WO2020116760A1 - 고흡수성 수지의 제조 방법 - Google Patents

고흡수성 수지의 제조 방법 Download PDF

Info

Publication number
WO2020116760A1
WO2020116760A1 PCT/KR2019/012832 KR2019012832W WO2020116760A1 WO 2020116760 A1 WO2020116760 A1 WO 2020116760A1 KR 2019012832 W KR2019012832 W KR 2019012832W WO 2020116760 A1 WO2020116760 A1 WO 2020116760A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer mixture
polymer
superabsorbent polymer
polymerization
monomer
Prior art date
Application number
PCT/KR2019/012832
Other languages
English (en)
French (fr)
Inventor
원태영
손정민
이혜민
이준의
허성범
신광인
한창훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/057,790 priority Critical patent/US12030967B2/en
Priority to CN201980036694.5A priority patent/CN112204091B/zh
Priority to BR112020025960-8A priority patent/BR112020025960B1/pt
Priority to JP2020532009A priority patent/JP7080539B2/ja
Priority to EP19893049.7A priority patent/EP3783053A4/en
Publication of WO2020116760A1 publication Critical patent/WO2020116760A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to a method for producing a superabsorbent polymer that enables the production of a superabsorbent polymer that exhibits an improved absorption rate while reducing the amount of blowing agent used.
  • Super Absorbent Polymer is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight, and SAM (Super Absorbency Material), AGM (Absorbent Gel) for each developer Material).
  • SAM Super Absorbency Material
  • AGM Absorbent Gel
  • the superabsorbent polymer as described above began to be put into practical use as a sanitary tool, and now, in addition to sanitary products such as paper diapers for children, soil repair agents for horticulture, civil engineering, construction index materials, sheet for raising seedlings, freshness retention agents in food distribution, and It is widely used as a material for poultice.
  • these superabsorbent resins are widely used in the field of hygiene materials such as diapers and sanitary napkins. Within these hygiene materials, it is common that the superabsorbent polymer is contained in the pulp.
  • the content of pulp is reduced, or further, so-called pulpless diapers, which do not use pulp at all. Development is actively underway.
  • the most common method for increasing the absorption rate is a method of increasing the surface area of the super absorbent polymer by forming a porous structure inside the super absorbent polymer.
  • a method of forming a porous structure in the base resin powder as a conventional crosslinking polymerization using a carbonate-based foaming agent was typically applied.
  • carbon dioxide gas may be generated in the polymerization process to form fine pores, so that a superabsorbent polymer having a porous structure can be produced.
  • the present invention is to provide a method for producing a super absorbent polymer that enables the production of a super absorbent polymer that exhibits an improved absorption rate while reducing the amount of the blowing agent used.
  • the present invention comprises the steps of forming a monomer mixture comprising a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized and an internal crosslinking agent;
  • a method for producing a super absorbent polymer comprising the step of forming a surface crosslinking layer by further crosslinking the surface of the base resin powder in the presence of a surface crosslinking agent:
  • p represents the density of the monomer mixture being transferred
  • V represents the transfer rate of the monomer mixture
  • a monomer mixture comprising a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized and an internal crosslinking agent;
  • a method for producing a superabsorbent polymer comprising the step of forming a surface crosslinked layer by further crosslinking the surface of the base resin powder in the presence of a surface crosslinking agent is provided:
  • p represents the density of the monomer mixture being transferred
  • V represents the transfer rate of the monomer mixture
  • the present inventors continued to study to develop a technique for manufacturing a super absorbent polymer that exhibits an improved porous structure and excellent absorption rate while reducing the amount of blowing agent used.
  • the diameter of the transport tube or the transport rate of the monomer mixture through the transport tube is changed, and the dynamic pressure applied to the monomer mixture in a specific region of the transport tube is 140 Pa.
  • the invention reveals that a superabsorbent polymer having a developed porous structure and excellent absorption rate can be produced while reducing the amount of carbonate-based blowing agent used. was completed.
