WO2022123957A1 - 単結晶製造装置 - Google Patents

単結晶製造装置 Download PDF

Info

Publication number
WO2022123957A1
WO2022123957A1 PCT/JP2021/040259 JP2021040259W WO2022123957A1 WO 2022123957 A1 WO2022123957 A1 WO 2022123957A1 JP 2021040259 W JP2021040259 W JP 2021040259W WO 2022123957 A1 WO2022123957 A1 WO 2022123957A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
single crystal
cooling
rectifying
manufacturing apparatus
Prior art date
Application number
PCT/JP2021/040259
Other languages
English (en)
French (fr)
Inventor
佳祐 三原
和也 柳瀬
伸晃 三田村
清隆 高野
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020205275A external-priority patent/JP2022092450A/ja
Priority claimed from JP2020205263A external-priority patent/JP7420060B2/ja
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112021005336.1T priority Critical patent/DE112021005336T5/de
Priority to US18/037,802 priority patent/US20240003046A1/en
Priority to KR1020237018918A priority patent/KR20230116813A/ko
Priority to CN202180080412.9A priority patent/CN116568872A/zh
Publication of WO2022123957A1 publication Critical patent/WO2022123957A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a single crystal manufacturing apparatus.
  • RF (radio frequency) devices are used for communication such as mobile phones.
  • the substrate resistivity is low, the loss is large due to high conductivity. Therefore, the high resistivity of 1000 ⁇ cm or more, that is, the concentration of dopants such as B and P related to the resistivity is very high. Low wafers are used.
  • a wafer called SOI Silicon on Insulator
  • SOI Silicon on Insulator
  • a thin oxide film + a thin silicon layer is formed on the surface layer of a silicon substrate, may be used, but in this case as well, a high resistivity is desired.
  • Patent Document 1 a method of growing a single crystal by the CZ method using a polycrystalline raw material stored in a polyethylene storage bag having less organic contamination such as paraffin-based hydrocarbons of Patent Document 1, Patent Document.
  • Examples thereof include a method in which an organic substance on the surface of the polycrystal of No. 2 is identified, quantitatively analyzed, raw materials are selected, and then a single crystal is grown by the CZ method.
  • carbon-containing gas is generated in the furnace by the reaction between the carbon member in the pulling machine furnace and SiO evaporating from the silicon melt during crystal growth, and this carbon-containing gas is generated.
  • the carbon concentration rises when the carbon is mixed in the melt.
  • the linear velocity of the inert gas flowing from directly above the silicon raw material melt toward the upper end of the quartz rut can be increased, thereby increasing the linear velocity of the carbon member and silicon in the furnace. It is possible to prevent the carbon-containing gas generated by the reaction of SiO evaporating from the melt from flowing back to the raw material melt side, and as a result, a single crystal having a lower carbon concentration than that without the rectifying member is grown. Is possible.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus capable of producing a single crystal having a lower carbon concentration than that of the prior art.
  • the first aspect of the present invention is a single crystal manufacturing apparatus for growing a single crystal by the Czochralski method.
  • a main chamber with a ceiling and a crucible for storing silicone melt,
  • a pull-up chamber that is connected upward from the ceiling of the main chamber via a gate valve and accommodates a silicon single crystal pulled up from the silicon melt.
  • a heat-shielding member arranged so as to face the silicon melt contained in the crucible,
  • a rectifying cylinder arranged on the heat shield member so as to surround the silicon single crystal being pulled up,
  • a cooling cylinder arranged so as to surround the silicon single crystal being pulled up, including a portion extending from the ceiling portion of the main chamber toward the silicon melt, and forcibly cooled by a cooling medium.
  • the single crystal manufacturing apparatus is characterized in that the cooling auxiliary cylinder has at least a first portion surrounding the bottom surface of the cooling cylinder and a second portion surrounding the upper end portion of the rectifying cylinder. offer.
  • the temperature of the space around the cooling auxiliary cylinder can be lowered, and the carbon member and the silicon melt in the furnace of the single crystal manufacturing apparatus evaporate. It is possible to suppress the generation of carbon-containing gas generated by the reaction of SiO.
  • the rectifying cylinder on the heat shielding member and having the structure in which the second part of the cooling auxiliary cylinder surrounds the upper end of the rectifying cylinder, the carbon-containing gas generated by the above reaction is a silicon melt. It is also possible to suppress the diffusion to the side. As a result of combining these effects, it becomes possible to efficiently produce a single crystal having a lower carbon concentration than that of the prior art.
  • the rectifying cylinder is preferably made of synthetic quartz.
  • the cooling auxiliary cylinder is made of at least one selected from the group consisting of graphite member, carbon composite member, stainless steel, molybdenum, and tungsten.
  • the first portion of the cooling auxiliary cylinder has a structure that covers the bottom surface of the cooling auxiliary cylinder, and the gap between the first portion of the cooling auxiliary cylinder and the bottom surface of the cooling cylinder is 1.0 mm or less. Is preferable.
  • the second portion of the cooling auxiliary cylinder preferably includes a groove portion that covers a region of 10% or more and 35% or less of the total area of the side surface of the straightening cylinder.
  • the gap between both side surfaces of the upper end portion of the rectifying cylinder and the side surface of the groove portion of the second portion of the cooling auxiliary cylinder is 5 mm or more and 25 mm or less.
  • the rectifying cylinder has an opening on the side surface and the height of the upper end of the opening of the rectifying cylinder is formed at a height of 35% or less of the total height of the rectifying cylinder.
  • the second aspect of the present invention is a single crystal manufacturing apparatus for growing a single crystal by the Czochralski method.
  • a main chamber with a ceiling and a crucible for storing silicone melt
  • a pull-up chamber that is connected upward from the ceiling of the main chamber via a gate valve and contains a silicon single crystal pulled up from the silicon melt.
  • a heat-shielding member arranged so as to face the silicon melt contained in the crucible,
  • a rectifying cylinder arranged on the heat shield member so as to surround the silicon single crystal being pulled up,
  • a cooling cylinder arranged so as to surround the silicon single crystal being pulled up, including a portion extending from the ceiling portion of the main chamber toward the silicon melt, and forcibly cooled by a cooling medium.
  • It has a cooling auxiliary cylinder fitted inside the cooling cylinder, and has.
  • a single crystal manufacturing apparatus characterized in that the upper portion of the rectifying cylinder has a structure surrounding the lower portion of the cooling auxiliary cylinder in a portion of the cooling auxiliary cylinder protruding downward from the cooling cylinder.
  • the temperature of the space around the cooling auxiliary cylinder can be lowered, and the reaction between the carbon member in the furnace and the SiO evaporating from the silicon melt causes the temperature to drop. It is possible to suppress the generation of carbon-containing gas generated.
  • the rectifying cylinder is placed on the heat shielding member, and the upper part of the rectifying cylinder surrounds the lower part of the cooling auxiliary cylinder in the portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder. It is also possible to suppress the diffusion of the carbon-containing gas generated by the above reaction to the silicon melt side by adopting the structure.
  • the single crystal manufacturing apparatus according to the second aspect of the present invention, as a result of combining these effects, it becomes possible to efficiently manufacture a single crystal having a lower carbon concentration as compared with the prior art.
  • the rectifying cylinder is made of synthetic quartz.
  • the material of the cooling auxiliary cylinder is preferably at least one selected from the group consisting of graphite member, carbon composite member, stainless steel, molybdenum, and tungsten.
  • a single crystal manufacturing apparatus having such a cooling auxiliary cylinder can more efficiently manufacture a single crystal having a lower carbon concentration.
  • the rectifying cylinder has a structure in which a region of 5% or more of the total area of the side surface of the portion of the cooling auxiliary cylinder protruding downward from the cooling cylinder is surrounded by the upper portion of the rectifying cylinder. Is preferable.
  • the gap between the side surface of the rectifying cylinder and the side surface of the cooling auxiliary cylinder at the portion of the cooling auxiliary cylinder protruding downward from the cooling cylinder is 3 mm or more and less than 15 mm.
  • the rectifying cylinder has an opening on the side surface and the height of the upper end of the opening of the rectifying cylinder is formed at a height of 35% or less of the total height of the rectifying cylinder. ..
  • the single crystal manufacturing apparatus can efficiently manufacture a single crystal having a lower carbon concentration than the prior art.
  • the generation of carbon-containing gas generated by the reaction between the carbon member in the pulling machine furnace and the SiO evaporating from the silicon melt is suppressed.
  • the effect of suppressing the diffusion of the carbon-containing gas generated by the above reaction to the silicon melt side is obtained, and as a result of combining these effects, the carbon concentration is lower than that of the prior art. It becomes possible to efficiently produce crystals.
  • FIG. 3 is an enlarged schematic cross-sectional view of a peripheral portion of a cooling auxiliary cylinder in an example of the single crystal manufacturing apparatus shown in FIG. 1. It is an enlarged schematic cross-sectional view of the peripheral part of a cooling auxiliary cylinder in another example of the single crystal manufacturing apparatus which concerns on 1st Embodiment of this invention. It is a schematic sectional drawing which shows an example of the single crystal manufacturing apparatus which concerns on the 2nd aspect of this invention. It is the schematic sectional drawing which showed the peripheral part of the rectifying cylinder of the single crystal manufacturing apparatus shown in FIG. 4 enlarged.
  • FIG. It is the schematic sectional drawing of the single crystal manufacturing apparatus by the CZ method used in the comparative example 1 and the comparative example 3.
  • FIG. It is a graph which shows the solidification rate dependence of the carbon concentration in a single crystal in Example 5, Comparative Example 3 and Comparative Example 4. It is a graph which shows the solidification rate dependence of the carbon concentration in a single crystal in Example 6 and Comparative Example 3. It is a graph which shows the solidification rate dependence of the carbon concentration in a single crystal in Example 7 and Comparative Example 3.
  • the present invention relates to a manufacturing apparatus for a single crystal, for example, a silicon single crystal, which is grown by the Czochralski method (CZ method) or the magnetic field applied CZ method (MCZ method).
  • CZ method Czochralski method
  • MCZ method magnetic field applied CZ method
  • the present inventors have arranged a rectifying cylinder on the heat-shielding member so as to surround the silicon single crystal being pulled up, and fitted a cooling auxiliary cylinder inside the cooling cylinder.
  • the first part of the cooling auxiliary cylinder surrounds the bottom surface of the cooling cylinder facing the silicon melt (silicon melt), and the second part of the cooling auxiliary cylinder surrounds the upper end of the rectifying cylinder. It is possible to suppress the generation of carbon-containing gas generated by the reaction between the carbon member and SiO evaporating from the silicon melt, and further suppress the diffusion of the carbon-containing gas generated by the above reaction to the silicon melt side. It was found that it was possible, and the first aspect of the present invention was completed.
  • the first aspect of the present invention is a single crystal manufacturing apparatus for growing a single crystal by the Czochralski method.
  • a main chamber with a ceiling and a crucible for storing silicone melt
  • a pull-up chamber that is connected upward from the ceiling of the main chamber via a gate valve and accommodates a silicon single crystal pulled up from the silicon melt.
  • a heat-shielding member arranged so as to face the silicon melt contained in the crucible,
  • a rectifying cylinder arranged on the heat shield member so as to surround the silicon single crystal being pulled up,
  • a cooling cylinder arranged so as to surround the silicon single crystal being pulled up, including a portion extending from the ceiling portion of the main chamber toward the silicon melt, and forcibly cooled by a cooling medium.
  • the cooling auxiliary cylinder is a single crystal manufacturing apparatus having at least a first portion surrounding the bottom surface of the cooling cylinder and a second portion surrounding the upper end portion of the rectifying cylinder. be.
  • Patent Documents 1 and 2 shown above are related to this technique in that they focus on the carbon concentration in a single crystal, they are both techniques focusing on carbon contamination brought in from raw material silicon. This is a technique different from the first aspect of the present invention, which focuses on carbon contamination caused by the crystal manufacturing process.
  • Patent Documents 3 to 5 the linear velocity of the inert gas flowing from directly above the raw material melt toward the upper end of the quartz rut is increased by using a rectifying cylinder or a rectifying member, and the gas evaporates from the carbon member and the silicon melt in the furnace.
  • the carbon-containing gas generated by the reaction of SiO is less likely to flow back to the raw material melt side
  • all of Patent Documents 3 to 5 include the single crystal manufacturing apparatus of the first aspect of the present invention. , No description or suggestion of a cooling aid tube containing both the first and second parts.
  • the present inventors have arranged a rectifying cylinder on the heat shielding member so as to surround the silicon single crystal being pulled up, and fitted a cooling auxiliary cylinder inside the cooling cylinder. If it is a single crystal manufacturing device having a structure that surrounds the lower part of the cooling auxiliary cylinder of the portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder at the upper part of the rectifying cylinder, the carbon member in the furnace and the silicon melt It is possible to suppress the generation of carbon-containing gas generated by the reaction of SiO evaporating from (raw material melt), and further suppress the diffusion of carbon-containing gas generated by the above reaction to the silicon melt side. And completed the second aspect of the present invention.
  • the second aspect of the present invention is a single crystal manufacturing apparatus for growing a single crystal by the Czochralski method.
  • a main chamber with a ceiling and a crucible for storing silicone melt
  • a pull-up chamber that is connected upward from the ceiling of the main chamber via a gate valve and accommodates a silicon single crystal pulled up from the silicon melt.
  • a heat-shielding member arranged so as to face the silicon melt contained in the crucible,
  • a rectifying cylinder arranged on the heat shield member so as to surround the silicon single crystal being pulled up,
  • a cooling cylinder arranged so as to surround the silicon single crystal being pulled up, including a portion extending from the ceiling portion of the main chamber toward the silicon melt, and forcibly cooled by a cooling medium.
  • the upper portion of the rectifying cylinder is a single crystal manufacturing apparatus having a structure that surrounds the lower portion of the cooling auxiliary cylinder at a portion of the cooling auxiliary cylinder protruding downward from the cooling cylinder.
  • Patent Documents 1 and 2 described above are related to this technique in that they focus on the carbon concentration in a single crystal, they are all related to carbon contamination brought in from raw material silicon. This is a technique of interest, which is different from the second aspect of the present invention, which focuses on carbon contamination caused by the crystal manufacturing process.
  • a rectifying cylinder or a rectifying member is used to increase the linear velocity of the inert gas flowing from directly above the raw material melt toward the upper end of the quartz rut, and evaporate from the carbon member and the silicon melt in the furnace. It is suggested that the carbon-containing gas generated by the reaction of the SiO is less likely to flow back to the raw material melt side, but a rectifying cylinder is placed on the heat shield member so as to surround the silicon single crystal being pulled up.
  • the configuration of the second aspect of the present invention is disclosed in which the cooling auxiliary cylinder is fitted inside the cooling cylinder, and the lower part of the cooling auxiliary cylinder at the portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder is surrounded by the upper part of the rectifying cylinder. It has not been.
  • Main chamber The main chamber is provided with a ceiling portion and houses a crucible for accommodating a silicon melt.
  • the crucible may be composed of, for example, a quartz crucible accommodating a silicon melt and a graphite crucible supporting the quartz crucible.
  • the main chamber can have the same structure as the main chamber of a general CZ silicon single crystal manufacturing apparatus.
  • the main chamber can also store a heater.
  • the heater is arranged so as to surround the crucible, for example, and the raw material silicon contained in the crucible can be melted into a silicon melt.
  • the main chamber can store the insulation surrounding the heater.
  • the crucible can be supported by the crucible support.
  • a crucible shaft may be attached to the crucible support. The crucible shaft can rotate and raise and lower the crucible support and the crucible supported by the crucible support.
  • the pull-up chamber is connected upward from the ceiling of the main chamber via a gate valve, and accommodates the silicon single crystal pulled up from the silicon melt.
  • the pull-up chamber can have the same structure as the pull-up chamber of a general CZ silicon single crystal manufacturing apparatus.
  • the heat-shielding member is arranged so as to face the silicon melt contained in the crucible.
  • the heat shielding member can cut radiation from the surface of the silicon melt and keep the surface of the silicon melt warm.
  • the heat shielding member can be arranged so as to face the silicon melt, for example, in a shape in which the inner diameter gradually decreases downward.
  • the heat shield member can be stored in the main chamber, for example.
  • the material of the heat shield member is not particularly limited, but the heat shield member may be made of graphite, for example.
  • Rectifier cylinder The rectifier cylinder is arranged on the heat shield member so as to surround the silicon single crystal being pulled up.
  • the straightening cylinder can surround the silicon single crystal being pulled up as a concentric core with the heat shielding member.
  • the rectifying cylinder shall be made of quartz or ceramic. It is preferable that it is made of synthetic quartz, and it is particularly preferable that it is made of synthetic quartz.
  • the rectifying cylinder used at this time has an opening formed on the side surface thereof.
  • the flow velocity of the inert gas flowing from the opening of the rectifying cylinder toward the outside of the rectifying cylinder, for example, the window for monitoring the inside of the furnace in the cylinder described later increases.
  • the effect that the carbon-containing gas is less likely to flow back from the inside of the cylinder portion or the outside of the cylinder portion on the raw material melt side can be obtained.
