WO2022120900A1 - 二氧化硅填料及其制备方法、环氧树脂复合材料 - Google Patents

二氧化硅填料及其制备方法、环氧树脂复合材料 Download PDF

Info

Publication number
WO2022120900A1
WO2022120900A1 PCT/CN2020/136552 CN2020136552W WO2022120900A1 WO 2022120900 A1 WO2022120900 A1 WO 2022120900A1 CN 2020136552 W CN2020136552 W CN 2020136552W WO 2022120900 A1 WO2022120900 A1 WO 2022120900A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
silica
silane coupling
silica filler
silica particles
Prior art date
Application number
PCT/CN2020/136552
Other languages
English (en)
French (fr)
Inventor
李刚
张超
吴厚亚
朱朋莉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2022120900A1 publication Critical patent/WO2022120900A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the invention belongs to the technical field of polymer composite materials, in particular to a silica filler and a preparation method thereof, and also to an epoxy resin composite material comprising the silica filler.
  • New forms of electronic products such as biological micro-electromechanical devices, artificial intelligence micro-robots, wearable electronic devices, 5G communication electronic devices, thin and light notebooks, and ultra-thin mobile phones are appearing more and more frequently in people's daily life.
  • the miniaturization, thinning, and high operating speed of electronic devices make chips develop toward high integration, miniaturization, and high reliability.
  • Underfill is a key type of plastic electronic packaging materials. Underfill can reduce the thermal expansion coefficient mismatch between the chip and the substrate, provide adhesion, and protect solder balls. It is used for CSP (Chip Scale Package, chip level).
  • Epoxy resin composite is a commonly used underfill, which is generally composed of epoxy resin, curing agent and silica filler.
  • underfill is generally composed of epoxy resin, curing agent and silica filler.
  • the spacing of CSPs is getting smaller and smaller, and the spacing of solder balls is also getting smaller and smaller, which puts forward higher requirements for underfill: spherical silica filler for underfill Reduced particle size and high sphericity. Underfills require a low coefficient of thermal expansion after curing and therefore require larger loadings of silica fillers.
  • the present invention provides a silica filler and a preparation method thereof, so as to solve the problem that the existing silica filler will cause excessive viscosity of the composite material when the particle size is smaller and the filling amount is higher. high question.
  • one aspect of the present invention is to provide a silica filler, the silica filler is surface-modified by two or more different silane coupling agents and grafted on the surface of two kinds of silica fillers.
  • the silica particles are spherical silica particles, and the particle size of the silica particles is 90 nm ⁇ 110 nm.
  • the two or more different silane coupling agents are selected from aminopropyltriethoxysilane, glycidyltrimethoxypropyltrimethoxysilane, methacryloxypropyltrimethoxysilane, ethylene Triethoxysilane, vinyltrimethoxysilane, mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, ethylenediaminepropyltriethoxysilane, ethylenediaminepropylmethyldisilane Methoxysilane, 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane, 3-(2,3-glycidoxy)propylmethyldimethoxysilane, 3-(2 ,3-glycidoxy)propylmethyldiethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane
  • the present invention provides a kind of preparation method of the above-mentioned silica filler, and it comprises:
  • silane coupling agent solvent contains two or more different silane coupling agents
  • the reaction solution is subjected to a high-temperature reflux reaction process, and after cooling, the reaction solution is processed by a centrifugal washing process and a drying process in turn to obtain silica particles with surface grafting of two or more different organic functional groups.
  • the mass ratio of the silica particles to the silane coupling agent solvent is 1:(1-5).
  • the high temperature reflux reaction process is carried out in a condensation reflux device, the reaction temperature is 90°C to 140°C, and the reaction time is 3h to 24h.
  • the detergent used in the centrifugal washing process is absolute ethanol; the temperature of the drying process is 100°C to 300°C, and the time is 3h to 24h.
  • Another aspect of the present invention is to provide an epoxy resin composite material, comprising an epoxy resin matrix and a filler, wherein the epoxy resin matrix includes an epoxy resin and a curing agent, and the filler is the above-mentioned dioxide dioxide Silicon filler.
  • the epoxy resin is one or more of bisphenol A type epoxy resin, bisphenol F type epoxy resin and alicyclic epoxy resin
  • the curing agent is alicyclic acid anhydride curing agent agent or amine curing agent.
  • the mass ratio of the epoxy resin to the curing agent is 10: (1-5); the mass ratio of the epoxy resin matrix to the silica filler is 10 : (3 to 7).
  • the silica filler provided in the embodiment of the present invention is specifically a silica particle whose surface has been modified by two or more different silane coupling agents and two or more different organic functional groups are grafted on the surface. Grafting two or more different organic functional groups on the surface improves the compatibility and dispersibility of silica fillers in resin substrates.
  • the composite material can be Has low viscosity and excellent viscosity stability.
  • the preparation method of the silica filler provided in the embodiment of the present invention has the advantages of simple process flow and easy realization of process conditions, and is favorable for large-scale industrial application.
  • Fig. 1 is the SEM image of unmodified silica particles in Example 1 of the present invention.
  • Fig. 2 is the SEM image of the silica filler prepared in Example 1 of the present invention.
  • Fig. 3 is the viscosity curve diagram of the epoxy resin composite material prepared in Example 1 of the present invention under the condition that the shear rate is 0 ⁇ 100S -1 ;
  • Fig. 4 is the SEM image of the silica filler prepared in Example 2 of the present invention.
