WO2022045838A1 - 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물 - Google Patents

중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물 Download PDF

Info

Publication number
WO2022045838A1
WO2022045838A1 PCT/KR2021/011541 KR2021011541W WO2022045838A1 WO 2022045838 A1 WO2022045838 A1 WO 2022045838A1 KR 2021011541 W KR2021011541 W KR 2021011541W WO 2022045838 A1 WO2022045838 A1 WO 2022045838A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
deuterated
aromatic compound
Prior art date
Application number
PCT/KR2021/011541
Other languages
English (en)
French (fr)
Inventor
황승연
정동민
최대승
김비치
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022535197A priority Critical patent/JP2023505832A/ja
Priority to US17/779,920 priority patent/US20230018666A1/en
Priority to CN202180006770.5A priority patent/CN114761388A/zh
Publication of WO2022045838A1 publication Critical patent/WO2022045838A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/86Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/22Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to two ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/08Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/08Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings

Definitions

  • the present specification relates to a method for preparing a deuterated aromatic compound and a deuterated reaction composition.
  • Compounds containing deuterium are used for various purposes.
  • compounds containing deuterium are widely used not only as labeling compounds for identification of chemical reaction mechanisms or metabolism, but also for drugs, pesticides, organic EL materials, and other purposes.
  • a method of substituting deuterium for an aromatic compound to improve the lifespan of an organic light emitting diode (OLED) material is known.
  • the principle of this effect is that the LUMO energy of the C-D bond is lower than that of the C-H bond when deuterium is substituted, and the lifespan characteristics of the OLED material are improved.
  • the present specification is intended to provide a method for preparing a deuterated aromatic compound and a deuterated reaction composition.
  • the present specification uses a solution containing an aromatic compound containing one or more aromatic rings, heavy water (D 2 O), an organic compound hydrolyzable by the heavy water, and an organic solvent, the deuterated reaction of the aromatic compound It provides a method for producing a deuterated aromatic compound comprising the step of proceeding.
  • the present specification provides a deuterated reaction composition
  • a deuterated reaction composition comprising an aromatic compound containing at least one aromatic ring, heavy water (D 2 O), an organic compound hydrolyzable by the heavy water, and an organic solvent.
  • the present specification provides a deuterated aromatic compound prepared by the above-described method.
  • the present specification provides an electrical device including the deuterated aromatic compound.
  • the manufacturing method of the first embodiment according to the present specification has an advantage in that impurities due to hydrogen gas do not occur.
  • the manufacturing method of the second embodiment according to the present specification has an advantage of high deuterium substitution rate.
  • the manufacturing method of the third embodiment according to the present specification has the advantage of high purity of the obtained compound.
  • the manufacturing method of the fourth embodiment according to the present specification is capable of deuterated reaction at a lower pressure.
  • the present specification uses a solution containing an aromatic compound containing one or more aromatic rings, heavy water (D 2 O), an organic compound hydrolyzable by the heavy water, and an organic solvent, the deuterated reaction of the aromatic compound It provides a method for producing a deuterated aromatic compound comprising the step of proceeding.
  • the method for producing a deuterated aromatic compound of the present specification is characterized in that there is no hydrogen supply step.
  • the method for producing a deuterated aromatic compound of the present specification uses an organic compound that can be hydrolyzed by heavy water instead of a metal catalyst, which is a heterogeneous catalyst, and does not require the supply of a metal catalyst and hydrogen gas for activating the metal catalyst. There is an advantage that impurities do not occur.
  • a compound having a reactive group such as a halogen group or a hydroxyl group can also be selected as a deuterated compound can Specifically, after deuteration of a compound that is an intermediate having a reactive group such as a halogen group or a hydroxyl group, a reaction of substituting an additional aromatic substituent with the reactive group may be performed.
  • the manufacturing method according to the present specification has the advantage of high deuterium substitution rate.
  • the manufacturing method according to the present specification has the advantage of high purity of the obtained compound.
  • the manufacturing method according to the present specification is capable of deuterated reaction at a lower pressure.
  • the manufacturing method according to the present specification is capable of deuterated reaction at a lower temperature.
  • the method for producing a deuterated aromatic compound of the present specification includes preparing a solution containing an aromatic compound containing one or more aromatic rings, heavy water (D 2 O), an organic compound hydrolyzable by the heavy water, and an organic solvent includes
  • the step of preparing a solution containing an aromatic compound containing at least one aromatic ring, heavy water (D 2 O), an organic compound hydrolyzable by the heavy water, and an organic solvent includes at least one aromatic ring in the reactor
  • An organic compound capable of being hydrolyzed by the heavy water and an organic solvent may be individually introduced into the reactor to prepare a solution.
  • the organic compound hydrolyzable by heavy water is not particularly limited as long as it has a reactive group capable of being decomposed by heavy water.
  • it may include at least one compound of Formulas 1 to 4 below.
  • R1 to R8 are the same as or different from each other, and each independently represent a monovalent organic group.
  • R1 and R2 may be the same substituents.
  • R3 and R4 may be the same substituents.
  • R5 and R6 may be the same substituents.
  • R7 and R8 may be the same substituents.
  • R1 to R8 are the same as or different from each other, and each independently an alkyl group unsubstituted or substituted with a halogen group; Or it may be an aryl group unsubstituted or substituted with a halogen group.
  • R1 to R8 are the same as or different from each other, and each independently an alkyl group having 1 to 30 carbon atoms unsubstituted or substituted with a halogen group; Alternatively, it may be an aryl group having 6 to 50 carbon atoms that is unsubstituted or substituted with a halogen group.
  • R1 to R8 are the same as or different from each other, and each independently an alkyl group having 1 to 10 carbon atoms unsubstituted or substituted with a halogen group; Alternatively, it may be an aryl group having 6 to 20 carbon atoms that is unsubstituted or substituted with a halogen group.
  • R1 to R8 may be the same as or different from each other, and may each independently be an alkyl group having 1 to 10 carbon atoms that is unsubstituted or substituted with a halogen group.
  • R1 to R8 may be the same as or different from each other, and may each independently be an alkyl group having 1 to 5 carbon atoms that is unsubstituted or substituted with a halogen group.
  • R1 to R8 may be the same as or different from each other, and may each independently be a substituent of Formula 5 or Formula 6 below.
  • l and m are each an integer of 0 to 10
  • n and a are 0 or 1, respectively.
  • R1 to R8 may be the same as or different from each other, and may each independently be a substituent of Formula 5.
  • R1 to R8 are the same as or different from each other, and each independently -CF 3 , -CH 2 CH 3 or -CH 3 .
  • the organic compound hydrolyzable by heavy water is trifluoromethanesulfonic anhydride, trifluoroacetic anhydride, acetic anhydride And it may include at least one of methanesulfonic anhydride (Methanesulfonic anhydride).
  • the organic compound hydrolyzable by heavy water may include trifluoromethanesulfonic anhydride.
  • the organic compound hydrolyzable by heavy water may include trifluoroacetic anhydride.
  • the organic compound hydrolyzable by heavy water may include acetic anhydride.
  • the organic compound hydrolyzable by heavy water may include methanesulfonic anhydride.
  • the organic compound hydrolyzable by the heavy water may include trifluoromethanesulfonic anhydride and trifluoroacetic anhydride.
  • the organic compound hydrolyzable by heavy water may include trifluoromethanesulfonic anhydride and acetic anhydride.
  • the organic compound hydrolyzable by the heavy water may include methanesulfonic anhydride and trifluoroacetic anhydride.
  • the organic compound hydrolyzable by heavy water may include methanesulfonic anhydride (Trifluoromethanesulfonic anhydride) and acetic anhydride (Acetic anhydride).
  • Methanesulfonic anhydride Trifluoromethanesulfonic anhydride
  • acetic anhydride Acetic anhydride
  • the organic compound hydrolyzable by heavy water may include at least one of the compounds of Chemical Formulas 1 and 2 above.
  • the compounds of Formulas 1 and 2 When at least one of the compounds of Formulas 1 and 2 is added to heavy water, hydrolysis with heavy water occurs easily even at room temperature.
  • the organic compound hydrolyzable by heavy water includes at least one of the compounds of Formulas 1 and 2, and further includes at least one of the compounds of Formulas 3 and 4 can
  • the organic compound hydrolyzable by heavy water includes at least one of the compounds of Formulas 1 and 2, an exothermic reaction by adding at least one of the compounds of Formulas 3 and 4, which has a relatively slow hydrolysis reaction
  • the temperature generated by the phosphorus hydrolysis reaction can be controlled.
  • the organic compound hydrolyzable by heavy water when the organic compound hydrolyzable by heavy water includes at least one of the compounds of Formulas 3 and 4, it further includes at least one of the compounds of Formulas 1 and 2 can do.
  • the hydrolysis reaction may be accelerated by adding the compounds of Formulas 1 and 2, in which the hydrolysis reaction occurs relatively easily.
  • a weight ratio of at least one of the compounds of Formulas 3 and 4 and at least one of the compounds of Formulas 1 and 2 is 100: 0 to 0:100, 99:1 to 0:100, 90:10 to 0:100, 80:20 to 0:100, 70:30 to 0:100, 60:40 to 0:100, 50:50 to 0:100, 40:60 to 0 :100, 30:70 to 0:100, 20:80 to 0:100, or 10:90 to 0:100.
  • the content of the organic compound hydrolyzable by the heavy water based on the total mass of the remaining compositions except for the aromatic compound in the composition may be 1 wt% or more and 70 wt% or less.
  • the solution includes an organic solvent.
  • the amount of organic compound that can be hydrolyzed by heavy water can be reduced by 30 to 90%, resulting in increased purity and improved stability.
  • the organic solvent that can be used for the reaction must be capable of dissolving both the reactant and the reaction product under the reaction conditions.
  • trifluoromethanesulfonic acid formed by the hydrolysis reaction of trifluoromethanesulfonic anhydride added as an organic compound that can be hydrolyzed by heavy water
  • concentration the higher the concentration, the better the deuterium substitution reaction occurs.
  • trifluoromethanesulfonic acid itself is a super acid
  • a side reaction may occur easily due to an increase in the concentration of trifluoromethanesulfonic acid, thereby reducing the purity.
  • handling a solution with a large amount of trifluoromethanesulfonic acid during work-up after the reaction may be dangerous in terms of stability.
  • the organic solvent is a hydrocarbon chain unsubstituted or substituted with a halogen group; an aliphatic hydrocarbon ring unsubstituted or substituted with an alkyl group; an aromatic hydrocarbon ring substituted or unsubstituted with an alkyl group; straight-chain or branched heterochain; substituted or unsubstituted aliphatic heterocycle; And it may be selected from the group consisting of a substituted or unsubstituted aromatic heterocycle.
  • the organic solvent includes at least one of an oxygen element and a sulfur element, and includes a substituted or unsubstituted heterocyclic ring; substituted or unsubstituted alkyl acetate; alkyl ketones; alkyl sulfoxide; lactones having 4 to 10 carbon atoms; alkylamides; glycols having 4 to 10 carbon atoms; dioxane; acetic acid unsubstituted or substituted with alkoxy.
  • the deuterium source, deuterium, and the aromatic compound to be substituted with deuterium must be in one phase.
  • heavy water and aromatic compounds, which are target substances are basically immiscible.
  • both heavy water and the aromatic compound are dissolved by the hydrolyzed organic compound, and a deuterium substitution reaction occurs.
  • trifluoromethanesulfonic acid a super acid
  • both heavy water and aromatic compounds are dissolved by trifluoromethanesulfonic acid, and deuterium substitution reaction takes place
  • the organic solvent In order to dissolve all the substances added to and produced in the deuterium substitution reaction, the organic solvent must be well mixed with heavy water, and must be able to dissolve aromatic compounds to some extent. To this end, since the organic solvent must have a certain degree of polarity, it may contain an element with high electronegativity, which is a property of attracting electrons. For example, it may contain oxygen and/or elemental sulfur having relatively good stability while having high electronegativity.
  • the organic solvent has a cyclic form, it is slightly more polar than when it is not in a cyclic form, thereby improving miscibility.
  • the organic solvent is ethyl acetate, acetone, cyclohexanone, methyl ethyl ketone, tetrahydrofuran, tetrahydropyran, cyclopentanone ( cyclopentanone), 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,2-dimethoxyethane, diglyme, ⁇ -butyrolactone, gamma valerolactone ( ⁇ -valerolactone), methyl ethyl di glycol (MEDG), propylene glycol methyl ether (PGME), propylene glycol methyl ether acetate (PGMEA), ethyl Ethyl lactate, cyclohexane, methylcyclohexane, ethylcyclohexane, diethyl ether
  • the mass ratio of the organic solvent may be 4 to 40 times, specifically, 4 to 16 times.
  • the solution does not contain a metal catalyst, and it is characterized in that an organic compound capable of hydrolysis by heavy water performs its role instead.
  • a metal catalyst for example, the need to supply hydrogen gas, the need to remove impurities by hydrogen gas, and process equipment that can maintain and withstand high reaction temperature and high pressure Things that need to be prepared are addressed.
  • the solution contains heavy water.
  • the content of the heavy water may be 0.1 times or more and 30 times or less by weight of the aromatic compound.
  • deuterium can be efficiently replaced from heavy water.
  • the solution may include an additional deuterium source along with the heavy water.
  • the deuterium source may be a deuterated aromatic solvent, for example, benzene-d6 (Benzene-d6), toluene-d8 (Toluene-d8), and the like.
  • the content of the additional deuterium source may be 0.1 times or more and 30 times or less by weight of the aromatic compound. In this case, there is an advantage that reactivity can be increased and heat generation during the reaction can be reduced.
  • the aromatic compound is an aromatic compound containing one or more aromatic rings, and specifically, an aromatic compound containing one or more and 30 or less aromatic rings.
  • the number of one or more aromatic rings may include one or more monocyclic, polycyclic or a combination thereof, or one or more aromatic rings (eg, benzene rings) as a basic unit.
  • the carbazole ring means one aromatic ring, or two benzene rings are connected or three rings including a benzene ring are condensed based on a benzene ring, which is a basic unit, and a ring condensed therewith. can do.
  • the content of the aromatic compound may be 3 wt% or more and 50 wt% or less.
  • the aromatic ring may be a substituted or unsubstituted monocyclic or polycyclic hydrocarbon aromatic ring, or a substituted or unsubstituted monocyclic or polycyclic heteroaromatic ring.
  • the aromatic ring may be a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted anthracene ring, a substituted or unsubstituted dibenzofuran, or a substituted or unsubstituted dibenzothiophene.
  • the aromatic ring may be a substituted or unsubstituted carbazole.
  • the aromatic compound may be a heteroaromatic compound
  • the heteroaromatic compound is a carbazole compound, a dibenzofuran compound, a dibenzothiophene compound, a pyridine compound, or a pyrimidine compound. , or a triazine-based compound.
  • the heteroaromatic compound refers to a compound containing a heterogeneous element such as O, S, N, Si, P, Se in addition to carbon constituting the backbone, and the hydrogen substituted in the backbone may be substituted with another substituent, at this time
  • the kind of substituent is not specifically limited.
  • the heteroaromatic compound is a compound including at least one of O, S and N, and a substituted or unsubstituted heteroaromatic ring.
  • the heteroaromatic compound is a compound including a heteroaromatic ring including a substituted or unsubstituted oxygen atom.
  • the heteroaromatic compound is a compound including a heteroaromatic ring including a substituted or unsubstituted nitrogen atom.
  • the heteroaromatic compound is a compound including a heteroaromatic ring including a substituted or unsubstituted sulfur element.
  • the heteroaromatic compound may be a carbazole-based compound, specifically substituted or unsubstituted carbazole; or a substituted or unsubstituted carbazole having an additional ring to which adjacent groups are attached.
  • the carbazole having an additional ring to which the adjacent groups are bonded is substituted or unsubstituted benzocarbazole; substituted or unsubstituted dibenzocarbazole; substituted or unsubstituted furocarbazole; Or it may be a substituted or unsubstituted indolocarbazole.
  • the heteroaromatic compound may be a dibenzofuran-based compound, specifically substituted or unsubstituted dibenzofuran; Or it may be a substituted or unsubstituted dibenzofuran having an additional ring to which adjacent groups are attached.
  • the heteroaromatic compound may be a dibenzothiophene-based compound, specifically substituted or unsubstituted dibenzothiophene; or a substituted or unsubstituted dibenzothiophene having an additional ring to which adjacent groups are attached.
  • the heteroaromatic compound is a substituted or unsubstituted indole; substituted or unsubstituted benzofuran; substituted or unsubstituted benzothiophene; substituted or unsubstituted benzoxazole; substituted or unsubstituted benzothiazole; Substituted or unsubstituted benzoimidazole; Substituted or unsubstituted anthraquinone; substituted or unsubstituted xanthene; substituted or unsubstituted thioxanthene; substituted or unsubstituted pyridine; substituted or unsubstituted pyrimidine; substituted or unsubstituted triazine; or dihydroindolocarbazole.
  • substituted means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is substituted. , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted refers to a halogen group; nitrile group; nitro group; hydroxyl group; amine group; silyl group; boron group; alkoxy group; an alkyl group; cycloalkyl group; aryl group; And it means that it is substituted with one or two or more substituents selected from the group consisting of a heterocyclic group, is substituted with a substituent to which two or more of the above-exemplified substituents are connected, or does not have any substituents.
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • examples of the halogen group include fluorine (-F), chlorine (-Cl), bromine (-Br), or iodine (-I).
  • the silyl group may be represented by the formula of -SiY a Y b Y c , wherein Y a , Y b and Y c are each hydrogen; a substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like, but is not limited thereto. does not
  • the boron group may be represented by the formula of -BY d Y e , wherein Y d and Y e are each hydrogen; a substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the boron group specifically includes, but is not limited to, a dimethyl boron group, a diethyl boron group, a tert-butylmethyl boron group, a diphenyl boron group, a phenyl boron group, and the like.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 60. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 30. According to another exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 10.
  • alkyl group examples include a methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, n-pentyl group, hexyl group, n -hexyl group, heptyl group, n-heptyl group, octyl group, n-octyl group, etc., but are not limited thereto.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, and the like, but is not limited thereto. .
  • the substituents containing an alkyl group, an alkoxy group, and other alkyl group moieties described herein include both straight-chain or pulverized forms.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, there are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, but is not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 39. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, a terphenyl group, or a quaterphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, triphenyl group, chrysenyl group, fluorenyl group, triphenylenyl group, etc., but is not limited thereto not.
  • the fluorene group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • spirofluorene groups such as (9,9-dimethyl fluorene group), and It may be a substituted fluorene group such as (9,9-diphenylfluorene group).
  • the present invention is not limited thereto.
