WO2022119095A1 - 고흡수성 수지 및 이의 제조 방법 - Google Patents

고흡수성 수지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022119095A1
WO2022119095A1 PCT/KR2021/013594 KR2021013594W WO2022119095A1 WO 2022119095 A1 WO2022119095 A1 WO 2022119095A1 KR 2021013594 W KR2021013594 W KR 2021013594W WO 2022119095 A1 WO2022119095 A1 WO 2022119095A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface crosslinking
polymer
salt
weight
acid
Prior art date
Application number
PCT/KR2021/013594
Other languages
English (en)
French (fr)
Inventor
김동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022544806A priority Critical patent/JP7408222B2/ja
Priority to EP21900783.8A priority patent/EP4074760A4/en
Priority to CN202180009322.0A priority patent/CN114945622A/zh
Priority to US17/795,454 priority patent/US20230356183A1/en
Publication of WO2022119095A1 publication Critical patent/WO2022119095A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3081Aluminum sulfate

Definitions

  • the present invention relates to a superabsorbent polymer capable of exhibiting improved bacterial growth inhibition properties without deterioration of physical properties of the superabsorbent polymer, such as water holding capacity and absorbency under pressure, and a method for manufacturing the same.
  • Super Absorbent Polymer is a synthetic polymer material that can absorb water 500 to 1,000 times its own weight. Material), etc., are named differently.
  • the superabsorbent polymer as described above began to be put to practical use as a sanitary tool, and now, in addition to hygiene products such as paper diapers for children, a soil repair agent for gardening, a water-retaining material for civil engineering and construction, a sheet for seedlings, a freshness maintenance agent in the food distribution field, and It is widely used in materials such as poultices and in the field of electrical insulation.
  • the superabsorbent polymer is most widely applied to hygiene products such as children's paper diapers and adult diapers or disposable absorbent products. Among them, when applied to adult diapers, secondary odors caused by bacterial growth cause a problem that causes discomfort to consumers. In order to solve this problem, attempts have been made to introduce various bacteria growth inhibitory ingredients, deodorant or antibacterial functional ingredients such as superabsorbent polymers from the past.
  • an antibacterial agent that inhibits bacterial growth is introduced into the superabsorbent polymer as described above, it is harmless to the human body while exhibiting excellent bacterial growth inhibitory properties and deodorizing properties, while satisfying economic feasibility, and lowering the basic physical properties of the superabsorbent polymer It was not so easy to select and introduce antibacterial agents that are not prescribed.
  • an antimicrobial component containing an antimicrobial metal ion such as silver or copper, such as copper oxide
  • Such antibacterial metal ion-containing components can impart deodorizing properties by destroying the cell walls of microorganisms such as bacteria and killing bacteria having enzymes that may cause bad odors in the superabsorbent polymer.
  • the metal ion-containing component it is classified as a biocide material that can kill even microorganisms beneficial to the human body.
  • introduction of the metal ion-containing antimicrobial component is excluded as much as possible.
  • the bacteria growth inhibitory properties and deodorization properties are maintained uniformly for a long time, and the basic physical properties of the superabsorbent polymer are not reduced, and dust generation can be suppressed.
  • the development of technologies related to super absorbent polymers is continuously being requested.
  • An object of the present invention is to provide a superabsorbent polymer resin capable of maintaining excellent bacterial growth inhibitory properties and deodorizing properties uniformly for a long time, and excellent basic physical properties such as water holding capacity and absorbency under pressure, and a method for manufacturing the same.
  • Another object of the present invention is to provide a hygiene product that, including the superabsorbent polymer, uniformly exhibits excellent bacterial growth inhibitory properties and deodorizing properties for a long period of time, while also maintaining excellent basic absorption properties.
  • the present invention relates to a base resin powder comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer in which at least a portion of an acidic group is neutralized; and a surface crosslinking layer formed on the base resin powder by further crosslinking the crosslinked polymer through a surface crosslinking agent, wherein the surface crosslinking layer includes diethyldithiocarbamic acid or a salt thereof
  • a super absorbent polymer comprising an additive.
  • the present invention provides a method for preparing a hydrogel polymer by polymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer in which at least a portion of an acidic group is neutralized, an internal crosslinking agent, and a polymerization initiator (step 1);
  • step 2 drying, pulverizing and classifying the hydrogel polymer to prepare a base resin (step 2);
  • step 3 performing a surface crosslinking reaction on the base resin in the presence of a surface crosslinking solution containing a surface crosslinking agent to prepare a superabsorbent polymer with a surface crosslinking layer
  • step 4 the step of mixing the superabsorbent polymer with the surface cross-linking layer and the additive comprising diethyldithiocarbamic acid or a salt thereof (step 4) is further included, or
  • the surface crosslinking solution further comprises an additive including diethyldithiocarbamic acid or a salt thereof,
  • a method for preparing the super absorbent polymer is provided.
  • the present invention provides a hygiene product comprising the superabsorbent polymer produced by the above method.
  • the superabsorbent polymer prepared by the method of the present invention may exhibit excellent bacterial growth inhibitory properties and deodorizing properties, including specific substances, selectively inhibiting growth of only bacteria that are harmful to the human body and cause secondary odors.
  • the additive containing the specific compound is applied during or after surface crosslinking to firmly fix the crosslinked polymer constituting the base resin powder or the surface crosslinked layer, thereby inhibiting the excellent bacterial growth.
  • Characteristics and deodorant properties can be uniformly displayed for a long time, and excellent water holding capacity and absorbency under pressure can be maintained without deterioration of physical properties due to the addition of the antibacterial agent.
  • the superabsorbent polymer can be very preferably applied to various hygiene products, such as adult diapers, in which secondary odor is a particular problem.
  • the superabsorbent polymer according to an embodiment of the present invention may include a base resin powder including a crosslinked polymer of a water-soluble ethylenically unsaturated monomer in which at least a portion of an acidic group is neutralized; and a surface crosslinking layer formed on the base resin powder by further crosslinking the crosslinked polymer through a surface crosslinking agent, wherein the surface crosslinking layer includes diethyldithiocarbamic acid or a salt thereof Contains additives.
  • the present inventors continued research on antibacterial agents that can be preferably applied to superabsorbent polymers instead of antibacterial agents containing antibacterial metal ions such as silver and copper.
  • antibacterial agents containing antibacterial metal ions such as silver and copper.
  • diethyldithiocarbamic acid or a salt thereof is introduced into the superabsorbent polymer, the basic physical properties of the superabsorbent polymer, such as water holding capacity and absorbency under pressure, are not reduced. It was confirmed that excellent bacterial growth inhibitory properties and deodorant properties for inhibiting the growth of existing odor-causing bacteria could be imparted to the superabsorbent polymer.
  • the diethyldithiocarbamic acid (diethyldithiocarbamic acid) or its salt is harmless to the human body and is a safe ingredient, does not correspond to a BIOCIDE material, and can solve the problems of existing metal ion-containing antibacterial agents.
  • the material has an odorless and hydrophilic characteristic, so that it is easy to use in the manufacturing process of the superabsorbent polymer.
  • the superabsorbent polymer of one embodiment can exhibit the excellent bacterial growth inhibitory properties and deodorizing properties uniformly for a long time, and can maintain excellent water holding capacity and absorbency under pressure without deterioration of physical properties due to the addition of the antibacterial agent.
  • the superabsorbent polymer of one embodiment can be very preferably applied to various hygiene products, such as adult diapers, in which secondary odor is a particular problem.
  • the diethyldithiocarbamic acid or a salt thereof may be sodium diethyldithiocarbamic acid salt (sodium diethyldithiocarbamate).
  • the diethyldithiocarbamic acid or a salt thereof is 0.1 to 5 parts by weight, or 0.1 to 4 parts by weight, or 0.1 based on 100 parts by weight of the base resin. It may be included in an amount of from 3 parts by weight.
  • the content of the organic acid salt is too small, it is difficult to exhibit proper bacterial growth inhibitory properties and deodorizing properties.
  • the content thereof is too large, basic physical properties such as water holding capacity of the superabsorbent polymer may be deteriorated.
  • the surface crosslinking layer including an additive including diethyldithiocarbamic acid or a salt thereof may further include a chelating agent or an organic acid.
  • the chelating agent is, for example, a sodium salt of EDTA-2Na or EDTA-4Na, cyclohexanediamine tetraacetic acid, diethylene triamine pentaacetic acid, ethylene glycol-bis-(aminoethyl ether)-N,N,N'-tri It may be at least one selected from the group consisting of acetic acid, N-(2-hydroxyethyl)-ethylenediamine-N,N,N'-triacetic acid, triethylenetetraamine hexaacetic acid, and alkali metal salts thereof.
  • the chelating agent may act as an antibacterial agent to inhibit the growth rate of various bacteria, in particular, the odor-causing Proteus mirabilis bacteria.
  • the organic acid may be at least one selected from the group consisting of citric acid, fumaric acid, maleic acid, and lactic acid.
  • the organic acid may cause a synergistic effect when used together with a chelating agent, thereby exhibiting deodorizing/antibacterial properties.
  • the chelating agent or organic acid may be included in an amount of 0.1 to 3 parts by weight, or 0.3 to 2 parts by weight, or 0.4 to 1 parts by weight, based on 100 parts by weight of the base resin powder.
  • a chelating agent or organic acid By additionally using such a chelating agent or organic acid, it is possible to further suppress the growth rate of odor-causing bacteria, thereby exhibiting excellent antibacterial and deodorizing properties.
  • the content of the chelating agent or organic acid is excessively large, it is not preferable because the absorption characteristics of the superabsorbent polymer may be deteriorated.
  • the superabsorbent polymer of one embodiment described above has the structure of a conventional superabsorbent polymer, except that the additive component is included in the crosslinked structure of the crosslinked polymer constituting the base resin powder or the crosslinked structure of the surface crosslinked layer.
  • the additive component is included in the crosslinked structure of the crosslinked polymer constituting the base resin powder or the crosslinked structure of the surface crosslinked layer.
  • any monomer commonly used in the superabsorbent polymer may be used without particular limitation.
  • any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic monomers, amino group-containing unsaturated monomers, and quaternaries thereof may be used.
  • (meth)acrylic acid maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid or 2- (meth)acrylamide-2-methyl propane sulfonic acid anionic monomer and its salt;
  • acrylic acid or a salt thereof for example, an alkali metal salt such as acrylic acid or a sodium salt thereof may be used.
  • an alkali metal salt such as acrylic acid or a sodium salt thereof
  • a superabsorbent polymer having better physical properties can be prepared.
  • the alkali metal salt of acrylic acid is used as a monomer, it may be used by at least partially neutralizing the acrylic acid with a basic compound such as caustic soda (NaOH).
  • the base resin powder may have a fine powder form including a cross-linked polymer in which such monomers are cross-linked and polymerized through an internal cross-linking agent.
  • the internal crosslinking agent includes a crosslinking agent having at least one functional group capable of reacting with a water-soluble substituent of the water-soluble ethylenically unsaturated monomer and having at least one ethylenically unsaturated group; Alternatively, a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent of the monomer and/or a water-soluble substituent formed by hydrolysis of the monomer may be used.