  • Fig. 5 is the SEM image of the silica filler prepared by Example 3 of the present invention.
  • Example 6 is a SEM image of the silica filler prepared in Example 4 of the present invention.
  • the embodiment of the present invention first provides a silica filler, the silica filler is surface-modified by two or more different silane coupling agents and grafted on the surface of two or more different organic functional groups of silica particles.
  • the silica particles are spherical silica particles, and the particle size of the silica particles is 90 nm ⁇ 110 nm.
  • the two or more different silane coupling agents are selected from aminopropyltriethoxysilane, glycidyltrimethoxypropyltrimethoxysilane, and methacryloxypropyltrimethoxysilane.
  • silica filler For the silica filler described above, two or more silane coupling agents are selected to modify the silica at the same time, thereby grafting two or more different organic groups on the surface of the silica particles.
  • An organic functional group plays a different role. It is filled in the epoxy resin composite material, which improves the compatibility and dispersibility of the silica filler in the resin substrate.
  • the particle size of the filler is smaller and higher. When the filling amount is high, the composite material can have lower viscosity and excellent viscosity stability.
  • the embodiment of the present invention also provides the above-mentioned preparation method of the silica filler, which comprises:
  • Step S10 stirring and dispersing the silica particles in a silane coupling agent solvent to obtain a mixed reaction solution; wherein the silane coupling agent solvent contains two or more different silane coupling agents.
  • the mass ratio of the silica particles to the silane coupling agent solvent is selected to be 1:(1-5).
  • the two or more different silane coupling agents are selected from aminopropyltriethoxysilane, glycidyltrimethoxypropyltrimethoxysilane, and methacryloxypropyltrimethoxysilane.
  • silane coupling agent solvent two or more different silane coupling agents are mixed in an equal volume ratio.
  • phenyltrimethoxysilane, octyltrimethoxysilane, methyltrimethoxysilane, hexadecyltrimethoxysilane, octadecyltrimethoxysilane, and diphenyldimethoxysilane are used.
  • one or more silane coupling agents in phenyltriethoxysilane and propyltrimethoxysilane and simultaneously use (3-mercaptopropyl)trimethoxysilane, 3-(methacryloyloxy)propyl trimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 2-(3,4-epoxycyclohexane)ethyltrimethoxysilane, methacryloxypropyltrimethoxysilane It is a coupling agent among silane, anilinomethyltriethoxysilane and vinyltrimethoxysilane, which can ensure that no reaction occurs between the silane coupling agents.
  • the mixed reaction solution is added to a magnetic stirring bar for magnetic stirring.
  • step S20 the reaction solution is subjected to a high-temperature reflux reaction process, and after cooling, it undergoes a centrifugal washing process and a drying process in sequence to obtain silica particles with surface-grafted two or more different organic functional groups.
  • the high temperature reflux reaction process is carried out in a condensation reflux device, the reaction temperature is 90°C to 140°C, and the reaction time is 3h to 24h.
  • the detergent used in the centrifugal washing process is absolute ethanol; the temperature of the drying process is 100°C to 300°C, and the time is 3h to 24h.
  • the above-mentioned preparation method of the silica filler has the advantages of simple process flow and easy realization of process conditions, which is favorable for large-scale industrial application.
  • silane coupling agent in the process of surface modification of silica particles, silane coupling agent is directly used as solvent, and silica is added to excess silane coupling agent solvent , heating at a certain temperature, and condensing and refluxing for a certain period of time, so that the silane coupling agent can successfully modify the silica particles, avoiding the addition of other organic substances or solvents.
  • An embodiment of the present invention also provides an epoxy resin composite material, comprising an epoxy resin matrix and a filler, wherein the epoxy resin matrix includes an epoxy resin and a curing agent, and the filler is as described above in the embodiment of the present invention of silica filler.
  • the epoxy resin is one or more of bisphenol A type epoxy resin, bisphenol F type epoxy resin and alicyclic epoxy resin
  • the curing agent is alicyclic epoxy resin family of acid anhydride curing agents or amine curing agents.
  • the mass ratio of the epoxy resin to the curing agent is 10: (1-5); The mass ratio is 10:(3 ⁇ 7).
  • the preparation process of the epoxy resin composite material includes:
  • the liquid mixture obtained after the reaction was placed in a centrifuge bottle, centrifuged at 8000rpm for 10 minutes in a high-speed centrifuge, the powder was separated from the silane coupling agent liquid, and the silane coupling agent liquid was recovered and collected for reuse.
  • Ultrasonic cleaning and centrifugation with absolute ethanol were repeated 3 times to remove the physically adsorbed silane on the surface of the silica, and the obtained powder was placed in a blast drying oven at 110 °C for 6 hours, which further promoted the silane coupling agent and the dioxide. Chemical grafting of the silicon surface to obtain a modified silica filler.
  • the SEM morphology of the unmodified silica is shown in FIG. 1
  • the SEM morphology of the silica filler obtained after modification in this example is shown in FIG. 2 .
  • the bisphenol F epoxy resin and the curing agent diethyltoluenediamine are prepared into a uniform epoxy resin matrix in a mass ratio of 10:2.7, and are mixed uniformly in a planetary mixer.
  • the epoxy resin matrix and the silica filler prepared in this example are mixed in a mass ratio of 10:4, and the epoxy resin is prepared by mixing uniformly and removing air bubbles in a vacuum state by a high-speed planetary mixer. resin composite.
