WO2022025675A1 - 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법 - Google Patents

프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법 Download PDF

Info

Publication number
WO2022025675A1
WO2022025675A1 PCT/KR2021/009908 KR2021009908W WO2022025675A1 WO 2022025675 A1 WO2022025675 A1 WO 2022025675A1 KR 2021009908 W KR2021009908 W KR 2021009908W WO 2022025675 A1 WO2022025675 A1 WO 2022025675A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
propylene
oxide
ammoxidation
coating layer
Prior art date
Application number
PCT/KR2021/009908
Other languages
English (en)
French (fr)
Inventor
김지연
강경연
최준선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21850773.9A priority Critical patent/EP4046708A4/en
Priority to JP2022528692A priority patent/JP7371986B2/ja
Priority to US17/779,111 priority patent/US20220395817A1/en
Priority to CN202180007293.4A priority patent/CN114829001A/zh
Priority claimed from KR1020210099864A external-priority patent/KR20220014864A/ko
Publication of WO2022025675A1 publication Critical patent/WO2022025675A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8873Zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • B01J35/23
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for ammoxidation of propylene, a method for preparing the same, and a method for ammoxidation of propylene using the same.
  • Acrylonitrile (AN) is not only used as one of the raw materials of ABS resin, but also can be applied to various chemical products, so demand and production are increasing worldwide.
  • Such acrylonitrile can be prepared through the ammoxidation reaction of propylene.
  • the ammoxidation reaction of propylene includes a reduction reaction of ammonia and propylene and a reoxidation reaction by oxygen.
  • a fluidized bed reactor is generally used.
  • the sol-gel method is widely known as a method for preparing a catalyst for ammoxidation of propylene, which corresponds to a method in which a metal precursor solution and silica sol are co-precipitated, and the co-precipitation product is spray-dried and then calcined.
  • a catalyst having a secondary particle structure in which metal oxide particles and silica particles are aggregated is prepared, but the binding force of the primary particles constituting the secondary particles is weak, so that it is worn out in the fluid reactor or split into primary particles. It is easy to lose catalytic activity.
  • sites that can participate in the ammoxidation reaction of propylene are limited to the outer surface portion (i.e., the surface of secondary particles) and provide a small surface area, the amount of ammonia desorbed from the catalyst surface during the ammoxidation reaction of propylene is many.
  • the metal oxide component particularly, Mo
  • the metal oxide component is easily eluted and volatilized at a high temperature (about 400 to 600 ° C.) where the ammoxidation reaction of propylene proceeds, and thus the catalyst performance is easily reduced.
  • the present invention provides a catalyst for ammoxidation of propylene that minimizes metal oxide components (especially Mo) eluted and volatilized from the catalyst during the ammoxidation reaction of propylene, and acrylonitrile in a higher yield using this catalyst is for manufacturing.
  • metal oxide components especially Mo
  • a catalyst for ammoxidation of propylene having a structure in which a molybdenum (Mo) oxide is first supported and a heterogeneous metal oxide including bismuth (Bi) is supported later, and a method for preparing the same provides
  • a catalyst for ammoxidation of propylene according to an embodiment of the present invention includes a silica carrier; and a metal oxide supported on the silica carrier,
  • a coating layer comprising molybdenum (Mo) oxide; and one or more coating layers located on the coating layer including the molybdenum (Mo) oxide, and including a dissimilar metal; may include:
  • A is at least one of Ni, Mn, and Co;
  • B is one or more elements of Zn, Mg, Ca, and Ba;
  • C is one or more of Li, Na, K, Rb, and Cs,
  • D is one or more of Cr, W, B, Al, Ca, and V,
  • a to f and x are each a fraction of an atom or group, a is 0.1 to 5, b is 0.1 to 5, c is 0.01 to 10, d is 0.01 to 10, e is 0.01 to 2, , f is 0 to 10, and x is 24 to 48.
  • the catalyst for ammoxidation of propylene may be prepared by, for example, a manufacturing method comprising the following steps:
  • the elution of molybdenum (Mo) during the ammoxidation reaction of propylene is suppressed and the catalytic performance is reduced by a structure in which molybdenum (Mo) oxide is supported first and a heterogeneous metal oxide is supported later. can be maintained
  • acrylonitrile can be mass-produced in high yield without additional supply of catalyst during the ammoxidation process of propylene in the fluidized bed reactor.
  • FIG. 1 schematically shows a catalyst prepared using a sol-gel method.
  • first, second, etc. may be used to describe various elements, but the elements are not limited by the terms.
  • the above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • particle diameter Dv means the particle diameter at the v% point of the cumulative volume distribution according to the particle diameter. That is, D50 is the particle size at the 50% point of the cumulative volume distribution according to the particle size, D90 is the particle size at the 90% point of the cumulative volume distribution according to the particle size, and D10 is the particle size at the 10% point of the cumulative volume distribution according to the particle size. to be.
  • pore diameter may mean the length of a straight line passing through the center of the pore.
  • the silica carrier may include a plurality of pores, and in this case, the average diameter may be obtained by arithmetic average of the diameters of the plurality of pores.
  • the pore diameter and the average pore diameter may be obtained by the Barrett-Joyner-Halenda (BJH) method from the desorption isotherm of nitrogen gas under the liquid nitrogen temperature.
  • BJH Barrett-Joyner-Halenda
  • ammonia (NH 3 -TPD) which measures the degree of acid site strength of the catalyst by the degree of desorption (TPD: Temperature Programmed Desorption) of ammonia (NH 3 ), is widely known.
  • the ammonia (NH 3 ) adsorption amount of the catalyst and the carrier can be measured using the ammonia temperature elevation desorption method (NH 3 -TPD).
  • a catalyst for ammoxidation of propylene having a structure in which molybdenum (Mo) oxide is first supported and a heterogeneous metal oxide including bismuth (Bi) is supported later.
  • the overall composition satisfies the following Chemical Formula 1, but molybdenum (Mo) is distributed in the lower part (ie, the silica carrier side), and a heterogeneous metal is a metal distributed on the lower part Oxide; this is supported on a silica carrier:
  • A is at least one of Ni, Mn, and Co;
  • B is one or more elements of Zn, Mg, Ca, and Ba;
  • C is one or more of Li, Na, K, Rb, and Cs,
  • D is one or more of Cr, W, B, Al, Ca, and V,
  • a to f and x are each a fraction of an atom or group, a is 0.1 to 5, b is 0.1 to 5, c is 0.01 to 10, d is 0.01 to 10, e is 0.01 to 2, , f is 0 to 10, and x is 24 to 48.
  • a commonly known catalyst for ammoxidation of propylene is prepared by a sol-gel method and provided in a secondary particle structure in which metal oxide nanoparticles and silica nanoparticles are aggregated ( FIG. 1 ).
  • it may be prepared by an impregnation method to provide a structure in which a metal oxide is supported on a silica carrier.
  • the catalyst prepared by this impregnation method may have less fine powder content and superior durability than a catalyst prepared by the sol-gel method with the same composition, even if a classification process is not performed as a post-processing after preparation.
  • molybdenum (Mo) is not sufficiently supported to the inside of the pores of the silica carrier, and the MoO 3 phase increases, so volatilization or loss of molybdenum (Mo) during the ammoxidation reaction of propylene is high. .
  • molybdenum (Mo) oxide is first supported on a silica support, and then heterogeneous (including bismuth (Bi) ⁇ species) metal oxides are sequentially supported (FIG. 2).
  • a molybdenum (Mo) metal precursor solution for sequential loading of the metal oxide, mixing with a molybdenum (Mo) metal precursor solution, drying, and firing are performed, and then mixing with a heterogeneous metal precursor including bismuth (Bi), drying, and Firing can be performed.
  • Mo molybdenum
  • Bi bismuth
  • the silica carrier and the molybdenum (Mo) precursor solution are mixed and the solvent (ie, water) is removed through a drying process, the molybdenum (Mo) precursor remains on the pore walls of the silica carrier, and the firing process As the molybdenum (Mo) precursor is oxidized, a molybdenum (Mo) oxide film (coating layer) that continuously coats the pore walls of the silica carrier may be formed.
  • a bismuth (Bi) and a heterogeneous metal oxide coating layer may be formed.
  • the molybdenum (Mo) oxide is supported first and the elution of molybdenum (Mo) during the ammoxidation reaction of propylene has a structure in which a heterogeneous metal oxide including bismuth (Bi) is supported later. suppressed and catalytic performance can be maintained.
  • acrylonitrile can be mass-produced in high yield without additional supply of catalyst during the ammoxidation process of propylene in the fluidized bed reactor.
  • the catalyst of one embodiment is a catalyst by controlling the metal oxide composition to further include a metal that forms an active site at a suitable level for the ammoxidation reaction of propylene, as well as Mo and Bi, which are known to increase the activity of the ammoxidation reaction. activity can be further increased.
  • molybdenum Mo
  • bismuth Bi
  • dissimilar metal are distributed in the upper part.
  • Metal oxide It may have a structure supported on the silica carrier.
  • the metal oxide may include a coating layer including molybdenum (Mo) oxide; and one or more coating layers positioned on the coating layer including the molybdenum (Mo) oxide and including a dissimilar metal.
  • Mo molybdenum
  • the metal oxide may include a coating layer including molybdenum (Mo) oxide; and one or more coating layers positioned on the coating layer including the molybdenum (Mo) oxide and including a dissimilar metal.
  • Mo molybdenum
  • Bi bismuth
  • Fe iron
  • element A at least one of Ni, Mn, and Co
  • element B among Zn, Mg, Ca, and Ba
  • C at least one of Li, Na, K, Rb, and Cs
  • the metal oxide supported by dividing into four times a first coating layer containing molybdenum (Mo) oxide; and a second coating layer disposed on the first coating layer and including bismuth (Bi) oxide.
  • the overall composition of the coating layers satisfies Chemical Formula 1, and the metals on the upper and lower portions of the adjacent coating layers may be chemically bonded to each other.
  • molybdenum (Mo) of the first coating layer can exist in the form of MoO 3 , but it is also combined with bismuth (Bi) of the second coating layer adjacent thereto to form Mo-Bi-O bonds, and molybdenum during the ammoxidation reaction of propylene.
  • the probability of volatilization or loss of (Mo) may be reduced.
  • the metal oxide is represented by the following Chemical Formula 1-1
  • the activity in the ammoxidation reaction of propylene can be higher:
  • a to e, and x are each an atom or fraction of an atomic group, a is 0.1 to 5, specifically 0.1 to 2.0, b is 0.1 to 5, specifically 0.5 to 3.0, c is 0.01 to 10, specifically 1 to 10, d is 0.01 to 10, specifically 1 to 10, e is 0.01 to 2, specifically 0.01 to 1.0, and x is 24-48, specifically It may be 28 to 45 days.
  • the catalyst of one embodiment may include the metal oxide and the silica carrier in a weight ratio of 15:85 to 35:65, specifically 20:80 to 35:65 (metal oxide:silica carrier).
  • the catalyst of one embodiment may have high selectivity of acrylonitrile with high activity.
  • the pore diameter of the silica carrier may be 4 nm to 40 nm.
  • the diameter is 4 nm or more, 4.2 nm or more, 4.4 nm or more, 4.6 nm or more, 4.8 nm or more, or 5 nm or more, and 40 nm or less, 35 nm or less, 30 nm or less, 25 nm or less, or 20 nm
  • the catalyst exhibiting the above-described pore characteristics and ammonia adsorption amount can be implemented.
  • the D50 particle diameter of the silica carrier may be in the range of 50 ⁇ m to 150 ⁇ m.
  • the silica carrier has a lower limit of 50 ⁇ m or more, 51 ⁇ m or more, 53 ⁇ m or more, or 55 ⁇ m or more of the D50 particle size, and an upper limit of 150 ⁇ m or less, 130 ⁇ m or less, 110 ⁇ m or less, or 90 ⁇ m or less. can do.
  • the catalyst of one embodiment may include a silica carrier including a second pore; an inner coating layer continuously coating the wall surfaces of the second pores and including the metal oxide represented by Chemical Formula 1; and a first pore located inside the second pore and occupying an empty space excluding the inner coating layer.
  • the diameter of the second pores may be 4 nm to 40 nm, and the first pores may be determined according to the amount of the metal oxide supported in the second pores.
  • the inner coating layer as described above, a coating layer comprising molybdenum (Mo) oxide; and one or more coating layers positioned on the coating layer including the molybdenum (Mo) oxide and including a dissimilar metal.
  • Mo molybdenum
  • acrylonitrile can be obtained in high yield without additional supply of catalyst during the ammoxidation process of propylene in the fluidized bed reactor.
  • the catalyst of one embodiment may have an egg-shell structure.
  • the silica carrier a non-porous core portion; and a porous shell portion located on the surface of the non-porous core and including second pores having a diameter of 2 to 30 nm.
  • the porous shell includes a concave portion and a convex portion of the surface, and the concave portion is formed by opening the second pores to the surface of the porous shell.
  • the catalyst of one embodiment may include a coating layer that continuously coats the concave and convex portions of the porous shell and includes a metal oxide represented by Chemical Formula 1; and a first pore occupying an empty space excluding the coating layer in the main portion of the silica carrier.
  • the lower limit of the D50 particle size is 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, or 45 ⁇ m or more
  • the upper limit is 200 ⁇ m or less, 190 ⁇ m or less, 180 ⁇ m or less, 170 ⁇ m or less, 160 It can be made into micrometer or less, or 150 micrometers or less.
  • chemisorption on the catalyst surface tends to increase with increasing temperature, although the rate of adsorption is slower than that of physisorption.
  • ammonia (NH 3 -TPD), which measures the degree of acid site strength of the catalyst by the degree of desorption (TPD: Temperature Programmed Desorption) of ammonia (NH 3 ), is widely known.
  • the pretreatment of the catalyst is, for example, by filling a catalyst in an apparatus capable of measuring ammonia temperature elevation desorption method, and then using helium gas (50 cc/min) to increase the temperature from room temperature to 10 ° C./min. After raising the temperature to 400 °C, it can be carried out by maintaining the temperature at 400 °C for 1 hour.
  • the adsorption amount of NH 3 remaining on the catalyst surface can be obtained.
  • the catalyst of one embodiment may have an adsorption amount of ammonia measured by the above method of 0.05 mmol/g or more.
  • the catalyst having excellent ammonia adsorption capacity contributes to increasing the conversion rate of propylene and the selectivity of acrylonitrile during ammoxidation of propylene, and ultimately improving the yield of acrylonitrile.
  • the adsorption amount of ammonia is 0.5 mmol/g or more, 0.53 mmol/g or more, 0.55 mmol/g or more, or 0.57 mmol/g or more, and 5 mmol/g or less, 4 mmol/g or less, 3 It may be less than or equal to mmol/g, less than or equal to 2 mmol/g, or less than or equal to 1.5 mmol/g.
  • the catalyst of one embodiment may have a BET specific surface area of 100 m 2 /g or more while including pores having a diameter of 4 nm or more in a state in which a metal oxide of a specific composition is supported on a silica carrier.
  • a site capable of adsorbing ammonia gas and propylene gas may be significantly increased.
  • the site capable of participating in the ammoxidation reaction of propylene is limited to the outer surface portion (ie, the surface of secondary particles), whereas the catalyst of one embodiment is the ammoxidation of propylene.
  • the surface area that can participate in the reaction extends not only to the outer surface portion (ie, the surface of the catalyst), but also to its inner surface (pores).
  • the catalyst of one embodiment has a diameter of 4 nm or more, 4.1 nm or more, 4.2 nm or more, 4.3 nm or more, 4.4 nm or more, or 4.5 nm or more, and 40 nm or less, 35 nm or less, 30 nm or less, 25 It may include pores that are less than or equal to nm, less than or equal to 20 nm, or less than or equal to 15 nm.
  • the catalyst of one embodiment has a BET specific surface area of 100 m 2 /g or more, 120 m 2 /g or more, 140 m 2 /g or more, 160 m 2 /g or more, 170 m 2 /g or more, or 175 m 2 /g or less, 300 m 2 /g or less, 270 m 2 /g or less, 250 m 2 /g or less, 230 m 2 /g or less, or 227 m 2 /g or less.
  • molybdenum (Mo) oxide is first supported on a silica carrier, and then a heterogeneous metal oxide is supported later, thereby providing a method for preparing the catalyst of the above-described embodiment.
  • the metal oxide supported on the silica carrier may include a coating layer including molybdenum (Mo) oxide; and one or more coating layers positioned on the coating layer including the molybdenum (Mo) oxide and including a dissimilar metal; may include:
  • A is at least one of Ni, Mn, and Co;
  • B is one or more elements of Zn, Mg, Ca, and Ba;
  • C is one or more of Li, Na, K, Rb, and Cs,
  • D is one or more of Cr, W, B, Al, Ca, and V,
  • a to f and x are each a fraction of an atom or group, a is 0.1 to 5, b is 0.1 to 5, c is 0.01 to 10, d is 0.01 to 10, e is 0.01 to 2, , f is 0 to 10, and x is 24 to 48.
  • the step of supporting the oxide of the heterogeneous metal on the first catalyst according to the number of times the metal oxide is supported may be performed as follows.
  • bismuth (Bi) oxide on the first catalyst iron (Fe) oxide
  • element A one or more of Ni, Mn, and Co
  • element B one or more of Zn, Mg, Ca, and Ba
  • element C Li, Na, K, Rb) , and sequentially supporting an oxide of one or more elements of Cs).
  • the supporting of the metal oxide is a series of processes of mixing, drying, and calcining the silica carrier or the catalyst of the previous step with the precursor solution as one set, and two or more sets depending on the desired number of supporting can be composed of
  • the silica carrier when supported twice, is mixed with a molybdenum (Mo) precursor solution, dried, and calcined to prepare a first catalyst, and then the first catalyst is mixed with bismuth (Bi), iron (Fe), element A, A final catalyst can be obtained by mixing, drying, and calcining with a mixed solution of the element B and element C precursors.
  • Mo molybdenum
  • Bi bismuth
  • Fe iron
  • element A final catalyst can be obtained by mixing, drying, and calcining with a mixed solution of the element B and element C precursors.
  • a silica carrier When supported three times, a silica carrier is mixed with a molybdenum (Mo) precursor solution, dried, and calcined to prepare a first catalyst, and the first catalyst is mixed with a bismuth (Bi) and iron (Fe) precursor mixed solution and dried , and calcining to prepare a second catalyst, and then mixing, drying, and calcining the second catalyst with a mixed solution of element A and element B precursors to obtain a final catalyst.
  • Mo molybdenum
  • Fe iron
  • the silica carrier is mixed with a molybdenum (Mo) precursor solution, dried, and calcined to prepare a first catalyst, and the first catalyst is mixed with a bismuth (Bi) precursor solution, dried, and calcined to obtain a second catalyst.
  • the second catalyst is mixed with an iron (Fe) precursor solution, dried, and calcined to prepare a third catalyst, and then the third catalyst is mixed with a mixed solution of element A and element B precursor;
  • the final catalyst can be obtained by drying and calcining.
  • the step of preparing the molybdenum (Mo) precursor solution may be a step of dissolving the Mo precursor in water at 50°C to 80°C.
  • the temperature range is sufficient as long as the temperature is sufficient to dissolve the Mo precursor.
  • molybdenum precursor for example, a nitrate of molybdenum, an ammonium salt, or an organic complex may be used.
  • a water-soluble chelating agent including citric acid, oxalic acid, tartaric acid, hydrogen peroxide, or a combination thereof may be added.
  • the additive functions as a strength regulator in the catalyst manufacturing process using the sol-gel method, but in one embodiment serves to make the aqueous solution of the molybdenum (Mo) precursor transparent.
  • the weight ratio of the molybdenum precursor and the additive may satisfy 1:0.1 to 1:1, specifically 1:0.2 to 1:0.7, and the solubility of the molybdenum precursor increases within this range. can, but is not limited thereto.
  • a precursor solution other than the molybdenum (Mo) precursor solution may vary depending on the desired number of loadings.
  • nitrates, acetates, chlorides, hydroxides, etc. of each element may be used as precursors of the elements.
  • the manufacturing process of the molybdenum (Mo) precursor solution and other precursor solutions is independent, and the manufacturing order is not limited.
  • the compounding ratio of the precursors may be controlled so that the molar ratio of the metal satisfies the stoichiometric molar ratio of Chemical Formula 1, specifically, Chemical Formula 1-1.
  • the mixture may be mixed at 20 ° C. to 30 ° C. for 1 hour to 3 hours, and then further mixed at 70 ° C. to 90 ° C. for 1 hour to 3 hours.
  • the precursor solution may be continuously distributed in the pores of the silica carrier or the catalyst in the previous step.
  • the drying of the silica carrier or the mixture of the catalyst and the precursor solution in the previous step may be performed at 90° C. to 130° C. for 10 hours to 15 hours.
  • the solvent ie, water
  • the sintering process after the drying process may be performed at 180° C. to 300° C. for 1 hour to 6 hours at the time of firing the molybdenum (Mo) precursor, and at 500° C. to 700° C. when firing the metal other than molybdenum (Mo). It can be carried out for 4 to 8 hours.
  • the temperature of the molybdenum (Mo) precursor is too high, exceeding 300 °C, all of the precursors may be converted to the MoO 3 phase, so the temperature during the firing of the molybdenum (Mo) precursor is set to be relatively low, and the subsequent dissimilar metal precursor It is preferable to increase the temperature during firing.
  • the precursor mixture is oxidized in a state in which the precursor mixture is continuously distributed in the pores of the silica carrier or the catalyst of the previous step, and can be converted into the metal oxide of Chemical Formula 1 (more specifically, Chemical Formula 1-1). .
  • the structure of the catalyst thus formed is as described above.
  • a method for ammoxidation of propylene comprising the step of reacting propylene and ammonia in the presence of the catalyst of the embodiment described above.
  • the catalyst of one embodiment has high activity and high temperature stability, and may be used for ammoxidation of propylene to increase propylene conversion, acrylonitrile selectivity, and yield.
  • Mo precursor solution 30.3 g of a Mo precursor (Ammonium Molybdate) was dissolved in 99 g of water at 80 °C, and 15.13 g of citric acid was added thereto to prepare a Mo precursor solution.
  • a Mo precursor Ammonium Molybdate
  • Silica (SiO 2 ) particles having a particle size of 50 ⁇ m, a pore diameter of 5.5 nm, a pore volume of 1.2 cm 3 /g according to a nitrogen adsorption method, and a BET specific surface area of 688 m 2 /g were used as a carrier.
  • the silica carrier prepared in (2) on which the Mo precursor solution was supported was recovered, dried in an oven at 110 ° C. for 12 hours, and then heat-treated for 6 hours while maintaining a temperature of 200 ° C. in an air atmosphere tubular kiln. , a catalyst in which Mo oxide is supported on a silica carrier (hereinafter, referred to as "Mo/SiO 2 catalyst" in some cases) was obtained.
  • the Bi, Fe, Ni, Zn and K precursor mixed solution of (4) was added, and stirred at room temperature and 80 ° C. for 1 hour, respectively, respectively, the Mo / SiO 2 catalyst
  • the Bi, Fe, Ni, Zn and K precursor mixed solution was sufficiently supported in the pores.
  • the internal pressure of the reactor filled with the quartz fiber and the catalyst was maintained at normal pressure (1 atm), and while the internal temperature of the reactor was raised at a temperature increase rate of 5 ° C./min, nitrogen and ammonia gas were flowed as a pretreatment process. Accordingly, the internal temperature of the reactor was made to reach 400° C., which is the temperature at which the ammoxidation reaction is possible, so that sufficient pretreatment was performed.
  • a catalyst of Example 2 ((Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 catalyst) was prepared in the same manner as in Example 1, except that the silica carrier was changed.
  • Example 2 a silica carrier having a larger pore diameter and a smaller surface area than in Example 1 was used. More specifically, silica (SiO 2 ) particles having a particle size of 60 ⁇ m, a pore diameter of 6.0 nm, a pore volume of 0.98 cm 3 /g according to a nitrogen adsorption method, and a BET specific surface area of 645 m 2 /g are supported. was used as
  • Example 3 ((Mo)/(Bi, Fe, Ni, Zn and K)/SiO 2 catalyst) was prepared.
  • Example 3 the heat treatment temperature was increased by about 30 °C than in Example 1, and heat treatment was performed at about 610 °C.
  • Example 4 Except that the number of loadings was changed to 3 times (1 time - Mo, 2 times - Bi and Fe, 3 times - Ni, Zn, and K). A catalyst of Example 4 was prepared in the same manner as in Example 1.
  • Bi precursor Bismuth nitrate
  • Fe precursor Iron nitrate
  • Ni precursor Nickel nitrate
  • Zn precursor Zinc nitrate
  • K precursor Lithium nitrate
  • the Bi and Fe precursor mixed solution was added to the Mo/SiO 2 catalyst prepared in the same manner as in Example 1, and the Bi and Fe precursor solution was supported by sequentially stirring at room temperature and 80° C. for 1 hour, respectively, 110 Dry in an oven at °C for 12 hours, heat treatment for 6 hours while maintaining a temperature of 580 °C in a tubular kiln in an air atmosphere, a catalyst in which Mo oxide and oxides of Bi and Fe are sequentially supported on a silica carrier (hereinafter Thus, "(Mo)/(Bi, Fe)/SiO 2 catalyst”) was obtained.
  • the (Mo)/(Bi and Fe)/SiO 2 catalyst was added with the Ni, Zn, and K precursor mixed solution, and the Ni, Zn, and After supporting the K precursor solution, it was dried in an oven at 110 ° C. for 12 hours, and heat-treated for 6 hours while maintaining a temperature of 580 ° C. in an air atmosphere tubular kiln, Mo oxide on a silica carrier; oxides of Bi and Fe; And Ni, Zn, and the catalyst of Example 4 in which oxides of K are sequentially supported (hereinafter, in some cases, "(Mo)/(Bi, Fe)/(Ni, Zn, K)/SiO 2 catalyst" ) was obtained.
  • a catalyst of Example 5 was prepared in the same manner as in Example 1, except that the number of loadings was changed to 4 times (1 time-Mo, 2 times-Bi, 3 times-Fe and Ni, 4 times-Zn and K) did
  • a Bi precursor solution was prepared by dissolving 5.2 g of a Bi precursor (Bismuth nitrate) in 60 g of water at room temperature, adding 15 g of nitric acid, and stirring for 30 minutes or more to obtain a transparent solution.
  • the Bi precursor solution was added to the Mo/SiO 2 catalyst prepared in the same manner as in Example 1, and the Bi precursor solution was supported by stirring at room temperature and 80° C. for 1 hour, respectively, and then in an oven at 110° C. for 12 hours.
  • the catalyst hereinafter, in some cases "(Mo)/( Bi)/SiO 2 catalyst”.
  • the Fe and Ni precursor mixed solution was added to the (Mo)/(Bi)/SiO 2 catalyst, and the Fe and Ni precursor solutions were supported by sequentially stirring at room temperature and 80° C. for 1 hour, respectively, Drying in an oven at 110 ° C. for 12 hours, heat treatment for 6 hours while maintaining a temperature of 580 ° C. in an air atmosphere tubular kiln, Mo oxide on a silica carrier; Bi oxide; and a catalyst on which oxides of Fe and Ni were sequentially supported (hereinafter, in some cases, referred to as “(Mo)/(Bi)/(Fe, Ni)/SiO 2 catalyst”) was obtained.
  • the (Mo)/(Bi)/(Fe, Ni)/SiO 2 catalyst is supported with the Zn and K precursor mixed solution, and then dried and heat-treated to form Mo oxide on the silica carrier; Bi oxide; oxides of Fe and Ni; And the catalyst of Example 5 in which oxides of Zn and K are sequentially supported (hereinafter, in some cases, "(Mo)/(Bi)/(Fe, Ni)/(Zn, K)/SiO 2 catalyst" ) was obtained.
  • a catalyst of Example 6 was prepared in the same manner as in Example 1, except that the amount of Bi precursor, Fe precursor, and Ni precursor was changed. Specifically, 8.7 g of Bi precursor (Bismuth nitrate), 8.7 g of Fe precursor (Iron nitrate), and 13.795 g of Ni precursor (Nickel nitrate) were used.
  • a catalyst of Example 7 was prepared in the same manner as in Example 1, except that the amount of Bi precursor, Fe precursor, and Ni precursor was changed.
  • Bi precursor Bismuth nitrate
  • Fe precursor Iron nitrate
  • Ni precursor Nickel nitrate
  • Mo precursor Ammonium Molybdate
  • Oxalic acid 1.1 g
  • Bi precursor Bismuth nitrate 1.73 g
  • Fe precursor Iron nitrate 2.01 g
  • Ni precursor Nickel nitrate 0.6533 g
  • Zn precursor Zinc nitrate
  • K precursor Potassium nitrate 0.2148 g was dissolved to prepare a mixed solution of Bi, Fe, Ni, Zn, and K precursors.
  • the catalyst of Comparative Example 1 was used instead of the catalyst of Example 1, and the ammoxidation process of propylene was performed in the same manner as in Example 1.
  • a catalyst of Comparative Example 2 was prepared in the same manner as in Comparative Example 1, except that the amount of silica sol, Bi precursor, Fe precursor, Zn precursor, and K precursor was changed.
  • silica sol (LUDOX AS 40, solid content: 40 %, Grace) 34 g, Bi precursor (Bismuth nitrate) 2.1 g, Fe precursor (Iron nitrate) 3.7 g, Zn precursor (Zinc nitrate) 0.63 g, K precursor (Potassium nitrate) 0.36 g was used.
  • Comparative Example 3 in the same manner as in Example 1 except that the amount of the Mo precursor was changed and a Bi, Ce, Fe, Mg, and Rb precursor mixed solution was used instead of the Bi, Fe, Ni, Zn and K precursor mixed solution. of the catalyst was prepared.
  • Mo precursor solution 18.241 g of the Mo precursor (Molybdenum nitrate) was used.
  • Bi precursor Bismuth nitrate
  • Ce precursor Cerium nitrate
  • Fe precursor Iron nitrate
  • Mg precursor Magnetic nitrate
  • Rb precursor Rubidum nitrate
  • a catalyst of Comparative Example 4 was prepared in the same manner as in Example 1.
  • Mo precursor solution 18.241 g of the Mo precursor (Molybdenum nitrate) was used.
  • Bi precursor Bismuth nitrate 5.66 g, Fe precursor (Iron nitrate) 8.8 g, Ni precursor (Nickel nitrate) 24.01 g, Zn precursor (Zinc nitrate) 4.95 g, Mn precursor (manganese nitrate) 2.4 g, La precursor (Lantanum nitrate) 1.44 g, Pr precursor (Praseodymium nitrate), K precursor (Potassium nitrate) 0.674 g, and Cs precursor (Cesium) nitrate) 0.325 g was used.
  • a catalyst of Comparative Example 5 was prepared in the same manner as in Example 1, except that the amount of the Mo precursor was changed and a Bi precursor solution was used instead of the Bi, Fe, Ni, Zn, and K precursor mixed solution.
  • Mo precursor solution 3 g of the Mo precursor (Molybdenum nitrate) was used.
  • Bi precursor solution 16 g of Bi precursor (Bismuth nitrate) was used.
  • BET specific surface area BET specific surface area for each catalyst of Examples and Comparative Examples was measured using a BET specific surface area measuring instrument (manufacturer: BEL Japan, instrument name: BELSORP_Mini).
  • the adsorption amount up to the relative pressure (P/P0) 1 was measured under the liquid nitrogen temperature (77 K), and the desorption amount up to the relative pressure (P/P0) 0.03 was also measured. These measurements were applied to the BJH equation to determine the pore volume, diameter, and surface area of the catalyst.
  • Ammonia adsorption amount for each catalyst of Examples and Comparative Examples was measured using a device capable of measuring by ammonia temperature elevation desorption method (NH 3 -TPD) (manufacturer: Micromeritics, device name: Autochem II 2920). .
  • NH 3 -TPD ammonia temperature elevation desorption method
  • the U-shaped quartz tube in the device is filled with about 0.1 g of catalyst, the U-shaped reactor is connected to the device, and then the temperature is raised from room temperature at a temperature increase rate of 10° C./min using helium gas (50 cc/min). After raising the temperature to about 400 °C, the pretreatment was performed while maintaining the temperature at 400 °C for about 1 hour. This is to remove organic matter remaining in the catalyst.
  • NH 3 is adsorbed for 1 hour at about 100° C. with 10% NH 3 /He (50 cc/min). While flowing He at the same temperature, the physically adsorbed NH 3 was removed, and the desorbed NH 3 was measured while the temperature was raised to 800 °C.
  • products such as ethylene (ehthlene), hydrogen cyanide, acetaldehyde, acetonitrile, acroleing, and acrylonitrile were analyzed by FID, and TCD was analyzed.
  • gas products such as NH 3 , O 2 , CO and CO 2 and unreacted propylene, the number of moles of propylene reacted in Examples and Comparative Examples and the number of moles of ammoxidation products were obtained.
  • the catalysts of Examples 1 to 7 prepared by the impregnation method adsorbed a large amount of ammonia compared to the catalysts of Comparative Examples 1 to 3 prepared by the sol-gel method. , it can be seen that it contributed to increasing the conversion rate of propylene and the yield of acrylonitrile according to the ammoxidation reaction of propylene.
  • the catalysts of Examples 1 to 7 are prepared in a way that the number of times of supporting the metal oxide is controlled to two or more even in the impregnation method, so that the molybdenum (Mo) oxide is supported first, and the metal oxide of a different type is It can be seen that the elution of molybdenum (Mo) is suppressed during the ammoxidation reaction of propylene as it has a supported structure later.
  • Comparative Example 3 including Ce and the like as the active metal; And in the case of Comparative Example 4 containing La, Pr, and the like, the conversion rate of propylene and the yield of acrylonitrile are reduced under the influence of the active metal.
  • the catalyst stability is increased by controlling the number of times of supporting the metal oxide, the overall composition of the metal oxide, etc. within the scope of the above-described embodiment, and the conversion rate of propylene, the selectivity of acrylonitrile and the yield are desired. range can be adjusted.

