WO2022039518A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2022039518A1
WO2022039518A1 PCT/KR2021/011028 KR2021011028W WO2022039518A1 WO 2022039518 A1 WO2022039518 A1 WO 2022039518A1 KR 2021011028 W KR2021011028 W KR 2021011028W WO 2022039518 A1 WO2022039518 A1 WO 2022039518A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
group
added
layer
Prior art date
Application number
PCT/KR2021/011028
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
서상덕
김영석
김서연
이다정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180032955.3A priority Critical patent/CN115551851A/zh
Priority claimed from KR1020210109438A external-priority patent/KR102602155B1/ko
Publication of WO2022039518A1 publication Critical patent/WO2022039518A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula (1):
  • L is a single bond, or a substituted or unsubstituted C 6-60 arylene
  • R 1 to R 4 are each independently hydrogen or deuterium; or two adjacent ones combine to form a benzene ring, and the remainder is hydrogen or deuterium;
  • Ar 1 is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S,
  • Ar 2 is substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S,
  • Ar 3 is a substituent represented by the following formula (2):
  • R is a moiety bonded to Formula 1, and the other is hydrogen or deuterium.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes the compound represented by Formula 1 above. do.
  • the compound represented by Chemical Formula 1 described above may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • the compound represented by Chemical Formula 1 described above may be used as a material for hole injection, hole transport, hole injection and transport, electron suppression, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 did it
  • FIG. 3 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron suppression layer 9, a light emitting layer 7, an electron transport layer 8 and a cathode 4
  • An example of an organic light emitting device is shown.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; a phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; Or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocycl
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • the description of the heterocyclic group described above for heteroaryl among heteroarylamines may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • the description of the above-described aryl group may be applied, except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • At least one hydrogen may be substituted with deuterium.
  • Formula 1 is represented by any one of Formulas 1-1 to 1-3 below:
  • R 1 to R 4 and Ar 1 to Ar 3 are as defined above.
  • L is a single bond, phenylene, biphenyldiyl, or naphthylene.
  • L is a single bond, or any one selected from the group consisting of:
  • Ar 1 is unsubstituted C 6-18 aryl.
  • Ar 1 is phenyl, biphenylyl, terphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, or phenanthrenyl.
  • Ar 2 is unsubstituted C 6-20 aryl.
  • Ar 2 is phenyl, biphenylyl, terphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, phenanthrenyl, phenanthrenylphenyl, triphenylenyl, dibenzofuranyl, or dibenzothio It is phenyl.
  • the present invention provides a method for preparing a compound represented by the formula (1) as shown in Scheme 1 below as an example:
  • reaction is an amine substitution reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light emitting device comprising the compound represented by Formula 1 above.
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes the compound represented by Formula 1 above. do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include an emission layer, and the emission layer includes the compound represented by Formula 1 above.
  • the organic layer includes an electron blocking layer
  • the electron blocking layer includes a compound represented by Formula 1 above.
  • the organic layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes the compound represented by Formula 1 above.
  • the electron transport layer, the electron injection layer, or the layer that simultaneously transports and injects electrons includes the compound represented by Formula 1 above.
  • the organic layer may include a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by Formula 1 above.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the compound represented by Formula 1 may be included in at least one of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
  • the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron suppression layer, the light emitting layer, and the electron transport layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting diode according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode
  • it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene, and the like, having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex include, but are not limited to, an iridium complex and a platinum complex.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports them to the light emitting layer.
  • Do Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer.
  • a compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • Compound AB was prepared in the same manner as in Preparation Example 1 using 2-bromo-4-chloro-1-fluorobenzene instead of 2-bromo-1-chloro-3-fluorobenzene.
  • Compound AC was prepared in the same manner as in Preparation Example 1 using 1-bromo-4-chloro-2-fluorobenzene instead of 2-bromo-1-chloro-3-fluorobenzene.
  • Compound AD was prepared in the same manner as in Preparation Example 1 using 1-bromo-3-chloro-2-fluorobenzene instead of 2-bromo-1-chloro-3-fluorobenzene.