  • the viscosity test of the liquid epoxy resin composite material prepared in this example was carried out under a parallel plate rheometer. During the test, the distance between the two plates of the plate rheometer was 0.2mm, the shear rate was 0-100S -1 , and the test temperature was 25°C.
  • Fig. 3 shows the viscosity curve of the epoxy resin composite material prepared in this example under the condition of shear rate of 0-100S -1 , wherein the viscosity is 12.7Pa ⁇ S at 50S -1 .
  • the epoxy resin composite material prepared in this example has low viscosity and excellent viscosity stability.
  • the liquid mixture obtained after the reaction was placed in a centrifuge bottle, centrifuged at 8000rpm for 10 minutes in a high-speed centrifuge, the powder was separated from the silane coupling agent liquid, and the silane coupling agent liquid was recovered and collected for reuse.
  • Ultrasonic cleaning and centrifugation with absolute ethanol were repeated 3 times to remove the physically adsorbed silane on the surface of the silica, and the obtained powder was placed in a blast drying oven at 110 °C for 6 hours, which further promoted the silane coupling agent and the dioxide. Chemical grafting of the silicon surface to obtain a modified silica filler.
  • the SEM morphology of the silica filler obtained after modification in this example is shown in FIG. 4 .
  • the bisphenol F epoxy resin and the curing agent diethyltoluenediamine are prepared into a uniform epoxy resin matrix in a mass ratio of 10:2.7, and are mixed uniformly in a planetary mixer.
  • the epoxy resin matrix and the silica filler prepared in this example are mixed in a mass ratio of 10:5, and the epoxy resin is prepared by mixing uniformly and removing air bubbles in a vacuum state by a high-speed planetary mixer. resin composite.
  • the epoxy resin composite material prepared in this example was subjected to a viscosity test with reference to Example 1.
  • the viscosity of the epoxy resin composite material of this example is 19.0 Pa ⁇ S when the shear rate is 50 S -1 .
  • 100g of octyltrimethoxysilane and 50g of 2-(3,4-epoxycyclohexane)ethyltrimethoxysilane were added to the single-necked flask of the reaction device, and 50g of silica with a particle size of 100nm was added to the single-necked flask.
  • Magnetic stirring rotor heated to 90°C, stirred at 800rpm, condensed and refluxed for 24h.
  • the liquid mixture obtained after the reaction was placed in a centrifuge bottle, centrifuged at 8000rpm for 10 minutes in a high-speed centrifuge, the powder was separated from the silane coupling agent liquid, and the silane coupling agent liquid was recovered and collected for reuse.
  • Ultrasonic cleaning and centrifugation with absolute ethanol were repeated 3 times to remove the physically adsorbed silane on the surface of the silica, and the obtained powder was placed in a blast drying oven at 110 °C for 6 hours, which further promoted the silane coupling agent and the dioxide. Chemical grafting of the silicon surface to obtain a modified silica filler.
  • the SEM morphology of the silica filler obtained after modification in this example is shown in FIG. 5 .
  • the bisphenol F epoxy resin and the curing agent diethyltoluenediamine are prepared into a uniform epoxy resin matrix in a mass ratio of 10:2.7, and are mixed uniformly in a planetary mixer.
  • the epoxy resin matrix and the silica filler prepared in this example are mixed in a mass ratio of 10:7, and the epoxy resin is prepared by mixing uniformly and removing air bubbles in a vacuum state by a high-speed planetary mixer. resin composite.
  • the epoxy resin composite material prepared in this example was subjected to a viscosity test with reference to Example 1.
  • the viscosity of the epoxy resin composite material of this example is 21.0 Pa ⁇ S when the shear rate is 50 S -1 .
  • 100g of phenyltriethoxysilane, 100g of anilinomethyltriethoxysilane and 50g of propyltrimethoxysilane were added to the single-necked flask of the reaction device, 50g of silica with a particle size of 100nm was added to the single-necked flask, and a magnetic force was added.
  • the rotor was stirred, heated to 100°C, stirred at 800 rpm, and condensed and refluxed for 18 hours.
  • the liquid mixture obtained after the reaction was placed in a centrifuge bottle, centrifuged at 8000rpm for 10 minutes in a high-speed centrifuge, the powder was separated from the silane coupling agent liquid, and the silane coupling agent liquid was recovered and collected for reuse.
  • Ultrasonic cleaning and centrifugation with absolute ethanol were repeated 3 times to remove the physically adsorbed silane on the surface of the silica, and the obtained powder was placed in a blast drying oven at 110 °C for 6 hours, which further promoted the silane coupling agent and the dioxide. Chemical grafting of the silicon surface to obtain a modified silica filler.
  • the SEM morphology of the silica filler obtained after modification in this example is shown in FIG. 6 .
  • the bisphenol F epoxy resin and the curing agent diethyltoluenediamine are prepared into a uniform epoxy resin matrix in a mass ratio of 10:2.7, and are mixed uniformly in a planetary mixer.
  • the epoxy resin matrix and the silica filler prepared in this example are mixed in a mass ratio of 10:4, and the epoxy resin is prepared by mixing uniformly and removing air bubbles in a vacuum state by a high-speed planetary mixer. resin composite.
  • the epoxy resin composite material prepared in this example was subjected to a viscosity test with reference to Example 1.
  • the viscosity of the epoxy resin composite material of this embodiment is 16.1 Pa ⁇ S when the shear rate is 50 S -1 .
  • the silica filler provided in the embodiment of the present invention is grafted with two or more different organic groups on the surface, which is filled in the epoxy resin composite material, which improves the performance of the silica filler in the resin substrate.
  • the composite material can have a low viscosity and excellent viscosity stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种二氧化硅填料,由两种以上不同的硅烷偶联剂进行了表面改性而在表面接枝两种以上不同的有机功能基团的二氧化硅颗粒。所述二氧化硅填料的制备方法包括:将二氧化硅颗粒于硅烷偶联剂溶剂中搅拌分散,获得混合反应液;其中,所述硅烷偶联剂溶剂包含有两种以上不同的硅烷偶联剂;对所述反应液进行高温回流反应工艺,冷却后依次经过离心洗涤工艺和干燥工艺处理,获得表面接枝有两种以上不同的有机功能基团的二氧化硅颗粒。所述二氧化硅填料,表面接枝两种以上不同的有机基团,其填充于环氧树脂复合材料中,在填料的粒径较小且较高的填充量时能够使得复合材料具有较低的粘度,粘度稳定性优异。