  • the heterocyclic group is a cyclic group including at least one of N, O, P, S, Si and Se as heteroatoms, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms. According to an exemplary embodiment, the heterocyclic group has 2 to 36 carbon atoms.
  • heterocyclic group examples include a pyridine group, a pyrrole group, a pyrimidine group, a quinoline group, a pyridazine group, a furan group, a thiophene group, an imidazole group, a pyrazole group, a dibenzofuran group, a dibenzothiophene group, A carbazole group, a benzocarbazole group, a benzonaphthofuran group, a benzonaphthothiophene group, an indenocarbazole group, an indolocarbazole group, etc., but are not limited thereto.
  • heterocyclic group In the present specification, the description of the above-described heterocyclic group may be applied, except that the heteroaryl group is aromatic.
  • the amine group is -NH 2 ; an alkylamine group; N-alkylarylamine group; arylamine group; N-aryl heteroarylamine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, and a 9-methyl-anthracenylamine group.
  • diphenylamine group diphenylamine group, N-phenylnaphthylamine group, ditolylamine group, N-phenyltolylamine group, N-phenylbiphenylamine group, N-phenylnaphthylamine group, N-biphenylnaphthylamine group , N-naphthylfluorenylamine group, N-phenylphenanthrenylamine group, N-biphenylphenanthrenylamine group, N-phenylfluorenylamine group, N-phenylterphenylamine group, N-phenane threnylfluorenylamine group, N-biphenylfluorenylamine group, and the like, but is not limited thereto.
  • the N-alkylarylamine group refers to an amine group in which an alkyl group and an aryl group are substituted with N of the amine group.
  • the N-arylheteroarylamine group refers to an amine group in which an aryl group and a heteroaryl group are substituted with N of the amine group.
  • the N-alkylheteroarylamine group refers to an amine group in which an alkyl group and a heteroaryl group are substituted with N of the amine group.
  • the alkyl group, the aryl group and the heteroaryl group in the N-alkylheteroarylamine group and the heteroarylamine group are the same as the examples of the alkyl group, the aryl group and the heteroaryl group, respectively.
  • the aromatic compound to participate in the deuterated reaction may be any one of the following Chemical Formulas 7 to 10. Through the deuteration reaction, at least one hydrogen in the selected compound is replaced with deuterium.
  • X, X1 and X2 are each independently O, S or NR;
  • R is hydrogen; heavy hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • A1 to A8 are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • B1 to B5 are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • E1 to E3 are each independently hydrogen; leaving; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • Y1 to Y6 are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least one of Z1 to Z3 is N, and the others are each independently CH or N,
  • b5 is an integer of 1 to 6, and when b5 is 2 or more, B5 is the same as or different from each other,
  • y5 is 1 or 2, and when y5 is 2, Y5 is the same as or different from each other,
  • y6 is an integer of 1 to 4, and when y6 is 2 or more, Y6 is the same as or different from each other.
  • X is O.
  • X is S.
  • X is NR
  • R is hydrogen; heavy hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • X is NR
  • R is hydrogen; heavy hydrogen; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • At least one of A1 to A8 is a leaving group; hydroxyl group; a substituted or unsubstituted amine group; or a cyano group, and the remainder are each independently hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • At least one of B1 to B5 is a leaving group; hydroxyl group; a substituted or unsubstituted amine group; or a cyano group, and the remainder are each independently hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • At least one of Y1 to Y6 is a leaving group; hydroxyl group; a substituted or unsubstituted amine group; or a cyano group, and the remainder are each independently hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • any one of Z1 to Z3 is N, and the rest is CH.
  • two of Z1 to Z3 are N, and the remainder is CH.
  • Z1 to Z3 are all N.
  • At least one of E1 to E3 is a leaving group, and the rest are each independently hydrogen; leaving; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • the aromatic compound may have any one of the following structures.
  • L is a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group.
  • the method for producing a deuterated aromatic compound of the present specification may further include replacing the internal air of the reactor with nitrogen or an inert gas.
  • deuteration may be proceeded without applying heat at room temperature, or deuterated may be proceeded by heating the solution.
  • the room temperature is a natural temperature that is not heated or cooled, and specifically may be in the range of 20 ⁇ 5°C.
  • the solution is heated to 160 °C or lower, 150 °C or lower, 140 °C or lower, 130 °C or lower, 120 °C or lower, 110 °C or lower, 100 °C or lower, 90 °C or lower, Alternatively, it may be a step of heating to a temperature of 80°C or higher, and specifically, a step of heating to a temperature of 80°C or higher and 140°C or lower.
  • the deuterium reaction time is reacted for 3 hours or more after the temperature rise is completed.
  • the deuterium reaction may be reacted for 3 hours or more and 24 hours or less after the temperature increase is completed, and preferably for 6 hours or more and 18 hours or less.
  • the method for producing a deuterated aromatic compound of the present specification further includes the step of obtaining the deuterated aromatic compound after the step of proceeding with the deuteration.
  • the obtained method may be carried out by a method known in the art, and is not particularly limited.
  • the deuterium substitution rate of the obtained deuterated aromatic compound is 50% or more, 60% or more, 70% or more, 80% or more, 85% or more , 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100% or more.
  • the present specification provides a deuterated aromatic compound prepared by the above-described preparation method.
  • the deuterated aromatic compound refers to an aromatic compound substituted with at least one deuterium.
  • the deuterated aromatic compound includes a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group.
  • the compound including the leaving group may be an intermediate of the final compound of organic synthesis, and the leaving group refers to a reactive group that is desorbed based on the final compound or is chemically changed by combining with other reactants. Accordingly, the type of leaving group and the position at which the leaving group is bonded are determined according to the method of organic synthesis and the position of the substituent of the final compound.
  • the leaving group may be selected from the group consisting of a halogen group and a boronic acid group.
  • the deuterated aromatic compound including a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group may be any one of the following Chemical Formulas 7 to 10 .
  • X, X1 and X2 are each independently O, S or NR;
  • R is hydrogen; heavy hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least one of A1 to A8 is deuterium, and at least one is a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group, and the rest are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; cyano group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least one of B1 to B5 is deuterium, at least one is a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group, and the rest are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least one of E1 to E3 is deuterium, and at least one is a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group, and the rest are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least one of Y1 to Y6 is deuterium, and at least one is a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group, and the rest are each independently hydrogen; leaving; hydroxyl group; a substituted or unsubstituted amine group; cyano group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least one of Z1 to Z3 is N, and the others are each independently CH or N,
  • b5 is an integer of 1 to 6, and when b5 is 2 or more, B5 is the same as or different from each other,
  • y5 is 1 or 2, and when y5 is 2, Y5 is the same as or different from each other,
  • y6 is an integer of 1 to 4, and when y6 is 2 or more, Y6 is the same as or different from each other.
  • the compounds of Formulas 7 to 10 each have a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group.
  • the deuterated aromatic compound including a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group is any one of the following structures, and the structures are each substituted with one or more deuterium.
  • L is a substituent selected from the group consisting of a leaving group, a hydroxyl group, a substituted or unsubstituted amine group, and a cyano group.
  • a deuterated compound having one or more deuterium produced through a deuterium reaction is prepared as a composition having two or more isotopes having different molecular weights depending on the number of substituted deuterium, so the position at which deuterium is substituted in the structure is omitted. do.
  • At least one of positions where hydrogen is indicated or substituted with hydrogen is omitted may be substituted with deuterium.
  • the present specification provides a deuterated reaction composition
  • a deuterated reaction composition comprising an aromatic compound containing one or more aromatic rings, heavy water (D 2 O), an organic compound hydrolyzable by the heavy water, and an organic solvent.
  • the deuterated reaction composition may cite a description of the solution in the above-described preparation method.
  • the organic compound hydrolyzable by heavy water may include at least one compound of Formulas 1 to 4 below.
  • R1 to R8 are the same as or different from each other, and each independently represent a monovalent organic group.
  • R1 to R8 are the same as or different from each other, and each independently an alkyl group unsubstituted or substituted with a halogen group; Or it may be an aryl group unsubstituted or substituted with a halogen group.
  • R1 to R8 may be the same as or different from each other, and may each independently be a substituent of Formula 5 or Formula 6 below.
  • l and m are each an integer from 0 to 10,
  • n and a are each 0 or 1.
  • the organic compound hydrolyzable by heavy water is trifluoromethanesulfonic anhydride, trifluoroacetic anhydride, acetic anhydride And it may include at least one of methanesulfonic anhydride (Methanesulfonic anhydride).
  • the organic solvent is a hydrocarbon chain unsubstituted or substituted with a halogen group; an aliphatic hydrocarbon ring unsubstituted or substituted with an alkyl group; an aromatic hydrocarbon ring substituted or unsubstituted with an alkyl group; straight-chain or branched heterochain; substituted or unsubstituted aliphatic heterocycle; And it may be selected from the group consisting of a substituted or unsubstituted aromatic heterocycle.
  • the organic solvent includes at least one of an oxygen element and a sulfur element, and includes a substituted or unsubstituted heterocyclic ring; substituted or unsubstituted alkyl acetate; alkyl ketones; alkyl sulfoxide; lactones having 4 to 10 carbon atoms; alkylamides; glycols having 4 to 10 carbon atoms; dioxane; acetic acid unsubstituted or substituted with alkoxy.
  • the organic solvent is ethyl acetate, acetone, cyclohexanone, methyl ethyl ketone, tetrahydrofuran, tetrahydropyran, cyclopentanone ( cyclopentanone), 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,2-dimethoxyethane, diglyme, ⁇ -butyrolactone, gamma valerolactone ( ⁇ -valerolactone), methyl ethyl di glycol (MEDG), propylene glycol methyl ether (PGME), propylene glycol methyl ether acetate (PGMEA), ethyl Ethyl lactate, cyclohexane, methylcyclohexane, ethylcyclohexane, diethyl ether
  • the present specification provides an electronic device comprising the above-described deuterated aromatic compound.
  • the present specification provides a method for manufacturing an electronic device comprising the step of manufacturing an electronic device using the deuterated aromatic compound described above.
  • the electronic device is not particularly limited as long as it is a device capable of using the deuterated aromatic compound described above, and may be, for example, an organic light emitting device, an organic phosphorescent device, an organic solar cell, an organic photoreceptor, or an organic transistor.
  • the electronic device may include a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers may include the deuterated aromatic compound described above.
  • the present specification provides an organic light emitting device including the deuterated aromatic compound described above.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and an organic material layer provided between the first electrode and the second electrode, wherein the organic material layer includes the deuterated aromatic compound.
  • the organic material layer includes a light emitting layer including the deuterated aromatic compound.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic material layer of the present specification may be composed of 1 to 3 layers.
  • the organic light emitting device of the present specification may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound of Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the organic light emitting device may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the material of the negative electrode, the organic material layer, and the positive electrode is not particularly limited except for including a deuterated aromatic compound in at least one layer of the organic material layer, and a material known in the art may be used.
  • the above-described deuterated aromatic compound may be used in an electronic device including an organic phosphorescent device, an organic solar cell, an organic photoreceptor, an organic transistor, and the like, in a principle similar to that applied to an organic light emitting device.
  • the organic solar cell may have a structure including a negative electrode, a positive electrode, and a photoactive layer provided between the negative electrode and the positive electrode, and the photoactive layer may include the selected deuterated compound.
  • Example 1 Using the same method as in Example 1, by changing to trifluoroacetic anhydride instead of methanesulfonic anhydride and xylene instead of dimethyl sulfoxide to deuterium 11,12-dihydroindolo[2,3-a]carbazole substituted with 11,12-dihydroindolo[2,3-a]carbazole was obtained.
  • Example 25 Using the same method as in Example 25, by changing the organic solvent to 1,2-dichloroethane instead of dimethyl sulfoxide, 2-chloro-4 substituted with deuterium, 6-diphenyl-1,3,5-triazine (2-chloro-4,6-diphenyl-1,3,5-triazine) was obtained.
  • the temperature is lowered, the inside of the reactor is replaced with external air, and then the temperature of the oil bath is raised to 160° C. and the dehydrogenation reaction is performed for 17 hours.
  • the temperature is lowered and the filter is performed to remove the catalyst, and then the heavy water is removed using MgSO 4 , filtered, and then the solvent is removed using a vacuum rotary evaporator and replaced with deuterium.
  • 11,12-dihydroindolo [2,3-a] carbazole (11,12-dihydroindolo [2,3-a] carbazole) was obtained.
  • the temperature is lowered, the inside of the reactor is replaced with external air, and then the temperature of the oil bath is raised to 160° C. and the dehydrogenation reaction is performed for 17 hours.
  • the temperature is lowered and the filter is performed to remove the catalyst, and then the heavy water is removed using MgSO 4 , filtered, and then the solvent is removed using a vacuum rotary evaporator and replaced with deuterium.
  • 11,12-dihydroindolo [2,3-a] carbazole (11,12-dihydroindolo [2,3-a] carbazole) was obtained.
  • Purity and hydrogenated compound ratio were obtained by dissolving the reaction sample in a tetrahydrofuran solvent for HPLC and integrating the spectrum at a wavelength of 254 nm through HPLC.
  • a mobile phase solvent acetonitrile and tetrahydrofuran were mixed in 5:5 and a solvent mixed with 1% formic acid and water were used.
  • the deuterium substitution rate is the integral value of the peak related to hydrogen in the NMR measurement graph of the internal standard sample in which deuterium is not substituted, and the integral value of the peak due to the unsubstituted hydrogen in the NMR measurement graph of the sample sample. to find the value minus This value is a relative integration value for each position, and does not appear as a corresponding peak because it is substituted with deuterium, and represents a ratio substituted with deuterium.
  • the weight of the sample used to make the 1 H-NMR measurement sample, the weight of the internal standard, and the relative integral value were used to calculate the substitution rate for each position of the sample.
  • Example 1 11,12-dihydroindolo[2,3-a]carbazole Dimethylsulfoxide methanesulfonic anhydride 97.6 87.4 0 80 atmospheric pressure
  • Example 2 11,12-dihydroindolo[2,3-a]carbazole tetrahydrofuran methanesulfonic anhydride 96.2 93.2 0 65 atmospheric pressure
  • Example 3 11,12-dihydroindolo[2,3-a]carbazole 1,4-dioxane methanesulfonic anhydride 98.5 90.5 0 80 atmospheric pressure
  • Example 4 11,12-dihydroindolo[2,3-a]carbazole methylcyclohexane methanesulfonic anhydride 99.1 85.2 0 90 atmospheric pressure
  • Example 5 11,12-dihydroindo
  • Examples 1 to 6 are dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, methylcyclohexane, 1, Deuterium substitution reaction was performed using 2-dichloroethane or xylene.
  • Examples 9 to 14 are deuterium substitution reactions for carbazole using dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, methylcyclohexane, 1,2-dichloroethane or xylene as an organic solvent, respectively.
  • Examples 17 to 22 were prepared using dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, methylcyclohexane, 1,2-dichloroethane or xylene as an organic solvent for 2-bromodibenzofuran, respectively.
  • a deuterium substitution reaction was carried out.
  • Examples 25 to 30 were dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, methylcyclohexane, and organic solvents for 2-chloro-4,6-diphenyl-1,3,5-triazine, respectively.
  • a deuterium substitution reaction was performed using 1,2-dichloroethane or xylene.
  • Examples 1, 7 and 8 show the compounds hydrolyzed by heavy water with respect to 11,12-dihydroindolo[2,3-a]carbazole as methanesulfonic anhydride, trifluoromethanesulfonic anhydride or triplex, respectively.
  • the deuterium substitution reaction was carried out by changing to looroacetic anhydride.
  • a deuterium substitution reaction was performed by changing the compound hydrolyzed by heavy water to carbazole into methanesulfonic anhydride, trifluoromethanesulfonic anhydride, or trifluoroacetic anhydride, respectively.
  • Examples 17, 23 and 24 are deuterium substitution reaction by changing the compound hydrolyzed by heavy water to methanesulfonic anhydride, trifluoromethanesulfonic anhydride or trifluoroacetic anhydride for 2-bromodibenzofuran, respectively carried out
  • Examples 25, 31 and 32 are methanesulfonic anhydride and trifluoromethanesulfonic anhydride for 2-chloro-4,6-diphenyl-1,3,5-triazine compounds hydrolyzed by heavy water, respectively. , was changed to trifluoroacetic anhydride to proceed with deuterium substitution.
  • the purity and deuterium substitution rate vary depending on the solubility of the reactants in organic solvents and deuterium-providing water solubility. For this reason, an organic solvent with good solubility in water is used. In addition, as the amount of the acid anhydride used increases, the acidity of the solution increases and solubility increases, so that the reactant can be dissolved.
  • carbazole having good solubility in organic solvents and good affinity for heavy water had a high deuterium substitution rate. Purity tends to be slightly opposite to the deuterium substitution rate. The better the solubility in organic solvents and heavy water, the better the reactivity, so that impurities due to side reactions increase. For this reason, carbazole tends to have a lower purity than other reactants.
  • Examples 1 to 32 were also carried out at normal pressure without an increase in pressure during the reaction because the reaction was carried out under an acid condition.
  • Comparative Examples 1 to 3 deuterium substitution was performed in a high-pressure reactor using a catalyst, and desired results can be obtained only when the process is carried out at a pressure higher than atmospheric pressure and at least 5 bar or higher. And when proceeding using a high-pressure reactor, a side reaction occurs in which a part of the double bond of the aromatic ring is reduced. The side reaction material thus formed is difficult to separate, and even if the separation is performed, the yield is greatly reduced.
  • Comparative Examples 1 and 2 are results of comparing the deuterium substitution rate and purity change according to the ratio of the hydrogenated compound used when replacing deuterium at high pressure using a catalyst. When the proportion of the hydrogenated compound is 4%, it can be seen that the purity is higher than when the hydrogenated compound is 100%.
  • Examples 17 to 24 and Comparative Example 3 when the target compound has a halogen group that is a leaving group, deuterium is substituted using a compound that can be hydrolyzed by heavy water (Examples 17 to 24) and under high pressure using a catalyst. This is an experiment comparing the conditions in which deuterium was substituted (Comparative Example 3). This experiment is an experiment to confirm whether the halogen group, which is a leaving group, does not fall off after the deuterium substitution reaction and is well attached. The peak caused by the dropped dibenzofuran was confirmed through HPLC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 명세서는 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물에 관한 것이다.

