WO2021066409A1 - 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법 - Google Patents

프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법 Download PDF

Info

Publication number
WO2021066409A1
WO2021066409A1 PCT/KR2020/013097 KR2020013097W WO2021066409A1 WO 2021066409 A1 WO2021066409 A1 WO 2021066409A1 KR 2020013097 W KR2020013097 W KR 2020013097W WO 2021066409 A1 WO2021066409 A1 WO 2021066409A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
propylene
ammoxidation
precursor
silica carrier
Prior art date
Application number
PCT/KR2020/013097
Other languages
English (en)
French (fr)
Inventor
강경연
김지연
최준선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200123875A external-priority patent/KR102623894B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20872812.1A priority Critical patent/EP3862080A4/en
Priority to JP2021524381A priority patent/JP7174846B2/ja
Priority to US17/296,529 priority patent/US20220023837A1/en
Priority to CN202080006434.6A priority patent/CN113164929B/zh
Publication of WO2021066409A1 publication Critical patent/WO2021066409A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the present invention relates to a catalyst for ammoxidation of propylene, a method for preparing the same, and a method for ammoxidation of propylene using the same.
  • the ammoxidation process of propylene is based on a reduction reaction of reacting ammonia and propylene and a mechanism of reoxidation by oxygen, the conversion rate of the reactant (i.e., propylene), and the selectivity of the reaction product (i.e., acrylonitrile). And catalysts of various compositions to increase the yield have been studied.
  • the catalyst of the secondary particle structure has metal oxide particles evenly distributed inside and outside, but contains almost no internal pores, so that a portion capable of participating in the ammoxidation reaction of propylene is limited to the external surface portion. will be.
  • the present invention provides a catalyst for ammoxidation of propylene that can participate in the reaction as well as the outer surface portion (ie, the surface of the catalyst) and the inner surface (pores) thereof, and by using such a catalyst, acrylonitrile in a higher yield It is to manufacture.
  • the catalyst of one embodiment may have a large effective surface area capable of participating in the reaction, and thus may have high catalytic efficiency and reactivity.
  • FIG. 1 schematically shows a catalyst prepared using coprecipitation and spray drying.
  • Example 3 is an SEM image (100 magnification) of the catalyst of Example 1.
  • first and second to be used hereinafter may be used to describe various elements, but the elements are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • particle diameter Dv means a particle diameter at the v% point of the cumulative volume distribution according to the particle diameter. That is, D50 is the particle diameter at 50% of the cumulative volume distribution according to the particle diameter, D90 is the particle diameter at 90% of the cumulative volume distribution according to the particle diameter, and D10 is at 10% of the cumulative volume distribution according to the particle diameter. It is the particle size.
  • the Dv can be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500) to measure the difference in the diffraction pattern according to the particle size when the particles pass through the laser beam. Yields D10, D50, and D90 can be measured by calculating the particle diameters at the points at 10%, 50%, and 90% of the cumulative volume distribution according to the particle diameter in the measuring device.
  • a laser diffraction particle size measuring device for example, Microtrac S3500
  • a metal oxide represented by the following formula (1) is supported on a silica carrier; In a state in which the metal oxide is supported on a silica carrier, including pores having a diameter of 5 to 200 nm and a volume of 0.1 to 3.0 cm 3 /g, the BET specific surface area is 50 m 2 /g to 1000 m 2 /g , To provide a catalyst for ammoxidation of propylene:
  • A is one or more elements of Ni, Mn, Co , Zn, Mg, Ca, and Ba,
  • B is one or more elements of Li, Na, K, Rb, and Cs,
  • C is one or more elements of Cr, W, B, Al, Ca, and V, and
  • a to e, and x are a fraction of an atom or group, respectively, a is 0.1 to 5, b is 0.1 to 5, c is 0.01 to 10, d is 0.01 to 2, and e is 0 to 10 , x is 24 to 48.
  • a generally known catalyst for ammoxidation of propylene is prepared through coprecipitation and spray drying, and is provided in a secondary particle structure in which metal oxide nanoparticles and silica nanoparticles are aggregated (FIG. 1).
  • the catalyst of the embodiment may be prepared by an impregnation method, and thus may be provided in a structure in which a metal oxide is supported on a silica carrier (FIG. 2).
  • a silica carrier may be immersed in a metal precursor solution prepared to satisfy a stoichiometric molar ratio of a desired metal oxide, and the metal precursor solution may be impregnated in the silica carrier.
  • the metal precursor remains on the pore walls of the silica carrier, and the metal precursor is oxidized in the firing process to form a film that continuously coats the pore walls of the silica carrier.
  • the catalyst of one embodiment thus prepared may have less fine powder content and superior durability than a catalyst prepared with the same composition through co-precipitation and spray drying, even if the classification process is not performed as a post-treatment after manufacture.
  • the catalyst of one embodiment is a catalyst by controlling the metal oxide composition to further include not only Mo and Bi known to increase the activity of the ammoxidation reaction, but also a metal forming an active point of an appropriate level for the ammoxidation reaction of propylene. It can further increase the activity.
  • the portion that can participate in the ammoxidation reaction of propylene by evenly supporting the metal oxide in the inner pores of the silica carrier is not only the outer surface portion (i.e., the surface of the catalyst) but also the inner surface (pore ), there is an advantage.
  • the catalyst of the embodiment includes pores having a diameter of 5 to 200 nm and a volume of 0.1 to 3.0 cm 3 /g in a state in which the metal oxide is supported on a silica carrier, and a BET specific surface area of 50 m 2 /g to 1000 m 2 /g.
  • the pore size and volume are significantly larger, and the BET specific surface area directly connected to the effective surface area capable of adsorbing ammonia gas and propylene gas is much. Means wide.
  • the catalyst of the embodiment may include a silica carrier including second pores; An inner coating layer that continuously coats the walls of the second pores and includes a metal oxide represented by Chemical Formula 1; And first pores located inside the second pores and occupying an empty space excluding the inner coating layer.
  • the catalyst of the embodiment may have an egg-shell structure.
  • the silica carrier may include a non-porous core portion; And a porous shell portion positioned on the surface of the non-porous core and including second pores.
  • the porous shell includes a concave portion and a convex portion of a surface, and the concave portion has the second pores open to the surface of the porous shell. It may be formed.
  • the catalyst of the embodiment may include a coating layer that continuously coats the concave portions and the convex portions of the porous shell and includes a metal oxide represented by Chemical Formula 1; And first pores occupying an empty space excluding the coating layer in the concave portion of the silica carrier.
  • the silica carrier on which the metal oxide is not supported has a D50 size of 20 to 400 ⁇ m; Including second pores having a diameter of 10 to 200 nm and a volume of 0.1 to 3 cm 3 /g;
  • the BET specific surface area may be 50 to 1000 m 2 /g.
  • the D50 of the silica carrier itself without metal oxide has a lower limit of 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, or 43 ⁇ m or more, and the upper limit is It may be 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the second pores contained in the silica carrier itself not carrying the metal oxide have a diameter of 10 nm or more, 15 nm or more, or 20 nm or more, and 200 nm or less, 100 nm or less, 50 nm or less, 40 Nm or less, or 30 nm or less;
  • the lower limit of the volume is 0.1 cm 3 /g or more, 0.3 cm 3 /g or more, 0.5 cm 3 /g or more, 0.7 cm 3 /g or more, 0.9 cm 3 /g or more, 1.1 cm 3 /g or more, 1.3 cm 3 / g or more, or 1.5 cm 3 /g or more, and the upper limit is 3 cm 3 /g or less, 2.8 cm 3 /g or less, 2.6 cm 3 /g or less, 2.4 cm 3 /g or less, 2.2 cm 3 /g or less, It can be 2.0 cm 3 /g or less, 1.8 cm 3 /g or less, or 1.6 cm 3 /g or
  • the silica carrier itself which is not supported with the metal oxide, has a lower limit of the BET specific surface area of 50 m 2 /g or more, 100 m 2 /g or more, 150 m 2 /g or more, 200 m 2 /g or more, or 250 m 2 /g or more, 1000 m 2 /g or less, 900 m 2 /g or less, 800 m 2 /g or less, 700 m 2 /g or less, 600 m 2 /g or less, 500 m 2 /g or less , 400 m 2 /g or less, or 300 m 2 /g or less.
  • the catalyst of the embodiment has a D50 size of 30 to 200 ⁇ m; It includes first pores having a diameter of 5 nm or more and 200 nm or less and a volume of 0.1 to 3.0 cm 3 /g;
  • the BET specific surface area may be 50 to 1000 m 2 /g.
  • the lower limit of the D50 particle size is 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 45 ⁇ m or more, or 50 ⁇ m, while the upper limit is 200 ⁇ m or less, 190 It may be ⁇ m or less, 180 ⁇ m or less, 170 ⁇ m or less, 160 ⁇ m or less, or 150 ⁇ m or less.
  • the first pores included in the catalyst of the embodiment have a lower limit of the diameter of 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, or 10 nm.
  • the upper limit can be set to 200 nm or less, 170 nm or less, 150 nm or less, 130 nm or less, or 100 nm or less; While the lower limit of the volume is 0.1 cm 3 /g or more, 0.2 cm 3 /g or more, 0.3 cm 3 /g or more, 0.4 cm 3 /g or more, 0.5 cm 3 /g or more, or 0.6 cm 3 /g or more, the upper limit is It can be 3.0 cm 3 /g or less, 2.7 cm 3 /g or less, 2.5 cm 3 /g or less, 2.3 cm 3 /g or less, or 2.0 cm 3 /g or less.
  • the catalyst of the embodiment has a lower limit of the BET specific surface area of 50 m 2 /g or more, 52 m 2 /g or more, 55 m 2 /g or more, 57 m 2 /g or more, or 60 m 2 /g or more, and the upper limit is 1000 m 2 /g or less, 900 m 2 /g or less, 800 m 2 /g or less, 700 m 2 /g or less, 600 m 2 /g Or less, or 500 m 2 /g or less.
  • the pore diameter and volume before and after the metal oxide is supported refer to the average pore size and volume derived from the BJH equation through a generally known nitrogen adsorption and desorption experiment.
  • the BET specific surface area before and after the metal oxide is supported can be obtained using a generally known BET measuring device.
  • the BET specific surface area, the diameter and volume of the first pores provided by the catalyst of the embodiment are improved compared to the catalyst of the secondary particle structure, and accordingly, while converting propylene at a higher ratio, with higher selectivity and yield. Acrylonitrile can be obtained.
  • the larger the diameter of the first pores the larger the volume due to this, and the BET specific surface area may also increase.
  • the diameter and volume of the entire catalyst are the same, the larger the diameter occupied by the first pores, the easier the inflow of propylene as the reactant and the discharge of acrylonitrile as the product improves the reaction characteristics.
  • the occupied volume decreases, and accordingly, the volume occupied by the metal oxide is relatively reduced, thereby reducing the active point, thereby deteriorating the reactivity.
  • the diameter and volume of the first pores, the diameter and the BET specific surface area of the catalyst pores including the first pores may be controlled by comprehensively considering the characteristics of the desired catalyst.
  • the first porosity of the final catalyst may be affected not only by the second porosity of the silica carrier, but also by the amount of the metal precursor solution impregnated in the silica carrier. A detailed description of this will be described later.
  • the effect of increasing the conversion rate by increasing the rate of movement of the lattice oxygen of molybdenum of Fe, and the formation of a complex oxide with molybdenum of Co improves the partial oxidation reaction characteristics of propylene.
  • the activity in the ammoxidation reaction of propylene may be higher:
  • a to d, and x are the fractions of an atom or group, respectively, a is 0.1 to 5, specifically 0.1 to 2.0, b is 0.1 to 5, specifically 0.5 to 3.0, c is 0.01 to 10 , Specifically 1 to 10, d is 0.01 to 2, specifically 0.01 to 1.0, x may be 24 to 48, specifically 28 to 45.
  • Metal oxide weight ratio of silica carrier
  • the catalyst of one embodiment is a weight ratio of 10:90 to 15:95, specifically 20:80 to 50:50, such as 15:85 to 35:65 of the metal oxide and the silica support (metal oxide: silica support) Can be included as.
  • the catalyst of the embodiment may have high selectivity of acrylonitrile with high activity.
  • a method of preparing the catalyst of the above-described embodiment is provided using an impregnation method.
  • the catalyst of one embodiment may be prepared through a series of processes in which a metal precursor solution is supported on the silica carrier using an impregnation method, dried and then calcined.
  • A is one or more elements of Ni, Mn, Co, Zn, Mg, Ca, and Ba,
  • B is one or more elements of Li, Na, K, Rb, and Cs,
  • C is one or more elements of Cr, W, B, Al, Ca, and V, and