Description

二氧化硅填料及其制备方法、环氧树脂复合材料 技术领域
本发明属于聚合物复合材料技术领域,具体涉及一种二氧化硅填料及其制备方法,还涉及包含所述二氧化硅填料的环氧树脂复合材料。
背景技术
生物微机电、人工智能微型机器人、可穿戴电子设备、5G通讯电子设备、轻薄笔记本、超薄手机等新形式的电子产品越来越频繁的出现在人们的日常生活中。电子设备的小型化、轻薄化、高运行速度使得芯片朝着高集成度、小型化、高可靠性发展。底部填充胶是塑料电子封装材料中关键的一种,底部填充胶可以减小芯片与基板间的热膨胀系数失配、提供粘接力、保护焊球等,用于CSP(Chip Scale Package,芯片级封装)/BGA(Ball GridArray Packag,球栅阵列封装)的底部填充,具有工艺操作性好、易维修、抗冲击、抗振性好等特点,大大提高了电子产品的可靠性,也被扩展应用到增加CSP的机械强度。随着移动电子产品的密度越来越高,底部填充技术逐步提高,越来越多的底部填充材料被研发。
环氧树脂复合材料是一种常用的底部填充胶,一般是由环氧树脂、固化剂以及二氧化硅填料组成。随着电子产品的小型化趋势,CSP的间距也变的愈来愈小,焊球间距同样越来越小,这对底部填充胶提出了更高的要求:底部填充胶的球形二氧化硅填料粒径减小以及球形度高。底部填充胶在固化后需要热膨胀系数低,因此需要较大填充量的二氧化硅填料。为了对低焊球高度和窄焊球间距芯片更好的填充,需要使用小粒径的球形二氧化硅作为底部填充胶的填料,但是球形二氧化硅填料粒径减小这就使其在环氧树脂中与树脂基质接触的面积增大,界面项体积分数增大,较小的粒径在较高的填充量时会使得复合材料有很高的粘度,高粘度的底部填充胶会导致封装工艺的操作难度增加并且室温储存粘度稳定性也较差而不利于储存。
发明内容
鉴于现有技术存在的不足,本发明提供一种二氧化硅填料及其制备方法,以解决现有的二氧化硅填料在较小的粒径且较高的填充量时会导致复合材料粘度过高的问题。
为实现上述发明目的,本发明的一方面是提供了一种二氧化硅填料,所述二氧化硅填料是由两种以上不同的硅烷偶联剂进行了表面改性而在表面接枝两种以上不同的有机功能基团的二氧化硅颗粒。
其中,所述二氧化硅颗粒为球形二氧化硅颗粒,所述二氧化硅颗粒的粒径为90nm~110nm。
其中,所述两种以上不同的硅烷偶联剂选自氨丙基三乙氧基硅烷、缩水甘油迷氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、巯丙基三甲氧基硅烷、巯丙基三乙氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷,3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、苯基三甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二甲氧基硅烷、甲基三乙氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷和十八烷基三甲氧基硅烷中的任意相互不反应的两种以上。
本发明提供了一种如上所述的二氧化硅填料的制备方法,其包括:
将二氧化硅颗粒于硅烷偶联剂溶剂中搅拌分散,获得混合反应液;其中,所述硅烷偶联剂溶剂包含有两种以上不同的硅烷偶联剂;
对所述反应液进行高温回流反应工艺,冷却后依次经过离心洗涤工艺和干燥工艺处理,获得表面接枝有两种以上不同的有机功能基团的二氧化硅颗粒。
其中,所述二氧化硅颗粒与所述硅烷偶联剂溶剂的质量比为1:(1~5)。
其中,所述高温回流反应工艺是在冷凝回流设备中进行,反应温度为90℃~140℃,反应时间为3h~24h。
其中,所述离心洗涤工艺中使用的洗涤剂为无水乙醇;所述干燥工艺的温度为100℃~300℃,时间为3h~24h。
本发明的另一方面是提供一种环氧树脂复合材料,包含环氧树脂基体和填料,其中,所述环氧树脂基体包括环氧树脂和固化剂,所述填料为如上所述的二氧化硅填料。
其中,所述环氧树脂为双酚A型环氧树脂、双酚F型环氧树脂和脂环族环氧树脂中的一种或两种以上,所述固化剂为脂环族酸酐类固化剂或胺类固化剂。
其中,所述环氧树脂基体中,所述环氧树脂与所述固化剂的质量比为10:(1~5);所述环氧树脂基体与所述二氧化硅填料的质量比为10:(3~7)。
本发明实施例提供的二氧化硅填料,具体是由两种以上不同的硅烷偶联剂进行了表面改性而在表面接枝两种以上不同的有机功能基团的二氧化硅颗粒,通过在表面接枝两种以上不同的有机功能基团,提高了二氧化硅填料在树脂基材中的相容性与分散性,在填料的粒径较小且较高的填充量时能够使得复合材料具有较低的粘度,粘度稳定性优异。
本发明实施例提供的二氧化硅填料的制备方法,其具有工艺流程简单、工艺条件易于实现的优点,有利于大规模的工业化应用。
附图说明
图1是本发明实施例1中的未改性二氧化硅颗粒的SEM图;
图2是本发明实施例1制备获得的二氧化硅填料的SEM图;
图3是本发明实施例1制备获得的环氧树脂复合材料在剪切速率为0~100S -1条件下的粘度曲线图;
图4是本发明实施例2制备获得的二氧化硅填料的SEM图;
图5是本发明实施例3制备获得的二氧化硅填料的SEM图;
图6是本发明实施例4制备获得的二氧化硅填料的SEM图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明实施例首先提供了一种二氧化硅填料,所述二氧化硅填料是由两种以上不同的硅烷偶联剂进行了表面改性而在表面接枝两种以上不同的有机功能基团的二氧化硅颗粒。