Description

중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
본 출원은 2020년 8월 27일에 한국특허청에 제출된 한국 특허 출원 제10-2020-0108192호 및 2020년 12월 18일에 한국특허청에 제출된 한국 특허 출원 제10-2020-0178795호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물에 관한 것이다.
중수소를 포함하는 화합물은 다양한 목적을 위하여 사용하고 있다. 예를 들면, 화학 반응 메커니즘의 규명 또는 물질 대사 규명 등의 표지 화합물로 사용될 뿐만 아니라, 약, 살충제, 유기 EL 재료 및 기타의 목적을 위해서도 중수소를 포함한 화합물을 많이 이용하고 있다.
유기 발광 소자(OLED) 물질의 수명 향상을 위해 방향족 화합물을 중수소 치환을 하는 방법이 알려져 있다. 이러한 효과의 원리는 중수소 치환 시 C-H bond 보다 C-D bond의 LUMO energy가 낮아지면서 OLED 물질의 수명 특성이 향상된다.
기존의 비균일계 촉매 반응을 이용하여 1개 이상의 방향족 화합물에 대해서 중수소화 반응을 진행하면, 부반응으로 인한 부산물이 계속해서 발생하는 문제가 발생했다. 이는 수소 기체에 의해 생성된 수소화 반응에 의한 것으로 이를 제거하기 위해 반응 후 정제 과정을 통해 순도를 높이는 시도도 했지만, 기존 물질과 녹는 점이나 용해도 측면에서 차이가 나지 않아 고순도를 갖기 어려웠다. 이를 개선하고자 수소 기체 없이 반응하려면 매우 높은 온도(약 220℃ 이상)에서 반응을 진행해야 하는데, 이는 공정에 있어서 안정성이 문제될 수 있다.
본 명세서는 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물을 제공하고자 한다.
본 명세서는 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 이용하여, 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계를 포함하는 중수소화 방향족 화합물의 제조 방법을 제공한다.
또한, 본 명세서는 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 중수소화 반응 조성물을 제공한다.
또한, 본 명세서는 상술한 방법으로 제조된 중수소화 방향족 화합물을 제공한다.
또한, 본 명세서는 상기 중수소화 방향족 화합물을 포함하는 전기 소자를 제공한다.
본 명세서에 따른 제1 실시상태의 제조방법은 수소 기체에 의한 불순물이 발생하지 않는 장점이 있다.
본 명세서에 따른 제2 실시상태의 제조방법은 중수소 치환율이 높은 장점이 있다.
본 명세서에 따른 제3 실시상태의 제조방법은 수득된 화합물의 순도가 높은 장점이 있다.
본 명세서에 따른 제4 실시상태의 제조방법은 보다 낮은 압력에서 중수소화 반응이 가능하다.
본 명세서에 따른 제5 실시상태의 제조방법은 보다 낮은 온도에서 중수소화 반응이 가능하다.
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서는 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 이용하여, 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계를 포함하는 중수소화 방향족 화합물의 제조 방법을 제공한다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 수소 공급 단계가 없는 것이 특징이다.
종래에는 중수소화 방향족 화합물을 제조하기 위해 첨가된 비균일계 촉매인 금속촉매를 활성화시키기 위해, 수소 기체를 공급했다. 수소를 공급하여 중수소화 반응을 진행시키면 수소 기체에 의해 수소화 반응이 진행되어 부반응으로 인한 부산물이 발생된다.
발생된 부산물을 제거하기 위해 반응 후 정제 과정을 통해 순도를 높이는 과정이 필요하며, 이와 같은 정제공정을 수행하더라도 부산물이 타겟 물질과 녹는 점이나 용해도 측면에서 차이가 나지 않아 고순도로 제조하기 어려웠다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 비균일계 촉매인 금속 촉매 대신 중수에 의해 가수분해가 가능한 유기 화합물을 사용하여, 금속 촉매 및 이를 활성화시키기 위한 수소 기체의 공급이 필요없어 수소 기체로 인한 불순물이 발생하지 않는 장점이 있다.
한편, 중수소화 반응 중에 금속 촉매를 사용하는 경우, 중수소화 대상 화합물의 반응성기, 즉 할로겐기, 수산기 등과 반응하기 때문에, 금속 촉매를 이용한 중수소화 반응에서는 중수소화 대상 화합물이 금속 촉매와 반응할 수 있는 반응성기가 없거나 반응성이 낮은 반응성기를 갖는 화합물로 제한될 수 밖에 없었다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 비균일계 촉매인 금속 촉매 대신 중수에 의해 가수분해가 가능한 유기 화합물을 사용하기 때문에, 할로겐기, 수산기 등과 같은 반응성기를 갖는 화합물도 중수소화 대상 화합물로 선택할 수 있다. 구체적으로는 할로겐기, 수산기 등과 같은 반응성기를 갖는 중간체인 화합물의 중수소화를 진행한 후, 상기 반응성기에 추가의 방향족 치환기를 치환하는 반응을 수행할 수 있다.
본 명세서에 따른 제조방법은 중수소 치환율이 높은 장점이 있다.
본 명세서에 따른 제조방법은 수득된 화합물의 순도가 높은 장점이 있다.
본 명세서에 따른 제조방법은 보다 낮은 압력에서 중수소화 반응이 가능하다.
본 명세서에 따른 제조방법은 보다 낮은 온도에서 중수소화 반응이 가능하다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 준비하는 단계를 포함한다.
상기 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 준비하는 단계는 반응기 내에 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 투입하거나, 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 개별적으로 반응기에 투입하여 용액을 준비할 수 있다.
상기 중수에 의해 가수분해가 가능한 유기 화합물은 중수에 의해 분해가 가능한 반응기를 가지고 있다면 특별히 한정하지 않으며, 예를 들면, 하기 화학식 1 내지 4 중 적어도 하나의 화합물을 포함할 수 있다.
[화학식 1]
R1-C(O)OC(O)-R2
[화학식 2]
R3-S(O2)OS(O2)-R4
[화학식 3]
R5-C(O)O-R6
[화학식 4]
R7-CONH-R8
상기 화학식 1 내지 4에서, R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 1가의 유기기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1과 R2는 서로 동일한 치환기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R3과 R4는 서로 동일한 치환기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R5와 R6은 서로 동일한 치환기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R7과 R8은 서로 동일한 치환기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 알킬기; 또는 할로겐기로 치환 또는 비치환된 아릴기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 50의 아릴기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 5 또는 화학식 6의 치환기일 수 있다.
[화학식 5]
-(CH2)l(CF2)m(CF3)n(CH3)1-n
[화학식 6]
-C(H)a((CH2)l(CF2)mCF3)3-a
상기 화학식 5 및 6에서, l 및 m은 각각 0 내지 10의 정수이고, n 및 a는 각각 0 또는 1이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 상기 화학식 5의 치환기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8는 서로 같거나 상이하고, 각각 독립적으로 -CF3, -CH2CH3 또는 -CH3일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물(Trifluoromethanesulfonic anhydride), 트리플루오로아세틱 무수물(Trifluoroacetic anhydride), 아세틱 무수물(Acetic anhydride) 및 메탄술포닉 무수물(Methanesulfonic anhydride) 중 적어도 하나를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물(Trifluoromethanesulfonic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로아세틱 무수물(Trifluoroacetic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 아세틱 무수물(Acetic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 메탄술포닉 무수물(Methanesulfonic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물(Trifluoromethanesulfonic anhydride) 및 트리플루오로아세틱 무수물(Trifluoroacetic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물(Trifluoromethanesulfonic anhydride) 및 아세틱 무수물(Acetic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 메탄술포닉 무수물(Trifluoromethanesulfonic anhydride) 및 트리플루오로아세틱 무수물(Trifluoroacetic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 메탄술포닉 무수물(Trifluoromethanesulfonic anhydride) 및 아세틱 무수물(Acetic anhydride)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물이 상기 화학식 1 및 화학식 2의 화합물 중 적어도 하나를 포함할 수 있다. 상기 화학식 1 및 화학식 2의 화합물 중 적어도 하나를 중수에 투입하면 상온에서도 중수와의 가수분해가 쉽게 일어난다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물이 상기 화학식 1 및 화학식 2의 화합물 중 적어도 하나를 포함하고, 상기 화학식 3 및 화학식 4의 화합물 중 적어도 하나를 더 포함할 수 있다. 상기 중수에 의해 가수분해가 가능한 유기 화합물이 상기 화학식 1 및 화학식 2의 화합물 중 적어도 하나를 포함할 때, 상대적으로 가수분해 반응이 느린 상기 화학식 3 및 화학식 4의 화합물 중 적어도 하나를 추가하여 발열반응인 가수분해 반응에 의해 발생되는 온도를 제어할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물이 상기 화학식 3 및 화학식 4의 화합물 중 적어도 하나를 포함하는 경우, 상기 화학식 1 및 화학식 2의 화합물 중 적어도 하나를 더 포함할 수 있다. 상대적으로 가수분해 반응이 쉽게 일어나는 상기 화학식 1 및 화학식 2의 화합물을 추가하여 가수분해 반응을 가속시킬 수 있다.
상기 중수에 의해 가수분해가 가능한 유기 화합물 내에서, 상기 화학식 3 및 화학식 4의 화합물 중 적어도 하나와 상기 화학식 1 및 화학식 2의 화합물 중 적어도 하나의 중량비는 100: 0 내지 0:100, 99:1 내지 0:100, 90:10 내지 0:100, 80:20 내지 0:100, 70:30 내지 0:100, 60:40 내지 0:100, 50:50 내지 0:100, 40:60 내지 0:100, 30:70 내지 0:100, 20:80 내지 0:100, 또는 10:90 내지 0:100일 수 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 조성물 중에서 방향족 화합물을 제외한 나머지 조성들의 총 질량을 기준으로, 상기 중수에 의해 가수분해가 가능한 유기 화합물의 함량은 1wt% 이상 70wt% 이하일 수 있다. 이 경우, 서로 섞이지 않는 상기 방향족 화합물과 중수 간의 친화도를 높일 수 있으며 중수소 치환 반응성을 증대시키는 장점이 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 용액은 유기용매를 포함한다.
유기용매를 사용하지 않는 경우, 가수분해가 가능한 유기 화합물의 가수분해 반응에 의해 중수소를 갖는 가수분해된 유기 화합물의 농도가 일정 이상 생성되면, 중수소를 갖는 가수분해된 유기 화합물에 의해 중소와 타겟 물질인 방향족 화합물이 서로 섞이게 되어 중수소 치환반응이 잘 일어나게 된다.
그러나, 중수에 의해 가수분해된 유기 화합물 자체가 초강산이기 때문에 가수분해된 유기 화합물 농도의 증가로 부반응(side reaction)도 잘 일어나게 하여 순도를 저하시킬 수 있다. 또한, 반응 후 워크업(work-up) 과정에서 많은 양의 가수분해된 유기 화합물이 있는 용액을 다루는 것은 안정성 측면에서도 위험할 수 있다.
반면, 유기 용매가 없는 중수소화 반응과 비교하여, 유기 용매를 함께 사용하게 되면, 중수에 의해 가수분해가 가능한 유기 화합물의 사용량을 30~90% 정도 줄일 수 있게 되어 순도의 증가와 안정성 향상을 얻을 수 있다.
이때, 반응에 사용할 수 있는 유기용매는 반응 조건에서 반응물 및 반응결과물을 모두 녹일 수 있어야 한다.
유기용매를 사용하지 않는 경우, 중수에 의해 가수분해가 가능한 유기 화합물로서 첨가된 트리플루오로메탄술포닉 무수물의 가수분해 반응에 의해서 형성된 중수소 치환된 트리플루오로메탄술포닉산 (trifluoromethanesulfonic acid-d)의 농도가 높아지게 되어 중수소 치환반응이 잘 일어나게 된다.
그러나, 트리플루오로메탄술포닉산(trifluoromethanesulfonic acid) 자체가 초강산이기 때문에 트리플루오로메탄술포닉산 농도의 증가로 부반응(side reaction)도 잘 일어나게 하여 순도를 저하시킬 수 있다. 또한, 반응 후 워크업(work-up) 과정에서 많은 양의 트리플루오로메탄술포닉산이 있는 용액을 다루는 것은 안정성 측면에서도 위험할 수 있다.
반면, 유기 용매를 함께 사용하게 되면, 기존 대비 트리플루오로메탄술포닉 무수물(trifluoromethnae sulfonic anhydride)의 사용량을 30~90% 정도 줄일 수 있게 되어 순도의 증가와 안정성 향상을 얻을 수 있다.
상기 유기용매는 할로겐기로 치환 또는 비치환된 탄화수소사슬; 알킬기로 치환 또는 비치환된 지방족 탄화수소고리; 알킬기로 치환 또는 비치환된 방향족 탄화수소고리; 직쇄 또는 분지쇄의 헤테로사슬; 치환 또는 비치환된 지방족 헤테로고리; 및 치환 또는 비치환된 방향족 헤테로고리로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 유기용매는 산소원소 및 황원소 중 적어도 하나를 포함하고, 치환 또는 비치환된 헤테로고리; 치환 또는 비치환된 알킬아세테이트; 알킬케톤; 알킬설폭사이드; 탄소수 4 내지 10의 락톤; 알킬아마이드; 탄소수 4 내지 10의 글리콜; 다이옥산; 알콕시로 치환 또는 비치환된 아세트산으로 이루어진 군으로부터 선택된다.
중수소 치환반응이 잘 일어나려면, 중수소 공급원인 중수와 중수소로 치환하고자 하는 방향족 화합물이 하나의 상(one phase)이 되어야 한다. 그러나 중수와 타겟 물질인 방향족 화합물은 기본적으로 잘 섞이지 않는 성질을 가지고 있다.
가수분해된 유기 화합물이 일정 이상 생성되면 중수와 방향족 화합물이 모두 가수분해된 유기 화합물에 의해 녹게 되고, 중수소 치환 반응이 일어난다. 예를 들면, 초강산인 트리플루오로메탄술포닉산 (trifluoromethanesulfonic acid)가 가수분해에 의해 일정량 이상 생성되면, 중수와 방향족 화합물이 모두 트리플루오로메탄술포닉산(trifluoromethanesulfonic acid)에 의해 녹게 되고, 중수소 치환 반응이 일어난다.
중수소 치환 반응에 첨가되고 생성되는 모든 물질을 녹이기 위해서, 상기 유기 용매는 중수와도 잘 섞여야 하고, 방향족 화합물도 어느 정도 녹일 수 있어야 한다. 그러기 위해서 유기용매가 어느 정도 극성을 띠어야 하므로, 전자를 끄는 성질인 전기 음성도가 높은 원소를 포함할 수 있다. 예를 들면, 높은 전자 음성도를 가지면서 비교적 안정성이 좋은 산소 및/또는 황원소를 포함할 수 있다.
너무 높은 극성을 가지면 상대적으로 무극성에 가까운 방향족 화합물을 녹이지 못하므로, 상기 유기 용매의 극성은 중수와 방향족 화합물의 중간인 것이 적절하다. 유기용매가 고리형태를 갖게 되면, 고리형태가 아닐 때보다 약간의 극성을 띄게 되어 섞임성이 좋아진다.
상기 유기용매는 에틸 아세테이트(Ethyl acetate), 아세톤(acetone), 싸이클로헥사논(cyclohexanone), 메틸에틸케톤(methyl ethyl ketone), 테트라하이드로퓨란(tetrahydrofuran), 테트라하이드로피란(tetrahydropyran), 싸이클로펜타논(cyclopentanone), 1,2-다이옥산(1,2-dioxane), 1,3-다이옥산(1,3-dioxane), 1,4-다이옥산(1,4-dioxane), N,N-다이메틸포름아마이드(DMF), 다이메틸설폭사이드(DMSO), 1,2-다이메톡시에탄(1,2-dimethoxyethane), 디글라임(Diglyme), 감마부티로락톤(γ-butyrolactone), 감마발레로락톤(γ-valerolactone), 메틸에틸디글리콜(Methyl ethyl di glycol, MEDG), 프로필렌글라이콜메틸에테르(Propylene glycol methyl ether, PGME), 프로필렌글라이콜메틸에테르아세테이트(Propylene glycol methyl ether acetate, PGMEA), 에틸락테이트(Ethyl lactate), 시클로헥산, 메틸시클로헥산, 에틸시클로헥산, 디에틸에테르(diethyl ether), 1,2-디메톡시 에탄(1,2-dimethoxyethane), 데칼린, 헥산, 헵탄, 톨루엔, 자일렌, 1,3,5-트리메틸벤젠(1,3,5-trimethylbenzene), 디클로로메탄(dichloromethane), 1.2-디클로로 에탄(1,2-dichloroethane), 1,1,2,2-테트라클로로에탄(1,1,2,2-tetrachloroethane), 테트라클로로에틸렌(tetrachloroethylene) 및 2-메톡시아세틱산(2-methoxyacetic acid)로 이루어진 군으로부터 선택될 수 있다.