  • a to e, and x are the fractions of atoms or groups, respectively, a is 0.1 to 5, b is 0.1 to 5, c is 0.01 to 10, d is 0.01 to 2, and e is 0 to 10 , x is 24 to 48.
  • the step of preparing the first precursor solution may be a step of dissolving the Mo precursor in water at 20 to 80° C. to prepare a solution including water and the Mo precursor.
  • an additive including citric acid, oxalic acid, or a mixture thereof may be used.
  • the additive functions as a strength modifier.
  • the additive makes the first precursor solution transparent, so that a mixture precursor in a completely dissolved state can be prepared.
  • the weight ratio of the molybdenum precursor and the additive may satisfy 1:0.1 to 1:1, specifically 1:0.2 to 1:0.7, and the solubility of the molybdenum precursor increases within this range. It can be, but is not limited thereto.
  • the second solution may include the remaining metal precursors except for the Mo precursor included in the first precursor solution.
  • the step of preparing the second precursor solution includes essentially a Bi precursor, an Fe precursor, an A precursor, and a B precursor in water at 20 to 50° C., and optionally, a C precursor (Cr, W, B , Al, Ca, and V may be to prepare a second precursor solution further comprising one or more elements).
  • the type of metal precursor other than the Mo precursor may be selected in consideration of the composition of the metal oxide in the final catalyst.
  • a second precursor solution including water, a Bi precursor, an Fe precursor, a Co precursor, and a K precursor may be prepared.
  • Processes of preparing the first and second precursor solutions are each independent, and the order of preparation is not limited.
  • first and second precursor solutions After mixing the first and second precursor solutions, they may be supported on a silica carrier.
  • the silica carrier including the aforementioned second pores is added to the mixture of the first and second precursor solutions, so that the mixture of the first and second precursor solutions is supported in the first pores in the silica support. I can.
  • the size of the D50 of the silica carrier on which the metal oxide is not supported is 20 to 400 ⁇ m; It may include second pores having a diameter of 10 to 200 nm and a volume of 0.1 to 3 cm 3 /g.
  • the silica carrier on which the metal oxide is not supported itself may have a BET specific surface area of 50 to 1000 m 2 /g, specifically 100 to 700 m 2 /g.
  • the first pores having a diameter of 5 nm or more and 100 nm or less, specifically 10 to 100 nm, and a volume of 0.2 to 3.0 cm 3 /g, specifically 0.2 to 2.0 cm 3 /g, are included. It is possible to obtain a catalyst.
  • the BET specific surface area of the final gun medium may be 50 to 1000 m 2 /g, specifically 60 to 500 m 2 /g,
  • Drying the silica carrier on which the mixture of the first and second precursor solutions is supported may include first vacuum drying the silica carrier on which the mixture of the first and second precursor solutions is supported at 120 to 160 mbar, and The first vacuum-dried material may be secondarily vacuum-dried at 30 to 50 mbar to obtain a silica carrier on which a mixture of the first and second precursor solutions is supported.
  • the first vacuum drying is performed at 60 to 80° C. for 1 to 2 hours, and the second vacuum drying is performed at 80 to 100° C. for 15 to 45 minutes, whereby the solvent (ie, water) is removed.
  • the solvent ie, water
  • the material on which the secondary vacuum drying has been completed can be fired immediately, but by tertiary drying at normal pressure, even the solvent (ie, water) remaining after the secondary vacuum drying can be effectively removed.
  • the third drying may be performed at 100 to 150 °C for 20 to 30 hours.
  • the solvent ie, water
  • the solvent there is no particular limitation as long as it is a drying condition capable of obtaining a carrier on which the first and second precursors are supported.
  • the dried material that is, the carrier on which the first and second precursors are supported, is calcined for 2 to 5 hours in a temperature range of 500 to 700° C. to finally obtain a catalyst.
  • drying and firing conditions are only examples, and a condition capable of sufficiently removing the solvent from the internal pores of the carrier and oxidizing the metal precursor is sufficient.
  • a method for ammoxidation of propylene comprising reacting propylene and ammonia in the presence of the catalyst of the above-described embodiment in a reactor.
  • the catalyst of the embodiment has high activity and stability at high temperature, and is used for ammoxidation reaction of propylene to increase the conversion rate of propylene, selectivity and yield of acrylonitrile.
  • Mo precursor solution 10.592 g of Mo precursor ((NH 4 ) 6 Mo 7 O 24 ) and 3.18 g of citric acid were added and mixed in distilled water at 60° C. to prepare a Mo precursor solution.
  • the Mo precursor solution; And the Bi, Fe, Co, and K precursor mixture solution was mixed to complete a precursor mixture solution of Mo, Bi, Fe, Co, and K.
  • the total amount of distilled water is 54.07 g.
  • the silica carrier was added to the precursor mixture solution of Mo, Bi, Fe, Co, and K, and sequentially stirred at room temperature and 80° C. for 2 hours, respectively, and the Mo, Bi, Fe , Ni, Co, and K precursor mixture solution was sufficiently supported.
  • the silica carrier on which the precursor mixture solution of Bi, Fe, Co, and K is supported is recovered and introduced into a rotary vacuum dryer, followed by primary vacuum drying for 1 hour and 40 minutes under a pressure of 140 mbar and a temperature of 70° C. Then, a second vacuum drying was performed for 30 minutes under a pressure of 40 mbar and a temperature of 90°C.
  • Example 1 The material completed until the secondary vacuum drying is recovered, put into an oven, and dried for a third time for 24 hours under normal pressure and 110°C temperature conditions, and then maintained at a temperature of 580°C in a box sintering furnace in an air atmosphere. While performing heat treatment for 3 hours, the catalyst of Example 1 was finally obtained.
  • the internal pressure of the reactor filled with the quartz fiber and the catalyst was maintained at normal pressure (1 atm), and the internal temperature of the reactor was raised at a temperature increase rate of 10 °C/min, while nitrogen and ammonia gas were flowed as a pretreatment process. Accordingly, after the temperature inside the reactor reached 400° C., which is the temperature at which the ammoxidation reaction is possible, it was maintained in an atmosphere of reducing gas for 15 minutes to allow sufficient pretreatment.
  • a precursor solution was prepared according to the composition shown in Table 1 below, and the silica carriers shown in Table 2 were used, but the rest were the same as in Example 1 to prepare each of the catalysts of Examples 2 to 7.
  • each catalyst of Examples 2 to 7 was used to perform the ammoxidation process of flophyllene, and the product was recovered, and analysis was performed in the same manner as in Example 1.
  • Mo precursor ((NH 4 ) 6 Mo 7 O 24 ) and 3.18 g of citric acid were added and mixed in distilled water at 60° C. to prepare a Mo precursor solution.
  • the Mo precursor solution; And the Bi, Fe, Co, and K precursor mixture solution, silica sol 22.530 g (LUDOX AS 40, solid content: 40%) was added and stirred, and then, using a disk-type spray dryer. It was spray-dried under conditions of 120°C (inlet) and 230°C (outlet).
  • the catalyst of Comparative Example 1 was used instead of the catalyst of Example 1, and the ammoxidation process of flophyllene was performed in the same manner as in Example 1.
  • a precursor solution was prepared according to the composition shown in Table 1 below, and the silica carrier shown in Table 2 was used, but the rest was the same as in Comparative Example 1 to prepare a catalyst of Comparative Example 2.
  • a precursor solution was prepared according to the composition shown in Table 1 below, and the silica carrier shown in Table 2 was used, but the rest were the same as in Example 1 to prepare the catalyst of Comparative Example 3.
  • Mo precursor ((NH 4 ) 6 Mo 7 O 24 ) and 3.18 g of citric acid were added and mixed in distilled water at 60° C. to prepare a Mo precursor solution.
  • the Mo precursor solution; And the Bi, Co, Fe, Ni, K, Ce, Mg, and Rb precursor mixture solution was mixed to complete a precursor mixture solution of Mo, Bi, Fe, Co, and K.
  • the total amount of distilled water is 27.33 g.
  • Mo is (NH 4 ) 6 Mo 7 O 24
  • Bi is Bi(NO 3 ) 3 ⁇ 5H 2 O
  • Co is Co(NO 3 ) 2 ⁇ 6H 2 O
  • Fe is Fe( NO 3 ) 2 ⁇ 9H 2 O
  • K is KNO 3 .
  • the omitted unit is g.
  • Comparative Example 4 in which a number of substances were added to the dissimilar metal precursor solution was omitted from Table 1 for convenience.
  • BET specific surface area Using a BET specific surface area measuring device (manufacturer: BEL Japan, device name: BELSORP_Mini), the specific surface area was evaluated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77 K), and the evaluation results are shown in Table 3. I got it.
  • Pore size and volume Using a BET specific surface area measuring device (manufacturer: BEL Japan, device name: BELSORP_Mini), the adsorption amount measured up to 1 relative pressure (P/P0) under liquid nitrogen temperature (77K) and measured up to 0.03 The pore size and volume were measured from the BJH formula using the amount of desorption, and are shown in Table 3.
  • Catalyst composition can be measured by the ICP method. After weighing 0.01 g of catalyst in a corning tube, 3 ml of nitric acid and 0.1 ml of hydrofluoric acid were added to the sample, and then eluted for at least 1 hour in an ultra-sonicator. To this, 1 ml of saturated boric acid water was added and 50 ml of tertiary distilled water was added to prepare a solution, and then quantitative analysis of each component was performed using ICP-OES quantitative analysis equipment (PerkinElmer, OPTIMA 8300DV). And the composition and formulation thereof are shown in Table 3.
  • D50 Using a laser diffraction-type particle size analyzer (Microtrac, S3500), after sonication treatment at 30 watts for 1 minute after the sample was introduced, D50 based on volume was derived through particle size analysis, and is shown in Table 3.
  • the catalysts of Comparative Examples 1 and 2 were prepared through coprecipitation and spray drying, and as a result, almost no pores were included, and the BET specific surface area was relatively narrow.
  • the catalysts of Examples 1 to 7 were prepared using the impregnation method, and as a result, had a large number of large pores and had a relatively large BET specific surface area.
  • SEM A Hitachi S-4800 Scanning Electron Microscope was used to obtain a scanning electron microscope (SEM) image at 100 magnification, and each SEM image was shown. 3 (Example 1) and Fig. 4 (Comparative Example 1).
  • the catalyst of Comparative Example 1 generally has a particle diameter of 28 to 50 ⁇ m, and instead of forming a secondary particle structure in which metal oxide particles are uniformly distributed inside and outside, it is found that almost no internal pores are included. Able to know.
  • the catalyst of Example 1 generally has a particle diameter of 50 to 112 ⁇ m, and a metal oxide coating layer for continuously coating the porous shell portion of the silica carrier is formed. It can be seen that there is an empty space (pore).
  • the catalyst of Comparative Example 4 it was prepared by the impregnation method and, as active metals included Mo and Bi as well as a plurality of dissimilar metals, it had a BET specific surface area equivalent to that of Examples 1 to 7. However, in order to evaluate the effect of the active metal, it is necessary to further analyze the ammoxidation product.
  • FID products such as ethylene (ehthlene), hydrogen cyanide, acetaldehyde, acetonitrile, and acetonitrile were analyzed, and as TCD , NH 3 , O 2 , Gas products such as CO and CO 2 and unreacted propylene were analyzed to determine the number of moles of propylene reacted and the number of moles of ammoxidation products in Examples and Comparative Examples, respectively.
  • the catalysts of Comparative Examples 1 and 2 as a result of being prepared through coprecipitation and spray drying, contain almost no internal pores, so that the part that can participate in the reaction is limited to the outer surface part.
  • the catalyst of Comparative Example 3 although prepared by the impregnation method, has a small effective surface area capable of participating in the reaction due to the influence of a metal oxide containing only Mo and Bi as active metals.
  • the catalyst of Comparative Example 4 was prepared by an impregnation method and contained not only Mo and Bi as active metals, but also a plurality of dissimilar metals, so that the effective surface area itself capable of participating in the reaction was large.
  • the catalysts of Examples 1 to 7 contain pores having a large size and volume, and have a large effective surface area capable of participating in the reaction.
  • the catalyst capable of improving the conversion rate of propylene and the yield of acrylonitrile during the ammoxidation reaction of propylene satisfies the above formula (1), and the metal oxide is supported on a silica carrier. It can be seen that it includes pores having a diameter of 5 to 200 nm and a volume of 0.1 to 3.0 cm 3 /g, and a BET specific surface area of 50 m 2 /g to 1000 m 2 /g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법에 관한 것이다. 구체적으로, 본 발명의 일 구현예에서는, 금속 산화물이 실리카 담체에 담지된 구조로 촉매를 구현하여, 가스의 흡탈착이 유용한 메조 기공을 이용함으로써 높은 반응 표면적을 제공할 수 있고, 궁극적으로는 프로필렌의 암모산화 반응을 높일 수 있는 효과가 있다.