在具体的方案中,所述二氧化硅颗粒为球形二氧化硅颗粒,所述二氧化硅颗粒的粒径为90nm~110nm。
在具体的方案中,所述两种以上不同的硅烷偶联剂选自氨丙基三乙氧基硅烷、缩水甘油迷氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、巯丙基三甲氧基硅烷、巯丙基三乙氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷,3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、苯基三甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二甲氧基硅烷、甲基三乙氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷和十八烷基三甲氧基硅烷中的任意相互不反应的两种以上。
如上所述的二氧化硅填料,选择两种或两种以上硅烷偶联剂同时改性二氧化硅,由此在二氧化硅颗粒表面接枝两种或者两种以上不同的有机基团,每一种有机功能基团发挥不同的作用,其填充于环氧树脂复合材料中,提高了二氧化硅填料在树脂基材中的相容性与分散性,在填料的粒径较小且较高的填充量时能够使得复合材料具有较低的粘度,粘度稳定性优异。
本发明实施例还提供了如上所述的二氧化硅填料的制备方法,其包括:
步骤S10、将二氧化硅颗粒于硅烷偶联剂溶剂中搅拌分散,获得混合反应液;其中,所述硅烷偶联剂溶剂包含有两种以上不同的硅烷偶联剂。
在优选的方案中,所述二氧化硅颗粒与所述硅烷偶联剂溶剂的质量比选择为1:(1~5)。
在优选的方案中,所述两种以上不同的硅烷偶联剂选自氨丙基三乙氧基硅烷、缩水甘油迷氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、巯丙基三甲氧基硅烷、巯丙基三乙氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷,3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二甲氧基硅烷、甲基三乙氧基硅烷、丙基三甲氧 基硅烷、甲基三甲氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷和十八烷基三甲氧基硅烷中的任意相互不反应的两种以上。
在更优选的方案中,所述硅烷偶联剂溶剂中,两种以上不同的硅烷偶联剂按照等体积比混合。其中,使用苯基三甲氧基硅烷、辛基三甲氧基硅烷、甲基三甲氧基硅烷、十六烷基三甲氧基硅烷、十八烷基三甲氧基硅烷、二苯基二甲氧基硅烷、苯基三乙氧基硅烷、丙基三甲氧基硅烷中的一种或多种硅烷偶联剂,并且同时使用(3-巯基丙基)三甲氧基硅烷、3-(异丁烯酰氧)丙基三甲氧基硅烷、3-缩水甘油基氧基丙基三甲氧基硅烷、2-(3,4-环氧环己烷)乙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、苯氨基甲基三乙氧基硅烷、乙烯基三甲氧基硅烷中的一种偶联剂,可以保证硅烷偶联剂之间不发生反应。
在优选的方案中,所述混合反应液加入磁力搅拌子进行磁力搅拌。
步骤S20、对所述反应液进行高温回流反应工艺,冷却后依次经过离心洗涤工艺和干燥工艺处理,获得表面接枝有两种以上不同的有机功能基团的二氧化硅颗粒。
在优选的方案中,所述高温回流反应工艺是在冷凝回流设备中进行,反应温度为90℃~140℃,反应时间为3h~24h。
在优选的方案中,所述离心洗涤工艺中使用的洗涤剂为无水乙醇;所述干燥工艺的温度为100℃~300℃,时间为3h~24h。
如上所述的二氧化硅填料的制备方法,其具有工艺流程简单、工艺条件易于实现的优点,有利于大规模的工业化应用。
另外,如上所述的二氧化硅填料的制备方法,在对二氧化硅颗粒进行表面改性的过程中,直接使用硅烷偶联剂作为溶剂,将二氧化硅加入过量的硅烷偶联剂溶剂中,在一定温度下加热,冷凝回流一定时间使得硅烷偶联剂成功改性二氧化硅颗粒,避免添加其他有机物或者溶剂。
本发明实施例还提供了一种环氧树脂复合材料,包含环氧树脂基体和填料,其中,所述环氧树脂基体包括环氧树脂和固化剂,所述填料为本发明实施例如上所述的二氧化硅填料。
在优选的方案中,所述环氧树脂为双酚A型环氧树脂、双酚F型环氧树脂和脂环族环氧树脂中的一种或两种以上,所述固化剂为脂环族酸酐类固化剂或 胺类固化剂。
在优选的方案中,所述环氧树脂基体中,所述环氧树脂与所述固化剂的质量比为10:(1~5);所述环氧树脂基体与所述二氧化硅填料的质量比为10:(3~7)。
所述环氧树脂复合材料的制备工艺包括:
(1)、将所述环氧树脂与所述固化剂按质量比为10:(1~5)的比例混合,使用行星式混料机充分混合均匀制备得到环氧树脂基体。
(2)将所述环氧树脂基体与所述二氧化硅填料按质量比为10:(3~7)的比例通过高速行星式混料机混合均匀,得到所述环氧树脂复合材料。
实施例1
一、二氧化硅填料及其制备工艺
将50g苯基三甲氧基硅烷和50g 3-缩水甘油基氧基丙基三甲氧基硅烷加入反应装置单口烧瓶中,加入50g粒径100nm二氧化硅于单口烧瓶中,加入磁力搅拌转子,加热到120℃,在800rpm转速下搅拌,冷凝回流反应12h。