상기 유기용매의 함량이 너무 많아지면 중수소 치환율이 감소하고, 반대로 유기용매의 함량이 너무 적어지면 반응물들을 잘 녹이지 못해서 중수소 치환율이 감소한다. 바람직하게, 상기 방향족 화합물의 질량을 기준으로, 상기 유기용매의 질량비는 4배 내지 40배일 수 있으며, 구체적으로 4배 내지 16배일 수 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 용액은 금속 촉매를 포함하지 않고, 이의 역할을 중수에 의해 가수분해가 가능한 유기 화합물이 대신 수행하는 것이 특징이다. 이를 통해, 금속 촉매를 첨가함으로써 발생하는 문제점, 예를 들면, 수소 기체를 공급해야 하는 점, 수소 기체에 의한 불순물을 제거해야 하는 점, 높은 반응 온도와 높은 압력을 유지하고 견딜 수 있는 공정설비를 마련해야 하는 점 등이 해결된다.
본 명세서에 따른 일 실시상태에 따르면, 상기 용액은 중수를 포함한다.
본 명세서에 따른 일 실시상태에 따르면, 상기 중수의 함량은 상기 방향족 화합물 중량의 0.1배 이상 30배 이하일 수 있다. 이 경우, 중수로부터 효율적으로 중수소를 치환할 수 있는 장점이 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 용액은 중수와 함께, 추가의 중수소원을 포함할 수 있다. 상기 중수소원은 중수소화된 방향족 용매일 수 있으며, 예를 들면 벤젠-d6(Benzene-d6), 톨루엔-d8(Toluene-d8) 등일 수 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 추가의 중수소원의 함량은 상기 방향족 화합물 중량의 0.1배 이상 30배 이하일 수 있다. 이 경우, 반응성을 높일 수 있으며 반응 중 발열을 줄일 수 있는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 방향족 화합물은 1개 이상의 방향족 고리를 포함하는 방향족 화합물이며, 구체적으로 1개 이상 30개 이하인 방향족 고리를 포함하는 방향족 화합물이다. 이때, 방향족 고리가 1개 이상이라는 의미는 단환, 다환 또는 이들의 조합의 방향족 고리가 1개 이상이거나, 기본 단위인 방향족 고리(예: 벤젠 고리)가 1개 이상일 수 있다. 예를 들면, 카바졸 고리는 하나의 방향족 고리를 의미하거나, 기본 단위인 벤젠 고리와 이와 함께 축합된 고리를 기준으로 2개의 벤젠 고리가 연결되거나 벤젠 고리를 포함하는 3개의 고리가 축합된 것을 의미할 수 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 용액의 총 중량을 기준으로, 상기 방향족 화합물의 함량은 3wt% 이상 50wt% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 방향족 고리는 치환 또는 비치환되고 단환 또는 다환인 탄화수소 방향족 고리, 또는 치환 또는 비치환되고 단환 또는 다환인 헤테로 방향족 고리일 수 있다. 예를 들면, 상기 방향족 고리는 치환 또는 비치환된 벤젠 고리, 치환 또는 비치환된 나프탈렌 고리, 치환 또는 비치환된 안트라센 고리, 치환 또는 비치환된 디벤조퓨란, 치환 또는 비치환된 디벤조티오펜, 치환 또는 비치환된 카바졸 등일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 방향족 화합물은 헤테로 방향족 화합물일 수 있으며, 상기 헤테로 방향족 화합물은 카바졸계 화합물, 디벤조퓨란계 화합물, 디벤조티오펜계 화합물, 피리딘계 화합물, 피리미딘계 화합물, 또는 트리아진계 화합물일 수 있다. 상기 헤테로 방향족 화합물은 백본을 구성하는 탄소 외에 O, S, N, Si, P, Se 등의 이종 원소를 포함하는 화합물을 의미하며, 해당 백본에 치환된 수소는 다른 치환기로 치환될 수 있으며, 이때 치환기의 종류는 특별히 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 O, S 및 N 중 적어도 하나를 포함하고, 치환 또는 비치환된 헤테로 방향족 고리를 포함하는 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 치환 또는 비치환된 산소원소를 포함하는 헤테로 방향족 고리를 포함하는 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 치환 또는 비치환된 질소원소를 포함하는 헤테로 방향족 고리를 포함하는 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 치환 또는 비치환된 황원소를 포함하는 헤테로 방향족 고리를 포함하는 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 카바졸계 화합물일 수 있으며, 구체적으로 치환 또는 비치환된 카바졸; 또는 인접한 기가 결합된 추가의 고리를 갖고 치환 또는 비치환된 카바졸일 수 있다.
상기 인접한 기가 결합된 추가의 고리를 갖는 카바졸은 치환 또는 비치환된 벤조카바졸; 치환 또는 비치환된 디벤조카바졸; 치환 또는 비치환된 퓨로카바졸; 또는 치환 또는 비치환된 인돌로카바졸일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 디벤조퓨란계 화합물일 수 있으며, 구체적으로 치환 또는 비치환된 디벤조퓨란; 또는 인접한 기가 결합된 추가의 고리를 갖고 치환 또는 비치환된 디벤조퓨란일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로 방향족 화합물은 디벤조티오펜계 화합물일 수 있으며, 구체적으로 치환 또는 비치환된 디벤조티오펜; 또는 인접한 기가 결합된 추가의 고리를 갖고 치환 또는 비치환된 디벤조티오펜일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 헤테로방향족 화합물은 치환 또는 비치환된 인돌; 치환 또는 비치환된 벤조퓨란; 치환 또는 비치환된 벤조티오펜; 치환 또는 비치환된 벤조옥사졸; 치환 또는 비치환된 벤조티아졸; 치환 또는 비치환된 벤조이미다졸;치환 또는 비치환된 안트라퀴논; 치환 또는 비치환된 잔텐; 치환 또는 비치환된 티오잔텐; 치환 또는 비치환된 피리딘; 치환 또는 비치환된 피리미딘; 치환 또는 비치환된 트리아진; 또는 디하이드로인돌로카바졸일 수 있다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 “치환” 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 “치환 또는 비치환된” 이라는 용어는 할로겐기; 니트릴기; 니트로기; 히드록시기; 아민기; 실릴기; 붕소기; 알콕시기; 알킬기; 시클로알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, “2 이상의 치환기가 연결된 치환기”는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소(-F), 염소(-Cl), 브롬(-Br) 또는 요오드(-I)가 있다.
본 명세서에 있어서, 실릴기는 -SiYaYbYc의 화학식으로 표시될 수 있고, 상기 Ya, Yb 및 Yc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, tert-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 -BYdYe의 화학식으로 표시될 수 있고, 상기 Yd 및 Ye는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 붕소기는 구체적으로 디메틸붕소기, 디에틸붕소기, tert-부틸메틸붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, 펜틸기, n-펜틸기, 헥실기, n-헥실기, 헵틸기, n-헵틸기, 옥틸기, n-옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 기재된 알킬기, 알콕시기 및 그 외 알킬기 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 39이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 쿼터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐기, 크라이세닐기, 플루오레닐기, 트리페닐레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오렌기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
상기 플루오렌기가 치환되는 경우,
Figure PCTKR2021011541-appb-img-000001
등의 스피로플루오렌기,
Figure PCTKR2021011541-appb-img-000002
(9,9-디메틸플루오렌기), 및
Figure PCTKR2021011541-appb-img-000003
(9,9-디페닐플루오렌기) 등의 치환된 플루오렌기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 36이다. 헤테로 고리기의 예로는 예로는 피리딘기, 피롤기, 피리미딘기, 퀴놀린기, 피리다진기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 디벤조퓨란기, 디벤조티오펜기, 카바졸기, 벤조카바졸기, 벤조나프토퓨란기, 벤조나프토티오펜기, 인데노카바졸기, 인돌로카바졸기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, N-페닐바이페닐아민기, N-페닐나프틸아민기, N-바이페닐나프틸아민기, N-나프틸플루오레닐아민기, N-페닐페난트레닐아민기, N-바이페닐페난트레닐아민기, N-페닐플루오레닐아민기, N-페닐터페닐아민기, N-페난트레닐플루오레닐아민기, N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기 중의 알킬기, 아릴기 및 헤테로아릴기는 각각 전술한 알킬기, 아릴기 및 헤테로아릴기의 예시와 같다.
본 명세서의 일 실시상태에 있어서, 상기 중수소화 반응에 참여할 방향족 화합물은 하기 화학식 7 내지 10 중 어느 하나일 수 있다. 중수소화 반응을 통해, 선택된 화합물 중 적어도 하나의 수소는 중수소로 치환된다.
[화학식 7]
Figure PCTKR2021011541-appb-img-000004
[화학식 8]
Figure PCTKR2021011541-appb-img-000005
[화학식 9]
Figure PCTKR2021011541-appb-img-000006
[화학식 10]
Figure PCTKR2021011541-appb-img-000007
상기 화학식 7 내지 10에서,
X, X1 및 X2는 각각 독립적으로 O, S 또는 NR이고,
R은 수소; 중수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
A1 내지 A8는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
B1 내지 B5는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
E1 내지 E3는 각각 독립적으로 수소; 탈리기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Y1 내지 Y6는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Z1 내지 Z3 중 적어도 하나는 N이며, 나머지는 각각 독립적으로 CH 또는 N이고,
b5는 1 내지 6의 정수이고, b5가 2 이상인 경우, B5는 서로 같거나 상이하며,
y5는 1 또는 2 이고, y5가 2인 경우, Y5는 서로 같거나 상이하며,
y6는 1 내지 4의 정수이고, y6가 2 이상인 경우, Y6는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, X가 O이다.
본 명세서의 일 실시상태에 있어서, X가 S이다.
본 명세서의 일 실시상태에 있어서, X가 NR이며, R은 수소; 중수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, X가 NR이며, R은 수소; 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, A1 내지 A8 중 적어도 하나는 탈리기; 수산기; 치환 또는 비치환된 아민기; 또는 시아노기이며, 나머지는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, B1 내지 B5 중 적어도 하나는 탈리기; 수산기; 치환 또는 비치환된 아민기; 또는 시아노기이며, 나머지는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, Y1 내지 Y6 중 적어도 하나는 탈리기; 수산기; 치환 또는 비치환된 아민기; 또는 시아노기이며, 나머지는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, Z1 내지 Z3 중 어느 하나는 N이며, 나머지는 CH이다.
본 명세서의 일 실시상태에 있어서, Z1 내지 Z3 중 둘은 N이며, 나머지는 CH이다.
본 명세서의 일 실시상태에 있어서, Z1 내지 Z3는 모두 N이다.
본 명세서의 일 실시상태에 있어서, E1 내지 E3는 중 적어도 하나는 탈리기이며, 나머지는 각각 독립적으로 수소; 탈리기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 방향족 화합물은 하기 구조 중 어느 하나일 수 있다.
Figure PCTKR2021011541-appb-img-000008
Figure PCTKR2021011541-appb-img-000009
Figure PCTKR2021011541-appb-img-000010
Figure PCTKR2021011541-appb-img-000011
Figure PCTKR2021011541-appb-img-000012
Figure PCTKR2021011541-appb-img-000013
Figure PCTKR2021011541-appb-img-000014
Figure PCTKR2021011541-appb-img-000015
Figure PCTKR2021011541-appb-img-000016
Figure PCTKR2021011541-appb-img-000017
Figure PCTKR2021011541-appb-img-000018
Figure PCTKR2021011541-appb-img-000019
Figure PCTKR2021011541-appb-img-000020
Figure PCTKR2021011541-appb-img-000021
여기서, L은 탈리기, 수산기, 치환 또는 비치환된 아민기, 및 시아노기로 이루어진 군으로부터 선택된 치환기이다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 상기 반응기의 내부공기를 질소 또는 불활성기체로 치환하는 단계를 더 포함할 수 있다.
상기 방향족 화합물의 중수소화를 진행시키는 단계는 상온(room temperature)에서 열을 가하지 않고 중수소화를 진행시키거나, 상기 용액을 가열하여 중수소화를 진행시킬 수 있다. 이때, 상온은 가열하거나 냉각하지 않은 자연 그대로의 기온으로, 구체적으로 20±5℃의 범위일 수 있다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계는,
1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 준비하는 단계; 및
상기 용액을 가열하여 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계를 포함할 수 있다.
상기 반응기를 가열하여 방향족 화합물의 중수소화를 진행시키는 단계는 상기 용액을 160℃ 이하, 150℃ 이하, 140℃ 이하, 130℃ 이하, 120℃ 이하, 110℃ 이하, 100℃ 이하, 90℃ 이하, 또는 80℃ 이상의 온도로 가열하는 단계이고, 구체적으로 80℃ 이상 140℃ 이하의 온도로 가열하는 단계일 수 있다.
이때, 상기 중수소 반응시간은 승온을 완료한 뒤 3 시간 이상 동안 반응시킨다. 구체적으로, 상기 중수소 반응을 승온을 완료한 뒤 3 시간 이상 24 시간 이하 동안 반응시킬 수 있으며, 바람직하게는 6 시간 이상 18 시간 이하 동안 반응시킨다.
본 명세서의 중수소화 방향족 화합물의 제조 방법은 상기 중수소화를 진행시키는 단계 이후에, 상기 중수소화된 방향족 화합물을 수득하는 단계를 더 포함한다. 수득하는 방법은 당 기술분야에서 알려진 방법으로 수행할 수 있으며, 특별히 한정하지 않는다.
상기 수득된 중수소화된 방향족 화합물의 중수소 치환율은 높을수록 좋으며, 구체적으로, 상기 수득된 중수소화된 방향족 화합물의 중수소 치환율은 50% 이상, 60% 이상, 70% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상 또는 100%일 수 있다.
상기 수득된 중수소화된 방향족 화합물의 순도는 높을수록 좋으며, 구체적으로, 상기 수득된 중수소화된 방향족 화합물의 순도는 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상 또는 100%일 수 있다.
본 명세서는 상술한 제조 방법으로 제조된 중수소화 방향족 화합물을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 중수소화 방향족 화합물은 적어도 1 이상의 중수소로 치환된 방향족 화합물을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 중수소화 방향족 화합물은 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기를 포함한다.
본 명세서에서, 상기 탈리기를 포함하는 화합물은 유기합성의 최종 화합물의 중간체일 수 있으며, 상기 탈리기는 최종 화합물을 기준으로 탈리되거나 다른 반응물과 결합하여 화학적으로 변경되는 반응기를 의미한다. 이에 상기 탈리기는 유기합성의 방법과 최종 화합물의 치환기의 위치에 따라서, 탈리기의 종류와 탈리기가 결합되는 위치가 결정된다.
본 명세서의 일 실시상태에 있어서, 상기 탈리기는 할로겐기 및 보로닉산기로 이루어진 군으로부터 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기를 포함하는 중수소화 방향족 화합물은 하기 화학식 7 내지 10 중 어느 하나일 수 있다.
[화학식 7]