Description

프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
관련 출원(들)과의 상호 인용
본 출원은 2019년 9월 30일자 한국 특허 출원 제10-2019-0121172호, 2019년 10월 25일자 한국 특허 출원 제10-2019-0134088호 및 2020년 9월 24일자 한국 특허 출원 제10-2020-0123875호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법에 관한 것이다.
프로필렌의 암모산화 공정은, 암모니아와 프로필렌을 반응시키는 환원 반응과 산소에 의해 재산화되는 매커니즘을 기반으로 하며, 그 반응물(즉, 프로필렌)의 전환율, 반응 생성물(즉, 아크릴로니트릴)의 선택도 및 수율을 높이기 위한 다양한 조성의 촉매가 연구되어 왔다.
구체적으로, Mo(몰리브덴)-Bi(비스무스) 산화물 촉매가 제시된 이래, 그 촉매 활성과 안정성을 높이기 위해 다양한 산화 상태를 가지는 금속이 첨가된 촉매들이 연구된 바 있다. 그 결과, 첨가된 금속 종류나 양에 따라, 아크릴로니트릴의 수율은 초기 연구 대비 향상된 편이다.
다만, 촉매 조성의 다양화에도 불구하고, 그 구조 및 물성에 대한 연구가 부족하여, 프로필렌의 암모산화 시 반응물(즉, 프로필렌)의 전환율과 반응 생성물(즉, 아크릴로니트릴)의 선택도를 현저하게 높이는 데에는 한계가 있었다.
구체적으로, 목적하는 조성의 금속 전구체와 나노 실리카 졸을 공침시킨 뒤, 분무 건조하고 소성함으로써, 금속 산화물 입자와 실리카 입자가 집합된 2차 입자 구조의 촉매를 얻는 것이 일반적이다.
보다 구체적으로, 상기 2차 입자 구조의 촉매는, 내부 및 외부에 금속 산화물 입자가 골고루 분포된 대신, 내부 기공이 거의 포함되지 않아, 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부로 제한되는 것이다.
본 발명은, 외부 표면부(즉, 촉매의 표면)뿐만 아니라 그 내부 표면(기공) 또한 반응에 참여할 수 있는 프로필렌의 암모산화용 촉매를 제공하고, 이러한 촉매를 사용함으로써 더 높은 수율로 아크릴로니트릴을 제조하기 위한 것이다.
구체적으로, 본 발명의 일 구현예에서는, 특정 조성의 금속 산화물이 실리카 담체에 담지된 구조를 가지고, 이처럼 담지된 상태에서의 기공 크기 및 부피가 크며 BET 비표면적이 넓은 프로필렌의 암모산화용 촉매를 제공한다.
상기 일 구현예의 촉매는, 반응에 참여할 수 있는 유효 표면적이 넓어, 촉매 효율과 반응성이 높을 수 있다.
따라서, 상기 일 구현예의 촉매를 사용하면, 더 높은 비율로 프로필렌을 전환시키면서, 더 높은 선택도 및 수율로 아크릴로니트릴을 제조할 수 있다.
도 1은, 공침과 분무건조를 이용하여 제조된 촉매를 모식적으로 도시한 것이다.
도 2은, 상기 일 구현예에 따른 촉매를 모식적으로 도시한 것이다.
도 3은, 실시예 1의 촉매에 대한 SEM 이미지(100 배율)이다.
도 4는, 비교예 1의 촉매에 대한 SEM 이미지(100 배율)이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 이하에서 사용될 제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하에서 "입경 Dv" 은, 입경에 따른 부피 누적 분포의 v% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 부피 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 부피 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 부피 누적 분포의 10% 지점에서의 입경이다.
상기 Dv는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 부피 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
이하, 도면을 참조하여 상기 일 구현예의 프로필렌의 암모산화용 촉매를 상세히 설명하도록 한다.
프로필렌의 암모산화용 촉매
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 금속 산화물이 실리카 담체에 담지되고; 상기 금속 산화물이 실리카 담체에 담지된 상태에서, 직경이 5 내지 200 nm이고 부피가 0.1 내지 3.0 cm 3/g인 기공을 포함하면서, BET 비표면적이 50 m 2/g 내지 1000 m 2/g 인, 프로필렌의 암모산화용 촉매를 제공한다:
[화학식 1]
Figure PCTKR2020013097-appb-img-000001
상기 화학식 1에서,
A 는 Ni, Mn, Co , Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
B는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
C는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
상기 a 내지 e, 및 x는 각각 원자 또는 원자단의 분율로서, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 2이며, e는 0 내지 10이고, x는 24 내지 48이다.
일반적으로 알려진 프로필렌의 암모산화용 촉매는, 공침과 분무건조를 통해 제조되어, 금속 산화물 나노입자와 실리카 나노입자가 집합된 2차 입자 구조로 제공된다(도 1).
이는, 내부 및 외부에 금속 산화물 입자가 골고루 분포된 대신, 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 2차 입자의 표면)로 제한되고, 작은 표면적을 제공하므로, 프로필렌의 암모산화 반응 중 촉매 표면으로부터 탈착되는 암모니아의 양이 많다.
그에 반면, 상기 일 구현예의 촉매는, 함침법으로 제조되어, 금속 산화물이 실리카 담체에 담지된 구조로 제공될 수 있다(도 2).
예를 들어, 목적하는 금속 산화물의 화학양론적 몰비를 만족하도록 제조된 금속 전구체 용액에 실리카 담체를 담가, 상기 실리카 담체 내에 상기 금속 전구체 용액을 함침시킬 수 있다.
이후, 건조 공정을 통해 용매(즉, 물)를 제거하면, 실리카 담체의 기공벽에 금속 전구체가 잔존하게 되고, 소성 공정에서 금속 전구체가 산화되면서 실리카 담체 기공벽을 연속적으로 코팅하는 막을 형성할 수 있다.
이처럼 제조된 일 구현예의 촉매는, 제조 후 후처리로써 분급 공정을 진행하지 않더라도, 공침과 분무건조를 통해 동일한 조성으로 제조된 촉매보다 미분 함량이 적고 내구성은 뛰어날 수 있다.
또한, 상기 일 구현예의 촉매는, 암모산화 반응의 활성을 높이는 것으로 알려진 Mo 및 Bi뿐만 아니라, 프로필렌의 암모산화 반응에 대한 적합한 수준의 활성점을 형성하는 금속을 더 포함하도록 금속 산화물 조성을 제어함으로써 촉매 활성을 더욱 높일 수 있다.
특히, 상기 일 구현예의 촉매에서, 실리카 담체의 내부 기공에 상기 금속 산화물을 골고루 담지하여 프로필렌의 암모산화 반응에 참여할 수 있는 부위가 외부 표면부(즉, 촉매의 표면)뿐만 아니라 그 내부 표면(기공)으로 확장되는 이점이 있다.
구체적으로, 상기 일 구현예의 촉매는, 상기 금속 산화물이 실리카 담체에 담지된 상태에서, 직경이 5 내지 200 nm이고 부피가 0.1 내지 3.0 cm 3/g인 기공을 포함하면서, BET 비표면적이 50 m 2/g 내지 1000 m 2/g 이다.
이는, 공침과 분무건조를 통해 제조되어 2차 입자 구조를 가지는 촉매에 대비하여, 기공의 크기 및 부피가 현저히 크고, 암모니아 가스와 프로필렌 기체를 흡착시킬 수 있는 유효 표면적과 직결되는 BET 비표면적이 훨씬 넓은 것을 의미한다.
이하, 상기 일 구현예의 촉매를 보다 상세히 설명한다,
촉매의 구조
상기 일 구현예의 촉매는, 제2 기공을 포함하는 실리카 담체; 상기 제2 기공의 벽면을 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 내부 코팅층; 및 상기 제2 기공 내부에 위치하고, 상기 내부 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 구조일 수 있다.
구체적으로, 상기 일 구현예의 촉매는, 에그-쉘(egg-shell) 구조를 가질 수 있다.
이를 위해, 상기 실리카 담체로는, 비다공성(非多孔性) 코어부; 및 상기 비다공성(非多孔性) 코어의 표면에 위치하고, 제2 기공을 포함하는, 다공성(多孔性) 쉘부;을 포함하는 것을 사용할 수 있다.
보다 구체적으로, 상기 다공성(多孔性) 쉘은 표면의 요부(凹部) 및 철부(凸部)를 포함하고, 상기 요부(凹部)는 상기 제2 기공이 상기 다공성(多孔性) 쉘의 표면으로 열려서 형성된 것일 수 있다.
이에 따라, 상기 일 구현예의 촉매는, 상기 다공성(多孔性) 쉘의 요부 및 철부를 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 코팅층; 및 상기 실리카 담체의 요부에, 상기 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 구조를 가질 수 있다.
위와 같은 구조 상, 상기 실리카 담체의 제2 기공 특성을 조절함으로써, 최종 촉매의 제1 기공의 특성을 제어할 수 있다.
구체적으로, 상기 금속 산화물이 담지되지 않은 실리카 담체는, 그 자체의 D50 크기가 20 내지 400 ㎛이고; 직경이 10 내지 200 ㎚이고, 부피가 0.1 내지 3 cm 3/g인 제2 기공을 포함하면서; BET 비표면적이 50 내지 1000 m 2/g일 수 있다.
보다 구체적으로, 상기 금속 산화물이 담지되지 않은 실리카 담체 그 자체의 D50은, 하한을 20 ㎛ 이상, 25㎛ 이상, 30 ㎛ 이상, 35 ㎛ 이상, 40 ㎛ 이상, 또는 43 ㎛ 이상으로 하고, 상한을 400 ㎛ 이하, 300 ㎛ 이하, 200 ㎛ 이하, 100 ㎛ 이하, 80㎛ 이하, 또는 70㎛ 이하로 할 수 있다.