  • gas solubility such as oxygen in the monomer mixture decreases as the pressure applied to the monomer mixture changes instantaneously during transportation through the delivery tube. Therefore, in the step of adjusting the dynamic pressure, oxygen bubbles are generated from the monomer mixture, and foaming polymerization may proceed in the crosslinking polymerization step by the generated bubbles, and as a result, physical foaming may be performed even if a blowing agent is not used or its usage is reduced.
  • a superabsorbent polymer having a porous structure developed by can be produced.
  • the superabsorbent polymer can exhibit excellent absorption rates without minimizing the amount of foaming agent used, and can reduce the physical properties of the foaming agent, thereby maintaining excellent properties.
  • the method of one embodiment while reducing the amount of the blowing agent, it is possible to produce a superabsorbent polymer exhibiting excellent absorption rate and various physical properties.
  • the monomer mixture which is a raw material of the superabsorbent polymer has an acidic group and at least a part of the acidic group is neutralized acrylic acid monomer, an internal crosslinking agent, and a polymerization initiator, and optionally a blowing agent
  • a monomer mixture comprising a is polymerized to obtain a hydrogel polymer, which is dried, pulverized, and classified to form a base resin powder.
  • the monomer mixture which is a raw material of the super absorbent polymer, has an acidic group and may include a water-soluble ethylenically unsaturated monomer in which at least a portion of the acidic group is neutralized, more specifically, an acrylic acid monomer and a polymerization initiator.
  • the acrylic acid monomer is a compound represented by Formula 1 below:
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid and their monovalent metal salt, divalent metal salt, ammonium salt and organic amine salt.
  • the acrylic acid monomer may have an acidic group and at least a part of the acidic group may be neutralized.
  • the monomer may be partially neutralized with a basic substance such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide.
  • the neutralization degree of the acrylic acid-based monomer may be adjusted to 80 mol% or less, or 40 to 75 mol%, or 50 to 70 mol%.
  • the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. Furthermore, the effect of additional neutralization after the start of surface crosslinking is substantially eliminated, so that the degree of crosslinking of the surface crosslinking layer is optimized. It may not be, and the liquid permeability of the super absorbent polymer may not be sufficient. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer is not only greatly reduced, but also exhibits properties such as elastic rubber that is difficult to handle.
  • the concentration of the monomer may be 20 to 60% by weight, or 30 to 55% by weight, or 40 to 50% by weight relative to the monomer mixture containing the raw material and solvent of the superabsorbent polymer, polymerization time and reaction It can be brought to an appropriate concentration in consideration of conditions and the like. However, if the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and economic problems may occur. Conversely, if the concentration is too high, a part of the monomer precipitates or the grinding efficiency of the polymerized hydrogel polymer is low. Such problems may occur in the process and physical properties of the super absorbent polymer may be deteriorated.
  • the polymerization initiator used in the polymerization in the superabsorbent polymer production method of the above embodiment is not particularly limited as long as it is generally used for the production of superabsorbent polymers.
  • the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator may be additionally included.
  • the photopolymerization initiator is a compound capable of forming radicals by light such as ultraviolet rays
  • the composition may be used without limitation.
  • the photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine and one or more selected from the group consisting of alpha-aminoketone.
  • acylphosphine a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide
  • the photopolymerization initiator may be included in a concentration of 0.01 to 1.0% by weight, or 0.1 to 0.9% by weight, or 0.3 to 0.7% by weight relative to the monomer mixture. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and if the concentration of the photopolymerization initiator is too high, the molecular weight of the super absorbent polymer may be small and the properties may be uneven.
  • thermal polymerization initiator one or more selected from the initiator group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • the persulfate-based initiator are sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (Ammonium persulfate; (NH 4 ) 2 S 2 O 8 )
  • examples of the azo-based initiator are 2, 2-azobis-(2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2 , 2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride (2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoyl azo)isobutyronit
  • the monomer mixture includes an internal crosslinking agent as a raw material of a super absorbent polymer.
  • the internal crosslinking agent is for crosslinking the interior of the polymer in which the acrylic acid monomer is polymerized, that is, the base resin, and is different from the surface crosslinking agent for crosslinking the surface of the polymer.