Figure PCTKR2021011541-appb-img-000022
[화학식 8]
Figure PCTKR2021011541-appb-img-000023
[화학식 9]
Figure PCTKR2021011541-appb-img-000024
[화학식 10]
Figure PCTKR2021011541-appb-img-000025
상기 화학식 7 내지 10에서,
X, X1 및 X2는 각각 독립적으로 O, S 또는 NR이고,
R은 수소; 중수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
A1 내지 A8 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 시아노기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
B1 내지 B5 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
E1 내지 E3 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Y1 내지 Y6 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Z1 내지 Z3 중 적어도 하나는 N이며, 나머지는 각각 독립적으로 CH 또는 N이고,
b5는 1 내지 6의 정수이고, b5가 2 이상인 경우, B5는 서로 같거나 상이하며,
y5는 1 또는 2 이고, y5가 2인 경우, Y5는 서로 같거나 상이하며,
y6는 1 내지 4의 정수이고, y6가 2 이상인 경우, Y6는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 7 내지 10의 화합물은 각각 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기를 갖는다.
본 명세서의 일 실시상태에 있어서, 상기 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기를 포함하는 중수소화 방향족 화합물은 하기 구조 중 어느 하나이며, 상기 구조는 각각 1 이상의 중수소로 치환된다.
Figure PCTKR2021011541-appb-img-000026
Figure PCTKR2021011541-appb-img-000027
Figure PCTKR2021011541-appb-img-000028
Figure PCTKR2021011541-appb-img-000029
Figure PCTKR2021011541-appb-img-000030
여기서, L은 탈리기, 수산기, 치환 또는 비치환된 아민기, 및 시아노기로 이루어진 군으로부터 선택된 치환기이다.
이론적으로 중수소화 화합물의 모든 수소가 중수소로 치환되는 경우, 즉 중수소 치환율이 100%이라면 가장 이상적으로 수명 특성이 향상된다. 그러나 입체장애로 극한 조건이 필요하거나, 부반응으로 인해 중수소화되기 전에 화합물이 파괴되는 등의 문제점이 있고, 현실적으로 화합물의 모든 수소를 100% 중수소화 치환율로 얻어내기 어려우며, 중수소화 치환율을 100%에 가깝게 얻어내는 경우도 공정의 시간, 비용 등을 고려하면 투자 대비 효율이 좋지 않다.
본 명세서에서, 중수소화 반응을 통해 제조되어 1 이상의 중수소를 갖는 중수소화 화합물은 치환된 중수소의 개수에 따라 분자량이 다른 2 이상의 동위체를 갖는 조성물로 제조되므로, 상기 구조에서 중수소가 치환되는 위치를 생략한다.
상기 구조의 화합물에서, 수소로 표시 또는 치환된 수소가 생략된 위치 중 적어도 하나는 중수소로 치환될 수 있다.
본 명세서는 1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수(D2O), 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 중수소화 반응 조성물을 제공한다.
상기 중수소화 반응 조성물은 상술한 제조 방법 내 용액에 대한 설명을 인용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 하기 화학식 1 내지 4 중 적어도 하나의 화합물을 포함할 수 있다.
[화학식 1]
R1-C(O)OC(O)-R2
[화학식 2]
R3-S(O2)OS(O2)-R4
[화학식 3]
R5-C(O)O-R6
[화학식 4]
R7-CONH-R8
상기 화학식 1 내지 4에서,
R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 1가의 유기기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 알킬기; 또는 할로겐기로 치환 또는 비치환된 아릴기일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 5 또는 화학식 6의 치환기일 수 있다.
[화학식 5]
-(CH2)l(CF2)m(CF3)n(CH3)1-n
[화학식 6]
-C(H)a((CH2)l(CF2)mCF3)3-a
상기 화학식 5 및 6에서,
l 및 m은 각각 0 내지 10의 정수이고,
n 및 a는 각각 0 또는 1이다.
본 명세서의 일 실시상태에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물(Trifluoromethanesulfonic anhydride), 트리플루오로아세틱 무수물(Trifluoroacetic anhydride), 아세틱 무수물(Acetic anhydride) 및 메탄술포닉 무수물(Methanesulfonic anhydride) 중 적어도 하나를 포함할 수 있다.
본 명세서에 따른 일 실시상태에 따르면, 상기 유기용매는 할로겐기로 치환 또는 비치환된 탄화수소사슬; 알킬기로 치환 또는 비치환된 지방족 탄화수소고리; 알킬기로 치환 또는 비치환된 방향족 탄화수소고리; 직쇄 또는 분지쇄의 헤테로사슬; 치환 또는 비치환된 지방족 헤테로고리; 및 치환 또는 비치환된 방향족 헤테로고리로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 유기용매는 산소원소 및 황원소 중 적어도 하나를 포함하고, 치환 또는 비치환된 헤테로고리; 치환 또는 비치환된 알킬아세테이트; 알킬케톤; 알킬설폭사이드; 탄소수 4 내지 10의 락톤; 알킬아마이드; 탄소수 4 내지 10의 글리콜; 다이옥산; 알콕시로 치환 또는 비치환된 아세트산으로 이루어진 군으로부터 선택된다.
상기 유기용매는 에틸 아세테이트(Ethyl acetate), 아세톤(acetone), 싸이클로헥사논(cyclohexanone), 메틸에틸케톤(methyl ethyl ketone), 테트라하이드로퓨란(tetrahydrofuran), 테트라하이드로피란(tetrahydropyran), 싸이클로펜타논(cyclopentanone), 1,2-다이옥산(1,2-dioxane), 1,3-다이옥산(1,3-dioxane), 1,4-다이옥산(1,4-dioxane), N,N-다이메틸포름아마이드(DMF), 다이메틸설폭사이드(DMSO), 1,2-다이메톡시에탄(1,2-dimethoxyethane), 디글라임(Diglyme), 감마부티로락톤(γ-butyrolactone), 감마발레로락톤(γ-valerolactone), 메틸에틸디글리콜(Methyl ethyl di glycol, MEDG), 프로필렌글라이콜메틸에테르(Propylene glycol methyl ether, PGME), 프로필렌글라이콜메틸에테르아세테이트(Propylene glycol methyl ether acetate, PGMEA), 에틸락테이트(Ethyl lactate), 시클로헥산, 메틸시클로헥산, 에틸시클로헥산, 디에틸에테르(diethyl ether), 1,2-디메톡시 에탄(1,2-dimethoxyethane), 데칼린, 헥산, 헵탄, 톨루엔, 자일렌, 1,3,5-트리메틸벤젠(1,3,5-trimethylbenzene), 디클로로메탄(dichloromethane), 1.2-디클로로 에탄(1,2-dichloroethane), 1,1,2,2-테트라클로로에탄(1,1,2,2-tetrachloroethane), 테트라클로로에틸렌(tetrachloroethylene) 및 2-메톡시아세틱산(2-methoxyacetic acid)로 이루어진 군으로부터 선택될 수 있다.
본 명세서는 상술한 중수소화 방향족 화합물을 포함하는 전자 소자를 제공한다.
본 명세서는 상술한 중수소화 방향족 화합물을 사용하여 전자 소자를 제조하는 단계를 포함하는 전자 소자의 제조방법을 제공한다.
상기 전자 소자 및 전자 소자의 제조방법은 상기 조성물의 설명을 인용할 수 있으며, 중복된 설명은 생략한다.
상기 전자 소자는 상술한 중수소화 방향족 화합물을 사용할 수 있는 소자라면 특별히 한정하지 않으며, 예를 들면, 유기 발광 소자, 유기 인광 소자, 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등일 수 있다.
상기 전자 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하며, 상기 유기물층 중 1 층 이상은 상술한 중수소화 방향족 화합물을 포함할 수 있다.
본 명세서는 상술한 중수소화 방향족 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 유기물층을 포함하고, 상기 유기물층은 상기 중수소화 방향족 화합물을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 상기 중수소화 방향족 화합물을 포함하는 발광층을 포함한다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 명세서의 유기물층은 1 내지 3층으로 구성되어 있을 수 있다. 또한, 본 명세서의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
본 명세서에서, 상기 음극, 유기물층 및 양극의 재질은 유기물층 중 적어도 한 층에 중수소화된 방향족 화합물을 포함하는 것 외에 특별히 한정하지 않으며, 당 기술분야에서 알려진 물질을 사용할 수 있다.
본 명세서에서, 상술한 중수소화 방향족 화합물을 유기 인광 소자, 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 사용될 수 있다. 예컨대, 상기 유기 태양 전지는 음극, 양극 및 상기 음극과 양극 사이에 구비된 광활성층을 포함하는 구조일 수 있고, 상기 광활성층은 상기 선택된 중수소화 화합물을 포함할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
플라스크 안에 11, 12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo [2,3-a]carbazole) 5g, 중수(D2O) 30ml, 메탄술포닉 무수물 (Methanesulfonic anhydride) 10g 및 다이메틸설폭사이드(Dimethyl sulfoxide) 50ml을 넣고, 상온에서 1시간 동안 교반을 한 후에 60℃ 내지 100℃에서 18시간 동안 반응을 시켰다. 반응 종료 후에 5℃ 이하로 온도를 낮춘 후 포타슘카보네이트를 첨가하여 pH가 7~8이 되도록 중화를 시킨다. 중화가 될 때, 용해도가 떨어지면서 반응물은 고체로 석출된다. 이것을 필터하여 테트라하이드로퓨란 (Tetrahydrofuran)에 녹인다. 여기에 황산 마그네슘 (MgSO4)로 잔존 수분을 제거한 후, 필터를 하고 진공 회전 농축기(rotary evaporator)를 이용하여 용매를 제거하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸 (11,12-dihydroindolo[2,3-a]carbazole)을 얻었다.
[실시예 2]
실시예 1과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 테트라하이드로퓨란 (tetrahydrofuran)으로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a]carbazole)을 얻었다.
[실시예 3]
실시예 1과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 1,4-다이옥산(1,4-Dioxane)으로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a] carbazole)을 얻었다.
[실시예 4]
실시예 1과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 메틸사이클로헥산(methylcyclohexane)으로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a] carbazole)을 얻었다.
[실시예 5]
실시예 1과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 1,2-다이클로로에탄(1,2-dichloroethane)으로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a] carbazole)을 얻었다.
[실시예 6]
실시예 1과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 자일렌(xylene)으로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a]carbazole)을 얻었다.
[실시예 7]
실시예 1과 같은 방법을 이용하여, 메탄술포닉 무수물(methnaesulfonic anhydride) 대신 트리플로오로메탄술포닉 무수물(trifluoromethanesulfonic anhydride)로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a]carbazole)을 얻었다.
[실시예 8]
실시예 1과 같은 방법을 이용하여, 메탄술포닉 무수물(methnaesulfonic anhydride) 대신 트리플로오로아세틱 무수물(trifluoroacetic anhydride)로, 다이메틸설폭사이드(dimethyl sulfoxide) 대신 자일렌(xylene)으로 변경을 하여 중수소로 치환된 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a]carbazole)을 얻었다.
[실시예 9]
플라스크 안에 카바졸(carbazole) 5g, 중수(D2O) 32ml, 메탄술포닉 무수물 (Methanesulfonic anhydride) 8g, 다이메틸설폭사이드(Dimethyl sulfoxide) 50ml을 넣고, 상온에서 1시간 동안 교반을 한 후에 60~100℃에서 18시간 동안 반응을 시켰다. 반응 종료 후에 5℃ 이하로 온도를 낮춘 후 포타슘카보네이트를 첨가하여 pH가 7~8이 되도록 중화를 시킨다. 중화가 될 때, 용해도가 떨어지면서 반응물은 고체로 석출된다. 이것을 필터하여 테트라하이드로퓨란 (Tetrahydrofuran)에 녹인다. 여기에 황산 마그네슘 (MgSO4)로 잔존 수분을 제거한 후, 필터를 하고 진공 회전 농축기(rotary evaporator)를 이용하여 용매를 제거하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 10]
실시예 9와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 테트라하이드로퓨란 (tetrahydrofuran)으로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 11]
실시예 9와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 1,4-다이옥산(1,4-dioxane)으로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 12]
실시예 9와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 메틸사이클로헥산(methylcyclohexane)으로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 13]
실시예 9와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 1,2-다이클로로에탄(1,2-dichloroethane)으로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 14]
실시예 9와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드(dimethyl sulfoxide) 대신 자일렌(xylene)으로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 15]
실시예 9와 같은 방법을 이용하여, 메탄술포닉 무수물(methanesulfonic anhydride) 대신 트리플로오로메탄술포닉 무수물(trifluoromethanesulfonic anhydride)로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 16]
실시예 9와 같은 방법을 이용하여, 메탄술포닉 무수물(methanesulfonic anhydride) 대신 트리플로오로아세틱 무수물(trifluoroacetic anhydride)로, 다이메틸설폭사이드(dimethyl sulfoxide)를 자일렌(xylene)으로 변경을 하여 중수소로 치환된 카바졸(carbazole)을 얻었다.
[실시예 17]
플라스크 안에 2-브로모다이벤조퓨란(2-bromodibenzofuran) 5g, 중수(D2O) 16ml, 메탄술포닉 무수물 (Methanesulfonic anhydride) 10.5g, 다이메틸설폭사이드(Dimethyl sulfoxide) 40ml을 넣고, 상온에서 1시간 동안 교반을 한 후에 80℃ 내지 100℃에서 18시간 동안 반응을 시켰다. 반응 종료 후에 5℃ 이하로 온도를 낮춘 후 포타슘카보네이트를 첨가하여 pH가 7~8이 되도록 중화를 시킨다. 중화가 될 때, 용해도가 떨어지면서 반응물은 고체로 석출된다. 이것을 필터하여 에틸아세테이트 (Ethyl acetate)에 녹인다. 여기에 황산 마그네슘 (MgSO4)로 잔존 수분을 제거한 후, 필터를 하고 진공 회전 농축기(rotary evaporator)를 이용하여 용매를 제거하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 18]
실시예 17과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 테트라하이드로퓨란(tetrahydrofuran)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 19]
실시예 17과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 1,4-다이옥산(1,4-dioxane)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 20]