또한, 상기 금속 산화물이 담지되지 않은 실리카 담체 그 자체에 포함된 제 2 기공은, 직경이 10 ㎚ 이상, 15 ㎚ 이상, 또는 20 ㎚ 이상이고, 200 ㎚이하, 100 ㎚ 이하, 50 ㎚ 이하, 40 ㎚ 이하, 또는 30 ㎚ 이하이고; 부피의 하한을 0.1 cm 3/g 이상, 0.3 cm 3/g 이상, 0.5 cm 3/g 이상, 0.7 cm 3/g 이상, 0.9 cm 3/g 이상, 1.1 cm 3/g 이상, 1.3 cm 3/g 이상, 또는 1.5 cm 3/g 이상으로 하면서, 상한을 3 cm 3/g 이하, 2.8 cm 3/g 이하, 2.6 cm 3/g 이하, 2.4 cm 3/g 이하, 2.2 cm 3/g 이하, 2.0 cm 3/g 이하, 1.8 cm 3/g 이하, 또는 1.6 cm 3/g 이하로 할 수 있다.
또한, 상기 금속 산화물이 담지되지 않은 실리카 담체 그 자체는, BET 비표면적의 하한을 50 m 2/g 이상, 100 m 2/g 이상, 150 m 2/g 이상, 200 m 2/g 이상, 또는 250 m 2/g 이상으로 하면서, 1000 m 2/g 이하, 900 m 2/g 이하, 800 m 2/g 이하, 700 m 2/g 이하, 600 m 2/g 이하, 500 m 2/g 이하, 400 m 2/g 이하, 또는 300 m 2/g 이하로 할 수 있다.
이 경우, 상기 금속 산화물이 실리카 담체에 담지된 상태에서, 상기 일 구현예의 촉매는, D50 크기가 30 내지 200 ㎛이면서; 직경이 5 nm 이상 200nm 이하이고, 부피가 0.1 내지 3.0 cm 3/g 인 제1 기공을 포함하며; BET 비표면적이 50 내지 1000 m 2/g일 수 있다.
보다 구체적으로, 상기 금속 산화물이 실리카 담체에 담지된 상태에서, D50 입경의 하한을 30 ㎛ 이상, 35 ㎛ 이상, 40 ㎛ 이상, 45 ㎛ 이상, 또는 50 ㎛ 으로 하면서, 상한을 200 ㎛ 이하, 190 ㎛ 이하, 180 ㎛ 이하, 170 ㎛ 이하, 160 ㎛ 이하, 또는 150 ㎛ 이하로 할 수 있다.
또한, 상기 금속 산화물이 실리카 담체에 담지된 상태에서, 상기 일 구현예의 촉매에 포함된 제1 기공은, 직경의 하한을 5 ㎚ 이상, 6 ㎚ 이상, 7 ㎚ 이상, 8 ㎚ 이상, 또는 10 ㎚ 이상으로 하면서, 상한을 200 ㎚ 이하, 170 ㎚ 이하 150 ㎚ 이하, 130 ㎚ 이하 또는 100 ㎚ 이하로 할 수 있고; 부피의 하한을 0.1 cm 3/g 이상, 0.2 cm 3/g 이상, 0.3 cm 3/g 이상, 0.4 cm 3/g 이상, 0.5 cm 3/g 이상 또는 0.6 cm 3/g 이상으로 하면서, 상한을 3.0 cm 3/g 이하, 2.7 cm 3/g이하, 2.5 cm 3/g이하, 2.3 cm 3/g이하 또는 2.0 cm 3/g이하로 할 수 있다.
또한, 상기 금속 산화물이 실리카 담체에 담지된 상태에서, 상기 일 구현예의 촉매는, BET 비표면적의 하한을 50 m 2/g 이상, 52 m 2/g 이상, 55 m 2/g 이상, 57 m 2/g 이상, 또는 60 m 2/g 이상으로 하면서, 상한을 1000 m 2/g 이하, 900 m 2/g 이하, 800 m 2/g 이하, 700 m 2/g 이하, 600 m 2/g 이하, 또는 500 m 2/g 이하로 할 수 있다.
참고로, 상기 금속 산화물의 담지 전후의 기공 직경 및 부피는 각각, 일반적으로 알려진 질소 흡탈착 실험을 통해 BJH 수식으로부터 도출된 평균 기공 크기 및 부피를 의미한다. 상기 금속 산화물의 담지 전후의 BET 비표면적은, 일반적으로 알려진 BET 측정 기기를 이용하여 구할 수 있다.
상기 일 구현예의 촉매가 제공하는 BET 비표면적, 제1 기공의 직경 및 부피는, 상기 2차 입자 구조의 촉매 대비 향상된 것이며, 이에 따라 더 높은 비율로 프로필렌을 전환시키면서, 더 높은 선택도 및 수율로 아크릴로니트릴을 수득할 수 있다.
상기 제시된 범위 내에서, 제1 기공의 직경이 클수록 이에 의한 부피도 크고, BET 비표면적도 넓어질 수 있다. 다만, 촉매 전체의 직경과 부피가 동일할 때, 그 중 제1 기공이 차지하는 직경이 클수록, 반응물인 프로필렌의 유입 및 생성물인 아크릴로 니트릴의 배출이 용이하여 반응 특성이 개선되나, 제 1기공이 차지하는 부피가 감소하고 이에 따라 상대적으로 상기 금속 산화물이 차지하는 부피가 감소되고, 이에 의해 활성점이 감소하여 반응성이 나빠질 수 있다.
이에, 목적하는 촉매의 특성을 종합적으로 고려하여, 상기 제1 기공의 직경 및 부피, 이를 포함하는 촉매 기공의 직경 및 BET 비표면적 등을 제어할 수 있다.
물론, 최종 촉매의 제1 기공 특성은, 상기 실리카 담체의 제2 기공 특성뿐만 아니라, 상기 실리카 담체에 함침되는 금속 전구체 용액의 양 등에도 영향을 받을 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
금속 산화물의 조성
한편, 상기 일 구현예의 촉매와 동일한 구조를 가지더라도, 상기 금속 산화물을 구성하는 성분들의 종류와 함량이 상기 화학식 1을 만족하지 못한다면, 프로필렌의 암모산화에 부족하거나 지나치게 밀도가 높은 활성점이 형성될 수 있다.
이에, 상기 금속 산화물을 구성하는 종류와 함량은 상기 화학식 1을 만족하도록 할 필요가 있다.
특히, 상기 금속 산화물이 전술한 화학식 1-1로 표시되는 것일 때, Fe의 몰리브덴의 격자 산소의 이동 속도를 높여 전환율을 높이는 효과, Co의 몰리브덴과의 복합 산화물 형성으로 프로필렌의 부분 산화 반응 특성을 높이는 효과, 및 K의 몰리브덴을 포함한 복합 산화물의 활성점을 분산시켜 아크릴로니트릴 선택도를 높이는 효과의 시너지 효과로, 프로필렌의 암모산화 반응에서의 활성도가 더 높아질 수 있다:
[화학식 1-1]
Figure PCTKR2020013097-appb-img-000002
상기 화학식 1-1에서,
상기 a 내지 d, 및 x는 각각 원자 또는 원자단의 분율로서, a는 0.1 내지 5이고, 구체적으로 0.1 내지 2.0 이고, b는 0.1 내지 5 이고, 구체적으로 0.5 내지 3.0이고, c는 0.01 내지 10이고, 구체적으로 1 내지 10이고, d는 0.01 내지 2이며, 구체적으로 0.01 내지 1.0 이며, x는 24 내지 48, 구체적으로 28 내지 45일수 있다.
금속 산화물:실리카 담체의 중량비
상기 일 구현예의 촉매는, 상기 금속 산화물 및 상기 실리카 담체를 10:90 내지 15:95, 구체적으로 20:80 내지 50:50, 예컨대 15:85 내지 35:65의 중량비(금속 산화물:실리카 담체)로 포함할 수 있다.
이 범위 내에서, 상기 일 구현예의 촉매는 높은 활성도와 함께 높은 아크릴로 니트릴의 선택도를 가질 수 있다.
프로필렌의 암모산화용 촉매의 제조 방법
본 발명의 다른 일 구현예에서는, 함침법을 이용하여 전술한 일 구현예의 촉매를 제조하는 방법을 제공한다.
앞서 간단히 설명한 바와 같이, 상기 일 구현예의 촉매는, 함침법을 이용하여 상기 실리카 담체에 금속 전구체 용액을 담지시키고, 건조 후 소성시키는 일련의 공정을 통해 제조될 수 있다.
보다 구체적으로, 상기 일 구현예의 촉매를 제조하는 방법으로,
Mo 전구체를 포함하는 제1 전구체 용액을 제조하는 단계,
Bi 전구체, Fe 전구체, A 전구체(A= Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 B 전구체(B= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)를 포함하는 제2 전구체 용액을 제조하는 단계,
금속의 몰비가 하기 화학식 1의 화학양론적 몰비를 만족하도록 하며, 상기 제1 및 제2 전구체 용액을 혼합하는 단계,
상기 제1 및 제2 전구체 용액의 혼합물을 실리카 담체에 담지시키는 단계,
상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계, 그리고
상기 건조된 물질을 소성하는 단계를 포함하는 방법을 제공한다:
[화학식 1]
Figure PCTKR2020013097-appb-img-000003
상기 화학식 1에서,
A 는 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
B는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
C는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
상기 a 내지 e, 및 x는 각각 원자 또는 원자단의 분율이며, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 2이며, e는 0 내지 10이고, x는 24 내지 48 이다.
제1 전구체 용액의 제조 공정
상기 제1 전구체 용액을 제조하는 단계는, 20 내지 80 ℃의 물에 Mo 전구체를 용해시켜, 물 및 Mo 전구체를 포함하는 용액을 제조하는 단계일 수 있다.
상기 제1 전구체 용액을 제조하는 단계에서, 구연산, 옥살산, 또는 이들의 혼합물을 포함하는 첨가제가 사용될 수 있다.
공침과 분무건조를 이용하는 촉매 제조 공정에서는, 상기 첨가제가 강도 조절제로 기능한다. 그러나, 상기 일 구현예에서는, 상기 첨가제가 상기 제1 전구체 용액을 투명하게 하여, 완전히 용해된 상태의 혼합물 전구체를 제조할 수 있게 한다.
상기 첨가제의 첨가 시, 상기 몰리브덴 전구체 및 상기 첨가제의 중량비는, 1 :0.1 내지 1:1, 구체적으로 1:0.2 내지 1:0.7를 만족하도록 할 수 있고, 이 범위 내에서 몰리브덴 전구체의 용해도가 증가할 수 있으나 이에 제한되는 것은 아니다.
제2 전구체 용액의 제조 공정
한편, 상기 제2 용액은, 상기 제1 전구체 용액에 포함된 Mo 전구체를 제외하고, 나머지 금속 전구체를 포함하도록 할 수 있다.
구체적으로, 상기 제2 전구체 용액을 제조하는 단계는, 20 내지 50 ℃의 물에, Bi 전구체, Fe 전구체, A 전구체, 및 B 전구체를 필수적으로 포함하며, 선택적으로 C 전구체(Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소)를 더 포함하는 제2 전구체 용액을 제조하는 것일 수 있다.
보다 구체적으로, 상기 제2 전구체 용액을 제조하는 단계에서, 최종적으로 목적하는 촉매 내 금속 산화물 조성을 고려하여, Mo 전구체를 제외한 금속 전구체의 종류를 선택할 수 있다.
예컨대, 전술한 화학식 1-1을 만족하는 금속 산화물 조성을 고려하여, 물, Bi 전구체, Fe 전구체, Co 전구체, 및 K 전구체를 포함하는 제2 전구체 용액을 제조할 수 있다.