Abstract

본 발명은 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법에 관한 것이다. 구체적으로, 본 발명의 일 구현예에서는, 몰리브덴(Mo) 산화물이 먼저 담지되고, 비스무스(Bi)를 비롯한 이종(異種)의 금속 산화물이 나중에 담지된 구조의 프로필렌의 암모산화용 촉매를 제공한다.

Description

프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 7월 29일자 한국 특허 출원 제10-2020-0094652호 및 2021년 7월 29일자 한국 특허 출원 제10-2021-0099864호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법에 관한 것이다.
아크릴로니트릴(Acrylonitrile, AN)은, ABS 수지의 원료 중 하나로 사용될 뿐만 아니라, 다양한 화학 제품으로의 응용이 가능하여, 전세계적으로 수요 및 생산량이 증가하고 있다.
이러한 아크릴로니트릴은 프로필렌의 암모산화 반응을 통해 제조될 수 있다. 프로필렌의 암모산화 반응은 암모니아와 프로필렌의 환원 반응 및 산소에 의한 재산화 반응을 포함하는데, 이러한 반응 중 발생하는 열을 제어하기 위해 유동층 반응기가 이용되는 것이 일반적이다.
프로필렌의 암모산화용 촉매로는, Mo(몰리브덴)-Bi(비스무스) 산화물 촉매가 제시된 이래, 다양한 산화 상태를 가지는 금속이 첨가된 촉매들이 제시되고 있다. 다만, 촉매 조성의 다양화에도 불구하고, 그 구조 및 물성에 대한 연구가 부족하여, 아크릴로니트릴의 수율을 높이는 데에는 한계가 있었다.
구체적으로, 프로필렌의 암모산화용 촉매의 제조 방법으로 졸겔법이 널리 알려져 있는데, 이는 금속 전구체 용액과 실리카졸을 공침시키고, 그 공침 생성물을 분무 건조한 뒤 소성하는 방법에 해당된다.
이러한 졸겔법에 따르면, 금속 산화물 입자와 실리카 입자가 집합된 2차 입자 구조의 촉매가 제조되는데, 2차 입자를 구성하는 1차 입자들의 결합력이 약하여, 유동성 반응기 내에서 마모되거나 1차 입자로 쪼개져 촉매 활성을 잃기 쉽다. 더욱이, 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 2차 입자의 표면)로 제한되고, 작은 표면적을 제공하므로, 프로필렌의 암모산화 반응 중 촉매 표면으로부터 탈착되는 암모니아의 양이 많다. 이뿐만 아니라, 프로필렌의 암모산화 반응이 진행되는 고온(약 400~600 ℃)에서 금속 산화물 성분(특히, Mo)이 용출 및 휘발되기 쉽고, 이에 따라 촉매 성능이 저하되기 쉽다.
이에, 졸겔법으로 제조된 촉매를 이용할 경우, 프로필렌의 암모산화 반응 중 지속적으로 촉매를 추가(make-up)해주어야 하고, 추가하더라도 아크릴로니트릴의 수율을 높이는 데에는 한계가 있다.
본 발명은, 프로필렌의 암모산화 반응 중 촉매로부터 용출 및 휘발되는 금속 산화물 성분(특히, Mo)을 최소화한 프로필렌의 암모산화용 촉매를 제공하고, 이러한 촉매를 사용하여 더 높은 수율로 아크릴로니트릴을 제조하기 위한 것이다.
구체적으로, 본 발명의 일 구현예에서는, 몰리브덴(Mo) 산화물이 먼저 담지되고, 비스무스(Bi)를 비롯한 이종(異種)의 금속 산화물이 나중에 담지된 구조의 프로필렌의 암모산화용 촉매 및 이의 제조방법을 제공한다.
본 발명의 일 구현예에 따른 프로필렌의 암모산화용 촉매는, 실리카 담체; 및 상기 실리카 담체에 담지된 금속 산화물을 포함하고,
상기 금속 산화물은, 전체 조성이 하기 화학식 1을 만족하되,
몰리브덴(Mo) 산화물을 포함하는 코팅층; 및 상기 몰리브덴(Mo) 산화물을 포함하는 코팅층 상에 위치하고, 이종(異種) 금속을 포함하는 1층 이상의 코팅층;을 포함하는 것일 수 있다:
[화학식 1]
Mo12BiaFebAcBdCeDFOx
상기 화학식 1에서,
A는 Ni, Mn, 및 Co중 하나 이상의 원소이고,
B는 Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
상기 a 내지 f, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 10이고, e는 0.01 내지 2이며, f는 0 내지 10이고, x는 24 내지 48 이다.
상기 프로필렌의 암모산화용 촉매는, 일례로 하기의 단계를 포함하는 제조방법에 의하여 제조될 수 있다:
실리카 담체에 몰리브덴(Mo) 산화물을 담지시켜, 제1 촉매를 제조하는 단계; 및
상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시켜, 금속 산화물이 실리카 담체에 담지된 촉매를 수득하는 단계.
상기 일 구현예의 촉매는, 몰리브덴(Mo) 산화물이 먼저 담지되고, 이종(異種)의 금속 산화물이 나중에 담지된 구조에 의해, 프로필렌의 암모산화 반응 중 몰리브덴(Mo)의 용출이 억제되고 촉매 성능이 유지될 수 있다.
따라서, 상기 일 구현예의 촉매를 이용할 경우, 유동층 반응기 내에서 진행되는 프로필렌의 암모산화 공정 중 촉매의 추가 공급 없이도, 높은 수율로 아크릴로니트릴을 대량 생산할 수 있다.
도 1은, 졸겔법을 이용하여 제조된 촉매를 개략적으로 도시한 것이다.
도 2는, 상기 일 구현예에 따른 촉매를 개략적으로 도시한 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 이하에서 사용될 제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하에서 “입경 Dv”은, 입경에 따른 부피 누적 분포의 v% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 부피 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 부피 누적 분포의 90% 지점에서의 입경, D10은 입경에 따른 부피 누적 분포의 10% 지점에서의 입경이다.
또한, "기공 직경"은, 기공의 중심을 지나가는 직선의 길이를 의미할 수 있다. 또한, 상기 실리카 담체는 다수의 기공을 포함할 수 있고, 이때 다수의 기공 직경을 산술 평균하여 평균 직경을 구할 수 있다. 또는, 액체질소 온도 하에서의 질소 가스의 탈착 등온선으로부터 BJH(Barrett-Joyner-Halenda) 방법 의해 기공 직경 및 평균 기공 직경을 구할 수 있다.
한편, 촉매 반응의 초기에는 촉매 표면에 반응물들이 화학적으로 흡착되는 과정이 필요하며, 촉매의 활성점과 표면적은 흡착 능력 및 이에 따른 화학 반응과 직접적인 연관성이 있다. 또한, 촉매 표면에의 화학적 흡착은, 흡착 속도는 물리적 흡착 (Physisorption) 보다 느리지만, 온도가 증가함에 따라 증가하는 경향이 있다.
이와 관련하여, 촉매의 산점 세기에 대한 정도를 암모니아(NH3)의 탈착 정도(TPD: Temperature Programmed Desorption)에 의해 측정하는, 암모니아 승온 탈착법(NH3-TPD)이 널리 알려져 있다. 본 발명에서는 이러한 암모니아 승온 탈착법(NH3-TPD)을 이용하여 촉매 및 담체의 암모니아(NH3) 흡착량을 측정할 수 있다.
이하, 도면을 참조하여 상기 일 구현예의 프로필렌의 암모산화용 촉매를 상세히 설명하도록 한다.
프로필렌의 암모산화용 촉매
본 발명의 일 구현예에서는, 몰리브덴(Mo) 산화물이 먼저 담지되고, 비스무스(Bi)를 비롯한 이종(異種)의 금속 산화물이 나중에 담지된 구조의 프로필렌의 암모산화용 촉매를 제공한다.
구체적으로, 상기 일 구현예의 촉매는, 전체 조성이 하기 화학식 1을 만족하되, 몰리브덴(Mo)이 하부(즉, 실리카 담체 측)에 분포하고, 이종(異種) 금속이 상기 하부 상에 분포하는 금속 산화물;이 실리카 담체에 담지된 것이다:
[화학식 1]
Mo12BiaFebAcBdCeDfOx
상기 화학식 1에서,
A는 Ni, Mn, 및 Co중 하나 이상의 원소이고,
B는 Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
상기 a 내지 f, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 10이고, e는 0.01 내지 2이며, f는 0 내지 10이고, x는 24 내지 48 이다.
일반적으로 알려진 프로필렌의 암모산화용 촉매는, 졸겔법으로 제조되어, 금속 산화물 나노입자와 실리카 나노입자가 집합된 2차 입자 구조로 제공된다(도 1).
이는, 내부 및 외부에 금속 산화물 입자가 골고루 분포된 대신, 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 2차 입자의 표면)로 제한되고, 작은 표면적을 제공하므로, 프로필렌의 암모산화 반응 중 촉매 표면으로부터 탈착되는 암모니아의 양이 많다.
그에 반면, 함침법으로 제조되어, 금속 산화물이 실리카 담체에 담지된 구조로 제공될 수 있다.
이러한 함침법으로 제조된 촉매는, 제조 후 후처리로써 분급 공정을 진행하지 않더라도, 졸겔법에 의해 동일한 조성으로 제조된 촉매보다 미분 함량이 적고 내구성은 뛰어날 수 있다.
다만, 모든 금속 전구체를 한꺼번에 담지할 경우, 몰리브덴(Mo)이 실리카 담체의 기공 내부까지 충분히 담지되지 못하고, MoO3 상이 증가하여, 프로필렌의 암모산화 반응 중 몰리브덴(Mo)의 휘발이나 소실 확률이 높다.
특히, 상기 일 구현예의 촉매는, 프로필렌의 암모산화 반응 중 몰리브덴(Mo)의 휘발이나 소실 확률을 낮추기 위해, 실리카 담체에 몰리브덴(Mo) 산화물을 먼저 담지한 뒤, 비스무스(Bi)를 비롯한 이종(異種) 금속 산화물을 순차적으로 담지시킨 것이다(도 2).
여기서, 금속 산화물의 순차적인 담지를 위해, 몰리브덴(Mo) 금속 전구체 용액과의 혼합, 건조, 및 소성을 수행한 뒤, 비스무스(Bi)를 비롯한 이종(異種) 금속 전구체와의 혼합, 건조, 및 소성을 수행할 수 있다.
예를 들어, 실리카 담체와 몰리브덴(Mo) 전구체 용액을 혼합한 뒤, 건조 공정을 통해 용매(즉, 물)를 제거하면, 실리카 담체의 기공벽에 몰리브덴(Mo) 전구체가 잔존하게 되고, 소성 공정에서 몰리브덴(Mo) 전구체가 산화되면서 실리카 담체 기공벽을 연속적으로 코팅하는 몰리브덴(Mo) 산화물 막(코팅층)을 형성할 수 있다.
이후, 상기 몰리브덴(Mo) 산화물 코팅층을 형성하는 것과 동일한 방식으로, 비스무스(Bi) 및 이종(異種) 금속 산화물 코팅층을 형성할 수 있다.
상기 일 구현예의 촉매는, 몰리브덴(Mo) 산화물이 먼저 담지되고 비스무스(Bi)를 비롯한 이종(異種)의 금속 산화물이 나중에 담지된 구조에 의해, 프로필렌의 암모산화 반응 중 몰리브덴(Mo)의 용출이 억제되고 촉매 성능이 유지될 수 있다.
따라서, 상기 일 구현예의 촉매를 이용할 경우, 유동층 반응기 내에서 진행되는 프로필렌의 암모산화 공정 중 촉매의 추가 공급 없이도, 높은 수율로 아크릴로니트릴을 대량 생산할 수 있다.
또한, 상기 일 구현예의 촉매는, 암모산화 반응의 활성을 높이는 것으로 알려진 Mo 및 Bi뿐만 아니라, 프로필렌의 암모산화 반응에 대한 적합한 수준의 활성점을 형성하는 금속을 더 포함하도록 금속 산화물 조성을 제어함으로써 촉매 활성을 더욱 높일 수 있다.
이하, 상기 일 구현예의 촉매를 보다 상세히 설명한다.
금속 산화물의 구조
전술한 바와 같이, 상기 일 구현예의 촉매는, 금속 산화물을 2회 이상 분할 담지하여 제조됨에 따라, 몰리브덴(Mo)이 하부에 분포하고, 비스무스(Bi) 및 이종(異種) 금속은 상부에 분포하는 금속 산화물;이 실리카 담체에 담지된 구조를 가질 수 있다.
구체적으로, 상기 금속 산화물은, 몰리브덴(Mo) 산화물을 포함하는 코팅층; 및 상기 몰리브덴(Mo) 산화물을 포함하는 코팅층 상에 위치하고, 이종(異種) 금속을 포함하는 1층 이상의 코팅층;을 포함할 수 있다.
예를 들어, 2회로 분할하여 담지된 금속 산화물은, 몰리브덴(Mo) 산화물을 포함하는 제1 코팅층; 및 상기 제1 코팅층 상에 위치하고, 비스무스(Bi), 철(Fe), 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 포함하는 제2 코팅층;을 포함할 수 있다.
이와 달리, 3회로 분할하여 담지된 금속 산화물은, 몰리브덴(Mo) 산화물을 포함하는 제1 코팅층; 및 상기 제1 코팅층 상에 위치하고, 비스무스(Bi) 및 철(Fe)의 산화물을 포함하는 제2 코팅층; 및 상기 제2 코팅층 상에 위치하고, 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 포함하는 제3 코팅층;을 포함할 수 있다.
또한, 4회로 분할하여 담지된 금속 산화물은, 몰리브덴(Mo) 산화물을 포함하는 제1 코팅층; 및 상기 제1 코팅층 상에 위치하고, 비스무스(Bi) 산화물을 포함하는 제2 코팅층; 상기 제2 코팅층 상에 위치하고, 철(Fe) 산화물을 포함하는 제3 코팅층; 및 상기 제3 코팅층 상에 위치하고, 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 포함하는 제4 코팅층;을 포함할 수 있다.
단, 어떠한 구조이든, 코팅층들의 전체 조성은 상기 화학식 1을 만족하며, 인접하는 코팅층 상하부의 금속들은 서로 화학적으로 결합될 수 있다.
예컨대, 제1 코팅층의 몰리브덴(Mo)은 MoO3 형태로도 존재 가능하지만, 이와 인접하는 제2 코팅층의 비스무스(Bi)와도 결합하여 Mo-Bi-O 결합을 이뤄, 프로필렌의 암모산화 반응 중 몰리브덴(Mo)의 휘발이나 소실 확률이 낮아질 수 있다.
금속 산화물의 조성
한편, 상기 일 구현예의 촉매와 동일한 구조를 가지더라도, 상기 금속 산화물을 구성하는 성분들의 종류와 함량이 상기 화학식 1을 만족하지 못한다면, 프로필렌의 암모산화에 부족하거나 지나치게 밀도가 높은 촉매의 활성점이 형성될 수 있다.
이에, 상기 금속 산화물을 구성하는 원소의 종류와 함량은 상기 화학식 1을 만족하도록 할 필요가 있다.
특히, 상기 금속 산화물이 하기 화학식 1-1로 표시되는 것일 때, Fe의 몰리브덴의 격자 산소의 이동 속도를 높여 전환율을 높이는 효과, Ni 및 Zn의 몰리브덴과의 복합 산화물 형성으로 프로필렌의 부분 산화 반응 특성을 높이는 효과, 및 K의 몰리브덴을 포함한 복합 산화물의 활성점을 분산시켜 AN 선택도를 높이는 효과의 시너지 효과로, 프로필렌의 암모산화 반응에서의 활성도가 더 높아질 수 있다:
[화학식 1-1]
Mo12BiaFebNicZndKeOx
상기 화학식 1-1에서, a 내지 e, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, 구체적으로 0.1 내지 2.0 이고, b는 0.1 내지 5 이고, 구체적으로 0.5 내지 3.0이고, c는 0.01 내지 10이고, 구체적으로 1 내지 10이고, d는 0.01 내지 10이고, 구체적으로 1 내지 10이고, e는 0.01 내지 2이며, 구체적으로 0.01 내지 1.0 이며, x는 24 내지 48, 구체적으로 28 내지 45일수 있다.
금속 산화물: 담체의 중량비
상기 일 구현예의 촉매는, 상기 금속 산화물 및 상기 실리카 담체를 15:85 내지 35:65, 구체적으로 20:80 내지 35:65의 중량비(금속 산화물:실리카 담체)로 포함할 수 있다.
이 범위 내에서, 상기 일 구현예의 촉매는 높은 활성도와 함께 높은 아크릴로 니트릴의 선택도를 가질 수 있다.
실리카 담체