  • an internal crosslinking agent examples include bisacrylamide having 8 to 12 carbon atoms, bismethacrylamide, poly(meth)acrylate of a polyol having 2 to 10 carbon atoms, or poly(meth)allyl ether of a polyol having 2 to 10 carbon atoms, etc.
  • the base resin powder may have a fine powder form having a particle diameter of 150 to 850 ⁇ m.
  • the superabsorbent polymer includes a surface crosslinking layer formed on the base resin powder by further crosslinking the crosslinked polymer of the base resin powder through a surface crosslinking agent.
  • the surface crosslinking agent examples include a diol compound, an alkylene carbonate compound, or a polyvalent epoxy compound, and more specific examples thereof include 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,6- Hexanediol, 1,2-hexanediol, 1,3-hexanediol, 2-methyl-1,3-propanediol, 2,5-hexanediol, 2-methyl-1,3-pentanediol, 2-methyl- 2,4-pentanediol, tripropylene glycol, glycerol, ethylene carbonate, propylene carbonate, glycerol carbonate, or a diglycidyl ether-based compound of alkylene glycol such as ethylene glycol diglycidyl ether; Any polyvalent compound known to be usable as a surface crosslinking agent for the superabsorbent polymer may be used without particular limitation.
  • the superabsorbent polymer of the above-described embodiment includes an additive including diethyldithiocarbamic acid or a salt thereof, for example, in a surface crosslinking solution to form a surface crosslinking layer, or a surface crosslinking layer is formed
  • the antimicrobial component is physically or chemically included in the additionally cross-linked structure inside or on the surface of the cross-linked surface layer in a physically or chemically fixed or bonded state.
  • non-uniform application, detachment, and separation of the antimicrobial component does not occur, and the antibacterial component is uniformly included throughout, thereby stably exhibiting excellent antibacterial and deodorizing properties for a long time.
  • the superabsorbent polymer is used, the generation of dust derived from the antibacterial agent can also be greatly reduced.
  • Bacterial inhibition rate [1- ⁇ CFU(12h) / CFUcontrol(12h) ⁇ ]*100 (%)
  • CFU (12h) was inoculated with 2,500 CFU/ml of bacteria (Escherichia Coli, ATCC 25922) into 50 ml of artificial urine containing nutrients, and after adding 2 g of superabsorbent resin, which is the target for measurement of bacterial inhibition, , represents the number of proliferated bacteria per unit artificial urine volume (CFU/ml) when incubated for 12 hours at 35 °C, and CFUcontrol (12h) is diethyldithiocarbamic acid instead of the superabsorbent resin.
  • Each compound (sodium chloride (0.15 M), dipotassium hydrogen phosphate (0.02 M), sodium dihydrogen phosphate (0.01 M), ammonium chloride (0.05 M), disodium sulphate (0.02 M), lactic acid (90%) in a 1 L flask (0.05 M), yeast extract (Becton Dikinson)) is added according to the concentration, filled with distilled water to make 1000 ml, dissolved, and then sterilized in an autoclave. The prepared solution is stored at 4 °C.
  • the superabsorbent polymer of the above-described embodiment is dried, pulverized, classified and surface cross-linked with respect to the hydrogel polymer obtained by thermal polymerization or photopolymerization of a monomer composition containing a water-soluble ethylenically unsaturated monomer and a polymerization initiator. can be obtained, and if necessary, a fine powder reassembly process and the like may be further performed.
  • the method for preparing the superabsorbent polymer comprises the steps of preparing a hydrogel polymer by polymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer in which at least a portion of the acid group is neutralized, an internal crosslinking agent, and a polymerization initiator (Step 1) ;
  • step 2 drying, pulverizing and classifying the hydrogel polymer to prepare a base resin (step 2);
  • step 3 performing a surface crosslinking reaction on the base resin in the presence of a surface crosslinking solution containing a surface crosslinking agent to prepare a superabsorbent polymer with a surface crosslinking layer
  • step 4 the step of mixing the superabsorbent polymer with the surface cross-linking layer and the additive comprising diethyldithiocarbamic acid or a salt thereof (step 4) is further included, or
  • the surface crosslinking solution may proceed in a manner that further includes an additive including diethyldithiocarbamic acid or a salt thereof.
  • step 3 may be performed using a surface crosslinking solution containing an additive including diethyldithiocarbamic acid or a salt thereof.
  • an additive including diethyldithiocarbamic acid or a salt thereof.
  • step 4 when step 4 is performed, the superabsorbent polymer according to an embodiment in which the additive is included in the surface of the surface crosslinking layer may be obtained.
  • the additive component is included in the surface cross-linking solution to proceed with the manufacturing process of the superabsorbent polymer, or mixing the additive with the superabsorbent polymer having the surface cross-linking layer formed (step 4) ), the antibacterial agent component is firmly fixed inside and outside the surface cross-linking layer to suppress its detachment or uneven application, and the superabsorbent polymer maintains excellent antibacterial and deodorizing properties for a long time can do.
  • the superabsorbent polymer of one embodiment has already been described in detail with respect to each component that can be used in the manufacturing method, that is, the monomer, the internal crosslinking agent, and the surface crosslinking agent, an additional description thereof will be omitted.
  • the type and amount of each additive component used in the manufacturing method may also correspond to the type and content of each additive component already described above.
  • the hydrogel polymer in the manufacturing step (step 1) of the hydrogel polymer, may be prepared by crosslinking a monomer composition including the water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator.
  • any initiator generally used in the preparation of the super absorbent polymer may be used without particular limitation.
  • a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation may be used according to a polymerization method.
  • a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated according to the progress of the polymerization reaction, which is an exothermic reaction, so a thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator may be used without limitation in its composition as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • benzoin ether dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal Ketal
  • acyl phosphine acyl phosphine
  • alpha-aminoketone alpha-aminoketone
  • acylphosphine examples include diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl (2,4,6- trimethylbenzoyl)phenylphosphinate etc. are mentioned.
  • a more diverse photoinitiator is well described in Reinhold Schwalm's book “UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" p115, but is not limited to the above-described examples.
  • the photopolymerization initiator may be included in a concentration of 0.0001 to 2.0 wt% based on the aqueous monomer solution. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slowed, and if the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and physical properties may be non-uniform.
  • thermal polymerization initiator at least one selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • a persulfate-based initiator include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (Ammonium persulfate; (NH 4 ) 2 S 2 O 8 ) and the like
  • examples of the azo-based initiator include 2,2-azobis-(2-amidinopropane) dihydrochloride (2,2-azobis(2-amidinopropane) dihydrochloride), 2 ,2-Azobis-(N,N-dimethylene)isobutyramidine dihydrochloride (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoylazo)iso
  • the thermal polymerization initiator may be included in a concentration of 0.001 to 2.0 wt% based on the aqueous monomer solution. If the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs and the effect of the addition of the thermal polymerization initiator may be insignificant. have.
  • the thermal polymerization initiator may be finally added to the aqueous monomer solution immediately before polymerization initiation.
  • the above-described aqueous solution of the antimicrobial agent may be mixed with the thermal polymerization initiator and added to the aqueous monomer solution.
  • the aqueous monomer solution of the super absorbent polymer may further include additives such as a thickener, a plasticizer, a storage stabilizer, or an antioxidant, if necessary.
  • the method for forming the hydrogel polymer by thermal polymerization or photopolymerization of such an aqueous monomer solution is not particularly limited as long as it is a commonly used polymerization method.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source.
  • thermal polymerization when thermal polymerization is carried out, it may be carried out in a reactor having a stirring shaft such as a kneader. Although it may proceed in a reactor equipped with a conveyor belt, the polymerization method described above is an example, and the invention is not limited to the polymerization method described above.
  • the water content of the hydrogel polymer obtained by this method may be 40 to 80 wt%.
  • moisture content refers to a value obtained by subtracting the weight of the polymer in a dry state from the weight of the hydrogel polymer as the amount of moisture occupied with respect to the total weight of the hydrogel polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to evaporation of moisture in the polymer during drying by raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180 ° C and maintaining it at 180 ° C. The total drying time is set to 20 minutes including 5 minutes of the temperature rising step, and the moisture content is measured.
  • the obtained hydrogel polymer is dried, pulverized and classified (step 2).
  • a step of coarsely pulverizing before drying may be further performed in order to increase the efficiency of the drying step.
  • the grinder used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, cutting Including any one selected from the group of crushing devices consisting of a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter
  • a vertical pulverizer a turbo cutter
  • a turbo grinder a turbo grinder
  • a rotary cutter mill Including any one selected from the group of crushing devices consisting of a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter
  • cutting Including any one selected from the group of crushing devices consisting of a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter
  • the hydrogel polymer in the coarse grinding step, may have a particle diameter of 2 to about 10 mm.
  • Drying is performed on the hydrogel polymer immediately after polymerization, either coarsely pulverized as described above, or without the coarse pulverization step.
  • the drying method of the drying step is also commonly used as a drying process for the hydrogel polymer, it may be selected and used without limitation in its configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the moisture content of the polymer after the drying step may be 0.1 to 10% by weight.
  • the dried polymer obtained through such a drying step is pulverized.
  • the polymer powder obtained after the grinding step may have a particle diameter of 150 to 850 ⁇ m.
  • the grinder used for grinding to such a particle size is specifically, a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, or a jog.
  • a mill (jog mill) or the like may be used, but the invention is not limited to the above-described examples.
  • a separate process of classifying the polymer powder obtained after pulverization according to particle size may be performed.
  • the polymer having a particle diameter of 150 to 850 ⁇ m is classified.
  • the base resin powder may be manufactured through the above-described process, and the base resin powder may have a fine powder form having a particle diameter of 150 to 850 ⁇ m.
  • the step of surface crosslinking to the base resin powder prepared through the grinding and/or classification process may be further performed (step 3).
  • This surface crosslinking step is a step of performing additional crosslinking using a surface crosslinking solution containing a surface crosslinking agent and a solution to increase the surface crosslinking density of the base resin powder and forming a surface crosslinking layer.
  • the unsaturated bonds of the water-soluble ethylenically unsaturated monomer are further crosslinked by the surface crosslinking agent to form a superabsorbent polymer having an increased surface crosslinking density.
  • This heat treatment process increases the surface crosslinking density, that is, the external crosslinking density, while the internal crosslinking density does not change, so that the superabsorbent polymer with the surface crosslinked layer formed has a structure having a higher external crosslinking density than the internal crosslinking density.