실시예 17과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 메틸사이클로헥산(methylcyclohexane)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 21]
실시예 17과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 1,2-다이클로로에탄(1,2-dichloroethane)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 22]
실시예 17과 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 자일렌(xylene)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 23]
실시예 17과 같은 방법을 이용하여, 메탄술포닉 무수물(methanesulfonic anhydride) 대신 트리플로오로메탄술포닉 무수물(trifluoromethanesulfonic anhydride)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 24]
실시예 17과 같은 방법을 이용하여, 메탄술포닉 무수물(methanesulfonic anhydride)을 트리플로오로아세틱 무수물(trifluoroacetic anhydride)으로, 다이메틸설폭사이드(dimethyl sulfoxide)를 자일렌(xylene)으로 변경을 하여 중수소로 치환된 2-브로모다이벤조퓨란(2-bromodibenzofuran)을 얻었다.
[실시예 25]
플라스크 안에 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 5g, 중수(D2O) 20.5ml, 메탄술포닉 무수물 (Methanesulfonic anhydride) 13g, 다이메틸설폭사이드(Dimethyl sulfoxide) 40ml을 넣고, 상온에서 1시간 동안 교반을 한 후에 80~100℃에서 18시간 동안 반응을 시켰다. 반응 종료 후에 5℃ 이하로 온도를 낮춘 후 포타슘카보네이트를 첨가하여 pH가 7~8이 되도록 중화를 시킨다. 중화가 될 때, 용해도가 떨어지면서 반응물은 고체로 석출된다. 이것을 필터하여 에틸아세테이트 (Ethyl acetate)에 녹인다. 여기에 황산 마그네슘 (MgSO4)로 잔존 수분을 제거한 후, 필터를 하고 진공 회전 농축기(rotary evaporator)를 이용하여 용매를 제거하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 26]
실시예 25와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 테트라하이드로퓨란(tetrahydrofuran)으로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 27]
실시예 25와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 1,4-다이옥산(1,4-dioxane)으로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 28]
실시예 25와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 메틸사이클로헥산(methylcyclohexane)으로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 29]
실시예 25와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 1,2-다이클로로에탄(1,2-dichloroethane)으로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 30]
실시예 25와 같은 방법을 이용하여, 유기용매를 다이메틸설폭사이드 (dimethyl sulfoxide) 대신 자일렌(xylene)으로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 31]
실시예 25와 같은 방법을 이용하여, 메탄술포닉 무수물(methanesulfonic anhydride) 대신 트리플로오로메탄술포닉 무수물(trifluoromethanesulfonic anhydride)로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[실시예 32]
실시예 25와 같은 방법을 이용하여, 메탄술포닉 무수물(methanesulfonic anhydride) 대신 트리플로오로아세틱 무수물(trifluoroacetic anhydride)로, 다이메틸설폭사이드(dimethyly sulfoxide) 대신 자일렌(xylene)으로 변경을 하여 중수소로 치환된 2-클로로-4,6-다이페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 얻었다.
[비교예 1]
11, 12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo [2,3-a]carbazole) 2g, 중수(D2O) 30ml, 10% Pd/C 0.5g, 톨루엔과 자일렌을 6:4로 혼합한 용매 10ml를 고압 반응기 안에 넣고 반응기의 헤드를 덮어 내부를 밀폐시켰다. 교반을 하면서 4% 수소를 포함한 기체를 분당 3~5분간 반응물 안에 불어 넣었다. 그 다음에 반응기 안의 분위기는 4% 수소를 포함한 기체 분위기를 유지하고, 오일 배스의 온도 145℃에서 24시간 동안 반응을 시켰다. 중수소 치환 반응 종료 후 온도를 낮추고 반응기 내부를 외부공기(air)로 치환한 다음에 오일 배스의 온도를 160℃로 올리고 17시간 동안 탈수소화 반응을 진행한다. 탈수소화 반응 종료 후에 온도를 낮추고 촉매를 제거하기 위해 필터를 진행한 다음에 MgSO4를 이용하여 중수를 제거하고 필터를 한 다음, 진공 회전 농축기(rotary evaporator)를 이용하여 용매를 제거하여 중수소로 치환된 11, 12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo [2,3-a]carbazole)을 얻었다.
[비교예 2]
11, 12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo [2,3-a]carbazole) 2g, 중수(D2O) 30ml, 10% Pd/C 0.5g, 톨루엔과 자일렌을 6:4로 혼합한 용매 10ml를 고압 반응기 안에 넣고 반응기의 헤드를 덮어 내부를 밀폐시켰다. 교반을 하면서 100% 수소 기체를 분당 3~5분간 반응물 안에 불어 넣었다. 그 다음에 반응기 안의 분위기는 4% 수소를 포함한 기체 분위기를 유지하고, 오일 배스의 온도 160℃에서 24시간 동안 반응을 시켰다. 중수소 치환 반응 종료 후 온도를 낮추고 반응기 내부를 외부공기(air)로 치환한 다음에 오일 배스의 온도를 160℃로 올리고 17시간 동안 탈수소화 반응을 진행한다. 탈수소화 반응 종료 후에 온도를 낮추고 촉매를 제거하기 위해 필터를 진행한 다음에 MgSO4를 이용하여 중수를 제거하고 필터를 한 다음, 진공 회전 농축기(rotary evaporator)를 이용하여 용매를 제거하여 중수소로 치환된 11, 12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo [2,3-a]carbazole)을 얻었다.
[비교예 3]
비교예 1과 같은 방법을 이용하여, 11, 12-디하이드로인돌로[2,3-a]카바졸 (11,12-dihydroindolo [2,3-a]carbazole) 대신 2-브로모다이벤조퓨란(2-bromo-dibenzofuran)을 첨가하여 중수소 치환 반응을 진행했다. 그 결과, 중수소로 치환된 2-브로모다이벤조퓨란(2-bromo-dibenzofuran)을 얻었으나 대부분 브롬기를 잃은 중수소로 치환된 다이벤조퓨란을 확인할 수 있었다.
[실험예 1]
실시예 1 내지 32 및 비교예 1 내지 3에 대한 순도, 중수소 치환율, 수소화 화합물 비율을 측정했고, 그 결과를 하기 표 1에 나타냈다.
순도와 수소화 화합물 비율은 반응이 끝난 시료를 HPLC용 테트라하이드로 퓨란 용매에 녹여 HPLC를 통해 254 nm 파장에서의 스펙트럼을 적분하여 구하였다. 이 때 이동상 용매로는 아세토나이트릴, 테트라하이드로퓨란을 5:5 혼합하고 1% 포름산을 섞은 용매와 물을 사용하였다.
중수소화 반응이 끝난 시료를 정량하여 NMR측정용 용매에 녹인 샘플시료, 및 상기 중수소화 반응 전 화합물과 피크가 겹치지 않는 임의의 화합물을 상기 시료와 동량으로 정량하여 동일한 NMR측정용 용매에 녹인 내부표준시료를 제작했다. 제작된 샘플시료와 내부표준시료에 대하여 각각 1H-NMR을 이용해서 NMR 측정 그래프를 얻었다.
1H-NMR peak을 배정(assign)할 때 내부표준피크(internal standard peak)를 1로 하여 중수소화 반응이 끝난 시료의 각 위치에 대한 상대적인 적분(integration)값을 구했다.
만약, 중수소화 반응이 끝난 시료에서 모든 위치에 중수소로 치환되었다면, 수소와 관련된 피크 가 전혀 나오지 않으며, 이 경우에는 중수소 치환율이 100% 라 판단한다. 반편, 모든 위치의 수소가 중수소로 치환되지 않았다면 중수소로 치환되지 못한 수소의 피크가 나타나게 된다.
이를 바탕으로, 본 실험에서, 중수소 치환율은 중수소가 치환되지 않은 내부표준시료의 NMR 측정 그래프에서 수소에 관련된 피크의 적분값에서, 샘플시료의 NMR 측정 그래프에서 치환되지 못한 수소에 의한 피크의 적분값을 뺀 값을 구한다. 이 값은 각 위치에 대한 상대적인 적분(integration)값이며, 중수소로 치환되어 해당 피크로 나타나지 않는 것으로, 중수소로 치환된 비율을 나타낸다.
그런 다음에 1H-NMR 측정 샘플을 만들 때 사용한 시료의 무게와 내부표준(internal standard)의 무게, 상대적인 적분값을 이용해 시료의 각 위치별 치환율을 계산했다.
반응물 유기용매 가수분해 화합물 순도
(%)
중수소 치환율 (%) 수소화 화합물 비율 (%) 반응 온도
(℃)
반응 압력
(bar)
실시예1 11,12-디하이드로 인돌로[2,3-a]카바졸 다이메틸설폭사이드 메탄술포닉
무수물
97.6 87.4 0 80 상압
실시예2 11,12-디하이드로 인돌로[2,3-a]카바졸 테트라하이드로퓨란 메탄술포닉
무수물
96.2 93.2 0 65 상압
실시예3 11,12-디하이드로 인돌로[2,3-a]카바졸 1,4-다이옥산 메탄술포닉
무수물
98.5 90.5 0 80 상압
실시예4 11,12-디하이드로 인돌로[2,3-a]카바졸 메틸사이클로헥산 메탄술포닉
무수물
99.1 85.2 0 90 상압
실시예5 11,12-디하이드로 인돌로[2,3-a]카바졸 1,2-다이클로로에탄 메탄술포닉
무수물
97.8 88.7 0 80 상압
실시예6 11,12-디하이드로 인돌로[2,3-a]카바졸 자일렌 메탄술포닉
무수물
98.1 82.4 0 120 상압
실시예7 11,12-디하이드로 인돌로[2,3-a]카바졸 다이메틸설폭사이드 트리플로오로
메탄술포닉
무수물
95.7 93.5 0 80 상압
실시예8 11,12-디하이드로 인돌로[2,3-a]카바졸 자일렌 트리플로오로
아세틱 무수물
98.3 80.3 0 120 상압
실시예9 카바졸 다이메틸설폭사이드 메탄술포닉
무수물
94.4 93.2 0 80 상압
실시예10 카바졸 테트라하이드로퓨란 메탄술포닉
무수물
91.5 94.9 0 65 상압
실시예11 카바졸 1,4-다이옥산 메탄술포닉
무수물
96.9 91.8 0 80 상압
실시예12 카바졸 메틸사이클로헥산 메탄술포닉
무수물
97.1 90.6 0 90 상압
실시예13 카바졸 1,2-다이클로로에탄 메탄술포닉
무수물
94.5 92.1 0 80 상압
실시예14 카바졸 자일렌 메탄술포닉
무수물
96.9 88.9 0 120 상압
실시예15 카바졸 다이메틸설폭사이드 트리플로오로
메탄술포닉
무수물
93.8 94.1 0 80 상압
실시예16 카바졸 자일렌 트리플로오로
아세틱 무수물
95.7 88.3 0 120 상압
실시예17 2-브로모
다이벤조퓨란
다이메틸설폭사이드 메탄술포닉
무수물
95.3 80.3 0 80 상압
실시예18 2-브로모
다이벤조퓨란
테트라하이드로퓨란 메탄술포닉
무수물
96.1 82.7 0 65 상압
실시예19 2-브로모
다이벤조퓨란
1,4-다이옥산 메탄술포닉
무수물
98.2 84.8 0 80 상압
실시예20 2-브로모
다이벤조퓨란
메틸사이클로헥산 메탄술포닉
무수물
98.6 86.4 0 90 상압
실시예21 2-브로모
다이벤조퓨란
1,2-다이클로로에탄 메탄술포닉
무수물
98.1 88.2 0 80 상압
실시예22 2-브로모
다이벤조퓨란
자일렌 메탄술포닉
무수물
97.9 83.9 0 120 상압
실시예23 2-브로모
다이벤조퓨란
다이메틸설폭사이드 트리플로오로
메탄술포닉
무수물
94.7 84.2 0 80 상압
실시예24 2-브로모
다이벤조퓨란
자일렌 트리플로오로
아세틱 무수물
98.5 81.6 0 120 상압
실시예25 2-클로로-4,6-디페닐-1,3,5-트리아진 다이메틸설폭사이드 메탄술포닉
무수물
97.9 84.6 0 80 상압
실시예26 2-클로로-4,6-디페닐-1,3,5-트리아진 테트라하이드로퓨란 메탄술포닉
무수물
97.5 87.1 0 65 상압
실시예27 2-클로로-4,6-디페닐-1,3,5-트리아진 1,4-다이옥산 메탄술포닉
무수물
98.4 88.3 0 80 상압
실시예28 2-클로로-4,6-디페닐-1,3,5-트리아진 메틸사이클로헥산 메탄술포닉
무수물
99.0 83.9 0 90 상압
실시예29 2-클로로-4,6-디페닐-1,3,5-트리아진 1,2-다이클로로에탄 메탄술포닉
무수물
98.1 89.7 0 80 상압
실시예30 2-클로로-4,6-디페닐-1,3,5-트리아진 자일렌 메탄술포닉
무수물
98.6 87.5 0 120 상압
실시예31 2-클로로-4,6-디페닐-1,3,5-트리아진 다이메틸설폭사이드 트리플로오로
메탄술포닉
무수물
96.3 85.6 0 80 상압
실시예32 2-클로로-4,6-디페닐-1,3,5-트리아진 자일렌 트리플로오로
아세틱 무수물
97.7 82.4 0 120 상압
비교예1 11,12-디하이드
로 인돌로[2,3-a]카바졸
톨루엔, 자일렌(6:4) - 96.4 87.2 4 170 6.4
비교예2 11,12-디하이드
로 인돌로[2,3-a]카바졸
톨루엔, 자일렌(6:4) - 92.3 92.1 100 170 7.3
비교예3 2-브로모
다이벤조퓨란
톨루엔, 자일렌
(6:4)
- 52.1 82.6 4 170 6.8
실시예 1 내지 6은 11,12-디하이드로 인돌로[2,3-a]카바졸에 대해서 유기 용매로 각각 다이메틸설폭사이드, 테트라하이드로퓨란, 1,4-다이옥산, 메틸사이클로헥산, 1,2-다이클로로에탄 또는 자일렌을 이용하여 중수소 치환 반응을 진행했다. 실시예 9 내지 14는 카바졸에 대해서 유기 용매로 각각 다이메틸설폭사이드, 테트라하이드로퓨란, 1,4-다이옥산, 메틸사이클로헥산, 1,2-다이클로로에탄 또는 자일렌을 이용하여 중수소 치환 반응을 진행했다. 실시예 17 내지 22는 2-브로모다이벤조퓨란에 대해서 유기 용매로 각각 다이메틸설폭사이드, 테트라하이드로퓨란, 1,4-다이옥산, 메틸사이클로헥산, 1,2-다이클로로에탄 또는 자일렌을 이용하여 중수소 치환 반응을 진행했다. 실시예 25 내지 30은 2-클로로-4,6-디페닐-1,3,5-트리아진에 대해서 유기 용매로 각각 다이메틸설폭사이드, 테트라하이드로퓨란, 1,4-다이옥산, 메틸사이클로헥산, 1,2-다이클로로에탄 또는 자일렌을 이용하여 중수소 치환 반응을 진행했다.
실시예 1, 7 및 8은 11,12-디하이드로 인돌로[2,3-a]카바졸에 대해서 중수에 의해 가수분해 되는 화합물을 각각 메탄술포닉무수물, 트리플로오로메탄술포닉 무수물 또는 트리플로오로아세틱 무수물로 변경하여 중수소 치환 반응을 진행했다. 실시예 9, 15 및 16은 카바졸에 대해서 중수에 의해 가수분해 되는 화합물을 각각 메탄술포닉무수물, 트리플로오로메탄술포닉 무수물 또는 트리플로오로아세틱 무수물로 변경하여 중수소 치환 반응을 진행했다. 실시예 17, 23 및 24는 2-브로모다이벤조퓨란에 대해서 중수에 의해 가수분해 되는 화합물을 각각 메탄술포닉무수물, 트리플로오로메탄술포닉 무수물 또는 트리플로오로아세틱 무수물로 변경하여 중수소 치환 반응을 진행했다. 실시예 25, 31 및 32는 2-클로로-4,6-디페닐-1,3,5-트리아진에 대해서 중수에 의해 가수분해 되는 화합물을 각각 메탄술포닉무수물, 트리플로오로메탄술포닉 무수물, 트리플로오로아세틱 무수물로 변경하여 중수소 치환 반응을 진행했다.
순도 및 중수소 치환율은 반응 물질의 유기 용매에 대한 용해도와 중수소를 제공하는 중수에 대한 용해도에 따라서 순도 및 중수소 치환율이 달라진다. 이런 이유로 물에 대한 용해도가 좋은 유기 용매를 사용한다. 또한, 산 무수물의 사용량이 증가할수록 용액의 산도(acidity)가 높아지면서 용해도를 증가시켜 반응 물질을 녹일 수 있게 된다.
실시예 1 내지 32에서는 유기 용매에 대한 용해도 및 중수에 대한 친화도가 좋은 카바졸이 중수소 치환율이 높은 결과를 얻었다. 순도는 중수소 치환율과는 조금 반대되는 경향을 보이는데, 유기 용매 및 중수에 대한 용해도가 좋을수록 반응성이 좋아져서 부반응(side reaction)에 의한 불순물이 증가하게 된다. 이런 이유로 카바졸은 다른 반응 물질 보다 순도는 낮은 경향을 보인다.
실시예 1 내지 32는 또한 산 조건(acid condition) 하에서 반응을 하기 때문에 반응 시 압력의 증가가 없이 상압에서 진행을 했다. 비교예 1~3은 촉매를 이용하여 고압 반응기에서 중수소 치환을 진행했는데, 상압 이상의 압력, 적어도 5bar 이상의 압력에서 진행을 해야 원하는 결과를 얻을 수 있다. 그리고 고압 반응기를 이용하여 진행할 경우, 방향족 고리의 이중 결합이 일부 환원되는 부반응이 일어나는데 이렇게 형성된 부반응 물질은 분리가 어렵고, 분리를 한다고 해도 수율이 많이 감소하게 된다.
비교예 1과 2는 촉매를 사용하여 고압에서 중수소를 치환할 때 사용하는 수소화 화합물의 비율에 따른 중수소 치환율 및 순도 변화를 비교한 결과이다. 수소화 화합물의 비율이 4%인 경우, 수소화 화합물이 100%인 경우보다 순도가 높은 것은 볼 수 있다.
실시예 17 내지 24와 비교예 3은 타겟 화합물에 탈리기인 할로겐기가 있는 경우에 중수에 의해 가수분해가 가능한 화합물을 사용하여 중수소를 치환한 조건(실시예 17 내지 24)과 촉매를 사용하여 고압에서 중수소를 치환한 조건(비교예 3)을 비교한 실험이다. 이 실험은 중수소 치환 반응 후 탈리기인 할로겐기가 떨어지지 않고 잘 붙어 있는 지를 확인하기 위한 실험인데, 실시예 17 내지 24에서는 탈리기인 브롬기가 중수소 치환 반응 후에도 잘 붙어있지만, 비교예 3에서는 일부 탈리기인 브롬기가 떨어진 다이벤조퓨란에 의한 피크를 HPLC를 통해서 확인했다.