상기 실리카 담체의 기공 직경은, 4 nm 내지 40 ㎚일 수 있다.
구체적으로, 직경이 4 ㎚이상, 4.2 ㎚이상, 4.4 ㎚이상, 4.6 ㎚이상, 4.8 ㎚이상, 또는 5 ㎚이상이고, 40 ㎚이하, 35 ㎚이하, 30 ㎚이하, 25 ㎚이하, 또는 20 nm 이하인 기공을 포함하는 실리카 담체를 사용할 때, 전술한 기공 특성 및 암모니아 흡착량을 나타내는 촉매가 구현될 수 있다.
상기 실리카 담체의 D50 입경은 50 ㎛ 내지 150 ㎛의 범위 내일 수 있다. 구체적으로, 상기 실리카 담체는 D50 입경의 하한을 50 ㎛ 이상, 51 ㎛ 이상, 53 ㎛ 이상, 또는 55 ㎛ 이상으로 하면서, 상한을 150 ㎛ 이하, 130 ㎛ 이하, 110 ㎛ 이하, 또는 90 ㎛ 이하로 할 수 있다.
촉매의 구조
상기 일 구현예의 촉매는, 제2 기공을 포함하는 실리카 담체; 상기 제2 기공의 벽면을 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 내부 코팅층; 및 상기 제2 기공 내부에 위치하고, 상기 내부 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 구조일 수 있다.
여기서 제2 기공의 직경은 4 nm 내지 40 nm이고, 제1 기공은 상기 제2 기공에 담지된 금속 산화물의 양에 따라 결정될 수 있다.
특히, 내부 코팅층은, 전술한 바와 같이, 몰리브덴(Mo) 산화물을 포함하는 코팅층; 및 상기 몰리브덴(Mo) 산화물을 포함하는 코팅층 상에 위치하고, 이종(異種) 금속을 포함하는 1층 이상의 코팅층;을 포함할 수 있다.
이와 같은 담지 구조 상, 졸겔법으로 제조된 촉매에 대비하여, 미분 함량이 적고, 내구성은 뛰어나며, 몰리브덴(Mo)의 용출 확률은 낮고 활성이 높은 촉매가 될 수 있다.
이에, 상기 일 구현예의 촉매를 이용할 경우, 유동층 반응기 내에서 진행되는 프로필렌의 암모산화 공정 중 촉매의 추가 공급 없이도, 높은 수율로 아크릴로니트릴을 수득할 수 있다.
구체적으로, 상기 일 구현예의 촉매는, 에그-쉘(egg-shell) 구조를 가질 수 있다.
이를 위해, 상기 실리카 담체로는, 비다공성(非多孔性) 코어부; 및 상기 비다공성(非多孔性) 코어의 표면에 위치하고, 직경이 2 내지 30 nm인 제2 기공을 포함하는, 다공성(多孔性) 쉘부;을 포함하는 것을 사용할 수 있다.
구체적으로, 상기 다공성(多孔性) 쉘은 표면의 요부(凹部) 및 철부(凸部)를 포함하고, 상기 요부(凹部)는 상기 제2 기공이 상기 다공성(多孔性) 쉘의 표면으로 열려서 형성된 것일 수 있다.
이에 따라, 상기 일 구현예의 촉매는, 상기 다공성(多孔性) 쉘의 요부 및 철부를 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 코팅층; 및 상기 실리카 담체의 요부에, 상기 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 구조를 가질 수 있다.
상기 일 구현예의 촉매는, D50 입경의 하한을 30 ㎛ 이상, 35 ㎛ 이상, 40 ㎛ 이상, 또는 45 ㎛ 이상으로 하면서, 상한을 200 ㎛ 이하, 190 ㎛ 이하, 180 ㎛ 이하, 170 ㎛ 이하, 160 ㎛ 이하, 또는 150 ㎛ 이하로 할 수 있다.
촉매의 암모니아 흡착량
촉매 반응의 초기에는 촉매 표면에 반응물들이 화학적으로 흡착되는 과정이 필요하며, 촉매의 활성점과 표면적은 흡착 능력 및 이에 따른 화학 반응과 직접적인 연관성이 있다.
또한, 촉매 표면에의 화학적 흡착은, 흡착 속도는 물리적 흡착 (Physisorption) 보다 느리지만, 온도가 증가함에 따라 증가하는 경향이 있다.
이와 관련하여, 촉매의 산점 세기에 대한 정도를 암모니아(NH3)의 탈착 정도(TPD: Temperature Programmed Desorption)에 의해 측정하는, 암모니아 승온 탈착법(NH3-TPD)이 널리 알려져 있다.
예컨대, 촉매를 400 ℃에서 약 1시간 동안 방치하여 전처리한 뒤, 약 100 ℃에서 10 % NH3/He (50 cc/min)으로 1시간 동안 촉매에 NH3를 흡착시키고, 그와 동일한 온도에서 He을 흘려주면서 물리 흡착된 NH3를 제거하고, 온도를 800 ℃까지 승온시키며 탈착되는 NH3를 측정(b)한다. 이때, 상기 촉매의 전처리는, 예를 들어, 암모니아 승온 탈착법 측정이 가능한 기기 내에 촉매를 충진한 다음, 헬륨 가스 (50 cc/min)를 이용하여 상온으로부터 승온 속도 10 ℃/min으로 승온시켜 약 400 ℃까지 온도를 올린 후 400 ℃에서 1시간동안 유지하는 방법으로 진행될 수 있다.
이후, NH3의 최초 흡착량(a)과 탈착량(b)의 차를 구하여, 촉매 표면에 잔존하는 NH3의 흡착량을 구할 수 있다.
상기 일 구현예의 촉매는, 상기 방법으로 측정된 암모니아 흡착량이 0.05 mmol/g 이상일 수 있다. 이처럼 암모니아 흡착량 능력이 우수한 촉매는, 프로필렌의 암모산화 반응 시 프로필렌의 전환율과 아크릴로 니트릴의 선택도를 높이고, 궁극적으로는 아크릴로니트릴의 수율을 개선하는 데 기여한다.
예컨대, 상기 일 구현예의 촉매는, 암모니아 흡착량이 0.5 mmol/g 이상, 0.53 mmol/g 이상, 0.55 mmol/g 이상 또는 0.57 mmol/g 이상이면서, 5 mmol/g 이하, 4 mmol/g 이하, 3 mmol/g 이하, 2 mmol/g 이하, 또는 1.5 mmol/g 이하인 것일 수 있다.
촉매의 기공 직경 및 BET 비표면적
상기 일 구현예의 촉매는, 특정 조성의 금속 산화물이 실리카 담체에 담지된 상태에서, 직경이 4 nm 이상의 기공을 포함하면서, 100 m2/g 이상의 BET 비표면적을 가질 수 있다. 그 결과, 졸겔법으로 제조된 촉매에 대비하여, 암모니아 가스와 프로필렌 기체를 흡착시킬 수 있는 부위(site)가 현저히 증가할 수 있다.
앞서 설명한 바와 같이, 졸겔법으로 제조된 촉매는 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 2차 입자의 표면)로 제한되는 반면, 상기 일 구현예의 촉매는 프로필렌의 암모산화 반응에 참여할 수 있는 표면적이 외부 표면부(즉, 촉매의 표면)뿐만 아니라 그 내부 표면(기공)으로 확장된 것이다.
예컨대, 상기 일 구현예의 촉매는, 직경이 4 nm 이상, 4.1 nm 이상, 4.2 nm 이상, 4.3 nm 이상, 4.4 nm 이상, 또는 4.5 nm 이상이면서, 40 nm 이하, 35 nm 이하, 30 nm 이하, 25 nm 이하, 20 nm 이하, 또는 15 nm 이하인 기공을 포함할 수 있다.
또한, 상기 일 구현예의 촉매는, BET 비표면적은 100 m2/g 이상, 120 m2/g 이상, 140 m2/g 이상, 160 m2/g 이상, 170 m2/g 이상, 또는 175 m2/g 이상이면서, 300 m2/g 이하, 270 m2/g 이하, 250 m2/g 이하, 230 m2/g 이하, 또는 227 m2/g 이하인 것일 수 있다.
프로필렌의 암모산화용 촉매의 제조 방법
본 발명의 다른 일 구현예에서는, 실리카 담체에 몰리브덴(Mo) 산화물을 먼저 담지한 뒤, 이종(異種) 금속 산화물을 나중에 담지하여, 전술한 일 구현예의 촉매를 제조하는 방법을 제공한다.
구체적으로, 상기 일 구현예의 제조 방법은,
실리카 담체에 몰리브덴(Mo) 산화물을 담지시켜, 제1 촉매를 제조하는 단계,
상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시켜, 전체 조성이 하기 화학식 1을 만족하는 금속 산화물이 실리카 담체에 담지된 촉매를 수득하는 단계를 포함한다.
이때, 상기 실리카 담체에 담지된 금속 산화물은, 몰리브덴(Mo) 산화물을 포함하는 코팅층; 및 상기 몰리브덴(Mo) 산화물을 포함하는 코팅층 상에 위치하고, 이종(異種) 금속을 포함하는 1층 이상의 코팅층;을 포함할 수 있다:
[화학식 1]
Mo12BiaFebAcBdCeDfOx
상기 화학식 1에서,
A 는 Ni, Mn, 및 Co중 하나 이상의 원소이고,
B는 Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
상기 a 내지 f, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 10이고, e는 0.01 내지 2이며, f는 0 내지 10이고, x는 24 내지 48 이다.
앞서 간단히 설명한 바와 같이, 금속 산화물의 순차적인 담지를 위해, 몰리브덴(Mo) 금속 전구체 용액과의 혼합, 건조, 및 소성을 수행한 뒤, 비스무스(Bi)를 비롯한 이종(異種) 금속 전구체와의 혼합, 건조, 및 소성을 수행할 수 있다.
이하, 전술한 것과 중복되는 설명은 생략하고, 상기 각 단계를 설명한다.
상기 일 구현예의 제조 방법에서, 금속 산화물의 담지 횟수에 따라, 상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시키는 단계는 다음과 같이 수행될 수 있다.
Mo 산화물 및 이외의 금속 산화물로 나누어 담지하고자 할 경우(2회 담지), 상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시키는 단계는, 상기 제1 촉매에 비스무스(Bi), 철(Fe), 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소, 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 담지시키는 단계;를 포함할 수 있다.
이와 달리, 3회 담지 시, 상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시키는 단계는, 상기 제1 촉매에 비스무스(Bi) 및 철(Fe)의 산화물; 및 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 순차적으로 담지시키는 단계;를 포함할 수 있다.
4회 담지 시, 상기 제1 촉매에 비스무스(Bi) 산화물; 철(Fe) 산화물; 및 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 순차적으로 담지시키는 단계;를 포함할 수 있다.
상기 각 단계에서 금속 산화물의 담지는, 실리카 담체 혹은 이전 단계의 촉매를 전구체 용액과 혼합, 건조, 및 소성하는 일련의 공정을 한 세트(1 set)로 하고, 목적하는 담지 횟수에 따라 2 세트 이상으로 구성될 수 있다.
예컨대, 2회 담지 시, 실리카 담체를 몰리브덴(Mo) 전구체 용액과 혼합, 건조, 및 소성하여 제1 촉매를 제조한 뒤, 상기 제1 촉매를 비스무스(Bi), 철(Fe), 원소 A, 원소 B 및 원소 C 전구체 혼합 용액과 혼합, 건조, 및 소성하여 최종 촉매를 수득할 수 있다.
3회 담지 시, 실리카 담체를 몰리브덴(Mo) 전구체 용액과 혼합, 건조, 및 소성하여 제1 촉매를 제조하고, 상기 제1 촉매를 비스무스(Bi) 및 철(Fe) 전구체 혼합 용액과 혼합, 건조, 및 소성하여 제2 촉매를 제조한 뒤, 상기 제2 촉매를 원소 A, 및 원소 B 전구체 혼합 용액과 혼합, 건조, 및 소성하여 최종 촉매를 수득할 수 있다.
4회 담지 시, 실리카 담체를 몰리브덴(Mo) 전구체 용액과 혼합, 건조, 및 소성하여 제1 촉매를 제조하고, 상기 제1 촉매를 비스무스(Bi) 전구체 용액과 혼합, 건조, 및 소성하여 제2 촉매를 제조한 뒤, 상기 제2 촉매를 철(Fe) 전구체 용액과 혼합, 건조, 및 소성하여 제3 촉매를 제조한 뒤, 상기 제3 촉매를 원소 A, 및 원소 B 전구체 혼합 용액과 혼합, 건조, 및 소성하여 최종 촉매를 수득할 수 있다.
이하, 금속 전구체 용액의 제조 공정으로부터, 이의 혼합, 건조 및 소성 공정을 상세히 설명한다.
몰리브덴(Mo) 전구체 용액의 제조 공정
상기 몰리브덴(Mo) 전구체 용액을 제조하는 단계는, 50 ℃ 내지 80 ℃의 물에 Mo 전구체를 용해시키는 단계일 수 있다.
상기 온도 범위는, 상기 Mo 전구체를 용해시킬 수 있을 정도의 온도이면 충분하다.
상기 몰리브덴 전구체로는 예를 들어, 몰리브덴의 질산염, 암모늄염, 유기 착체 등을 사용할 수 있다.
또한, 상기 몰리브덴(Mo) 전구체 용액을 제조하는 단계에서는, 구연산, 옥살산, 주석산, 과산화수소 또는 이들의 조합을 포함하는 수용성 킬레이팅제 중 1종 이상이 첨가될 수 있다.
상기 첨가제는 졸겔법을 이용하는 촉매 제조 공정에서는 강도 조절제로 기능하지만, 이는 일 구현예에서 상기 몰리브덴(Mo) 전구체 수용액을 투명하게 하는 기능을 한다.
상기 첨가제의 첨가 시, 상기 몰리브덴 전구체 및 상기 첨가제의 중량비는, 1 :0.1 내지 1:1, 구체적으로 1:0.2 내지 1:0.7를 만족하도록 할 수 있고, 이 범위 내에서 몰리브덴 전구체의 용해도가 증가할 수 있으나 이에 제한되는 것은 아니다.
몰리브덴(Mo) 전구체 용액 이외의 전구체 용액 제조 공정
몰리브덴(Mo) 전구체 용액 이외의 전구체 용액은, 원하는 담지 횟수에 따라 달라질 수 있다.
예컨대, 2회 담지 시 사용되는 비스무스(Bi), 철(Fe), 원소 A, 원소 B 및 원소 C 전구체 혼합 용액을 제조하기 위해, 상온의 물에, 소량의 질산과, 비스무스(Bi), 철(Fe), 원소 A 전구체(A= Ni, Mn, 및 Co 중 하나 이상의 원소), 원소 B 전구체(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C 전구체(C=Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)을 용해시킬 수 있다.
3회 또는 4회 담지 시 사용되는 전구체 용액을 제조하는 경우에도, 상온의 물에, 소량의 질산과, 목적하는 금속 전구체를 용해시킬 수 있다.
상기 원소들의 전구체로는, 각 원소의 질산염, 초산염, 염화물, 수산화물 등을 사용할 수 있다.
상기 몰리브덴(Mo) 전구체 용액 및 이외의 전구체 용액의 제조 공정은 독립적이고, 제조 순서가 제한되는 것은 아니다.
다만, 상기 각 전구체 용액의 제조 시, 금속의 몰비가 상기 화학식 1, 구체적으로 상기 화학식 1-1의 화학양론적 몰비를 만족하도록, 전구체의 배합비를 제어할 수 있다.
혼합 공정
실리카 담체 혹은 이전 단계의 촉매를 전구체 용액과 혼합 시, 혼합물을 20 ℃내지 30 ℃에서 1 시간 내지 3 시간 동안 혼합 후, 70 ℃ 내지 90 ℃에서 1 시간 내지 3 시간 동안 추가로 혼합할 수 있다.
이와 같은 담지 공정에서, 실리카 담체 혹은 이전 단계의 촉매의 기공에, 전구체 용액이 연속적으로 분포하도록 할 수 있다.
건조 공정
상기 실리카 담체 혹은 이전 단계의 촉매와 전구체 용액과의 혼합물을 건조시키는 단계는, 90 ℃ 내지 130 ℃에서 10 시간 내지 15 시간 동안 수행될 수 있다.
이와 같은 건조 공정에서, 실리카 담체 혹은 이전 단계의 촉매의 기공에 전구체 용액이 연속적으로 분포된 상태에서, 용매(즉, 물)이 제거되고, 상기 전구체만 잔존할 수 있다.
소성 공정
상기 건조 공정 후의 소성 공정은, 몰리브덴(Mo) 전구체의 소성시에는 180 ℃ 내지 300 ℃에서 1 시간 내지 6 시간 동안 수행될 수 있고, 몰리브덴(Mo) 이외의 금속 소성시에는 500 ℃ 내지 700 ℃에서 4 시간 내지 8 시간 동안 수행될 수 있다. 몰리브덴(Mo) 전구체의 소성시 온도가 300 ℃를 초과하여 지나치게 높을 경우 전구체가 모두 MoO3 상으로 전환될 수 있어, 몰리브덴(Mo) 전구체의 소성 시 온도는 비교적 낮게 설정하고, 이후의 이종 금속 전구체의 소성시 온도를 높이는 것이 바람직하다.