  • compound sub1-1 (10 g, 18.6 mmol), compound AA (4.7 g, 18.6 mmol), sodium tert-butoxide (2.3 g, 24.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub1-3 (10 g, 22.7 mmol), compound AA (5.7 g, 22.7 mmol), sodium tert-butoxide (2.8 g, 29.5 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub1-4 (10 g, 21.7 mmol), compound AB (5.5 g, 21.7 mmol), sodium tert-butoxide (2.7 g, 28.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub1-5 (10 g, 23.5 mmol), compound AB (5.9 g, 23.5 mmol), sodium tert-butoxide (2.9 g, 30.5 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub1-7 (10 g, 21.7 mmol), compound AC (5.5 g, 21.7 mmol), sodium tert-butoxide (2.7 g, 28.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub1-8 (10 g, 18.6 mmol), compound AD (4.7 g, 18.6 mmol), sodium tert-butoxide (2.3 g, 24.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub2-1 (10 g, 21.7 mmol), compound AA (5.5 g, 21.7 mmol), sodium tert-butoxide (2.7 g, 28.2 mmol) were added to xylene (200 ml), and the mixture was stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub3-1 (10 g, 16.3 mmol), compound AD (4.1 g, 16.3 mmol), sodium tert-butoxide (2 g, 21.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub4-1 (10 g, 19.6 mmol), compound AA (4.9 g, 19.6 mmol), sodium tert-butoxide (2.4 g, 25.5 mmol) was added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub4-2 (10 g, 20.5 mmol), compound AA (5.2 g, 20.5 mmol), sodium tert-butoxide (2.6 g, 26.7 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub4-4 (10 g, 23 mmol), compound AC (5.8 g, 23 mmol), sodium tert-butoxide (2.9 g, 29.9 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub4-6 (10 g, 19.6 mmol), compound AC (4.9 g, 19.6 mmol), sodium tert-butoxide (2.4 g, 25.5 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub4-8 (10 g, 18.6 mmol), compound AE (4.7 g, 18.6 mmol), sodium tert-butoxide (2.3 g, 24.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub4-10 (10 g, 21.7 mmol), compound AH (5.5 g, 21.7 mmol), sodium tert-butoxide (2.7 g, 28.2 mmol) was added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub5-1 (10 g, 20.6 mmol), compound AB (5.2 g, 20.6 mmol), sodium tert-butoxide (2.6 g, 26.8 mmol) was added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub5-2 (10 g, 18.6 mmol), compound AC (4.7 g, 18.6 mmol), sodium tert-butoxide (2.3 g, 24.2 mmol) were added to xylene (200 ml), and the mixture was stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub6 (10 g, 25.1 mmol), compound amine6 (4.2 g, 25.1 mmol), sodium tert-butoxide (3.1 g, 32.6 mmol) were added to xylene (200 ml), and the mixture was stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.5 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub6-1 (10 g, 20.5 mmol), compound AA (5.2 g, 20.5 mmol), sodium tert-butoxide (2.6 g, 26.7 mmol) was added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub6-2 (10 g, 18.6 mmol), compound AH (4.7 g, 18.6 mmol), sodium tert-butoxide (2.3 g, 24.2 mmol) were added to xylene (200 ml), and the mixture was stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound sub8-1 (10 g, 20.6 mmol), compound AC (5.2 g, 20.6 mmol), sodium tert-butoxide (2.6 g, 26.8 mmol) was added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub8 (10 g, 26.9 mmol), compound amine22 (2.5 g, 26.9 mmol), sodium tert-butoxide (3.4 g, 34.9 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub8-2 (10 g, 26 mmol), compound AH (6.6 g, 26 mmol), sodium tert-butoxide (3.2 g, 33.8 mmol) were added to xylene (200 ml), and the mixture was stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub9 (10 g, 26.9 mmol), compound amine22 (2.5 g, 26.9 mmol), sodium tert-butoxide (3.4 g, 34.9 mmol) were added to xylene (200 ml), and the mixture was stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub9-1 (10 g, 26 mmol), compound AG (6.6 g, 26 mmol), and sodium tert-butoxide (3.2 g, 33.8 mmol) were added to xylene (200 ml) and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.5 mmol) was added thereto. After 2 hours, when the reaction was completed, the mixture was cooled to room temperature and the solvent was removed under reduced pressure.
  • compound sub10-1 (10 g, 18.6 mmol), compound AA (4.7 g, 18.6 mmol), sodium tert-butoxide (2.3 g, 24.2 mmol) were added to xylene (200 ml), and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was formed as a hole injection layer on the thus prepared ITO transparent electrode to a thickness of 1150 ⁇ , but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum-deposited to form a hole transport layer having a thickness of 800 ⁇ .
  • compound 1 prepared above was vacuum-deposited to form an electron blocking layer having a thickness of 150 ⁇ .
  • the following RH-1 compound and the following Dp-7 compound were vacuum-deposited in a weight ratio of 98:2 to form a light emitting layer having a thickness of 400 ⁇ .
  • the following HB-1 compound was vacuum deposited to form a hole blocking layer having a thickness of 30 ⁇ .
  • the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 ⁇ .
  • lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ were sequentially deposited to form a cathode.
  • the deposition rate of organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum degree during deposition was 2x10 -7
  • an organic light emitting device was manufactured.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compounds shown in Tables 1 and 2 were used instead of Compound 1.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 3 was used instead of Compound 1.
  • Compounds C-1 to C-8 in Table 3 are as follows.
  • the lifetime T95 means the time (hr) required for the luminance to decrease from the initial luminance (6000 nit) to 95%.
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 8월 19일자 한국 특허 출원 제10-2020-0104201호 및 2021년 8월 19일자 한국 특허 출원 제10-2021-0109438호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2021011028-appb-img-000001
상기 화학식 1에서,
L은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R1 내지 R4는 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 두 개가 결합하여 벤젠고리를 형성하고, 나머지는 수소, 또는 중수소이고,
Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
Ar2는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
Ar3는 하기 화학식 2로 표시되는 치환기이다:
[화학식 2]
Figure PCTKR2021011028-appb-img-000002
상기 화학식 2에서,
R 중 하나는 화학식 1에 결합되는 부분이고, 나머지는 수소, 또는 중수소이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 전자억제, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(9), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2021011028-appb-img-000003
또는
Figure PCTKR2021011028-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021011028-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021011028-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021011028-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021011028-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
상기 화학식 1에서, 하나 이상의 수소는 중수소로 치환될 수 있다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시된다:
[화학식 1-1]
Figure PCTKR2021011028-appb-img-000009
[화학식 1-2]
Figure PCTKR2021011028-appb-img-000010
[화학식 1-3]
Figure PCTKR2021011028-appb-img-000011
상기 화학식 1-1 내지 1-3에서,
L, R1 내지 R4 및 Ar1 내지 Ar3은 앞서 정의한 바와 같다.