  • the surface crosslinking agent an additive including diethyldithiocarbamic acid or a salt thereof, and a surface crosslinking solution including an aqueous solvent may be used.
  • the surface crosslinking solution may optionally further include a chelating agent or an organic acid.
  • the surface crosslinking agent may be used in an amount of 0.001 to 2 parts by weight based on 100 parts by weight of the base resin powder.
  • the surface crosslinking agent may be used in an amount of 0.005 parts by weight or more, 0.01 parts by weight or more, or 0.02 parts by weight or more, and 1.5 parts by weight or less, and 1 part by weight or less based on 100 parts by weight of the base resin powder.
  • the method of mixing the said surface crosslinking liquid with the base resin powder there is no limitation of the structure.
  • a method of mixing the surface crosslinking solution and the base resin powder in a reaction tank, spraying the surface crosslinking solution on the base resin powder, continuously supplying the base resin powder and the surface crosslinking solution to a continuously operated mixer and mixing method, etc. can be used.
  • the surface crosslinking process may be performed at a temperature of 80 °C to 250 °C. More specifically, the surface crosslinking process may be performed at a temperature of 100°C to 220°C, or 120°C to 200°C, for 20 minutes to 2 hours, or 40 minutes to 80 minutes.
  • the surface of the base resin powder is sufficiently crosslinked to increase absorbency under pressure or liquid permeability.
  • a means for increasing the temperature for the surface crosslinking reaction is not particularly limited. It can be heated by supplying a heating medium or by directly supplying a heat source.
  • a heating medium such as steam, hot air, or hot oil may be used, but it is not limited thereto, and the temperature of the supplied heating medium depends on the means of the heating medium, the temperature increase rate and the temperature increase target temperature. Considering it, it can be appropriately selected.
  • the directly supplied heat source may be a heating method through electricity or a heating method through a gas, but is not limited to the above-described example.
  • the step of mixing the superabsorbent polymer with the surface cross-linking layer formed thereon with an additive including diethyldithiocarbamic acid or a salt thereof may be further performed (step 4).
  • step 4 the superabsorbent polymer according to an embodiment in which diethyldithiocarbamic acid or a salt thereof is included on the surface of the surface crosslinking layer may be obtained.
  • a chelating agent or an organic acid may be further included and mixed.
  • Step 4 is not particularly limited as long as it is a general mixing method, and either dry mixing or wet mixing may be used.
  • step 4 may be performed for 0.1 to 2 hours, and may be performed at a temperature of 20° C. to 90° C. If the execution time of step 4 is less than 0.1 hour, there is a problem that non-uniform dispersion of particles may occur, and if it exceeds 2 hours, there is a problem that may cause fine crushing of the surface of the SAP resin due to friction between particles.
  • a superabsorbent polymer that uniformly exhibits excellent bacterial growth inhibitory properties and deodorizing properties for a long period of time can be manufactured without changing process conditions such as basic crosslinking polymerization or surface crosslinking for the production of the superabsorbent polymer.
  • the antimicrobial component does not affect the internal cross-linking structure of the superabsorbent polymer, excellent water holding capacity and absorbency under pressure can be maintained without deterioration of physical properties due to its addition.
  • these fine antibacterial particles are uniformly applied to the surface of the superabsorbent polymer and fixed relatively strongly, the disadvantage that a large amount of dust is generated due to the addition of the antibacterial agent can also be solved.
  • the super absorbent polymer may be prepared and provided.
  • the superabsorbent polymer contains the above-described specific antibacterial agent in a rigidly fixed state in the surface cross-linking layer, thereby exhibiting excellent bacterial growth inhibitory properties and deodorizing properties, and can also maintain excellent basic absorption properties.
  • the superabsorbent polymer can be preferably included and used in various hygiene products, for example, children's paper diapers, adult diapers or sanitary napkins, and in particular, it is used in adult diapers where secondary odor caused by bacterial growth is a problem. It can be applied very preferably.
  • Such hygiene products may follow the constitution of conventional hygiene products, except that the super absorbent polymer of one embodiment is included in the absorbent body.
  • the mixture When the temperature of the aqueous solution of the water-soluble unsaturated monomer rises to 40 ° C due to heat of neutralization, the mixture is placed in a container containing 2400 ppmw of sodium persulfate (SPS), a thermal polymerization initiator, and then irradiated with ultraviolet light for 1 minute ( Irradiation dose: 10 mV/cm 2 ), UV polymerization was carried out, and aging was performed by applying heat in an oven at 80° C. for 120 seconds to obtain a hydrogel polymer sheet.
  • SPS sodium persulfate
  • the obtained hydrogel polymer sheet was passed through a chopper having a hole size of 16 mm to prepare a crumb.
  • the crumb was dried in an oven capable of transferring air volume up and down. Hot air at 185 ° C. was flowed from the bottom to the top for 15 minutes and from the top to the bottom for 15 minutes to dry uniformly, and the moisture content of the dried product after drying was set to 2% by weight or less.
  • the base resin powder having a particle size of 150 to 850 ⁇ m was obtained by classifying through a standard mesh sieve of ASTM standard.
  • a super absorbent polymer of Example 2 was prepared in the same manner as in Example 1, except that the sodium diethyldithiocarbamic acid salt content was 0.3 parts by weight based on 100 parts by weight of the base resin powder.
  • a base resin powder was prepared in the same manner as in Example 1.
  • a 1.5% by weight aqueous solution containing 0.1 parts by weight of sodium diethyldithiocarbamic acid salt relative to 100 parts by weight of the base resin powder was mixed by a hydrolysis process and heat treated at a maximum temperature of 90° C. for 40 minutes to obtain the superabsorbent polymer of Example 3 was prepared.
  • a base resin powder was prepared in the same manner as in Example 1.
  • a 1.5% by weight aqueous solution containing 0.3 parts by weight of sodium diethyldithiocarbamic acid salt relative to 100 parts by weight of the base resin powder was mixed with a hydrolysis process and heat-treated at a maximum temperature of 90° C. for 40 minutes to obtain the superabsorbent polymer of Example 4 was prepared.
  • a base resin powder was prepared in the same manner as in Example 1.
  • a base resin powder was prepared in the same manner as in Example 1.
  • a base resin powder was prepared in the same manner as in Example 1.
  • Bacteria (Escherichia Coli, ATCC 25922) were inoculated into 50 ml of artificial urine containing nutrients at 2,500 CFU/ml, 2 g of the superabsorbent resin of Comparative Example 1 was added, and then it was cultured in an oven at 35° C. for 12 hours. After 12 hours of incubation, 150 ml of saline was added, washed by shaking for 1 minute, and incubated in a solid medium (Nutrient agar plate, Difco) for 24 hours in an incubator at 35 ° C. CFU (Colony Forming Unit; CFU/ml) was measured. Through this, it was calculated as the physical properties of the control group [CFUcontrol (12h)].
  • the 'artificial urine containing nutrients' described above and below was prepared as follows.
  • Each compound (Urea (6 M), D-glucose (0.01 M) was put in a 100 ml flask according to the concentration, and distilled water was filled to make 100 ml and dissolved. This was removed by using a 0.22 micron filter. After preparation, the solution was stored at 4 °C.
  • Each compound magnesium chloride (hexahydrate) (0.3 M), calcium chloride (dehydrate) (0.3 M) was added to the concentration in a 100 ml flask, filled with distilled water to make 20 ml, dissolved, and sterilized in an autoclave. After preparation, the solution was stored at 4 °C.
  • Bacterial inhibition rate [1- ⁇ CFU(12h) / CFUcontrol(12h) ⁇ ]*100 (%)
  • CFU (12h) is after inoculation of 2,500 CFU/ml of bacteria (Escherichia Coli, ATCC 25922) into 50 ml of artificial urine containing nutrients, 2 g of the superabsorbent resin of Example or Comparative Example was added, 35 When incubated for 12 hours at °C, it represents the number of individuals per unit artificial urine volume (CFU / ml) of the proliferated bacteria, CFUcontrol (12h) is sodium diethyldithiocarbamate instead of the superabsorbent resin (sodium diethyldithiocarbamate) Using a superabsorbent resin (Comparative Example 1) prepared without using an additive containing When cultured, it represents the number of individuals per unit artificial urine volume of the proliferated bacteria (CFU/ml), that is, the number of individuals per unit artificial urine volume of bacteria measured for the control (CFU/ml).
  • the water retention capacity of the absorbent resin was measured by the water absorption ratio under no load.
  • the superabsorbent polymer W 0 (g, about 0.2 g) was uniformly put in a non-woven bag and sealed, and then immersed in 0.9 wt % physiological saline at room temperature. After 30 minutes, the bag was centrifuged and the bag was dehydrated at 250G for 3 minutes, and the mass W 2 (g) of the bag was measured. Moreover, after performing the same operation without using resin, the mass W1 (g) at that time was measured.
  • W 0 (g) is the weight (g) of the water absorbent resin
  • W 1 (g) is the device weight measured after dehydration at 250 G for 3 minutes using a centrifuge without using a water absorbent resin
  • W 2 (g) is the device weight measured including the absorbent resin after immersing the absorbent resin in 0.9 wt% physiological saline at room temperature for 30 minutes, dehydrating it at 250G for 3 minutes using a centrifugal separator.
  • Absorbency under pressure was measured according to the method of European Disposables and Nonwovens Association standard EDANA WSP 242.2.
  • a stainless steel 400 mesh wire mesh was mounted on the bottom of a plastic cylinder having an inner diameter of 60 mm.
  • superabsorbent polymer W 0 g, 0.90 g
  • W 0 g, 0.90 g
  • the outer diameter is slightly smaller than 60 mm, there is no gap with the inner wall of the cylinder, and the vertical movement is not disturbed.
  • the weight W 3 (g) of the device was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a 150 mm diameter Petro dish, and physiological saline composed of 0.90 wt% sodium chloride was placed at the same level as the upper surface of the glass filter.
  • One filter paper having a diameter of 90 mm was loaded thereon.
  • the measuring device was placed on the filter paper, and the liquid was absorbed for 1 hour under load. After 1 hour, the measuring device was lifted and the weight W 4 (g) was measured.
  • AUP (g/g) was calculated according to Equation 3 below to confirm the absorbency under pressure.
  • AUP(g/g) [W 4 (g) - W 3 (g)]/ W 0 (g)
  • W 0 (g) is the weight (g) of the water absorbent resin
  • W 3 (g) is the sum of the weight of the water absorbent resin and the weight of the device capable of applying a load to the water absorbent resin
  • W 4 (g) is the sum of the weight of the absorbent resin in which moisture has been absorbed after supplying moisture to the absorbent resin for 1 hour under a load (0.7 psi) and the weight of a device capable of applying a load to the absorbent resin.
  • the superabsorbent polymers of Examples and Comparative Examples were swollen in physiological saline (0.9 wt% sodium chloride aqueous solution) for 1 hour under a pressure of 0.3 psi.
  • the GPUP was measured with the flow rate flowing for 5 minutes. Specific measurement methods/conditions were as follows.
  • a stainless steel 400 mesh wire mesh was mounted on the cylindrical bottom of a plastic cylinder having an inner diameter of 60 mm.
  • F g weight of saline passed through the gel per hour (g/s)
  • saline density ( ⁇ 1 g/cm 3 )
  • A area of the cylinder, 28.27 cm 2
  • GPUP(10 -13 m 2 ) (K* ⁇ *10/10000)*1000000
  • Example 1 0.1 surface crosslinking solution 99 29.8 23.2 28 Example 2 0.3 surface crosslinking solution 99 29.5 23 30 Example 3 0.1 After surface crosslinking wet mixing 99 30 23 27 Example 4 0.3 After surface crosslinking wet mixing 98 29.5 22.5 30 Example 5 0.1 After surface crosslinking dry mix 96 30 22.4 24 Example 6 0.3 After surface crosslinking dry mix 95 29 22.7 29 Comparative Example 1 0 - 0 29.5 23 27
  • the sodium diethyldithiocarbamic acid salt content in Table 1 is based on 100 parts by weight of the base resin.
  • Example 1 maintains basic absorption characteristics such as water holding capacity and absorbency under pressure at the same level as Comparative Example 1, while maintaining excellent bacterial growth inhibitory properties. Accordingly, it is expected to have excellent deodorizing properties.

