WO2021230690A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2021230690A1
WO2021230690A1 PCT/KR2021/006037 KR2021006037W WO2021230690A1 WO 2021230690 A1 WO2021230690 A1 WO 2021230690A1 KR 2021006037 W KR2021006037 W KR 2021006037W WO 2021230690 A1 WO2021230690 A1 WO 2021230690A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
layer
group
added
Prior art date
Application number
PCT/KR2021/006037
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
차용범
김서연
최승원
심재훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180034282.5A priority Critical patent/CN115605469A/zh
Priority claimed from KR1020210062165A external-priority patent/KR102546268B1/ko
Publication of WO2021230690A1 publication Critical patent/WO2021230690A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron It may be formed of an injection layer or the like.
  • a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula (1):
  • each Y is independently a single bond, O or S, provided that at least one of Y is O or S;
  • R 1 is each independently hydrogen; heavy hydrogen; halogen; cyano; substituted or unsubstituted C 1-60 alkyl; substituted or unsubstituted C 1-60 alkoxy; substituted or unsubstituted C 2-60 alkenyl; substituted or unsubstituted C 2-60 alkynyl; substituted or unsubstituted C 3-60 cycloalkyl; substituted or unsubstituted C 6-60 aryl; It is C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S,
  • n1 and n2 are integers from 0 to 4,
  • n3 is an integer from 0 to 3
  • R 2 is represented by the following formula (2),
  • L is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • X is N, or CH, provided that at least two or more of X are N;
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; It is C 2-60 heteroaryl containing at least one heteroatom selected from the group consisting of substituted or unsubstituted N, O and S.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer comprises the compound represented by Formula 1 above; to provide.
  • the compound represented by Formula 1 described above may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • the compound represented by Formula 1 described above may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (6), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and an example of an organic light-emitting device including a cathode 4 are shown.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; Or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among heteroarylamines the description of the above-described heterocyclic group may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • the present invention provides a compound represented by the above formula (1).
  • the compound represented by Formula 1 is a fluoranthene ring and a heterocyclic ring containing two or more N is bonded to a specific position of the parent nucleus structure in which a bicyclic heterocyclic ring containing O or S is condensed. It is possible to improve the characteristics of the organic light emitting device.
  • the compound represented by Formula 1 uses a polycyclic aromatic core that connects a plurality of aromatic rings, thereby increasing molecular rigidity, increasing stability with respect to electrons and holes, and can exhibit better light emitting properties, thereby Due to this, quantum efficiency and lifetime can be improved.
  • the compound represented by Formula 1 may be represented by any one of Formulas 1-1 to 1-8, depending on a specific position at which a heterocyclic ring containing two or more N is bonded:
  • Z is O or S
  • R 1 , n1, n2, n3, L, X, Ar 1 and Ar 2 are as defined in Formula 1 above.
  • one of Y is O or S, and the other is a single bond.
  • R 1 is each hydrogen, deuterium, halogen, or cyano, or substituted or unsubstituted C 1-20 alkyl, or C 1-12 alkyl , or C 1-6 alkyl, or substituted or unsubstituted C 1-20 alkoxy, or C 1-12 alkoxy, or C 1-6 alkoxy, or substituted or unsubstituted C 2-20 alkenyl, or C 2-12 alkenyl, or C 2-6 alkenyl, or substituted or unsubstituted C 2-20 alkynyl, or C 2-12 alkynyl, or C 2-6 alkynyl, or substituted or unsubstituted substituted C 3-30 cycloalkyl, or C 3-25 cycloalkyl, or C 3-20 cycloalkyl, or substituted or unsubstituted C 6-30 aryl, or C 6-28 aryl, or C 6-25 aryl, or C 6
  • each of R 1 may be hydrogen or deuterium. Also, all of R 1 may be hydrogen.
  • n1, n2, and n3 may each be an integer of 0 to 2, or 0 or 1.
  • L is a single bond; or substituted or unsubstituted C 6-30 arylene, or C 6-28 arylene, or C 6-25 arylene, or C 6-20 arylene.
  • L is a single bond; or phenylene, biphenylrylene, terphenylrylene, quaterphenylrylene, or naphthylene.
  • L is a single bond; Or it may be one represented by any one selected from the group consisting of:
  • two of X may be N, the rest may be CH, or all of X may be N.
  • Ar 1 and Ar 2 are each substituted or unsubstituted C 6-30 aryl, or C 6-28 aryl, or C 6-25 aryl, or C 6-20 aryl; or substituted or unsubstituted C 3-30 heteroaryl, or C 5-28 heteroaryl, or C 5-25 heteroaryl, containing any one or more heteroatoms selected from the group consisting of N, O and S; or C 6-20 heteroaryl, or C 12-18 heteroaryl.
  • Ar 1 and Ar 2 are each phenyl, naphthyl substituted phenyl, biphenyl, terphenyl, naphthyl, phenyl substituted naphthyl, phenanthryl, dibenzofuranyl, dibenzothiophenyl, carbazolyl, or phenyl substituted carbazolyl.
  • Ar 1 and Ar 2 may be phenyl, naphthyl substituted phenyl, biphenyl, naphthyl, or phenyl substituted naphthyl, preferably phenyl, biphenyl, or naphthyl.
  • the compound represented by Chemical Formula 1 may be prepared by a preparation method as shown in Scheme 1 below.
  • the manufacturing method may be more specific in the Synthesis Examples to be described later.
  • Y, R 1 , R 2 , n1, and n2 are as defined in Formula 1 above, and Q 1 is BO 2 C 2 (CH 3 ) 4 , or B(OH) 2 , and Q 2 is a halogen group, preferably Cl, Br, or I, and more preferably Cl.
  • Scheme 1 is a reaction for introducing a heteroaryl substituent containing at least two or more N at a specific position in the parent nucleus structure in which a fluoranthene ring and a bicyclic heterocycle containing O or S are condensed. .
  • Q 1 is a pinacolborane group, BO 2 C 2 (CH 3 ) 4 , or a boronic acid group, B(OH) 2 , and a fluoranthene ring and O
  • a polycyclic compound in which a bicyclic heterocyclic ring containing S is condensed, and a heterocyclic compound containing Q 2 as a halogen group and at least two or more N are mixed with a palladium catalyst (Pd catalyst) in the presence of a base.
  • Pd catalyst palladium catalyst
  • a pinacolborone group BO 2 C 2 (CH 3 ) 4 , or B(OH) in a polycyclic compound in which a fluoranthene ring and a bicyclic heterocycle including O or S are condensed ) 2 is to introduce a heteroaryl group containing at least two or more N at the position of Q 1 .
  • Q 1 is BO 2 C 2 (CH 3 ) 4
  • Q 2 may be chlorine.
  • Specific reaction conditions of Scheme 1 may be performed with reference to known reactions known in the art. The manufacturing method may be more specific in a synthesis example to be described later.
  • the base component is potassium carbonate (K 2 CO 3 ), sodium bicarbonate (sodium bicarbonate, NaHCO 3 ), cesium carbonate (Cs 2 CO 3 ), sodium acetate (sodium acetate, NaOAc) , potassium acetate (KOAc), sodium tert-butoxide (NaOtBu), sodium ethoxide (NaOEt), or triethylamine (Et 3 N), N,N- Diisopropylethylamine (N,N-diisopropylethylamine, EtN(iPr) 2 ) and the like may be used.
  • the base component is potassium carbonate (K 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), potassium acetate (KOAc), sodium tert-butoxide (sodium tert- butoxide, NaOtBu), or N,N-diisopropylethylamine (N,N-diisopropylethylamine, EtN(iPr) 2 ).
  • bis(tri-(tert-butyl)phosphine)palladium (0) bis(tri-(tert-butyl)phosphine)palladium(0), Pd(P-tBu 3 ) 2
  • tetrakis(triphenylphosphine)palladium (0) tetrakis(triphenylphosphine)palladium (0)
  • tris(dibenzylideneacetone)dipalladium (0) tris(dibenzylideneacetone)-dipalladium (0) (tris(dibenzylideneacetone)-dipalladium (0), Pd 2 (dba) 3 )
  • bis(dibenzylideneacetone)palladium (0) bis(dibenzylideneacetone)palladium (0), Pd(dba) 2
  • Pd(PPh 3 ) 4 or palladium(II) acetate , Pd(OAc) 2 ) and the like
  • the palladium catalyst is bis(tri-(tert-butyl)phosphine)palladium(0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(P-tBu 3 ) 2 ) , tetrakis(triphenylphosphine)palladium (0) (tetrakis(triphenylphosphine)palladium (0), Pd(PPh 3 ) 4 ), or bis(dibenzylideneacetone)palladium (0) (bis(dibenzylideneacetone)palladium ( 0), Pd(dba) 2 ).
  • equivalent means molar equivalent
  • the present invention provides an organic light emitting device including the compound represented by Formula 1 above.
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 above. do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, the hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 The compounds shown are included.
  • the organic layer may include an electron blocking layer, and the electron blocking layer includes the compound represented by Formula 1 above.
  • the organic layer may include an emission layer, and the emission layer includes the compound represented by Formula 1 above.
  • the light emitting layer further includes a dopant compound.
  • the light emitting layer includes the compound of Formula 1 and a dopant.
  • the light emitting layer includes the compound of Formula 1 and a dopant, and includes the compound of Formula 1 and the dopant in a content ratio of 100:1 to 1:1.
  • the light emitting layer includes the compound of Formula 1 and the dopant, and the compound of Formula 1 and the dopant in a content ratio of 100:1 to 2:1.
  • the light emitting layer includes the compound of Formula 1 and the dopant, and the compound of Formula 1 and the dopant in a content ratio of 100:1 to 5:1.
  • the dopant is a metal complex.
  • the dopant is an iridium-based metal complex.
  • the organic material layer includes an emission layer
  • the emission layer includes a dopant
  • the dopant material is selected from the following structural formulas.
  • the structures specified above are not limited to dopant compounds.
  • the organic layer may include a hole blocking layer, the hole blocking layer includes the compound represented by the formula (1).
  • the organic layer may include an electron transport layer, an electron injection layer, or a layer that simultaneously injects and transports electrons, and the electron transport layer, the electron injection layer, or a layer that simultaneously injects and transports electrons is represented by Formula 1 The compounds shown are included.
  • the organic layer may include a light emitting layer and a hole transport layer, and the light emitting layer or the hole transport layer may include a compound represented by Formula 1 above.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the compound represented by Formula 1 may be included in at least one of the hole injection layer, the hole transport layer, the electron suppression layer, the light emitting layer, the hole blocking layer, and the electron injection and transport layer.
  • the compound represented by Formula 1 may be included in the light emitting layer or the hole transport layer, for example, may be included as a host material of the light emitting layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • a material that can be used as a cathode is deposited thereon. can do.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the compound represented by Formula 1 has excellent solubility in a solvent used for the solution coating method, and thus it is easy to apply the solution coating method.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the present invention provides a coating composition comprising the compound represented by Formula 1 and a solvent.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing the compound according to the present invention, and for example, chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o - Chlorine solvents, such as dichlorobenzene; ether solvents such as tetrahydrofuran and dioxane; aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, and mesitylene; aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; ester solvents such
  • the viscosity of the coating composition is preferably 1 cP to 10 cP, and coating is easy in the above range.
  • the concentration of the compound according to the present invention in the coating composition is preferably 0.1 wt/v% to 20 wt/v%.
  • the present invention provides a method for forming a functional layer using the above-described coating composition. Specifically, coating the coating composition according to the present invention as described above in a solution process; and heat-treating the coated coating composition.
  • the heat treatment temperature in the heat treatment step is preferably 150 °C to 230 °C.
  • the heat treatment time is 1 minute to 3 hours, more preferably 10 minutes to 1 hour.
  • the heat treatment is preferably performed in an inert gas atmosphere such as argon or nitrogen.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material.
  • organic substances anthraquinones, and conductive polymers of polyaniline and polythiophene series, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a compound containing a hetero ring.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the compound according to the present invention is used as the host material.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • an iridium-based metal complex is used as the dopant material.
  • the light emitting layer may be a red light emitting layer, and when the compound according to the present invention is used as a host material, stability for electrons and holes is increased, and energy transfer from the host to the red dopant is well achieved, the driving voltage of the organic light emitting device, It is possible to improve luminous efficiency and lifespan characteristics.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports them to the light emitting layer. do. Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer.
  • a compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high luminous efficiency.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • compound subA-1 (10 g, 33.7 mmol) and compound sub1 (6.5 g, 37 mmol) were added to 200 mL of tetrahydrofuran (THF), stirred and refluxed. After that, potassium carbonate (K 2 CO 3 , 14 g, 101 mmol) was dissolved in 42 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) [Pd(P-tBu 3 ) 2 ] (0.2 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • K 2 CO 3 potassium carbonate
  • Pd(P-tBu 3 ) 2 bis(tri-tert-butylphosphine)palladium(0)
  • compound subB (10 g, 35.6 mmol) and compound sub5 (7.9 g, 39.1 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (14.7 g, 106.7 mmol) was dissolved in 44 mL of water and stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BA_P2 (10 g, 26.7 mmol) was added to 200 mL of H 2 SO 4 and stirred.
  • the reaction product was poured into water to drop crystals and filtered.
  • the filtered solid was dissolved again in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure.
  • compound AB (10 g, 23.9 mmol) and compound Trz6 (10.2 g, 24.4 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound AB (10 g, 23.9 mmol) and compound Trz7 (10.6 g, 24.4 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound AD (10 g, 23.9 mmol) and compound Trz13 (9.1 g, 24.4 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BA (10 g, 23 mmol) and compound Trz14 (8.4 g, 23.5 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BA (10 g, 23 mmol) and compound Trz16 (8.6 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BB (10 g, 23 mmol) and compound Trz19 (9.2 g, 23.5 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BD (10 g, 23 mmol) and compound Trz12 (9.2 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BD (10 g, 23 mmol) and compound Trz21 (9.2 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound BD (10 g, 23 mmol) and compound Trz23 (10.4 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound CB (10 g, 23.9 mmol) and compound Trz8 (9.6 g, 24.4 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound CB (10 g, 23.9 mmol) and compound Trz27 (12.4 g, 24.4 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound CC (10 g, 23.9 mmol) and compound Trz17 (6.5 g, 24.4 mmol) were added to 200 mL of THF, stirred and refluxed. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound CD (10 g, 23.9 mmol) and compound Trz31 (8.4 g, 24.4 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.9 g, 71.7 mmol) was dissolved in 30 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound DB (10 g, 23 mmol) and compound Trz33 (9.9 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound DB (10 g, 23 mmol) and compound Trz34 (11 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound DB (10 g, 23 mmol) and compound Trz1 (8.1 g, 23.5 mmol) were added to 200 mL of THF, followed by stirring and reflux. After that, potassium carbonate (9.5 g, 69.1 mmol) was dissolved in 29 mL of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • a glass substrate coated with a thin film of indium tin oxide (ITO) to a thickness of 1,000 angstrom ( ⁇ , angstrom) was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transferred to a vacuum evaporator.
  • the following compound HI-1 was thermally vacuum deposited to a thickness of 1150 ⁇ to form a hole injection layer, but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following compound HT-1 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • the following compound EB-1 was vacuum-deposited to a film thickness of 150 ⁇ on the hole transport layer to form an electron blocking layer.
  • the following compound 1 and the following compound Dp-7 were vacuum-deposited in a weight ratio of 98:2 on the EB-1 deposited layer to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed by vacuum-depositing the following compound HB-1 to a thickness of 30 ⁇ on the light emitting layer. Then, on the hole blocking layer, the following compound ET-1 and the following compound LiQ were vacuum-deposited in a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ /sec to 0.7 ⁇ /sec, the deposition rate of lithium fluoride of the negative electrode was 0.3 ⁇ /sec, and the deposition rate of aluminum was 2 ⁇ /sec, and the vacuum degree during deposition was By maintaining 2x10 -7 to 5x10 -6 torr, an organic light emitting diode was manufactured.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that Compounds 2 to 53 described in Table 1 were used instead of Compound 1 in the organic light emitting device of Example 1, respectively.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 in the organic light emitting device of Example 1.
  • the compounds of C-1 to C-13 used in Table 1 below are as follows.
  • the lifetime T95 means the time required for the luminance to decrease from the initial luminance (6000 nit) to 95%.
  • the compound represented by Formula 1 that is, N is 2 at a specific position in the parent nucleus structure in which a fluoranthene ring and a bicyclic heterocyclic ring containing O or S are condensed.
  • the organic light emitting diodes of Examples 1 to 53 can significantly improve lifespan characteristics while maintaining high efficiency. It can be determined that this is because the compound of the example according to the present invention has higher stability to electrons and holes than the compound of the comparative example. In conclusion, it can be confirmed that when the compound of the present invention is used as a host for the red light emitting layer, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting diode can be improved.
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 5월 13일자 한국 특허 출원 제10-2020-0057324호 및 2021년 5월 13일자 한국 특허 출원 제10-2021-0062165호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2021006037-appb-img-000001
상기 화학식 1에서,
Y는 각각 독립적으로 단일 결합이거나, O 또는 S이고, 단 Y 중 적어도 하나는 O 또는 S이고,
R 1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 1-60 알콕시; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 2-60 알키닐; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
n1 및 n2는 0 내지 4의 정수이고,
n3은 0 내지 3의 정수이고,
R 2는 하기 화학식 2로 표시되는 것이고,
[화학식 2]
Figure PCTKR2021006037-appb-img-000002
상기 화학식 2에서,
L은 단일결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
X는 N, 또는 CH이고, 단 X 중 적어도 2개 이상이 N이고,
Ar 1 및 Ar 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는 것인, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(6), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2021006037-appb-img-000003
또는
Figure PCTKR2021006037-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021006037-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021006037-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021006037-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021006037-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난트롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
상기 화학식 1로 표시되는 화합물은, 플루오란탄(fluoranthene) 고리와 O 또는 S를 포함하는 2환 헤테로 고리가 축합된 모핵 구조의 특정 위치에 N이 2개 이상 포함되는 헤테로 고리가 결합함으로써, 이를 사용한 유기 발광 소자의 특성을 개선할 수 있다. 특히, 상기 화학식 1로 표시되는 화합물은 복수의 방향족 고리를 연결한 다환 방향족 코어를 사용함으로써 분자의 결합력(rigidity)를 증가시켜 전자와 정공에 대한 안정도가 높아지며 보다 좋은 발광 특성을 나타낼 수 있고, 이로 인해 양자 효율 및 수명을 개선할 수 있다.
상기 화학식 1에서, N이 2개 이상 포함되는 헤테로 고리가 결합되는 특정 위치에 따라, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 1-8 중 어느 하나로 표시될 수 있다:
[화학식 1-1]
Figure PCTKR2021006037-appb-img-000009
[화학식 1-2]
Figure PCTKR2021006037-appb-img-000010
[화학식 1-3]
Figure PCTKR2021006037-appb-img-000011
[화학식 1-4]
Figure PCTKR2021006037-appb-img-000012
[화학식 1-5]
Figure PCTKR2021006037-appb-img-000013
[화학식 1-6]
Figure PCTKR2021006037-appb-img-000014
[화학식 1-7]
Figure PCTKR2021006037-appb-img-000015
[화학식 1-8]
Figure PCTKR2021006037-appb-img-000016
상기 화학식 1-1 내지 1-8에서,
Z는 O 또는 S이고,
R 1, n1, n2, n3, L, X, Ar 1 및 Ar 2는 상기 화학식 1에서 정의한 바와 같다.
구체적으로, 상기 화학식 1에서, Y 중 하나는 O 또는 S이고, 나머지는 단일 결합이다.
구체적으로, 상기 화학식 1 및 화학식 1-1 내지 1-8에서, R 1은 각각 수소, 중수소, 할로겐, 또는 시아노이거나, 또는 치환 또는 비치환된 C 1-20 알킬, 또는 C 1-12 알킬, 또는 C 1-6 알킬이거나, 또는 치환 또는 비치환된 C 1-20 알콕시, 또는 C 1-12 알콕시, 또는 C 1-6 알콕시이거나, 또는 치환 또는 비치환된 C 2-20 알케닐, 또는 C 2-12 알케닐, 또는 C 2-6 알케닐이거나, 또는 치환 또는 비치환된 C 2-20 알키닐, 또는 C 2-12 알키닐, 또는 C 2-6 알키닐이거나, 또는 치환 또는 비치환된 C 3-30 사이클로알킬, 또는 C 3-25 사이클로알킬, 또는 C 3-20 사이클로알킬이거나, 또는 치환 또는 비치환된 C 6-30 아릴, 또는 C 6-28 아릴, 또는 C 6-25 아릴, 또는 C 6-20 아릴이거나 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 치환 또는 비치환된 C 3-30 헤테로아릴, 또는 C 5-28 헤테로아릴, 또는 C 5-25 헤테로아릴, 또는 C 6-20 헤테로아릴, 또는 C 12-18 헤테로아릴일 수 있다.
일예로, R 1은 각각 수소, 또는 중수소일 수 있다. 또한, R 1 모두가 수소일 수 있다.
구체적으로, 상기 화학식 1 및 화학식 1-1 내지 1-8에서, n1, n2, 및 n3은 각각 0 내지 2의 정수, 혹은 0 또는 1일 수 있다.
구체적으로, 상기 화학식 1 및 화학식 1-1 내지 1-8에서, L은 단일결합; 또는 치환 또는 비치환된 C 6-30 아릴렌, 또는C 6-28 아릴렌, 또는 C 6-25 아릴렌, 또는 C 6-20 아릴렌일 수 있다. 바람직하게는, L은 단일결합; 또는 페닐렌, 비페닐릴렌, 터페닐릴렌, 쿼터페닐릴렌, 또는 나프틸렌일 수 있다.
일예로, L은 단일결합; 또는 하기로 구성되는 군으로부터 선택되는 어느 하나로 표시되는 것일 수 있다.
Figure PCTKR2021006037-appb-img-000017
.
구체적으로, 상기 화학식 1 및 화학식 1-1 내지 1-8에서, X 중 둘은 N이고, 나머지는 CH이거나, 또는 X 모두가 N일 수 있다.
구체적으로, 상기 화학식 1 및 화학식 1-1 내지 1-8에서, Ar 1 및 Ar 2는 각각 치환 또는 비치환된 C 6-30 아릴, 또는 C 6-28 아릴, 또는 C 6-25 아릴, 또는 C 6-20 아릴이거나; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 치환 또는 비치환된 C 3-30 헤테로아릴, 또는 C 5-28 헤테로아릴, 또는 C 5-25 헤테로아릴, 또는 C 6-20 헤테로아릴, 또는 C 12-18 헤테로아릴일 수 있다.
좀더 구체적으로, Ar 1 및 Ar 2는 각각 페닐, 나프틸 치환된 페닐, 비페닐, 터페닐, 나프틸, 페닐 치환된 나프틸, 페난트릴, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 또는 페닐 치환된 카바졸릴일 수 있다.
특히, Ar 1 및 Ar 2 중 적어도 하나 이상은 페닐, 나프틸 치환된 페닐, 비페닐, 나프틸, 또는 페닐 치환된 나프틸일 수 있으며, 바람직하게는 페닐, 비페닐, 또는 나프틸일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다.
Figure PCTKR2021006037-appb-img-000018
Figure PCTKR2021006037-appb-img-000019
Figure PCTKR2021006037-appb-img-000020
Figure PCTKR2021006037-appb-img-000021
Figure PCTKR2021006037-appb-img-000022
Figure PCTKR2021006037-appb-img-000023
Figure PCTKR2021006037-appb-img-000024
Figure PCTKR2021006037-appb-img-000025
Figure PCTKR2021006037-appb-img-000026
Figure PCTKR2021006037-appb-img-000027
.
한편, 상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 합성예에서 보다 구체화될 수 있다.
[반응식 1]
Figure PCTKR2021006037-appb-img-000028
상기 반응식 1에서, Y, R 1, R 2, n1, 및 n2는 상기 화학식 1에서 정의한 바와 같으며, Q 1는 BO 2C 2(CH 3) 4, 또는 B(OH) 2이며, Q 2는 할로겐기이고, 바람직하게는 Cl, Br, 또는 I이고, 좀더 바람직하게는 Cl이다.
구체적으로, 상기 반응식 1은, 플루오란탄(fluoranthene) 고리와 O 또는 S를 포함하는 2환 헤테로 고리가 축합된 모핵 구조 중 특정 위치에 적어도 N이 2개 이상 포함되는 헤테로아릴 치환기를 도입하는 반응이다.
일예로, 상기 반응식 1은 Q 1가 피나콜보란(pinacolborane)기인 BO 2C 2(CH 3) 4, 또는 보론산(boronic acid)기인 B(OH) 2이며, 플루오란탄(fluoranthene) 고리와 O 또는 S를 포함하는 2환 헤테로 고리가 축합된 다환 고리 화합물과, 할로겐기인 Q 2를 포함하며, 적어도 N이 2개 이상 포함되는 헤테로 고리 화합물을, 염기(base) 존재 하에서 팔라듐 촉매(Pd catalyst)로 반응시키는 것으로 이뤄진다. 이러한 반응을 통해, 플루오란탄(fluoranthene) 고리와 O 또는 S를 포함하는 2환 헤테로 고리가 축합된 다환 고리 화합물 중 피나콜보론(inacolborone)기 BO 2C 2(CH 3) 4, 또는 B(OH) 2인 Q 1 위치에, 적어도 N이 2개 이상 포함되는 헤테로아릴 그룹을 도입하는 것이다. 바람직하게는, 상기 반응식 1에서 Q 1은 BO 2C 2(CH 3) 4이고, Q 2는 염소일 수 있다. 이러한 반응식 1의 구체적인 반응 조건은 이 분야에서 알려진 공지의 반응을 참조로 수행할 수 있다. 상기 제조 방법은 후술할 합성예에서 보다 구체화될 수 있다.
또한, 상기 염기 성분으로는 포타슘 카보네이트 (potassium carbonate, K 2CO 3), 소듐 바이카보네이트(sodium bicarbonate, NaHCO 3), 세슘 카보네이트(Cesium carbonate, Cs 2CO 3), 소듐 아세테이트(sodium acetate, NaOAc), 포타슘 아세테이트(potassium acetate, KOAc), 소듐 터트-부톡사이드(sodium tert-butoxide, NaOtBu), 소듐 에톡사이드(sodium ethoxide, NaOEt), 또는 트리에틸아민(triethylamine, Et 3N), N,N-디이소프로필에틸아민(N,N-diisopropylethylamine, EtN(iPr) 2) 등을 사용할 수 있다. 바람직하게는, 상기 염기 성분은 포타슘 카보네이트 (potassium carbonate, K 2CO 3), 세슘 카보네이트(Cesium carbonate, Cs 2CO 3), 포타슘 아세테이트(potassium acetate, KOAc), 소듐 터트-부톡사이드(sodium tert-butoxide, NaOtBu), 또는 N,N-디이소프로필에틸아민(N,N-diisopropylethylamine, EtN(iPr) 2)일 수 있다.
또한, 상기 팔라듐 촉매로는 비스(트리-(터트-부틸)포스핀)팔라듐 (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(P-tBu 3) 2), 테트라키스(트리페닐포스핀)팔라듐 (0) (tetrakis(triphenylphosphine)palladium (0), 트리스(디벤질리덴아세톤)디팔라듐 (0) (tris(dibenzylideneacetone)-dipalladium (0), Pd 2(dba) 3), 비스(디벤질리덴아세톤)팔라듐 (0) (bis(dibenzylideneacetone)palladium (0), Pd(dba) 2), Pd(PPh 3) 4) 또는 팔라듐(II)아세테이트(palladium(II) acetate, Pd(OAc) 2) 등을 사용할 수 있다. 바람직하게는, 상기 팔라듐 촉매는 비스(트리-(터트-부틸)포스핀)팔라듐 (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(P-tBu 3) 2), 테트라키스(트리페닐포스핀)팔라듐 (0) (tetrakis(triphenylphosphine)palladium (0), Pd(PPh 3) 4), 또는 비스(디벤질리덴아세톤)팔라듐 (0) (bis(dibenzylideneacetone)palladium (0), Pd(dba) 2)일 수 있다. 특히, 상기 반응식 1에서 비스(트리-(터트-부틸)포스핀)팔라듐 (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(P-tBu 3) 2)를 촉매로 사용할 수 있다.
본 명세서에서 당량(eq.)는 몰 당량을 의미한다.
한편, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자억제층을 포함할 수 잇고, 상기 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 발광층은 도펀트 화합물을 더 포함한다.
또한, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함한다.
일예로, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함하고, 화학식 1의 화합물과 도펀트를 100:1 내지 1:1의 함량비로 포함한다.
또한, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함하고, 화학식 1의 화합물과 도펀트를 100:1 내지 2:1의 함량비로 포함한다.
또한, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함하고, 화학식 1의 화합물과 도펀트를 100:1 내지 5:1의 함량비로 포함한다.
일예로, 상기 도펀트는 금속착체이다.
구체적으로, 상기 도펀트는 이리듐계 금속착체이다.
또한, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 도펀트를 포함하고, 상기 도펀트 물질은 하기 구조식들 중에서 선택된다.
Figure PCTKR2021006037-appb-img-000029
Figure PCTKR2021006037-appb-img-000030
Figure PCTKR2021006037-appb-img-000031
Figure PCTKR2021006037-appb-img-000032
.
상기 명시된 구조는 도판트 화합물로 이에 한정하는 것은 아니다.
또한, 상기 유기물 층은 정공저지층을 포함할 수 잇고, 상기 정공저지층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층 및 정공수송층을 포함하고, 상기 발광층또는 정공수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(6), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 및 전자 주입 및 수송층 중 1층 이상에 포함될 수 있다. 구체적으로, 상기 화학식 1로 표시되는 화합물은 상기 발광층 또는 정공수송층에 포함될 수 있으며, 예컨대, 발광층의 호스트 재료로 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 전자억제층, 발광층, 정공저지층, 전자 수송층, 및 전자주입층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 특히, 상기 화학식 1로 표시되는 화합물은 용액 도포법에 사용되는 용매에 대한 용해도가 우수하여, 용액 도포법을 적용하기 용이하다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이에, 본 발명은 상기 화학식 1로 표시되는 화합물 및 용매를 포함하는 코팅 조성물을 제공한다.
상기 용매는 본 발명에 따른 화합물을 용해 또는 분산시킬 수 있는 용매이면 특별히 제한되지 않으며, 일례로 클로로포름, 염화메틸렌, 1,2-디클로로에탄, 1,1,2-트리클로로에탄, 클로로벤젠, o-디클로로벤젠 등의 염소계 용매; 테트라하이드로퓨란, 디옥산 등의 에테르계 용매; 톨루엔, 크실렌, 트리메틸벤젠, 메시틸렌 등의 방향족 탄화수소계 용매; 시클로헥산, 메틸시클로헥산, n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸 등의 지방족 탄화수소계 용매; 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매; 아세트산에틸, 아세트산부틸, 에틸셀로솔브아세테이트 등의 에스테르계 용매; 에틸렌글리콜, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디메톡시에탄, 프로필렌글리콜, 디에톡시메탄, 트리에틸렌글리콜모노에틸에테르, 글리세린, 1,2-헥산디올 등의 다가 알코올 및 그의 유도체; 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올 등의 알코올계 용매; 디메틸술폭사이드 등의 술폭사이드계 용매; 및 N-메틸-2-피롤리돈, N,N-디메틸포름아미드 등의 아미드계 용매; 부틸벤조에이트, 메틸-2-메톡시벤조에이트 등의 벤조에이트계 용매; 테트랄린; 3-phenoxy-toluene 등의 용매를 들 수 있다. 또한, 상술한 용매를 1종 단독으로 사용하거나 2종 이상의 용매를 혼합하여 사용할 수 있다.
또한, 상기 코팅 조성물의 점도는 1 cP 내지 10 cP가 바람직하며, 상기의 범위에서 코팅이 용이하다. 또한, 상기 코팅 조성물 내 본 발명에 따른 화합물의 농도는 0.1 wt/v% 내지 20 wt/v%인 것이 바람직하다.
또한, 본 발명은 상술한 코팅 조성물을 사용하여 기능층을 형성하는 방법을 제공한다. 구체적으로, 상술한 본 발명에 따른 코팅 조성물을 용액 공정으로 코팅하는 단계; 및 상기 코팅된 코팅 조성물을 열처리하는 단계를 포함한다.
상기 열처리 단계에서 열처리 온도는 150 ℃ 내지 230 ℃가 바람직하다. 또한, 상기 열처리 시간은 1 분 내지 3 시간이고, 보다 바람직하게는 10 분 내지 1 시간이다. 또한, 상기 열처리는 아르곤, 질소 등의 불활성 기체 분위기에서 수행하는 것이 바람직하다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq 3); 카바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 호스트 재료로서 본 발명에 따른 화합물을 사용한다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 도펀트 재료로서 이리듐계 금속 착제를 사용한다.
상기 발광층은 적색 발광층일 수 있으며, 본 발명에 따른 화합물을 호스트 재료로 사용할 경우, 전자와 정공에 대한 안정도가 높아지며, 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄지면서, 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 향상시킬 수 있다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 음극(cathode) 물질과 함께 사용할 수 있다. 특히, 적절한 음극(cathode) 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예 1. 중간체 화합물 AA의 제조
Figure PCTKR2021006037-appb-img-000033
질소 분위기에서 화합물 subA (20 g, 91.6 mmol), N-bromosuccinimide (NBS, 17.1 g, 96.2 mmol)을 chloroform(CHCl 3) 400 mL에 넣고 상온에서 교반하였다. 6 시간 반응 후, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subA-1를 20.3 g 제조하였다. (수율 75%, MS: [M+H] += 297).
질소 분위기에서 화합물 subA-1 (10 g, 33.7 mmol)와 화합물 sub1 (6.5 g, 37 mmol)를 테트라하이드로퓨란(THF) 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K 2CO 3, 14 g, 101 mmol)를 물 42 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) [Pd(P-tBu 3) 2] (0.2 g, 0.3 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA_P1를 7.8 g 제조하였다. (수율 67%, MS: [M+H] += 347).
질소 분위기에서 화합물 AA_P1 (10 g, 28.8 mmol)와 potassium carbonate(12 g, 86.5 mmol)를 N,N-Dimethylacetamide (DMAc) 200 mL에 넣고 교반 및 환류하였다. 9 시간 반응 후 상온으로 식히고 유기용매를 감압 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA_P2를 7 g 제조하였다. (수율 74%, MS: [M+H] += 327).
질소 분위기에서 화합물 AA_P2 (15 g, 45.9 mmol)와 bis(pinacolato)diboron (12.8 g, 50.5 mmol)를 1,4-dioxane 300 mL에 환류시키며 교반하였다. 이 후 potassium acetate (KOAc, 6.8 g, 68.9 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium (0) [Pd(dba) 2] (0.8 g, 1.4 mmol) 및 tricyclohexylphosphine (PCy 3, 0.8 g, 2.8 mmol)을 투입하였다. 10 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA를 12.9 g 제조하였다. (수율 67%, MS: [M+H] += 419).
제조예 2. 중간체 화합물 AB의 제조
Figure PCTKR2021006037-appb-img-000034
상기 제조예 1에서 출발 물질로 화합물 sub1 대신 화합물 sub2를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AB를 12.7 g 제조하였다. (수율 66%, MS: [M+H] += 419).
제조예 3. 중간체 화합물 AC의 제조
Figure PCTKR2021006037-appb-img-000035
상기 제조예 1에서 출발 물질로 화합물 sub1 대신 화합물 sub3를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AC를 13.2 g 제조하였다. (수율 69%, MS: [M+H] += 419).
제조예 4. 중간체 화합물 AD의 제조
Figure PCTKR2021006037-appb-img-000036
상기 제조예 1에서 출발 물질로 화합물 sub1 대신 화합물 sub4를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 AD를 13.6 g 제조하였다. (수율 71%, MS: [M+H] += 419).
제조예 5. 중간체 화합물 BA의 제조
Figure PCTKR2021006037-appb-img-000037
질소 분위기에서 화합물 subB (10 g, 35.6 mmol)와 화합물 sub5 (7.9 g, 39.1 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.7 g, 106.7 mmol)를 물 44 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 BA_P1를 10.1 g 제조하였다. (수율 79%, MS: [M+H] += 359).
질소 분위기에서 화합물 BA_P1 (10 g, 27.9 mmol)와 Hydrogen peroxide (H 2O 2,1 g, 30.7 mmol)를 아세트산(AcOH) 200 mL에 넣고 교반 및 환류하였다. 3 시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과하였다. 여과한 고체를 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 BA_P2를 7.6 g 제조하였다. (수율 73%, MS: [M+H] += 375).
질소 분위기에서 화합물 BA_P2 (10 g, 26.7 mmol)를 H 2SO 4 200 mL에 넣고 교반하였다. 2 시간 후 반응이 종료되면 반응물을 물에 부어서 결정을 떨어트리고 여과하였다. 여과한 고체를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 BA_P3를 6.1 g 제조하였다. (수율 67%, MS: [M+H] += 343).
질소 분위기에서 화합물 BA_P3 (15 g, 43.8 mmol)와 bis(pinacolato)diboron (12.2 g, 48.1 mmol)를 1,4-dioxane 300 mL에 환류시키며 교반하였다. 이 후 potassium acetate (6.4 g, 65.6 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (0.8 g, 1.3 mmol) 및 tricyclohexylphosphine (0.7 g, 2.6 mmol)을 투입하였다. 10 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 BA를 15.2 g 제조하였다. (수율 80%, MS: [M+H] += 435).
제조예 6. 중간체 화합물 BB의 제조
Figure PCTKR2021006037-appb-img-000038
상기 제조예 5에서 출발 물질로 화합물 sub5 대신 화합물 sub6를 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 BB를 12.9 g 제조하였다. (수율 68%, MS: [M+H] += 435).
제조예 7. 중간체 화합물 BC의 제조
Figure PCTKR2021006037-appb-img-000039
상기 제조예 5에서 출발 물질로 화합물 sub5 대신 화합물 sub7를 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 BC를 13.9 g 제조하였다. (수율 73%, MS: [M+H] += 435).
제조예 8. 중간체 화합물 BD의 제조
Figure PCTKR2021006037-appb-img-000040
상기 제조예 5에서 출발 물질로 화합물 sub5 대신 화합물 sub8를 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 BD를 14.2 g 제조하였다. (수율 75%, MS: [M+H] += 435).
제조예 9. 중간체 화합물 C의 제조
Figure PCTKR2021006037-appb-img-000041
상기 제조예 1에서 출발 물질로 화합물 subA 대신 화합물 subC를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 CA를 13.8 g 제조하였다. (수율 72%, MS: [M+H] += 419).
제조예 10. 중간체 화합물 CB의 제조
Figure PCTKR2021006037-appb-img-000042
상기 제조예 1에서 출발 물질로 화합물 subA 대신 화합물 subC를 사용하고, sub1대신 sub2를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 CB를 13.6 g 제조하였다. (수율 71%, MS: [M+H] += 419).
제조예 11. 중간체 화합물 CC의 제조
Figure PCTKR2021006037-appb-img-000043
상기 제조예 1에서 출발 물질로 화합물 subA 대신 화합물 subC를 사용하고, sub1대신 sub3를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 CC를 13.6 g 제조하였다. (수율 71%, MS: [M+H] += 419).
제조예 12. 중간체 화합물 CD의 제조
Figure PCTKR2021006037-appb-img-000044
상기 제조예 1에서 출발 물질로 화합물 subA 대신 화합물 subC를 사용하고, sub1대신 sub4를 사용한 것을 제외하고는, 제조예 1과 동일한 방법을 사용하여 화합물 CD를 13.6 g 제조하였다. (수율 71%, MS: [M+H] += 419).
제조예 13. 중간체 화합물 DA의 제조
Figure PCTKR2021006037-appb-img-000045
상기 제조예 5에서 출발 물질로 화합물 subB 대신 화합물 subD를 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 DA를 12.9 g 제조하였다. (수율 68%, MS: [M+H] += 435).
제조예 14. 중간체 화합물 DB의 제조
Figure PCTKR2021006037-appb-img-000046
상기 제조예 5에서 출발 물질로 화합물 subB 대신 화합물 subD를 사용하고, sub5 대신 화합물 sub6을 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 DB를 14.1 g 제조하였다. (수율 74%, MS: [M+H] += 435).
제조예 15. 중간체 화합물 DC의 제조
Figure PCTKR2021006037-appb-img-000047
상기 제조예 5에서 출발 물질로 화합물 subB 대신 화합물 subD를 사용하고, sub5 대신 화합물 sub7을 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 DC를 14.4 g 제조하였다. (수율 76%, MS: [M+H] += 435).
제조예 16. 중간체 화합물 DD의 제조
Figure PCTKR2021006037-appb-img-000048
상기 제조예 5에서 출발 물질로 화합물 subB 대신 화합물 subD를 사용하고, sub5 대신 화합물 sub8을 사용한 것을 제외하고는, 제조예 5와 동일한 방법을 사용하여 화합물 DD를 13.3 g 제조하였다. (수율 70%, MS: [M+H] += 435).
합성예 1. 화합물 1의 합성
Figure PCTKR2021006037-appb-img-000049
질소 분위기에서 화합물 AA (10 g, 23.9 mmol)와 화합물 Trz1 (8.4 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1을 11.2 g 제조하였다. (수율 78%, MS: [M+H] += 600).
합성예 2. 화합물 2의 합성
Figure PCTKR2021006037-appb-img-000050
질소 분위기에서 화합물 AA (10 g, 23.9 mmol)와 화합물 Trz2 (9.1 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2를 9.8 g 제조하였다. (수율 65%, MS: [M+H] += 630).
합성예 3. 화합물 3의 합성
Figure PCTKR2021006037-appb-img-000051
질소 분위기에서 화합물 AA (10 g, 23.9 mmol)와 화합물 Trz3 (9.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3을 11.6 g 제조하였다. (수율 75%, MS: [M+H] += 650).
합성예 4. 화합물 4의 합성
Figure PCTKR2021006037-appb-img-000052
질소 분위기에서 화합물 AA (10 g, 23.9 mmol)와 화합물 Trz4 (12.1 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4를 14 g 제조하였다. (수율 78%, MS: [M+H] += 752).
합성예 5. 화합물 5의 합성
Figure PCTKR2021006037-appb-img-000053
질소 분위기에서 화합물 AB (10 g, 23.9 mmol)와 화합물 Trz5 (7.7 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5를 10.3 g 제조하였다. (수율 75%, MS: [M+H] += 574).
합성예 6. 화합물 6의 합성
Figure PCTKR2021006037-appb-img-000054
질소 분위기에서 화합물 AB (10 g, 23.9 mmol)와 화합물 Trz6 (10.2 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6을 11.9 g 제조하였다. (수율 74%, MS: [M+H] += 676).
합성예 7. 화합물 7의 합성
Figure PCTKR2021006037-appb-img-000055
질소 분위기에서 화합물 AB (10 g, 23.9 mmol)와 화합물 Trz7 (10.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7을 11.2 g 제조하였다. (수율 68%, MS: [M+H] += 690).
합성예 8. 화합물 8의 합성
Figure PCTKR2021006037-appb-img-000056
질소 분위기에서 화합물 AC (10 g, 23.9 mmol)와 화합물 Trz8 (9.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8을 11.3 g 제조하였다. (수율 73%, MS: [M+H] += 650).
합성예 9. 화합물 9의 합성
Figure PCTKR2021006037-appb-img-000057
질소 분위기에서 화합물 AC (10 g, 23.9 mmol)와 화합물 Trz9 (8.4 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 11 g 제조하였다. (수율 77%, MS: [M+H] += 600).
합성예 10. 화합물 10의 합성
Figure PCTKR2021006037-appb-img-000058
질소 분위기에서 화합물 AC (10 g, 23.9 mmol)와 화합물 Trz10 (11 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10을 12.3 g 제조하였다. (수율 73%, MS: [M+H] += 706).
합성예 11. 화합물 11의 합성
Figure PCTKR2021006037-appb-img-000059
질소 분위기에서 화합물 AC (10 g, 23.9 mmol)와 화합물 Trz11 (8.7 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11을 11.1 g 제조하였다. (수율 76%, MS: [M+H] += 613).
합성예 12. 화합물 12의 합성
Figure PCTKR2021006037-appb-img-000060
질소 분위기에서 화합물 AD (10 g, 23.9 mmol)와 화합물 Trz12 (9.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 9.8 g 제조하였다. (수율 63%, MS: [M+H] += 650).
합성예 13. 화합물 13의 합성
Figure PCTKR2021006037-appb-img-000061
질소 분위기에서 화합물 AD (10 g, 23.9 mmol)와 화합물 Trz13 (9.1 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13을 10.2 g 제조하였다. (수율 68%, MS: [M+H] += 630).
합성예 14. 화합물 14의 합성
Figure PCTKR2021006037-appb-img-000062
질소 분위기에서 화합물 BA (10 g, 23 mmol)와 화합물 Trz14 (8.4 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 10.3 g 제조하였다. (수율 71%, MS: [M+H] += 630).
합성예 15. 화합물 15의 합성
Figure PCTKR2021006037-appb-img-000063
질소 분위기에서 화합물 BA (10 g, 23 mmol)와 화합물 Trz15 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 9.2 g 제조하였다. (수율 60%, MS: [M+H] += 666).
합성예 16. 화합물 16의 합성
Figure PCTKR2021006037-appb-img-000064
질소 분위기에서 화합물 BA (10 g, 23 mmol)와 화합물 Trz16 (8.6 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16을 9.9 g 제조하였다. (수율 67%, MS: [M+H] += 640).
합성예 17. 화합물 17의 합성
Figure PCTKR2021006037-appb-img-000065
질소 분위기에서 화합물 BA (10 g, 23 mmol)와 화합물 Trz17 (6.3 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17을 9.8 g 제조하였다. (수율 79%, MS: [M+H] += 540).
합성예 18. 화합물 18의 합성
Figure PCTKR2021006037-appb-img-000066
질소 분위기에서 화합물 BB (10 g, 23 mmol)와 화합물 Trz18 (9.9 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18을 11.5 g 제조하였다. (수율 72%, MS: [M+H] += 692).
합성예 19. 화합물 19의 합성
Figure PCTKR2021006037-appb-img-000067
질소 분위기에서 화합물 BB (10 g, 23 mmol)와 화합물 Trz19 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 11 g 제조하였다. (수율 72%, MS: [M+H] += 666).
합성예 20. 화합물 20의 합성
Figure PCTKR2021006037-appb-img-000068
질소 분위기에서 화합물 BB (10 g, 23 mmol)와 화합물 Trz20 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20을 10.3 g 제조하였다. (수율 67%, MS: [M+H] += 666).
합성예 21. 화합물 21의 합성
Figure PCTKR2021006037-appb-img-000069
질소 분위기에서 화합물 BC (10 g, 23 mmol)와 화합물 Trz3 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21을 9.5 g 제조하였다. (수율 62%, MS: [M+H] += 666).
합성예 22. 화합물 22의 합성
Figure PCTKR2021006037-appb-img-000070
질소 분위기에서 화합물 BC (10 g, 23 mmol)와 화합물 Trz11 (8.4 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 9.4 g 제조하였다. (수율 65%, MS: [M+H] += 629).
합성예 23. 화합물 23의 합성
Figure PCTKR2021006037-appb-img-000071
질소 분위기에서 화합물 BD (10 g, 23 mmol)와 화합물 Trz12 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23을 11.6 g 제조하였다. (수율 76%, MS: [M+H] += 666).
합성예 24. 화합물 24의 합성
Figure PCTKR2021006037-appb-img-000072
질소 분위기에서 화합물 BD (10 g, 23 mmol)와 화합물 Trz21 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 24를 11.6 g 제조하였다. (수율 76%, MS: [M+H] += 666).
합성예 25. 화합물 25의 합성
Figure PCTKR2021006037-appb-img-000073
질소 분위기에서 화합물 BD (10 g, 23 mmol)와 화합물 Trz22 (8.1 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 25를 9.6 g 제조하였다. (수율 68%, MS: [M+H] += 616).
합성예 26. 화합물 26의 합성
Figure PCTKR2021006037-appb-img-000074
질소 분위기에서 화합물 BD (10 g, 23 mmol)와 화합물 Trz23 (10.4 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 26을 12.3 g 제조하였다. (수율 75%, MS: [M+H] += 716).
합성예 27. 화합물 27의 합성
Figure PCTKR2021006037-appb-img-000075
질소 분위기에서 화합물 CA (10 g, 23.9 mmol)와 화합물 Trz24 (10.8 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 27을 13.2 g 제조하였다. (수율 79%, MS: [M+H] += 700).
합성예 28. 화합물 28의 합성
Figure PCTKR2021006037-appb-img-000076
질소 분위기에서 화합물 CA (10 g, 23.9 mmol)와 화합물 Trz25 (9.1 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28을 10.7 g 제조하였다. (수율 71%, MS: [M+H] += 630).
합성예 29. 화합물 29의 합성
Figure PCTKR2021006037-appb-img-000077
질소 분위기에서 화합물 CB (10 g, 23.9 mmol)와 화합물 Trz8 (9.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 11 g 제조하였다. (수율 71%, MS: [M+H] += 650).
합성예 30. 화합물 30의 합성
Figure PCTKR2021006037-appb-img-000078
질소 분위기에서 화합물 CB (10 g, 23.9 mmol)와 화합물 Trz11 (8.7 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30을 9.7 g 제조하였다. (수율 66%, MS: [M+H] += 613).
합성예 31. 화합물 31의 합성
Figure PCTKR2021006037-appb-img-000079
질소 분위기에서 화합물 CB (10 g, 23.9 mmol)와 화합물 Trz26 (9.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31을 11.3 g 제조하였다. (수율 73%, MS: [M+H] += 650).
합성예 32. 화합물 32의 합성
Figure PCTKR2021006037-appb-img-000080
질소 분위기에서 화합물 CB (10 g, 23.9 mmol)와 화합물 Trz27 (12.4 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 13.5 g 제조하였다. (수율 74%, MS: [M+H] += 765).
합성예 33. 화합물 33의 합성
Figure PCTKR2021006037-appb-img-000081
질소 분위기에서 화합물 CC (10 g, 23.9 mmol)와 화합물 Trz17 (6.5 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33을 9.8 g 제조하였다. (수율 78%, MS: [M+H] += 524).
합성예 34. 화합물 34의 합성
Figure PCTKR2021006037-appb-img-000082
질소 분위기에서 화합물 CC (10 g, 23.9 mmol)와 화합물 Trz28 (8.7 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 10 g 제조하였다. (수율 68%, MS: [M+H] += 614).
합성예 35. 화합물 35의 합성
Figure PCTKR2021006037-appb-img-000083
질소 분위기에서 화합물 CD (10 g, 23.9 mmol)와 화합물 Trz14 (8.7 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 10 g 제조하였다. (수율 68%, MS: [M+H] += 614).
합성예 36. 화합물 36의 합성
Figure PCTKR2021006037-appb-img-000084
질소 분위기에서 화합물 CD (10 g, 23.9 mmol)와 화합물 Trz29 (9 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36을 11 g 제조하였다. (수율 74%, MS: [M+H] += 624).
합성예 37. 화합물 37의 합성
Figure PCTKR2021006037-appb-img-000085
질소 분위기에서 화합물 CD (10 g, 23.9 mmol)와 화합물 Trz30 (9.6 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 37을 11.5 g 제조하였다. (수율 74%, MS: [M+H] += 650).
합성예 38. 화합물 38의 합성
Figure PCTKR2021006037-appb-img-000086
질소 분위기에서 화합물 CD (10 g, 23.9 mmol)와 화합물 Trz17 (6.5 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 38을 10 g 제조하였다. (수율 80%, MS: [M+H] += 524).
합성예 39. 화합물 39의 합성
Figure PCTKR2021006037-appb-img-000087
질소 분위기에서 화합물 CD (10 g, 23.9 mmol)와 화합물 Trz31 (8.4 g, 24.4 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.9 g, 71.7 mmol)를 물 30 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 39를 10 g 제조하였다. (수율 70%, MS: [M+H] += 600).
합성예 40. 화합물 40의 합성
Figure PCTKR2021006037-appb-img-000088
질소 분위기에서 화합물 DA (10 g, 23 mmol)와 화합물 Trz21 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40을 11.2 g 제조하였다. (수율 73%, MS: [M+H] += 666).
합성예 41. 화합물 41의 합성
Figure PCTKR2021006037-appb-img-000089
질소 분위기에서 화합물 DA (10 g, 23 mmol)와 화합물 Trz30 (9.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41을 9.2 g 제조하였다. (수율 60%, MS: [M+H] += 666).
합성예 42. 화합물 42의 합성
Figure PCTKR2021006037-appb-img-000090
질소 분위기에서 화합물 DA (10 g, 23 mmol)와 화합물 Trz5 (7.5 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 42를 10.9 g 제조하였다. (수율 80%, MS: [M+H] += 590).
합성예 43. 화합물 43의 합성
Figure PCTKR2021006037-appb-img-000091
질소 분위기에서 화합물 DB (10 g, 23 mmol)와 화합물 Trz32 (10.4 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 43을 12 g 제조하였다. (수율 73%, MS: [M+H] += 716).
합성예 44. 화합물 44의 합성
Figure PCTKR2021006037-appb-img-000092
질소 분위기에서 화합물 DB (10 g, 23 mmol)와 화합물 Trz33 (9.9 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 44를 12.4 g 제조하였다. (수율 78%, MS: [M+H] += 692).
합성예 45. 화합물 45의 합성
Figure PCTKR2021006037-appb-img-000093
질소 분위기에서 화합물 DB (10 g, 23 mmol)와 화합물 Trz34 (11 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 45를 11.6 g 제조하였다. (수율 68%, MS: [M+H] += 742).
합성예 46. 화합물 46의 합성
Figure PCTKR2021006037-appb-img-000094
질소 분위기에서 화합물 DB (10 g, 23 mmol)와 화합물 Trz1 (8.1 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 46을 11 g 제조하였다. (수율 78%, MS: [M+H] += 616).
합성예 47. 화합물 47의 합성
Figure PCTKR2021006037-appb-img-000095
질소 분위기에서 화합물 DC (10 g, 23 mmol)와 화합물 Trz35 (10.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 47을 12 g 제조하였다. (수율 74%, MS: [M+H] += 705).
합성예 48. 화합물 48의 합성
Figure PCTKR2021006037-appb-img-000096
질소 분위기에서 화합물 DC (10 g, 23 mmol)와 화합물 Trz36 (10.2 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 48을 12.3 g 제조하였다. (수율 76%, MS: [M+H] += 705).
합성예 49. 화합물 49의 합성
Figure PCTKR2021006037-appb-img-000097
질소 분위기에서 화합물 DC (10 g, 23 mmol)와 화합물 Trz28 (8.4 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 49를 11.4 g 제조하였다. (수율 79%, MS: [M+H] += 630).
합성예 50. 화합물 50의 합성
Figure PCTKR2021006037-appb-img-000098
질소 분위기에서 화합물 DD (10 g, 23 mmol)와 화합물 Trz22 (8.1 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 50을 10.9 g 제조하였다. (수율 77%, MS: [M+H] += 616).
합성예 51. 화합물 51의 합성
Figure PCTKR2021006037-appb-img-000099
질소 분위기에서 화합물 DD (10 g, 23 mmol)와 화합물 Trz14 (8.4 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 51을 10 g 제조하였다. (수율 69%, MS: [M+H] += 630).
합성예 52. 화합물 52의 합성
Figure PCTKR2021006037-appb-img-000100
질소 분위기에서 화합물 DD (10 g, 23 mmol)와 화합물 Trz29 (8.6 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 52를 10.6 g 제조하였다. (수율 72%, MS: [M+H] += 640).
합성예 53. 화합물 53의 합성
Figure PCTKR2021006037-appb-img-000101
질소 분위기에서 화합물 DD (10 g, 23 mmol)와 화합물 Trz5 (7.5 g, 23.5 mmol)를 THF 200 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.5 g, 69.1 mmol)를 물 29 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 53을 9.6 g 제조하였다. (수율 71%, MS: [M+H] += 590).
실시예 1
ITO(indium tin oxide)가 1,000 옹스트롬(Å, angstrom)의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30 분 동안 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분 동안 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분 동안 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로, 하기 화합물 HI-1을 1150 Å의 두께로 열 진공 증착하여 정공주입층을 형성하되, 하기 화합물 A-1을 1.5% 농도로 p-doping 하였다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 화합물 EB-1을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 EB-1 증착막 위에 하기 화합물 1과 하기 화합물 Dp-7을 98:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ을 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1,000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2021006037-appb-img-000102
.
상기의 과정에서 유기물의 증착속도는 0.4 Å/sec 내지 0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10 -7 내지 5x10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 2 내지 53
실시예 1의 유기 발광 소자에서 화합물 1 대신에, 하기 표 1에 기재된 화합물 2 내지 53을 각각 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
Figure PCTKR2021006037-appb-img-000103
Figure PCTKR2021006037-appb-img-000104
Figure PCTKR2021006037-appb-img-000105
Figure PCTKR2021006037-appb-img-000106
.
비교예 1 내지 13
실시예 1의 유기 발광 소자에서 화합물 1 대신에, 하기 표 1에 기재된 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 C-1 내지 C-13의 화합물은 아래와 같다.
Figure PCTKR2021006037-appb-img-000107
.
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm 2)하고 그 결과를 하기 표 1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 물질 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실시예 1 화합물 1 3.91 17.6 138 적색
실시예 2 화합물 2 3.98 17.0 114 적색
실시예 3 화합물 3 3.93 17.3 121 적색
실시예 4 화합물 4 3.97 17.1 108 적색
실시예 5 화합물 5 3.95 17.3 111 적색
실시예 6 화합물 6 3.94 17.5 124 적색
실시예 7 화합물 7 3.91 18.1 132 적색
실시예 8 화합물 8 4.06 17.3 110 적색
실시예 9 화합물 9 4.03 17.1 116 적색
실시예 10 화합물 10 4.07 17.0 103 적색
실시예 11 화합물 11 4.08 17.6 108 적색
실시예 12 화합물 12 3.93 18.4 147 적색
실시예 13 화합물 13 3.99 17.9 115 적색
실시예 14 화합물 14 4.03 18.1 124 적색
실시예 15 화합물 15 4.01 18.0 128 적색
실시예 16 화합물 16 4.02 17.8 125 적색
실시예 17 화합물 17 4.05 17.5 120 적색
실시예 18 화합물 18 4.08 17.8 106 적색
실시예 19 화합물 19 4.11 17.3 112 적색
실시예 20 화합물 20 4.13 17.6 103 적색
실시예 21 화합물 21 4.12 17.2 104 적색
실시예 22 화합물 22 4.16 17.9 108 적색
실시예 23 화합물 23 4.03 18.3 135 적색
실시예 24 화합물 24 3.97 18.8 142 적색
실시예 25 화합물 25 4.01 17.9 117 적색
실시예 26 화합물 26 4.04 17.3 104 적색
실시예 27 화합물 27 3.85 18.6 145 적색
실시예 28 화합물 28 3.89 18.0 121 적색
실시예 29 화합물 29 3.94 18.8 124 적색
실시예 30 화합물 30 3.91 19.3 129 적색
실시예 31 화합물 31 3.96 18.2 117 적색
실시예 32 화합물 32 3.98 18.0 108 적색
실시예 33 화합물 33 4.01 17.8 103 적색
실시예 34 화합물 34 4.03 17.5 109 적색
실시예 35 화합물 35 3.73 19.7 154 적색
실시예 36 화합물 36 3.79 19.2 142 적색
실시예 37 화합물 37 3.83 18.8 137 적색
실시예 38 화합물 38 3.77 19.4 140 적색
실시예 39 화합물 39 3.70 19.8 162 적색
실시예 40 화합물 40 3.81 18.9 153 적색
실시예 41 화합물 41 3.89 18.1 124 적색
실시예 42 화합물 42 3.83 18.5 131 적색
실시예 43 화합물 43 3.91 18.4 117 적색
실시예 44 화합물 44 3.90 18.6 122 적색
실시예 45 화합물 45 3.95 17.9 108 적색
실시예 46 화합물 46 3.93 18.0 115 적색
실시예 47 화합물 47 4.01 18.1 124 적색
실시예 48 화합물 48 4.07 17.2 121 적색
실시예 49 화합물 49 4.04 17.5 120 적색
실시예 50 화합물 50 3.78 18.8 132 적색
실시예 51 화합물 51 3.69 19.5 153 적색
실시예 52 화합물 52 3.72 19.1 144 적색
실시예 53 화합물 53 3.71 19.0 141 적색
비교예 1 C-1 4.20 14.9 84 적색
비교예 2 C-2 4.25 13.6 72 적색
비교예 3 C-3 4.26 13.6 81 적색
비교예 4 C-4 4.28 14.6 73 적색
비교예 5 C-5 4.21 15.0 92 적색
비교예 6 C-6 4.62 6.2 19 적색
비교예 7 C-7 4.67 5.5 16 적색
비교예 8 C-8 4.41 8.7 41 적색
비교예 9 C-9 3.38 9.6 57 적색
비교예 10 C-10 4.71 4.5 8 적색
비교예 11 C-11 4.64 6.0 34 적색
비교예 12 C-12 4.23 15.6 94 적색
비교예 13 C-13 4.29 14.8 86 적색
실시예 1 내지 53 및 비교예 1 내지 13에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 실시예 1의 적색 유기 발광 소자는 상술한 바와 같이 종래 널리 사용되고 있는 물질을 사용하였으며, 전자억제층으로 화합물 EB-1, 적색 발광층으로 화합물 1과 화합물 Dp-7을 사용하는 구조이다. 또한, 비교예 1 내지 13은 상기 화합물 1 대신에 화합물 C-1 내지 C-13을 사용하여 유기 발광 소자를 제조하였다.
상기 표 1에 나타난 바와 같이, 본 발명에 따라 화학식 1로 표시되는 화합물, 즉, 플루오란탄(fluoranthene) 고리와 O 또는 S를 포함하는 2환 헤테로 고리가 축합된 모핵 구조의 특정 위치에 N이 2개 이상 포함되는 헤테로아릴 치환기가 포함되는 특정 다환 구조의 화합물을 발광층에 사용한 실시예 1 내지 22의 유기 발광 소자는, 상기 C-1 내지 C-13의 화합물을 사용하여 제조한 비교예 1 내지 13의 유기 발광 소자에 비해 구동 전압이 크게 낮아졌으며, 효율 측면에도 크게 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한, 실시예 1 내지 53의 유기 발광 소자는 높은 효율을 유지하면서도 수명 특성을 크게 개선시킬 수 있는 것을 알 수 있었다. 이는 결국 비교예의 화합물보다 본 발명에 따른 실시예의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다. 결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때, 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 정공저지층
9: 전자주입 및 수송층

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2021006037-appb-img-000108
    상기 화학식 1에서,
    Y는 각각 독립적으로 단일 결합이거나, O 또는 S이고, 단 Y 중 적어도 하나는 O 또는 S이고,
    R 1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 1-60 알콕시; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 2-60 알키닐; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    n1 및 n2는 0 내지 4의 정수이고,
    n3은 0 내지 3의 정수이고,
    R 2는 하기 화학식 2로 표시되는 것이고,
    [화학식 2]
    Figure PCTKR2021006037-appb-img-000109
    상기 화학식 2에서,
    L은 단일결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
    X는 N, 또는 CH이고, 단 X 중 적어도 2개 이상이 N이고,
    Ar 1 및 Ar 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이다.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은, 하기 화학식 1-1 내지 1-8 중 어느 하나로 표시되는 것 중 하나인,
    화합물:
    [화학식 1-1]
    Figure PCTKR2021006037-appb-img-000110
    [화학식 1-2]
    Figure PCTKR2021006037-appb-img-000111
    [화학식 1-3]
    Figure PCTKR2021006037-appb-img-000112
    [화학식 1-4]
    Figure PCTKR2021006037-appb-img-000113
    [화학식 1-5]
    Figure PCTKR2021006037-appb-img-000114
    [화학식 1-6]
    Figure PCTKR2021006037-appb-img-000115
    [화학식 1-7]
    Figure PCTKR2021006037-appb-img-000116
    [화학식 1-8]
    Figure PCTKR2021006037-appb-img-000117
    상기 화학식 1-1 내지 1-8에서,
    Z는 O 또는 S이고,
    R 1, n1, n2, n3, L, X, Ar 1 및 Ar 2는 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    R 1은 각각 수소, 또는 중수소인,
    화합물.
  4. 제1항에 있어서,
    L은 단일결합; 또는 페닐렌, 비페닐릴렌, 터페닐릴렌, 쿼터페닐릴렌, 또는 나프틸렌인,
    화합물.
  5. 제1항에 있어서,
    L은 단일결합; 또는 하기로 구성되는 군으로부터 선택되는 어느 하나로 표시되는 것인,
    화합물:
    Figure PCTKR2021006037-appb-img-000118
    .
  6. 제1항에 있어서,
    X가 모두 N인,
    화합물.
  7. 제1항에 있어서,
    Ar 1 및 Ar 2는 각각 치환 또는 비치환된 C 6-30 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 치환 또는 비치환된 C 5-30 헤테로아릴인,
    화합물.
  8. 제1항에 있어서,
    Ar 1 및 Ar 2는 각각 페닐, 나프틸 치환된 페닐, 비페닐, 터페닐, 나프틸, 페닐 치환된 나프틸, 페난트릴, 디벤조퓨라닐, 디벤조티오페닐, 카바졸릴, 또는 페닐 치환된 카바졸릴인,
    화합물.
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2021006037-appb-img-000119
    Figure PCTKR2021006037-appb-img-000120
    Figure PCTKR2021006037-appb-img-000121
    Figure PCTKR2021006037-appb-img-000122
    Figure PCTKR2021006037-appb-img-000123
    Figure PCTKR2021006037-appb-img-000124
    Figure PCTKR2021006037-appb-img-000125
    Figure PCTKR2021006037-appb-img-000126
    Figure PCTKR2021006037-appb-img-000127
    Figure PCTKR2021006037-appb-img-000128
    .
  10. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제9항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  11. 제10항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인,
    유기 발광 소자.
PCT/KR2021/006037 2020-05-13 2021-05-13 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2021230690A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180034282.5A CN115605469A (zh) 2020-05-13 2021-05-13 新型化合物及包含其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200057324 2020-05-13
KR10-2020-0057324 2020-05-13
KR10-2021-0062165 2021-05-13
KR1020210062165A KR102546268B1 (ko) 2020-05-13 2021-05-13 신규한 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2021230690A1 true WO2021230690A1 (ko) 2021-11-18

Family

ID=78524679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006037 WO2021230690A1 (ko) 2020-05-13 2021-05-13 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2021230690A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101184159B1 (ko) * 2009-12-30 2012-09-18 주식회사 두산 유기 화합물 및 이를 이용한 유기 전계 발광 소자
CN104649956A (zh) * 2013-12-02 2015-05-27 北京鼎材科技有限公司 一种芴并咔唑衍生物及其在有机电致发光器件中的应用
KR20160092059A (ko) * 2013-03-27 2016-08-03 이데미쓰 고산 가부시키가이샤 축합 플루오란텐 화합물, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
KR20180022189A (ko) * 2016-08-23 2018-03-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184159B1 (ko) * 2009-12-30 2012-09-18 주식회사 두산 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20160092059A (ko) * 2013-03-27 2016-08-03 이데미쓰 고산 가부시키가이샤 축합 플루오란텐 화합물, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
CN104649956A (zh) * 2013-12-02 2015-05-27 北京鼎材科技有限公司 一种芴并咔唑衍生物及其在有机电致发光器件中的应用
KR20180022189A (ko) * 2016-08-23 2018-03-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Similar Documents

Publication Publication Date Title
WO2021182775A1 (ko) 유기 발광 소자
WO2021125552A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022039518A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021177633A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021177632A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2021230690A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021230689A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021230688A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023018267A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022260443A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085833A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2024063592A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023096426A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023096459A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803904

Country of ref document: EP

Kind code of ref document: A1