상기 제1 및 제2 전구체 용액을 제조하는 공정은 각각 독립적이고, 제조 순서가 제한되는 것은 아니다.
상기 제1 및 제2 전구체 용액 혼합물의 담체 내 담지 공정
상기 제1 및 제2 전구체 용액을 혼합한 후, 이를 실리카 담체에 담지시킬 수 있다.
여기서, 앞서 언급한 제2 기공을 포함하는 실리카 담체를 상기 제1 및 제2 전구체 용액의 혼합물에 투입하여, 상기 실리카 담체 내 제1 기공에 상기 제1 및 제2 전구체 용액의 혼합물이 담지되도록 할 수 있다.
구체적으로, 상기 금속 산화물이 담지되지 않은 실리카 담체 그 자체의 D50 크기가 20 내지 400 ㎛이면서; 직경이 10 내지 200 ㎚이고, 부피가 0.1 내지 3 cm 3/g인 제2 기공을 포함할 수 있다.
또한, 상기 금속 산화물이 담지되지 않은 실리카 담체 그 자체는, BET 비표면적이 50 내지 1000 m 2/g, 구체적으로 100 내지 700 m 2/g 일 수 있다.
이와 같은 실리카 담체를 사용할 때, 최종적으로 직경이 5nm 이상 100nm 이하, 구체적으로 10 내지 100 nm이고, 부피가 0.2 내지 3.0 cm 3/g, 구체적으로 0.2 내지 2.0 cm 3/g인 제1 기공을 포함하는 촉매를 수득할 수 있다.
또한, 전술한 바와 같이, 상기 최종 총매의 BET 비표면적은 50 내지 1000 m 2/g, 구체적으로 60 내지 500 m 2/g 일 수 있다,
상기 제1 및 제2 전구체 용액 혼합물이 담체된 담체의 건조 공정
상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계는, 상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 120 내지 160 mbar에서 1차 진공 건조하는 단계, 및 상기 1차 진공 건조된 물질을 30 내지 50 mbar에서 2차 진공 건조하여, 상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 수득하는 단계를 포함할 수 있다.
구체적으로, 상기 1차 진공 건조는 60 내지 80 ℃에서 1 내지 2 시간 동안 수행하고, 상기 2차 진공 건조는 80 내지 100 ℃에서 15 내지 45 분 동안 수행함으로써, 용매(즉, 물)이 제거되고, 상기 제1 및 제2 전구체만 제1 기공의 벽면에 잔존할 수 있다.
상기 2차 진공 건조가 완료된 물질을 바로 소성할 수 있지만, 상압에서 3차 건조함으로써, 상기 2차 진공 건조 후 남아있는 용매(즉, 물)까지도 효과적으로 제거할 수 있다.
구체적으로, 상기 3차 건조는 100 내지 150 ℃에서 20 내지 30 시간 동안 수행될 수 있다.
다만, 이는 예시일 뿐이며, 용매(즉, 물)는 제거되고, 상기 제1 및 제2 전구체가 담지된 담체를 수득할 수 있는 건조 조건이라면 특별히 한정되지 않는다.
최종 소성 공정
최종적으로, 상기 건조된 물질, 즉, 상기 제1 및 제2 전구체가 담지된 담체를 500 내지 700 ℃의 온도 범위 내에서 2 내지 5 시간 동안 소성시켜, 최종적으로 촉매를 수득할 수 있다.
다만, 상기 건조 및 소성의 각 조건은 예시일 뿐이며, 상기 담체의 내부 기공으로부터 용매를 충분히 제거하고, 금속 전구체를 산화시킬 수 있는 조건이라면 충분하다.
프로필렌의 암모산화 방법
본 발명의 또 다른 일 구현예에서는, 반응기 내에서, 전술한 일 구현예의 촉매 존재 하에 프로필렌 및 암모니아를 반응시키는 단계를 포함하는, 프로필렌의 암모산화 방법을 제공한다.
상기 일 구현예의 촉매는, 높은 활성도와 함께 고온 안정성을 가지며, 프로필렌의 암모산화 반응에 이용되어 프로필렌의 전환율, 아크릴로니트릴의 선택도 및 수율을 높일 수 있다.
상기 일 구현예의 촉매 이외의 사항들에 대해서는, 당업계에 일반적으로 알려진 사항을 참고할 수 있어, 더 이상의 상세한 설명을 생략한다.
이하, 본 발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
실시예 1
(1) 전구체 용액의 제조 공정
60 ℃의 증류수에 10.592 g의 Mo 전구체((NH 4) 6Mo 7O 24) 및 3.18 g의 구연산(Citric acid)을 투입하고 혼합하여, Mo 전구체 용액을 제조하였다.
이와 독립적으로, 상온의 증류수에 1.819 g의 Bi 전구체(Fe(NO 3) 5H 2O), 9.488 g의 Co 전구체(Co(NO 3) 6H 2O), 2.990 g의 Fe 전구체(Fe(NO 3) 9H 2O), 및 0.354 g의 K 전구체(KNO 3)를 투입하고, 2.16 g의 질산(HNO 3)을 첨가한 뒤 혼합하여, Bi, Fe, Co, 및 K 전구체 혼합 용액을 제조하였다.
상기 Mo 전구체 용액; 및 상기 Bi, Fe, Co, 및 K 전구체 혼합 용액을 혼합하여, Mo, Bi, Fe, Co, 및 K의 전구체 혼합 용액을 완성하였다.
상기 전구체 혼합 용액에서, 증류수의 총량은 54.07 g이다.
(2) 실리카 담체 내 전구체 용액의 담지 공정 (함침법 이용)
D50 입경이 55 ㎛이고, 내부 기공 크기가 24.4 nm 이고, 질소 흡착법에 따른 BJH 기공 부피가 1.58 cm 3/g이며, BET 비표면적이 283 m 2/g인 실리카(SiO 2, SP948, Grace) 입자를 담체로 사용하였다.
상기 Mo, Bi, Fe, Co, 및 K의 전구체 혼합 용액에 상기 실리카 담체를 투입하고, 상온 및 80 ℃에서 순차적으로 각각 2시간 동안 교반하여, 상기 실리카 담체의 내부 기공에 상기 Mo, Bi, Fe, Ni, Co, 및 K 전구체 혼합 용액이 충분히 담지되도록 하였다.
(3) 전구체 용액이 담치된 실리카 담체의 건조 및 소성 공정
이후, 상기 Bi, Fe, Co, 및 K의 전구체 혼합 용액이 담지된 실리카 담체를 회수하여 회전 진공 건조기에 투입한 뒤, 140 mbar의 압력 및 70 ℃의 온도 조건으로 1시간 40분간 1차 진공 건조하고, 연이어 40 mbar의 압력 및 90 ℃의 온도 조건으로 30분간 2차 진공 건조하였다.
상기 2차 진공 건조까지 완료된 물질을 회수하여 오븐(oven)에 투입하고, 상압 및 110 ℃ 온도 조건으로 24 시간 동안 3차 건조시킨 뒤, 공기(Air) 분위기의 박스 소성로에서 580 ℃의 온도를 유지하면서 3 시간 동안 열처리하여, 최종적으로 실시예 1의 촉매를 수득하였다.
(4) 플로필렌의 암모산화 공정
내경이 3/8 인치(inch)인 관형 반응기 내, 촉매 충진을 위하여 석영 섬유(Quartz wool) 0.05 g가 충진하고, 실시예 1의 촉매 0.2 g을 반응기 내에 충진시켰다.
이처럼 석영 섬유와 촉매가 충진된 반응기의 내부 압력은 상압 (1 atm)으로 유지시키고, 10 ℃/min의 승온 속도로 반응기 내부 온도를 승온시키면서, 전처리 공정으로써 질소와 암모니아 가스를 흘려주었다. 이에 따라 반응기 내부 온도가 암모산화 반응이 가능한 온도인 400 ℃에 도달한 뒤, 15 분 동안 환원 기체의 분위기 하에서 유지시키며 충분한 전처리가 이루어지도록 하였다.
이처럼 전처리가 완료된 반응기에, 반응물인 프로필렌 및 암모니아와 함께 공기(air)를 공급하며, 프로필렌의 암모산화 공정을 수행하였다. 이때, 반응물의 공급량은 프로필렌:암모니아:공기=0.8:1.2:8 부피비가 되도록 구성하면서, 프로필렌, 암모니아, 및 공기의 총 중량공간속도(WHSV: weight hourly space velocity)는 1.54 h -1이 되도록 하였다. 
상기 암모산화 반응 종료 후 그 생성물을 회수하고, 아크릴로니트릴이 잘 생성되었는지 확인하기 위해 다양한 장비를 사용하여 분석하였다.
그 분석 방법, 분석 결과 등에 대해서는, 후술되는 실험예에서 상세히 기술한다.
실시예 2 내지 7
(1) 촉매의 제조 공정 (함침법 이용)
하기 표 1에 기재된 조성에 따라 전구체 용액을 제조하고, 하기 표 2에 기재된 실리카 담체를 사용하되, 나머지는 실시예 1과 동일하게 하여 실시예 2 내지 7의 각 촉매를 제조하였다.
(2) 플로필렌의 암모산화 공정
또한, 실시예 1의 촉매 대신 실시예 2 내지 7의 각 촉매를 사용하여 플로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 1
(1) 촉매의 제조 공정 (공침 후 분무건조 이용)
우선, 60 ℃의 증류수에 10.592 g의 Mo 전구체((NH 4) 6Mo 7O 24) 및 3.18 g의 구연산(Citric acid)을 투입하고 혼합하여, Mo 전구체 용액을 제조하였다.
이와 독립적으로, 상온의 증류수에 1.819 g의 Bi 전구체(Fe(NO 3) 5H 2O), 9.488 g의 Co 전구체(Co(NO 3) 6H 2O), 2.990 g의 Fe 전구체(Fe(NO 3) 9H 2O), 및 0.354 g의 K 전구체(KNO 3)를 투입하고, 0.83 g의 질산(HNO 3)을 첨가한 뒤 혼합하여, Bi, Fe, Co, 및 K 전구체 혼합 용액을 제조하였다.
상기 Mo 전구체 용액; 및 상기 Bi, Fe, Co, 및 K 전구체 혼합 용액을 혼합하고, 여기에 실리카졸 22.530 g(LUDOX AS 40, 고형분 함량: 40 %)을 첨가하여 교반한 다음, Disk-type의 분무 건조기를 사용하여 120 ℃(inlet) 및 230 ℃(outlet) 조건으로 분무 건조하였다.
이에 따라 얻어진 분말을 580 ℃에서 3시간 동안 소성하여, 비교예 1의 촉매로 최종 수득하였다.
(2) 플로필렌의 암모산화 공정
실시예 1의 촉매 대신 상기 비교예 1의 촉매를 사용하고, 나머지는 실시예 1과 동일하게 하여 플로필렌의 암모산화 공정을 수행하였다.
비교예 1의 암모산화 반응 종료 후 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 2
(1) 촉매의 제조 공정 (공침 후 분무건조 이용)
하기 표 1에 기재된 조성에 따라 전구체 용액을 제조하고, 하기 표 2에 기재된 실리카 담체를 사용하되, 나머지는 비교예 1과 동일하게 하여 비교예 2의 촉매를 제조하였다.
(2) 플로필렌의 암모산화 공정
또한, 비교예 1의 촉매 대신 비교예 2의 촉매를 사용하여 플로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 비교예 1과 마찬가지로 분석을 실시하였다.
비교예 3