  • the opening of the rectifying cylinder is located so that the height of the upper end of the opening is 35% or less of the total height of the rectifying cylinder, and the center of the opening is 30 mm in height from the lower end of the rectifying cylinder. It is preferable to have a structure provided at a position of 40 mm or less. Further, it is more preferable that the openings are formed on the side surface of the straightening cylinder at equal intervals in the circumferential direction, for example, a structure in which openings are provided on three axes of angles 0 °, 120 ° and 240 °. Can be. Further, it is preferable that the opening has a length of 50 mm or less from the upper end to the lower end of the opening and has a structure in which a region of 15% or less of the entire side area of the rectifying cylinder is opened.
  • the flow velocity of the inert gas flowing from the opening of the rectifying cylinder toward the outside of the rectifying cylinder, for example, the window for monitoring the inside of the furnace in the cylinder described later, is further increased.
  • the effect that the carbon-containing gas is less likely to flow back from the inside of the cylinder portion or the outside of the cylinder portion to the raw material melt side can be obtained.
  • the lower limit of the position of the upper end of the opening of the rectifying cylinder is not particularly limited, but the height of the upper end of the opening of the rectifying cylinder can be located, for example, at a height of 5% or more of the total height of the rectifying cylinder.
  • Cooling cylinder is arranged so as to surround the silicon single crystal being pulled up, includes a portion extending from the ceiling of the main chamber toward the silicon melt, and is forcibly cooled by a cooling medium. ..
  • the portion stretched toward the silicone melt has a bottom surface facing the silicone melt.
  • the cooling tube can be extended towards the silicone melt and placed in the main chamber below the gate valve.
  • the cooling medium for forcibly cooling the cooling cylinder is not particularly limited.
  • Cooling auxiliary cylinder The cooling auxiliary cylinder is fitted inside the cooling cylinder.
  • the cooling auxiliary cylinder has at least a first portion surrounding the bottom surface of the cooling cylinder and a second portion surrounding the upper end portion of the rectifying cylinder.
  • the cooling auxiliary cylinder is preferably made of at least one selected from the group consisting of graphite member, carbon composite member, stainless steel, molybdenum, and tungsten. Further, the first portion of the cooling auxiliary cylinder has a structure that covers the bottom surface of the cooling auxiliary cylinder facing the silicon melt, and the gap between the first portion of the cooling auxiliary cylinder and the bottom surface of the cooling cylinder is 1.0 mm or less. It is preferable that it is a thing. The gap may be 0 mm (perfect contact).
  • the cooling auxiliary cylinder having such a structure, not only the amount of radiant heat received from the high temperature part received by the first part of the cooling auxiliary cylinder covering the bottom surface of the cooling cylinder increases, but also the first part of the cooling auxiliary cylinder becomes hotter. As a result, the cooling auxiliary cylinder expands thermally, the gap with the bottom surface of the cooling cylinder can be reduced, and heat can be easily transferred to the cooling cylinder. In addition, the first part of the cooling auxiliary cylinder that covers the bottom surface of the cooling cylinder becomes high in temperature by receiving radiant heat from the silicon melt and the high temperature part, and the radiant heat generated by the cooling auxiliary cylinder itself to the bottom surface of the cooling cylinder increases.
  • the second portion of the cooling auxiliary cylinder preferably includes a groove portion covering a region of 10% or more and 35% or less of the total area of the side surface of the straightening cylinder.
  • the gap between both side surfaces of the upper end portion of the rectifying cylinder and the side surface of the groove portion of the second portion of the cooling auxiliary cylinder is 5 mm or more and 25 mm or less.
  • HZ hot zone
  • a single crystal manufacturing device that performs a magnetic field application CZ method can further include a magnetic field application device that applies a magnetic field to a silicon melt.
  • FIG. 1 is a schematic cross-sectional view showing an example of a single crystal manufacturing apparatus according to the first aspect of the present invention.
  • FIG. 2 is an enlarged schematic cross-sectional view of a peripheral portion of a cooling auxiliary cylinder in an example of the single crystal manufacturing apparatus shown in FIG.
  • the single crystal manufacturing apparatus 1 shown in FIGS. 1 and 2 includes a ceiling portion 21, a main chamber 2 for accommodating a quartz bulb 7 for accommodating a silicon melt 6, and a graphite bulb 8 for supporting the quartz bulb 7, and a main chamber 2.
  • a pull-up chamber 3 connected to the upper part via a gate valve (not shown), a heat shield member 12 arranged so as to face the silicon melt 6, and a rectifying cylinder 14 arranged on the heat shield member 12. It has a cooling cylinder 13 including a portion 131 extending from the ceiling portion 21 of the main chamber 2 toward the silicon melt 6, and a cooling auxiliary cylinder 15 fitted inside the cooling cylinder 13.
  • the main chamber 2 is arranged so as to surround the crucible support 16 that supports the graphite crucible 8, the crucible shaft 17 that supports the crucible support 16, the heater 9 arranged so as to surround the graphite crucible 8, and the heater 9.
  • the heat insulating material 10 is further stored.
  • the crucible shaft 17 can rotate the silicon melt 6, the quartz crucible 7, the graphite crucible 8 and the crucible support 16 around the rotation shaft 18, and can move them up and down.
  • a tubular portion 11 is arranged on the ceiling portion 21 of the main chamber 2.
  • the tubular portion 11 extends from the ceiling portion 21 toward the silicon melt 6, and the heat shielding member 12 is attached to the end portion.
  • the pulling chamber 3 accommodates the silicon single crystal 5 pulled from the silicon melt 6.
  • the rectifying cylinder 14 includes an upper end portion 141 on the opposite side of the heat shielding member 12.
  • the rectifying cylinder 14 is arranged on the heat shielding member 12 so as to surround the silicon single crystal 5 being pulled up. In the example shown in FIGS. 1 and 2, the rectifying cylinder 14 is arranged in the main chamber 2.
  • the cooling cylinder 13 is arranged so as to surround the silicon single crystal 5 being pulled up. Further, a part 131 of the cooling cylinder 13 extends from the ceiling portion 21 of the main chamber 2 toward the silicon melt 6. This portion 131 is arranged in the main chamber 2 and has a bottom surface 132 facing the silicon melt 6. Further, the cooling cylinder 13 further includes a portion 133 fitted inside the upper end portion of the main chamber extending upward from the ceiling portion 21 of the main chamber 2 located directly below the gate valve (not shown). The cooling cylinder 13 is forcibly cooled by a cooling medium supplied by a cooling medium circulation mechanism (not shown).
  • the cooling auxiliary cylinder 15 has a first portion 151 and a second portion 152. As shown in FIGS. 1 and 2, the first portion 151 of the cooling auxiliary cylinder 15 surrounds the bottom surface 132 of the cooling cylinder 13. More specifically, the first portion 151 of the cooling auxiliary cylinder 15 surrounds a part 131 including the bottom surface 132 of the cooling cylinder 13 in the vertical direction and from one side surface.
  • the first portion 151 of the cooling auxiliary cylinder 15 includes a flange portion 153 extending in a direction substantially perpendicular to the pulling direction of the silicon single crystal 5 shown in FIG.
  • the second portion 152 of the cooling auxiliary cylinder 15 surrounds the upper end portion 141 of the rectifying cylinder 14 in the main chamber 2. More specifically, the second portion 152 of the cooling auxiliary cylinder 15 includes the groove portion 154 shown in FIG. The groove portion 154 accommodates the upper end portion 141 of the rectifying cylinder 14, thereby covering a part of the side surface 142 of the rectifying cylinder 14. Further, the flange 153 of the first portion 151 of the cooling auxiliary cylinder 15 also surrounds the upper end portion 141 of the rectifying cylinder 14 as the bottom portion of the groove portion 154 which is a part of the second portion 152.
  • the gap between the first portion 151 (more specifically, the flange portion 153) of the cooling auxiliary cylinder 15 and the bottom surface 132 of the cooling cylinder 13 is represented by “d” shown in FIG.
  • the gap d is preferably 1.0 mm or less.
  • the ratio of the region covered by the groove portion 154 of the cooling auxiliary cylinder 15 to the total area of the side surface 142 of the rectifying cylinder 14 is "(a / b)" when "a" and "b” shown in FIG. 2 are used. It is represented by "x100".
  • the ratio a / b is preferably 10% or more and 35% or less.
  • the gap between the cooling auxiliary cylinder 15 and the side surface 142 of the rectifying cylinder 14 in the groove portion 154 of the second portion 152 of the cooling auxiliary cylinder 15 is represented by “c” shown in FIG.
  • the gap c is preferably 5 mm or more and 25 mm or less.
  • the above-mentioned a is an average value in the circumferential direction.
  • the values b to d are substantially constant over the entire circumferential direction. Therefore, the ratio a / b is preferably an average value in the circumferential direction.
  • the side surface 142 of the rectifying cylinder 14 does not have an opening has been described, but as shown in FIG. 3, for example, the side surface 142 of the rectifying cylinder 14 may be provided with an opening 143.
  • the flow velocity of the inert gas flowing from the opening 143 of the rectifying cylinder 14 toward the in-core monitoring window in the cylinder 11 can be increased.
  • the carbon-containing gas is less likely to flow back from the inside of the cylinder portion 11 or the outside of the cylinder portion 11 on the silicon melt 6 side.
  • the openings 143 shown in FIG. 3 are formed at equal intervals in the circumferential direction of the side surface 142 of the straightening cylinder 14.
  • the opening 143 can be provided on three axes, for example, angles 0 °, 120 ° and 240 °. Further, it is preferable that the opening 143 has a length of 50 mm or less from the upper end to the lower end of the opening 143, and has a structure in which a region of 15% or less of the total area of the side surface 142 of the straightening cylinder 14 is opened.
  • the ratio of the opened region of the opening 143 to the total area of the side surface 142 of the rectifying cylinder 14 corresponds to the ratio of the opening area e shown in FIG. 3 to the total area f, that is, the ratio e / f.
  • the height of the upper end of the opening is located at a height of 35% or less of the total height of the rectifying cylinder 14, and the center of the opening is from the lower end of the rectifying cylinder 14. It is preferable to have a structure provided at a position having a height of 30 mm or more and 40 mm or less.
  • the rectifying cylinder 14 having the opening 143 on the side surface 142 By using the rectifying cylinder 14 having the opening 143 on the side surface 142, the flow velocity of the inert gas flowing from the opening 143 of the rectifying cylinder 14 toward the in-core monitoring window in the cylinder 11 increases. As a result, the effect that the carbon-containing gas is less likely to flow back to the silicon melt 6 side from the inside of the cylinder portion 11 or the outside of the cylinder portion 11 can be obtained.
  • the single crystal manufacturing apparatus according to the first aspect of the present invention is not limited to the single crystal manufacturing apparatus shown in FIGS. 1 and 2, and the single crystal manufacturing apparatus according to the first aspect of the present invention is used.
  • the crystal production method is not limited to those exemplified below.
  • the seed crystal 4 is immersed in a silicon melt 6, and the seed crystal 4 is gently pulled upward while rotating the seed crystal 4, the quartz rutsubo 7 and the graphite rutsubo 8 around the rotation axis 18, and the rod-shaped silicon single crystal is used. While the crystal 5 is grown, the quartz ruts 7 and the graphite ruts 8 are raised in accordance with the growth of the crystals so that the height of the melt surface is always kept constant in order to obtain a desired diameter and crystal quality.
  • the ascent of the quartz crucible 7 and the graphite crucible 8 and the rotation of the quartz crucible 7 and the graphite crucible 8 can be performed using the crucible shaft 17.
  • the silicon melt 6 can be obtained by putting the raw material silicon into the quartz crucible 7 and melting the raw material silicon using the heater 9.
  • the raw material silicon used at this time is preferably a semiconductor-grade high-purity raw material.
  • a first aspect of the present invention is to manufacture a crystal by adopting a structure in which the bottom surface 132 of the cooling cylinder 13 is surrounded by the first portion 151 of the cooling auxiliary cylinder 15 and the upper end portion 141 of the rectifying cylinder 14 is covered by the second portion 152.
  • the raw material silicon used is a semiconductor-grade high-purity raw material.
  • the radiant heat from the silicon single crystal 5 and the radiant heat from the high temperature part such as the heater 9 can be sufficiently transmitted to the cooling cylinder 13.
  • the heat generated can be removed by forced cooling with a cooling medium. Thereby, the silicon single crystal can be produced more efficiently.
  • the space around the cooling auxiliary cylinder 15, for example, the space around the silicon single crystal 5 directly above the silicon melt, and the cooling auxiliary cylinder 15 and the cylinder portion 11 The temperature of the space surrounded by and can be lowered.
  • the reaction between the carbon member in the manufacturing apparatus 1 and the SiO evaporating from the silicon melt 6 can be suppressed, and the generation of carbon-containing gas can be suppressed.
  • the carbon-containing gas flows back into the silicon melt by the rectifying cylinder 14 in which the upper end portion 141 is surrounded by the second portion 152 of the cooling auxiliary cylinder 15. Can be prevented.
  • the rectifying cylinder 14 has an opening 143 on the side surface 142 as shown in FIG. 3, as described above. It is possible to further prevent the carbon-containing gas from flowing back to the silicon melt 6 side.
  • the single crystal manufacturing apparatus according to the second aspect of the present invention, as a result of combining these effects, it becomes possible to efficiently manufacture a single crystal having a lower carbon concentration as compared with the prior art.
  • Cooling cylinder is arranged so as to surround the silicon single crystal being pulled up, includes a portion extending from the ceiling of the main chamber toward the silicon melt, and is forcibly cooled by a cooling medium. ..
  • the cooling tube can be extended towards the silicone melt and placed in the main chamber below the gate valve.
  • the cooling medium for forcibly cooling the cooling cylinder is not particularly limited.
  • Cooling auxiliary cylinder The cooling auxiliary cylinder is fitted inside the cooling cylinder.
  • the material of the cooling auxiliary cylinder used at this time is preferably at least one selected from the group consisting of graphite members, carbon composite members, stainless steel, molybdenum, and tungsten.
  • Rectifying cylinder The rectifying cylinder in the second aspect of the present invention is arranged on a heat shielding member so as to surround the silicon single crystal being pulled up.
  • the straightening cylinder can surround the silicon single crystal being pulled up as a concentric core with the heat shielding member.
  • the rectifying cylinder has a structure in which the upper part surrounds the lower part of the cooling auxiliary cylinder in the portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder. Therefore, the inner diameter of the rectifying cylinder needs to be larger than the outer diameter of the lower part of the cooling auxiliary cylinder.
  • the carbon member in the furnace and the SiO evaporating from the silicon melt can be used. Even if a carbon-containing gas is generated by the reaction, it is possible to surely suppress the carbon-containing gas from diffusing toward the silicon melt side.
  • the rectifying cylinder is made of quartz or ceramic. It is preferable that the material is made of synthetic quartz, and it is particularly preferable that the material is made of synthetic quartz.
  • the rectifying cylinder used at this time preferably has a structure in which a region of 5% or more of the total area of the side surface of the portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder is surrounded by the upper portion of the rectifying cylinder. ..
  • the upper limit of the ratio of the area surrounded by the upper part of the rectifying cylinder to the total area of the side surface of the portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder is not particularly limited, but the above ratio is, for example, 60% or less. be able to.
  • the gap between the side surface of the rectifying cylinder and the measuring surface of the cooling auxiliary cylinder at the portion protruding downward from the cooling auxiliary cylinder is 3 mm or more and less than 15 mm.
  • the rectifying cylinder used at this time has an opening formed on the side surface thereof.
  • the flow velocity of the inert gas flowing from the opening of the rectifying cylinder toward the outside of the rectifying cylinder, for example, the window for monitoring the inside of the furnace in the cylinder described later increases.
  • the effect that the carbon-containing gas is less likely to flow back from the inside of the cylinder portion or the outside of the cylinder portion on the raw material melt side can be obtained.
  • the opening of the rectifying cylinder is located so that the height of the upper end of the opening is 35% or less of the total height of the rectifying cylinder, and the center of the opening is 30 mm in height from the lower end of the rectifying cylinder.
  • the openings are formed on the side surface of the straightening cylinder at equal intervals in the circumferential direction, for example, a structure in which openings are provided on three axes of angles 0 °, 120 ° and 240 °. Can be.
  • the opening has a length of 50 mm or less from the upper end to the lower end of the opening and has a structure in which a region of 15% or less of the entire side area of the rectifying cylinder is opened.
  • the lower limit of the position of the upper end of the opening of the rectifying cylinder is not particularly limited, but the height of the upper end of the opening of the rectifying cylinder can be located, for example, at a height of 5% or more of the total height of the rectifying cylinder.
  • the flow velocity of the inert gas flowing from the opening of the rectifying cylinder toward the outside of the rectifying cylinder, for example, the window for monitoring the inside of the furnace in the cylinder described later, is further increased.
  • the effect that the carbon-containing gas is less likely to flow back from the inside of the cylinder portion or the outside of the cylinder portion to the raw material melt side can be obtained.
  • HZ hot zone
  • a single crystal manufacturing device that performs a magnetic field application CZ method can further include a magnetic field application device that applies a magnetic field to a silicon melt.
  • FIG. 4 is a schematic cross-sectional view showing an example of the single crystal manufacturing apparatus according to the second aspect of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged peripheral portion of the rectifying cylinder of the single crystal manufacturing apparatus shown in FIG.
  • the single crystal manufacturing apparatus 1 shown in FIGS. 4 and 5 includes a ceiling portion 21, a main chamber 2 for accommodating a quartz crucible 7 for accommodating a silicon melt 6, and a graphite crucible 8 for supporting the quartz crucible, and a main chamber 2.
  • a pull-up chamber 3 connected to the upper part via a gate valve (not shown), a cooling cylinder 13 including a portion 13a extending from the ceiling portion 21 of the main chamber 2 toward the silicon melt 6, and the inside of the cooling cylinder 13. It has a cooling auxiliary cylinder 15 which is integrated with the silicon.
  • the cooling auxiliary cylinder 15 includes a downwardly stretched portion 15a and a portion 15b arranged on the stretched portion 13a of the cooling cylinder 13. As shown in FIG. 5, the portion 15a extended downward of the cooling auxiliary cylinder 15 is located inside the extended portion 13a of the cooling cylinder 13, and extends downward from the portion 15b. The thickness of the portion 15a is thinner than the thickness of the portion 15b.
  • the main chamber 2 is arranged so as to surround the crucible support 16 that supports the graphite crucible 8, the crucible shaft 17 that supports the crucible support 16, the heater 9 arranged so as to surround the graphite crucible 8, and the heater 9.
  • the heat insulating material 10 is further stored.
  • the crucible shaft 17 can rotate the silicon melt 6, the quartz crucible 7, the graphite crucible 8 and the crucible support 16 around the rotation shaft 18, and can move them up and down.
  • a tubular portion 11 is arranged on the ceiling portion 21 of the main chamber 2.
  • the tubular portion 11 extends from the ceiling portion 21 toward the silicon melt 6, and a heat shield member 12 made of graphite, for example, is provided at the end thereof so as to face the silicon melt.
  • the heat shielding member 12 is arranged so as to face the silicon melt 6 in a shape in which the inner diameter gradually decreases downward, cuts radiation from the surface of the silicon melt 6, and forms the surface of the silicon melt 6. I try to keep it warm.
  • a rectifying cylinder 14 is arranged on the heat shield member 12 so as to surround the silicon single crystal to be pulled up in the same core as the heat shield member 12.
  • the upper portion 14a of the rectifying cylinder 14 has a structure surrounding the lower portion 15c of the cooling auxiliary cylinder 15.
  • a single crystal is manufactured by using the cooling auxiliary cylinder 15 and the rectifying cylinder 14 arranged on the heat shielding member 12 and having a structure in which the upper portion 14a surrounds the lower portion 15c of the cooling auxiliary cylinder 15. Even if a carbon-containing gas is generated by the reaction between the carbon member in the apparatus 1 and the SiO evaporating from the silicon melt 6, it is possible to prevent the carbon-containing gas from diffusing toward the silicon melt 6.
  • the rectifying cylinder 14 used at this time has a structure in which a region of 5% or more of the total area of the side surface 15d of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13 is surrounded by the upper portion 14a of the rectifying cylinder 14. Moreover, it is preferable to have a structure in which the gap c2 between the side surface 14b of the rectifying cylinder 14 and the side surface 15d of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13 is 3 mm or more and less than 15 mm.
  • the total area of the side surface 15d of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13 corresponds to the length b2 shown in FIG .
  • the area of the region surrounded (covered) by the upper portion 14a of the straightening cylinder 14 in the side surface 15d of the protruding portion of the cooling auxiliary cylinder 15 corresponds to the length a2 shown in FIG. That is, the ratio a 2 / b 2 is preferably 5% or more.
  • the rectifying cylinder 14 used at this time preferably has openings 14c formed on the side surface 14b at equal intervals in the circumferential direction, for example, at angles of 0 °, 120 °, and 240 °. It is possible to have a structure in which openings are provided on three axes. Further, it is preferable that the opening 14c has a length of 50 mm or less from the upper end to the lower end of the opening, and has a structure in which a region of 15% or less of the entire side area of the rectifying cylinder 14 is opened.
  • the height of the upper end of the opening is located at a height of 35% or less of the total height of the rectifying cylinder 14, and the center of the opening is from the lower end of the rectifying cylinder 14. It is preferable to have a structure provided at a position having a height of 30 mm or more and 40 mm or less.
  • the ratio of the open region of the opening 14c to the total area of the side surface 14b of the straightening cylinder 14 corresponds to the ratio of the opening area d 2 to the total area e 2 shown in FIG. 6, that is, the ratio d 2 / e 2 .
  • the rectifying cylinder 14 having the opening 14c on the side surface 14b By using the rectifying cylinder 14 having the opening 14c on the side surface 14b, the flow velocity of the inert gas flowing from the opening 14c of the rectifying cylinder 14 toward the in-core monitoring window in the cylinder 11 increases. As a result, the effect that the carbon-containing gas does not easily flow back to the silicon melt 6 side from the inside of the cylinder portion 11 or the outside of the cylinder portion 11 can be obtained.
  • the rectifying cylinder 14 and the cooling auxiliary cylinder 15 as described above, the effect that the carbon-containing gas existing directly above the silicon melt 6 and inside or outside the cylinder portion 11 is less likely to flow back to the silicon melt 6 side. And the effect of suppressing the generation of carbon-containing gas generated by the reaction between the carbon member in the furnace and the SiO evaporating from the silicon melt can be obtained at the same time, and as a result of combining these effects, a further single crystal can be obtained. It is possible to reduce the carbon concentration.
  • the single crystal production apparatus of the present invention is not limited to the single crystal production apparatus shown in FIGS. 4 and 5, and the single crystal production method using the single crystal production apparatus of the present invention is exemplified below. Not limited to.
  • the seed crystal 4 is immersed in a silicon melt 6, and the seed crystal 4 is gently pulled upward while rotating the seed crystal 4, the quartz rutsubo 7 and the graphite rutsubo 8 around the rotation axis 18, and the rod-shaped silicon single crystal is used. While the crystal 5 is grown, the quartz ruts 7 and the graphite ruts 8 are raised in accordance with the growth of the crystals so that the height of the melt surface is always kept constant in order to obtain a desired diameter and crystal quality.
  • the ascent of the quartz crucible 7 and the graphite crucible 8 and the rotation of the quartz crucible 7 and the graphite crucible 8 can be performed using the crucible shaft 17.
  • the silicon melt 6 can be obtained by putting the raw material silicon into the quartz crucible 7 and melting the raw material silicon using the heater 9.
  • the raw material silicon used at this time is preferably a semiconductor-grade high-purity raw material.
  • the present invention is a technique for reducing carbon contamination caused by a crystal manufacturing process by adopting a structure in which a rectifying cylinder arranged on a heat shielding member surrounds the lower part of a portion protruding downward from the cooling cylinder of the cooling auxiliary cylinder.
  • the raw material silicon used is a semiconductor-grade high-purity raw material.
  • the radiant heat from the silicon single crystal 5 and the radiant heat from the high temperature part such as the heater 9 can be sufficiently transmitted to the cooling cylinder 13.
  • the heat generated can be removed by forced cooling with a cooling medium. Thereby, the silicon single crystal 5 can be produced more efficiently.
  • the temperature of the space surrounded by 11 can be lowered.
  • the reaction between the carbon member in the manufacturing apparatus 1 and the SiO evaporating from the silicon melt 6 can be suppressed, and the generation of carbon-containing gas can be suppressed.
  • the carbon-containing gas is silicon by the rectifying cylinder 14 which is arranged on the heat shield member 12 and surrounds the lower portion 15c of the cooling auxiliary cylinder 15 at the upper portion 14a. It is possible to prevent backflow to the melt 6.
  • the straightening cylinder 14 has an opening 14c on the side surface 14b as shown in FIG. 6, as described above. It is possible to further prevent the carbon-containing gas from flowing back into the silicon melt.
  • Example 1 a single crystal was produced under the following common conditions using the single crystal production apparatus described below.
  • a crucible with a caliber of 81.28 cm (32 inches) was used. 360 kg of raw material silicon was put into this crucible and melted with a heater to obtain a silicon melt.
  • a crystal having a crystal diameter of 300 mm was pulled up while applying a horizontal magnetic field to the silicon melt.
  • a sample was cut out from each straight body position, and the carbon concentration was quantified using the PL method.
  • the ratio of the area of the portion covered by the cooling auxiliary cylinder at the upper part of the rectifying cylinder to the total area of the side surface of the rectifying cylinder is a / b, and the distance between the side surface of the groove portion at the lower part of the cooling auxiliary cylinder and the side surface of the rectifying cylinder.
  • Comparative Example 1 In Comparative Example 1, a single crystal manufacturing apparatus having a structure as shown in FIG. 11 was used. That is, in Comparative Example 1, a cooling auxiliary cylinder 115 having no structure covering the bottom surface 132 facing the silicon melt 6 of the cooling cylinder 13 is used without mounting the rectifying cylinder on the heat shielding member 12. In, a single crystal was produced using a single crystal production apparatus different from the single crystal production apparatus of Example 1.
  • Example 1 using the single crystal manufacturing apparatus according to the first aspect of the present invention, carbon is produced at any solidification rate as compared with the case of manufacturing using the manufacturing apparatus of Comparative Example 1 as shown in FIG. It can be seen that a single crystal with a low concentration could be obtained.
  • carbon in the single crystal is compared with the case of manufacturing using the manufacturing apparatus of Comparative Example 1. The result was that the concentration was reduced by about 89%. Further, as can be seen from FIG.
  • the gap d between the cooling auxiliary cylinder of Example 1 and the bottom surface of the cooling cylinder is 1 mm or less, the carbon concentration in the single crystal can be significantly reduced as compared with Comparative Example 1.
  • the gap d between the cooling auxiliary cylinder and the bottom surface of the cooling cylinder of the manufacturing apparatus used in the first aspect of the present invention is preferably 1 mm or less.
  • the gap d between the cooling auxiliary cylinder and the bottom surface of the cooling cylinder of Example 1 was set to 3 mm, the result was obtained that the carbon concentration in the single crystal was reduced by about 77% as compared with the case of Comparative Example 1.
  • Example 2 using the single crystal manufacturing apparatus according to the first aspect of the present invention, carbon is produced at any solidification rate as compared with the case of manufacturing using the manufacturing apparatus of Comparative Example 1 as shown in FIG. It can be seen that a single crystal with a low concentration could be obtained.
  • Comparative Example 1 when the ratio a / b of the area of the upper end portion 141 of the rectifying cylinder 14 covered with the cooling auxiliary cylinder and the total area of the side surface 142 of the rectifying cylinder 141 is 35%, Comparative Example 1 It was obtained that the carbon concentration in the single crystal was reduced by about 85% as compared with the case of manufacturing using the above-mentioned manufacturing apparatus.
  • the lower limit of the ratio of the area of the upper end portion 141 of the rectifying cylinder 14 of the manufacturing apparatus used in the first aspect of the present invention covered by the cooling auxiliary cylinder 15 to the total area of the side surface 142 of the rectifying cylinder 14 is It is preferably 10%.
  • a / b was set to 35% or less, it was easier to secure a field of view for the camera for diameter measurement than in the case where a / b was set to 40%.
  • the upper limit of the ratio of the area of the upper end portion 141 of the rectifying cylinder 14 covered by the cooling auxiliary cylinder 15 to the total area of the side surface 142 of the rectifying cylinder 14 is 35%. I understand.
  • Example 3 using the single crystal manufacturing apparatus according to the first aspect of the present invention, carbon is produced at any solidification rate as compared with the case of manufacturing using the manufacturing apparatus of Comparative Example 1 as shown in FIG. It can be seen that a single crystal with a low concentration could be obtained.
  • Example 3 when the distance c between the groove portion 154 side surface of the cooling auxiliary cylinder 15 and the rectifying cylinder 14 side surface 142 is 5 mm, a single crystal was produced using the single crystal production apparatus of Comparative Example 1. Compared with the case, the result was obtained that the carbon concentration in the single crystal was reduced by about 85%. Further, as can be seen from FIG. 9, it has been confirmed that when c of Example 3 is 25 mm or less, the carbon concentration in the single crystal is reduced as compared with Comparative Example 1.
  • a single crystal manufacturing apparatus to be satisfied was prepared and a single crystal was manufactured.
  • the height of the upper end of the opening 143 is located at a height of 24% of the total height of the rectifying cylinder 14, and the opening 143 is located.
  • the structure is such that a region having a length of 30 mm from the upper end to the lower end of the opening 143 is opened.
  • the height of the upper end of the opening 143 is located at a height of 35% of the total height of the rectifying cylinder 14, and the opening 143 is located.
  • the structure is such that a region having a length of 50 mm from the upper end to the lower end of the opening 143 is opened.
  • Example 4 using the single crystal manufacturing apparatus according to the first aspect of the present invention, the ratio e of the opening area e of the opening 143 of the side surface 142 of the rectifying cylinder 14 to the total area f of the side surface 142 of the rectifying cylinder 14.
  • / f is set to 9%
  • the carbon concentration in the single crystal is reduced by about 93% as compared with Comparative Example 1 in which the single crystal is manufactured using the manufacturing apparatus having the conventional structure as shown in FIG. Results were obtained.
  • FIG. 10 it has been confirmed that when the e / f of Example 4 exceeds 0% and is 15% or less, the carbon concentration in the single crystal is significantly reduced as compared with Comparative Example 1. .
  • Example 5 a single crystal manufacturing apparatus having the same structure as the single crystal manufacturing apparatus 1 described with reference to FIGS. 4 and 5 was used. That is, in Example 5, the rectifying cylinder 14 was arranged on the heat shielding member 12 so as to surround the silicon single crystal 5 being pulled up concentrically. Further, the upper portion 14a of the rectifying cylinder 14 on the heat shielding member 12 covered and surrounded the lower portion 15c of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13. A single crystal was manufactured using the single crystal manufacturing apparatus 1 having such a rectifying cylinder and a cooling auxiliary cylinder.
  • the material of the rectifying cylinder 14 was synthetic quartz, and the material of the cooling auxiliary cylinder 15 was a graphite material having a thermal conductivity equal to or higher than that of metal and a radiation coefficient higher than that of metal.
  • the ratio of the total area of the side surface 15d of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13 to the area of the portion covered by the rectifying cylinder 14 of the lower portion 15c of the cooling auxiliary cylinder is a 2 /. b 2
  • the distance between the side surface 15d of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13 and the side surface 14b of the rectifying cylinder 14 is c 2
  • the opening area d 2 of the opening 14c of the rectifying cylinder side surface 14b and rectification The ratio of the total area e 2 of the cylinder side surface 14b is d 2 / e 2 (shown in FIG.
  • Comparative Example 3 In Comparative Example 3, a single crystal manufacturing apparatus 200 having a structure as shown in FIG. 11 was used. That is, in Comparative Example 3, a single crystal manufacturing apparatus 200 different from the single crystal manufacturing apparatus of Example 5 in that only the cooling auxiliary cylinder 15 was used without mounting the rectifying cylinder on the heat shielding member 12 was used. A single crystal was produced.
  • Example 5 Comparative Example 3 and Comparative Example 4 are shown in FIG.
  • the ratio a2 / b2 of the area of the portion covered by the upper portion 14a of 14 is set to 45%, it is compared with the case where the manufacturing is performed using the manufacturing apparatus of Comparative Example 3 as shown in FIG. The result was obtained that the carbon concentration in the single crystal was reduced by about 68%. Further, as can be seen from FIG.
  • Example 6 and Comparative Example 3 are shown in FIG.
  • the distance c2 between the side surface 15d of the portion of the cooling auxiliary cylinder 15 of Example 6 protruding downward from the cooling cylinder 13 and the side surface 14b of the rectifying cylinder using an example of the single crystal manufacturing apparatus according to the second aspect of the present invention is 3 mm.
  • the result was obtained that the carbon concentration in the single crystal was reduced by about 58% as compared with the case where the production was performed using the production apparatus of Comparative Example 3 as shown in FIG.
  • FIG. 13 it has been confirmed that when the interval c 2 is set to 15 mm or less in Example 6, the carbon concentration in the single crystal is remarkably reduced as compared with Comparative Example 3. Further, from these results, it can be seen that a lower carbon concentration could be achieved by setting the interval c 2 of Example 6 to 15 mm or less.
  • the interference between the rectifying cylinder 14 when the rectifying cylinder 14 is set and the lower portion 15c of the cooling auxiliary cylinder 15 is less than that in the case where the interval c 2 is 2 mm, and it is easy. I was able to continue the operation. Therefore, it can be seen that the lower limit of the distance between the side surface 15b of the portion of the cooling auxiliary cylinder 15 protruding downward from the cooling cylinder 13 and the rectifying cylinder side surface 14b is preferably 3 mm.
  • the height of the upper end of the opening 14c is located at a height of 24% of the total height of the rectifying cylinder 14, and the opening 14c is located.
  • the height of the upper end of the opening 14c is located at a height of 35% of the total height of the rectifying cylinder 14, and the opening 14c is located.
  • Example 7 and Comparative Example 3 are shown in FIG.
  • the height of the upper end of the opening 14c is 24% of the total height of the rectifying cylinder 14 with d 2 / e 2 of Example 7 using an example of the single crystal manufacturing apparatus according to the second aspect of the present invention as 9%.
  • the result was that the carbon concentration in the single crystal was reduced by about 76% as compared with the case where the production was performed using the production apparatus of Comparative Example 3 as shown in FIG.
  • d 2 / e 2 of Example 7 is set to 15% or less and the height of the upper end of the opening 14c is positioned to be 35% or less of the total height of the rectifying cylinder 14. It has been confirmed that the carbon concentration in the single crystal is remarkably reduced as compared with Comparative Example 3.
  • the ratio d 2 / e 2 of Example 7 is set to 15% or less, and the height of the upper end of the opening 14c is set to 35% or less of the total height of the rectifying cylinder 14. It can be seen that a low carbon concentration was achieved. This is because the ratio d 2 / e 2 of Example 7 is 15% or less, and the height of the upper end of the opening 14c is 35% or less of the total height of the rectifying cylinder 14, so that the opening of the rectifying cylinder 14 is set.
  • the flow velocity of the inert gas flowing from the portion 14c toward the in-core monitoring window of the cylinder portion 11 increases, and the phenomenon that the carbon-containing gas existing inside the cylinder portion 11 flows back to the raw material melt 6 side is suppressed.
  • the carbon concentration in the single crystal could be further reduced. That is, from the results of Example 7, the ratio d / e of the opening area d of the opening 14c of the rectifying cylinder side surface 14b of the single crystal manufacturing apparatus 1 of the present invention and the total area e of the rectifying cylinder side surface 14b is 15% or less.
  • the invention does not flow in the direction from the opening 14c of the rectifying cylinder 14 to the in-core monitoring window of the cylinder 11. It can be seen that the flow velocity of the active gas can be sufficiently maintained, which is preferable.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any one having substantially the same structure as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

Abstract

本発明の第1態様は、メインチャンバと、引き上げチャンバと、シリコン融液と対向するように配置された熱遮蔽部材と、引き上げ中のシリコン単結晶を包囲するように熱遮蔽部材上に配置された整流筒と、引き上げ中のシリコン単結晶を取り囲むように配置され、シリコン融液に向かって延伸した部分を含む冷却筒と、冷却筒の内側に嵌合された冷却補助筒とを有し、冷却筒の延伸した部分は、シリコン融液に対面する底面を有し、冷却補助筒は、少なくとも、冷却筒の底面を囲繞した第1部分と、整流筒の上端部を囲繞した第2部分とを有するものであることを特徴とする単結晶製造装置である。これにより、従来技術に比べて炭素濃度がより低い単結晶を製造できる装置を提供することができる。

Description

単結晶製造装置
 本発明は、単結晶製造装置に関する。
 携帯電話など通信用にRF(高周波)デバイスが用いられている。
 シリコン単結晶ウェーハを用いたRFデバイスにおいては、基板抵抗率が低いと高導電性のために損失が大きいため、1000Ωcm以上の高抵抗率、すなわち抵抗率に関わるBやPなどのドーパント濃度が非常に低いウェーハが用いられる。
 SOI(Silicon on Insulator)と呼ばれる、シリコン基板表層部に薄い酸化膜+薄いシリコン層が形成されたウェーハを用いることもあるが、この場合も高抵抗率が望まれる。
 またパワーデバイス用としても、高耐圧用として比較的高抵抗率ウェーハが望まれている上、IGBTなどでは良好な特性を得るために、炭素濃度が極めて低いシリコン単結晶ウェーハが要求されるようになってきている。つまり最新の半導体デバイスにおいては、重金属などの不純物はもとより、ドーパントや軽元素である炭素など、不純物の低減は必須の課題となっている。
 シリコン単結晶中に混入する炭素は、原料からの持ち込みに起因するものと、結晶製造プロセス中の炉内反応に起因したものとの2つが挙げられ、これらの各導入過程別に炭素濃度低減を試みた技術が報告されている。
 原料からの持ち込みについては、原料シリコンの表面に付着した有機物の中には高温で気化せず炭化するものがあり、これが結晶中に取り込まれることで結晶中の炭素濃度が上昇するという問題がある。
 これを改善するために、例えば、特許文献1のパラフィン系炭化水素をはじめとする有機物汚染が少ないポリエチレン製収容袋に保管した多結晶原料を用いてCZ法で単結晶育成を行う方法、特許文献2の多結晶表面の有機物を同定して定量分析し、原料選別した後に、CZ法で単結晶育成を行う方法が挙げられる。
 他方、結晶製造プロセスに起因した炭素の混入については、結晶育成中に引上げ機炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって炉内に炭素含有ガスが生成され、この炭素含有ガスが融液中に混入することで炭素濃度が上昇するという問題がある。
 この問題を解決するために、例えば、特許文献3の黒鉛ルツボの上に円筒形状の整流部材を搭載し、炭素含有ガスの融液側への逆流を防ぐ方法がある。また、整流部材を搭載して単結晶育成を行う他の例として、特許文献4のルツボの上方に石英製の整流筒とカーボン製の整流筒を搭載する方法や、特許文献5のルツボの上方に石英製の整流筒のみを搭載する方法がある。
 上記の整流部材を用いて単結晶育成を行うことで、シリコン原料融液直上から石英ルツボ上端の方向に流れる不活性ガスの線速を上昇させることができ、これにより炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって生じた炭素含有ガスが原料融液側に逆流することを防ぐことができ、その結果として、整流部材なしの場合に比べて低い炭素濃度の単結晶を育成することが可能となる。
 しかし、上記整流部材を搭載することによって不活性ガスの線速を上昇させるだけでは、引上げ機炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって生じる炭素含有ガスの生成量を抑制することはできないため、上記整流部材を搭載することのみによって得られる低炭素化効果には限界がある。このため、より低い炭素濃度の製品を製造できないことが問題となっていた。
特開2016-113198号公報 特開2016-210637号公報 特開2012-201564号公報 特開2010-143776号公報 特開2010-184839号公報
 本発明は、上記問題を解決するためになされたものであり、従来技術に比べて炭素濃度がより低い単結晶を製造できる装置を提供することを目的とする。
 上記課題を解決するために、本発明の第1態様では、チョクラルスキー法によって単結晶を育成する単結晶製造装置であって、
 天井部を備え、シリコン融液を収容するルツボを格納するメインチャンバと、
 前記メインチャンバの前記天井部からゲートバルブを介して上方に連設し、前記シリコン融液から引き上げられたシリコン単結晶を収容する引き上げチャンバと、
 前記ルツボに収容された前記シリコン融液と対向するように配置された熱遮蔽部材と、
 引き上げ中の前記シリコン単結晶を包囲するように前記熱遮蔽部材上に配置された整流筒と、
 引き上げ中の前記シリコン単結晶を取り囲むように配置され、前記メインチャンバの前記天井部から前記シリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却される冷却筒と、
 前記冷却筒の内側に嵌合された冷却補助筒と
を有し、
 前記冷却筒の前記延伸した部分は、前記シリコン融液に対面する底面を有し、
 前記冷却補助筒は、少なくとも、前記冷却筒の前記底面を囲繞した第1部分と、前記整流筒の上端部を囲繞した第2部分とを有するものであることを特徴とする単結晶製造装置を提供する。
 本発明の第1態様に係る単結晶製造装置を用いることで、冷却補助筒の周りの空間の温度を低下させることができ、単結晶製造装置の炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって生じる炭素含有ガスの発生を抑制することができる。加えて、熱遮蔽部材の上に整流筒を配置し、冷却補助筒の第2部分が前記整流筒の上端部を囲繞する構造とすることで、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制することもできる。これらの効果が組み合わさった結果として、従来技術に比べて炭素濃度が低い単結晶を効率よく製造することが可能となる。
 前記整流筒は、合成石英製であることが好ましい。
 合成石英製の整流筒を用いることで、炭素濃度がより低い単結晶を製造することができる。
 前記冷却補助筒は、黒鉛部材、炭素複合部材、ステンレス鋼、モリブデン、及びタングステンからなる群より選択される少なくとも1種からなり、
 前記冷却補助筒の前記第1部分は、前記冷却筒の前記底面を覆う構造を有し、前記冷却補助筒の前記第1部分と前記冷却筒の前記底面との間隙が1.0mm以下のものであることが好ましい。
 このような冷却補助筒を用いることにより、より効率よく、炭素濃度がより低い単結晶を製造することができる。
 前記冷却補助筒の前記第2部分は、前記整流筒の側面の全面積のうち10%以上35%以下の領域を覆った溝部を含むことが好ましい。
 このような構造を用いることで、シリコン融液直上の領域に存在している炭素含有ガスがシリコン融液側に逆流しにくくなる効果をより確実に得ることができる。
 この場合、前記整流筒の前記上端部の両側面と前記冷却補助筒の前記第2部分の前記溝部の側面との隙間が5mm以上25mm以下であることがより好ましい。
 このような構造を用いることで、炭素含有ガスがシリコン融液側に逆流することをより確実に防ぐことができる。
 前記整流筒は側面に開口部を有し、該整流筒の開口部の上端の高さが前記整流筒の全高の35%以下の高さの位置に形成されたものであることが好ましい。
 このような側面に開口部を有する整流筒を用いることで、炭素含有ガスが原料融液側により逆流しにくくなる効果が得られる。
 また、本発明の第2態様では、チョクラルスキー法によって単結晶を育成する単結晶製造装置であって、
 天井部を備え、シリコン融液を収容するルツボを格納するメインチャンバと、
 前記メインチャンバの前記天井部からゲートバルブを介して上方に連接し、前記シリコン融液から引き上げられたシリコン単結晶を収容する引き上げチャンバと、
 前記ルツボに収容された前記シリコン融液と対向するように配置された熱遮蔽部材と、
 引き上げ中の前記シリコン単結晶を包囲するように前記熱遮蔽部材上に配置された整流筒と、
 引き上げ中の前記シリコン単結晶を取り囲むように配置され、前記メインチャンバの前記天井部から前記シリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却される冷却筒と、
 前記冷却筒の内側に嵌合された冷却補助筒と
を有し、
 前記整流筒の上部は、前記冷却補助筒の前記冷却筒から下方に突き出した部分の前記冷却補助筒の下部を囲繞する構造を有するものであることを特徴とする単結晶製造装置を提供する。
 本発明の第2態様に係る単結晶製造装置を用いることで、冷却補助筒の周りの空間の温度を低下させることができ、炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって生じる炭素含有ガスの発生を抑制することができる。
 加えて、上記反応が起こったとしても、熱遮蔽部材の上に整流筒を配置し、且つこの整流筒の上部が冷却補助筒の冷却筒から下方に突き出した部分の冷却補助筒の下部を囲繞する構造を採用することで、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制することもできる。
 したがって、本発明の第2態様に係る単結晶製造装置によれば、これらの効果が組み合わさった結果として、従来技術に比べて低い炭素濃度の単結晶を効率よく製造することが可能となる。
 このとき、前記整流筒は合成石英製であることが好ましい。
 合成石英製の整流筒を用いることで、炭素濃度がより低い単結晶を製造することができる。
 また、前記冷却補助筒の材質は、黒鉛部材、炭素複合部材、ステンレス鋼、モリブデン、及びタングステンからなる群より選択される少なくとも1種であることが好ましい。
 このような冷却補助筒を有する単結晶製造装置であれば、より効率よく、炭素濃度がより低い単結晶を製造することができる。
 また、前記整流筒は、前記冷却補助筒の前記冷却筒から下方に突き出した部分の側面の全面積のうち、5%以上の領域を前記整流筒の上部で囲繞する構造を有するものであることが好ましい。
 このような構造を用いることで、炭素含有ガスがシリコン融液側により逆流しにくくなる効果が得られる。
 また、前記整流筒の側面と前記冷却補助筒の前記冷却筒から下方に突き出した部分の冷却補助筒の側面との間の隙間を3mm以上15mm未満とすることがより好ましい。
 このような構造を用いることで、炭素含有ガスがシリコン融液側により逆流しにくくなる効果が得られる。
 更に、前記整流筒は側面に開口部を有し、該整流筒の開口部の上端の高さが前記整流筒の全高の35%以下の高さの位置に形成されたものであることが好ましい。
 このような側面に開口部を有する整流筒を用いることで、炭素含有ガスがシリコン融液側により逆流しにくくなる効果が得られる。
 以上のように、本発明の第1態様に係る単結晶製造装置であれば、従来技術に比べて炭素濃度が低い単結晶を効率よく製造することができる。
 また、以上のように、本発明の第2態様に係る単結晶製造装置であれば、引上げ機炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって生じる炭素含有ガスの発生を抑制する効果と、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制する効果とが得られ、これらの効果が組み合わさった結果として、従来技術に比べて低い炭素濃度の単結晶を効率よく製造することが可能となる。
本発明の第1態様に係る単結晶製造装置の一例を示す概略断面図である。 図1に示した単結晶製造装置の一例における、冷却補助筒周辺部の拡大概略断面図である。 本発明の第1態様に係る単結晶製造装置の他の例における、冷却補助筒周辺部の拡大概略断面図である。 本発明の第2態様に係る単結晶製造装置の一例を示す概略断面図である。 図4に示す単結晶製造装置の整流筒周辺部を拡大して示した概略断面図である。 本発明の第2態様に係る単結晶製造装置の他の一例の整流筒周辺部を拡大して示した概略断面図である。 実施例1及び比較例1における単結晶中炭素濃度の固化率依存性を示すグラフである。 実施例2、比較例1及び比較例2における単結晶中炭素濃度の固化率依存性を示すグラフである。 実施例3及び比較例1における単結晶中炭素濃度の固化率依存性を示すグラフである。 実施例4及び比較例1における単結晶中炭素濃度の固化率依存性を示すグラフである。 比較例1及び比較例3で用いたCZ法による単結晶製造装置の概略断面図である。 実施例5、比較例3及び比較例4における単結晶中炭素濃度の固化率依存性を示すグラフである。 実施例6及び比較例3における単結晶中炭素濃度の固化率依存性を示すグラフである。 実施例7及び比較例3における単結晶中炭素濃度の固化率依存性を示すグラフである。
 本発明は、チョクラルスキー法(CZ法)や磁場印加CZ法(MCZ法)によって育成される単結晶、例えばシリコン単結晶等の製造装置に関するものである。
 上述のように、従来技術に比べて炭素濃度がより低い単結晶を製造できる装置の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、引き上げ中のシリコン単結晶を包囲するように熱遮蔽部材上に整流筒を配置し、冷却筒の内側に冷却補助筒を嵌合させ、冷却補助筒の第1部分で冷却筒のうちシリコン融液(シリコンメルト)に対面する底面を囲繞させ、更に冷却補助筒の第2部分で整流筒の上端部を囲繞させることにより、炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって生じる炭素含有ガスの発生を抑制することができ、更に、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制することができることを見出し、本発明の第1態様を完成させた。
 即ち、本発明の第1態様は、チョクラルスキー法によって単結晶を育成する単結晶製造装置であって、
 天井部を備え、シリコン融液を収容するルツボを格納するメインチャンバと、
 前記メインチャンバの前記天井部からゲートバルブを介して上方に連設し、前記シリコン融液から引き上げられたシリコン単結晶を収容する引き上げチャンバと、
 前記ルツボに収容された前記シリコン融液と対向するように配置された熱遮蔽部材と、
 引き上げ中の前記シリコン単結晶を包囲するように前記熱遮蔽部材上に配置された整流筒と、
 引き上げ中の前記シリコン単結晶を取り囲むように配置され、前記メインチャンバの前記天井部から前記シリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却される冷却筒と、
 前記冷却筒の内側に嵌合された冷却補助筒と
を有し、
 前記冷却筒の前記延伸した部分は、前記シリコン融液に対面する底面を有し、
 前記冷却補助筒は、少なくとも、前記冷却筒の前記底面を囲繞した第1部分と、前記整流筒の上端部を囲繞した第2部分とを有するものであることを特徴とする単結晶製造装置である。
 なお、先に示した特許文献1及び2は単結晶中の炭素濃度に注目しているという点では本技術と関連性はあるものの、いずれも原料シリコンから持ち込まれる炭素汚染に注目した技術であり、結晶製造プロセスに起因した炭素汚染に注目した本発明の第1態様とは異なる技術である。
 また、特許文献3~5では、整流筒もしくは整流部材を用いて原料融液直上から石英ルツボ上端の方向に流れる不活性ガスの線速を上昇させ、炉内の炭素部材とシリコンメルトから蒸発するSiOの反応によって生じた炭素含有ガスが原料融液側に逆流しにくくなることを示唆しているが、特許文献3~5の何れも、本発明の第1態様の単結晶製造装置が具備する、第1部分及び第2部分の両方を含む冷却補助筒を記載も示唆もしていない。
 更に、本発明者らは、上記課題について鋭意検討を重ねた結果、引き上げ中のシリコン単結晶を包囲するように熱遮蔽部材上に整流筒を配置し、冷却筒の内側に冷却補助筒を嵌合させ、整流筒の上部で、冷却補助筒の冷却筒から下方に突き出した部分の冷却補助筒の下部を囲繞する構成を有する単結晶製造装置であれば、炉内の炭素部材とシリコン融液(原料融液)から蒸発するSiOの反応によって生じる炭素含有ガスの発生を抑制することができ、更に、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制することができることを見出し、本発明の第2態様を完成させた。
 即ち、本発明の第2態様は、チョクラルスキー法によって単結晶を育成する単結晶製造装置であって、
 天井部を備え、シリコン融液を収容するルツボを格納するメインチャンバと、
 前記メインチャンバの前記天井部からゲートバルブを介して上方に連設し、前記シリコン融液から引き上げられたシリコン単結晶を収容する引き上げチャンバと、
 前記ルツボに収容された前記シリコン融液と対向するように配置された熱遮蔽部材と、
 引き上げ中の前記シリコン単結晶を包囲するように前記熱遮蔽部材上に配置された整流筒と、
 引き上げ中の前記シリコン単結晶を取り囲むように配置され、前記メインチャンバの前記天井部から前記シリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却される冷却筒と、
 前記冷却筒の内側に嵌合された冷却補助筒と
を有し、
 前記整流筒の上部は、前記冷却補助筒の前記冷却筒から下方に突き出した部分の前記冷却補助筒の下部を囲繞する構造を有するものであることを特徴とする単結晶製造装置である。
 なお、先に示した特許文献1及び2に記載された技術は単結晶中の炭素濃度に注目しているという点では本技術と関連性はあるものの、いずれも原料シリコンから持ち込まれる炭素汚染に注目した技術であり、結晶製造プロセスに起因した炭素汚染に注目した本発明の第2態様とは異なる技術である。
 また、特許文献3~5では、整流筒もしくは整流部材を用いて原料融液直上から石英ルツボ上端の方向に流れる不活性ガスの線速を上昇させ、炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって生じた炭素含有ガスが原料融液側に逆流しにくくなることを示唆しているが、引き上げ中のシリコン単結晶を包囲するように熱遮蔽部材上に整流筒を配置し、冷却筒の内側に冷却補助筒を嵌合させ、整流筒の上部で、冷却補助筒の冷却筒から下方に突き出した部分の冷却補助筒の下部を囲繞する本発明の第2態様の構成は開示されていない。
 以下、本発明について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
 [第1態様に係る単結晶製造装置]
 先に示した構成を有する本発明の第1態様に係る単結晶製造装置を用いることで、冷却補助筒の周りの空間の温度を低下させることができ、単結晶製造装置の炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって生じる炭素含有ガスの発生を抑制することができる。加えて、熱遮蔽部材の上に整流筒を配置し、冷却補助筒の第2部分が前記整流筒の上端部を囲繞する構造とすることで、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制することもできる。これらの効果が組み合わさった結果として、従来技術に比べて炭素濃度が低い単結晶を効率よく製造することが可能となる。
 以下、本発明の第1態様に係る単結晶製造装置の各部材をより詳細に説明する。
 (1)メインチャンバ
 メインチャンバは、天井部を備え、シリコン融液を収容するルツボを格納するものである。
 ルツボは、例えば、シリコン融液を収容する石英ルツボと、この石英ルツボを支持する黒鉛ルツボとから構成されていても良い。
 上記を含め、メインチャンバは、一般的なCZシリコンの単結晶製造装置のメインチャンバと同様の構造を有することができる。
 例えば、メインチャンバは、ヒーターを格納することもできる。ヒーターは、例えば、ルツボの周りを取り囲むように配置され、ルツボ内に収容される原料シリコンを溶融して、シリコン融液とすることができる。
 メインチャンバがヒーターを具備する場合、メインチャンバは、ヒーターを取り囲む断熱材を格納することができる。
 ルツボは、ルツボサポートに支持され得る。ルツボサポートには、ルツボ軸が取り付けられていてもよい。ルツボ軸は、ルツボサポートと、これに支持されたルツボを回転及び昇降させることができる。
 (2)引き上げチャンバ
 引き上げチャンバは、メインチャンバの天井部からゲートバルブを介して上方に連設し、シリコン融液から引き上げられたシリコン単結晶を収容するものである。
 上記を含め、引き上げチャンバは、一般的なCZシリコンの単結晶製造装置の引き上げチャンバと同様の構造を有することができる。
 (3)熱遮蔽部材
 熱遮蔽部材は、ルツボに収容されたシリコン融液と対向するように配置されたものである。熱遮蔽部材は、シリコン融液の表面からの輻射をカットするとともにシリコン融液の表面を保温することができる。熱遮蔽部材は、例えば、内径が下方に向かって徐々に小さくなる形状でシリコン融液と対向するように配置させることができる。
 熱遮蔽部材は、例えば、メインチャンバ内に格納することができる。
 熱遮蔽部材の材質は特に限定されないが、熱遮蔽部材は、例えば、黒鉛製とすることができる。
 (4)整流筒
 整流筒は、引き上げ中のシリコン単結晶を包囲するように熱遮蔽部材上に配置されたものである。整流筒は、引き上げ中のシリコン単結晶を、熱遮蔽部材と同芯として包囲することができる。
 炉内の炭素部材とシリコン融液から蒸発するSiOの反応によって生じる炭素含有ガスの発生量は炉内の黒鉛部材の表面積に比例して増加するため、整流筒は、石英製やセラミック製とすることが好ましく、合成石英製とすることが特に好ましい。
 また、このとき用いる整流筒は、その側面に、開口部が形成されていることが好ましい。
 このような側面に開口部を有する整流筒を用いることで、整流筒開口部から整流筒の外側、例えば後述する筒部にある炉内監視用窓の方向に流れる不活性ガスの流速が上昇し、その結果として、筒部の内部や筒部の外側から炭素含有ガスが原料融液側により逆流しにくくなる効果が得られる。
 加えて、前記整流筒の開口部は、開口部上端の高さが整流筒の全高の35%以下の高さに位置し、かつ、開口部の中心を整流筒の下端部からの高さ30mm以上40mm以下の位置に設けた構造とすることが好ましい。また、開口部は、整流筒の側面に、円周方向に等間隔で形成されていることがより好ましく、例えば角度0°、120°及び240°の3つの軸上に開口部を設けた構造とすることができる。さらに、前記開口部は、開口部上端から下端までの長さを50mm以下とし、かつ、該整流筒の全側面積の15%以下の領域を開口した構造とすることが好ましい。
 このような側面に開口部を有する整流筒を用いることで、整流筒開口部から整流筒の外側、例えば後述する筒部にある炉内監視用窓の方向に流れる不活性ガスの流速が更に上昇し、その結果として、筒部の内部や筒部の外側から炭素含有ガスが原料融液側により一層逆流しにくくなる効果が得られる。
 整流筒の開口部上端の位置の下限は特に限定されないが、整流筒の開口部の上端の高さは、例えば、整流筒の全高の5%以上の高さに位置することができる。
 (5)冷却筒
 冷却筒は、引き上げ中のシリコン単結晶を取り囲むように配置され、メインチャンバの天井部からシリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却されるものである。シリコン融液に向かって延伸した部分は、シリコン融液に対面する底面を有する。
 冷却筒は、シリコン融液に向かって延伸し、ゲートバルブの下部のメインチャンバ内に配置され得る。
 冷却筒を強制冷却する冷却媒体は、特に限定されない。
 (6)冷却補助筒
 冷却補助筒は、冷却筒の内側に嵌合されたものである。冷却補助筒は、少なくとも、冷却筒の底面を囲繞した第1部分と、整流筒の上端部を囲繞した第2部分とを有するものである。
 冷却補助筒は、黒鉛部材、炭素複合部材、ステンレス鋼、モリブデン、及びタングステンからなる群より選択される少なくとも1種からなることが好ましい。また、冷却補助筒の第1部分は、冷却筒のうちシリコン融液に対面する底面を覆う構造を有し、冷却補助筒の第1部分と冷却筒の底面との間隙が1.0mm以下のものであることが好ましい。該間隙は0mm(完全接触)であってもよい。
 このような構造の冷却補助筒を用いることによって、冷却筒の底面を覆う冷却補助筒の第1部分が受ける高温部からの輻射熱量が増えるだけでなく、冷却補助筒の第1部分がより高温化することで冷却補助筒が熱膨張し、冷却筒の底面との間隙を小さくすることができ、冷却筒に熱を伝えやすくなる。また、冷却筒の底面を覆う冷却補助筒の第1部分がシリコン融液や高温部からの輻射熱を受けることで高温化し、冷却補助筒自体が発する冷却筒の底面への輻射熱が大きくなるため、冷却筒の底面との間に間隙があっても、冷却筒に熱を伝えることができるようになる。これにより、ヒーター周りや熱遮蔽部材周りの高温部からの輻射熱を冷却筒に効率よく伝えることができ、その結果として、熱遮蔽部材から育成結晶への輻射熱が減って結晶成長速度が高速化すると同時に、炉内の炭素部材とシリコンメルトから蒸発するSiOの反応によって生じる炭素含有ガスの発生が抑制される効果がより確実に得られる。
 冷却補助筒の第2部分は、整流筒の側面の全面積のうち10%以上35%以下の領域を覆った溝部を含むことが好ましい。
 このような構造を用いることで、シリコン融液直上の領域に存在している炭素含有ガスがシリコン融液側に逆流しにくくなる効果をより確実に得ることができる。
 この場合、整流筒の上端部の両側面と冷却補助筒の第2部分の溝部の側面との隙間が5mm以上25mm以下であることがより好ましい。
 このような構造を用いることで、炭素含有ガスがシリコン融液側に逆流することをより確実に防ぐことができる。
 (7)その他
 上記以外のHZ(ホットゾーン)の構造は、一般的なCZシリコン単結晶製造装置と同じ構造とすることができる。
 例えば、磁場印加CZ法(MCZ法)を行う単結晶製造装置であれば、シリコン融液に磁場を印加する磁場印加装置を更に含むことができる。
 次に、図面を参照しながら、本発明の第1態様に係る単結晶製造装置の具体例を説明する。なお、従来装置と同じものについては説明を適宜省略することがある。
 図1は、本発明の第1態様に係る単結晶製造装置の一例を示す概略断面図である。図2は、図1に示した単結晶製造装置の一例における、冷却補助筒周辺部の拡大概略断面図である。
 図1及び図2に示す単結晶製造装置1は、天井部21を備え、シリコン融液6を収容する石英ルツボ7及びこれを支持する黒鉛ルツボ8を格納するメインチャンバ2と、メインチャンバ2の上部に不図示のゲートバルブを介して連設された引き上げチャンバ3と、シリコン融液6と対向するように配置された熱遮蔽部材12と、熱遮蔽部材12上に配置された整流筒14と、メインチャンバ2の天井部21からシリコン融液6に向かって延伸した部分131を含む冷却筒13と、冷却筒13の内側に嵌合された冷却補助筒15とを有する。
 メインチャンバ2は、黒鉛ルツボ8を支持するルツボサポート16と、ルツボサポート16を支持したルツボ軸17と、黒鉛ルツボ8を取り囲むように配置されたヒーター9と、ヒーター9を取り囲むように配置された断熱材10とを更に格納している。ルツボ軸17は、シリコン融液6、石英ルツボ7、黒鉛ルツボ8及びルツボサポート16を、回転軸18を中心として自転させることができると共に、これらを昇降させることができる。
 メインチャンバ2の天井部21には、筒部11が配置されている。筒部11は、天井部21からシリコン融液6に向けて延伸しており、端部に熱遮蔽部材12が取り付けられている。
 引き上げチャンバ3は、シリコン融液6から引き上げられたシリコン単結晶5を収容するものである。
 整流筒14は、熱遮蔽部材12とは逆側の上端部141を含む。整流筒14は、引き上げ中のシリコン単結晶5を包囲するように、熱遮蔽部材12上に配置されている。図1及び図2に示した例では、整流筒14は、メインチャンバ2内に配置されている。
 冷却筒13は、引き上げ中のシリコン単結晶5を取り囲むように配置されている。また、冷却筒13のうちの一部131は、メインチャンバ2の天井部21からシリコン融液6に向かって延伸している。この部分131は、メインチャンバ2内に配置されており、シリコン融液6に対面する底面132を有している。また、冷却筒13は、不図示のゲートバルブ直下に位置するメインチャンバ2の天井部21から上方に延出したメインチャンバ上端部の内側に嵌合された部分133を更に含んでいる。冷却筒13は、不図示の冷却媒体循環機構によって供給される冷却媒体により、強制冷却されるものである。
 冷却補助筒15は、第1部分151と、第2部分152とを有している。冷却補助筒15の第1部分151は、図1及び図2に示すように、冷却筒13の底面132を囲繞している。より詳細には、冷却補助筒15の第1部分151は、冷却筒13の底面132を含む一部131を上下方向及び一方の側面から囲繞している。冷却補助筒15の第1部分151は、図2に示す、シリコン単結晶5の引き上げ方向に対して略垂直な方向に延伸する鍔部153を含む。
 一方、冷却補助筒15の第2部分152は、図1及び図2に示すように、メインチャンバ2内で、整流筒14の上端部141を囲繞している。より詳細には、冷却補助筒15の第2部分152は、図2に示した溝部154を含む。溝部154は、整流筒14の上端部141を収容し、それにより、整流筒14の側面142の一部を覆っている。また、冷却補助筒15の第1部分151の鍔153も、第2部分152の一部である溝部154の底部として、整流筒14の上端部141を囲繞している。
 冷却補助筒15の第1部分151(より具体的には鍔部153)と、冷却筒13の底面132との間隙は、図2に示す「d」で表される。間隙dは、1.0mm以下であることが好ましい。また、整流筒14の側面142の全面積のうち冷却補助筒15の溝部154で覆われた領域の割合は、図2に示す「a」及び「b」を用いると、「(a/b)×100」で表される。比a/bは、10%以上35%以下であることが好ましい。そして、冷却補助筒15の第2部分152の溝部154における冷却補助筒15と整流筒14の側面142との間隙は、図2に示す「c」で表される。間隙cは、5mm以上25mm以下であることが好ましい。なお、上記aは周方向の平均値である。一方、上記b~dは、全周方向にわたってほぼ一定の値であることが好ましい。そのため、比a/bは、周方向の平均値であることが好ましい。
 以上では、整流筒14の側面142に開口部がない場合を説明したが、例えば図3に示すように、整流筒14の側面142には開口部143が設けられていてもよい。
 図3に示すような側面142に開口部143を有する整流筒14を用いることで、整流筒14の開口部143から筒部11にある炉内監視用窓の方向に流れる不活性ガスの流速が上昇し、その結果として、筒部11の内部や筒部11の外側から炭素含有ガスがシリコン融液6側により逆流しにくくなる効果が得られる。
 図3に示す開口部143は、整流筒14の側面142の円周方向に等間隔で形成されている。
 開口部143は、例えば角度0°、120°及び240°の3つの軸上に設けることができる。さらに、開口部143は、開口部143上端から下端までの長さを50mm以下とし、かつ、整流筒14の側面142の全面積の15%以下の領域を開口した構造とすることが好ましい。開口部143の開口した領域の、整流筒14の側面142の全面積に対する割合は、図3に示す開口部面積eの全面積fに対する割合、すなわち比e/fに対応する。
 加えて、前記整流筒14の開口部143は、開口部上端の高さが整流筒14の全高の35%以下の高さに位置し、かつ、開口部の中心は整流筒14の下端部からの高さ30mm以上40mm以下の位置に設けた構造とすることが好ましい。
 このような側面142に開口部143を有する整流筒14を用いることで、整流筒14の開口部143から筒部11にある炉内監視用窓の方向に流れる不活性ガスの流速が上昇し、その結果として、筒部11の内部や筒部11の外側から炭素含有ガスがシリコン融液6側に更に逆流しにくくなる効果が得られる。
 次に、本発明の第1態様に係る単結晶製造装置を用いた単結晶製造方法の例を、図1及び図2を参照しながら説明する。ただし、本発明の第1態様に係る単結晶製造装置は、図1及び図2に示した単結晶製造装置には限定されないし、本発明の第1態様に係る単結晶製造装置を用いた単結晶製造方法は、以下に例示するものに限定されない。
 まず、種結晶4をシリコン融液6に浸漬し、種結晶4と石英ルツボ7及び黒鉛ルツボ8とを回転軸18を中心に自転させながら種結晶4を静かに上方に引上げて棒状のシリコン単結晶5を成長させる一方、所望の直径と結晶品質を得るため融液面の高さが常に一定に保たれるように結晶の成長に合わせて石英ルツボ7及び黒鉛ルツボ8を上昇させる。石英ルツボ7及び黒鉛ルツボ8の上昇、並びに石英ルツボ7及び黒鉛ルツボ8の回転は、ルツボ軸17を用いて行うことができる。
 シリコン融液6は、石英ルツボ7内に原料シリコンを投入し、この原料シリコンをヒーター9を用いて溶融させることによって得ることができる。
 このとき使用する原料シリコンは、半導体グレードの高純度原料であることが好ましい。本発明の第1態様は、冷却補助筒15の第1部分151によって冷却筒13の底面132を囲繞し且つ第2部分152によって整流筒14の上端部141を覆う構造を採用することで結晶製造プロセスに起因した炭素の汚染を低減する技術であるが、高純度の原料を使用することにより、原料からの持ち込みによる汚染量を低減でき、それにより、炭素濃度が低い単結晶をより確実に製造することができる。よって、使用する原料シリコンは半導体グレードの高純度原料であることが好ましい。
 図1及び図2に示す単結晶製造装置1の一例を用いることにより、冷却筒13に、シリコン単結晶5からの輻射熱やヒーター9等の高温部からの輻射熱を十分に伝えることができ、伝わった熱を、冷却媒体による強制冷却で除去できる。それにより、シリコン単結晶をより効率的に製造できる。
 そして、図1及び図2に示す単結晶製造装置1の一例では、冷却補助筒15の周りの、例えばシリコン融液直上のシリコン単結晶5の周りの空間や、冷却補助筒15と筒部11とで囲まれた空間の温度を低下させることができる。それにより、製造装置1内の炭素部材とシリコン融液6から蒸発するSiOとの反応を抑制でき、ひいては炭素含有ガスの発生を抑制できる。加えて、上記反応が起きて炭素含有ガスが生じても、上端部141が冷却補助筒15の第2部分152に囲繞された整流筒14により、この炭素含有ガスがシリコン融液に逆流するのを防ぐことができる。
 すなわち、図1及び図2に示す単結晶製造装置1の一例を用いれば、炭素濃度が低い単結晶を効率よく製造することができる。
 また、図1及び図2に示す単結晶製造装置1の一例において、整流筒14を、図3に示すような側面142に開口部143を有するものとすることで、先に説明したように、炭素含有ガスがシリコン融液6側に逆流するのを更に防ぐことができる。
 [第2態様に係る単結晶製造装置]
 先に説明した構成を有する本発明の第2態様に係る単結晶製造装置を用いることで、冷却補助筒の周りの空間の温度を低下させることができ、炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって生じる炭素含有ガスの発生を抑制することができる。
 加えて、上記反応が起こったとしても、熱遮蔽部材の上に整流筒を配置し、冷却補助筒の冷却筒から下方に突き出した部分の冷却補助筒の下部を囲繞する構造を採用することで、上記反応によって生じた炭素含有ガスがシリコン融液側に拡散することを抑制することもできる。
 したがって、本発明の第2態様に係る単結晶製造装置によれば、これらの効果が組み合わさった結果として、従来技術に比べて低い炭素濃度の単結晶を効率よく製造することが可能となる。
 以下、本発明の第2態様に係る単結晶製造装置の各部材をより詳細に説明する。
 (1)メインチャンバ
 (2)引き上げチャンバ
 (3)熱遮蔽部材、
 メインチャンバ、引き上げチャンバ、熱遮蔽部材の各詳細は、第1態様における説明を参照されたい。
 (4)冷却筒
 冷却筒は、引き上げ中のシリコン単結晶を取り囲むように配置され、メインチャンバの天井部からシリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却されるものである。
 冷却筒は、シリコン融液に向かって延伸し、ゲートバルブの下部のメインチャンバ内に配置され得る。
 冷却筒を強制冷却する冷却媒体は、特に限定されない。
 (5)冷却補助筒
 冷却補助筒は、冷却筒の内側に嵌合されたものである。このとき用いる冷却補助筒の材質は、黒鉛部材、炭素複合部材、ステンレス鋼、モリブデン、及びタングステンからなる群より選択される少なくとも1種とすることが好ましい。このように熱伝導率及び輻射率が高い材質の冷却補助筒を用いることで、ヒーター周りや熱遮蔽部材周りの高温部からの輻射熱を冷却筒に効率よく伝えることができ、その結果として、黒鉛部材から育成結晶への輻射熱が減って結晶成長速度が高速化すると同時に、炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって生じる炭素含有ガスの発生を更に抑制する効果が得られる。
 (6)整流筒
 本発明の第2態様における整流筒は、引き上げ中のシリコン単結晶を包囲するように熱遮蔽部材上に配置されたものである。整流筒は、引き上げ中のシリコン単結晶を、熱遮蔽部材と同芯として包囲することができる。
 また、整流筒は、その上部が冷却補助筒の冷却筒から下方に突き出した部分の冷却補助筒の下部を囲繞する構造を有する。そのため、整流筒の内径は、冷却補助筒の下部の外径よりも大きな構造とする必要がある。
 熱遮蔽部材上に配置され且つ上部が冷却補助筒の冷却筒から突き出した部分の下部を囲繞する構造を有する整流筒を用いることにより、炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって炭素含有ガスが生じても、この炭素含有ガスがシリコン融液側に拡散することを確実に抑制することができる。
 炉内の炭素部材とシリコン融液から蒸発するSiOとの反応によって生じる炭素含有ガスの発生量は炉内の黒鉛部材の表面積に比例して増加するため、整流筒は、石英製やセラミック製とすることが好ましく、合成石英製とすることが特に好ましい。
 このとき用いる整流筒は、冷却補助筒の冷却筒から下方に突き出した部分の側面の全面積のうち、5%以上の領域を該整流筒の上部で囲繞する構造を有するものであることが好ましい。
 このような構造を用いることで、より一層炭素含有ガスがシリコン融液側により逆流しにくくなる効果が得られる。
 冷却補助筒の冷却筒から下方に突き出した部分の側面の全面積のうち、整流筒の上部で囲繞される領域の割合の上限は特に限定されないが、上記割合は、例えば、60%以下とすることができる。
 また、整流筒の側面と冷却補助筒の冷却筒から下方に突き出した部分の冷却補助筒の測面との間の隙間を3mm以上15mm未満とした構造とすることが好ましい。
 このような構造を用いることで、より確実に炭素含有ガスがシリコン融液側により逆流しにくくなる効果が得られる。
 また、このとき用いる整流筒は、その側面に、開口部が形成されていることが好ましい。
 このような側面に開口部を有する整流筒を用いることで、整流筒開口部から整流筒の外側、例えば後述する筒部にある炉内監視用窓の方向に流れる不活性ガスの流速が上昇し、その結果として、筒部の内部や筒部の外側から炭素含有ガスが原料融液側により逆流しにくくなる効果が得られる。
 加えて、前記整流筒の開口部は、開口部上端の高さが整流筒の全高の35%以下の高さに位置し、かつ、開口部の中心を整流筒の下端部からの高さ30mm以上、40mm以下の位置に設けた構造とすることが好ましい。また、開口部は、整流筒の側面に、円周方向に等間隔で形成されていることがより好ましく、例えば角度0°、120°及び240°の3つの軸上に開口部を設けた構造とすることができる。さらに、前記開口部は、開口部上端から下端までの長さを50mm以下とし、かつ、該整流筒の全側面積の15%以下の領域を開口した構造とすることが好ましい。
 整流筒の開口部上端の位置の下限は特に限定されないが、整流筒の開口部の上端の高さは、例えば、整流筒の全高の5%以上の高さに位置することができる。
 このような側面に開口部を有する整流筒を用いることで、整流筒開口部から整流筒の外側、例えば後述する筒部にある炉内監視用窓の方向に流れる不活性ガスの流速が更に上昇し、その結果として、筒部の内側や筒部の外側から炭素含有ガスが原料融液側により一層逆流しにくくなる効果が得られる。
 (7)その他
 上記以外のHZ(ホットゾーン)の構造は、一般的なCZシリコン単結晶製造装置と同じ構造とすることができる。
 例えば、磁場印加CZ法(MCZ法)を行う単結晶製造装置であれば、シリコン融液に磁場を印加する磁場印加装置を更に含むことができる。
 次に、図面を参照しながら、本発明の第2態様に係る単結晶製造装置の具体例を説明する。なお、従来装置と同じものについては説明を適宜省略することがある。
 図4は、本発明の第2態様に係る単結晶製造装置の一例を示す概略断面図である。図5は、図4に示す単結晶製造装置の整流筒周辺部を拡大して示した概略断面図である。
 図4及び図5に示す単結晶製造装置1は、天井部21を備え、シリコン融液6を収容する石英ルツボ7及びこれを支持する黒鉛ルツボ8を格納するメインチャンバ2と、メインチャンバ2の上部に不図示のゲートバルブを介して連設された引き上げチャンバ3と、メインチャンバ2の天井部21からシリコン融液6に向かって延伸した部分13aを含む冷却筒13と、冷却筒13の内側に篏合された冷却補助筒15とを有する。
 図5に示すように、冷却補助筒15は、下方に延伸した部分15aと、冷却筒13の延伸した部分13a上に配置された部分15bとを含む。冷却補助筒15の下方に延伸した部分15aは、図5に示すように、冷却筒13の延伸した部分13aの内側に位置し、部分15bから下方に延伸している。部分15aの厚さは、部分15bの厚さよりも薄い。
 メインチャンバ2は、黒鉛ルツボ8を支持するルツボサポート16と、ルツボサポート16を支持したルツボ軸17と、黒鉛ルツボ8を取り囲むように配置されたヒーター9と、ヒーター9を取り囲むように配置された断熱材10とを更に格納している。ルツボ軸17は、シリコン融液6、石英ルツボ7、黒鉛ルツボ8及びルツボサポート16を、回転軸18を中心として自転させることができると共に、これらを昇降させることができる。
 メインチャンバ2の天井部21には、筒部11が配置されている。筒部11は、天井部21からシリコン融液6に向けて延伸しており、端部に、シリコン融液と対向するように例えば黒鉛製の熱遮蔽部材12が設けられている。
 熱遮蔽部材12は、内径が下方に向かって徐々に小さくなる形状でシリコン融液6と対向するように配置され、シリコン融液6の表面からの輻射をカットするとともにシリコン融液6の表面を保温するようにしている。
 熱遮蔽部材12の上に、整流筒14が、引き上げるシリコン単結晶を熱遮蔽部材12と同芯に包囲するように配置されている。
 また、整流筒14の上部14aは、図5に示すように、冷却補助筒15の下部15cを囲繞する構造を有する。
 先に説明したように、冷却補助筒15と、熱遮蔽部材12上に配置され且つ上部14aが冷却補助筒15の下部15cを囲繞する構造を有する整流筒14とを用いることにより、単結晶製造装置1内の炭素部材とシリコン融液6から蒸発するSiOとの反応によって炭素含有ガスが生じても、この炭素含有ガスがシリコン融液6側に拡散することを抑制することができる。
 このとき用いる整流筒14は、冷却補助筒15の冷却筒13から下方に突き出した部分の側面15dの全面積のうち、5%以上の領域を該整流筒14の上部14aで囲繞する構造とし、なおかつ、整流筒14の側面14bと冷却補助筒15の冷却筒13から下方に突き出した部分の側面15dとの隙間cを3mm以上15mm未満とした構造とすることが好ましい。このような構造を用いることで、原料融液6直上の領域や筒部11の内面付近に存在している炭素含有ガスが原料融液側に逆流しにくくなる効果が得られる。
 冷却補助筒15の冷却筒13から下方に突き出した部分の側面15dの全面積は、図5に示す長さbに対応する。冷却補助筒15の突き出した部分の側面15dのうち整流筒14の上部14aに囲繞されている(覆われている)領域の面積は、図5に示す長さaに対応する。すなわち、比a/bが5%以上であることが好ましい。
 また、このとき用いる整流筒14は、図6に示すように、側面14bに開口部14cが円周方向に等間隔で形成されていることが好ましく、例えば角度0°、120°、240°の3つの軸上に開口部を設けた構造とすることができる。さらに、前記開口部14cは、開口部上端から下端までの長さを50mm以下とし、かつ、該整流筒14の全側面積の15%以下の領域を開口した構造とすることが好ましい。加えて、前記整流筒14の開口部14cは、開口部上端の高さが整流筒14の全高の35%以下の高さに位置し、かつ、開口部の中心は整流筒14の下端部からの高さ30mm以上40mm以下の位置に設けた構造とすることが好ましい。開口部14cの開口した領域の、整流筒14の側面14bの全面積に対する割合は、図6に示す開口部面積dの全面積eに対する割合、すなわち比d/eに対応する。
 このような側面14bに開口部14cを有する整流筒14を用いることで、整流筒14の開口部14cから筒部11にある炉内監視用窓の方向に流れる不活性ガスの流速が上昇し、その結果として、筒部11の内部や筒部11の外側から炭素含有ガスがシリコン融液6側に逆流しにくくなる効果が得られる。
 以上のような整流筒14と冷却補助筒15を用いることで、シリコン融液6直上や筒部11の内部や外側に存在している炭素含有ガスがシリコン融液6側に逆流しにくくなる効果と、炉内の炭素部材とシリコンメルトから蒸発するSiOとの反応によって生じる炭素含有ガスの発生を抑制する効果とが同時に得られ、これらの効果が組み合わさった結果としてより一層の単結晶中の炭素濃度の低減が可能となる。
 次に、本発明の単結晶製造装置を用いた単結晶製造方法の例を、図4及び図5を参照しながら説明する。ただし、本発明の単結晶製造装置は、図4及び図5に示した単結晶製造装置には限定されないし、本発明の単結晶製造装置を用いた単結晶製造方法は、以下に例示するものに限定されない。
 まず、種結晶4をシリコン融液6に浸漬し、種結晶4と石英ルツボ7及び黒鉛ルツボ8とを回転軸18を中心に自転させながら種結晶4を静かに上方に引上げて棒状のシリコン単結晶5を成長させる一方、所望の直径と結晶品質を得るため融液面の高さが常に一定に保たれるように結晶の成長に合わせて石英ルツボ7及び黒鉛ルツボ8を上昇させる。石英ルツボ7及び黒鉛ルツボ8の上昇、並びに石英ルツボ7及び黒鉛ルツボ8の回転は、ルツボ軸17を用いて行うことができる。
 シリコン融液6は、石英ルツボ7内に原料シリコンを投入し、この原料シリコンをヒーター9を用いて溶融させることによって得ることができる。
 このとき使用する原料シリコンは、半導体グレードの高純度原料であることが好ましい。本発明は、熱遮蔽部材上に配置した整流筒によって冷却補助筒の冷却筒から下方に突き出した部分の下部を囲繞する構造を採用することで結晶製造プロセスに起因した炭素の汚染を低減する技術であるが、高純度の原料を使用することにより、原料からの持ち込みによる汚染量を低減でき、それにより、炭素濃度が低い単結晶をより確実に製造することができる。よって、使用する原料シリコンは半導体グレードの高純度原料であることが好ましい。
 図4及び図5に示す単結晶製造装置1の一例を用いることにより、冷却筒13に、シリコン単結晶5からの輻射熱やヒーター9等の高温部からの輻射熱を十分に伝えることができ、伝わった熱を、冷却媒体による強制冷却で除去できる。それにより、シリコン単結晶5をより効率的に製造できる。
 そして、図4及び図5に示す単結晶製造装置1の一例では、冷却補助筒15の周りの、例えばシリコン融液6直上のシリコン単結晶5の周りの空間や、冷却補助筒15と筒部11とで囲まれた空間の温度を低下させることができる。それにより、製造装置1内の炭素部材とシリコン融液6から蒸発するSiOとの反応を抑制でき、ひいては炭素含有ガスの発生を抑制できる。加えて、上記反応が起きて炭素含有ガスが生じても、熱遮蔽部材12上に配置され、且つ上部14aで冷却補助筒15の下部15cを囲繞した整流筒14により、この炭素含有ガスがシリコン融液6に逆流するのを防ぐことができる。
 すなわち、図4及び図5に示す単結晶製造装置1の一例を用いれば、炭素濃度が低い単結晶を効率よく製造することができる。
 また、図4及び図5に示す単結晶製造装置1の一例において、整流筒14を、図6に示すような側面14bに開口部14cを有するものとすることで、先に説明したように、炭素含有ガスがシリコン融液に逆流するのを更に防ぐことができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 各実施例及び比較例では、以下に説明する単結晶製造装置を用いて、以下の共通条件で、単結晶の製造を行なった。ルツボとして、口径81.28cm(32インチ)を用いた。このルツボに360kgの原料シリコンを入れて、これをヒーターで溶融して、シリコン融液を得た。シリコン融液に水平磁場を印加しながら、結晶直径300mmの結晶の引き上げを行った。引き上げ後の直径300mmの結晶について、各直胴位置からサンプルを切り出し、PL法を用いて炭素濃度の定量を実施した。
 (実施例1)
 実施例1では、図1及び図2を参照しながら説明した単結晶製造装置1と同様の構造を有する単結晶製造装置を用いた。すなわち、実施例1では、引き上げ中のシリコン単結晶5を同芯に包囲するように、熱遮蔽部材12上に整流筒14を配置し、冷却補助筒15の下部である第2部分152によって整流筒14の上端部141を覆う構造の冷却補助筒15を用いて単結晶の製造を行った。なお、このときの整流筒14の材質は合成石英とし、冷却補助筒15の材質は、熱伝導率が金属と比較して同等以上であり、かつ輻射率が金属より高い黒鉛材を使用した。また、用いた整流筒14は、図1及び図2に示すように、側面に開口部のない(図3における比e/f=0%)、全閉構造の整流筒であった。
 図2に示す通り、整流筒上部の冷却補助筒で覆われている部分の面積と整流筒側面の全面積の比をa/b、冷却補助筒下部にある溝部の側面と整流筒側面の間隔をc、冷却補助筒と前記冷却筒の底面の間隙をdとし、実施例1では、a/b=35%、c=5mmに固定して、d=0mm(完全接触)、d=1.0mm、d=3.0mmの3水準を用意して単結晶の製造を行った。
 (比較例1)
 比較例1では、図11に示すような構造を有する単結晶製造装置を用いた。すなわち、比較例1では、熱遮蔽部材12の上に整流筒を搭載せずに、冷却筒13のシリコン融液6に対面する底面132を覆う構造を有していない冷却補助筒115を用いる点で実施例1の単結晶製造装置と異なる単結晶製造装置を用いて単結晶の製造を行った。
 実施例1及び比較例1の結果を図7に示す。本発明の第1態様に係る単結晶製造装置を用いた実施例1では、図11のような比較例1の製造装置を用いて製造を行った場合に比べて、いずれの固化率においても炭素濃度の低い単結晶を得ることができたことが分かる。特に、実施例1において冷却補助筒と冷却筒底面との間隙dが0mm(完全接触)の場合では、比較例1の製造装置を用いて製造を行った場合に比べて、単結晶中の炭素濃度が89%程度減少するという結果が得られた。また、図7から判るように、実施例1の冷却補助筒と冷却筒底面の間隙dが1mm以下であれば比較例1に比べて単結晶中の炭素濃度を顕著に減少できることが確認できている。このため、本発明の第1態様で用いる製造装置の冷却補助筒と冷却筒底面の間隙dは1mm以下とすることが好ましい。一方で、実施例1の冷却補助筒と冷却筒の底面の間隙dを3mmとしても、比較例1の場合と比べて単結晶中の炭素濃度が77%程度減少するという結果が得られた。
 (実施例2)
 実施例2では、図2のc=5mm、d=1.0mmに固定して、a/b=10%、a/b=35%の2水準のそれぞれを満たす単結晶製造装置を用意して単結晶の製作を行った。なお、実施例2でも、実施例1と同様、用いた整流筒14は、図1及び図2に示すように、側面に開口部のない(図3における比e/f=0%)、全閉構造の整流筒であった。
 (比較例2)
 比較例2では、a/b=0%とした、すなわち整流筒14の上端部141が冷却補助筒15の第2部分152で囲繞されていない点以外は実施例2で用いたのと同様の単結晶製造装置を用いて単結晶の製作を行なった。
 実施例2、比較例1及び比較例2の結果を図8に示す。本発明の第1態様に係る単結晶製造装置を用いた実施例2では、図11のような比較例1の製造装置を用いて製造を行った場合に比べて、いずれの固化率においても炭素濃度の低い単結晶を得ることができたことが分かる。特に、実施例2において整流筒14の上端部141の冷却補助筒で覆われている部分の面積と整流筒141の側面142の全面積の比a/bを35%とした場合、比較例1の製造装置を用いて製造を行った場合に比べて、単結晶中の炭素濃度が85%程度減少するという結果が得られた。また、図8から判るように、実施例2のa/bが10%以上であれば比較例1及び2に比べて単結晶中の炭素濃度が顕著に減少することが確認できている。このため、本発明の第1態様で用いる製造装置の整流筒14の上端部141の冷却補助筒15で覆われている部分の面積と整流筒14の側面142の全面積の比の下限値は10%とすることが好ましい。一方で、a/b=0%とした比較例2では、比較例1の場合と比べて単結晶中の炭素濃度が67%程度減少するという結果が得られているが、実施例2の結果に比べると不十分であった。
 なお、実施例2とは別に、a/b=40%となるような構造の冷却補助筒15を用いて単結晶の製造を行った。a/bを35%以下とした実施例2では、a/bを40%とした場合に比べ、直径測定用のカメラのための視野が確保しやすかった。この点を踏まえると、整流筒14の上端部141の冷却補助筒15で覆われている部分の面積の整流筒14の側面142の全面積に対する比の上限を35%とすることが好ましいことが分かる。
 (実施例3)
 実施例3では、a/b=35%、d=1.0mmに固定して、c=5mm、c=25mmの2水準のそれぞれを満たす単結晶製造装置を用意して単結晶の製作を行った。なお、実施例3でも、実施例1と同様、用いた整流筒14は、図1及び図2に示すように、側面に開口部のない(図3における比e/f=0%)、全閉構造の整流筒であった。
 実施例3及び比較例1の結果を図9に示す。本発明の第1態様に係る単結晶製造装置を用いた実施例3では、図11のような比較例1の製造装置を用いて製造を行った場合に比べて、いずれの固化率においても炭素濃度の低い単結晶を得ることができたことが分かる。特に、実施例3において、冷却補助筒15の溝部154側面と整流筒14側面142との間隔cを5mmとした場合は、比較例1の単結晶製造装置を用いて単結晶の製造を行った場合に比べて、単結晶中の炭素濃度が85%程度減少するという結果が得られた。また、図9から判るように、実施例3のcが25mm以下であれば比較例1に比べて単結晶中の炭素濃度が減少することが確認できている。
 (実施例4)
 整流筒14の側面142の開口部143の開口部面積eと整流筒14の側面142の全面積fの比をe/f(図3に示す)とし、実施例4では、a/b=35%、d=1.0mm、c=5mmに固定して、e/f=0%(全閉構造の整流筒)、e/f=9%、e/f=15%の3水準のそれぞれを満たす単結晶製造装置を用意して単結晶の製造を行った。なお、e/f=9%、e/f=15%の整流筒14は角度0°,120°,240°の3つの軸上に開口部143を設けた構造となっている。
 上記の条件に加えて、e/f=9%の整流筒14では、開口部143の上端の高さが整流筒14の全高の24%の高さに位置しており、前記開口部143は開口部143の上端から下端までの長さ30mmの領域を開口した構造とした。
 上記の条件に加えて、e/f=15%の整流筒14では、開口部143の上端の高さが整流筒14の全高の35%の高さに位置しており、前記開口部143は開口部143の上端から下端までの長さ50mmの領域を開口した構造とした。
 実施例4及び比較例1の結果を図10に示す。本発明の第1態様に係る単結晶製造装置を用いた実施例4のうち、整流筒14の側面142の開口部143の開口部面積eと整流筒14側面142の全面積fとの比e/fを9%とした場合は、図11のような従来構造の製造装置を用いて単結晶の製造を行った比較例1と比べて、単結晶中の炭素濃度が93%程度減少するという結果が得られた。また、図10から判るように、実施例4のe/fが0%を超え15%以下であれば比較例1に比べて単結晶中の炭素濃度が顕著に減少することが確認できている。
 また、図10から、比e/fを9%又は15%とした場合は、e/f=0%(全閉構造の整流筒)とした場合に比べて単結晶中の炭素濃度が減少しており、整流筒14の側面142を開口したことによる効果で単結晶中の炭素濃度が更に減少することが確認できている。
 (実施例5)
 実施例5では、図4及び図5を参照しながら説明した単結晶製造装置1と同様の構造を有する単結晶製造装置を用いた。すなわち、実施例5では、引き上げ中のシリコン単結晶5を同芯に包囲するように、熱遮蔽部材12上に整流筒14を配置した。また、熱遮蔽部材12上の整流筒14の上部14aによって、冷却補助筒15の冷却筒13から下方に突き出した部分の下部15cを覆って囲繞した。このような整流筒と冷却補助筒とを有する単結晶製造装置1を用いて単結晶の製造を行った。
 なお、このときの整流筒14の材質は合成石英とし、冷却補助筒15の材質は、熱伝導率が金属と比較して同等以上であり、かつ輻射率が金属より高い黒鉛材を使用した。
 図5に示す通り、冷却補助筒15の冷却筒13から下方に突き出した部分の側面15dの全面積と冷却補助筒下部15cの整流筒14で覆われている部分の面積の比をa/b、冷却補助筒15の冷却筒13から下方に突き出した部分の側面15dと整流筒14の側面14bとの間隔をc、整流筒側面14bの開口部14cの開口部面積dと整流筒側面14bの全面積eの比をd/e(図6に示す)とし、実施例5では、c=3mm、d/e=0%(全閉構造)に固定して、a/b=5%、a/b=45%の2水準を用意して単結晶の製造を行った。
 (比較例3)
 比較例3では、図11に示すような構造を有する単結晶製造装置200を用いた。すなわち、比較例3では、熱遮蔽部材12の上に整流筒を搭載せずに、冷却補助筒15のみを用いた点で実施例5の単結晶製造装置と異なる単結晶製造装置200を用いて単結晶の製造を行った。
 (比較例4)
 比較例4では、a/b=0%とした、すなわち冷却補助筒15の冷却筒13から下方に突き出した部分の下部15cが整流筒14の上部14aで覆われていない点以外は実施例5で用いたものと同じ単結晶製造装置を用いて単結晶の製造を行った。
 実施例5、比較例3及び比較例4の結果を図12に示す。本発明の第2態様に係る単結晶製造装置の一例を用いた実施例5の冷却補助筒15の冷却筒13から下方に突き出した部分の側面15bの全面積と冷却補助筒下部15cの整流筒14の上部14aで覆われている部分の面積の比a/bを45%とした場合は、図11のような比較例3の製造装置を用いて製造を行った場合に比べて、単結晶中の炭素濃度が68%程度減少するという結果が得られた。また、図12から判るように、実施例5のa/bを5%以上とすれば、比較例3に比べて単結晶中の炭素濃度が顕著に減少することが確認できている。一方で、比較例4のa/bを0%とした場合は、比較例3の場合と比べて単結晶中の炭素濃度が18%程度減少するという結果が得られているが、実施例5の結果に比べると不十分であった。
 (実施例6)
 実施例6では、a/b=5%、d/e=0%(全閉構造)に固定して、c=3mm、c=15mmの2水準を用意して単結晶の製作を行った。
 実施例6及び比較例3の結果を図13に示す。本発明の第2態様に係る単結晶製造装置の一例を用いた実施例6の冷却補助筒15の冷却筒13から下方に突き出した部分の側面15dと整流筒側面14bとの間隔cを3mmとした場合、図11のような比較例3の製造装置を用いて製造を行った場合に比べて、単結晶中の炭素濃度が58%程度減少するという結果が得られた。また、図13から判るように、実施例6において間隔cを15mm以下とすれば、比較例3に比べて単結晶中の炭素濃度が顕著に減少することが確認できている。また、これらの結果から、実施例6の間隔cを15mm以下とすることにより、より低い炭素濃度を達成できたことが分かる。
 なお、実施例6とは別に、c=2mmとなるような整流筒14を用いて単結晶の製造を行った。間隔cを3mm以上とした実施例6では、間隔cを2mmとした場合と比べ、整流筒14のセット時の整流筒14と冷却補助筒15の下部15cとの干渉が少なく、容易に操業を継続することができた。このため、冷却補助筒15の冷却筒13から下方に突き出した部分の側面15bと整流筒側面14bとの間隔の下限値は3mmとすることが好ましいことが分かる。
 (実施例7)
 実施例7では、a/b=5%、c=3mmに固定して、図6に示す、d/e=0%、d/e=9%、d/e=15%の3水準を用意して単結晶の製作を行った。なお、d/e=9%、d/e=15%の整流筒14は角度0°,120°,240°の3つの軸上に開口部14cを設けた構造となっている。
 上記の条件に加えて、d/e=9%の整流筒では、開口部14cの上端の高さが整流筒14の全高の24%の高さに位置しており、前記開口部14cは開口部14cの上端から下端までの長さ30mmの領域を開口した構造とした。
 上記の条件に加えて、d/e=15%の整流筒では、開口部14cの上端の高さが整流筒14の全高の35%の高さに位置しており、前記開口部14cは開口部14cの上端から下端までの長さ50mmの領域を開口した構造とした。
 実施例7及び比較例3の結果を図14に示す。本発明の第2態様に係る単結晶製造装置の一例を用いた実施例7のd/eを9%として開口部14cの上端の高さを整流筒14の全高の24%の高さに位置させた場合、図11のような比較例3の製造装置を用いて製造を行った場合に比べて、単結晶中の炭素濃度が76%程度減少するという結果が得られた。また、図14から判るように、実施例7のd/eを15%以下として開口部14cの上端の高さを整流筒14の全高の35%以下の高さに位置させた場合、比較例3に比べて単結晶中の炭素濃度が顕著に減少することが確認できている。
 また、これらの結果から、実施例7の比d/eを15%以下とし、且つ開口部14cの上端の高さを整流筒14の全高の35%以下の高さとすることにより、より低い炭素濃度を達成できたことが分かる。これは、実施例7の比d/eを15%以下とし、且つ開口部14cの上端の高さを整流筒14の全高の35%以下の高さとすることにより、整流筒14の開口部14cから筒部11の炉内監視用窓への方向に流れる不活性ガスの流速が上昇し、筒部11の内部に存在する炭素含有ガスが原料融液6側に逆流する現象が抑制され、その結果として単結晶中の炭素濃度を更に低減できたものと考えられる。すなわち、実施例7の結果から、本発明の単結晶製造装置1の整流筒側面14bの開口部14cの開口部面積dと整流筒側面14bの全面積eとの比d/eを15%以下とし、開口部14cの上端の高さを整流筒14の全高の35%以下の高さとすることで、整流筒14の開口部14cから筒部11の炉内監視用窓への方向に流れる不活性ガスの流速を十分に保つことができ、好ましいことが分かる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (12)

  1.  チョクラルスキー法によって単結晶を育成する単結晶製造装置であって、
     天井部を備え、シリコン融液を収容するルツボを格納するメインチャンバと、
     前記メインチャンバの前記天井部からゲートバルブを介して上方に連設し、前記シリコン融液から引き上げられたシリコン単結晶を収容する引き上げチャンバと、
     前記ルツボに収容された前記シリコン融液と対向するように配置された熱遮蔽部材と、
     引き上げ中の前記シリコン単結晶を包囲するように前記熱遮蔽部材上に配置された整流筒と、
     引き上げ中の前記シリコン単結晶を取り囲むように配置され、前記メインチャンバの前記天井部から前記シリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却される冷却筒と、
     前記冷却筒の内側に嵌合された冷却補助筒と
    を有し、
     前記冷却筒の前記延伸した部分は、前記シリコン融液に対面する底面を有し、
     前記冷却補助筒は、少なくとも、前記冷却筒の前記底面を囲繞した第1部分と、前記整流筒の上端部を囲繞した第2部分とを有するものであることを特徴とする単結晶製造装置。
  2.  前記整流筒は、合成石英製であることを特徴とする請求項1に記載の単結晶製造装置。
  3.  前記冷却補助筒は、黒鉛部材、炭素複合部材、ステンレス鋼、モリブデン、及びタングステンからなる群より選択される少なくとも1種からなり、
     前記冷却補助筒の前記第1部分は、前記冷却筒の前記底面を覆う構造を有し、前記冷却補助筒の前記第1部分と前記冷却筒の前記底面との間隙が1.0mm以下のものであることを特徴とする請求項1又は請求項2に記載の単結晶製造装置。
  4.  前記冷却補助筒の前記第2部分は、前記整流筒の側面の全面積のうち10%以上35%以下の領域を覆った溝部を含むものであることを特徴とする請求項1から請求項3の何れか1項に記載の単結晶製造装置。
  5.  前記整流筒の前記上端部の両側面と前記冷却補助筒の前記第2部分の前記溝部の側面との隙間が5mm以上25mm以下であることを特徴とする請求項4に記載の単結晶製造装置。
  6.  前記整流筒は側面に開口部を有し、該整流筒の開口部の上端の高さが前記整流筒の全高の35%以下の高さの位置に形成されたものであることを特徴とする請求項1から請求項5の何れか1項に記載の単結晶製造装置。
  7.  チョクラルスキー法によって単結晶を育成する単結晶製造装置であって、
     天井部を備え、シリコン融液を収容するルツボを格納するメインチャンバと、
     前記メインチャンバの前記天井部からゲートバルブを介して上方に連設し、前記シリコン融液から引き上げられたシリコン単結晶を収容する引き上げチャンバと、
     前記ルツボに収容された前記シリコン融液と対向するように配置された熱遮蔽部材と、
     引き上げ中の前記シリコン単結晶を包囲するように前記熱遮蔽部材上に配置された整流筒と、
     引き上げ中の前記シリコン単結晶を取り囲むように配置され、前記メインチャンバの前記天井部から前記シリコン融液に向かって延伸した部分を含み、冷却媒体で強制冷却される冷却筒と、
     前記冷却筒の内側に嵌合された冷却補助筒と
    を有し、
     前記整流筒の上部は、前記冷却補助筒の前記冷却筒から下方に突き出した部分の前記冷却補助筒の下部を囲繞する構造を有するものであることを特徴とする単結晶製造装置。
  8.  前記整流筒は合成石英製であることを特徴とする請求項7に記載の単結晶製造装置。
  9.  前記冷却補助筒の材質は、黒鉛部材、炭素複合部材、ステンレス鋼、モリブデン、及びタングステンからなる群より選択される少なくとも1種であることを特徴とする請求項7又は請求項8に記載の単結晶製造装置。
  10.  前記整流筒は、前記冷却補助筒の前記冷却筒から下方に突き出した部分の側面の全面積のうち、5%以上の領域を前記整流筒の上部で囲繞する構造を有するものであることを特徴とする請求項7から請求項9の何れか1項に記載の単結晶製造装置。
  11.  前記整流筒の側面と前記冷却補助筒の前記冷却筒から下方に突き出した部分の冷却補助筒の側面との間の隙間を3mm以上15mm未満とすることを特徴とする請求項7から請求項10の何れか1項に記載の単結晶製造装置。
  12.  前記整流筒は側面に開口部を有し、該整流筒の開口部の上端の高さが前記整流筒の全高の35%以下の高さの位置に形成されたものであることを特徴とする請求項7から請求項11の何れか1項に記載の単結晶製造装置。
PCT/JP2021/040259 2020-12-10 2021-11-01 単結晶製造装置 WO2022123957A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021005336.1T DE112021005336T5 (de) 2020-12-10 2021-11-01 Vorrichtung zur herstellung eines einkristalls
US18/037,802 US20240003046A1 (en) 2020-12-10 2021-11-01 Single crystal manufacturing apparatus
KR1020237018918A KR20230116813A (ko) 2020-12-10 2021-11-01 단결정 제조장치
CN202180080412.9A CN116568872A (zh) 2020-12-10 2021-11-01 单晶制造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-205275 2020-12-10
JP2020-205263 2020-12-10
JP2020205275A JP2022092450A (ja) 2020-12-10 2020-12-10 単結晶製造装置
JP2020205263A JP7420060B2 (ja) 2020-12-10 2020-12-10 単結晶製造装置