이와 같은 소성 공정에서, 실리카 담체 혹은 이전 단계의 촉매의 기공에 전구체 혼합물이 연속적으로 분포된 상태에서 산화되어, 전술한 화학식 1(보다 구체적으로, 화학식 1-1)의 금속 산화물로 전환될 수 있다.
이에 따라 형성되는 촉매의 구조는 전술한 바와 같다.
프로필렌의 암모산화 방법
본 발명의 또 다른 일 구현예에서는, 반응기 내에서, 전술한 일 구현예의 촉매 존재 하에 프로필렌 및 암모니아를 반응시키는 단계를 포함하는, 프로필렌의 암모산화 방법을 제공한다.
상기 일 구현예의 촉매는, 높은 활성도와 함께 고온 안정성을 가지며, 프로필렌의 암모산화 반응에 이용되어 프로필렌의 전환율, 아크릴로니트릴의 선택도 및 수율을 높일 수 있다.
상기 일 구현예의 촉매 이외의 사항들에 대해서는, 당업계에 일반적으로 알려진 사항을 참고할 수 있어, 더 이상의 상세한 설명을 생략한다.
이하, 본 발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
실시예 1 ((Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) Mo 전구체 용액의 제조 공정
80 ℃의 물 99 g에 Mo 전구체(Ammonium Molybdate) 30.3 g을 용해시키고, 여기에 구연산(Citric acid)을 15.13 g 첨가하여, Mo 전구체 용액을 제조하였다.
(2) 실리카 담체 내 Mo 전구체 용액의 담지 공정 (함침법 이용)
입자 크기가 50 ㎛이고, 기공 직경이 5.5 ㎚이고, 질소 흡착법에 따른 기공 부피가 1.2 cm3/g이며, BET 비표면적이 688m2/g인 실리카(SiO2) 입자를 담체로 사용하였다.
상기 (1)의 Mo 전구체 용액에 상기 실리카 담체 49 g을 투입하고, 상온 및 80 ℃에서 순차적으로 각각 1 시간 동안 교반하여, 상기 실리카 담체의 기공에 상기 Mo 전구체 용액이 충분히 담지되도록 하였다.
(3) Mo/SiO 2 촉매의 제조 공정
이후, 상기 (2)에서 제조한, Mo 전구체 용액이 담지된 실리카 담체를 회수하여 110 ℃ 오븐에서 12 시간 동안 건조시킨 뒤, 공기 분위기의 관형 소성로에서 200 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 실리카 담체에 Mo 산화물이 담지된 촉매(이하, 경우에 따라서는 "Mo/SiO2 촉매"라고 함)를 수득하였다.
(4) Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액의 제조 공정
상온의 물 48 g에 Fe 전구체(Iron nitrate) 7.5 g 및 Ni 전구체(Nickel nitrate) 13.8 g을 용해시켜, Fe 및 Ni 전구체 혼합 용액을 제조하였다. 추가적으로 Bi 전구체 (Bismuth nitrate) 5.2 g, Zn 전구체 (Zinc nitrate) 1.3 g, K 전구체 (Potassium nitrate) 0.72 g을 첨가하여 혼합 용액을 만들고, 고체 전구체들이 용해된 후 추가로 2.4 g의 질산을 첨가하여, 투명한 용액이 되도록 30분 이상 교반하여, Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액을 수득하였다.
(5) Mo/SiO 2 촉매 내 Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액의 담지 공정 (함침법 이용)
상기 Mo/SiO2 촉매에, 상기 (4)의 Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액을 투입하고, 상온 및 80 ℃에서 순차적으로 각각 1 시간 동안 교반하여, 상기 Mo/SiO2 촉매의 기공에 상기 Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액이 충분히 담지되도록 하였다.
(6) (Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정
이후, 상기 (5)에서 제조한, Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액이 담지된 Mo/SiO2 촉매를 회수하여 110 ℃ 오븐에서 12 시간 동안 건조시킨 뒤, 공기 분위기의 관형 소성로에서 580 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 실리카 담체에 Mo 산화물 및 Bi, Fe, Ni, Zn 및 K의 산화물이 순차적으로 담지된 실시예 1의 촉매(이하, 경우에 따라서는 "(Mo)/(Bi, Fe, Ni, Zn, K)/SiO2 촉매"라고 함)를 수득하였다.
(7) 프로필렌의 암모산화 공정
촉매의 활성화를 위하여 석영 섬유(Quartz wool) 0.05 g가 충진된 반응기 내에 실시예 1의 촉매 0.2 g을 반응기 내에 충진시켰다.
이처럼 석영 섬유와 촉매가 충진된 반응기의 내부 압력은 상압 (1atm)으로 유지시키고, 5 ℃/min의 승온 속도로 반응기 내부 온도를 승온시키면서, 전처리 공정으로써 질소와 암모니아 가스를 흘려주었다. 이에 따라 반응기 내부 온도가 암모산화 반응이 가능한 온도인 400 ℃에 도달하도록 하여, 충분한 전처리가 이루어지도록 하였다.
이처럼 전처리가 완료된 반응기에, 반응물인 프로필렌 및 암모니아와 함께 공기(air)를 공급하며, 프로필렌의 암모산화 공정을 수행하였다. 이때, 반응물의 공급량은 프로필렌:암모니아:공기= 1: 1.0~2.0 : 1.0~4.0의 부피비가 되도록 구성하면서, 프로필렌, 암모니아, 및 공기의 총 중량공간속도(WHSV: weight hourly space velocity)는 1 h-1이 되도록 하였다. 
상기 암모산화 반응 종료 후 그 생성물을 회수하고, 아크릴로니트릴이 잘 생성되었는지 확인하기 위해 다양한 장비를 사용하여 분석하였다.
그 분석 방법, 분석 결과 등에 대해서는, 후술되는 실험예에서 상세히 기술한다.
실시예 2 ((Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) (Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정
실리카 담체를 변경한 점을 제외하고, 실시예 1과 동일하게 하여 실시예 2의 촉매((Mo)/(Bi, Fe, Ni, Zn, K)/SiO2 촉매)를 제조하였다.
구체적으로, 실시예 2에서는 실시예 1보다 기공 직경이 더 크고, 표면적이 작은 실리카 담체를 사용하였다. 보다 구체적으로, 입자 크기가 60 ㎛이고, 기공 직경이 6.0 ㎚이고, 질소 흡착법에 따른 기공 부피가 0.98 cm3/g이며, BET 비표면적이 645 m2/g인 실리카(SiO2) 입자를 담체로 사용하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 실시예 2의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
실시예 3 ((Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) (Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정
(6) 단계의 열처리 온도를 변경한 점을 제외하고 제외하고, 실시예 1과 동일하게 하여 실시예 3의 촉매((Mo)/(Bi, Fe, Ni, Zn 및 K)/SiO2 촉매)를 제조하였다.
구체적으로, 실시예 3에서는 실시예 1보다 열처리 온도를 약 30 ℃ 높여, 약 610 ℃에서 열처리하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 실시예 3의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
실시예 4 ((Mo)/(Bi, Fe)/(Ni, Zn, K)/SiO 2 촉매)
(1) (Mo)/(Bi, Fe)/(Ni, Zn, K)/SiO 2 촉매의 제조 공정
담지 횟수를 3회로 변경한 것을 제외하고(1회-Mo, 2회-Bi 및 Fe, 3회-Ni, Zn, 및 K). 실시예 1과 동일하게 하여 실시예 4의 촉매를 제조하였다.
구체적으로, 상온의 물 60 g에 Bi 전구체 (Bismuth nitrate) 5.2 g 및 Fe 전구체(Iron nitrate) 7.5 g을 용해시키고, 15 g의 질산을 첨가한 뒤, 투명한 용액이 되도록 30분 이상 교반하여, Bi 및 Fe 전구체 혼합 용액을 제조하였다.
이와 독립적으로, 상온의 물 60 g에 Ni 전구체(Nickel nitrate) 13.8 g, Zn 전구체 (Zinc nitrate) 1.3 g, K 전구체 (Potassium nitrate) 0.72 g을 용해시키고, 15 g의 질산을 첨가한 뒤, 투명한 용액이 되도록 30분 이상 교반하여, Ni, Zn, 및 K 전구체 혼합 용액을 제조하였다.
실시예 1과 동일하게 제조된 Mo/SiO2 촉매에 상기 Bi 및 Fe 전구체 혼합 용액을 투입하고, 상온 및 80 ℃에서 순차적으로 각각 1 시간 동안 교반하여 상기 Bi 및 Fe 전구체 용액을 담지한 뒤, 110 ℃ 오븐에서 12 시간 동안 건조하고, 공기 분위기의 관형 소성로에서 580 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 실리카 담체에 Mo 산화물 및 Bi 및 Fe의 산화물이 순차적으로 담지된 촉매(이하, 경우에 따라서는 "(Mo)/(Bi, Fe)/SiO2 촉매"라고 함)를 수득하였다.
이후, 상기 (Mo)/(Bi 및 Fe)/SiO2 촉매에 상기 Ni, Zn, 및 K 전구체 혼합 용액을 투입하고, 상온 및 80 ℃에서 순차적으로 각각 1 시간 동안 교반하여 상기 Ni, Zn, 및 K 전구체 용액을 담지한 뒤, 110 ℃ 오븐에서 12 시간 동안 건조하고, 공기 분위기의 관형 소성로에서 580 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 실리카 담체에 Mo 산화물; Bi 및 Fe의 산화물; 및 Ni, Zn, 및 K의 산화물이 순차적으로 담지된 실시예 4의 촉매(이하, 경우에 따라서는 "(Mo)/(Bi, Fe)/(Ni, Zn, K)/SiO2 촉매"라고 함)를 수득하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 실시예 4의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
실시예 5 ((Mo)/(Bi)/(Fe, Ni)/(Zn, K)/SiO 2 촉매)
(1) (Mo)/(Bi)/(Fe, Ni)/(Zn, K)/SiO 2 촉매의 제조 공정
담지 횟수를 4회로 변경한 것을 제외하고(1회-Mo, 2회-Bi, 3회-Fe 및 Ni, 4회-Zn 및 K), 실시예 1과 동일하게 하여 실시예 5의 촉매를 제조하였다.
구체적으로, 상온의 물 60 g에 Bi 전구체 (Bismuth nitrate) 5.2 g 을 용해시키고, 15 g의 질산을 첨가한 뒤, 투명한 용액이 되도록 30분 이상 교반하여, Bi 전구체 용액을 제조하였다.
이와 독립적으로, 상온의 물 60 g에 Fe 전구체(Iron nitrate) 7.5 g 및 Ni 전구체(Nickel nitrate) 13.8 g을 용해시키고, 15 g의 질산을 첨가한 뒤, 투명한 용액이 되도록 30분 이상 교반하여, Fe 및 Ni 전구체 혼합 용액을 제조하였다.
또한, 이와 독립적으로, 상온의 물 60 g에 Zn 전구체 (Zinc nitrate) 1.3 g, K 전구체 (Potassium nitrate) 0.72 g을 용해시키고, 15 g의 질산을 첨가한 뒤, 투명한 용액이 되도록 30분 이상 교반하여, Zn 및 K 전구체 혼합 용액을 제조하였다.
실시예 1과 동일하게 제조된 Mo/SiO2 촉매에 상기 Bi 전구체 용액을 투입하고, 상온 및 80 ℃에서 순차적으로 각각 1 시간 동안 교반하여 상기 Bi 전구체 용액을 담지한 뒤, 110 ℃ 오븐에서 12 시간 동안 건조하고, 공기 분위기의 관형 소성로에서 580 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 실리카 담체에 Mo 산화물 및 Bi 산화물이 순차적으로 담지된 촉매(이하, 경우에 따라서는 "(Mo)/(Bi)/SiO2 촉매"라고 함)를 수득하였다.
이후, 상기 (Mo)/(Bi)/SiO2 촉매에 상기 Fe 및 Ni 전구체 혼합 용액을 투입하고, 상온 및 80 ℃에서 순차적으로 각각 1 시간 동안 교반하여 상기 Fe 및 Ni 전구체 용액을 담지한 뒤, 110 ℃ 오븐에서 12 시간 동안 건조하고, 공기 분위기의 관형 소성로에서 580 ℃의 온도를 유지하면서 6 시간 동안 열처리하여, 실리카 담체에 Mo 산화물; Bi 산화물; 및 Fe 및 Ni의 산화물이 순차적으로 담지된 촉매(이하, 경우에 따라서는 "(Mo)/(Bi)/(Fe, Ni)/SiO2 촉매"라고 함)를 수득하였다.
그 다음, 상기 (Mo)/(Bi)/(Fe, Ni)/SiO2 촉매에 상기 Zn 및 K 전구체 혼합 용액을 담지한 뒤 건조 및 열처리하여, 실리카 담체에 Mo 산화물; Bi 산화물; Fe 및 Ni의 산화물; 및 Zn 및 K의 산화물이 순차적으로 담지된 실시예 5의 촉매(이하, 경우에 따라서는 "(Mo)/(Bi)/(Fe, Ni)/(Zn, K)/SiO2 촉매"라고 함)를 수득하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 실시예 5의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
실시예 6 ((Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) (Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정
Bi 전구체, Fe 전구체, 및 Ni 전구체의 사용량을 변경한 점을 제외하고, 실시예 1과 동일하게 하여 실시예 6의 촉매를 제조하였다. 구체적으로, Bi 전구체 (Bismuth nitrate) 8.7 g, Fe 전구체 (Iron nitrate) 8.7 g, Ni 전구체 (Nickel nitrate) 13.795 g을 사용하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 실시예 6의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
실시예 7 ((Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) (Mo)/(Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정
Bi 전구체, Fe 전구체, 및 Ni 전구체의 사용량을 변경한 점을 제외하고, 실시예 1과 동일하게 하여 실시예 7의 촉매를 제조하였다.
구체적으로, Bi 전구체 (Bismuth nitrate) 8.7 g, Fe 전구체 (Iron nitrate) 11.5g, Ni 전구체 (Nickel nitrate) 13.8 g을 사용하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 실시예 7의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 1 ((Mo, Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) (Mo, Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정 (졸겔법 이용)