Claims (19)

1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수, 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 이용하여, 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계를 포함하는 중수소화 방향족 화합물의 제조 방법.
청구항 1에 있어서, 상기 유기용매는 할로겐기로 치환 또는 비치환된 탄화수소사슬; 알킬기로 치환 또는 비치환된 지방족 탄화수소고리; 알킬기로 치환 또는 비치환된 방향족 탄화수소고리; 직쇄 또는 분지쇄의 헤테로사슬; 치환 또는 비치환된 지방족 헤테로고리; 및 치환 또는 비치환된 방향족 헤테로고리로 이루어진 군으로부터 선택된 것인 중수소화 방향족 화합물의 제조 방법.
청구항 1에 있어서, 상기 유기용매는 산소원소 및 황원소 중 적어도 하나를 포함하고, 치환 또는 비치환된 헤테로고리; 치환 또는 비치환된 알킬아세테이트; 알킬케톤; 알킬설폭사이드; 탄소수 4 내지 10의 락톤; 알킬아마이드; 탄소수 4 내지 10의 글리콜; 다이옥산; 및 알콕시로 치환 또는 비치환된 아세트산으로 이루어진 군으로부터 선택되는 것인 중수소화 방향족 화합물의 제조 방법.
청구항 1에 있어서, 상기 유기용매는 에틸 아세테이트, 아세톤, 싸이클로헥사논, 메틸에틸케톤, 테트라하이드로퓨란, 테트라하이드로피란, 싸이클로펜타논, 1,2-다이옥산, 1,3-다이옥산, 1,4-다이옥산, N,N-다이메틸포름아마이드, 다이메틸설폭사이드, 1,2-다이메톡시에탄, 디글라임, 감마부티로락톤, 감마발레로락톤, 메틸에틸디글리콜, 프로필렌글라이콜메틸에테르, 프로필렌글라이콜메틸에테르아세테이트, 에틸락테이트, 시클로헥산, 메틸시클로헥산, 에틸시클로헥산, 디에틸에테르, 1,2-디메톡시 에탄, 데칼린, 헥산, 헵탄, 톨루엔, 자일렌, 1,3,5-트리메틸벤젠, 디클로로메탄, 1.2-디클로로 에탄, 1,1,2,2-테트라클로로에탄, 테트라클로로에틸렌 및 2-메톡시아세틱산로 이루어진 군으로부터 선택되는 것인 중수소화 방향족 화합물의 제조 방법.
청구항 1에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 하기 화학식 1 내지 4 중 적어도 하나의 화합물을 포함하는 것인 중수소화 방향족 화합물의 제조 방법:
[화학식 1]
R1-C(O)OC(O)-R2
[화학식 2]
R3-S(O2)OS(O2)-R4
[화학식 3]
R5-C(O)O-R6
[화학식 4]
R7-CONH-R8
상기 화학식 1 내지 4에서,
R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 1가의 유기기이다.
청구항 1에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물, 트리플루오로아세틱 무수물, 아세틱 무수물 및 메탄술포닉 무수물 중 적어도 하나를 포함하는 것인 중수소화 방향족 화합물의 제조 방법.
청구항 1에 있어서, 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계는,
1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수, 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 용액을 준비하는 단계; 및
상기 용액을 가열하여 상기 방향족 화합물의 중수소화 반응을 진행시키는 단계를 포함하는 중수소화 방향족 화합물의 제조 방법.
1개 이상의 방향족 고리를 포함하는 방향족 화합물, 중수, 상기 중수에 의해 가수분해가 가능한 유기 화합물 및 유기용매를 포함하는 중수소화 반응 조성물.
청구항 8에 있어서, 상기 유기용매는 할로겐기로 치환 또는 비치환된 탄화수소사슬; 알킬기로 치환 또는 비치환된 지방족 탄화수소고리; 알킬기로 치환 또는 비치환된 방향족 탄화수소고리; 직쇄 또는 분지쇄의 헤테로사슬; 치환 또는 비치환된 지방족 헤테로고리; 및 치환 또는 비치환된 방향족 헤테로고리로 이루어진 군으로부터 선택된 것인 중수소화 반응 조성물.
청구항 8에 있어서, 상기 유기용매는 산소원소 및 황원소 중 적어도 하나를 포함하고, 치환 또는 비치환된 헤테로고리; 치환 또는 비치환된 알킬아세테이트; 알킬케톤; 알킬설폭사이드; 탄소수 4 내지 10의 락톤; 알킬아마이드; 탄소수 4 내지 10의 글리콜; 다이옥산; 및 알콕시로 치환 또는 비치환된 아세트산으로 이루어진 군으로부터 선택되는 것인 중수소화 반응 조성물.
청구항 8에 있어서, 상기 유기용매는 에틸 아세테이트, 아세톤, 싸이클로헥사논, 메틸에틸케톤, 테트라하이드로퓨란, 테트라하이드로피란, 싸이클로펜타논, 1,2-다이옥산, 1,3-다이옥산, 1,4-다이옥산, N,N-다이메틸포름아마이드, 다이메틸설폭사이드, 1,2-다이메톡시에탄, 디글라임, 감마부티로락톤, 감마발레로락톤, 메틸에틸디글리콜, 프로필렌글라이콜메틸에테르, 프로필렌글라이콜메틸에테르아세테이트, 에틸락테이트, 시클로헥산, 메틸시클로헥산, 에틸시클로헥산, 디에틸에테르, 1,2-디메톡시 에탄, 데칼린, 헥산, 헵탄, 톨루엔, 자일렌, 1,3,5-트리메틸벤젠, 디클로로메탄, 1.2-디클로로 에탄, 1,1,2,2-테트라클로로에탄, 테트라클로로에틸렌 및 2-메톡시아세틱산로 이루어진 군으로부터 선택되는 것인 중수소화 반응 조성물.
청구항 8에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 하기 화학식 1 내지 4 중 적어도 하나의 화합물을 포함하는 것인 중수소화 반응 조성물:
[화학식 1]
R1-C(O)OC(O)-R2
[화학식 2]
R3-S(O2)OS(O2)-R4
[화학식 3]
R5-C(O)O-R6
[화학식 4]
R7-CONH-R8
상기 화학식 1 내지 4에서,
R1 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 1가의 유기기이다.
청구항 8에 있어서, 상기 중수에 의해 가수분해가 가능한 유기 화합물은 트리플루오로메탄술포닉 무수물, 트리플루오로아세틱 무수물, 아세틱 무수물 및 메탄술포닉 무수물 중 적어도 하나를 포함하는 것인 중수소화 반응 조성물.
청구항 1 내지 7 중 어느 한 항의 방법으로 제조된 중수소화 방향족 화합물.
청구항 14에 있어서, 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기를 포함하는 중수소화 방향족 화합물.
청구항 15에 있어서, 상기 탈리기는 할로겐기 및 보로닉산기로 이루어진 군으로부터 선택된 것인 중수소화 방향족 화합물.
청구항 15에 있어서, 상기 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기를 포함하는 중수소화 방향족 화합물은 하기 화학식 7 내지 10 중 어느 하나인 중수소화 방향족 화합물:
[화학식 7]
Figure PCTKR2021011541-appb-img-000031
[화학식 8]
Figure PCTKR2021011541-appb-img-000032
[화학식 9]
Figure PCTKR2021011541-appb-img-000033
[화학식 10]
Figure PCTKR2021011541-appb-img-000034
상기 화학식 7 내지 10에서,
X, X1 및 X2는 각각 독립적으로 O, S 또는 NR이고,
R은 수소; 중수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
A1 내지 A8 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
B1 내지 B5 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
E1 내지 E3 중 적어도 하나는 중수소로 치환 또는 비치환된 아릴기; 또는 중수소로 치환 또는 비치환된 헤테로고리기이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Y1 내지 Y6 중 적어도 하나는 중수소이며, 적어도 하나는 탈리기, 수산기, 치환 또는 비치환된 아민기 및 시아노기로 이루어진 군으로부터 선택된 치환기이고, 나머지는 각각 독립적으로 수소; 탈리기; 수산기; 치환 또는 비치환된 아민기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Z1 내지 Z3 중 적어도 하나는 N이며, 나머지는 각각 독립적으로 CH 또는 N이고,
b5는 1 내지 6의 정수이고, b5가 2 이상인 경우, B5는 서로 같거나 상이하며,
y5는 1 또는 2 이고, y5가 2인 경우, Y5는 서로 같거나 상이하며,
y6는 1 내지 4의 정수이고, y6가 2 이상인 경우, Y6는 서로 같거나 상이하다.
청구항 15에 있어서, 상기 탈리기, 수산기, 치환 또는 비치환된 아민기, 및 시아노기로 이루어진 군으로부터 선택된 치환기를 포함하는 중수소화 방향족 화합물은 하기 구조 중 어느 하나이며, 상기 구조는 각각 1 이상의 중수소로 치환된 것인 중수소화 방향족 화합물:
Figure PCTKR2021011541-appb-img-000035
Figure PCTKR2021011541-appb-img-000036
Figure PCTKR2021011541-appb-img-000037
Figure PCTKR2021011541-appb-img-000038
Figure PCTKR2021011541-appb-img-000039
여기서, L은 탈리기, 수산기, 치환 또는 비치환된 아민기, 및 시아노기로 이루어진 군으로부터 선택된 치환기이다.
청구항 14의 중수소화 방향족 화합물을 포함하는 전자 소자.
PCT/KR2021/011541 2020-08-27 2021-08-27 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물 WO2022045838A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022535197A JP2023505832A (ja) 2020-08-27 2021-08-27 重水素化芳香族化合物の製造方法および重水素化反応組成物
US17/779,920 US20230018666A1 (en) 2020-08-27 2021-08-27 Method for preparing deuterated aromatic compound, and deuterated reactive composition
CN202180006770.5A CN114761388A (zh) 2020-08-27 2021-08-27 用于制备氘化芳族化合物的方法和氘化反应组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0108192 2020-08-27
KR20200108192 2020-08-27
KR10-2020-0178795 2020-12-18
KR20200178795 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022045838A1 true WO2022045838A1 (ko) 2022-03-03