바람직하게는, L은 단일 결합, 페닐렌, 비페닐디일, 또는 나프틸렌이다.
바람직하게는, L은 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2021011028-appb-img-000012
.
바람직하게는, Ar1은 비치환된 C6-18 아릴이다. 바람직하게는, Ar1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 또는 페난쓰레닐이다.
바람직하게는, Ar2는 비치환된 C6-20 아릴이다. 바람직하게는, Ar2는 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 페난쓰레닐, 페난쓰레닐페닐, 트리페닐레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021011028-appb-img-000013
Figure PCTKR2021011028-appb-img-000014
Figure PCTKR2021011028-appb-img-000015
Figure PCTKR2021011028-appb-img-000016
Figure PCTKR2021011028-appb-img-000017
Figure PCTKR2021011028-appb-img-000018
Figure PCTKR2021011028-appb-img-000019
Figure PCTKR2021011028-appb-img-000020
Figure PCTKR2021011028-appb-img-000021
Figure PCTKR2021011028-appb-img-000022
Figure PCTKR2021011028-appb-img-000023
Figure PCTKR2021011028-appb-img-000024
Figure PCTKR2021011028-appb-img-000025
Figure PCTKR2021011028-appb-img-000026
Figure PCTKR2021011028-appb-img-000027
Figure PCTKR2021011028-appb-img-000028
Figure PCTKR2021011028-appb-img-000029
한편, 본 발명은 일례로 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:
[반응식 1]
Figure PCTKR2021011028-appb-img-000030
상기 반응식 1에서, X를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X는 할로겐이고, 보다 바람직하게는 클로로 또는 브로모이다. 상기 반응은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자억제층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자억제층을 포함하고, 상기 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(9), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자억제층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[제조예]
제조예 1
Figure PCTKR2021011028-appb-img-000031
질소 분위기에서 2-브로모-1-클로로-3-플루오로벤젠(15 g, 71.6 mmol)와(3-하이드록시나프탈렌-2-일)보론산(14.8 g, 78.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(29.7 g, 214.9 mmol)를 물(89 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA_P1를 14.2 g 제조하였다. (수율 73%, MS: [M+H]+= 273)
질소 분위기에서 화합물 AA_P1(15 g, 55 mmol)와 포타슘 카보네이트(22.8 g, 165 mmol)를 DMF(300 ml)에 넣고 교반 및 환류하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA를 10.3 g 제조하였다. (수율 74%, MS: [M+H]+= 253)
제조예 2
Figure PCTKR2021011028-appb-img-000032
2-브로모-1-클로로-3-플루오로벤젠 대신 2-브로모-4-클로로-1-플루오로벤젠을 사용하여 제조예 1과 동일한 방법으로 화합물 AB를 제조하였다.
제조예 3
Figure PCTKR2021011028-appb-img-000033
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-4-클로로-2-플루오로벤젠을 사용하여 제조예 1과 동일한 방법으로 화합물 AC를 제조하였다.
제조예 4
Figure PCTKR2021011028-appb-img-000034
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-3-클로로-2-플루오로벤젠을 사용하여 제조예 1과 동일한 방법으로 화합물 AD를 제조하였다.
제조예 5
Figure PCTKR2021011028-appb-img-000035
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-2-플루오로벤젠을 사용하고(3-하이드록시나프탈렌-2-일)보론산 대신(4-클로로-3-하이드록시나프탈렌-2-일)보론산을 사용하여 제조예 1과 동일한 방법으로 화합물 AE를 제조하였다.
제조예 6
Figure PCTKR2021011028-appb-img-000036
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-2-플루오로벤젠을 사용하고(3-하이드록시나프탈렌-2-일)보론산 대신(5-클로로-3-하이드록시나프탈렌-2-일)보론산을 사용하여 제조예 1과 동일한 방법으로 화합물 AF를 제조하였다.
제조예 7
Figure PCTKR2021011028-appb-img-000037
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-2-플루오로벤젠을 사용하고(3-하이드록시나프탈렌-2-일)보론산 대신(6-클로로-3-하이드록시나프탈렌-2-일)보론산을 사용하여 제조예 1과 동일한 방법으로 화합물 AG를 제조하였다.
제조예 8
Figure PCTKR2021011028-appb-img-000038
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-2-플루오로벤젠을 사용하고(3-하이드록시나프탈렌-2-일)보론산 대신(7-클로로-3-하이드록시나프탈렌-2-일)보론산을 사용하여 제조예 1과 동일한 방법으로 화합물 AH를 제조하였다.
제조예 9
Figure PCTKR2021011028-appb-img-000039
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-2-플루오로벤젠을 사용하고(3-하이드록시나프탈렌-2-일)보론산 대신(8-클로로-3-하이드록시나프탈렌-2-일)보론산을 사용하여 제조예 1과 동일한 방법으로 화합물 AI를 제조하였다.
제조예 10
Figure PCTKR2021011028-appb-img-000040
2-브로모-1-클로로-3-플루오로벤젠 대신 1-브로모-2-플루오로벤젠을 사용하고(3-하이드록시나프탈렌-2-일)보론산 대신(1-클로로-3-하이드록시나프탈렌-2-일)보론산을 사용하여 제조예 1과 동일한 방법으로 화합물 AJ를 제조하였다.