우선, 10 g의 증류수에 Mo 전구체(Ammonium Molybdate) 16 g 및 1.1 g의 Oxalic acid를 투입하여 약 50 ℃로 가열하여, Mo 전구체 용액을 제조하였다.
이와 독립적으로, 상온의 물 5 g 에, Bi 전구체(Bismuth nitrate)1.73 g, Fe 전구체(Iron nitrate) 2.01 g, Ni 전구체(Nickel nitrate) 0.6533 g, Zn 전구체(Zinc nitrate) 0.3159 g, K 전구체(Potassium nitrate) 0.2148 g을 용해시켜, Bi, Fe, Ni, Zn, 및 K 전구체 혼합 용액을 제조하였다.
상기 Mo 전구체 용액; 및 상기 Bi, Fe, Ni, Zn, 및 K 전구체 혼합 용액을 교반하며 혼합한 다음, 여기에 실리카졸 (LUDOX AS 40, 함량: 40 %, Grace) 42.4 g을 첨가하여 교반한 다음, 회전 디스크형 분무 건조기(기기명: BUCHI mini spray dryer)를 사용하여 120 ℃(inlet) 및 230 ℃(outlet) 조건으로 분무 건조하였다.
이에 따라 얻어진 분말을 580 ℃에서 3시간 동안 소성하여, 비교예 1의 촉매로 최종 수득하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 상기 비교예 1의 촉매를 사용하고, 나머지는 실시예 1과 동일하게 하여 프로필렌의 암모산화 공정을 수행하였다.
비교예 1의 암모산화 반응 종료 후 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 2 ((Mo, Bi, Fe, Ni, Zn, K)/SiO 2 촉매)
(1) (Mo, Bi, Fe, Ni, Zn, K)/SiO 2 촉매의 제조 공정 (졸겔법 이용)
실리카졸, Bi 전구체, Fe 전구체, Zn 전구체, 및 K 전구체의 사용량을 변경한 점을 제외하고, 비교예 1과 동일하게 하여 비교예 2의 촉매를 제조하였다.
구체적으로, 실리카졸(LUDOX AS 40, 고형분 함량: 40 %, Grace) 34 g, Bi 전구체(Bismuth nitrate)2.1 g, Fe 전구체(Iron nitrate) 3.7 g, Zn 전구체(Zinc nitrate) 0.63 g, K 전구체(Potassium nitrate) 0.36 g을 사용하였다.
(2) 프로필렌의 암모산화 공정
비교예 1의 촉매 대신 비교예 2의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 비교예 1과 마찬가지로 분석을 실시하였다.
비교예 3 ((Mo)/(Bi, Ce, Fe, Mg, Rb)/SiO 2 촉매)
(1) (Mo)/(Bi, Ce, Fe, Mg, Rb)/SiO 2 촉매의 제조 공정 (함침법 이용)
Mo 전구체의 사용량을 변경하고, Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액 대신 Bi, Ce, Fe, Mg 및 Rb 전구체 혼합 용액을 사용한 점을 제외하고, 실시예 1과 동일하게 하여 비교예 3의 촉매를 제조하였다.
구체적으로, Mo 전구체 용액 제조 시, Mo 전구체 (Molybdenum nitrate)는 18.241 g 사용하였다. 또한, Bi, Ce, Fe, Mg 및 Rb 전구체 혼합 용액 제조 시, Bi 전구체 (Bismuth nitrate) 3.449 g, Ce 전구체 (Cerium nitrate) 0.580 g, Fe 전구체 (Iron nitrate) 13.646 g, Mg 전구체 (Magnesium nitrate) 14.92 g 그리고 Rb 전구체 (Rubidum nitrate) 0.426 g을 사용하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 비교예 3의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 4 ((Mo)/(Bi, Fe, Ni, Zn, Mn, La, Pr, K, Cs)/SiO 2 촉매)
(1) (Mo)/(Bi, Fe, Ni, Zn, Mn, La, Pr, K, Cs)/SiO 2 촉매의 제조 공정 (함침법 이용)
Mo 전구체의 사용량을 변경하고, Bi, Fe, Ni, Zn 및 K 금속 전구체 혼합 용액 대신 Bi, Fe, Ni, Zn, Mn, La, Pr, K, 및 Cs 전구체 혼합 용액을 사용한 점을 제외하고, 실시예 1과 동일하게 하여 비교예 4의 촉매를 제조하였다.
구체적으로, Mo 전구체 용액 제조 시, Mo 전구체 (Molybdenum nitrate)는 18.241 g 사용하였다. 또한, Bi, Fe, Ni, Zn, Mn, La, Pr, K, 및 Cs 전구체 혼합 용액 제조 시, Bi 전구체 (Bismuth nitrate) 5.66 g, Fe 전구체 (Iron nitrate) 8.8 g, Ni 전구체 (Nickel nitrate) 24.01 g, Zn 전구체 (Zinc nitrate) 4.95 g, Mn 전구체 (manganese nitrate) 2.4 g, La 전구체 (Lantanum nitrate) 1.44 g, Pr 전구체 (Praseodymium nitrate), K 전구체 (Potassium nitrate) 0.674 g 그리고 Cs 전구체 (Cesium nitrate) 0.325 g을 사용하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 비교예 4의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 5 ((Mo, Bi)/SiO 2 촉매)
(1) (Mo, Bi)/SiO 2 촉매의 제조 공정 (함침법 이용)
Mo 전구체의 사용량을 변경하고, Bi, Fe, Ni, Zn 및 K 전구체 혼합 용액 대신 Bi 전구체 용액을 사용한 점을 제외하고, 실시예 1과 동일하게 하여 비교예 5의 촉매를 제조하였다.
구체적으로, Mo 전구체 용액 제조 시, Mo 전구체 (Molybdenum nitrate)는 3 g 사용하였다. 또한, Bi 전구체 용액 제조 시, Bi 전구체 (Bismuth nitrate) 16 g을 사용하였다.
(2) 프로필렌의 암모산화 공정
실시예 1의 촉매 대신 비교예 5의 촉매를 사용하여 프로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
실험예 1: 촉매 분석
다음과 같은 분석법에 따라 실시예 및 비교예의 각 촉매를 분석하고, 분석 결과를 하기 표 1에 기재하였다. 참고로, 실시예 및 비교예의 각 금속 산화물 조성 및 담체와의 배합비도 하기 표 1에 기재하였다:
BET 비표면적: BET 비표면적 측정 기기(제조사: BEL Japan, 기기명: BELSORP_Mini)를 이용하여, 실시예 및 비교예의 각 촉매에 대한 BET 비표면적을 측정하였다.
구체적으로, 상기 기기 내에서, 액체 질소 온도(77K) 하에서 상대압(P/P0) 1까지의 흡착량을 측정하고, 또한 상대압(P/P0) 0.03까지의 탈착량을 측정하였다. 이러한 측정값들을 BJH 수식에 적용하여, 촉매의 기공 부피, 직경, 및 표면적을 측정하였다.
암모니아 흡착량: 암모니아 승온 탈착법(NH3-TPD)에 의한 측정이 가능한 기기(제조사: Micromeritics, 기기명: Autochem Ⅱ 2920)을 이용하여, 실시예 및 비교예의 각 촉매에 대한 암모니아 흡착량을 측정하였다.
구체적으로, 상기 기기 내 U자의 쿼츠 관에 촉매 약 0.1 g을 충진하여, U자 반응기를 장치에 연결한 다음, 헬륨 가스 (50 cc/min)를 이용하여 상온으로부터 승온 속도 10 ℃/min으로 승온시켜 약 400 ℃까지 온도를 올린 후, 400 ℃에서 약 1시간 유지하며 전처리를 진행하였다. 이는 촉매에 잔존하는 유기물 제거를 위함이다.
전처리가 끝난 후 약 100 ℃에서 10 % NH3/He (50 cc/min)으로 1시간 동안 NH3를 흡착시킨다. 동일 온도에서 He을 흘려주면서 물리 흡착된 NH3를 제거하고, 온도를 800 ℃까지 승온시키며 탈착되는 NH3를 측정하였다.
이후, NH3의 최초 흡착량(a)과 탈착량(b)의 차를 구하여, 촉매 표면에 잔존하는 NH3의 흡착량을 구할 수 있었다.
제법 담지 횟수 촉매 분석 결과
금속 산화물 조성 및
담체와의 배합비
기공 직경 (nm) BET 비표면적
(m2/g)
암모니아 흡착량
(mmol/g)
실시예 1 함침법 2회
(Mo - Bi, Fe, Ni, Zn, K)
Mo12Bi0.75Fe1.3Ni2.5Zn0.3K0.5Oy: 25wt%,
SiO2: 75wt%
8.1 217.8 0.72
실시예 2 함침법 2회(Mo - Bi, Fe, Ni, Zn, K) Mo12Bi0.75Fe1.3Ni2.5Zn0.3K0.5Oy: 25wt%, SiO2: 75wt% 8.5 210.2 0.69
실시예 3 함침법 2회(Mo - Bi, Fe, Ni, Zn, K) Mo12Bi0.75Fe1.3Ni2.5Zn0.3K0.5Oy: 25wt%,
SiO2: 75wt%
8.6 196.5 0.63
실시예 4 함침법 3회(Mo - Bi, Fe - Ni, Zn, K) Mo12Bi0.75Fe1.3Ni2.5Zn0.3K0.5Oy: 25wt%,
SiO2: 75wt%
7.9 225.2 0.68
실시예 5 함침법 4회(Mo - Bi - Ni, Fe - Zn, K) Mo12Bi0.75Fe1.3Ni2.5Zn0.3K0.5Oy: 25wt%, SiO2: 75wt% 9.2 178.5 0.59
실시예 6 함침법 2회(Mo - Bi, Fe, Ni, Zn, K) Mo12Bi1.25Fe1.5Ni3.5Zn0.3K0.5Oy: 25wt%, SiO2: 75wt% 8.4 213.1 0.66
실시예 7 함침법 2회(Mo - Bi, Fe, Ni, Zn, K) Mo12Bi1.25Fe2.0Ni4.0Zn0.3K0.5Oy: 25wt%, SiO2: 75wt% 8.4 212.5 0.67
비교예 1 졸겔법 1회(Mo, Bi, Fe, Ni, Zn, K) Mo12Bi0.5Fe0.7Ni0.5Zn0.15K0.3Oy: 50wt%, SiO2: 50wt% 13.6 35.8 0.14
비교예 2 졸겔법 1회(Mo, Bi, Fe, Ni, Zn, K) Mo12Bi0.6Fe1.3Ni0.5Zn0.3K0.5Oy: 50wt%,
SiO2: 50wt%
13.8 34.6 0.14
비교예 3 함침법 2회(Mo - Bi, Ce, Fe, Mg, Rb) Mo12.4Bi0.32Ce0.08Fe1.52Ni6.51Mg2.62Rb0.13: 25wt%, SiO2: 75wt% 8.2 231.8 0.40
비교예 4 함침법 2회(Mo - Bi, Fe, Ni, Zn, Mn, La, Pr, K, Cs) Mo12Bi0.7Fe1.3Ni5.5Zn1Mn0.5La0.2Pr0.02K0.4Cs0.1Ox: 25wt%,
SiO2: 75wt%
8.4 225.3 0.41
비교예 5 함침법 2회(Mo- Bi) Bi2O3·MoO3: 25wt%, SiO2: 75wt% 8.1 226.4 0.22
실험예 2: 프로필렌의 암모산화 생성물 분석
FID(Flame Ionization Detector와 TCD(Thermal conductivity detector)가 장착된 크로마토그래피(Gas chromatography, 제조사: Agilent 기기명: HP 6890 N)를 사용하여, 실시예 및 비교예의 각 암모산화 생성물을 분석하였다.
구체적으로, FID로는 에틸렌(ehthlene), 사이안화수소(hydrogen cyanide), 아세트알데하이드(Acetaldehyde), 아세토니트릴(Acetonitrile), 아크롤레인(Acroleing), 아크릴로니트릴(Acrylonitrile) 등의 생성물을 분석하였으며, TCD로는 NH3, O2, CO, CO2 등의 가스 생성물 및 미반응 프로필렌을 분석하여, 실시예 및 비교예에서 각각 반응한 프로필렌의 몰수와 암모산화 생성물의 몰수를 구하였다.
이에 따른 분석 결과와 더불어 공급된 프로필렌의 몰수를 하기 1, 2, 및 3에 대입하여, 프로필렌의 전환율, 프로필렌의 암모산화 반응 생성물인 아크릴로니트릴의 선택도 및 수율을 계산하고, 그 계산값을 표 2에 기재하였다.
[식 1]
프로필렌의 전환율(%)
=100*(반응한 프로필렌의 암모산화 몰수)/(공급된 프로필렌의 몰수)
[식 2]
아크릴로니트릴의 선택도(%)
=100*(생성된 아크릴로니트릴의 몰수)/(반응한 프로필렌의 몰수)
[식 3]
아크릴로니트릴의 수율 (%)
=100*(생성된 아크릴로니트릴의 몰수)/(공급된 프로필렌의 몰수)
또한, 다음과 같은 방법으로, 실시예 및 비교예의 반응 후 Mo 감량율을 측정하고, 그 측정 결과를 하기 표 2에 기재하였다.
프로필렌의 암모산화 생성물
프로필렌 전환율
(%)
아크릴로니트릴 선택도
(%)
아크릴로니트릴 수율
(%)
Mo 감량율
(%)
실시예 1 87.7 75.6 66.4 0
실시예 2 85.9 76.7 65.9 0
실시예 3 87.4 75.9 66.3 0
실시예 4 87.2 74.4 64.9 0
실시예 5 76.8 77.3 59.4 0
실시예 6 80.6 78.4 63.2 0
실시예 7 79.5 78.6 62.5 0
비교예 1 68.3 73.3 50.5 4.2
비교예 2 64.2 75.8 48.6 4.0
비교예 3 74.3 69.5 51.6 0
비교예 4 15.2 62.4 9.5 0
비교예 5 12.5 58 7.3 10.3
평가
상기 표 2에서, 실시예 1 내지 7의 촉매는, 비교예 1 내지 5의 촉매에 대비하여 프로필렌의 전환율 및 아크릴로니트릴의 수율이 현저히 높고, 프로필렌의 암모산화 반응 중 Mo의 감량이 전혀 발생하지 않은 것을 확인할 수 있다.
구체적으로, 상기 표 1 및 2를 종합하여 보면, 함침법으로 제조된 실시예 1 내지 7의 촉매는, 졸겔법으로 제조된 비교예 1 내지 3의 촉매에 대비하여 많은 양의 암모니아가 흡착된 결과, 프로필렌의 암모산화 반응에 따른 프로필렌의 전환율 및 아크릴로니트릴 수율을 증가시키는 데 기여한 것을 알 수 있다.
특히, 실시예 1 내지 7의 촉매는, 함침법에 있어서도, 금속 산화물의 담지 횟수를 2회 이상으로 제어하는 방식으로 제조되어, 몰리브덴(Mo) 산화물이 먼저 담지되고 이종(異種)의 금속 산화물이 나중에 담지된 구조를 가지며, 이에 따라 프로필렌의 암모산화 반응 중 몰리브덴(Mo)의 용출이 억제된 것을 알 수 있다.
다만, 비교예 3 내지 5의 촉매는, 금속 산화물의 담지 횟수를 2회 이상으로 제어하는 방식으로 제조되었음에도 불구하고, 실시예 1 내지 7에 대비하여 프로필렌의 전환율과 아크릴로니트릴 수율이 현저히 낮다.
구체적으로, 활성 금속으로 Ce 등을 포함하는 비교예 3; 및 La, Pr 등을 포함하는 비교예 4의 경우, 활성 금속의 영향으로 프로필렌의 전환율과 아크릴로니트릴의 수율이 저하되는 것이다.
특히, 활성 금속으로 Mo 및 Bi만 포함하는 비교예 5는 프로필렌의 전환율과 아크릴로니트릴의 수율이 현저히 저하되었을 뿐만 아니라, Bi 단독으로는 Mo 용출 억제가 어려웠던 것으로 보인다.
따라서, 실시예를 참고하여, 전술한 일 구현예의 범위 내에서 금속 산화물의 담지 횟수, 금속 산화물의 전체 조성 등을 제어함으로써 촉매 안정성을 높게 하고, 프로필렌의 전환율, 아크릴로니트릴 선택도 및 수율을 원하는 범위로 조절할 수 있을 것이다.