Abstract

본 발명은 우수한 박테리아 증식 억제 특성 및 소취 특성 등을 균일하게 장시간 동안 유지하며, 보수능 및 가압 흡수능 등의 기본적 물성을 우수하게 유지할 수 있는 고흡수성 수지 및 이의 제조 방법을 제공하기 위한 것이다.

Description

고흡수성 수지 및 이의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 12월 4일자 한국 특허 출원 제10-2020-0168657호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 보수능 및 가압 흡수능 등의 고흡수성 수지의 물성의 저하 없이 향상된 박테리아 증식 억제 특성을 나타낼 수 있는 고흡수성 수지 및 이의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로, 개발업체마다 SAM (Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료나 전기 절연분야에 이르기까지 널리 사용되고 있다.
그런데, 이러한 고흡수성 수지는 어린이용 종이기저귀나, 성인용 기저귀와 같은 위생용품 또는 일회용 흡수제품에 가장 널리 적용되고 있다. 이 중에서도 성인용 기저귀에 적용될 경우, 박테리아 증식에 기인한 2차적인 냄새는 소비자에게 불쾌감을 크게 불러 일으키는 문제를 초래하고 있다. 이러한 문제를 해결하기 위해, 이전부터 고흡수성 수지 등에 다양한 박테리아 증식 억제 성분이나, 소취 또는 항균 기능성 성분을 도입하고자 하는 시도가 이루어진 바 있다.
그러나, 이와 같이 박테리아 증식을 억제하는 항균제 등을 고흡수성 수지에 도입함에 있어, 우수한 박테리아 증식 억제 특성 및 소취 특성을 나타내면서도, 인체에 무해하고, 경제성을 충족하면서, 고흡수성 수지의 기본적인 물성을 저하시키지 않는 항균제 성분을 선택하여 도입하는 것은 그리 용이하지 않았다.
일 예로서, 산화구리 등과 같이, 은, 구리 등의 항균성 금속이온을 함유한 항균제 성분을 고흡수성 수지에 도입하고자 시도된 바 있다. 이러한 항균성 금속이온 함유 성분은 박테리아 등 미생물의 세포벽을 파괴하여 고흡수성 수지에 악취를 유발할 수도 있는 효소를 지닌 박테리아를 사멸시켜 소취 특성을 부여할 수 있다. 그러나, 상기 금속이온 함유 성분의 경우, 인체에 유익한 미생물들까지 사멸할 수 있는 BIOCIDE 물질로 분류되어 있다. 그 결과, 상기 고흡수성 수지를 어린이용 또는 성인용 기저귀 등의 위생용품에 적용하는 경우, 상기 금속이온 함유 항균제 성분의 도입은 최대한 배제되고 있다.
한편, 기존에는 상기 박테리아 증식을 억제하는 항균제 등을 고흡수성 수지에 도입함에 있어, 상기 항균제를 고흡수성 수지에 소량 블랜딩하는 방법을 주로 적용하였다. 그러나, 이러한 블랜딩 방법을 적용할 경우, 시간의 경과에 따라 박테리아 증식 억제 특성을 균일하게 유지하기 어려웠던 것이 사실이다. 더구나, 이러한 블랜딩 방법의 경우, 고흡수성 수지 및 항균제를 혼합하거나, 고흡수성 수지의 사용 과정 등에서 항균제 성분의 불균일한 도포성 및 탈리 현상을 초래할 수 있다. 그 결과, 상기 항균제의 블랜딩을 위한 신규 설비를 설치할 필요가 있으며, 고흡수성 수지의 사용 과정에서 다량의 분진이 발생하는 등의 단점 또한 존재하였다.
이에 따라, 금속이온 함유 성분 등을 도입하지 않으면서, 박테리아의 증식 억제 특성 및 소취 특성 등을 장시간 동안 균일하게 유지하며, 고흡수성 수지의 기본적 물성을 저하시키지 않고, 분진의 발생 등도 억제할 수 있는 고흡수성 수지 관련 기술의 개발이 계속적으로 요청되고 있다.
본 발명은 우수한 박테리아 증식 억제 특성 및 소취 특성 등을 균일하게 장시간 동안 유지하며, 보수능 및 가압 흡수능 등의 기본적 물성을 우수하게 유지할 수 있는 고흡수성 수지 및 이의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 고흡수성 수지를 포함하여 우수한 박테리아 증식 억제 특성 및 소취 특성 등을 균일하게 장시간 동안 나타내면서도, 기본적인 흡수 특성 역시 우수하게 유지하는 위생용품을 제공하기 위한 것이다.
본 발명은 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말; 및 표면 가교제를 매개로 상기 가교 중합체가 추가 가교되어, 상기 베이스 수지 분말 상에 형성된 표면 가교층을 포함하고, 상기 표면 가교층은 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 포함하는, 고흡수성 수지를 제공한다.
또한, 본 발명은 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는 단량체 조성물을 중합하여 함수겔 중합체를 제조하는 단계(단계 1);
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지를 제조하는 단계(단계 2); 및
표면 가교제를 포함하는 표면 가교액의 존재 하에 상기 베이스 수지에 대한 표면 가교 반응을 수행하여 표면 가교층이 형성된 고흡수성 수지를 제조하는 단계(단계 3)를 포함하고,
상기 단계 3의 수행 후에, 표면 가교층이 형성된 고흡수성 수지와 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 혼합하는 단계(단계 4)를 더 포함하거나,
상기 단계 3에서, 상기 표면 가교액이 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 더 포함하는,
상기 고흡수성 수지의 제조 방법을 제공한다.
또한, 본 발명은 상기 방법으로 제조된 고흡수성 수지를 포함하는 위생용품을 제공한다.
본 발명의 방법으로 제조된 고흡수성 수지는 특정 물질을 포함하여, 인체에 유해하고 2차적 악취를 유발하는 박테리아만을 선택적으로 증식 억제하는 우수한 박테리아 증식 억제 특성 및 소취 특성을 나타낼 수 있다.
또한, 상기 고흡수성 수지는 상기 특정 화합물을 포함하는 첨가제를 표면 가교 시 또는 표면 가교 후에 적용하여, 베이스 수지 분말을 이루는 가교 중합체 또는 표면 가교층의 내부에 단단히 고정시킴에 따라, 상기 우수한 박테리아 증식 억제 특성 및 소취 특성을 장시간 동안 균일하게 나타낼 수 있으며, 상기 항균제의 부가에 의한 물성 저하 없이 우수한 보수능 및 가압 흡수능 등을 유지할 수 있다.
따라서, 상기 고흡수성 수지는 2차적 악취가 특히 문제되는 성인용 기저귀 등 다양한 위생용품에 매우 바람직하게 적용될 수 있다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이의 제조 방법 등에 대해 보다 상세히 설명하기로 한다.
발명의 일 구현예에 따른 고흡수성 수지는, 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말; 및 표면 가교제를 매개로 상기 가교 중합체가 추가 가교되어, 상기 베이스 수지 분말 상에 형성된 표면 가교층을 포함하고, 상기 표면 가교층은 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 포함한다.
본 발명자들은 은, 구리 등의 항균성 금속이온을 포함한 항균제 성분 대신 고흡수성 수지에 바람직하게 적용할 수 있는 항균제 성분에 대한 연구를 계속하였다. 이러한 계속적인 연구 결과, 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 고흡수성 수지에 도입하는 경우, 보수능 및 가압 흡수능 등의 고흡수성 수지의 기본적 물성을 저하시키지 않고도, 인체 피부내 존재하는 악취를 유발하는 박테리아의 증식을 억제하는 우수한 박테리아 증식 억제 특성 및 소취 특성을 고흡수성 수지에 부여할 수 있음을 확인하였다.
상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 인체에 무해하며 안전성이 확보된 성분으로서, BIOCIDE 물질에 해당하지 않으며, 기존의 금속이온 함유 항균제가 갖던 문제점을 해결할 수 있다. 아울러, 상기 물질은 무취의 친수성 특징을 가져 고흡수성 수지 제조 공정에의 사용이 용이하다.
그러므로, 일 구현예의 고흡수성 수지는 상기 우수한 박테리아 증식 억제 특성 및 소취 특성을 장시간 동안 균일하게 나타낼 수 있으며, 상기 항균제의 부가에 의한 물성 저하 없이 우수한 보수능 및 가압 흡수능 등을 유지할 수 있다. 그 결과, 상기 일 구현예의 고흡수성 수지는 2차적 악취가 특히 문제되는 성인용 기저귀 등 다양한 위생용품에 매우 바람직하게 적용될 수 있다.
바람직하게는, 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 나트륨 디에틸디싸이오카르밤산 염(sodium diethyldithiocarbamate)일 수 있다.
한편, 상기 일 구현예의 고흡수성 수지에서, 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 베이스 수지 100 중량부에 대해, 0.1 내지 5 중량부, 또는 0.1 내지 4 중량부, 또는 0.1 내지 3 중량부의 함량으로 포함될 수 있다. 상기 유기산염의 함량이 지나치게 작아지면, 적절한 박테리아 증식 억제 특성 및 소취 특성을 나타내기 어려우며, 반대로 이의 함량이 지나치게 커지면, 고흡수성 수지의 보수능 등의 기본적 물성이 저하될 수 있다.
또한, 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 포함하는 표면 가교층은 킬레이트제 또는 유기산을 더 포함할 수 있다. 상기 킬레이트제는 일례로, EDTA-2Na 또는 EDTA-4Na의 나트륨염, 시클로헥산 디아민 테트라아세트산, 디에틸렌 트리아민 펜타아세트산, 에틸렌글리콜-비스-(아미노에틸에테르)-N,N,N'-트리아세트산, N-(2-하이드록시에틸)-에틸렌 디아민-N,N,N'-트리아세트산, 트리에틸렌 테트라아민 헥사아세트산, 및 이들의 알칼리 금속염으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 킬레이트제는 항균제로서 작용하여 여러 가지 세균의 증식 속도, 특히, 냄새를 유발하는 Proteus mirabilis 균의 증식을 억제하는 항균 작용을 할 수 있다.
상기 유기산은 시트릭산(citric acid), 푸마르산(fumaric acid), 말레산(maleic acid) 및 락트산(lactic acid)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 상기 유기산은 킬레이트제와 함께 사용되는 경우 상승 효과를 일으킬 수 있어 소취/항균 특성을 나타낼 수 있다.
상기 킬레이트제 또는 유기산은 베이스 수지 분말의 100 중량부에 대해, 0.1 내지 3 중량부, 혹은 0.3 내지 2 중량부, 혹은 0.4 내지 1 중량부의 함량으로 포함될 수 있다. 이러한 킬레이트제 또는 유기산을 추가로 사용하여, 악취를 유발하는 박테리아의 성장속도를 더욱 억제하여 우수한 항균 및 소취 특성을 나타낼 수 있다. 다만, 상기 킬레이트제 또는 유기산의 함량이 지나치게 커지면, 고흡수성 수지의 흡수 특성 저하를 일으킬 수 있어 바람직하지 않다.
한편, 상술한 일 구현예의 고흡수성 수지는 베이스 수지 분말을 이루는 가교 중합체의 내부 가교 구조, 또는 표면 가교층의 가교 구조 내부에 상기 첨가제 성분을 포함한 것을 제외하고는, 통상적인 고흡수성 수지의 구조를 가질 수 있다. 예를 들어, 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말; 및 표면 가교제를 매개로 상기 가교 중합체가 추가 가교되어, 상기 베이스 수지 분말 상에 형성된 표면 가교층을 포함하는 구조를 가질 수 있다.
이때, 상기 수용성 에틸렌계 불포화 단량체로는 고흡수성 수지에 통상 사용되는 임의의 단량체를 별다른 제한없이 사용할 수 있다. 여기에는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상의 단량체를 사용할 수 있다.
구체적으로는 (메타)아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산 또는 2-(메타)아크릴아미드-2-메틸 프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N-치환(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 메톡시폴리에틸렌글리콜(메타)아크릴레이트 또는 폴리에틸렌 글리콜(메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)-디메틸아미노에틸(메타) 아크릴레이트 또는 (N,N)-디메틸아미노프로필(메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다.