(1) 촉매의 제조 공정 (함침법 이용)
하기 표 1에 기재된 조성에 따라 전구체 용액을 제조하고, 하기 표 2에 기재된 실리카 담체를 사용하되, 나머지는 실시예 1과 동일하게 하여 비교예 3의 촉매를 제조하였다.
(2) 플로필렌의 암모산화 공정
또한, 실시예 1의 촉매 대신 비교예 3의 촉매를 사용하여 플로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
비교예 4
(1) 촉매의 제조 공정 (함침법 이용)
우선, 60 ℃의 증류수에 10.592 g의 Mo 전구체((NH 4) 6Mo 7O 24) 및 3.18 g의 구연산(Citric acid)을 투입하고 혼합하여, Mo 전구체 용액을 제조하였다.
이와 독립적으로, 상온의 증류수에 1.091 g의 Bi 전구체(Fe(NO 3) 3·5H 2O), 4.365 g의 Co 전구체(Co(NO 3) 2·6H 2O), 3.636 g의 Fe 전구체(Fe(NO 3) 2·9H 2O), 2.908 g의 Ni 전구체(Ni(NO 3) 2·6H 2O), 0.045 g의 K 전구체(KNO 3), 1.954 g의 Ce 전구체(Ce(NO 3) 3 ·6H 2O), 2.564 g의 Mg 전구체(Mg(NO 3) 2·6H 2O), 및 0.037 g의 Rb 전구체(RbNO 3)를 투입하고, 0.83 g의 질산(HNO 3)을 첨가한 뒤 혼합하여, Bi, Co, Fe, Ni, K, Ce, Mg, 및 Rb 전구체 혼합 용액을 제조하였다.
상기 Mo 전구체 용액; 및 상기 Bi, Co, Fe, Ni, K, Ce, Mg, 및 Rb 전구체 혼합 용액을 혼합하여, Mo, Bi, Fe, Co, 및 K의 전구체 혼합 용액을 완성하였다.
상기 전구체 혼합 용액에서, 증류수의 총량은 27.33 g이다.
(2) 플로필렌의 암모산화 공정
또한, 실시예 1의 촉매 대신 비교예 4의 촉매를 사용하여 플로필렌의 암모산화 공정을 수행한 뒤 그 생성물을 회수하고, 실시예 1과 마찬가지로 분석을 실시하였다.
Figure PCTKR2020013097-appb-img-000004
상기 표 1에서, Mo는 (NH 4) 6Mo 7O 24이고, Bi는 Bi(NO 3) 3·5H 2O이고, Co는 Co(NO 3) 2·6H 2O 이고, Fe는 Fe(NO 3) 2·9H 2O이고, K는 KNO 3이다. 또한, 생략된 단위는 g이다.
한편, 이종 금속 전구체 용액에 다수의 물질이 첨가된 비교예 4는, 편의상 상기 표 1에서 생략하였다.
Figure PCTKR2020013097-appb-img-000005
실험예 1: 촉매 분석
다음과 같은 분석법에 따라, 실시예 1 내지 7 및 비교예 1 내지 4의 각 촉매를 분석하였다:
BET 비표면적: BET 비표면적 측정 기기(제조사: BEL Japan, 기기명: BELSORP_Mini)를 이용하여, 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 비표면적을 평가하고 그 평가 결과를 표 3에 나타내었다.
기공 크기 및 부피: BET 비표면적 측정 기기(제조사: BEL Japan, 기기명: BELSORP_Mini)를 이용하여, 액체 질소 온도(77K) 하에서 상대압(P/P0) 1까지 측정된 흡착량과, 0.03까지 측정된 탈착량을 이용하여 BJH 수식으로부터 기공 크기 및 부피를 측정하여 표 3에 나타내었다.
촉매 조성: 촉매 조성은 ICP 방법을 측정될 수 있다. 촉매 0.01g을 corning tube에 무게를 계량한 후, 질산 3ml와 불산 0.1ml를 시료에 가한 후 ultra-sonicator에서 1시간 이상 용출시킨다. 이에 포화 붕산수 1ml를 넣고 3차 증류수 50ml를 추가하여 용액을 제조 한 후 ICP-OES 정량 분석 장비(PerkinElmer, OPTIMA 8300DV)를 이용하여 각 성분에 대한 정량 분석을 수행하였다. 그리고 그에 대한 조성 및 배합을 표 3에 나타내었다.
D50: 레이저 회절 방식의 입도 분석기를(Microtrac, S3500)를 이용하여, 시료 투입 후 1분간 30 와트의 조건에서 Sonication 처리 후, 입도 분석을 통해 부피 기준의 D50을 도출하고 표 3에 나타내었다.
Figure PCTKR2020013097-appb-img-000006
표 3에 따르면, 공침과 분무 건조를 통해 비교예 1 및 2의 촉매와의 관계에서, 실시예 1 내지 7의 촉매를 제조하는 데 이용된 함침법은, 기공의 크기 및 부피가 크고, 이에 따라 BET 비표면적이 넓은 촉매를 제조하는 데 유리한 방법임을 알 수 있다.
여기서, 비교예 1 및 2의 촉매는, 공침과 분무 건조를 통해 제조된 결과, 기공을 거의 포함되지 않고, 상대적으로 BET 비표면적이 좁게 형성된 것이다. 그에 반면, 실시예 1 내지 7의 촉매는, 함침법을 이용하여 제조된 결과, 다수의 큰 기공을 포함하고, 상대적으로 넓은 BET 비표면적을 가지는 것이다.
대표적인 예로, 실시예 1 및 비교예 1의 각 촉매에 대해, SEM: Hitachi S-4800 Scanning Electron Microscope을 사용하여 100 배율의 주사전자현미경(Scanning Electron Microscope, SEM) 이미지를 얻었고, 각 SEM 이미지를 도 3(실시예 1) 및 도 4(비교예 1)에 나타내었다.
구체적으로, 비교예 1의 촉매는 대체로 28 내지 50 ㎛의 입경을 가지며, 내부 및 외부에 금속 산화물 입자가 균일하게(uniform) 분포된 2차 입자 구조를 이루는 대신, 내부 기공이 거의 포함되지 않은 것임을 알 수 있다.
이와 달리, 실시예 1의 촉매는 대체로 50 내지 112 ㎛의 입경을 가지며, 실리카 담체의 다공성 쉘부를 연속적으로 코팅하는 금속 산화물 코팅층이 형성되고, 상기 실리카 담체의 다공성 쉘부에서 상기 코팅층을 제외한 다수의 큰 빈 공간(기공)이 존재하는 것을 알 수 있다.
한편, 비교예 3의 촉매는, 함침법으로 제조되었음에도 불구하고, 그 기공의 크기 및 부피, 그리고 BET 비표면적은 비교예 1 및 2와 동등한 수준에 불과하다.
이는, 활성 금속으로 Mo 및 Bi만 포함하는 금속 산화물의 영향으로, 그 기공의 크기 및 부피, 그리고 BET 비표면적이 상대적으로 좁은 촉매가 제조된 것을 의미한다.
비교예 4의 촉매의 경우, 함침법으로 제조되고, 활성 금속으로 Mo 및 Bi뿐만 아니라 다수의 이종 금속을 포함함에 따라, 실시예 1 내지 7과 동등한 수준의 BET 비표면적을 가진다. 다만, 활성 금속에 따른 영향을 평가하기 위해, 암모산화 생성물을 추가로 분석할 필요가 있다.
실험예 2: 암모산화 생성물 분석
FID(Flame Ionization Detector와 TCD(Thermal conductivity detector)가 장착된 크로마토그래피(Gas chromatography, 제조사: Agilent 기기명: HP 6890 N)를 사용하여, 실시예 및 비교예의 각 암모산화 생성물을 분석하였다.
구체적으로, FID로는 에틸렌(ehthlene), 사이안화수소(hydrogen cyanide), 아세트알데하이드(Acetaldehyde), 아세토니트릴(Acetonitrile), 아세토니트릴(Acrylonitrile) 등의 생성물을 분석하였으며, TCD로는 NH 3, O 2, CO, CO 2 등의 가스 생성물 및 미반응 프로필렌을 분석하여, 실시예 및 비교예에서 각각 반응한 프로필렌의 몰수와 암모산화 생성물의 몰수를 구하였다.
이에 따른 분석 결과와 더불어 공급된 프로필렌의 몰수를 하기 1, 2, 및 3에 대입하여, 프로필렌의 전환율, 프로필렌의 암모산화 반응 생성물인 아크릴로니트릴의 선택도 및 수율을 계산하고, 그 계산값을 표 4에 기재하였다:
[식 1]
Figure PCTKR2020013097-appb-img-000007
[식 2]
Figure PCTKR2020013097-appb-img-000008
[식 3]
Figure PCTKR2020013097-appb-img-000009
Figure PCTKR2020013097-appb-img-000010
비교예 1 및 2의 촉매는, 공침과 분무 건조를 통해 제조된 결과, 내부 기공이 거의 포함되지 않아, 반응에 참여할 수 있는 부위가 외부 표면부로 제한되는 것이다.
실제로, 비교예 1 및 2의 촉매를 사용한 반응 시, 프로필렌의 전환율은 50% 미만이고, 아크릴로니트릴의 수율은 35% 미만에 불과한 것으로 확인된다.
한편, 비교예 3의 촉매는, 함침법으로 제조되었음에도 불구하고, 활성 금속으로 Mo 및 Bi만 포함하는 금속 산화물의 영향으로, 반응에 참여할 수 있는 유효 표면적이 작다.
실제로, 비교예 3의 촉매를 사용한 반응 시, 프로필렌의 전환율은 10%에 불과하고, 아크릴로니트릴의 수율은 6% 미만에 불과한 것으로 확인된다.
비교예 4의 촉매는, 함침법으로 제조되고, 활성 금속으로 Mo 및 Bi뿐만 아니라 다수의 이종 금속을 포함함에 따라, 반응에 참여할 수 있는 유효 표면적 자체는 크다.
그럼에도 불구하고, 비교예 4의 촉매를 사용한 반응 시. 프로필렌의 전환율은 55% 미만이고, 아크릴로니트릴의 선택도는 70% 미만이며 그 수율은 35% 미만에 불과하다. 이는, 활성 금속으로 Mo 및 Bi뿐만 아니라 Ce, Fe, Ni, Co, Mg, K, 및 Rb를 포함하고, 특히 Ce를 포함하여 지나치게 밀도가 높은 활성점이 형성된 것에 의한 영향으로 추론된다.
그에 반면, 실시예 1 내지 7의 촉매는, 크기와 부피가 큰 기공을 포함하고 있고, 반응에 참여할 수 있는 유효 표면적이 크다.
실제로, 실시예 1 내지 7의 촉매를 사용한 반응 시. 프로필렌의 전환율은 60 % 이상이고, 아크릴로니트릴의 수율이 45 % 이상으로 현저하게 상승된 것으로 확인된다.
이와 관련하여, 프로필렌의 암모산화 반응 시 프로필렌의 전환율 및 아크릴로니트릴의 수율을 개선할 수 있는 촉매는, 금속 산화물 조성이 전술한 화학식 1을 만족하고, 이러한 금속 산화물이 실리카 담체에 담지된 상태에서 직경이 5 내지 200 nm이며 부피가 0.1 내지 3.0 cm 3/g인 기공을 포함하고, BET 비표면적이 50 m 2/g 내지 1000 m 2/g인 것임을 알 수 있다.
나아가, 실시예 1 내지 7의 촉매를 참고하여, 금속 산화물 함량 및 조성 등을 조절하여, 프로필렌의 전환율 및 아크릴로니트릴의 수율을 더욱 개선하는 것도 가능할 것이다.