[실시예]
실시예 1
Figure PCTKR2021011028-appb-img-000041
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine1(9.2 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-1 10.5 g을 얻었다. (수율 63%, MS: [M+H]+= 537)
질소 분위기에서 화합물 sub1-1(10 g, 18.6 mmol), 화합물 AA(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1 8 g을 얻었다. (수율 57%, MS: [M+H]+= 753)
실시예 2
Figure PCTKR2021011028-appb-img-000042
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine2(7.6 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-2 8.1 g을 얻었다. (수율 54%, MS: [M+H]+= 487)
질소 분위기에서 화합물 sub1-2(10 g, 20.5 mmol), 화합물 AA(5.2 g, 20.5 mmol), 소디움 터트-부톡사이드(2.6 g, 26.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2 9.1 g을 얻었다. (수율 63%, MS: [M+H]+= 703)
실시예 3
Figure PCTKR2021011028-appb-img-000043
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine3(6.2 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-3 8.2 g을 얻었다. (수율 60%, MS: [M+H]+= 441)
질소 분위기에서 화합물 sub1-3(10 g, 22.7 mmol), 화합물 AA(5.7 g, 22.7 mmol), 소디움 터트-부톡사이드(2.8 g, 29.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 3 8 g을 얻었다. (수율 54%, MS: [M+H]+= 657)
실시예 4
Figure PCTKR2021011028-appb-img-000044
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine4(6.8 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-4 9.7 g을 얻었다. (수율 68%, MS: [M+H]+= 461)
질소 분위기에서 화합물 sub1-4(10 g, 21.7 mmol), 화합물 AB(5.5 g, 21.7 mmol), 소디움 터트-부톡사이드(2.7 g, 28.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 4 8.7 g을 얻었다. (수율 59%, MS: [M+H]+= 677)
실시예 5
Figure PCTKR2021011028-appb-img-000045
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine5(5.7 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-5 7.2 g을 얻었다. (수율 55%, MS: [M+H]+= 425)
질소 분위기에서 화합물 sub1-5(10 g, 23.5 mmol), 화합물 AB(5.9 g, 23.5 mmol), 소디움 터트-부톡사이드(2.9 g, 30.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 5 10.2 g을 얻었다. (수율 68%, MS: [M+H]+= 641)
실시예 6
Figure PCTKR2021011028-appb-img-000046
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine6(5.3 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-6 7.9 g을 얻었다. (수율 62%, MS: [M+H]+= 411)
질소 분위기에서 화합물 sub1-6(10 g, 24.4 mmol), 화합물 AC(6.2 g, 24.4 mmol), 소디움 터트-부톡사이드(3 g, 31.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 6 9.6 g을 얻었다. (수율 63%, MS: [M+H]+= 627)
실시예 7
Figure PCTKR2021011028-appb-img-000047
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine7(6.8 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-7 9.6 g을 얻었다. (수율 67%, MS: [M+H]+= 461)
질소 분위기에서 화합물 sub1-7(10 g, 21.7 mmol), 화합물 AC(5.5 g, 21.7 mmol), 소디움 터트-부톡사이드(2.7 g, 28.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 7 10 g을 얻었다. (수율 68%, MS: [M+H]+= 677)
실시예 8
Figure PCTKR2021011028-appb-img-000048
질소 분위기에서 화합물 sub1(10 g, 31 mmol), 화합물 amine8(9.2 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub1-8 10.3 g을 얻었다. (수율 62%, MS: [M+H]+= 537)
질소 분위기에서 화합물 sub1-8(10 g, 18.6 mmol), 화합물 AD(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 8 9.4 g을 얻었다. (수율 67%, MS: [M+H]+= 753)
실시예 9
Figure PCTKR2021011028-appb-img-000049
질소 분위기에서 화합물 sub2(10 g, 26.9 mmol), 화합물 amine9(4.5 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-1 7.5 g을 얻었다. (수율 61%, MS: [M+H]+= 461)
질소 분위기에서 화합물 sub2-1(10 g, 21.7 mmol), 화합물 AA(5.5 g, 21.7 mmol), 소디움 터트-부톡사이드(2.7 g, 28.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 9 10.1 g을 얻었다. (수율 69%, MS: [M+H]+= 677)
실시예 10
Figure PCTKR2021011028-appb-img-000050
질소 분위기에서 화합물 sub3(10 g, 25.1 mmol), 화합물 amine8(7.4 g, 25.1 mmol), 소디움 터트-부톡사이드(3.1 g, 32.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub3-1 10.6 g을 얻었다. (수율 69%, MS: [M+H]+= 613)
질소 분위기에서 화합물 sub3-1(10 g, 16.3 mmol), 화합물 AD(4.1 g, 16.3 mmol), 소디움 터트-부톡사이드(2 g, 21.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 10 9.5 g을 얻었다. (수율 70%, MS: [M+H]+= 829)
실시예 11
Figure PCTKR2021011028-appb-img-000051
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine10(8.4 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-1 7.9 g을 얻었다. (수율 50%, MS: [M+H]+= 511)
질소 분위기에서 화합물 sub4-1(10 g, 19.6 mmol), 화합물 AA(4.9 g, 19.6 mmol), 소디움 터트-부톡사이드(2.4 g, 25.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 11 9.2 g을 얻었다. (수율 65%, MS: [M+H]+= 727)
실시예 12
Figure PCTKR2021011028-appb-img-000052
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine11(7.6 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-2 9.7 g을 얻었다. (수율 64%, MS: [M+H]+= 487)
질소 분위기에서 화합물 sub4-2(10 g, 20.5 mmol), 화합물 AA(5.2 g, 20.5 mmol), 소디움 터트-부톡사이드(2.6 g, 26.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 12 8.2 g을 얻었다. (수율 57%, MS: [M+H]+= 703)
실시예 13
Figure PCTKR2021011028-appb-img-000053
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine12(4.4 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-3 6.7 g을 얻었다. (수율 56%, MS: [M+H]+= 385)
질소 분위기에서 화합물 sub4-3(10 g, 26 mmol), 화합물 AB(6.6 g, 26 mmol), 소디움 터트-부톡사이드(3.2 g, 33.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 13 10.9 g을 얻었다. (수율 70%, MS: [M+H]+= 601)
실시예 14
Figure PCTKR2021011028-appb-img-000054
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine13(6 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-4 9.3 g을 얻었다. (수율 69%, MS: [M+H]+= 435)
질소 분위기에서 화합물 sub4-4(10 g, 23 mmol), 화합물 AC(5.8 g, 23 mmol), 소디움 터트-부톡사이드(2.9 g, 29.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 14 8.4 g을 얻었다. (수율 56%, MS: [M+H]+= 651)
실시예 15
Figure PCTKR2021011028-appb-img-000055
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine6(5.3 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-5 7 g을 얻었다. (수율 55%, MS: [M+H]+= 411)
질소 분위기에서 화합물 sub4-5(10 g, 24.4 mmol), 화합물 AC(6.2 g, 24.4 mmol), 소디움 터트-부톡사이드(3 g, 31.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 15 8.7 g을 얻었다. (수율 57%, MS: [M+H]+= 627)
실시예 16
Figure PCTKR2021011028-appb-img-000056
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine14(8.4 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-6 10.3 g을 얻었다. (수율 65%, MS: [M+H]+= 511)
질소 분위기에서 화합물 sub4-6(10 g, 19.6 mmol), 화합물 AC(4.9 g, 19.6 mmol), 소디움 터트-부톡사이드(2.4 g, 25.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 16 7.4 g을 얻었다. (수율 52%, MS: [M+H]+= 727)
실시예 17
Figure PCTKR2021011028-appb-img-000057
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine15(6.2 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-7 8.5 g을 얻었다. (수율 62%, MS: [M+H]+= 441)
질소 분위기에서 화합물 sub4-7(10 g, 22.7 mmol), 화합물 AC(5.7 g, 22.7 mmol), 소디움 터트-부톡사이드(2.8 g, 29.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 17 9.2 g을 얻었다. (수율 62%, MS: [M+H]+= 657)
실시예 18
Figure PCTKR2021011028-appb-img-000058
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine16(9.2 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-8 9.8 g을 얻었다. (수율 59%, MS: [M+H]+= 537)
질소 분위기에서 화합물 sub4-8(10 g, 18.6 mmol), 화합물 AD(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 18 9.5 g을 얻었다. (수율 68%, MS: [M+H]+= 753)
실시예 19
Figure PCTKR2021011028-appb-img-000059
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine17(5.7 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-9 8.8 g을 얻었다. (수율 67%, MS: [M+H]+= 425)
질소 분위기에서 화합물 sub4-9(10 g, 23.6 mmol), 화합물 AD(6 g, 23.6 mmol), 소디움 터트-부톡사이드(2.9 g, 30.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 19 10.1 g을 얻었다. (수율 67%, MS: [M+H]+= 641)
실시예 20
Figure PCTKR2021011028-appb-img-000060
질소 분위기에서 화합물 sub4-8(10 g, 18.6 mmol), 화합물 AE(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 20 8.4 g을 얻었다. (수율 60%, MS: [M+H]+= 753)
실시예 21
Figure PCTKR2021011028-appb-img-000061
질소 분위기에서 화합물 sub4-5(10 g, 24.4 mmol), 화합물 AG(6.2 g, 24.4 mmol), 소디움 터트-부톡사이드(3 g, 31.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 21 9.9 g을 얻었다. (수율 65%, MS: [M+H]+= 627)
실시예 22
Figure PCTKR2021011028-appb-img-000062
질소 분위기에서 화합물 sub4(10 g, 31 mmol), 화합물 amine18(6.8 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub4-10 9.1 g을 얻었다. (수율 64%, MS: [M+H]+= 461)
질소 분위기에서 화합물 sub4-10(10 g, 21.7 mmol), 화합물 AH(5.5 g, 21.7 mmol), 소디움 터트-부톡사이드(2.7 g, 28.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 22 8.1 g을 얻었다. (수율 55%, MS: [M+H]+= 677)
실시예 23
Figure PCTKR2021011028-appb-img-000063
질소 분위기에서 화합물 sub5(10 g, 31 mmol), 화합물 amine19(7.6 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub5-1 8.3 g을 얻었다. (수율 55%, MS: [M+H]+= 485)
질소 분위기에서 화합물 sub5-1(10 g, 20.6 mmol), 화합물 AB(5.2 g, 20.6 mmol), 소디움 터트-부톡사이드(2.6 g, 26.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 23 8.4 g을 얻었다. (수율 58%, MS: [M+H]+= 701)
실시예 24
Figure PCTKR2021011028-appb-img-000064
질소 분위기에서 화합물 sub5(10 g, 31 mmol), 화합물 amine20(9.2 g, 31 mmol), 소디움 터트-부톡사이드(3.9 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub5-2 10.2 g을 얻었다. (수율 61%, MS: [M+H]+= 537)