Claims (17)

  1. 실리카 담체; 및 상기 실리카 담체에 담지된 금속 산화물을 포함하는 프로필렌의 암모산화용 촉매로서,
    상기 금속 산화물은, 전체 조성이 하기 화학식 1을 만족하되,
    몰리브덴(Mo) 산화물을 포함하는 코팅층; 및 상기 몰리브덴(Mo) 산화물을 포함하는 코팅층 상에 위치하고, 이종(異種) 금속을 포함하는 1층 이상의 코팅층;을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
    [화학식 1]
    Mo12BiaFebAcBdCeDFOx
    상기 화학식 1에서,
    A는 Ni, Mn, 및 Co중 하나 이상의 원소이고,
    B는 Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
    C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
    D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
    상기 a 내지 f, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 10이고, e는 0.01 내지 2이며, f는 0 내지 10이고, x는 24 내지 48 이다.
  2. 제1항에 있어서,
    상기 금속 산화물은, 전체 조성이 하기 화학식 1을 만족하되,
    몰리브덴(Mo) 산화물을 포함하는 제1 코팅층; 및 상기 제1 코팅층 상에 위치하고, 비스무스(Bi), 철(Fe), 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 포함하는 제2 코팅층;을 포함하는 것이거나,
    몰리브덴(Mo) 산화물을 포함하는 제1 코팅층; 및 상기 제1 코팅층 상에 위치하고, 비스무스(Bi) 및 철(Fe)의 산화물을 포함하는 제2 코팅층; 및 상기 제2 코팅층 상에 위치하고, 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 포함하는 제3 코팅층;을 포함하는 것이거나,
    몰리브덴(Mo) 산화물을 포함하는 제1 코팅층; 및 상기 제1 코팅층 상에 위치하고, 비스무스(Bi) 산화물을 포함하는 제2 코팅층; 상기 제2 코팅층 상에 위치하고, 철(Fe) 산화물을 포함하는 제3 코팅층; 및 상기 제3 코팅층 상에 위치하고, 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 포함하는 제4 코팅층;을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  3. 제1항에 있어서,
    인접하는 코팅층의 금속들이 서로 화학적으로 결합된 것인,
    프로필렌의 암모산화용 촉매.
  4. 제1항에 있어서,
    상기 촉매는,
    제2 기공을 포함하는 실리카 담체;
    상기 제2 기공의 벽면을 연속적으로 코팅하고, 상기 금속 산화물을 포함하는 내부 코팅층; 및
    상기 제2 기공 내부에 위치하고, 상기 내부 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  5. 제1항에 있어서,
    상기 금속 산화물은, 전체 조성이 하기 화학식 1-1를 만족하는 것인,
    프로필렌의 암모산화용 촉매:
    [화학식 1-1]
    Mo12BiaFebNicZndKeOx
    상기 화학식 1-1에서, a 내지 e, 및 x의 각 정의는 제1항과 같다.
  6. 제1항에 있어서,
    상기 금속 산화물 및 상기 실리카 담체의 중량비는 15:85 내지 35:65인 것인,
    프로필렌의 암모산화용 촉매.
  7. 제1항에 있어서,
    상기 실리카 담체는, 직경이 4 nm 내지 40 nm인 기공을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  8. 제1항에 있어서,
    상기 촉매는, D50 입경이 50 ㎛ 내지 150 ㎛인 것인,
    프로필렌의 암모산화용 촉매.
  9. 제1항에 있어서,
    상기 촉매는, 직경이 4 nm 내지 40 nm인 기공을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  10. 제1항에 있어서,
    상기 촉매는, BET 비표면적이 100 m2/g 내지 300 m2/g인 것인,
    프로필렌의 암모산화용 촉매.
  11. 제1항에 있어서,
    상기 촉매는, 암모니아 승온 탈착법(NH3-TPD)으로 측정된 암모니아 흡착량이 0.5 mmol/g 내지 5 mmol/g인 것인,
    프로필렌의 암모산화용 촉매.
  12. 실리카 담체에 몰리브덴(Mo) 산화물을 담지시켜, 제1 촉매를 제조하는 단계; 및
    상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시켜, 전체 조성이 하기 화학식 1을 만족하는 금속 산화물이 실리카 담체에 담지된 촉매를 수득하는 단계;를 포함하는 프로필렌의 암모산화용 촉매의 제조방법으로서,
    상기 금속 산화물은, 몰리브덴(Mo) 산화물을 포함하는 코팅층; 및 상기 몰리브덴(Mo) 산화물을 포함하는 코팅층 상에 위치하고, 이종(異種) 금속을 포함하는 1층 이상의 코팅층;을 포함하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법:
    [화학식 1]
    Mo12BiaFebAcBdCeDFOx
    상기 화학식 1에서,
    A는 Ni, Mn, 및 Co중 하나 이상의 원소이고,
    B는 Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
    C는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
    D는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
    상기 a 내지 f, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 10이고, e는 0.01 내지 2이며, f는 0 내지 10이고, x는 24 내지 48 이다.
  13. 제12항에 있어서,
    상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시키는 단계는,
    상기 제1 촉매에 비스무스(Bi), 철(Fe), 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소, 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 담지시키는 단계;를 포함하거나,
    상기 제1 촉매에 비스무스(Bi) 및 철(Fe)의 산화물; 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 순차적으로 담지시키는 단계;를 포함하거나,
    상기 제1 촉매에 비스무스(Bi) 산화물; 철(Fe) 산화물; 및 원소 A(A= Ni, Mn, 및 Co중 하나 이상의 원소), 원소 B(B= Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 원소 C(C= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)의 산화물을 순차적으로 담지시키는 단계;를 포함하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  14. 제12항에 있어서,
    상기 제1 촉매를 제조하는 단계는,
    몰리브덴(Mo) 전구체 용액을 제조하는 단계;
    상기 실리카 담체와 상기 몰리브덴(Mo) 전구체 용액을 혼합하는 단계;
    상기 몰리브덴(Mo) 전구체 용액이 담지된 실리카 담체를 건조시켜, 상기 몰리브덴(Mo) 전구체가 담지된 실리카 담체를 수득하는 단계; 및
    상기 몰리브덴(Mo) 전구체가 담지된 실리카 담체를 소성하는 단계;를 포함하는,
    프로필렌의 암모산화용 촉매의 제조 방법.
  15. 제14항에 있어서,
    상기 건조는 90 ℃ 내지 130 ℃에서 10 내지 15 시간 동안 수행되고,
    상기 소성은 180 ℃ 내지 300 ℃에서 1 시간 내지 6 시간 동안 수행되는,
    프로필렌의 암모산화용 촉매의 제조 방법.
  16. 제12항에 있어서,
    상기 제1 촉매에 이종(異種) 금속의 산화물을 담지시키는 단계는,
    이종(異種) 금속의 전구체 용액을 제조하는 단계;
    이종(異種) 금속의 전구체 용액과 제1 촉매를 혼합하는 단계;
    상기 혼합물을 90 ℃ 내지 130 ℃에서 10 내지 15 시간 동안 건조하는 단계; 및
    500 ℃ 내지 700 ℃에서 4 시간 내지 7 시간 동안 소성하는 단계를 포함하는,
    프로필렌의 암모산화용 촉매의 제조 방법.
  17. 반응기 내에서, 제1항의 촉매 존재 하에 프로필렌 및 암모니아를 반응시키는 단계를 포함하는,
    프로필렌의 암모산화 방법.
PCT/KR2021/009908 2020-07-29 2021-07-29 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법 WO2022025675A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21850773.9A EP4046708A4 (en) 2020-07-29 2021-07-29 AMMOOXIDATION CATALYST FOR PROPYLENE, METHOD FOR THE MANUFACTURE OF IT AND PROCESS FOR AMMOOXIDATION OF PROPYLENE USING THE SAID CATALYST
JP2022528692A JP7371986B2 (ja) 2020-07-29 2021-07-29 プロピレンのアンモ酸化用触媒、その製造方法、これを用いたプロピレンのアンモ酸化方法
US17/779,111 US20220395817A1 (en) 2020-07-29 2021-07-29 Ammoxidation catalyst for propylene, manufacturing method of the same catalyst, ammoxidation method using the same catalyst
CN202180007293.4A CN114829001A (zh) 2020-07-29 2021-07-29 用于丙烯的氨氧化催化剂、该催化剂的制造方法、使用该催化剂的氨氧化方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200094652 2020-07-29
KR10-2020-0094652 2020-07-29
KR10-2021-0099864 2021-07-29
KR1020210099864A KR20220014864A (ko) 2020-07-29 2021-07-29 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법