Claims (20)

  1. 하기 화학식 1로 표시되는 금속 산화물이 실리카 담체에 담지된 촉매이고,
    상기 촉매는,
    직경이 5 내지 200 nm이며 부피가 0.1 내지 3.0 cm 3/g인 기공을 포함하고,
    BET 비표면적이 50 m 2/g 내지 1000 m 2/g 인,
    프로필렌의 암모산화용 촉매:
    [화학식 1]
    Figure PCTKR2020013097-appb-img-000011
    상기 화학식 1에서,
    A 는 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
    B는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
    C는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
    상기 a 내지 e, 및 x는 각각 원자 또는 원자단의 분율로서, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 2이며, e는 0 내지 10이고, x는 24 내지 48 이다.
  2. 제1항에 있어서,
    상기 촉매는,
    제2 기공을 포함하는 실리카 담체;
    상기 제2 기공의 벽면을 연속적으로 코팅하고, 상기 화학식 1로 표시되는 금속 산화물을 포함하는 내부 코팅층; 및
    상기 제2 기공 내부에 위치하고, 상기 내부 코팅층을 제외한 빈 공간을 차지하는 제1 기공;을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  3. 제1항에 있어서,
    상기 촉매는,
    BET 비표면적이 60 내지 500 m 2/g인 것인,
    프로필렌의 암모산화용 촉매.
  4. 제1항에 있어서,
    상기 촉매는,
    직경이 10 내지 100 nm인 기공을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  5. 제1항에 있어서,
    상기 촉매는,
    부피가 0.6 내지 2.0 cm 3/g인 기공을 포함하는 것인,
    프로필렌의 암모산화용 촉매.
  6. 제1항에 있어서,
    상기 촉매는,
    D50 입경이 50 내지 200 ㎛인 것인,
    프로필렌의 암모산화용 촉매.
  7. 제1항에 있어서,
    상기 금속 산화물은,
    하기 화학식 1-1로 표시되는 것인,
    프로필렌의 암모산화용 촉매:
    [화학식 1-1]
    Figure PCTKR2020013097-appb-img-000012
    상기 화학식 1-1에서, a 내지 e, 및 x의 각 정의는 제1항과 같다.
  8. 제1항에 있어서,
    상기 금속 산화물 및 상기 실리카 담체의 중량비는 15:85 내지 35:65인 것인,
    프로필렌의 암모산화용 촉매.
  9. Mo 전구체를 포함하는 제1 전구체 용액을 제조하는 단계,
    Bi 전구체, Fe 전구체, A 전구체(A= Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소), 및 B 전구체(B= Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소)를 포함하는 제2 전구체 용액을 제조하는 단계,
    금속의 몰비가 하기 화학식 1의 화학양론적 몰비를 만족하도록 하며, 상기 제1 및 제2 전구체 용액을 혼합하는 단계,
    상기 제1 및 제2 전구체 용액의 혼합물을 실리카 담체에 담지시키는 단계,
    상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계, 그리고
    상기 건조된 물질을 소성하는 단계를 포함하는,
    프로필렌의 암모산화용 촉매의 제조 방법:
    [화학식 1]
    Figure PCTKR2020013097-appb-img-000013
    상기 화학식 1에서,
    A 는 Ni, Mn, Co, Zn, Mg, Ca, 및 Ba 중 하나 이상의 원소이고,
    B는 Li, Na, K, Rb, 및 Cs 중 하나 이상의 원소이고,
    C는 Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소이고,
    상기 a 내지 e, 및 x는 각각 원자 또는 원자단의 분율로서, a는 0.1 내지 5이고, b는 0.1 내지 5 이고, c는 0.01 내지 10이고, d는 0.01 내지 2이며, e는 0 내지 10이고, x는 24 내지 48이다.
  10. 제9항에 있어서,
    상기 제2 전구체 용액을 제조하는 단계에서,
    C 전구체(Cr, W, B, Al, Ca, 및 V 중 하나 이상의 원소)를 더 포함하는 제2 전구체 용액을 제조하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  11. 제9항에 있어서,
    상기 제2 전구체 용액을 제조하는 단계에서,
    Bi 전구체, Fe 전구체, Co 전구체, 및 K 전구체를 포함하는 제2 전구체 용액을 제조하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  12. 제9항에 있어서,
    상기 실리카 담체는,
    직경이 10 내지 200 nm이며 부피가 0.1 내지 3 cm 3/g인 기공을 포함하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  13. 제9항에 있어서,
    상기 실리카 담체는,
    BET 비표면적이 50 m 2/g 내지 1000 m 2/g 인 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  14. 제9항에 있어서,
    상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 건조시키는 단계는,
    상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 120 내지 160 mbar에서 1차 진공 건조하는 단계, 및
    상기 1차 진공 건조된 물질을 30 내지 50 mbar에서 2차 진공 건조하여, 상기 제1 및 제2 전구체 용액의 혼합물이 담지된 실리카 담체를 수득하는 단계를 포함하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  15. 제14항에 있어서,
    상기 1차 진공 건조는,
    60 내지 80 ℃에서 수행되는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  16. 제14항에 있어서,
    상기 2차 진공 건조는,
    80 내지 100 ℃에서 수행되는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  17. 제14항에 있어서,
    상기 2차 진공 건조된 물질을 상압에서 3차 건조하는 단계;를 더 포함하는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  18. 제17항에 있어서,
    상기 3차 건조는,
    100 내지 150 ℃에서 수행되는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  19. 제9항에 있어서,
    상기 건조된 물질을 소성하는 단계는,
    500 내지 700 ℃에서 수행되는 것인,
    프로필렌의 암모산화용 촉매의 제조 방법.
  20. 반응기 내에서, 제1항의 촉매 존재 하에 프로필렌 및 암모니아를 반응시키는 단계를 포함하는, 프로필렌의 암모산화 방법.
PCT/KR2020/013097 2019-09-30 2020-09-25 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법 WO2021066409A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20872812.1A EP3862080A4 (en) 2019-09-30 2020-09-25 PROPYLENE AMMOOXIDATION CATALYST, ASSOCIATED PREPARATION PROCESS AND PROPYLENE AMMOOXIDATION PROCESS USING THIS CATALYST
JP2021524381A JP7174846B2 (ja) 2019-09-30 2020-09-25 プロピレンのアンモ酸化用触媒、その製造方法、およびこれを利用したプロピレンのアンモ酸化方法
US17/296,529 US20220023837A1 (en) 2019-09-30 2020-09-25 Ammoxidation catalyst for propylene, manufacturing method of the same catalyst, ammoxidation method using the same catalyst
CN202080006434.6A CN113164929B (zh) 2019-09-30 2020-09-25 用于丙烯的氨氧化催化剂、该催化剂的制备方法、使用该催化剂的氨氧化方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190121172 2019-09-30
KR10-2019-0121172 2019-09-30
KR10-2019-0134088 2019-10-25
KR20190134088 2019-10-25
KR1020200123875A KR102623894B1 (ko) 2019-10-25 2020-09-24 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
KR10-2020-0123875 2020-09-24