将反应后得到的液态混合物置于离心瓶中,高速离心机中转速8000rpm下离心10分钟,将粉体与硅烷偶联剂液体分离,将硅烷偶联剂液体回收收集可以重复利用,粉体用无水乙醇超声清洗、离心,反复3次,目的是除去二氧化硅表面的物理吸附硅烷,得到粉体置于110℃鼓风干燥箱中鼓风干燥6h,进一步促进硅烷偶联剂与二氧化硅表面的化学接枝,得到改性的二氧化硅填料。
未改性二氧化硅SEM形貌图如图1所示,本实施例改性后得到的二氧化硅填料SEM形貌图如图2所示。
二、环氧树脂复合材料及其制备工艺
将双酚F环氧树脂与固化剂二乙基甲苯二胺按质量比10:2.7配成均一的环氧树脂基体,并在行星式混料机中混合均匀。将所述环氧树脂基体与本实施例制备得到的二氧化硅填料按质量比为10:4的比例混合,通过高速行星式混料机真空状态下混合均匀并脱除气泡,制备获得环氧树脂复合材料。
三、环氧树脂复合材料的粘度测试
将本实施例制备获得的液态环氧树脂复合材料在平行板流变仪下进行粘度测试。测试时平板流变仪两板间距为0.2mm,剪切速率为0~100S -1,测试温度 为25℃。图3为本实施例制备获得的环氧树脂复合材料在剪切速率为0~100S -1条件下的粘度曲线,其中,在50S -1时粘度为12.7Pa·S。
参见图3的曲线图,本实施例制备获得的环氧树脂复合材料的粘度低,且具有优异的粘度稳定性。
实施例2
一、二氧化硅填料及其制备工艺
将50g甲基三甲氧基硅烷和50g氨丙基三乙氧基硅烷加入反应装置单口烧瓶中,加入100g粒径100nm二氧化硅于单口烧瓶中,加入磁力搅拌转子,加热到140℃,在800rpm转速下搅拌,冷凝回流反应3h。
将反应后得到的液态混合物置于离心瓶中,高速离心机中转速8000rpm下离心10分钟,将粉体与硅烷偶联剂液体分离,将硅烷偶联剂液体回收收集可以重复利用,粉体用无水乙醇超声清洗、离心,反复3次,目的是除去二氧化硅表面的物理吸附硅烷,得到粉体置于110℃鼓风干燥箱中鼓风干燥6h,进一步促进硅烷偶联剂与二氧化硅表面的化学接枝,得到改性的二氧化硅填料。
本实施例改性后得到的二氧化硅填料SEM形貌图如图4所示。
二、环氧树脂复合材料及其制备工艺
将双酚F环氧树脂与固化剂二乙基甲苯二胺按质量比10:2.7配成均一的环氧树脂基体,并在行星式混料机中混合均匀。将所述环氧树脂基体与本实施例制备得到的二氧化硅填料按质量比为10:5的比例混合,通过高速行星式混料机真空状态下混合均匀并脱除气泡,制备获得环氧树脂复合材料。
参照实施例1的方式对本实施例制备获得的环氧树脂复合材料进行粘度测试。本实施例的环氧树脂复合材料在剪切速率为50S -1时粘度为19.0Pa·S。
实施例3
一、二氧化硅填料及其制备工艺
将100g辛基三甲氧基硅烷和50g 2-(3,4-环氧环己烷)乙基三甲氧基硅烷加入反应装置单口烧瓶中,加入50g粒径100nm二氧化硅于单口烧瓶中,加入磁力搅拌转子,加热到90℃,在800rpm转速下搅拌,冷凝回流反应24h。
将反应后得到的液态混合物置于离心瓶中,高速离心机中转速8000rpm下 离心10分钟,将粉体与硅烷偶联剂液体分离,将硅烷偶联剂液体回收收集可以重复利用,粉体用无水乙醇超声清洗、离心,反复3次,目的是除去二氧化硅表面的物理吸附硅烷,得到粉体置于110℃鼓风干燥箱中鼓风干燥6h,进一步促进硅烷偶联剂与二氧化硅表面的化学接枝,得到改性的二氧化硅填料。
本实施例改性后得到的二氧化硅填料SEM形貌图如图5所示。
二、环氧树脂复合材料及其制备工艺
将双酚F环氧树脂与固化剂二乙基甲苯二胺按质量比10:2.7配成均一的环氧树脂基体,并在行星式混料机中混合均匀。将所述环氧树脂基体与本实施例制备得到的二氧化硅填料按质量比为10:7的比例混合,通过高速行星式混料机真空状态下混合均匀并脱除气泡,制备获得环氧树脂复合材料。
参照实施例1的方式对本实施例制备获得的环氧树脂复合材料进行粘度测试。本实施例的环氧树脂复合材料在剪切速率为50S -1时粘度为21.0Pa·S。
实施例4
一、二氧化硅填料及其制备工艺
将100g苯基三乙氧基硅烷和100g苯氨基甲基三乙氧基硅烷以及50g丙基三甲氧基硅烷加入反应装置单口烧瓶中,加入50g粒径100nm二氧化硅于单口烧瓶中,加入磁力搅拌转子,加热到100℃,在800rpm转速下搅拌,冷凝回流反应18h。
将反应后得到的液态混合物置于离心瓶中,高速离心机中转速8000rpm下离心10分钟,将粉体与硅烷偶联剂液体分离,将硅烷偶联剂液体回收收集可以重复利用,粉体用无水乙醇超声清洗、离心,反复3次,目的是除去二氧化硅表面的物理吸附硅烷,得到粉体置于110℃鼓风干燥箱中鼓风干燥6h,进一步促进硅烷偶联剂与二氧化硅表面的化学接枝,得到改性的二氧化硅填料。
本实施例改性后得到的二氧化硅填料SEM形貌图如图6所示。
二、环氧树脂复合材料及其制备工艺
将双酚F环氧树脂与固化剂二乙基甲苯二胺按质量比10:2.7配成均一的环氧树脂基体,并在行星式混料机中混合均匀。将所述环氧树脂基体与本实施例制备得到的二氧化硅填料按质量比为10:4的比例混合,通过高速行星式混料机 真空状态下混合均匀并脱除气泡,制备获得环氧树脂复合材料。
参照实施例1的方式对本实施例制备获得的环氧树脂复合材料进行粘度测试。本实施例的环氧树脂复合材料在剪切速率为50S -1时粘度为16.1Pa·S。
综上所述,本发明实施例提供的二氧化硅填料,表面接枝两种以上不同的有机基团,其填充于环氧树脂复合材料中,提高了二氧化硅填料在树脂基材中的相容性与分散性,在填料的粒径较小且较高的填充量时能够使得复合材料具有较低的粘度,粘度稳定性优异。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (16)

