-규소 복합산화물-탄소 복합체로서,
    상기 코어가 규소, 산화 규소 화합물 및 규산 마그네슘을 포함하고,
    상기 쉘이 탄소층을 포함하며,
    입도 분포에 있어서의 누적 부피농도(%)가 10%, 50% 및 90%가 되는 입도를 각각 D10, D50 및 D90이라 할 때, 상기 복합체의 하기 식 1의 스팬(Span) 값이 0.6 내지 1.5인, 규소-규소 복합산화물-탄소 복합체:
    [식 1]
    스팬(Span) = (D90-D10)/D50.
  2. 제 1 항에 있어서,
    상기 복합체의 D50이 0.5 ㎛ 내지 10.0 ㎛인, 규소-규소 복합산화물-탄소 복합체.
  3. 제 1 항에 있어서,
    상기 복합체의 D10이 0.7 ㎛ 내지 4.0 ㎛이고, D90이 3.0 ㎛ 내지 12.0 ㎛인, 규소-규소 복합산화물-탄소 복합체.
  4. 제 1 항에 있어서,
    상기 복합체의 D90/D10이 1.0 내지 5.0인, 규소-규소 복합산화물-탄소 복합체.
  5. 제 1 항에 있어서,
    상기 규소가 무정형, 2 nm 내지 20 nm의 결정자 크기를 갖는 결정형, 또는 이들의 혼합 형태인, 규소-규소 복합산화물-탄소 복합체.
  6. 제 1 항에 있어서,
    상기 코어 중의 규소(Si) 함량이 상기 규소-규소 복합산화물-탄소 복합체 총 중량을 기준으로 30 중량% 내지 80 중량%인, 규소-규소 복합산화물-탄소 복합체.
  7. 제 1 항에 있어서,
    상기 규소-규소 복합산화물-탄소 복합체 내에 존재하는 규소 원자수에 대한 산소 원자수의 비율(O/Si)이 0.45 내지 1.2인, 규소-규소 복합산화물-탄소 복합체.
  8. 제 1 항에 있어서,
    상기 산화 규소 화합물이 SiOx(0.5≤x≤1.5)인, 규소-규소 복합산화물-탄소 복합체.
  9. 제 1 항에 있어서,
    상기 규소-규소 복합산화물-탄소 복합체 내의 마그네슘(Mg)의 함량이 상기 규소-규소 복합산화물-탄소 복합체 총 중량을 기준으로 2 중량% 내지 15 중량%인, 규소-규소 복합산화물-탄소 복합체.
  10. 제 1 항에 있어서,
    상기 규산 마그네슘에 있어서, X선 회절 분석에서 2θ=22.3°내지 23.3°의 범위에 나타나는 Mg2SiO4 결정에 해당하는 X선 회절 피크의 강도(IF) 및 2θ=30.5°내지 31.5°범위에 나타나는 MgSiO3 결정에 해당하는 X선 회절 피크의 강도(IE)의 비율인 IF/IE가 0 초과 내지 1 이하인, 규소-규소 복합산화물-탄소 복합체.
  11. 제 1 항에 있어서,
    상기 탄소층이 그래핀, 환원된 산화 그래핀, 탄소나노 튜브 및 탄소 나노 섬유로부터 선택된 1종 이상을 포함하는, 규소-규소 복합산화물-탄소 복합체.
  12. 제 11 항에 있어서,
    상기 탄소층이 흑연을 더 포함하는, 규소-규소 복합산화물-탄소 복합체.
  13. 제 1 항에 있어서,
    상기 탄소층의 탄소(C) 함량이 상기 규소-규소 복합산화물-탄소 복합체 총 중량을 기준으로 2 중량% 내지 30 중량%인, 규소-규소 복합산화물-탄소 복합체.
  14. 제 1 항에 있어서,
    상기 탄소층의 두께가 1 nm 내지 300 nm인, 규소-규소 복합산화물-탄소 복합체.
  15. 제 1 항에 있어서,
    상기 규소-규소 복합산화물-탄소 복합체는 비중이 1.7 g/㎤ 내지 2.6 g/㎤이고, 비표면적(Brunauer-Emmett-Teller; BET)이 3 m2/g 내지 30 ㎡/g인, 규소-규소 복합산화물-탄소 복합체.
  16. 규소 분말과 산화 규소(SiOx(0.5≤x≤2) 분말을 이용하여 얻은 원료 물질을 준비하는 제 1 단계;
    상기 원료 물질과 금속 마그네슘을 각각 다른 온도에서 가열·증발시킨 후, 증착 및 냉각시켜 코어부의 규소-규소 복합산화물 복합체를 얻는 제 2 단계;
    상기 규소-규소 복합산화물 복합체를 평균 입경이 0.5 ㎛ 내지 10 ㎛이 되도록 분쇄 및 분급을 수행하여 규소-규소 복합산화물 복합체 분말을 얻는 제 3 단계;
    상기 규소-규소 복합산화물 복합체 분말의 표면에 화학적 열분해 증착법을 이용하여 탄소층을 형성하여 코어-쉘 구조의 복합체를 얻는 제 4 단계; 및
    상기 코어-쉘 구조의 복합체를 분쇄 및 분급 중 적어도 하나 이상의 공정을 수행하여 규소-규소 복합산화물-탄소 복합체를 얻는 제 5 단계를 포함하는, 제 1 항의 규소-규소 복합산화물-탄소 복합체의 제조방법.
  17. 제 16 항에 있어서,
    상기 원료 물질이 규소 분말과 산화 규소 분말을 혼합하여 얻은 혼합체; 상기 혼합체를 가열하고 이에 의해 생성된 가스를 냉각 및 석출하여 얻은 합성물; 또는 상기 혼합체와 상기 합성물의 혼합물인, 규소-규소 복합산화물-탄소 복합체의 제조방법.
  18. 제 17 항에 있어서,
    상기 혼합체와 상기 합성물의 혼합물에 있어서, 상기 합성물을 상기 혼합물 총 중량을 기준으로 20 중량% 내지 100 중량% 미만의 양으로 더 첨가하는, 규소-규소 복합산화물-탄소 복합체의 제조방법.
  19. 제 17 항에 있어서,
    상기 규소 분말의 평균 입경이 5 ㎛ 내지 50 ㎛이고,
    상기 산화 규소 분말의 평균 입경이 5 nm 내지 50 nm인, 규소-규소 복합산화물-탄소 복합체의 제조방법.
  20. 제 16 항에 있어서,
    상기 원료 물질이 규소 원소 1몰 당 산소 원소의 몰비가 0.8 내지 1.2인, 규소-규소 복합산화물-탄소 복합체의 제조방법.
  21. 제 16 항에 있어서,
    상기 제 2 단계 중 상기 원료 물질의 가열·증발이 0.0001 torr 내지 2 torr의 압력 하에서 900 ℃ 내지 1800 ℃에서 수행되고,
    상기 금속 마그네슘의 가열·증발이 0.0001 torr 내지 2 torr의 압력 하에서 500 ℃ 내지 1100 ℃에서 수행되는, 규소-규소 복합산화물-탄소 복합체의 제조방법.
  22. 제 16 항에 있어서,
    상기 제 4 단계 중 상기 탄소층의 형성이 하기 화학식 2 내지 화학식 4로 표시되는 화합물 중 적어도 하나 이상을 투입하여 600 ℃ 내지 1200 ℃에서 가스 상태로 반응시켜 수행되는, 규소-규소 복합산화물-탄소 복합체의 제조방법:
    [화학식 2]
    CNH(2N + 2-A)[OH]A
    상기 화학식 2에서,
    N은 1 내지 20의 정수이고,
    A는 0 또는 1이며,
    [화학식 3]
    CNH(2N-B)
    상기 화학식 3에서
    N은 2 내지 6의 정수이고,
    B는 0 내지 2이고,
    [화학식 4]
    CxHyOz
    상기 화학식 4에서,
    x는 1 내지 20의 정수이고,
    y는 0 내지 25의 정수이며,
    z는 0 내지 5의 정수이다.
  23. 제 16 항에 있어서,
    상기 제 3 단계에서 상기 분쇄가 제트밀(jet mill), 볼밀(ball mill), 매체 교반밀(stirred media mill), 롤밀(roll mill), 해머밀(hammer mill), 핀밀(pin mill), 디스크밀(disk mill), 콜로이드밀(colloid mill) 및 아토마이저밀(atomizer mill) 중에서 선택된 하나 이상을 이용하여 수행되고,
    상기 분급이 건식 분급, 습식 분급 및 체분급 중에서 선택된 하나 이상을 이용하여 수행되는, 규소-규소 복합산화물-탄소 복합체의 제조방법.
  24. 제 1 항의 규소-규소 복합산화물-탄소 복합체를 포함하는, 음극 활물질.
  25. 제 24 항에 있어서,
    상기 음극 활물질이 탄소계 음극 재료를 더 포함하는, 음극 활물질.
  26. 제 24 항에 있어서,
    상기 규소-규소 복합산화물-탄소 복합체가 상기 음극 활물질 총 중량을 기준으로 5 중량% 내지 90 중량%의 양으로 포함되는, 음극 활물질.
  27. 제 24 항의 음극 활물질을 포함하는, 리튬 이차전지.
PCT/KR2021/000734 2020-01-21 2021-01-19 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질 WO2021149996A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022544356A JP2023511165A (ja) 2020-01-21 2021-01-19 ケイ素-ケイ素複合酸化物-炭素複合材料、その調製方法、およびそれを含む負極活物質
US17/794,332 US20230049476A1 (en) 2020-01-21 2021-01-19 Silicon-silicon composite oxide-carbon composite, method for preparing same, and negative electrode active material comprising same
EP21744429.8A EP4095947A1 (en) 2020-01-21 2021-01-19 Silicon-silicon composite oxide-carbon composite, method for preparing same, and negative electrode active material comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0007776 2020-01-21
KR1020200007776A KR20210094685A (ko) 2020-01-21 2020-01-21 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질

Publications (1)

Publication Number Publication Date
WO2021149996A1 true WO2021149996A1 (ko) 2021-07-29

Family

ID=76992384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000734 WO2021149996A1 (ko) 2020-01-21 2021-01-19 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질

Country Status (5)

Country Link
US (1) US20230049476A1 (ko)
EP (1) EP4095947A1 (ko)
JP (1) JP2023511165A (ko)
KR (1) KR20210094685A (ko)
WO (1) WO2021149996A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020631A4 (en) * 2019-08-19 2022-11-30 Daejoo Electronic Materials Co., Ltd. SILICON?SILICON-CARBON OXIDE COMPLEX, METHOD FOR PREPARING IT AND NEGATIVE ELECTRODE ACTIVE MATERIAL COMPRISING IT FOR RECHARGEABLE LITHIUM BATTERY
CN115425222A (zh) * 2022-11-03 2022-12-02 中创新航科技股份有限公司 硅基负极材料及其制备方法及包含它的锂离子电池
CN115663160A (zh) * 2022-11-29 2023-01-31 中化学华陆新材料有限公司 一种锂离子电池硅碳负极材料及其应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024501774A (ja) * 2021-08-13 2024-01-15 エルジー エナジー ソリューション リミテッド シリコン含有負極活物質、これを含む負極、およびこれを含む二次電池
JP2024503414A (ja) * 2021-08-13 2024-01-25 エルジー エナジー ソリューション リミテッド 負極および前記負極を含む二次電池
KR20230049029A (ko) * 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023182826A1 (ko) * 2022-03-23 2023-09-28 대주전자재료 주식회사 규소-탄소 복합체, 이의 제조방법, 및 이를 포함하는 음극 활물질 및 리튬 이차전지
KR20230140533A (ko) * 2022-03-25 2023-10-06 대주전자재료 주식회사 규소-탄소 혼합체, 이의 제조방법 및 이를 포함하는 음극 활물질 및 리튬 이차전지
KR20230161157A (ko) * 2022-05-18 2023-11-27 에스케이온 주식회사 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2024065594A1 (zh) * 2022-09-30 2024-04-04 宁德新能源科技有限公司 一种负极材料及电化学装置
CN116802836B (zh) * 2023-03-06 2024-09-06 宁德时代新能源科技股份有限公司 硅基负极活性材料及其制备方法、二次电池及用电装置
WO2024183065A1 (zh) * 2023-03-09 2024-09-12 宁德时代新能源科技股份有限公司 硅基负极活性材料、二次电池及用电装置
KR102628774B1 (ko) * 2023-04-28 2024-01-23 주식회사 이녹스에코엠 이차전지 음극재용 실리콘 분말 및 이의 제조 방법
CN118373427B (zh) * 2024-06-27 2024-09-10 四川金汇能新材料股份有限公司 预镁氧化亚硅负极材料及其制备方法和锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2013041826A (ja) 2011-08-15 2013-02-28 Samsung Sdi Co Ltd 2次電池用負極活物質、これを含むリチウム2次電池、およびこれを含むリチウム2次電池用負極の製造方法
JP5406799B2 (ja) 2010-07-29 2014-02-05 信越化学工業株式会社 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池
JP2014067713A (ja) 2012-09-24 2014-04-17 Samsung Electronics Co Ltd 複合負極活物質、それを含む負極及びリチウム電池、並びにその製造方法
KR20150079603A (ko) * 2012-10-26 2015-07-08 히타치가세이가부시끼가이샤 리튬이온 2차 전지용 음극 재료, 리튬이온 2차 전지용 음극 및 리튬이온 2차 전지
JP2015164139A (ja) 2015-05-14 2015-09-10 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
KR20180031566A (ko) * 2016-09-19 2018-03-28 삼성전자주식회사 다공성 실리콘 복합체 클러스터, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
KR20190065182A (ko) * 2017-12-01 2019-06-11 대주전자재료 주식회사 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
KR20190093176A (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
KR20190117633A (ko) * 2017-02-10 2019-10-16 와커 헤미 아게 리튬 이온 배터리의 애노드 물질용 코어-쉘 복합 입자

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546799B1 (ko) 1970-04-09 1979-03-31
JP5827103B2 (ja) * 2011-11-07 2015-12-02 セイコーインスツル株式会社 小型非水電解質二次電池及びその製造方法
JP2014089855A (ja) * 2012-10-30 2014-05-15 Hitachi Maxell Ltd 非水二次電池用負極活物質および非水二次電池
KR101960855B1 (ko) * 2017-03-20 2019-03-21 대주전자재료 주식회사 리튬 이차전지 음극재용 실리콘 복합산화물 및 이의 제조방법
WO2019108050A1 (ko) * 2017-12-01 2019-06-06 대주전자재료 주식회사 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
JP7159839B2 (ja) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP5406799B2 (ja) 2010-07-29 2014-02-05 信越化学工業株式会社 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池
JP2013041826A (ja) 2011-08-15 2013-02-28 Samsung Sdi Co Ltd 2次電池用負極活物質、これを含むリチウム2次電池、およびこれを含むリチウム2次電池用負極の製造方法
JP2014067713A (ja) 2012-09-24 2014-04-17 Samsung Electronics Co Ltd 複合負極活物質、それを含む負極及びリチウム電池、並びにその製造方法
KR20150079603A (ko) * 2012-10-26 2015-07-08 히타치가세이가부시끼가이샤 리튬이온 2차 전지용 음극 재료, 리튬이온 2차 전지용 음극 및 리튬이온 2차 전지
JP2015164139A (ja) 2015-05-14 2015-09-10 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
KR20180031566A (ko) * 2016-09-19 2018-03-28 삼성전자주식회사 다공성 실리콘 복합체 클러스터, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
KR20190117633A (ko) * 2017-02-10 2019-10-16 와커 헤미 아게 리튬 이온 배터리의 애노드 물질용 코어-쉘 복합 입자
KR20190065182A (ko) * 2017-12-01 2019-06-11 대주전자재료 주식회사 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
KR20190093176A (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020631A4 (en) * 2019-08-19 2022-11-30 Daejoo Electronic Materials Co., Ltd. SILICON?SILICON-CARBON OXIDE COMPLEX, METHOD FOR PREPARING IT AND NEGATIVE ELECTRODE ACTIVE MATERIAL COMPRISING IT FOR RECHARGEABLE LITHIUM BATTERY
CN115425222A (zh) * 2022-11-03 2022-12-02 中创新航科技股份有限公司 硅基负极材料及其制备方法及包含它的锂离子电池
CN115663160A (zh) * 2022-11-29 2023-01-31 中化学华陆新材料有限公司 一种锂离子电池硅碳负极材料及其应用

Also Published As

Publication number Publication date
KR20210094685A (ko) 2021-07-30
US20230049476A1 (en) 2023-02-16
JP2023511165A (ja) 2023-03-16
EP4095947A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2021149996A1 (ko) 규소-규소 복합산화물-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2022065846A1 (ko) 다공성 규소계-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2021246544A1 (ko) 규소계-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2021034109A1 (ko) 규소·산화규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2020256395A2 (ko) 리튬이차전지 음극재용 탄소-규소복합산화물 복합체 및 이의 제조방법
WO2022139244A1 (ko) 다공성 규소 복합체, 이를 포함하는 다공성 규소-탄소 복합체 및 음극 활물질
WO2022103038A1 (ko) 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2021006520A1 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2022103053A1 (ko) 다공성 규소계 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2021194149A1 (ko) 다공성 실리콘 및 이를 포함하는 이차전지 음극 활물질 제조 방법
WO2019093779A2 (ko) 리튬이차전지용 양극활물질 또는 음극활물질 및 그들의 제조방법, 상기 양극활물질 복합소재의 제조방법, 및 상기 양극활물질, 상기 복합소재 또는 상기 음극활물질을 포함하는 리튬이차전지
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2023101522A1 (ko) 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2023096443A1 (ko) 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2023182826A1 (ko) 규소-탄소 복합체, 이의 제조방법, 및 이를 포함하는 음극 활물질 및 리튬 이차전지
WO2023158262A1 (ko) 규소-탄소 혼합체, 이의 제조방법 및 이를 포함하는 음극 활물질 및 리튬 이차전지
WO2015088252A1 (ko) 리튬이온 이차전지용 음극 활물질 및 이의 제조방법
WO2024054035A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2022139243A1 (ko) 다공성 규소 구조체, 이를 포함하는 다공성 규소-탄소 복합체 및 음극 활물질
WO2022139116A1 (ko) 폐-양극 활물질을 이용한 리튬 이차전지용 양극 활물질의 제조 방법
WO2023048550A1 (ko) 리튬 이차전지용 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
WO2020005029A1 (ko) 구조전지 전극 및 그의 제조 방법, 그 구조전지 전극을 이용한 구조전지
WO2023182862A1 (ko) 규소-탄소 혼합체, 이의 제조방법 및 이를 포함하는 음극 활물질 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744429

Country of ref document: EP

Effective date: 20220822