Publications (1)

Publication Number Publication Date
WO2022123957A1 true WO2022123957A1 (ja) 2022-06-16

Family

ID=81973666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040259 WO2022123957A1 (ja) 2020-12-10 2021-11-01 単結晶製造装置

Country Status (4)

Country Link
US (1) US20240003046A1 (ja)
KR (1) KR20230116813A (ja)
DE (1) DE112021005336T5 (ja)
WO (1) WO2022123957A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285351A (ja) * 2007-05-16 2008-11-27 Sumco Corp 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
JP2011057467A (ja) * 2009-09-07 2011-03-24 Sumco Techxiv株式会社 単結晶引上装置
JP2011105537A (ja) * 2009-11-16 2011-06-02 Sumco Techxiv株式会社 シリコン単結晶の製造方法
JP2013256406A (ja) * 2012-06-13 2013-12-26 Shin Etsu Handotai Co Ltd 原料充填方法及び単結晶の製造方法
JP2020152612A (ja) * 2019-03-20 2020-09-24 信越半導体株式会社 単結晶製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462479B2 (ja) 2008-12-17 2014-04-02 Sumco Techxiv株式会社 シリコン単結晶引上装置
JP5373423B2 (ja) 2009-02-12 2013-12-18 Sumco Techxiv株式会社 シリコン単結晶及びその製造方法
JP5561785B2 (ja) 2011-03-25 2014-07-30 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶引上装置及びそれを用いたシリコン単結晶の引上げ方法
JP6339490B2 (ja) 2014-12-17 2018-06-06 信越化学工業株式会社 Czシリコン単結晶の製造方法
JP6292164B2 (ja) 2015-04-30 2018-03-14 信越半導体株式会社 シリコン単結晶の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285351A (ja) * 2007-05-16 2008-11-27 Sumco Corp 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
JP2011057467A (ja) * 2009-09-07 2011-03-24 Sumco Techxiv株式会社 単結晶引上装置
JP2011105537A (ja) * 2009-11-16 2011-06-02 Sumco Techxiv株式会社 シリコン単結晶の製造方法
JP2013256406A (ja) * 2012-06-13 2013-12-26 Shin Etsu Handotai Co Ltd 原料充填方法及び単結晶の製造方法
JP2020152612A (ja) * 2019-03-20 2020-09-24 信越半導体株式会社 単結晶製造装置

Also Published As

Publication number Publication date
KR20230116813A (ko) 2023-08-04
US20240003046A1 (en) 2024-01-04
DE112021005336T5 (de) 2023-07-20

Similar Documents

Publication Publication Date Title
US4981549A (en) Method and apparatus for growing silicon crystals
KR100415860B1 (ko) 단결정제조장치및제조방법
US9217208B2 (en) Apparatus for producing single crystal
JP5517913B2 (ja) SiC単結晶の製造装置、製造装置に用いられる治具、及びSiC単結晶の製造方法
KR101105950B1 (ko) 단결정 잉곳 제조장치
JP2007204309A (ja) 単結晶成長装置及び単結晶成長方法
KR101574749B1 (ko) 단결정 제조용 상부히터, 단결정 제조장치 및 단결정 제조방법
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
KR101048831B1 (ko) 단결정 제조용 흑연 히터 및 단결정 제조장치와 단결정 제조방법
JP4097729B2 (ja) 半導体単結晶製造装置
KR20090062144A (ko) 단결정 잉곳의 제조장치 및 그에 사용되는 열실드
JP2018177560A (ja) 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
JP4844127B2 (ja) 単結晶製造装置および製造方法
KR100331552B1 (ko) 잉곳-용융물 경계의 중앙 및 가장자리에서의 온도구배의 조절에 의한 단결정 실리콘 잉곳의 제조를 위한 초크랄스키 풀러, 상기 초크랄스키 풀러용 열차단체 및 상기 초크랄스키 풀러의 개량방법.
JP2005532697A (ja) 大口径SiCウェハおよびその製造方法
WO2022123957A1 (ja) 単結晶製造装置
JP3482956B2 (ja) 単結晶引き上げ装置
JP2022092442A (ja) 単結晶製造装置
JP2022092450A (ja) 単結晶製造装置
US20230015551A1 (en) Apparatus for manufacturing single crystal
JP2002321997A (ja) シリコン単結晶の製造装置及びそれを用いたシリコン単結晶の製造方法
JPH11240790A (ja) 単結晶製造装置
JP2009292684A (ja) シリコン単結晶の製造方法およびこれに用いる製造装置
JP2000327479A (ja) 単結晶製造装置及び単結晶製造方法
JP2007210820A (ja) シリコン単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037802

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180080412.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237018918

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21903061

Country of ref document: EP

Kind code of ref document: A1