더욱 바람직하게는 아크릴산 또는 그 염, 예를 들어, 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다(NaOH)와 같은 염기성 화합물로 적어도 일부 중화시켜 사용할 수 있다.
또한, 상기 베이스 수지 분말은 이러한 단량체가 내부 가교제를 매개로 가교 중합된 가교 중합체를 포함하는 미세 분말 형태를 가질 수 있다.
상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 수용성 치환기와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 단량체의 수용성 치환기 및/또는 단량체의 가수분해에 의해 형성된 수용성 치환기와 반응할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다.
이러한 내부 가교제의 구체적인 예로는, 탄소수 8 내지 12의 비스아크릴아미드, 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리(메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의 폴리(메타)알릴에테르 등을 들 수 있고, 보다 구체적으로, N,N'-메틸렌비스(메타)아크릴레이트, 에틸렌옥시(메타)아크릴레이트, 폴리에틸렌옥시(메타)아크릴레이트, 프로필렌옥시(메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티롤 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜 및 프로필렌글리콜로 이루어진 군에서 선택된 하나 이상을 사용할 수 있다.
또한, 상기 베이스 수지 분말은 150 내지 850 ㎛의 입경을 갖는 미세 분말 형태를 가질 수 있다.
한편, 상기 고흡수성 수지는 이러한 베이스 수지 분말의 가교 중합체가 표면 가교제를 매개로 추가 가교되어, 상기 베이스 수지 분말 상에 형성된 표면 가교층을 포함한다.
이러한 표면 가교제의 예로는, 디올 화합물, 알킬렌 카보네이트 화합물 또는 다가 에폭시 화합물 등을 들 수 있으며, 이의 보다 구체적인 예로는, 1,3-프로판디올, 프로필렌글리콜, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜, 글리세롤, 에틸렌 카보네이트, 프로필렌 카보네이트, 글리세롤 카보네이트, 또는 에틸렌글리콜 디글리시딜 에테르와 같은 알킬렌글리콜의 디글리시딜 에테르계 화합물 등을 들 수 있으며, 이외에도 고흡수성 수지의 표면 가교제로 사용 가능한 것으로 알려진 임의의 다가 화합물을 별다른 제한없이 모두 사용할 수 있다.
상술한 일 구현예의 고흡수성 수지는 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를, 예를 들어 표면 가교액 중에 포함시켜 표면 가교층을 형성하거나, 표면 가교층이 형성된 고흡수성 수지와 상기 첨가제를 혼합함에 따라, 상기 표면 가교층의 추가 가교 구조 내부 또는 그 표면에 상기 항균제 성분이 물리적 또는 화학적으로 단단히 고정 또는 결합된 상태로 포함되어 있다. 그 결과, 기존의 블랜딩시와 달리, 항균제 성분의 불균일한 도포, 탈리 및 운송 중의 분리 등이 발생하지 않으며, 전체적으로 항균제 성분이 균일하게 포함되어 장시간 동안 우수한 박테리아 증식 억제 특성 및 소취 특성을 안정적으로 나타낼 수 있다. 또한, 고흡수성 수지의 사용시, 상기 항균제 성분에서 유래한 분진 발생 역시 크게 줄일 수 있다.
이와 같은 우수한 박테리아 증식 억제 특성은 후술하는 시험예에서도 입증되는 바와 같이, 하기 식 1로 표시되는 박테리아(Escherichia Coli; ATCC25922) 억제율이, 90 % 이상, 혹은 93 % 이상, 혹은 95 내지 100 %의 높은 값을 갖는 특성으로부터 뒷받침될 수 있다:
[식 1]
박테리아 억제율 = [1- {CFU(12h) / CFUcontrol(12h)}]*100 (%)
상기 식 1에서, CFU(12h)는 영양분이 포함된 인공뇨 50 ml에 박테리아(Escherichia Coli, ATCC 25922)를 2,500 CFU/ml로 접종하고, 박테리아 억제율 측정 대상이 되는 고흡수성 수지 2 g을 가한 후, 35 ℃에서 12 시간 동안 배양시켰을 때, 증식된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml)를 나타내며, CFUcontrol(12h)는 상기 고흡수성 수지 대신 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 사용하지 않고 제조된 고흡수성 수지를 사용하고, 상기 영양분이 포함된 인공뇨 50 ml에 상기 박테리아를 접종하고 동일 조건으로 배양시켰을 때, 증식된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml)를 나타낸다.
상기 영양분이 포함된 인공뇨는 아래와 같이 제조할 수 있다.
1) Stock solution 제조
1 L 플라스크에 각 화합물(sodium chloride(0.15 M), dipotassium hydrogen phosphate(0.02 M), sodium dihydrogen phosphate(0.01 M), ammonium chloride(0.05 M), disodium sulphate(0.02 M), lactic acid(90%)(0.05 M), yeast extract(Becton Dikinson))을 농도에 맞추어 넣고 1000 ml가 되도록 증류수를 채워 용해시킨 후 autoclave에서 멸균한다. 제조된 용액은 4 ℃에서 보관한다.
2) Urea/Glucose Solution 제조
100 ml 플라스크에 각 화합물(Urea(6 M), D-glucose(0.01 M))을 농도에 맞추어 넣고 100 ml가 되도록 증류수를 채워 용해시킨다. 이를 0.22 미크론 필터를 사용하여 균을 제거한다. 제조 후 용액은 4 ℃에서 보관한다.
3) Cationic Solution 제조
100 ml 플라스크에 각 화합물(magnesium chloride(hexahydrate)(0.3 M), calcium chloride(dehydrate)(0.3 M))을 농도에 맞추어 넣고 20 ml가 되도록 증류수를 채워 용해시키고 autoclave에서 멸균한다. 제조 후 용액은 4 ℃에서 보관한다.
4) 영양분이 포함된 인공뇨
Stock solution 94 ml, urea/glucose solution 5 ml, 그리고 1 ml의 cationic solution을 혼합하여 제조한다. 제조 후 용액은 4 ℃에서 보관하고, 제조일로부터 7 일 이내에 사용한다.
한편, 상술한 일 구현예의 고흡수성 수지는 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함하는 단량체 조성물을 열중합 또는 광중합을 진행하여 얻은 함수겔상 중합체에 대해 건조, 분쇄, 분급 및 표면 가교 등을 진행하여 수득될 수 있으며, 필요에 따라 미분 재조립 공정 등을 더 수행할 수 있다.
보다 구체적으로, 상기 고흡수성 수지의 제조 방법은 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는 단량체 조성물을 중합하여 함수겔 중합체를 제조하는 단계(단계 1);
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지를 제조하는 단계(단계 2); 및
표면 가교제를 포함하는 표면 가교액의 존재 하에 상기 베이스 수지에 대한 표면 가교 반응을 수행하여 표면 가교층이 형성된 고흡수성 수지를 제조하는 단계(단계 3)를 포함하고,
상기 단계 3의 수행 후에, 표면 가교층이 형성된 고흡수성 수지와 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 혼합하는 단계(단계 4)를 더 포함하거나,
상기 단계 3에서, 상기 표면 가교액이 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 더 포함하는 방법으로 진행될 수 있다.
구체적인 일 예에서, 상기 단계 3은 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 포함한 표면 가교액을 사용하여 진행될 수 있다. 이로서, 상기 첨가제가 표면 가교층의 추가 가교 구조 내에 포함된 일 구현예의 고흡수성 수지가 얻어질 수 있다.
구체적인 다른 예에서, 상기 단계 4가 진행되는 경우, 상기 첨가제가 표면 가교층의 표면에 포함된 일 구현예의 고흡수성 수지가 얻어질 수 있다.
이와 같이, 표면 가교층 형성 단계(단계 3)에서 표면 가교액에 첨가제 성분을 포함시켜 고흡수성 수지의 제조 공정을 진행하거나, 상기 첨가제를 표면 가교층이 형성된 고흡수성 수지와 혼합하는 단계(단계 4)를 진행함에 따라, 항균제 성분이 표면 가교층 내외에 단단히 고정되어 이의 탈리나 불균일한 도포 등을 억제할 수 있고, 고흡수성 수지가 장시간 동안 우수하면서도 균일한 박테리아 증식 억제 특성 및 소취 특성을 유지하게 할 수 있다.
한편, 상기 제조 방법에서 사용 가능한 각 성분, 즉, 단량체, 내부 가교제 및 표면 가교제의 종류에 대해서는 이미 일 구현예의 고흡수성 수지에 대해 상세히 설명한 바 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
또한, 상기 제조 방법에서 사용되는 각 첨가제 성분의 종류 및 사용량 또한 이미 상술한 각 첨가제 성분의 종류 및 함유량에 대응할 수 있다.
이하 첨가제의 함량 범위에 대한 추가 설명은 생략하고, 고흡수성 수지의 제조 공정을 중심으로 설명하기로 한다.
구체적인 일 예에서, 상기 함수겔 중합체의 제조 단계(단계 1)에서는 상기 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함한 단량체 조성물을 가교 중합하여 함수겔 중합체를 제조할 수 있다.
상술한 단량체 및 내부 가교제와 함께 단량체 수용액에 포함되는 중합 개시제로는 고흡수성 수지의 제조에 일반적으로 사용되는 개시제를 별다른 제한 없이 모두 사용할 수 있다.
구체적으로, 상기 중합 개시제로는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다. 상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로는 디페닐(2,4,6-트리메틸벤조일)포스핀 옥사이드, 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드, 에틸 (2,4,6-트리메틸벤조일)페닐포스핀에이트 등을 들 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 단량체 수용액에 대하여 0.0001 내지 2.0 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2,2-아조비스-(2-아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 열중합 개시제는 상기 단량체 수용액에 대하여 0.001 내지 2.0 중량%의 농도로 포함될 수 있다. 이러한 열중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
이들 광중합 개시제 및 열중합 개시제가 함께 사용되는 경우, 열중합 개시제는 중합 개시 직전에 최후로 단량체 수용액에 첨가될 수 있다. 이때, 상술한 항균제의 수용액이 이러한 열 중합 개시제와 함께 혼합되어 단량체 수용액에 첨가될 수 있다.
또한, 상기 제조방법에서, 고흡수성 수지의 상기 단량체 수용액은 필요에 따라 증점제(thickener), 가소제, 보존안정제 또는 산화방지제 등의 첨가제를 더 포함할 수 있다.
한편, 이와 같은 단량체 수용액을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법은 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 발명이 상술한 중합 방법에 한정되지는 않는다.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 40 내지 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180 ℃까지 온도를 상승시킨 뒤 180 ℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5 분을 포함하여 20 분으로 설정하여, 함수율을 측정한다.
다음에, 얻어진 함수겔상 중합체를 건조, 분쇄 및 분급한다(단계 2).
함수겔상 중합체의 건조 시, 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 조분쇄 단계는 함수겔상 중합체의 입경이 2 내지 약 10 mm로 되도록 분쇄할 수 있다.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 0.1 내지 10 중량%일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850㎛ 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 발명이 한정되는 것은 아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 150 내지 850㎛인 중합체를 분급한다.
상술한 과정을 거쳐 베이스 수지 분말을 제조할 수 있고, 이러한 베이스 수지 분말은 150 내지 850 ㎛의 입경을 갖는 미세 분말 형태를 가질 수 있다.
한편, 발명의 일 실시예에 따르면, 상기 분쇄 및/또는 분급 등의 과정을 거쳐 제조된 베이스 수지 분말에 표면 가교하는 단계를 더 수행할 수 있다(단계 3).
이러한 표면 가교 단계는 상기 베이스 수지 분말의 표면 가교 밀도를 높이기 위해 표면 가교제 및 용액을 포함하는 표면 가교액을 사용하여 추가 가교를 수행하고 표면 가교층을 형성시키는 단계로, 가교되지 않고 표면에 남아 있던 수용성 에틸렌계 불포화 단량체의 불포화 결합이 상기 표면 가교제에 의해 추가 가교되어, 표면 가교 밀도가 높아진 고흡수성 수지가 형성된다. 이러한 열처리 공정으로 표면 가교 밀도, 즉 외부 가교 밀도는 증가하게 되는 반면 내부 가교 밀도는 변화가 없어, 제조된 표면 가교층이 형성된 고흡수성 수지는 내부보다 외부의 가교 밀도가 높은 구조를 갖게 된다.
이러한 표면 가교 단계에서는, 이미 상술한 바와 같이, 상기 표면 가교제, 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제 및 수용매를 포함하는 표면 가교액을 사용하여 진행할 수 있다. 상기 표면 가교액은 선택적으로 킬레이트제 또는 유기산을 더 포함할 수 있다.
이러한 표면 가교제는 베이스 수지 분말 100 중량부에 대하여 0.001 내지 2 중량부로 사용될 수 있다. 예를 들어, 상기 표면 가교제는 베이스 수지 분말 100 중량부에 대하여 0.005 중량부 이상, 0.01 중량부 이상, 또는 0.02 중량부 이상이고, 1.5 중량부 이하, 1 중량부 이하의 함량으로 사용될 수 있다. 표면 가교제의 함량 범위를 상술한 범위로 조절하여 우수한 흡수 성능 및 통액성 등 제반 물성을 나타내는 고흡수성 수지를 제조할 수 있다.
또한, 상기 표면 가교액을 베이스 수지 분말과 혼합하는 방법에 대해서는 그 구성의 한정은 없다. 예를 들어, 표면 가교액과, 베이스 수지 분말을 반응조에 넣고 혼합하거나, 베이스 수지 분말에 표면 가교액을 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 가교액을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
상기 표면 가교 공정은 80 ℃ 내지 250 ℃의 온도에서 수행될 수 있다. 보다 구체적으로, 상기 표면 가교 공정은 100℃ 내지 220℃, 또는 120℃ 내지 200℃의 온도에서, 20 분 내지 2 시간, 또는 40 분 내지 80 분 동안 수행될 수 있다. 상술한 표면 가교 공정 조건의 충족 시 베이스 수지 분말의 표면이 충분히 가교되어 가압 흡수능이나 통액성이 증가될 수 있다.
상기 표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
한편, 발명의 일 실시예에 따르면, 상기 표면 가교층이 형성된 고흡수성 수지와 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 혼합하는 단계를 더 수행할 수 있다(단계 4). 상기 단계 4가 진행되는 경우, 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염이 표면 가교층의 표면에 포함된 일 구현예의 고흡수성 수지가 얻어질 수 있다.
상기 단계 4의 혼합 단계에서는 킬레이트제 또는 유기산을 더 포함하여 혼합할 수 있다.
상기 단계 4는 일반적인 혼합 방법이라면 특별히 한정되지 않으며, 건식 혼합 또는 습식 혼합 어느 것이어도 무방하다.
한편, 상기 단계 4는 0.1 내지 2 시간 동안 진행될 수 있고, 20 ℃ 내지 90 ℃의 온도에서 진행될 수 있다. 단계 4의 수행 시간이 0.1 시간 미만이라면 입자의 불균일한 분산이 발생할 수 있는 문제가 있고, 2 시간을 초과하는 경우 입자간의 마찰로 인하여 SAP수지 표면의 미세한 파쇄를 유발할 수 있는 문제가 있다.
그 결과, 고흡수성 수지의 제조를 위한 기본적인 가교 중합 또는 표면 가교 등의 공정 조건의 변경 없이도, 우수한 박테리아 증식 억제 특성 및 소취 특성을 장시간 동안 균일하게 나타내는 고흡수성 수지가 제조될 수 있다. 또, 상기 항균제 성분이 고흡수성 수지의 내부 가교 구조 등에 영향을 미치지 않으므로, 이의 부가에 의한 물성 저하 없이 우수한 보수능 및 가압 흡수능 등을 유지할 수 있다. 부가하여, 이러한 미세 항균제 입자들이 고흡수성 수지 표면에 균일하게 도포되어 비교적 강하게 고정됨에 따라, 상기 항균제의 부가에 기인하여 다량의 분진이 발생하는 단점 또한 해결할 수 있다.
이상에서 예시적으로 설명한 공정을 통해, 표면 가교 공정까지를 진행하면, 고흡수성 수지가 제조 및 제공될 수 있다. 이러한 고흡수성 수지는 표면 가교층 내에 상술한 특정 항균제 성분이 단단하게 고정된 상태로 포함되어, 우수한 박테리아 증식 억제 특성 및 소취 특성을 나타낼 수 있고, 기본적인 흡수 특성 역시 우수하게 유지할 수 있다.
이에 이러한 고흡수성 수지는 다양한 위생용품, 예를 들어, 어린이용 종이기저귀나, 성인용 기저귀 또는 생리대 등에 바람직하게 포함 및 사용될 수 있으며, 특히, 박테리아 증식에 기인한 2차적 악취가 특히 문제되는 성인용 기저귀에 매우 바람직하게 적용될 수 있다.
이러한 위생용품은 흡수체 중에 일 구현예의 고흡수성 수지가 포함됨을 제외하고는 통상적인 위생용품의 구성에 따를 수 있다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예: 고흡수성 수지의 제조>
실시예 1
교반기, 온도계, 냉각장치가 구비된 3 L 유리 용기에 아크릴산 484 g, 내부 가교제인 폴리에틸렌글리콜디아크릴레이트(PEGDA 400, Mw=400) 2100 ppmw, 광개시제인 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 80 ppmw을 첨가하여 용해시킨 후, 31.5 중량% 농도의 수산화나트륨 용액 643 g을 천천히 첨가하여 수용성 불포화 단량체 수용액을 제조하였다(중화도: 70 mol%; 고형분 함량: 45.8 중량%).
상기 수용성 불포화 단량체 수용액의 온도가 중화열로 인해 상승 후 40 ℃로 되면, 이 혼합액을 열중합 개시제인 소디움 퍼설페이트(sodium persulfate; SPS) 2400 ppmw가 담겨 있는 용기에 담은 후, 1 분간 자외선을 조사(조사량: 10 mV/cm2)하여 UV 중합을 실시하고 80 ℃의 오븐에서 120 초 동안 열을 가하여 에이징(aging)시켜 함수겔상 중합체 시트를 수득하였다.
수득한 함수겔상 중합체 시트를 홀 사이즈(hole size)가 16 mm인 쵸퍼(chopper)를 통과시켜 가루(crumb)를 제조하였다. 상기 가루(crumb)를 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185 ℃의 핫 에어(hot air)를 15 분은 하방에서 상방으로, 15 분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2 중량% 이하가 되도록 하였다. 이렇게 건조 공정을 거쳐, ASTM 규격의 표준 망체로 분급하여 150 내지 850 ㎛의 입자 크기를 갖는 베이스 수지 분말을 얻었다.
한편, 상기 베이스 수지 분말에 대한 표면 가교(추가 가교)를 위해, 베이스 수지 분말의 100 중량부를 기준으로, 물 4.2 중량부, 에틸렌 카보네이트 0.2 중량부, 알루미늄 설페이트 0.3 중량부, 프로필렌글리콜 0.2 중량부 및 첨가제인 나트륨 디에틸디싸이오카르밤산 염 0.1 중량부를 포함한 표면 가교액을 혼합 및 제조하였다. 상기 베이스 수지 100 중량부에 대해, 상기 표면 가교액을 1000 rpm의 paddle type 믹서를 사용해 분사하였다. 이후, 최대 온도 185 ℃에서 60 분간 열처리하여 표면 가교를 진행하고, 실시예 1의 고흡수성 수지를 제조하였다.
실시예 2
나트륨 디에틸디싸이오카르밤산 염 함량이 베이스 수지 분말 100 중량부 대비 0.3 중량부인 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2의 고흡수성 수지를 제조하였다.
실시예 3
실시예 1과 동일한 방법으로 베이스 수지 분말을 제조하였다.
한편, 상기 베이스 수지 분말에 대한 표면 가교(추가 가교)를 위해, 베이스 수지 분말의 100 중량부를 기준으로, 물 4.2 중량부, 에틸렌 카보네이트 0.2 중량부, 알루미늄 설페이트 0.3 중량부 및 프로필렌글리콜 0.2 중량부를 포함한 표면 가교액을 혼합 및 제조하였다. 상기 베이스 수지 100 중량부에 대해, 상기 표면 가교액을 1000 rpm의 paddle type 믹서를 사용해 분사하였다. 이후, 최대 온도 185 ℃에서 60 분간 열처리하여 표면 가교를 진행하였다.
표면 가교 이후 베이스 수지 분말 100 중량부 대비 나트륨 디에틸디싸이오카르밤산 염 0.1 중량부를 포함하는 1.5 중량% 수용액을 가수 공정으로 혼합하여 최대 온도 90 ℃에서 40 분간 열처리하여 실시예 3의 고흡수성 수지를 제조하였다.
실시예 4
실시예 1과 동일한 방법으로 베이스 수지 분말을 제조하였다.
한편, 상기 베이스 수지 분말에 대한 표면 가교(추가 가교)를 위해, 베이스 수지 분말의 100 중량부를 기준으로, 물 4.2 중량부, 에틸렌 카보네이트 0.2 중량부, 알루미늄 설페이트 0.3 중량부 및 프로필렌글리콜 0.2 중량부를 포함한 표면 가교액을 혼합 및 제조하였다. 상기 베이스 수지 100 중량부에 대해, 상기 표면 가교액을 1000rpm의 paddle type 믹서를 사용해 분사하였다. 이후, 최대 온도 185 ℃에서 60 분간 열처리하여 표면 가교를 진행하였다.
표면 가교 이후 베이스 수지 분말 100 중량부 대비 나트륨 디에틸디싸이오카르밤산 염 0.3 중량부를 포함하는 1.5 중량% 수용액을 가수 공정으로 혼합하여 최대 온도 90 ℃에서 40 분간 열처리하여 실시예 4의 고흡수성 수지를 제조하였다.
실시예 5
실시예 1과 동일한 방법으로 베이스 수지 분말을 제조하였다.
한편, 상기 베이스 수지 분말에 대한 표면 가교(추가 가교)를 위해, 베이스 수지 분말의 100 중량부를 기준으로, 물 4.2 중량부, 에틸렌 카보네이트 0.2 중량부, 알루미늄 설페이트 0.3 중량부 및 프로필렌글리콜 0.2 중량부를 포함한 표면 가교액을 혼합 및 제조하였다. 상기 베이스 수지 100 중량부에 대해, 상기 표면 가교액을 1000rpm의 paddle type 믹서를 사용해 분사하였다. 이후, 최대 온도 185 ℃에서 60 분간 열처리하여 표면 가교를 진행하였다.
표면 가교 이후 베이스 수지 분말 100 중량부 대비 나트륨 디에틸디싸이오카르밤산 염 0.1 중량부를 최대 온도 50 ℃에서 10 분간 건식 혼합하여 실시예 5의 고흡수성 수지를 제조하였다.
실시예 6
실시예 1과 동일한 방법으로 베이스 수지 분말을 제조하였다.