Family

ID=80355448

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/011541 WO2022045838A1 (ko) 2020-08-27 2021-08-27 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
PCT/KR2021/011539 WO2022045837A1 (ko) 2020-08-27 2021-08-27 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011539 WO2022045837A1 (ko) 2020-08-27 2021-08-27 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물

Country Status (4)

Country Link
US (2) US20230271901A1 (ko)
JP (2) JP2023535329A (ko)
CN (2) CN115884962A (ko)
WO (2) WO2022045838A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240849A1 (zh) * 2022-06-15 2023-12-21 宁波萃英化学技术有限公司 一种氘代芳香化合物的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117003605A (zh) * 2023-08-07 2023-11-07 宁波萃英化学技术有限公司 一种氘代萘基蒽类化合物的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130096334A (ko) * 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
KR20140008024A (ko) * 2012-07-10 2014-01-21 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자
CN108003089A (zh) * 2016-10-27 2018-05-08 江苏三月光电科技有限公司 以蒽为核心化合物及有机电致发光器件和其应用
CN110724088A (zh) * 2019-10-31 2020-01-24 北京大学深圳研究生院 一种有机室温磷光材料与电致光电器件
KR20200056589A (ko) * 2018-11-15 2020-05-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087725C (zh) * 1994-03-25 2002-07-17 同位素技术有限公司 用氘代方法增强药物效果
JP5151659B2 (ja) * 2008-04-30 2013-02-27 国立大学法人信州大学 重水素化芳香族カルボン酸類の製造方法
KR20100069216A (ko) * 2008-12-16 2010-06-24 주식회사 두산 중수소화된 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR20170102014A (ko) * 2015-01-13 2017-09-06 광저우 차이나레이 옵토일렉트로닉 머티리얼즈 엘티디. 화합물, 이를 포함하는 혼합물, 조성물 및 유기 전자 장치
US10476006B2 (en) * 2016-08-09 2019-11-12 Shanghai Nichem Fine Chemical Co., Ltd. Compound and organic electronic device using the same
WO2018110887A1 (ko) * 2016-12-14 2018-06-21 주식회사 엘지화학 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
KR102136806B1 (ko) * 2018-03-28 2020-07-23 엘지디스플레이 주식회사 신규한 유기화합물 및 상기 유기화합물을 포함하는 유기전계 발광소자
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
KR101978650B1 (ko) * 2018-11-14 2019-05-15 머티어리얼사이언스 주식회사 중수소화 방향족 화합물의 중간체 및 이를 이용한 중수소화 방향족 화합물의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130096334A (ko) * 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
KR20140008024A (ko) * 2012-07-10 2014-01-21 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자
CN108003089A (zh) * 2016-10-27 2018-05-08 江苏三月光电科技有限公司 以蒽为核心化合物及有机电致发光器件和其应用
KR20200056589A (ko) * 2018-11-15 2020-05-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN110724088A (zh) * 2019-10-31 2020-01-24 北京大学深圳研究生院 一种有机室温磷光材料与电致光电器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FIELD LESLIE D., SEVER STERNHELL, HOWARD V. WILTON: "Electrophilic Substitution in Naphthalene:Kinetic vs Thermodynamic Control", JOURNAL OF CHEMICAL EDUCATION, vol. 76, no. 9, 30 September 1999 (1999-09-30), pages 1246 - 1247, XP055903932 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240849A1 (zh) * 2022-06-15 2023-12-21 宁波萃英化学技术有限公司 一种氘代芳香化合物的制备方法

Also Published As

Publication number Publication date
JP2023535329A (ja) 2023-08-17
KR20220027789A (ko) 2022-03-08
US20230271901A1 (en) 2023-08-31
US20230018666A1 (en) 2023-01-19
JP2023505832A (ja) 2023-02-13
WO2022045837A1 (ko) 2022-03-03
CN114761388A (zh) 2022-07-15
CN115884962A (zh) 2023-03-31
KR20220027788A (ko) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020111830A1 (ko) 다환 방향족 유도체 화합물을 이용한 유기발광소자
WO2021194216A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2016129867A1 (ko) 유기전기소자용 신규 화합물, 이를 이용한 유기전기소자 및 그 전자장치
WO2010150988A2 (ko) 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2015133804A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2022045838A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2019004584A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021187923A1 (ko) 다환 방향족 유도체 화합물을 이용한 유기발광소자
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2018147638A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017146397A1 (ko) 신규한 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021150080A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2023282676A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022039518A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022173269A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2022158903A1 (ko) 중수소화 안트라센 화합물의 제조방법, 반응 조성물, 중수소화 안트라센 화합물 및 조성물
WO2022169218A1 (ko) 중수소화 안트라센 화합물의 제조방법, 반응 조성물, 중수소화 안트라센 화합물 및 조성물
WO2020153654A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2021182888A1 (ko) 축합 고리를 갖는 아민 화합물 및 이를 포함하는 유기발광소자
WO2020091433A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023200282A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085833A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21862134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21862134

Country of ref document: EP

Kind code of ref document: A1