Publications (1)

Publication Number Publication Date
WO2021066409A1 true WO2021066409A1 (ko) 2021-04-08

Family

ID=75338279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013097 WO2021066409A1 (ko) 2019-09-30 2020-09-25 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법

Country Status (1)

Country Link
WO (1) WO2021066409A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687671B1 (ko) * 2003-03-05 2007-03-02 아사히 가세이 케미칼즈 가부시키가이샤 입상 다공성 암모산화 촉매
US20100076208A1 (en) * 2006-11-17 2010-03-25 Dhingra Sandeep S Hydro-oxidation process using a catalyst prepared from a gold cluster complex
US20110092757A1 (en) * 2008-08-06 2011-04-21 Kenji Akagishi Zeolite-containing catalyst and method for producing the same, and method for producing propylene
WO2011119203A1 (en) * 2010-03-23 2011-09-29 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts
KR20160066922A (ko) * 2014-12-03 2016-06-13 주식회사 엘지화학 다성분계 복합금속산화물 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687671B1 (ko) * 2003-03-05 2007-03-02 아사히 가세이 케미칼즈 가부시키가이샤 입상 다공성 암모산화 촉매
US20100076208A1 (en) * 2006-11-17 2010-03-25 Dhingra Sandeep S Hydro-oxidation process using a catalyst prepared from a gold cluster complex
US20110092757A1 (en) * 2008-08-06 2011-04-21 Kenji Akagishi Zeolite-containing catalyst and method for producing the same, and method for producing propylene
WO2011119203A1 (en) * 2010-03-23 2011-09-29 Ineos Usa Llc High efficiency ammoxidation process and mixed metal oxide catalysts
KR20160066922A (ko) * 2014-12-03 2016-06-13 주식회사 엘지화학 다성분계 복합금속산화물 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법

Similar Documents

Publication Publication Date Title
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2018088815A1 (ko) 올레핀 복분해 반응용 촉매 및 이의 제조방법
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2018124782A1 (ko) 올레핀 제조용 촉매 및 이를 이용한 연속 반응-재생 올레핀 제조방법
WO2017183829A2 (ko) 세공체 표면 코팅 촉매 및 세공체의 표면처리 방법
WO2015008988A1 (ko) 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
WO2020091418A1 (ko) 코발트계 단원자 탈수소화 촉매 및 이를 이용하여 파라핀으로부터 대응되는 올레핀을 제조하는 방법
WO2015190754A1 (ko) 다성분계 복합금속산화물 촉매의 제조방법
WO2017126777A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2020101234A1 (ko) 5-히드록시메틸퍼퓨랄로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올의 제조방법
WO2021066409A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2022149854A1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2021066410A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2021066411A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법
WO2017126775A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
WO2018139776A1 (ko) 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
KR102519507B1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법
WO2018182102A1 (ko) 담지된 금속셀레나이드 촉매, 이의 제조방법 및 이를 이용한 우레탄 제조방법
WO2012018156A1 (ko) 산소공여입자 및 그 제조방법
WO2017026649A1 (ko) 고성능 폴리옥소메탈레이트 촉매 및 이의 제조 방법
WO2024155125A1 (ko) 암모니아 분해 반응용 촉매, 이의 제조방법 및 이를 이용한 수소 생산방법
WO2017179805A1 (ko) 아크릴산의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021524381

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2020872812

Country of ref document: EP

Effective date: 20210504

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE