WO2023200282A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2023200282A1
WO2023200282A1 PCT/KR2023/005050 KR2023005050W WO2023200282A1 WO 2023200282 A1 WO2023200282 A1 WO 2023200282A1 KR 2023005050 W KR2023005050 W KR 2023005050W WO 2023200282 A1 WO2023200282 A1 WO 2023200282A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
stirred
group
Prior art date
Application number
PCT/KR2023/005050
Other languages
English (en)
French (fr)
Inventor
정민우
이동훈
한미연
박슬찬
김훈준
조혜민
이호중
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230048984A external-priority patent/KR20230148765A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202380016053.XA priority Critical patent/CN118510772A/zh
Publication of WO2023200282A1 publication Critical patent/WO2023200282A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present invention relates to novel compounds and organic light-emitting devices containing them.
  • organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • Organic light-emitting devices using the organic light-emitting phenomenon have a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, so much research is being conducted.
  • Organic light emitting devices generally have a structure including an anode, a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton is When it falls back to the ground state, it glows.
  • organic light-emitting devices have been developed using a solution process, especially an inkjet process, instead of the existing deposition process.
  • a solution process especially an inkjet process
  • inkjet process instead of the existing deposition process.
  • HIL, HTL, and EML in the form of a fixed structure were performed using a solution process, and the subsequent processes were carried out using the existing deposition process.
  • a hybrid process utilizing is being studied.
  • the present invention provides a novel organic light-emitting device material that can be used in an organic light-emitting device and at the same time can be used in a solution process.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to novel compounds and organic light-emitting devices containing them.
  • the present invention provides a compound represented by the following formula (1):
  • R 1 is each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of N, O and S, or substituted or unsubstituted C 6 by combining two adjacent R 1 -60 aromatic ring; Or forming a C 2-60 heteroaromatic ring containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S,
  • R 2 is each independently hydrogen; or deuterium, provided that at least one of R 2 is deuterium,
  • One of X 1 and X 2 is carbon (C) connected to a substituent represented by the following formula (2), and the other is CH or CD;
  • Ar 1 is substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S,
  • Ar 2 is substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S,
  • Z is each independently hydrogen; or deuterium
  • L is a direct bond; Or substituted or unsubstituted C 6-60 aryl,
  • Y is O or S
  • R 3 is each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S,
  • R 4 is each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic material layer provided between the first electrode and the second electrode, wherein the organic material layer includes a compound represented by Formula 1.
  • the organic material layer containing the above compound may be a light-emitting layer.
  • the compound represented by the above-described formula 1 can be used as a material for the organic layer of an organic light-emitting device, and can improve efficiency, low driving voltage, and/or lifespan characteristics of the organic light-emitting device.
  • the compound represented by the above-mentioned formula 1 can be used as a hole injection, hole transport, hole injection and transport, electron suppression, light emission, electron transport, or electron injection material.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • Figure 2 is an example of an organic light emitting device consisting of a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (7), an electron injection and transport layer (8), and a cathode (4). It shows.
  • substituted or unsubstituted refers to deuterium; halogen group; Cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl containing one or more of N, O and S atoms, or substituted or unsubstituted with two or more of the above-exe
  • a substituent group in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • the carbon number of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a straight-chain, branched-chain, or ring-chain alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the carbon number of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.
  • the silyl group specifically includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited to this.
  • the boron group specifically includes trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, and phenyl boron group, but is not limited thereto.
  • halogen groups include fluorine, chlorine, bromine, or iodine.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of alkyl groups include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n.
  • -pentyl isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited to these
  • the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6.
  • Examples include, but are not limited to, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, and cyclooctyl.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.
  • the fluorenyl group is substituted, It can be etc. However, it is not limited to this.
  • heteroaryl is a heteroaryl containing one or more of O, N, Si, and S as a heteroelement, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heteroaryl include xanthene, thioxanthen, thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, Pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino Pyrazinyl group, isoquinoline group
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the example of the aryl group described above.
  • the aralkyl group, alkylaryl group, and alkylamine group are the same as the examples of the alkyl group described above.
  • the description regarding heteroaryl described above may be applied to heteroaryl among heteroarylamines.
  • the alkenyl group among the aralkenyl groups is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above can be applied, except that arylene is a divalent group.
  • the description of heteroaryl described above can be applied, except that heteroarylene is a divalent group.
  • the description of the aryl group or cycloalkyl group described above can be applied, except that the hydrocarbon ring is not monovalent and is formed by combining two substituents.
  • the description of heteroaryl described above can be applied, except that the heterocycle is not monovalent and is formed by combining two substituents.
  • deuterated or substituted with deuterium means that at least one of the replaceable hydrogens in a compound, a divalent linking group, or a monovalent substituent is replaced with deuterium.
  • unsubstituted or substituted with deuterium means “one to the maximum number of unsubstituted or replaceable hydrogens is substituted with deuterium.”
  • phenanthryl unsubstituted or substituted with deuterium means “unsubstituted or substituted with 1 to 9 deuteriums,” considering that the maximum number of hydrogens that can be substituted with deuterium in the phenanthryl structure is 9. It can be understood to mean “substituted phenanthryl.”
  • deuterated structure refers to compounds of all structures in which at least one hydrogen is replaced with deuterium, a divalent linking group, or a monovalent substituent.
  • deuterated structure of phenyl can be understood to refer to monovalent substituents of all structures in which at least one replaceable hydrogen in the phenyl group is replaced with deuterium, as follows.
  • the “deuterium substitution rate” or “deuteration degree” of a compound is the number of substituted deuteriums relative to the total number of hydrogens that can be present in the compound (the total sum of the number of hydrogens that can be replaced by deuterium and the number of substituted deuteriums in the compound). It means calculating the ratio as a percentage. Therefore, when the “deuterium substitution rate” or “deuteration degree” of a compound is “K%”, it means that K% of the hydrogen replaceable by deuterium in the compound has been replaced with deuterium.
  • the “deuterium substitution rate” or “deuteration degree” is determined by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), nuclear magnetic resonance spectroscopy ( 1H NMR), TLC/MS (Thin -It can be measured according to commonly known methods using Layer Chromatography/Mass Spectrometry) or GC/MS (Gas Chromatography/Mass Spectrometry). More specifically, when using MALDI-TOF MS, the “deuterium substitution rate” or “deuteration degree” is calculated by calculating the number of deuterium substituted in the compound through MALDI-TOF MS analysis, and then comparing the total number of hydrogens that may exist in the compound. The ratio of the number of deuteriums formed can be calculated as a percentage.
  • the present invention provides a compound represented by Formula 1 above.
  • R 1 is each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of N, O and S, or substituted or unsubstituted C 6 by combining two adjacent R 1 -60 aromatic ring; or a C 2-60 heteroaromatic ring containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S.
  • R 1 is each independently hydrogen; heavy hydrogen; It may be C 6-12 aryl substituted or unsubstituted with deuterium.
  • R 1 is each independently hydrogen; heavy hydrogen; It may be phenyl substituted or unsubstituted with deuterium.
  • Formula 1 may be a compound represented by any one of the following Formulas 3a to 3o.
  • Ar 1 , Ar 2 , Y, X 1 , X 2 , R 1 ', R 2 and L are as defined in Formula 1 above.
  • R 1 ' is each independently hydrogen; heavy hydrogen; or phenyl, where phenyl may be unsubstituted or substituted with one or more deuterium.
  • R 2 is each independently hydrogen; or deuterium, provided that at least one of R 2 is deuterium.
  • Ar 1 is substituted or unsubstituted C 6-60 aryl; Alternatively, it may be a C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S.
  • Ar 1 is phenyl; biphenylyl; terphenylyl; naphthylphenyl; naphthyl; phenanthryl; dibenzofuranyl; dibenzothiophenyl; phenylcarbazolyl; or N-carbazolyl, where Ar 1 may be unsubstituted or substituted with one or more deuterium.
  • Ar 2 is substituted or unsubstituted C 6-60 aryl; Alternatively, it may be a C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S.
  • Ar 2 is phenyl; biphenylyl; terphenylyl; naphthylphenyl; naphthyl; phenanthryl; dibenzofuranyl; dibenzothiophenyl; phenylcarbazolyl; or N-carbazolyl, wherein Ar 2 may be unsubstituted or substituted with one or more deuterium.
  • L is a direct bond; Or it may be substituted or unsubstituted C 6-60 aryl. Specifically, L may be a direct bond.
  • Z is each independently hydrogen; Or deuterium.
  • one of X 1 and X 2 is carbon (C) connected to a substituent represented by Formula 2 below, and the other is CH or CD.
  • Y may be O or S.
  • R 3 is each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; Alternatively, it may be a C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S.
  • R 3 is each independently hydrogen; heavy hydrogen; Alternatively, it may be phenyl substituted or unsubstituted with deuterium.
  • R 4 is each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; Alternatively, it may be a C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O, and S. Specifically, R 4 is each independently hydrogen; heavy hydrogen; Alternatively, it may be phenyl substituted or unsubstituted with deuterium.
  • substituent may be any one selected from the group consisting of:
  • R 1 is as defined in Formula 1 above.
  • R 1 is each independently hydrogen; heavy hydrogen; It may be phenyl unsubstituted or substituted with 1, 2, 3, 4, or 5 deuterium atoms.
  • the compound may not contain deuterium or may contain one or more deuterium.
  • the deuterium substitution rate of the compound may be 1% to 100%. Specifically, the deuterium substitution rate of the compound is 5% or more, 10% or more, 20% or more, 25% or more, 30% or more, 40% or more, or 50% or more, and is 100% or less, 90% or less, or 80% or less. It may be less than or equal to 70%.
  • the compound may not contain deuterium, or may contain 1 to 40 deuterium.
  • the compound when the compound contains deuterium, the compound contains 1 or more, 3 or more, 5 or more, 7 or more, 10 or more, 12 or more, 15 or more, 18 or more, 20 or more. , 22 or more, or 25 or more, and may include 40 or fewer, 38 or fewer, 36 or fewer, 34 or fewer, 32 or fewer, 30 or fewer, 28 or fewer, or 26 or fewer deuteriums. .
  • the present invention provides a method for producing a compound represented by Formula 1, as shown in Scheme 1, 2, 3, or 4 below:
  • the reaction formula 1, 2, 3 or 4 is obtained by stirring and refluxing the reactant in tetrahydrofuran in a nitrogen atmosphere, adding potassium carbonate and tetrakistriphenyl-phosphinopalladium, filtering the resulting solid, and dissolving it in chloroform.
  • the organic layer can be separated, anhydrous magnesium sulfate is added, stirred and filtered, and ethyl acetate is recrystallized to obtain a solid compound.
  • the manufacturing method may be more detailed in the manufacturing examples described later.
  • the present invention provides an organic light-emitting device containing the compound represented by Formula 1 above.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. .
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. as organic layers.
  • the structure of the organic light emitting device is not limited to this and may include fewer organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport, and the hole injection layer, the hole transport layer, or a layer that simultaneously performs hole injection and transport is represented by Formula 1 It may contain the indicated compounds.
  • the organic layer may include a light-emitting layer, and the light-emitting layer may include the compound represented by Formula 1.
  • the organic material layer may include a hole blocking layer, an electron transport layer, an electron injection layer, or a layer that simultaneously performs electron transport and electron injection, and the hole blocking layer, an electron transport layer, an electron injection layer, or an electron transport and electron injection layer.
  • the layer that is simultaneously injected may include the compound represented by Formula 1 above.
  • the organic layer may include a light-emitting layer and an electron injection and transport layer
  • the electron injection and transport layer may include the compound represented by Formula 1.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Additionally, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • Figure 2 is an example of an organic light emitting device consisting of a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (7), an electron injection and transport layer (8), and a cathode (4). It shows.
  • the compound represented by Formula 1 may be included in the light-emitting layer.
  • the organic light emitting device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 above. Additionally, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device can be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • an anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation. It can be manufactured by forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device can be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light-emitting device.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • an organic light-emitting device can be manufactured by sequentially depositing a cathode material, an organic layer, and an anode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited to this.
  • the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
  • the anode material is generally preferably a material with a large work function to facilitate hole injection into the organic layer.
  • Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive compounds such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.
  • the cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are, but are not limited to, multi-layered materials such as LiF/Al or LiO 2 /Al.
  • the hole injection layer is a layer that injects holes from an electrode.
  • the hole injection material has the ability to transport holes, has an excellent hole injection effect at the anode, a light-emitting layer or a light-emitting material, and has an excellent hole injection effect on the light-emitting layer or light-emitting material.
  • a compound that prevents movement of excitons to the electron injection layer or electron injection material and has excellent thin film forming ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrilehexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances. These include organic substances, anthraquinone, polyaniline, and polythiophene series conductive compounds, but are not limited to these.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light-emitting layer.
  • the hole transport material is a material that can receive holes from the anode or hole injection layer and transfer them to the light-emitting layer, and has high mobility for holes.
  • the material is suitable. Specific examples include arylamine-based organic materials, conductive compounds, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
  • the light-emitting material is a material capable of emitting light in the visible range by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.
  • the electron blocking layer is a layer placed between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from being recombined in the light emitting layer and passing to the hole transport layer, and is also called an electron blocking layer.
  • a material with lower electron affinity than the electron transport layer is preferred for the electron suppressing layer.
  • the compound represented by Formula 1 may be included as a material for the electron blocking layer.
  • the light emitting layer may include a host material and a dopant material.
  • a host material a compound represented by the above-mentioned formula (1) may be used.
  • host materials that can be used include condensed aromatic ring derivatives or heterocyclic ring-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, and periplanthene
  • styrylamine compounds include substituted or unsubstituted arylamino groups.
  • substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group.
  • styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc. are included, but are not limited thereto.
  • metal complexes include, but are not limited to, iridium complexes and platinum complexes.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light-emitting layer.
  • the electron transport material is a material that can easily inject electrons from the cathode and transfer them to the light-emitting layer, and a material with high electron mobility is suitable. do. Specific examples include Al complex of 8-hydroxyquinoline; Complex containing Alq 3 ; organic radical compounds; Hydroxyflavone-metal complexes, etc., but are not limited to these.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials with a low work function followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an excellent electron injection effect from the cathode, a light-emitting layer or a light-emitting material, and hole injection of excitons generated in the light-emitting layer.
  • a compound that prevents movement to the layer and has excellent thin film forming ability is preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals. Complex compounds and nitrogen-containing five-membered ring derivatives are included, but are not limited thereto.
  • metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.
  • the “electron injection and transport layer” is a layer that performs the functions of both the electron injection layer and the electron transport layer.
  • the materials that play the role of each layer can be used singly or in combination, but are limited thereto. It doesn't work.
  • the compound represented by Formula 1 may be included as a material for the electron injection and transport layer.
  • the organic light-emitting device according to the present invention may be a bottom-emitting device, a top-emitting device, or a double-sided light-emitting device. In particular, it may be a bottom-emitting device that requires relatively high luminous efficiency.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to an organic light-emitting device.
  • A-1 100 g, 320.5 mmol
  • 9H-carbazole-1,3,4,5,6,8-d6 55.5 g, 320.5 mmol
  • sodium tertiary-butoxide 92.4 g, 961.5 mmol
  • bis(tri-tertiary-butylphosphine)palladium 4.9 g, 9.6 mmol
  • A-2 50 g, 107.5 mmol
  • bis(pinacolato)diborone 30.1 g, 118.2 mmol
  • potassium acetate 31 g, 322.5 mmol
  • palladium dibenzylideneacetone palladium 1.9 g, 3.2 mmol
  • tricyclohexylphosphine 1.8 g, 6.4 mmol
  • B-1 100 g, 473.8 mmol
  • 9H-carbazole-1,3,4,5,6,8-d6 82 g, 473.8 mmol
  • sodium tertiary-butoxide 136.6 g, 1421.4 mmol
  • bis(tri-tertiary-butylphosphine)palladium 7.3 g, 14.2 mmol
  • A-2 50 g, 107.5 mmol
  • bis(pinacolato)diborone 30.1 g, 118.2 mmol
  • potassium acetate 31 g, 322.5 mmol
  • palladium dibenzylideneacetone palladium 1.9 g, 3.2 mmol
  • tricyclohexylphosphine 1.8 g, 6.4 mmol
  • J-1 100 g, 473.8 mmol
  • 9H-carbazole-1,3,4,5,6,8-d6 82 g, 473.8 mmol
  • sodium tertiary-butoxide 136.6 g, 1421.4 mmol
  • bis(tritertiary-butylphosphine)palladium 7.3 g, 14.2 mmol
  • B-3 (20 g, 37 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (9.9 g, 37 mmol) were added to 400 ml of tetrahydrofuran, stirred and refluxed. .
  • potassium carbonate (15.3 g, 110.9 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.3 g, 1.1 mmol) was added. After reaction for 2 hours, it was cooled to room temperature and the resulting solid was filtered.
  • A-3 (20 g, 35.9 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (9.6 g, 35.9 mmol) were added to 400 ml of tetrahydrofuran, stirred and refluxed. .
  • potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After reaction for 2 hours, it was cooled to room temperature and the resulting solid was filtered.
  • A-3 (20 g, 35.9 mmol) and 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (12.3 g, 35.9 mmol) was added to 400ml of tetrahydrofuran, stirred and refluxed. Afterwards, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After reaction for 1 hour, it was cooled to room temperature and the resulting solid was filtered.
  • A-3 (20 g, 35.9 mmol) and 2-([1,1'-biphenyl]-4-yl)-3-chloro-6-phenyl-1,3,5-triazine (12.3 g, 35.9 mmol) was added to 400 ml of tetrahydrofuran, stirred and refluxed. Afterwards, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After reaction for 2 hours, it was cooled to room temperature and the resulting solid was filtered.
  • A-3 (20 g, 35.9 mmol) and 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine (13.4 g, 35.9 mmol) in a nitrogen atmosphere. mmol) was added to 400 ml of tetrahydrofuran, stirred and refluxed. Afterwards, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After reaction for 2 hours, it was cooled to room temperature and the resulting solid was filtered.
  • A-3 (20 g, 35.9 mmol) and 2-chloro-4-(naphthalen-2-yl)-6-phenyl-1,3,5-triazine (11.4 g, 35.9 mmol) were mixed with tetrahydrofuran in a nitrogen atmosphere. It was added to 400 ml, stirred and refluxed. Afterwards, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After reaction for 3 hours, it was cooled to room temperature and the resulting solid was filtered.
  • A-3 (20 g, 35.9 mmol) and 2-chloro-4-(4-(naphthalen-1-yl)phenyl)-6-phenyl-1,3,5-triazine (14.1 g, 35.9 mmol) in a nitrogen atmosphere. ) was added to 400 ml of tetrahydrofuran, stirred and refluxed. Afterwards, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in 15 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After reaction for 1 hour, it was cooled to room temperature and the resulting solid was filtered.
  • C-2 (20 g, 38.9 mmol) and dibenzo[b,d]furan-4-ylboronic acid (8.2 g, 38.9 mmol) were added to 600 ml of tetrahydrofuran, stirred, and refluxed. Afterwards, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 16 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.3 g, 1.2 mmol) was added. After reacting for 1 hour, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • K-2 (20 g, 38.9 mmol) and (dibenzo[b,d]thiophen-4-yl-1,2,6,8,9-d5)boronic acid (9.1 g, 38.9 mmol) were tetrahydrated in a nitrogen atmosphere. It was added to 600 ml of hydrofuran, stirred and refluxed. Afterwards, potassium carbonate (16.1 g, 116.7 mmol) was dissolved in 16 ml of water, stirred sufficiently, and then tetrakistriphenyl-phosphinopalladium (1.3 g, 1.2 mmol) was added. After reacting for 2 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,300 ⁇ was placed in distilled water with a detergent dissolved in it and washed with ultrasonic waves.
  • a detergent from Fischer Co. was used, and distilled water filtered secondarily using a filter from Millipore Co. was used as distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • the following HI-1 compound was thermally vacuum deposited to a thickness of 50 ⁇ on the ITO transparent electrode prepared as above to form a hole injection layer.
  • the HT-1 compound below was thermally vacuum deposited to a thickness of 250 ⁇ on the hole injection layer to form a hole transport layer, and the HT-2 compound below was vacuum deposited to a thickness of 50 ⁇ on the HT-1 deposition film to form an electron blocking layer.
  • compound 1 prepared in Preparation Example 1 the following YGH-1 compound, and phosphorescent dopant YGD-1 were co-deposited at a weight ratio of 44:44:12 to form an emitting layer with a thickness of 400 ⁇ .
  • An electron transport layer was formed by vacuum depositing the following ET-1 compound to a thickness of 250 ⁇ on the light emitting layer, and the following ET-2 compound and Li were vacuum deposited at a weight ratio of 98:2 on the electron transport layer to form an electron injection layer with a thickness of 100 ⁇ . formed.
  • Aluminum was deposited to a thickness of 1000 ⁇ on the electron injection layer to form a cathode.
  • the deposition rate of organic matter was maintained at 0.4 to 0.7 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was maintained at 1 ⁇ 10 -7 to 5 ⁇ 10 -8 torr. did.
  • An organic light-emitting device was manufactured in the same manner as Experiment 1, except that the compounds listed in Table 1 below were used instead of Compound 1 of Preparation Example 1.
  • An organic light-emitting device was manufactured in the same manner as Experiment 1, except that the compounds listed in Table 1 below were used instead of Compound 1 of Preparation Example 1.
  • the compounds of CE1 in Table 1 below are as follows.
  • An organic light-emitting device was manufactured in the same manner as Experiment 1, except that the compounds listed in Table 1 below were used instead of Compound 1 of Preparation Example 1.
  • LT95 means the time when the initial luminance reaches 95%.
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2022년 4월 15일자 한국 특허 출원 제10-2022-0046837호 및 2023년 4월 13일자 한국 특허 출원 제10-2023-0048984호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한편, 최근에는 공정 비용 절감을 위하여 기존의 증착 공정 대신 용액 공정, 특히 잉크젯 공정을 이용한 유기 발광 소자가 개발되고 있다. 초창기에는 모든 유기 발광 소자 층을 용액 공정으로 코팅하여 유기 발광 소자를 개발하려 하였으나 현재 기술로는 한계가 있어, 정구조 형태에서 HIL, HTL, EML만을 용액 공정으로 진행하고 추후 공정은 기존의 증착 공정을 활용하는 하이브리드(hybrid) 공정이 연구 중이다.
이에 본 발명에서는 유기 발광 소자에 사용될 수 있으면서 동시에 용액 공정에 사용 가능한 신규한 유기 발광 소자의 소재를 제공한다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2023005050-appb-img-000001
상기 화학식 1에서,
R1은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 두개의 R1이 결합하여 치환 또는 비치환된 C6-60 방향족 고리; 또는 치환 또는 비치환된 N,O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로방향족 고리를 형성하고,
R2는 각각 독립적으로 수소; 또는 중수소이고, 단 R2 중 적어도 하나 이상은 중수소이고,
X1 및 X2 중 하나는 하기 화학식 2로 표시되는 치환기와 연결되는 탄소(C)이고, 다른 하나는 CH 또는 CD이고;
Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
Ar2는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
Z는 각각 독립적으로 수소; 또는 중수소이고,
L은 직접결합; 또는 치환 또는 비치환된 C6-60 아릴이고,
[화학식 2]
Figure PCTKR2023005050-appb-img-000002
상기 화학식 2에서,
Y는 O 또는 S이고,
R3은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
R4는 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 구체적으로 상기 화합물을 포함하는 유기물층은 발광층일 수 있다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 전자억제, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자주입 및 수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
Figure PCTKR2023005050-appb-img-000003
또는
Figure PCTKR2023005050-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미하고, "D"는 중수소를 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023005050-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023005050-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023005050-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2023005050-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, "중수소화된 또는 중수소로 치환된"이라는 의미는 화합물, 2가의 연결기 또는 1가의 치환기 내 치환 가능한 수소 중 적어도 하나가 중수소로 치환됨을 의미한다.
또한, "비치환되거나 또는 중수소로 치환된"이라는 의미는 "비치환되거나 또는 치환 가능한 수소 중 1개 내지 최대 개수가 중수소로 치환된"을 의미한다. 일례로, "비치환되거나 또는 중수소로 치환된 페난트릴"이라는 용어는 페난트릴 구조 내 중수소로 치환 가능한 수소의 최대 개수가 9개라는 점 고려할 때, "비치환되거나 또는 1개 내지 9개의 중수소로 치환된 페난트릴"이라는 의미로 이해될 수 있다.
또한, "중수소화된 구조"라는 의미는 적어도 하나의 수소가 중수소로 치환된 모든 구조의 화합물, 2가의 연결기 또는 1가의 치환기를 포괄하는 것을 의미한다. 일례로, 페닐의 중수소화된 구조는 하기와 같이 페닐기 내 치환가능한 적어도 하나의 수소가 중수소로 치환된 모든 구조의 1가의 치환기들을 일컫는 것으로 이해될 수 있다.
Figure PCTKR2023005050-appb-img-000009
또한, 화합물의 "중수소 치환율" 또는 "중수소화도"는 화합물 내 존재할 수 있는 수소의 총 개수(화합물 내 중수소로 치환 가능한 수소의 개수 및 치환된 중수소의 개수의 총 합)에 대한 치환된 중수소의 개수의 비율을 백분율로 계산한 것을 의미한다. 따라서 화합물의 "중수소 치환율" 또는 "중수소화도"가 "K%"라고 함은, 화합물 내 중수소로 치환 가능한 수소 중 K%가 중수소로 치환된 것을 의미한다.
이 때, 상기 "중수소 치환율" 또는 "중수소화도"는 MALDI-TOF MS(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), 핵자기 공명 분광법(1H NMR), TLC/MS(Thin-Layer Chromatography/Mass Spectrometry), 또는 GC/MS(Gas Chromatography/Mass Spectrometry) 등을 이용하여 통상적으로 알려진 방법에 따라 측정할 수 있다. 보다 구체적으로, MALDI-TOF MS를 이용하는 경우 상기 "중수소 치환율" 또는 "중수소화도"는 MALDI-TOF MS 분석을 통해 화합물 내에 치환된 중수소 개수를 구한 다음, 화합물 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수의 비율을 백분율로 계산하여 구할 수 있다.
(화합물)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
상기 화학식 1에서 R1은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 두개의 R1이 결합하여 치환 또는 비치환된 C6-60 방향족 고리; 또는 치환 또는 비치환된 N,O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로방향족 고리이다.
예를 들어, R1은 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 C6-12 아릴일 수 있다.
보다 구체적으로 예를 들어, R1은 각각 독립적으로 수소; 중수소; 중수소로 치환 또는 비치환된 페닐일 수 있다.
구체적으로, 화학식 1은 하기 화학식 3a 내지 3o 중 어느 하나로 표시되는 화합물일 수 있다.
Figure PCTKR2023005050-appb-img-000010
Figure PCTKR2023005050-appb-img-000011
상기에서,
Ar1, Ar2, Y, X1, X2, R1’, R2 및 L에 대한 설명은 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 3a 내지 3o에서, R1’은 각각 독립적으로 수소; 중수소; 또는 페닐이고, 여기서 페닐은 비치환되거나, 또는 1개 이상의 중수소로 치환될 수 있다.
상기 화학식 1에서, R2는 각각 독립적으로 수소; 또는 중수소이고, 단, R2 중 적어도 하나 이상은 중수소이다.
상기 화학식 1에서, Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴일 수 있다.
구체적으로, Ar1은 페닐; 비페닐릴; 터페닐릴; 나프틸페닐; 나프틸; 페난트릴; 디벤조퓨라닐; 디벤조티오페닐; 페닐카바졸일; 또는 N-카바졸일이고, 여기서, Ar1은 비치환되거나, 또는 1개 이상의 중수소로 치환될 수 있다.
상기 화학식 1에서, Ar2는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴일 수 있다.
구체적으로, Ar2은 페닐; 비페닐릴; 터페닐릴; 나프틸페닐; 나프틸; 페난트릴; 디벤조퓨라닐; 디벤조티오페닐; 페닐카바졸일; 또는 N-카바졸일이고, 여기서, Ar2은 비치환되거나, 또는 1개 이상의 중수소로 치환될 수 있다.
상기 화학식 1에서, L은 직접결합; 또는 치환 또는 비치환된 C6-60 아릴일 수 있다. 구체적으로, L은 직접결합일 수 있다.
상기 화학식 1에서, Z는 각각 독립적으로 수소; 또는 중수소이다.
상기 화학식 1에서, X1 및 X2 중 하나는 하기 화학식 2로 표시되는 치환기와 연결되는 탄소(C)이고, 다른 하나는 CH 또는 CD이다.
[화학식 2]
Figure PCTKR2023005050-appb-img-000012
상기 화학식 2에서, Y는 O 또는 S일 수 있다.
상기 화학식 2에서, R3은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴일 수 있다.
구체적으로, R3은 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 페닐일 수 있다.
상기 화학식 2에서, R4는 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴일 수 있다. 구체적으로, R4는 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 페닐일 수 있다.
또한, 상기 치환기
Figure PCTKR2023005050-appb-img-000013
는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure PCTKR2023005050-appb-img-000014
상기에서,
R1에 대한 설명은 상기 화학식 1에서 정의한 바와 같다.
예를 들어, R1은 각각 독립적으로 수소; 중수소; 1개, 2개, 3개, 4개, 또는 5개의 중수소로 치환 또는 비치환된 페닐일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2023005050-appb-img-000015
Figure PCTKR2023005050-appb-img-000016
Figure PCTKR2023005050-appb-img-000017
Figure PCTKR2023005050-appb-img-000018
Figure PCTKR2023005050-appb-img-000019
Figure PCTKR2023005050-appb-img-000020
Figure PCTKR2023005050-appb-img-000021
Figure PCTKR2023005050-appb-img-000022
Figure PCTKR2023005050-appb-img-000023
Figure PCTKR2023005050-appb-img-000024
Figure PCTKR2023005050-appb-img-000025
Figure PCTKR2023005050-appb-img-000026
Figure PCTKR2023005050-appb-img-000027
Figure PCTKR2023005050-appb-img-000028
Figure PCTKR2023005050-appb-img-000029
Figure PCTKR2023005050-appb-img-000030
Figure PCTKR2023005050-appb-img-000031
Figure PCTKR2023005050-appb-img-000032
Figure PCTKR2023005050-appb-img-000033
Figure PCTKR2023005050-appb-img-000034
Figure PCTKR2023005050-appb-img-000035
.
또한, 상기 화합물은 중수소를 포함하지 않거나, 또는 1개 이상의 중수소를 포함할 수 있다.
상기 화합물이 중수소를 포함하는 경우, 화합물의 중수소 치환율은 1% 내지 100%일 수 있다. 구체적으로는, 상기 화합물의 중수소 치환율은 5% 이상, 10% 이상, 20% 이상, 25% 이상, 30% 이상, 40% 이상, 또는 50% 이상이면서, 100% 이하, 90% 이하, 80% 이하, 또는 70% 이하일 수 있다.
일 예로, 상기 화합물은 중수소를 포함하지 않거나, 또는 1개 내지 40개의 중수소를 포함할 수 있다. 구체적으로, 상기 화합물이 중수소를 포함하는 경우, 상기 화합물은 1개 이상, 3개 이상, 5개 이상, 7개 이상, 10개 이상, 12개 이상, 15개 이상, 18개 이상, 20개 이상, 22개 이상, 또는 25개 이상이면서, 40개 이하, 38개 이하, 36개 이하, 34개 이하, 32개 이하, 30개 이하, 28개 이하, 또는 26개 이하의 중수소를 포함할 수 있다.
한편, 본 발명은 일례로 하기 반응식 1, 2, 3, 또는 4와 같은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공한다:
[반응식 1]
Figure PCTKR2023005050-appb-img-000036
[반응식 2]
Figure PCTKR2023005050-appb-img-000037
[반응식 3]
Figure PCTKR2023005050-appb-img-000038
[반응식 4]
Figure PCTKR2023005050-appb-img-000039
상기 반응식 1 또는 2는 각각 화학식 1에서 X1에 화학식 2가 위치한 경우 X2에 화학식 2가 위치한 경우의 반응식이고, 반응식 3 또는 4 역시 각각 화학식 1에서 X1에 화학식 2가 위치한 경우 X2에 화학식 2가 위치한 경우의 반응식이다.
상기 반응식 1, 2, 3 또는 4에서 R1, R2, Ar1, Ar2, 및 L의 정의는 화학식 1과 같고 Y, R3, R4의 정의는 화학식 2와 같다. 또한 반응식 1, 2, 3 또는 4에서 Z는 할로겐이고, 바람직하게는 클로로 또는 브로모이다.
상기 반응식 1, 2, 3 또는 4는 질소 분위기에서 테트라하이드로퓨란에 반응물을 교반 및 환류한 후, 포타슘카보네이트 및 테트라키스트리페닐-포스피노팔라듐을 투입하고, 생성된 고체를 여과하여 클로로포름에 용해 후 유기층을 분리하여 무수황산마그네슘을 넣고 교반 및 여과하고, 에틸아세테이트 재결정을 하여 고체 화합물로 수득하여 진행될 수 있다. 상기 제조방법은 후술할 제조예에서 보다 구체화될 수 있다.
(유기 발광 소자)
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 정공저지층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물 층은 정공저지층, 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층을 포함할 수 있고, 상기 정공저지층, 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물 층은 발광층 및 전자 주입 및 수송층을 포함할 수 있고, 상기 전자 주입 및 수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자 주입 및 수송층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 화합물 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 화합물 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 화합물, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자억제층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로, 전자저지층으로 불리기도 한다. 전자억제층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다. 바람직하게는, 상기 화학식 1로 표시되는 화합물을 전자억제층의 물질로 포함할 수 있다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료로는 상술한 화학식 1로 표시되는 화합물이 사용될 수 있다. 또한, 추가로 사용할 수 있는 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 사용할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 화학식 1로 표시되는 화합물을 전자 주입 및 수송층의 물질로 포함할 수 있다.
본 발명에 따른 유기 발광 소자는 배면 발광(Bottom emission) 소자, 전면 발광(Top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[합성예 1] 화합물 A-3의 합성
Figure PCTKR2023005050-appb-img-000040
질소 분위기에서 4-bromo-1-chloro-2-fluorobenzene(100 g, 481 mmol)와 dibenzo[b,d]thiophen-4-ylboronic acid(109.7 g, 481 mmol)를 테트라하이드로퓨란 2000 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(199.4 g, 1442.9 mmol)를 물199 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(16.7 g, 14.4 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 2848 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 회색의 고체 화합물 A-1 95.4 g(수율 67%, MS: [M+H]+ = 297)을 제조하였다.
Figure PCTKR2023005050-appb-img-000041
질소 분위기에서 A-1(100 g, 320.5 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(55.5 g, 320.5 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (92.4 g, 961.5 mmol)를 투입하고 충분히 교반한 후 비스(트리 터셔리-부틸포스핀)팔라듐(4.9 g, 9.6 mmol)을 투입하였다. 4시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 4472 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 A-2 96.9 g(수율 65%, MS: [M+H]+ = 466.1)을 제조하였다.
Figure PCTKR2023005050-appb-img-000042
질소 분위기에서 A-2(50 g, 107.5 mmol)와 비스(피나콜라토)디보론(30.1 g, 118.2 mmol)를 Diox 1000 ml에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(31 g, 322.5 mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1.9 g, 3.2 mmol) 및 트리시클로헥실포스핀(1.8 g, 6.4 mmol)을 투입하였다. 4시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 599 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 회색의 고체 화합물 A-3 52.7 g(수율 88%, MS: [M+H]+ = 558.3)을 제조하였다.
[합성예 2] 화합물 B-3의 합성
Figure PCTKR2023005050-appb-img-000043
질소 분위기에서 4-bromo-1-chloro-2-fluorobenzene(100 g, 481 mmol)와 dibenzo[b,d]furan-4-ylboronic acid(102 g, 481 mmol)를 테트라하이드로퓨란 2000 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(199.4 g, 1442.9 mmol)를 물 199 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(16.7 g, 14.4 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 2030 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 회색의 고체 화합물 B-1 55.8 g(수율 55%, MS: [M+H]+ = 212.1)을 제조하였다.
Figure PCTKR2023005050-appb-img-000044
질소 분위기에서 B-1(100 g, 473.8 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(82 g, 473.8 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (136.6 g, 1421.4 mmol)를 투입하고 충분히 교반한 후 비스(트리 터셔리-부틸포스핀)팔라듐(7.3 g, 14.2 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 6384 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 B-2 108.5 g(수율 51%, MS: [M+H]+ = 450.2)을 제조하였다.
Figure PCTKR2023005050-appb-img-000045
질소 분위기에서 A-2(50 g, 107.5 mmol)와 비스(피나콜라토)디보론(30.1 g, 118.2 mmol)를 Diox 1000ml에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(31 g, 322.5 mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1.9 g, 3.2 mmol) 및 트리시클로헥실포스핀 (1.8 g, 6.4 mmol)을 투입하였다. 5시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 599 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 회색의 고체 화합물 A-3 53.9 g(수율 90%, MS: [M+H]+ = 558.3)을 제조하였다.
[합성예 3] 화합물 C-2의 합성
Figure PCTKR2023005050-appb-img-000046
질소 분위기에서 2-chloro-4,6-diphenyl-1,3,5-triazine(100 g, 374.4 mmol)와 (5-chloro-2-fluorophenyl)boronic acid(65.2 g, 374.4 mmol)를 테트라하이드로퓨란 2000 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(155.3 g, 1123.3 mmol)를 물 155 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(13 g, 11.2 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름 2704 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 회색의 고체 화합물 C-1 90.6 g(수율 67%, MS: [M+H]+ = 362.1)을 제조하였다.
Figure PCTKR2023005050-appb-img-000047
질소 분위기에서 C-1(100 g, 276.9 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(47.9 g, 276.9 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (79.9 g, 830.8 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(4.2 g, 8.3 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 4272 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 C-2 71.2 g(수율 50%, MS: [M+H]+ = 515.2)을 제조하였다.
[합성예 4] 화합물 D-1의 합성
Figure PCTKR2023005050-appb-img-000048
질소 분위기에서 C-1(100 g, 276.9 mmol)와 9H-carbazole-1,2,3,4,5,6,7,8-d8(48.5 g, 276.9 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드(79.9 g, 830.8 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(4.2 g, 8.3 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 4289 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 D-1 94.4 g(수율 66%, MS: [M+H]+ = 517.2)을 제조하였다.
[합성예 5] 화합물 E-1의 합성
Figure PCTKR2023005050-appb-img-000049
질소 분위기에서 C-1(100 g, 276.9 mmol)와 9H-carbazole-1,3,6,8-d4(47.4 g, 276.9 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (79.9 g, 830.8 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(4.2 g, 8.3 mmol)을 투입하였다. 4시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 4255 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 E-1 103.5 g(수율 73%, MS: [M+H]+ = 513.2)을 제조하였다.
[합성예 6] 화합물 F-1의 합성
Figure PCTKR2023005050-appb-img-000050
질소 분위기에서 C-1(100 g, 276.9 mmol)와 5H-benzo[b]carbazole-1,2,4,6,7,8,9,10,11-d9(62.6 g, 276.9 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (79.9 g, 830.8 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(4.2 g, 8.3 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 4713 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 F-1 121 g(수율 77%, MS: [M+H]+ = 568.2)을 제조하였다.
[합성예 7] 화합물 G-1의 합성
Figure PCTKR2023005050-appb-img-000051
질소 분위기에서 B-1(100 g, 473.8 mmol)와 3-(phenyl-d5)-9H-carbazole-1,4,5,6,8-d5(120 g, 473.8 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (136.6 g, 1421.4 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(7.3 g, 14.2 mmol)을 투입하였다. 4시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 8447 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 G-1 180.2 g(수율 64%, MS: [M+H]+ = 595.2)을 제조하였다.
[합성예 8] 화합물 H-1의 합성
Figure PCTKR2023005050-appb-img-000052
질소 분위기에서 C-1(100 g, 276.9 mmol)와 12H-benzo[4,5]thieno[2,3-a]carbazole-1,3,4,5,6,7,8-d7(77.6 g, 276.9 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (79.9 g, 830.8 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(4.2 g, 8.3 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 5161 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 H-1 129 g(수율 75%, MS: [M+H]+ = 622.2)을 제조하였다.
[합성예 9] 화합물 I-3의 합성
Figure PCTKR2023005050-appb-img-000053
질소 분위기에서 3-bromo-1-chloro-2-fluorobenzene(100 g, 481 mmol)와 dibenzo[b,d]thiophen-4-ylboronic acid(109.7 g, 481 mmol)를 테트라하이드로퓨란 2000 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(199.4 g, 1442.9 mmol)를 물 199 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(16.7 g, 14.4 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름 2848 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 회색의 고체 화합물 I-1 101.1 g(수율 71%, MS: [M+H]+ = 297)을 제조하였다.
Figure PCTKR2023005050-appb-img-000054
질소 분위기에서 I-1(100 g, 337.8 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(77 g, 337.8 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (97.4 g, 1013.4 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(5.2 g, 10.1 mmol)을 투입하였다. 4시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 4713 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 I-2 97.4 g(수율 62%, MS: [M+H]+ = 466.1)을 제조하였다.
Figure PCTKR2023005050-appb-img-000055
질소 분위기에서 I-2(50 g, 107.5 mmol)와 비스(피나콜라토)디보론(30.1 g, 118.2 mmol)를 Diox 1000 ml에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(31 g, 322.5 mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1.9 g, 3.2 mmol) 및 트리시클로헥실포스핀 (1.8 g, 6.4 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 599 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 회색의 고체 화합물 I-3 52.1 g(수율 87%, MS: [M+H]+ = 558.3)을 제조하였다.
[합성예 10] 화합물 J-3의 합성
Figure PCTKR2023005050-appb-img-000056
질소 분위기에서 4-bromo-1-chloro-2-fluorobenzene(100 g, 481 mmol)와 dibenzo[b,d]furan-4-ylboronic acid(102 g, 481 mmol)를 테트라하이드로퓨란 2000 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(199.4 g, 1442.9 mmol)를 물 199 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(16.7 g, 14.4 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름 2030 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 회색의 고체 화합물 J-1 55.8 g(수율 55%, MS: [M+H]+ = 212.1)을 제조하였다.
Figure PCTKR2023005050-appb-img-000057
질소 분위기에서 J-1(100 g, 473.8 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(82 g, 473.8 mmol)를 자일렌 2000 ml에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리-부톡사이드 (136.6 g, 1421.4 mmol)를 투입하고 충분히 교반한 후 비스(트리터셔리-부틸포스핀)팔라듐(7.3 g, 14.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 6384 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 J-2 117 g(수율 55%, MS: [M+H]+ = 450.2)을 제조하였다.
Figure PCTKR2023005050-appb-img-000058
질소 분위기에서 J-2(50 g, 111.3 mmol)와 비스(피나콜라토)디보론(31.1 g, 122.5 mmol)를 Diox 1000 ml에 넣고 교반 및 환류하였다. 이후 포타슘아세테이트(32.1 g, 334 mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1.9 g, 3.3 mmol) 및 트리시클로헥실포스핀(1.9 g, 6.7 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 603 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올 재결정을 통해 회색의 고체 화합물 J-3 39.2 g(수율 65%, MS: [M+H]+ = 542.3)을 제조하였다.
[제조예 1] 화합물 1의 합성
Figure PCTKR2023005050-appb-img-000059
질소 분위기에서 B-3(20 g, 37 mmol)와 2-chloro-4,6-diphenyl-1,3,5-triazine(9.9 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1194 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 1 13.1 g(수율 55%, MS: [M+H]+ = 647.3)을 제조하였다.
[제조예 2] 화합물 2의 합성
Figure PCTKR2023005050-appb-img-000060
질소 분위기에서 B-3(20 g, 37 mmol)와 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine(12.7 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 2 15.2 g(수율 57%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 3] 화합물 3의 합성
Figure PCTKR2023005050-appb-img-000061
질소 분위기에서 B-3(20 g, 37 mmol)와 2-([1,1'-biphenyl]-4-yl)-3-chloro-6-phenyl-1,3,5-triazine(12.7 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 3 14.7 g(수율 55%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 4] 화합물 4의 합성
Figure PCTKR2023005050-appb-img-000062
질소 분위기에서 B-3(20 g, 37 mmol)와 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(13.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1360 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 4 18 g(수율 66%, MS: [M+H]+ = 737.3)을 제조하였다.
[제조예 5] 화합물 5의 합성
Figure PCTKR2023005050-appb-img-000063
질소 분위기에서 B-3(20 g, 37 mmol)와 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine(13.8 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1366 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 5 19.9 g(수율 73%, MS: [M+H]+ = 740.2)을 제조하였다.
[제조예 6] 화합물 6의 합성
Figure PCTKR2023005050-appb-img-000064
질소 분위기에서 B-3(20 g, 37 mmol)와 2-chloro-4-(naphthalen-2-yl)-6-phenyl-1,3,5-triazine(11.7 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1286 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 6 12.9g(수율 50%, MS: [M+H]+ = 697.3)을 제조하였다.
[제조예 7] 화합물 7의 합성
Figure PCTKR2023005050-appb-img-000065
질소 분위기에서 B-3(20 g, 37 mmol)와 2-chloro-4-(4-(naphthalen-1-yl)phenyl)-6-phenyl-1,3,5-triazine(14.5 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1427 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 7 14.6 g(수율 51%, MS: [M+H]+ = 773.3)을 제조하였다.
[제조예 8] 화합물 8의 합성
Figure PCTKR2023005050-appb-img-000066
질소 분위기에서 B-3(20 g, 37 mmol)와 2-chloro-3-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(13.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1360 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 8 16.6g(수율 61%, MS: [M+H]+ = 737.3)을 제조하였다.
[제조예 9] 화합물 9의 합성
Figure PCTKR2023005050-appb-img-000067
질소 분위기에서 B-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(14.3 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1203 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 9 13 g(수율 54%, MS: [M+H]+ = 652.3)을 제조하였다.
[제조예 10] 화합물 10의 합성
Figure PCTKR2023005050-appb-img-000068
질소 분위기에서 B-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(10.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 10 18.7 g(수율 70%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 11] 화합물 11의 합성
Figure PCTKR2023005050-appb-img-000069
질소 분위기에서 B-3(20 g, 37 mmol)와 2-(2-bromophenyl)-4,6-diphenyl-1,3,5-triazine(9.9 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 11 16.5 g(수율 62%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 12] 화합물 12의 합성
Figure PCTKR2023005050-appb-img-000070
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-chloro-4,6-diphenyl-1,3,5-triazine(9.6 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1160 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 12 13.2 g(수율 57%, MS: [M+H]+ = 647.3)을 제조하였다.
[제조예 13] 화합물 13의 합성
Figure PCTKR2023005050-appb-img-000071
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine(12.3 g, 35.9 mmol)를 테트라하이드로퓨란 400ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1296 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 13 20g(수율 77%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 14] 화합물 14의 합성
Figure PCTKR2023005050-appb-img-000072
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-([1,1'-biphenyl]-4-yl)-3-chloro-6-phenyl-1,3,5-triazine(12.3 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1296 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 14 20.7g(수율 80%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 15] 화합물 15의 합성
Figure PCTKR2023005050-appb-img-000073
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(12.8 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1321 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 15 20.1 g(수율 76%, MS: [M+H]+ = 737.3)을 제조하였다.
[제조예 16] 화합물 16의 합성
Figure PCTKR2023005050-appb-img-000074
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine(13.4 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1327 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 16 18.6 g(수율 70%, MS: [M+H]+ = 740.2)을 제조하였다.
[제조예 17] 화합물 17의 합성
Figure PCTKR2023005050-appb-img-000075
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-chloro-4-(naphthalen-2-yl)-6-phenyl-1,3,5-triazine(11.4 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1278 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 17 13 g(수율 51%, MS: [M+H]+ = 713.3)을 제조하였다.
[제조예 18] 화합물 18의 합성
Figure PCTKR2023005050-appb-img-000076
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-chloro-4-(4-(naphthalen-1-yl)phenyl)-6-phenyl-1,3,5-triazine(14.1 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1415 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 18 19.8 g(수율 70%, MS: [M+H]+ = 789.3)을 제조하였다.
[제조예 19] 화합물 19의 합성
Figure PCTKR2023005050-appb-img-000077
질소 분위기에서 A-3(20 g, 35.9 mmol)와 2-chloro-3-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(12.8 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1350 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 19 17 g(수율 63%, MS: [M+H]+ = 753.3)을 제조하였다.
[제조예 20] 화합물 20의 합성
Figure PCTKR2023005050-appb-img-000078
질소 분위기에서 B-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(14.3 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1233 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 20 16 g(수율 65%, MS: [M+H]+ = 668.3)을 제조하였다.
[제조예 21] 화합물 21의 합성
Figure PCTKR2023005050-appb-img-000079
질소 분위기에서 B-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(10.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1364 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 21 17.5 g(수율 64%, MS: [M+H]+ = 739.3)을 제조하였다.
[제조예 22] 화합물 22의 합성
Figure PCTKR2023005050-appb-img-000080
질소 분위기에서 B-3(20 g, 37 mmol)와 2-(2-bromophenyl)-4,6-diphenyl-1,3,5-triazine(9.9 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1364 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 22 21.6 g(수율 79%, MS: [M+H]+ = 739.3)을 제조하였다.
[제조예 23] 화합물 23의 합성
Figure PCTKR2023005050-appb-img-000081
질소 분위기에서 C-2(20 g, 38.9 mmol)와 (dibenzo[b,d]furan-4-yl-1,2,6,8,9-d5)boronic acid(8.4 g, 38.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(16.1 g, 116.7 mmol)를 물 16 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.2 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1230 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 23 19.2 g(수율 78%, MS: [M+H]+ = 633.3)을 제조하였다.
[제조예 24] 화합물 24의 합성
Figure PCTKR2023005050-appb-img-000082
질소 분위기에서 D-2(20 g, 38.7 mmol)와 (dibenzo[b,d]furan-4-yl-1,2,6,8,9-d5)boronic acid(8.4 g, 38.7 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(16 g, 116 mmol)를 물 16 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.2 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1255 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 24 15.6 g(수율 62%, MS: [M+H]+ = 650.3)을 제조하였다.
[제조예 25] 화합물 25의 합성
Figure PCTKR2023005050-appb-img-000083
질소 분위기에서 E-2(20 g, 39 mmol)와 (dibenzo[b,d]furan-4-yl-1,2,6,8,9-d5)boronic acid(8.5 g, 39 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(16.2 g, 117.1 mmol)를 물 16 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.4 g, 1.2 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1281 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 25 15.6 g(수율 61%, MS: [M+H]+ = 657.3)을 제조하였다.
[제조예 26] 화합물 26의 합성
Figure PCTKR2023005050-appb-img-000084
질소 분위기에서 F-1(20 g, 35.3 mmol)와 (dibenzo[b,d]furan-4-yl-1,2,6,8,9-d5)boronic acid(7.7 g, 35.3 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.6 g, 105.8 mmol)를 물15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1242 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 26 16.4 g(수율 66%, MS: [M+H]+ = 705.3)을 제조하였다.
[제조예 27] 화합물 27의 합성
Figure PCTKR2023005050-appb-img-000085
질소 분위기에서 G-2(20 g, 33.7 mmol)와 (dibenzo[b,d]furan-4-yl-1,2,6,8,9-d5)boronic acid(7.3 g, 33.7 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14 g, 101 mmol)를 물 14 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1231 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 27 16.2 g(수율 66%, MS: [M+H]+ = 732.4)을 제조하였다.
[제조예 28] 화합물 28의 합성
Figure PCTKR2023005050-appb-img-000086
질소 분위기에서 H-2(20 g, 33 mmol)와 (dibenzo[b,d]furan-4-yl-1,2,6,8,9-d5)boronic acid(7.2 g, 33 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(13.7 g, 99.1 mmol)를 물 14 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.1 g, 1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1227 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 28 18.9 g(수율 77%, MS: [M+H]+ = 743.3)을 제조하였다.
[제조예 29] 화합물 29의 합성
Figure PCTKR2023005050-appb-img-000087
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-chloro-4,6-diphenyl-1,3,5-triazine(9.6 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1160 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 29 14.1 g(수율 61%, MS: [M+H]+ = 647.3)을 제조하였다.
[제조예 30] 화합물 30의 합성
Figure PCTKR2023005050-appb-img-000088
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine(12.3 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1296 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 30 19.2 g(수율 74%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 31] 화합물 31의 합성
Figure PCTKR2023005050-appb-img-000089
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-([1,1'-biphenyl]-4-yl)-3-chloro-6-phenyl-1,3,5-triazine(12.3 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1296 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 31 20.7 g(수율 80%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 32] 화합물 32의 합성
Figure PCTKR2023005050-appb-img-000090
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(12.8 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1321 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 32 17.2 g(수율 65%, MS: [M+H]+ = 737.3)을 제조하였다.
[제조예 33] 화합물 33의 합성
Figure PCTKR2023005050-appb-img-000091
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine(13.4 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1327 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 33 20.2 g(수율 76%, MS: [M+H]+ = 740.2)을 제조하였다.
[제조예 34] 화합물 34의 합성
Figure PCTKR2023005050-appb-img-000092
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-chloro-4-(naphthalen-2-yl)-6-phenyl-1,3,5-triazine(11.4 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1278 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 34 14.1 g(수율 55%, MS: [M+H]+ = 713.3)을 제조하였다.
[제조예 35] 화합물 35의 합성
Figure PCTKR2023005050-appb-img-000093
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-chloro-4-(4-(naphthalen-1-yl)phenyl)-6-phenyl-1,3,5-triazine(14.1 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1415 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 35 15.8 g(수율 56%, MS: [M+H]+ = 789.3)을 제조하였다.
[제조예 36] 화합물 36의 합성
Figure PCTKR2023005050-appb-img-000094
질소 분위기에서 I-3(20 g, 35.9 mmol)와 2-chloro-3-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(12.8 g, 35.9 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(14.9 g, 107.7 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1350 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 36 19.4 g(수율 72%, MS: [M+H]+ = 753.3)을 제조하였다.
[제조예 37] 화합물 37의 합성
Figure PCTKR2023005050-appb-img-000095
질소 분위기에서 I-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(14.3 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1233 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 37 15.5 g(수율 63%, MS: [M+H]+ = 668.3)을 제조하였다.
[제조예 38] 화합물 38의 합성
Figure PCTKR2023005050-appb-img-000096
질소 분위기에서 I-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(10.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1364 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 38 17.5 g(수율 64%, MS: [M+H]+ = 739.3)을 제조하였다.
[제조예 39] 화합물 39의 합성
Figure PCTKR2023005050-appb-img-000097
질소 분위기에서 I-3(20 g, 37 mmol)와 2-(2-bromophenyl)-4,6-diphenyl-1,3,5-triazine(9.9 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1364 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 39 18 g(수율 66%, MS: [M+H]+ = 739.3)을 제조하였다.
[제조예 40] 화합물 40의 합성
Figure PCTKR2023005050-appb-img-000098
질소 분위기에서 J-3(20 g, 37 mmol)와 2-chloro-4,6-diphenyl-1,3,5-triazine(9.9 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1194 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 40 18.1 g(수율 76%, MS: [M+H]+ = 647.3)을 제조하였다.
[제조예 41] 화합물 41의 합성
Figure PCTKR2023005050-appb-img-000099
질소 분위기에서 J-3(20 g, 37 mmol)와 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine(12.7 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 41 17.9 g(수율 67%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 42] 화합물 42의 합성
Figure PCTKR2023005050-appb-img-000100
질소 분위기에서 J-3(20 g, 37 mmol)와 2-([1,1'-biphenyl]-4-yl)-3-chloro-6-phenyl-1,3,5-triazine(12.7 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 42 14.4 g(수율 54%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 43] 화합물 43의 합성
Figure PCTKR2023005050-appb-img-000101
질소 분위기에서 J-3(20 g, 37 mmol)와 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(13.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1360 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 43 15 g(수율 55%, MS: [M+H]+ = 737.3)을 제조하였다.
[제조예 44] 화합물 44의 합성
Figure PCTKR2023005050-appb-img-000102
질소 분위기에서 J-3(20 g, 37 mmol)와 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine(13.8 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1366 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 44 17.2 g(수율 63%, MS: [M+H]+ = 740.2)을 제조하였다.
[제조예 45] 화합물 45의 합성
Figure PCTKR2023005050-appb-img-000103
질소 분위기에서 J-3(20 g, 37 mmol)와 2-chloro-4-(naphthalen-2-yl)-6-phenyl-1,3,5-triazine(11.7 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1286 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 45 13.1 g(수율 51%, MS: [M+H]+ = 697.3)을 제조하였다.
[제조예 46] 화합물 46의 합성
Figure PCTKR2023005050-appb-img-000104
질소 분위기에서 J-3(20 g, 37 mmol)와 2-chloro-4-(4-(naphthalen-1-yl)phenyl)-6-phenyl-1,3,5-triazine(14.5 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1427 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 46 14.6 g(수율 51%, MS: [M+H]+ = 773.3)을 제조하였다.
[제조예 47] 화합물 47의 합성
Figure PCTKR2023005050-appb-img-000105
질소 분위기에서 J-3(20 g, 37 mmol)와 2-chloro-3-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(13.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1360 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 47 19.9 g(수율 73%, MS: [M+H]+ = 737.3)을 제조하였다.
[제조예 48] 화합물 48의 합성
Figure PCTKR2023005050-appb-img-000106
질소 분위기에서 J-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(14.3 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1203 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 48 18.8 g(수율 78%, MS: [M+H]+ = 652.3)을 제조하였다.
[제조예 49] 화합물 49의 합성
Figure PCTKR2023005050-appb-img-000107
질소 분위기에서 J-3(20 g, 37 mmol)와 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine(10.2 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 49 19.5 g(수율 73%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 50] 화합물 50의 합성
Figure PCTKR2023005050-appb-img-000108
질소 분위기에서 J-3(20 g, 37 mmol)와 2-(2-bromophenyl)-4,6-diphenyl-1,3,5-triazine(9.9 g, 37 mmol)를 테트라하이드로퓨란 400 ml에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트(15.3 g, 110.9 mmol)를 물 15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.1 mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 생성된 고체를 여과하였다. 고체를 클로로포름 1334 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 50 19.5g(수율 73%, MS: [M+H]+ = 723.3)을 제조하였다.
[제조예 51] 화합물 51의 합성
Figure PCTKR2023005050-appb-img-000109
질소 분위기에서 C-2(20 g, 38.9 mmol)와 dibenzo[b,d]furan-4-ylboronic acid(8.2 g, 38.9 mmol)를 테트라하이드로퓨란 600 ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(16.1 g, 116.7 mmol)를 물 16 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.2 mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 1257 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 51 17.3g(수율 69%, MS:[M+H]+= 647.3)을 제조하였다.
[제조예 52] 화합물 52의 합성
Figure PCTKR2023005050-appb-img-000110
질소 분위기에서 C-2(20 g, 38.9 mmo l)와 (dibenzo[b,d]thiophen-4-yl-1,2,3,6,7,8,9-d7)boronic acid(9.1 g, 38.9 mmol)를 테트라하이드로퓨란 600 ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(16.1 g, 116.7 mmol)를 물 16 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.2 mmol)을 투입하였다. 3시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 1302 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 52 15.1g(수율 58%, MS:[M+H]+=670.3)을 제조하였다.
[제조예 53] 화합물 53의 합성
Figure PCTKR2023005050-appb-img-000111
질소 분위기에서 2-chloro-4,6-diphenyl-1,3,5-triazine(100 g, 374.4 mmol)와 (4-chloro-2-fluorophenyl)boronic acid(65.2 g, 374.4 mmol)를 테트라하이드로퓨란 2000 ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(155.3 g, 1123.3 mmol)를 물 155 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(13 g, 11.2 mmol)을 투입하였다. 3시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 6760 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 K-1 108.2g (수율 80%, MS:[M+H]+=362.1)을 제조하였다.
Figure PCTKR2023005050-appb-img-000112
질소 분위기에서 K-1(50 g, 138.5 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(24 g, 138.5 mmol)를 다이메틸포름아마이드 1000 ml에 넣고 교반 및 환류하였다. 이 후 삼인산포타슘(88.2 g, 415.4 mmol)를투입하고 충분히 교반한 후 7시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 712 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 노랑의 고체 화합물 K-2 38.4g(수율 54%, MS: [M+H]+=515.2)을 제조하였다.
Figure PCTKR2023005050-appb-img-000113
질소 분위기에서 K-2(20 g, 38.9 mmol)와 (dibenzo[b,d]thiophen-4-yl-1,2,6,8,9-d5)boronic acid(9.1 g, 38.9 mmol)를 테트라하이드로퓨란 600 ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(16.1 g, 116.7 mmol)를 물 16 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.3 g, 1.2 mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 1298 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 Compound 53 17.4g(수율 67%, MS:[M+H]+= 668.3)을 제조하였다.
[실험예]
<실험예 1>
ITO(indium tin oxide)가 1,300Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
상기와 같이 준비된 ITO 투명 전극 위에 하기 HI-1 화합물을 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 250Å의 두께로 열 진공 증착하여 정공수송층을 형성하고, HT-1 증착막 위에 하기 HT-2 화합물을 50Å 두께로 진공 증착하여 전자저지층을 형성하였다. 상기 HT-2 증착막 위에 발광층으로서 앞서 제조예 1에서 제조한 화합물 1, 하기 YGH-1 화합물, 및 인광도펀트 YGD-1을 44:44:12의 중량비로 공증착하여 400Å 두께의 발광층을 형성하였다. 상기 발광층 위에 하기 ET-1 화합물을 250Å의 두께로 진공 증착하여 전자수송층을 형성하고, 상기 전자수송층 위에 하기 ET-2 화합물 및 Li를 98:2의 중량비로 진공 증착하여 100Å 두께의 전자주입층을 형성하였다. 상기 전자주입층 위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2023005050-appb-img-000114
상기의 과정에서 유기물의 증착속도는 0.4 내지 0.7 Å/sec를 유지하였고, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 × 10-7 내지 5 × 10-8 torr를 유지하였다.
<실험예 2 내지 53>
상기 실험예 1에서 제조예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
<비교 실험예 1>
상기 실험예 1에서 제조예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1의 CE1의 화합물은 하기와 같다.
<비교 실험예 2 내지 5>
상기 실험예 1에서 제조예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
Figure PCTKR2023005050-appb-img-000115
상기 실험예 및 비교실험예에서 유기 발광 소자를 10mA/cm2의 전류 밀도에서 전압과 효율을 측정하였고, 50mA/cm2의 전류 밀도에서 수명을 측정하여 그 결과를 하기 표 1에 나타내었다. 이때, LT95는 초기 휘도 대비 95%가 되는 시간을 의미한다
화합물 전압(V)
(@10mA/cm2)
효율(Cd/A)
(@10mA/cm2)
색좌표
(x,y)
수명(h)
(LT95 at 50mA/cm2)
실험예 1 화합물 1 4.2 81 0.45, 0.53 250
실험예 2 화합물 2 4.3 82 0.44, 0.54 260
실험예 3 화합물 3 4.4 80 0.45, 0.54 280
실험예 4 화합물 4 4.3 77 0.44, 0.53 260
실험예 5 화합물 5 4.4 78 0.45, 0.53 290
실험예 6 화합물 6 4.3 77 0.44, 0.54 220
실험예 7 화합물 7 4.2 75 0.45, 0.53 210
실험예 8 화합물 8 4.3 77 0.44, 0.54 280
실험예 9 화합물 9 4.2 81 0.45, 0.54 270
실험예 10 화합물 10 4.2 84 0.44, 0.53 220
실험예 11 화합물 11 4.1 83 0.45, 0.54 210
실험예 12 화합물 12 4.2 79 0.45, 0.53 280
실험예 13 화합물 13 4.4 80 0.44, 0.54 295
실험예 14 화합물 14 4.6 80 0.45, 0.54 315
실험예 15 화합물 15 4.3 77 0.44, 0.53 290
실험예 16 화합물 16 4.4 76 0.45, 0.53 325
실험예 17 화합물 17 4.4 78 0.44, 0.54 250
실험예 18 화합물 18 4.3 75 0.45, 0.53 230
실험예 19 화합물 19 4.4 77 0.44, 0.54 315
실험예 20 화합물 20 4.2 79 0.45, 0.54 300
실험예 21 화합물 21 4.4 84 0.44, 0.53 250
실험예 22 화합물 22 4.4 80 0.45, 0.54 240
실험예 23 화합물 23 4.2 81 0.45, 0.53 270
실험예 24 화합물 24 4.2 81 0.44, 0.54 280
실험예 25 화합물 25 4.2 81 0.45, 0.54 260
화합물 전압(V)
(@10mA/cm2)
효율(Cd/A)
(@10mA/cm2)
색좌표
(x,y)
수명(h)
(LT95 at 50mA/cm2)
실험예 26 화합물 26 4.5 75 0.44, 0.53 280
실험예 27 화합물 27 4.3 80 0.45, 0.53 250
실험예 28 화합물 28 4.2 81 0.44, 0.54 280
실험예 29 화합물 29 4.3 83 0.45, 0.53 265
실험예 30 화합물 30 4.4 84 0.44, 0.54 280
실험예 31 화합물 31 4.6 84 0.45, 0.54 300
실험예 32 화합물 32 4.5 81 0.44, 0.53 275
실험예 33 화합물 33 4.4 80 0.45, 0.53 310
실험예 34 화합물 34 4.6 82 0.44, 0.54 235
실험예 35 화합물 35 4.4 79 0.45, 0.53 240
실험예 36 화합물 36 4.6 81 0.44, 0.54 310
실험예 37 화합물 37 4.4 82 0.45, 0.54 280
실험예 38 화합물 38 4.5 88 0.44, 0.53 240
실험예 39 화합물 39 4.4 83 0.45, 0.54 210
실험예 40 화합물 40 4.1 85 0.45, 0.53 215
실험예 41 화합물 41 4.2 86 0.44, 0.54 220
실험예 42 화합물 42 4.3 84 0.45, 0.54 240
실험예 43 화합물 43 4.3 80 0.44, 0.53 220
실험예 44 화합물 44 4.2 82 0.45, 0.53 250
실험예 45 화합물 45 4.3 80 0.44, 0.54 190
실험예 46 화합물 46 4.2 79 0.45, 0.53 180
실험예 47 화합물 47 4.2 81 0.44, 0.54 240
실험예 48 화합물 48 4.2 84 0.45, 0.54 230
실험예 49 화합물 49 4.2 84 0.44, 0.53 190
실험예 50 화합물 50 4.3 81 0.45, 0.54 200
실험예 51 화합물 51 4.1 85 0.45, 0.53 240
실험예 52 화합물 52 4.3 84 0.45, 0.53 260
실험예 53 화합물 53 4.4 82 0.45, 0.54 315
화합물 전압(V)
(@10mA/cm2)
효율(Cd/A)
(@10mA/cm2)
색좌표
(x,y)
수명(h)
(LT95 at 50mA/cm2)
비교실험예 1 CE 1 4.2 74 0.45, 0.53 80
비교실험예 2 CE 2 4.2 81 0.45, 0.53 130
비교실험예 3 CE 3 4.5 74 0.44, 0.54 70
비교실험예 4 CE 4 4.4 75 0.45, 0.54 90
비교실험예 5 CE 5 4.2 81 0.45, 0.53 150
상기 표 1에서 나타난 바와 같이, 본 발명의 화합물을 발광층 물질로 사용할 경우, 비교 실험예에 비하여 효율 및 수명이 우수한 특성을 나타내는 것을 확인할 수 있었다. 이는 트리아진과 및 카바졸, 다이벤조퓨란 및 다이벤조싸이오펜이 분자내 분포되면서 전자안정성이 증가된 것으로 보인다. 특히 카바졸기에 추가적인 중수소 치환시 수명증가에 우수한 특성이 보인다. 이 또한 전자안정성이 증가된 것으로 보인다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 8: 전자주입 및 수송층

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2023005050-appb-img-000116
    상기 화학식 1에서,
    R1은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 두개의 R1이 결합하여 치환 또는 비치환된 C6-60 방향족 고리; 또는 치환 또는 비치환된 N,O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로방향족 고리를 형성하고,
    R2는 각각 독립적으로 수소; 또는 중수소이고, 단 R2 중 적어도 하나 이상은 중수소이고,
    X1 및 X2 중 하나는 하기 화학식 2로 표시되는 치환기와 연결되는 탄소(C)이고, 다른 하나는 CH 또는 CD이고;
    Ar1은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    Ar2는 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    Z는 각각 독립적으로 수소; 또는 중수소이고,
    L은 직접결합; 또는 치환 또는 비치환된 C6-60 아릴이고,
    [화학식 2]
    Figure PCTKR2023005050-appb-img-000117
    상기 화학식 2에서,
    Y는 O 또는 S이고,
    R3은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    R4는 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.
  2. 제1항에 있어서,
    화학식 1은 하기 화학식 3a 내지 3o 중 어느 하나로 표시되는 화합물:
    Figure PCTKR2023005050-appb-img-000118
    Figure PCTKR2023005050-appb-img-000119
    상기에서,
    Ar1, Ar2, Y, X1, X2, R1’, R2 및 L에 대한 설명은 제1항에서 정의한 바와 같다.
  3. 제2항에 있어서,
    상기 화학식 3a 내지 3o에서,
    R1’은 각각 독립적으로 수소; 중수소; 또는 페닐이고,
    여기서 페닐은 비치환되거나, 또는 1개 이상의 중수소로 치환되는,
    화합물.
  4. 제1항에 있어서,
    Ar1은 페닐; 비페닐릴; 터페닐릴; 나프틸페닐; 나프틸; 페난트릴; 디벤조퓨라닐; 디벤조티오페닐; 페닐카바졸일; 또는 N-카바졸일이고,
    여기서, Ar1은 비치환되거나, 또는 1개 이상의 중수소로 치환되는,
    화합물.
  5. 제1항에 있어서,
    Ar2은 페닐; 비페닐릴; 터페닐릴; 나프틸페닐; 나프틸; 페난트릴; 디벤조퓨라닐; 디벤조티오페닐; 페닐카바졸일; 또는 N-카바졸일이고,
    여기서, Ar2은 비치환되거나, 또는 1개 이상의 중수소로 치환되는,
    화합물.
  6. 제1항에 있어서,
    L은 직접결합인,
    화합물.
  7. 제1항에 있어서,
    R3은 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 페닐인,
    화합물.
  8. 제1항에 있어서,
    R4는 각각 독립적으로 수소; 중수소; 또는 중수소로 치환 또는 비치환된 페닐인,
    화합물.
  9. 제1항에 있어서,
    상기 치환기
    Figure PCTKR2023005050-appb-img-000120
    는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2023005050-appb-img-000121
    상기에서,
    R1에 대한 설명은 제1항에서 정의한 바와 같다.
  10. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2023005050-appb-img-000122
    Figure PCTKR2023005050-appb-img-000123
    Figure PCTKR2023005050-appb-img-000124
    Figure PCTKR2023005050-appb-img-000125
    Figure PCTKR2023005050-appb-img-000126
    Figure PCTKR2023005050-appb-img-000127
    Figure PCTKR2023005050-appb-img-000128
    Figure PCTKR2023005050-appb-img-000129
    Figure PCTKR2023005050-appb-img-000130
    Figure PCTKR2023005050-appb-img-000131
    Figure PCTKR2023005050-appb-img-000132
    Figure PCTKR2023005050-appb-img-000133
    Figure PCTKR2023005050-appb-img-000134
    Figure PCTKR2023005050-appb-img-000135
    Figure PCTKR2023005050-appb-img-000136
    Figure PCTKR2023005050-appb-img-000137
    Figure PCTKR2023005050-appb-img-000138
    Figure PCTKR2023005050-appb-img-000139
    Figure PCTKR2023005050-appb-img-000140
    Figure PCTKR2023005050-appb-img-000141
    Figure PCTKR2023005050-appb-img-000142
    .
  11. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층은 제1항 내지 제10항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  12. 제11항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인,
    유기 발광 소자.
PCT/KR2023/005050 2022-04-15 2023-04-14 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2023200282A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380016053.XA CN118510772A (zh) 2022-04-15 2023-04-14 新的化合物和包含其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0046837 2022-04-15
KR20220046837 2022-04-15
KR1020230048984A KR20230148765A (ko) 2022-04-15 2023-04-13 신규한 화합물 및 이를 이용한 유기 발광 소자
KR10-2023-0048984 2023-04-13

Publications (1)

Publication Number Publication Date
WO2023200282A1 true WO2023200282A1 (ko) 2023-10-19

Family

ID=88330037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005050 WO2023200282A1 (ko) 2022-04-15 2023-04-14 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2023200282A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024167337A1 (ko) * 2023-02-09 2024-08-15 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2024204396A1 (ja) * 2023-03-30 2024-10-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926771B1 (ko) * 2018-03-02 2018-12-07 주식회사 진웅산업 열활성지연형광 특성을 갖는 인광 그린호스트 물질을 포함하는 유기발광소자
US20200331898A1 (en) * 2017-10-30 2020-10-22 Cynora Gmbh Organic molecules for use in optoelectronic devices
CN111943934A (zh) * 2020-08-04 2020-11-17 吉林奥来德光电材料股份有限公司 一种电子传输类发光化合物及其制备方法以及有机发光器件
KR20210001936A (ko) * 2019-06-27 2021-01-06 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20210067976A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200331898A1 (en) * 2017-10-30 2020-10-22 Cynora Gmbh Organic molecules for use in optoelectronic devices
KR101926771B1 (ko) * 2018-03-02 2018-12-07 주식회사 진웅산업 열활성지연형광 특성을 갖는 인광 그린호스트 물질을 포함하는 유기발광소자
KR20210001936A (ko) * 2019-06-27 2021-01-06 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20210067976A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자
CN111943934A (zh) * 2020-08-04 2020-11-17 吉林奥来德光电材料股份有限公司 一种电子传输类发光化合物及其制备方法以及有机发光器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024167337A1 (ko) * 2023-02-09 2024-08-15 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2024204396A1 (ja) * 2023-03-30 2024-10-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Similar Documents

Publication Publication Date Title
WO2021182775A1 (ko) 유기 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2020141949A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023200282A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021150048A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2023075409A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022039518A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2024085607A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085833A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2022177401A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2024063592A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022177404A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023085835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022177398A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023096454A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021230690A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2024172625A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023085789A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2023096426A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18833787

Country of ref document: US