Publications (1)

Publication Number Publication Date
WO2022025675A1 true WO2022025675A1 (ko) 2022-02-03

Family

ID=80035880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009908 WO2022025675A1 (ko) 2020-07-29 2021-07-29 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법

Country Status (3)

Country Link
US (1) US20220395817A1 (ko)
JP (1) JP7371986B2 (ko)
WO (1) WO2022025675A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519507B1 (ko) * 2019-09-30 2023-04-07 주식회사 엘지화학 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239071B1 (en) * 1986-03-24 1992-01-02 Mitsubishi Petrochemical Co., Ltd. Production of composite oxide catalysts
JP2004154766A (ja) * 2002-10-17 2004-06-03 Denso Corp セラミック触媒体
KR100687671B1 (ko) * 2003-03-05 2007-03-02 아사히 가세이 케미칼즈 가부시키가이샤 입상 다공성 암모산화 촉매
KR20160002892A (ko) * 2013-04-11 2016-01-08 클라리언트 코포레이션 올레핀의 부분 산화/암모산화를 위한 촉매 제조 방법
US20180222851A1 (en) * 2017-02-08 2018-08-09 Clariant Corporation Synthetic methods for the preparation of propylene ammoxidation catalysts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041012A1 (en) 1998-02-13 1999-08-19 Korea Research Institute Of Chemical Technology A solid catalyst with core-shell catalytic phase and a method of preparation thereof
TW200400851A (en) 2002-06-25 2004-01-16 Rohm & Haas PVD supported mixed metal oxide catalyst
JP5919870B2 (ja) 2012-02-17 2016-05-18 三菱レイヨン株式会社 アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
JP6212407B2 (ja) 2014-02-21 2017-10-11 旭化成株式会社 酸化物触媒及びその製造方法、並びに、酸化物触媒を用いた不飽和ニトリルの製造方法
WO2017130906A1 (ja) 2016-01-25 2017-08-03 旭化成株式会社 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
JP6914114B2 (ja) 2017-06-23 2021-08-04 旭化成株式会社 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239071B1 (en) * 1986-03-24 1992-01-02 Mitsubishi Petrochemical Co., Ltd. Production of composite oxide catalysts
JP2004154766A (ja) * 2002-10-17 2004-06-03 Denso Corp セラミック触媒体
KR100687671B1 (ko) * 2003-03-05 2007-03-02 아사히 가세이 케미칼즈 가부시키가이샤 입상 다공성 암모산화 촉매
KR20160002892A (ko) * 2013-04-11 2016-01-08 클라리언트 코포레이션 올레핀의 부분 산화/암모산화를 위한 촉매 제조 방법
US20180222851A1 (en) * 2017-02-08 2018-08-09 Clariant Corporation Synthetic methods for the preparation of propylene ammoxidation catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4046708A4 *

Also Published As

Publication number Publication date
JP2023501824A (ja) 2023-01-19
US20220395817A1 (en) 2022-12-15
JP7371986B2 (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2022025675A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2019156379A1 (ko) 질소산화물 환원용 촉매 및 이의 제조방법
WO2010147318A2 (ko) 아미노 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
EP2694435A1 (en) Apparatus and method for continuously producing carbon nanotubes
WO2022265240A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2018124459A1 (ko) 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2017010600A1 (ko) 탄화수소의 탈수소화를 통해 올레핀을 제조하기 위한 촉매 및 그 제조방법
WO2022015003A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2018034549A1 (ko) 폴리케톤 화합물 제조용 촉매 조성물, 팔라듐 혼합 촉매 시스템, 이를 이용한 폴리케톤 화합물 제조 방법 및 폴리케톤 중합체
WO2022124867A1 (ko) 탄소나노튜브 제조장치 및 제조방법
WO2020046064A1 (ko) 이산화탄소 환원용 복합 촉매 및 그 제조 방법
WO2021137632A1 (ko) 이중금속시안염 촉매, 이의 제조방법 및 폴리올 제조 방법
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2021066410A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2021101112A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2022045838A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2021066409A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2021066411A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법
WO2019203481A1 (ko) 형광체 단분자 화합물, 이를 이용한 유기 트랜지스터 및 이를 이용한 물 분해 수소 생산 광 촉매 시스템
WO2022250347A1 (ko) 유기 황 화합물의 제조방법
WO2017135638A1 (ko) 설폰아미드기 또는 아미드기를 포함하는 올레핀 복분해 반응용 전이금속 착물 및 이의 응용
WO2023282615A1 (ko) 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 박막의 증착 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528692

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021850773

Country of ref document: EP

Effective date: 20220517

NENP Non-entry into the national phase

Ref country code: DE