한편, 상기 베이스 수지 분말에 대한 표면 가교(추가 가교)를 위해, 베이스 수지 분말의 100 중량부를 기준으로, 물 4.2 중량부, 에틸렌 카보네이트 0.2 중량부, 알루미늄 설페이트 0.3 중량부 및 프로필렌글리콜 0.2 중량부를 포함한 표면 가교액을 혼합 및 제조하였다. 상기 베이스 수지 100 중량부에 대해, 상기 표면 가교액을 1000rpm의 paddle type 믹서를 사용해 분사하였다. 이후, 최대 온도 185 ℃에서 60 분간 열처리하여 표면 가교를 진행하였다.
표면 가교 이후 베이스 수지 분말 100 중량부 대비 나트륨 디에틸디싸이오카르밤산 염 0.3 중량부를 최대 온도 50 ℃에서 10 분간 건식 혼합하여 실시예 6의 고흡수성 수지를 제조하였다.
비교예 1
실시예 1과 동일한 방법으로 베이스 수지 분말을 제조하였다.
한편, 상기 베이스 수지 분말에 대한 표면 가교(추가 가교)를 위해, 베이스 수지 분말의 100 중량부를 기준으로, 물 4.2 중량부, 에틸렌 카보네이트 0.2 중량부, 알루미늄 설페이트 0.3 중량부 및 프로필렌글리콜 0.2 중량부를 포함한 표면 가교액을 혼합 및 제조하였다. 상기 베이스 수지 100 중량부에 대해, 상기 표면 가교액을 1000 rpm의 paddle type 믹서를 사용해 분사하였다. 이후, 최대 온도 185 ℃에서 60 분간 열처리하여 표면 가교를 진행하였다.
<실험예: 고흡수성 수지 물성 평가>
상기 실시예 1 내지 6 및 비교예 1의 고흡수성 수지에 대해 하기 방법으로 물성을 측정하고, 그 결과를 표 1에 나타내었다.
(1) 박테리아 증식 억제 성능 테스트
영양분이 포함된 인공뇨 50 ml에 박테리아(Escherichia Coli,ATCC 25922)를 2,500 CFU/ml로 접종하고 비교예 1의 고흡수성 수지 2 g을 가한 뒤 이를 35 ℃ 오븐에서 12 시간 동안 배양하였다. 12 시간 배양 후 150 ml의 염수를 추가하여 1 분간 흔들어 세척하고 이를 고체배지(Nutrient agar plate, Difco사)에서 35 ℃ 인큐베이터에서 24 시간동안 배양하여 CFU(Colony Forming Unit; CFU/ml)을 측정하여 이를 통해 대조군의 물성으로 산출하였다[CFUcontrol(12h)].
상기 및 후술하는 '영양분이 포함된 인공뇨'는 아래와 같이 제조하였다.
1) Stock solution 제조
1 L 플라스크에 각 화합물(sodium chloride(0.15 M), dipotassium hydrogen phosphate(0.02 M), sodium dihydrogen phosphate(0.01 M), ammonium chloride(0.05 M), disodium sulphate(0.02 M), lactic acid(90%)(0.05 M), yeast extract(Becton Dikinson))을 농도에 맞추어 넣고 1000 ml가 되도록 증류수를 채워 용해시킨 후 autoclave에서 멸균하였다. 제조된 용액은 4 ℃에서 보관하였다.
2) Urea/Glucose Solution 제조
100 ml 플라스크에 각 화합물(Urea(6 M), D-glucose(0.01 M))을 농도에 맞추어 넣고 100 ml가 되도록 증류수를 채워 용해시켰다. 이를 0.22 미크론 필터를 사용하여 균을 제거하였다. 제조 후 용액은 4 ℃에서 보관하였다.
3) Cationic Solution 제조
100 ml 플라스크에 각 화합물(magnesium chloride(hexahydrate)(0.3 M), calcium chloride(dehydrate)(0.3 M))을 농도에 맞추어 넣고 20 ml가 되도록 증류수를 채워 용해시키고 autoclave에서 멸균하였다. 제조 후 용액은 4 ℃에서 보관하였다.
4) 영양분이 포함된 인공뇨
Stock solution 94 ml, urea/glucose solution 5 ml, 그리고 1 ml의 cationic solution을 혼합하여 제조하였다. 제조 후 용액은 4 ℃에서 보관하였고, 제조일로부터 7 일 이내에 사용하였다.
실시예 또는 비교예의 고흡수성 수지 2 g을 상기의 박테리아가 2,500 CFU/ml로 접종된, 영양분을 함유하는 상기의 인공뇨 50 ml에 가하고, 1 분간 흔들어 골고루 섞이게 하였다. 이를 35 ℃ 오븐에서 12 시간 동안 배양하였다. 12 시간 배양한 후의 인공뇨를 150 ml의 염수로 잘 세척하고 이를 고체배지(Nutrient agar plate, Difco사)에서 35 ℃ 인큐베이터에서 24 시간동안 배양하여 CFU(Colony Forming Unit; CFU/ml)을 측정하였다[CFU(12h)].
이러한 각 측정 결과를 하기 식 1로 표시되는 박테리아(Escherichia Coli; ATCC25922) 증식율로 산출하여, 이를 근거로 각 실시예 및 비교예의 박테리아 증식 억제 특성을 평가하였다:
[식 1]
박테리아 억제율 = [1- {CFU(12h) / CFUcontrol(12h)}]*100 (%)
상기 식 1에서, CFU(12h)은 영양분이 함유된 인공뇨 50 ml에 박테리아(Escherichia Coli, ATCC 25922) 2,500 CFU/ml를 접종한 후 실시예 또는 비교예의 고흡수성 수지 2 g을 가한 후, 35 ℃에서 12 시간 동안 배양시켰을 때, 증식된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml)를 나타내며, CFUcontrol(12h)는 상기 고흡수성 수지 대신 나트륨 디에틸디싸이오카르밤산 염(sodium diethyldithiocarbamate)을 포함하는 첨가제를 사용하지 않고 제조된 고흡수성 수지(비교예 1)를 사용하고, 상기 영양분이 함유된 인공뇨 50 ml에 박테리아(Escherichia Coli, ATCC 25922) 2,500 CFU/ml를 접종하고 동일 조건으로 배양시켰을 때, 증식된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml), 즉, 상기 대조군에 대해 측정된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml)를 나타낸다.
(2) 보수능 (CRC, Centrifugal Retention Capacity)
유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.2에 따라 흡수성 수지에 대하여, 무하중하 흡수배율에 의한 보수능을 측정하였다. 고흡수성수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후에, 상온에 0.9 중량%의 생리 식염수에 침수했다. 30 분 후에 봉투를 원심 분리기를 이용하고 250G로 3 분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정했다.
이렇게 얻어진 각 질량을 이용하여 다음의 식 2에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[식 2]
CRC(g/g) = {[W2(g) - W1(g)]/W0(g)} - 1
상기 식 2에서,
W0(g)는 흡수성 수지의 무게(g)이고,
W1(g)는 흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 측정한 장치 무게이고,
W2(g)는 상온에 0.9 중량%의 생리 식염수에 흡수성 수지를 30 분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 흡수성 수지를 포함하여 측정한 장치 무게이다.
(3) 가압 흡수능 (AUP, Absorption under Pressure)
유럽부직포산업협회(European Disposables and Nonwovens Association) 규격 EDANA WSP 242.2의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을 측정하였다.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온, 습도 50%의 조건하에서 철망상에 고흡수성 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa (0.7 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤(piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 90 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90 mm의 여과지 1장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
이렇게 얻어진 각 질량을 이용하여 다음의 식 3에 따라 AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.
[식 3]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g)
상기 식 3에서,
W0(g)는 흡수성 수지의 무게(g)이고,
W3(g)는 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,
W4(g)는 하중(0.7 psi) 하에 1시간 동안 상기 흡수성 수지에 수분을 공급한 후의 수분이 흡수된 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(4) GPUP (Gel Permeability Under Pressure)
실시예 및 비교예의 고흡수성 수지를 0.3 psi의 가압 하에, 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 1 시간 동안 팽윤시킨 후, 상기 생리 식염수를 상기 고흡수성 수지에 흘려 주었을 때 첫 방울이 떨어지는 시점부터 5 분 동안 흐르는 유량으로 GPUP를 측정하였다. 구체적인 측정 방법/조건은 다음과 같이 하였다.
먼저, 내경 60 mm의 플라스틱 실린더의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 그 위에 2.1 kPa(0.3 psi)의 하중을 균일하게 더 부여할 수 있는 외경 60 mm 보다 약간 작은 피스톤을 원통의 내벽과 틈이 없고 상하 움직임이 방해받지 않게 설치하고 높이를 측정하였다(t0). 실린더에 고흡수성 수지(약 1.8 ±0.05 g)을 균일하게 도포하고 피스톤을 올린 후 직경 200 mm의 페트리 접시의 내측에 직경 90 mm 및 두께 5 mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면에서 5 mm 가량 높게 넣어주고 하중 하에서 1 시간 동안 고흡수성 수지에 흡수/팽윤시켰다. 이후, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 흘려 보내주고 첫 한 방울이 팽윤된 고흡수성 수지 겔을 통과한 이후 시점부터 5 분 간 통과된 생리식염수의 무게를 측정하였다(Fg). 5분 간 생리식염수를 통과 시간 후 측정 장치의 높이(t1)를 측정하였다. 이러한 측정 결과로부터, 하기 식 4 및 5에 따라 GPUP를 산출하였다:
[식 4]
K(10-7 m3s/g)=(Fg*t/ρ*A*P)
Fg = 시간 당 겔을 통과한 생리식염수 무게 (g/s)
t(cm) = 고흡수성 수지 겔 두께 (t1-t0)/10
ρ= 생리 식염수 밀도 (~1 g/cm3)
A = 실린더 면적, 28.27 cm2
P = 정수압, 4920 dyn/cm2
[식 5]
GPUP(10-13 m2)=(K*η*10/10000)*1000000
η = 생리 식염수 점도 (~ 0.0009 [Pa.s])
나트륨 디에틸디싸이오카르밤산 염 함량(중량부) 첨가제
투입 단계
균억제력
(%)
CRC
(g/g)
AUP
(g/g)
GPUP
(10-13m2)
실시예1 0.1 표면가교액 99 29.8 23.2 28
실시예2 0.3 표면가교액 99 29.5 23 30
실시예3 0.1 표면 가교 후
습식 혼합
99 30 23 27
실시예4 0.3 표면 가교 후
습식 혼합
98 29.5 22.5 30
실시예5 0.1 표면 가교 후
건식 혼합
96 30 22.4 24
실시예6 0.3 표면 가교 후
건식 혼합
95 29 22.7 29
비교예1 0 - 0 29.5 23 27
상기 표 1의 나트륨 디에틸디싸이오카르밤산 염 함량은 베이스 수지 100 중량부를 기준으로 한 것이다.
상기 표 1을 참고하면 실시예의 고흡수성 수지는 비교예 1과 동등한 수준의 보수능, 가압 흡수능 등 기본적인 흡수 특성을 우수한 수준으로 유지하면서도 박테리아 증식 억제 특성이 우수한 것을 확인할 수 있었다. 이에 따라 우수한 소취 특성을 가질 것으로 기대된다.

Claims (12)

  1. 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함한 베이스 수지 분말; 및
    표면 가교제를 매개로 상기 가교 중합체가 추가 가교되어, 상기 베이스 수지 분말 상에 형성된 표면 가교층을 포함하고,
    상기 표면 가교층은 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 포함하는,
    고흡수성 수지.
  2. 제1항에 있어서,
    디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 나트륨 디에틸디싸이오카르밤산 염(Sodium diethyldithiocarbamate)인,
    고흡수성 수지.
  3. 제1항에 있어서,
    상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 베이스 수지 100 중량부에 대해 0.1 내지 5 중량부의 함량으로 포함되는,
    고흡수성 수지.
  4. 제1항에 있어서,
    상기 표면 가교층은 킬레이트제 또는 유기산을 더 포함하는,
    고흡수성 수지.
  5. 제1항에 있어서,
    상기 표면 가교제는 디올 화합물, 알킬렌 카보네이트 화합물 또는 다가 에폭시 화합물을 포함하는,
    고흡수성 수지.
  6. 제1항에 있어서,
    상기 고흡수성 수지는 하기 식 1로 표시되는 박테리아(Escherichia Coli; ATCC25922) 억제율이 90 % 이상인,
    고흡수성 수지:
    [식 1]
    박테리아 억제율 = [1- {CFU(12h) / CFUcontrol(12h)}]*100 (%)
    상기 식 1에서, CFU(12h)은 영양분이 포함된 인공뇨 50 ml에 박테리아(Escherichia Coli, ATCC 25922) 2,500 CFU/ml를 접종한 후 제1항의 고흡수성 수지 2 g을 가한 후, 35 ℃에서 12 시간 동안 배양시켰을 때, 증식된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml)를 나타내며, CFUcontrol(12h)는 상기 고흡수성 수지 대신 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 사용하지 않고 제조된 고흡수성 수지를 사용하고, 상기 영양분이 포함된 인공뇨 50 ml에 박테리아(Escherichia Coli, ATCC 25922) 2,500 CFU/ml를 접종하고 인공뇨를 동일 조건으로 배양시켰을 때, 증식된 박테리아의 단위 인공뇨 부피당 개체 수(CFU/ml)를 나타낸다.
  7. 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 포함하는 단량체 조성물을 중합하여 함수겔 중합체를 제조하는 단계(단계 1);
    상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지를 제조하는 단계(단계 2); 및
    표면 가교제를 포함하는 표면 가교액의 존재 하에 상기 베이스 수지에 대한 표면 가교 반응을 수행하여 표면 가교층이 형성된 고흡수성 수지를 제조하는 단계(단계 3)를 포함하고,
    상기 단계 3의 수행 후에, 표면 가교층이 형성된 고흡수성 수지와 상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 혼합하는 단계(단계 4)를 더 포함하거나,
    상기 단계 3에서, 상기 표면 가교액이 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염을 포함하는 첨가제를 더 포함하는,
    제1항의 고흡수성 수지의 제조 방법.
  8. 제7항에 있어서,
    디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 나트륨 디에틸디싸이오카르밤산 염(Sodium diethyldithiocarbamate)인,
    고흡수성 수지의 제조 방법.
  9. 제7항에 있어서,
    상기 디에틸디싸이오카르밤산(diethyldithiocarbamic acid) 또는 그의 염은 베이스 수지 100 중량부에 대해 0.1 내지 5 중량부의 함량으로 사용되는,
    고흡수성 수지의 제조 방법.
  10. 제7항에 있어서,
    상기 단계 4에서 킬레이트제 또는 유기산을 더 포함하여 혼합하거나,
    상기 단계 3에서 표면 가교액이 킬레이트제 또는 유기산을 더 포함하는,
    고흡수성 수지의 제조 방법.
  11. 제7항에 있어서,
    상기 단계 4의 혼합은 건식 혼합 또는 습식 혼합인,
    고흡수성 수지의 제조 방법.
  12. 제1항의 고흡수성 수지를 포함하는 위생 용품.
PCT/KR2021/013594 2020-12-04 2021-10-05 고흡수성 수지 및 이의 제조 방법 WO2022119095A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022544806A JP7408222B2 (ja) 2020-12-04 2021-10-05 高吸水性樹脂およびその製造方法
EP21900783.8A EP4074760A4 (en) 2020-12-04 2021-10-05 SUPERABSORBENT POLYMER AND METHOD FOR PREPARING IT
CN202180009322.0A CN114945622A (zh) 2020-12-04 2021-10-05 超吸收性聚合物及其制备方法
US17/795,454 US20230356183A1 (en) 2020-12-04 2021-10-05 Super Absorbent Polymer and Preparation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200168657A KR20220079169A (ko) 2020-12-04 2020-12-04 고흡수성 수지 및 이의 제조 방법
KR10-2020-0168657 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022119095A1 true WO2022119095A1 (ko) 2022-06-09

Family

ID=81854074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013594 WO2022119095A1 (ko) 2020-12-04 2021-10-05 고흡수성 수지 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US20230356183A1 (ko)
EP (1) EP4074760A4 (ko)
JP (1) JP7408222B2 (ko)
KR (1) KR20220079169A (ko)
CN (1) CN114945622A (ko)
WO (1) WO2022119095A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335554B1 (ko) * 1996-11-14 2002-05-08 데이비드 엠 모이어 항균코팅된 하이드로겔 형성 흡수성 중합체
US7183345B2 (en) * 2001-06-29 2007-02-27 Stockhausen Gmbh Superabsorbent carboxyl-containing polymers with odor control properties and method for preparation
KR20080069661A (ko) * 2001-06-29 2008-07-28 에보닉 스톡하우젠 게엠베하 악취 방지 특성을 갖는 초흡수성 카복실 함유 중합체의제조 방법
US20100303869A1 (en) * 2007-09-13 2010-12-02 Basf Se Process for Producing Antimicrobial-Coated Superabsorbents
KR20190035313A (ko) * 2017-09-26 2019-04-03 주식회사 엘지화학 항균성 고흡수성 수지의 제조 방법
KR20200073750A (ko) * 2018-12-14 2020-06-24 주식회사 엘지화학 항균성 고흡수성 수지의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131165A (ja) * 2007-11-29 2009-06-18 Sanyo Chem Ind Ltd 植物生育用保水剤
WO2013073614A1 (ja) * 2011-11-15 2013-05-23 株式会社日本触媒 吸水剤組成物及びその製造方法、並びにその保管及び在庫方法
US10702626B2 (en) * 2016-12-22 2020-07-07 Lg Chem. Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer
CN107501462A (zh) * 2017-08-08 2017-12-22 浙江卫星新材料科技有限公司 一种抑菌除臭高吸水性树脂及含该高吸水性树脂的吸收制品
KR102558451B1 (ko) * 2018-12-14 2023-07-20 주식회사 엘지화학 항균성 고흡수성 수지의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335554B1 (ko) * 1996-11-14 2002-05-08 데이비드 엠 모이어 항균코팅된 하이드로겔 형성 흡수성 중합체
US7183345B2 (en) * 2001-06-29 2007-02-27 Stockhausen Gmbh Superabsorbent carboxyl-containing polymers with odor control properties and method for preparation
KR20080069661A (ko) * 2001-06-29 2008-07-28 에보닉 스톡하우젠 게엠베하 악취 방지 특성을 갖는 초흡수성 카복실 함유 중합체의제조 방법
US20100303869A1 (en) * 2007-09-13 2010-12-02 Basf Se Process for Producing Antimicrobial-Coated Superabsorbents
KR20190035313A (ko) * 2017-09-26 2019-04-03 주식회사 엘지화학 항균성 고흡수성 수지의 제조 방법
KR20200073750A (ko) * 2018-12-14 2020-06-24 주식회사 엘지화학 항균성 고흡수성 수지의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115

Also Published As

Publication number Publication date
CN114945622A (zh) 2022-08-26
JP2023511205A (ja) 2023-03-16
US20230356183A1 (en) 2023-11-09
EP4074760A1 (en) 2022-10-19
JP7408222B2 (ja) 2024-01-05
KR20220079169A (ko) 2022-06-13
EP4074760A4 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2017014400A1 (ko) 우수한 항균 및 소취 특성을 갖는 고흡수성 수지 및 이의 제조 방법
KR20170106156A (ko) 고흡수성 수지의 제조 방법, 및 고흡수성 수지
KR101863350B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2021096230A1 (ko) 고흡수성 수지 및 이의 제조방법
WO2016159600A1 (ko) 고 흡수성 수지의 제조방법
WO2022119095A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2021071246A1 (ko) 고흡수성 수지의 제조 방법
WO2020067705A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2020226385A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2021066338A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2020116760A1 (ko) 고흡수성 수지의 제조 방법
WO2015084060A1 (ko) 고흡수성 수지 및 이의 제조방법
WO2020149691A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2023106878A1 (ko) 고흡수성 수지의 제조 방법
WO2021210902A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2021066313A1 (ko) 고흡수성 수지 조성물 및 이의 제조 방법
WO2020122426A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2021194201A1 (ko) 고흡수성 수지 필름 및 이의 제조 방법
KR102623892B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2023191392A1 (ko) 고흡수성 수지 조성물 및 이의 제조 방법
WO2021071291A1 (ko) 고흡수성 수지의 제조 방법
WO2021066503A1 (ko) 고흡수성 수지 조성물 및 이의 제조 방법
KR20220049960A (ko) 고흡수성 수지의 제조 방법
WO2023096240A1 (ko) 고흡수성 수지의 제조 방법
WO2022080641A1 (ko) 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544806

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2021900783

Country of ref document: EP

Effective date: 20220712

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022020875

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022020875

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221014

NENP Non-entry into the national phase

Ref country code: DE