질소 분위기에서 화합물 sub5-2(10 g, 18.6 mmol), 화합물 AC(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 24 8 g을 얻었다. (수율 57%, MS: [M+H]+= 753)
실시예 25
Figure PCTKR2021011028-appb-img-000065
질소 분위기에서 화합물 sub6(10 g, 25.1 mmol), 화합물 amine6(4.2 g, 25.1 mmol), 소디움 터트-부톡사이드(3.1 g, 32.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub6-1 6.8 g을 얻었다. (수율 56%, MS: [M+H]+= 487)
질소 분위기에서 화합물 sub6-1(10 g, 20.5 mmol), 화합물 AA(5.2 g, 20.5 mmol), 소디움 터트-부톡사이드(2.6 g, 26.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 25 8.9 g을 얻었다. (수율 62%, MS: [M+H]+= 703)
실시예 26
Figure PCTKR2021011028-appb-img-000066
질소 분위기에서 화합물 sub6(10 g, 25.1 mmol), 화합물 amine21(5.5 g, 25.1 mmol), 소디움 터트-부톡사이드(3.1 g, 32.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub6-2 6.7 g을 얻었다. (수율 50%, MS: [M+H]+= 537)
질소 분위기에서 화합물 sub6-2(10 g, 18.6 mmol), 화합물 AH(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 26 8.1 g을 얻었다. (수율 58%, MS: [M+H]+= 753)
실시예 27
Figure PCTKR2021011028-appb-img-000067
질소 분위기에서 화합물 sub7(10 g, 21.1 mmol), 화합물 amine22(2 g, 21.1 mmol), 소디움 터트-부톡사이드(2.6 g, 27.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub7-1 7.1 g을 얻었다. (수율 69%, MS: [M+H]+= 487)
질소 분위기에서 화합물 sub7-1(10 g, 20.5 mmol), 화합물 AE(5.2 g, 20.5 mmol), 소디움 터트-부톡사이드(2.6 g, 26.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 27 7.9 g을 얻었다. (수율 55%, MS: [M+H]+= 703)
실시예 28
Figure PCTKR2021011028-appb-img-000068
질소 분위기에서 화합물 sub8(10 g, 26.9 mmol), 화합물 amine23(5.2 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub8-1 8.5 g을 얻었다. (수율 65%, MS: [M+H]+= 485)
질소 분위기에서 화합물 sub8-1(10 g, 20.6 mmol), 화합물 AC(5.2 g, 20.6 mmol), 소디움 터트-부톡사이드(2.6 g, 26.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 28 7.8 g을 얻었다. (수율 54%, MS: [M+H]+= 701)
실시예 29
Figure PCTKR2021011028-appb-img-000069
질소 분위기에서 화합물 sub8(10 g, 26.9 mmol), 화합물 amine22(2.5 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub8-2 5.2 g을 얻었다. (수율 50%, MS: [M+H]+= 385)
질소 분위기에서 화합물 sub8-2(10 g, 26 mmol), 화합물 AH(6.6 g, 26 mmol), 소디움 터트-부톡사이드(3.2 g, 33.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 29 10.3 g을 얻었다. (수율 66%, MS: [M+H]+= 601)
실시예 30
Figure PCTKR2021011028-appb-img-000070
질소 분위기에서 화합물 sub9(10 g, 26.9 mmol), 화합물 amine22(2.5 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub9-1 5.9 g을 얻었다. (수율 57%, MS: [M+H]+= 385)
질소 분위기에서 화합물 sub9-1(10 g, 26 mmol), 화합물 AG(6.6 g, 26 mmol), 소디움 터트-부톡사이드(3.2 g, 33.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 30 7.8 g을 얻었다. (수율 50%, MS: [M+H]+= 601)
실시예 31
Figure PCTKR2021011028-appb-img-000071
질소 분위기에서 화합물 sub10(10 g, 22.3 mmol), 화합물 amine6(3.8 g, 22.3 mmol), 소디움 터트-부톡사이드(2.8 g, 29 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub10-1 6.2 g을 얻었다. (수율 52%, MS: [M+H]+= 537)
질소 분위기에서 화합물 sub10-1(10 g, 18.6 mmol), 화합물 AA(4.7 g, 18.6 mmol), 소디움 터트-부톡사이드(2.3 g, 24.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 31 9.4 g을 얻었다. (수율 67%, MS: [M+H]+= 753)
실시예 32
Figure PCTKR2021011028-appb-img-000072
질소 분위기에서 화합물 sub11(10 g, 26.9 mmol), 화합물 amine22(2.5 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub11-1 7.2 g을 얻었다. (수율 70%, MS: [M+H]+= 385)
질소 분위기에서 화합물 sub11-1(10 g, 26 mmol), 화합물 AD(6.6 g, 26 mmol), 소디움 터트-부톡사이드(3.2 g, 33.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 32 9.7 g을 얻었다. (수율 62%, MS: [M+H]+= 601)
실시예 33
Figure PCTKR2021011028-appb-img-000073
질소 분위기에서 화합물 sub12(10 g, 26.9 mmol), 화합물 amine22(2.5 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub12-1 7.1 g을 얻었다. (수율 69%, MS: [M+H]+= 385)
질소 분위기에서 화합물 sub12-1(10 g, 26 mmol), 화합물 AD(6.6 g, 26 mmol), 소디움 터트-부톡사이드(3.2 g, 33.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 33 9.7 g을 얻었다. (수율 62%, MS: [M+H]+= 601)
실시예 34
Figure PCTKR2021011028-appb-img-000074
질소 분위기에서 화합물 sub13(10 g, 26.9 mmol), 화합물 amine22(2.5 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub13-1 6.7 g을 얻었다. (수율 65%, MS: [M+H]+= 385)
질소 분위기에서 화합물 sub13-1(10 g, 26 mmol), 화합물 AB(6.6 g, 26 mmol), 소디움 터트-부톡사이드(3.2 g, 33.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 34 10.3 g을 얻었다. (수율 66%, MS: [M+H]+= 601)
실시예 35
Figure PCTKR2021011028-appb-img-000075
질소 분위기에서 화합물 sub14(10 g, 26.9 mmol), 화합물 amine24(5.9 g, 26.9 mmol), 소디움 터트-부톡사이드(3.4 g, 34.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub14-1 7.4 g을 얻었다. (수율 54%, MS: [M+H]+= 511)
질소 분위기에서 화합물 sub14-1(10 g, 19.6 mmol), 화합물 AD(4.9 g, 19.6 mmol), 소디움 터트-부톡사이드(2.4 g, 25.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 35 7.1 g을 얻었다. (수율 50%, MS: [M+H]+= 727)
[실험예]
실험예 1
ITO(indium tin oxide)가 1,000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150 Å의 두께로 형성하되 하기 A-1 화합물을 1.5 % 농도로 p-doping하였다. 상기 정공주입층 위에, 하기 HT-1 화합물을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 상기 정공수송층 위에, 앞서 제조한 화합물 1을 진공 증착하여 막 두께 150 Å의 전자억제층을 형성하였다. 상기 전자억제층 위에, 하기 RH-1 화합물 및 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 막 두께 400 Å의 발광층을 형성하였다. 상기 발광층 위에, 하기 HB-1 화합물을 진공 증착하여 막 두께 30 Å의 정공저지층을 형성하였다. 상기 정공저지층 위에, 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에, 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1,000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2021011028-appb-img-000076
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 ~ 5x10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실험예 2 내지 35
화합물 1 대신 하기 표 1 및 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교실험예 1 내지 8
화합물 1 대신 하기 표 3에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 3에서 화합물 C-1 내지 C-8은 하기와 같다.
Figure PCTKR2021011028-appb-img-000077
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 구동 전압 및 발광 효율을 측정(15 mA/cm2)하고 그 결과를 하기 표 1 내지 3에 나타냈다. 하기에서 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간(hr)을 의미한다.
화합물
(전자억제층)
구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실험예 1 화합물 1 4.23 17.43 199 적색
실험예 2 화합물 2 4.19 17.63 191 적색
실험예 3 화합물 3 4.19 17.05 204 적색
실험예 4 화합물 4 4.12 17.06 202 적색
실험예 5 화합물 5 4.30 17.26 191 적색
실험예 6 화합물 6 4.22 17.42 198 적색
실험예 7 화합물 7 4.25 17.37 208 적색
실험예 8 화합물 8 4.18 17.09 220 적색
실험예 9 화합물 9 4.30 17.33 217 적색
실험예 10 화합물 10 4.23 17.65 184 적색
실험예 11 화합물 11 4.00 17.51 171 적색
실험예 12 화합물 12 4.31 16.44 157 적색
실험예 13 화합물 13 4.34 17.61 175 적색
실험예 14 화합물 14 4.36 16.35 150 적색
실험예 15 화합물 15 4.31 17.32 175 적색
실험예 16 화합물 16 4.29 16.62 169 적색
실험예 17 화합물 17 4.33 16.21 157 적색
실험예 18 화합물 18 4.21 16.84 150 적색
실험예 19 화합물 19 4.33 16.75 171 적색
실험예 20 화합물 20 4.30 16.99 164 적색
화합물
(전자억제층)
구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실험예 21 화합물 21 4.14 17.34 207 적색
실험예 22 화합물 22 4.20 17.19 203 적색
실험예 23 화합물 23 4.11 17.06 204 적색
실험예 24 화합물 24 4.14 17.60 204 적색
실험예 25 화합물 25 4.23 17.16 181 적색
실험예 26 화합물 26 4.22 17.73 219 적색
실험예 27 화합물 27 4.25 17.39 203 적색
실험예 28 화합물 28 4.23 17.84 233 적색
실험예 29 화합물 29 4.28 17.86 230 적색
실험예 30 화합물 30 4.12 17.83 215 적색
실험예 31 화합물 31 4.22 17.54 211 적색
실험예 32 화합물 32 4.16 17.08 225 적색
실험예 33 화합물 33 4.15 17.57 201 적색
실험예 34 화합물 34 4.30 17.58 213 적색
실험예 35 화합물 35 4.12 17.70 224 적색
화합물
(전자억제층)
구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교실험예 1 화합물 C-1 4.57 12.28 116 적색
비교실험예 2 화합물 C-2 4.50 12.53 109 적색
비교실험예 3 화합물 C-3 4.61 13.46 104 적색
비교실험예 4 화합물 C-4 4.42 14.12 121 적색
비교실험예 5 화합물 C-5 4.56 14.21 114 적색
비교실험예 6 화합물 C-6 4.57 13.82 107 적색
비교실험예 7 화합물 C-7 4.63 14.61 124 적색
비교실험예 8 화합물 C-8 4.49 14.52 137 적색
상기 표 1 내지 3에 나타난 바와 같이, 본 발명의 화합물을 전자억제층으로 사용하였을 때, 비교실험예에 비하여 구동 전압이 크게 낮아졌으며, 효율 측면에도 상승을 한 것으로 보아 호스트에서 적색 도판트로 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한, 높은 효율을 유지하면서도 수명 특성을 크게 개선시킬 수 있는 것을 알 수 있었다. 이는 비교실험예에서 사용한 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다. 따라서, 본 발명의 화합물을 전자억제층으로 사용하였을 때 유기 발광 소자의 구동 전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 8: 전자수송층
9: 전자억제층

Claims (9)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2021011028-appb-img-000078
    상기 화학식 1에서,
    R1 내지 R4는 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 두 개가 결합하여 벤젠고리를 형성하고, 나머지는 수소, 또는 중수소이고,
    L은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    Ar2는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    Ar3는 하기 화학식 2로 표시되는 치환기이다:
    [화학식 2]
    Figure PCTKR2021011028-appb-img-000079
    상기 화학식 2에서,
    R 중 하나는 화학식 1에 결합되는 부분이고, 나머지는 수소, 또는 중수소이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시되는,
    화합물:
    [화학식 1-1]
    Figure PCTKR2021011028-appb-img-000080
    [화학식 1-2]
    Figure PCTKR2021011028-appb-img-000081
    [화학식 1-3]
    Figure PCTKR2021011028-appb-img-000082
    상기 화학식 1-1 내지 1-3에서,
    L, R1 내지 R4 및 Ar1 내지 Ar3은 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    L은 단일 결합, 페닐렌, 비페닐디일, 또는 나프틸렌인,
    화합물.
  4. 제1항에 있어서,
    L은 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2021011028-appb-img-000083
    .
  5. 제1항에 있어서,
    Ar1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 또는 페난쓰레닐인,
    화합물.
  6. 제1항에 있어서,
    Ar2는 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 페난쓰레닐, 페난쓰레닐페닐, 트리페닐레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,
    화합물.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2021011028-appb-img-000084
    Figure PCTKR2021011028-appb-img-000085
    Figure PCTKR2021011028-appb-img-000086
    Figure PCTKR2021011028-appb-img-000087
    Figure PCTKR2021011028-appb-img-000088
    Figure PCTKR2021011028-appb-img-000089
    Figure PCTKR2021011028-appb-img-000090
    Figure PCTKR2021011028-appb-img-000091
    Figure PCTKR2021011028-appb-img-000092
    Figure PCTKR2021011028-appb-img-000093
    Figure PCTKR2021011028-appb-img-000094
    Figure PCTKR2021011028-appb-img-000095
    Figure PCTKR2021011028-appb-img-000096
    Figure PCTKR2021011028-appb-img-000097
    Figure PCTKR2021011028-appb-img-000098
    Figure PCTKR2021011028-appb-img-000099
    Figure PCTKR2021011028-appb-img-000100
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제7항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  9. 제8항에 있어서,
    상기 화합물을 포함하는 유기물층은 전자억제층인,
    유기 발광 소자.
PCT/KR2021/011028 2020-08-19 2021-08-19 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2022039518A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180032955.3A CN115551851A (zh) 2020-08-19 2021-08-19 新型化合物及包含其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200104201 2020-08-19
KR10-2020-0104201 2020-08-19
KR10-2021-0109438 2021-08-19
KR1020210109438A KR102602155B1 (ko) 2020-08-19 2021-08-19 신규한 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2022039518A1 true WO2022039518A1 (ko) 2022-02-24

Family

ID=80323084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011028 WO2022039518A1 (ko) 2020-08-19 2021-08-19 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2022039518A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790184A (zh) * 2022-06-22 2022-07-26 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法、发光器件、发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055621A (ko) * 2015-11-11 2017-05-22 주식회사 스킨앤스킨 2-펜안트렌 카바졸 유도체 화합물 및 이를 포함하는 유기 전계 발광 소자
CN108947902A (zh) * 2018-05-18 2018-12-07 长春海谱润斯科技有限公司 一种有机电致发光材料及其有机电致发光器件
CN109400520A (zh) * 2018-11-27 2019-03-01 长春海谱润斯科技有限公司 一种联苯胺化合物及其有机电致发光器件
WO2019059672A1 (en) * 2017-09-25 2019-03-28 Rohm And Haas Electronic Materials Korea Ltd. ORGANIC ELECTROLUMINESCENT COMPOUND AND ORGANIC ELECTROLUMINESCENCE DEVICE COMPRISING SAME
CN110845394A (zh) * 2019-11-25 2020-02-28 长春海谱润斯科技有限公司 一种芳香胺化合物及其有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055621A (ko) * 2015-11-11 2017-05-22 주식회사 스킨앤스킨 2-펜안트렌 카바졸 유도체 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019059672A1 (en) * 2017-09-25 2019-03-28 Rohm And Haas Electronic Materials Korea Ltd. ORGANIC ELECTROLUMINESCENT COMPOUND AND ORGANIC ELECTROLUMINESCENCE DEVICE COMPRISING SAME
CN108947902A (zh) * 2018-05-18 2018-12-07 长春海谱润斯科技有限公司 一种有机电致发光材料及其有机电致发光器件
CN109400520A (zh) * 2018-11-27 2019-03-01 长春海谱润斯科技有限公司 一种联苯胺化合物及其有机电致发光器件
CN110845394A (zh) * 2019-11-25 2020-02-28 长春海谱润斯科技有限公司 一种芳香胺化合物及其有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790184A (zh) * 2022-06-22 2022-07-26 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法、发光器件、发光装置

Similar Documents

Publication Publication Date Title
WO2015046835A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2021125552A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2021150048A1 (ko) 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022039518A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021182834A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023096459A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023096454A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023096465A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021230689A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021230690A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085833A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2024049159A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023085789A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2021230654A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023003146A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858605

Country of ref document: EP

Kind code of ref document: A1