  1. 一种二氧化硅填料,其中,所述二氧化硅填料是由两种以上不同的硅烷偶联剂进行了表面改性而在表面接枝两种以上不同的有机功能基团的二氧化硅颗粒。
  2. 根据权利要求1所述的二氧化硅填料,其中,所述二氧化硅颗粒为球形二氧化硅颗粒,所述二氧化硅颗粒的粒径为90nm~110nm。
  3. 根据权利要求1所述的二氧化硅填料,其中,所述两种以上不同的硅烷偶联剂选自氨丙基三乙氧基硅烷、缩水甘油迷氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、巯丙基三甲氧基硅烷、巯丙基三乙氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷,3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、苯基三甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二甲氧基硅烷、甲基三乙氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷和十八烷基三甲氧基硅烷中的任意相互不反应的两种以上。
  4. 一种二氧化硅填料的制备方法,其中,包括:
    将二氧化硅颗粒于硅烷偶联剂溶剂中搅拌分散,获得混合反应液;其中,所述硅烷偶联剂溶剂包含有两种以上不同的硅烷偶联剂;
    对所述反应液进行高温回流反应工艺,冷却后依次经过离心洗涤工艺和干燥工艺处理,获得表面接枝有两种以上不同的有机功能基团的二氧化硅颗粒。
  5. 根据权利要求4所述的二氧化硅填料的制备方法,其中,所述二氧化硅颗粒与所述硅烷偶联剂溶剂的质量比为1:(1~5)。
  6. 根据权利要求5所述的二氧化硅填料的制备方法,其中,所述高温回流反应工艺是在冷凝回流设备中进行,反应温度为90℃~140℃,反应时间为3h~24h。
  7. 根据权利要求5所述的二氧化硅填料的制备方法,其中,所述离心洗涤工艺中使用的洗涤剂为无水乙醇;所述干燥工艺的温度为100℃~300℃,时间为3h~24h。
  8. 根据权利要求5所述的二氧化硅填料的制备方法,其中,所述二氧化硅颗粒为球形二氧化硅颗粒,所述二氧化硅颗粒的粒径为90nm~110nm。
  9. 根据权利要求5所述的二氧化硅填料的制备方法,其中,所述两种以上不同的硅烷偶联剂选自氨丙基三乙氧基硅烷、缩水甘油迷氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、巯丙基三甲氧基硅烷、巯丙基三乙氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷,3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、苯基三甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二甲氧基硅烷、甲基三乙氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷和十八烷基三甲氧基硅烷中的任意相互不反应的两种以上。
  10. 一种环氧树脂复合材料,包含环氧树脂基体和填料,其中,所述环氧树脂基体包括环氧树脂和固化剂,所述填料为二氧化硅填料,所述二氧化硅填料是由两种以上不同的硅烷偶联剂进行了表面改性而在表面接枝两种以上不同的有机功能基团的二氧化硅颗粒。
  11. 根据权利要求10所述的环氧树脂复合材料,其中,所述二氧化硅颗粒为球形二氧化硅颗粒,所述二氧化硅颗粒的粒径为90nm~110nm。
  12. 根据权利要求10所述的环氧树脂复合材料,其中,所述两种以上不同的硅烷偶联剂选自氨丙基三乙氧基硅烷、缩水甘油迷氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、巯丙基三甲氧基硅烷、巯丙基三乙氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷,3-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、苯基三甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二甲氧基硅烷、甲基三乙氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷和十八烷基三甲氧基硅烷中的任意相互不反应的两种以上。
  13. 根据权利要求10所述的环氧树脂复合材料,其中,所述环氧树脂为双酚A型环氧树脂、双酚F型环氧树脂和脂环族环氧树脂中的一种或两种以上。
  14. 根据权利要求10所述的环氧树脂复合材料,其中,所述固化剂为脂环族酸酐类固化剂或胺类固化剂。
  15. 根据权利要求10所述的环氧树脂复合材料,其中,所述环氧树脂基体中,所述环氧树脂与所述固化剂的质量比为10:(1~5)。
  16. 根据权利要求10所述的环氧树脂复合材料,其中,所述环氧树脂基体与所述二氧化硅填料的质量比为10:(3~7)。
PCT/CN2020/136552 2020-12-09 2020-12-15 二氧化硅填料及其制备方法、环氧树脂复合材料 WO2022120900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011461976.0A CN112662354A (zh) 2020-12-09 2020-12-09 二氧化硅填料及其制备方法、环氧树脂复合材料
CN202011461976.0 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022120900A1 true WO2022120900A1 (zh) 2022-06-16

Family

ID=75405318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136552 WO2022120900A1 (zh) 2020-12-09 2020-12-15 二氧化硅填料及其制备方法、环氧树脂复合材料

Country Status (2)

Country Link
CN (1) CN112662354A (zh)
WO (1) WO2022120900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118421161A (zh) * 2024-04-11 2024-08-02 广东敬业钢铁实业股份有限公司 一种耐腐蚀钢筋的制备工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308021B (zh) * 2021-05-28 2023-04-14 江苏联瑞新材料股份有限公司 一种用于环氧树脂体系硅微粉的制备方法
CN113321912B (zh) * 2021-06-08 2022-07-12 广东工业大学 一种耐高温3d打印光敏树脂及其制备方法和应用
CN113604073A (zh) * 2021-06-29 2021-11-05 中国科学院深圳先进技术研究院 一种改性二氧化硅填料及其制备方法
CN114262528B (zh) * 2021-12-07 2023-04-18 中国科学院深圳先进技术研究院 一种二氧化硅的表面改性方法及应用
CN115093674A (zh) * 2022-06-10 2022-09-23 佛山萤鹤新材料有限公司 用于led封装的改性环氧树脂及其制备方法
CN115595104B (zh) * 2022-10-27 2024-08-06 佛山清立新材料科技有限公司 一种环氧封装胶及其制备方法和应用
CN115746629B (zh) * 2022-11-09 2024-03-19 广州大学 一种耐热耐溶剂性纳米晶纤维素涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925395A (ja) * 1995-07-12 1997-01-28 Matsushita Electric Works Ltd 封止用エポキシ樹脂組成物
CN102993782A (zh) * 2012-12-12 2013-03-27 江南大学 一种聚氨酯丙烯酸酯类低聚物表面改性二氧化硅的制备方法
WO2013071212A1 (en) * 2011-11-11 2013-05-16 United Protective Technologies Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
CN103570026A (zh) * 2013-11-07 2014-02-12 山西大学 一种具有超疏水-亲水可逆开关功能的二氧化硅材料
CN106589485A (zh) * 2017-01-14 2017-04-26 北京化工大学 并用aeo和硅烷偶联剂改性白炭黑及其与橡胶复合的方法
CN110016242A (zh) * 2019-04-04 2019-07-16 深圳先进技术研究院 纳米二氧化硅的单分子层表面改性方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769465B2 (ja) * 2018-09-27 2020-10-14 味の素株式会社 樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925395A (ja) * 1995-07-12 1997-01-28 Matsushita Electric Works Ltd 封止用エポキシ樹脂組成物
WO2013071212A1 (en) * 2011-11-11 2013-05-16 United Protective Technologies Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
CN102993782A (zh) * 2012-12-12 2013-03-27 江南大学 一种聚氨酯丙烯酸酯类低聚物表面改性二氧化硅的制备方法
CN103570026A (zh) * 2013-11-07 2014-02-12 山西大学 一种具有超疏水-亲水可逆开关功能的二氧化硅材料
CN106589485A (zh) * 2017-01-14 2017-04-26 北京化工大学 并用aeo和硅烷偶联剂改性白炭黑及其与橡胶复合的方法
CN110016242A (zh) * 2019-04-04 2019-07-16 深圳先进技术研究院 纳米二氧化硅的单分子层表面改性方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118421161A (zh) * 2024-04-11 2024-08-02 广东敬业钢铁实业股份有限公司 一种耐腐蚀钢筋的制备工艺

Also Published As

Publication number Publication date
CN112662354A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2022120900A1 (zh) 二氧化硅填料及其制备方法、环氧树脂复合材料
JP6170904B2 (ja) 半導体封止用エポキシ樹脂組成物、それを用いた半導体装置及び半導体製造方法
CN110054864B (zh) 一种高导热复合填料及其聚合物基复合材料的制备方法
JP5349432B2 (ja) 電子部品装置の製法およびそれに用いる電子部品封止用樹脂組成物シート
CN110016242A (zh) 纳米二氧化硅的单分子层表面改性方法
CN104817989B (zh) 一种底部填充胶组合物及其制备方法
WO2022120907A1 (zh) 二氧化硅的改性方法、二氧化硅填料及环氧树脂复合材料
JP4279521B2 (ja) 半導体封止用エポキシ樹脂組成物用金属酸化物粉体、その製造方法及び半導体封止用エポキシ樹脂組成物
CN112375340B (zh) 晶圆级封装密封用电路积层膜、其制备方法及应用
JP4905668B2 (ja) 半導体封止用液状エポキシ樹脂組成物及び半導体装置
WO2023273192A1 (zh) 一种改性二氧化硅填料及其制备方法
CN114479733A (zh) 一种芯片级底部填充胶及其制备方法
CN112442332A (zh) 一种新型有机硅高导热胶粘剂及其制备方法
JP3694474B2 (ja) 球状シリカ粉末の製造方法
JP3716237B2 (ja) 封止剤樹脂組成物
CN116589973B (zh) 一种耐高温cob封装胶及其制备方法
TWI793287B (zh) 由有機無機複合粒子所成的粉末
CN114058306B (zh) 一种底部填充胶黏剂及其制备方法和应用
CN116063968A (zh) 封装芯片用底部填充胶及其制备方法
CN111777873A (zh) 纳米二氧化硅的表面改性方法
JPH0826707A (ja) 窒化アルミニウム粉末
Zhang et al. Preparetion and properties of SiO 2 filled underfills with controllable chemical groups on the surface of filler
CN116855101B (zh) 一种降低亚微米二氧化硅表面硅羟基位阻的方法、经表面修饰的亚微米二氧化硅及其应用
CN118206952B (zh) 一种抑制二氧化硅沉降的底部填充胶,其制备方法及应用
JP5975589B2 (ja) 半導体装置実装用ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964833

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20964833

Country of ref document: EP

Kind code of ref document: A1