  • the type of the internal crosslinking agent is not particularly limited, and any internal crosslinking agent can be used as it can be used in the manufacture of superabsorbent resins from the past.
  • Specific examples of such an internal crosslinking agent include poly(meth)acrylate-based compounds having 2 to 20 carbon atoms, polyglycidyl ether-based compounds having 2 to 20 carbon atoms, or allyl (meth)acrylate having 2 to 20 carbon atoms. System compounds and the like.
  • these internal crosslinking agents include trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and polypropylene glycol di (Meth)acrylate, butanediol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, triethylene glycol di(meth) Acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythritol pentaacrylate, glycerin tri(meth)acrylate, pentaerythritol tetraacrylate, ethylene glycol diglycylate Diethyl ether (ethyleneglycol diglycidyl ether), polyethylene glycol diglycylate
  • the internal crosslinking agent is contained in a concentration of 0.01 to 1% by weight, or 0.05 to 0.8% by weight, or 0.2 to 0.7% by weight relative to the monomer mixture, thereby forming a crosslinked structure inside the hydrogel polymer and the base resin powder formed therefrom. It can be introduced. If the content of the internal cross-linking agent is too small, the internal cross-linking degree of the super absorbent polymer may be lowered, such that pressure absorption performance and other physical properties may be deteriorated. On the contrary, when the content of the internal cross-linking agent is too high, absorption performance such as water retention capacity may be deteriorated.
  • the above-described monomer mixture depending on the degree of absorption rate to be achieved, if necessary, the amount of the blowing agent in an amount of 0.01 to 0.3% by weight, or 0.05 to 0.25% by weight, or 0.1 to 0.2% by weight relative to the total monomer mixture It may include.
  • the amount of the blowing agent in an amount of 0.01 to 0.3% by weight, or 0.05 to 0.25% by weight, or 0.1 to 0.2% by weight relative to the total monomer mixture It may include.
  • problems due to excessive use of the blowing agent may be minimized.
  • any foaming agent known to be usable for foaming polymerization of a super absorbent polymer can be used, for example, a carbonate-based foaming agent.
  • a carbonate-based foaming agent include sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, and calcium carbonate ( calcium bicarbonate), magnesium bicarbonate, or magnesium carbonate.
  • the above-described monomer mixture may further include additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
  • additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
  • these monomer mixtures are prepared in the form of a solution in which raw materials such as monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents, optional blowing agents and additives having the acidic groups described above are neutralized and dissolved in a solvent. Can be.
  • the solvent that can be used at this time can be used without limitation of its composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol Ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N,N-dimethylacetamide can be used in combination.
  • the solvent may be included in the remaining amount excluding the above-mentioned components with respect to the total content of the monomer mixture.
  • the transfer pressure applied to the monomer mixture during transfer calculated by the calculation formula 1 by controlling the transfer rate thereof is 140 Pa
  • the above can be adjusted to 150 to 1000 Pa or 150 to 800 Pa.
  • gas solubility such as oxygen in the monomer mixture can be reduced. Accordingly, oxygen bubbles are generated from the monomer mixture, and the foaming polymerization may proceed in the crosslinking polymerization step by the generated bubbles, and a superabsorbent polymer having a porous structure developed by physical foaming may be prepared.
  • the dynamic pressure can be calculated from the density and transfer rate of the monomer mixture, as confirmed in the calculation formula 1, and the density of the monomer mixture can be easily measured and calculated by those skilled in the art depending on the concentration or type of each component.
  • the density of these monomer mixtures can generally be determined by the method of pycnometer, hydrometer or density layer. The most common method can be measured by using a hydrometer.
  • the diameter of the transport tube or the transport rate of the monomer mixture can be changed.
  • the monomer mixture is transported along a transport tube having a diameter that changes depending on the section, and specifically, the diameter of the transport tube can be reduced according to the transport path.
  • the monomer mixture may be controlled to exhibit a maximum transport speed, and the above-described dynamic pressure may be achieved through a change in the transport pipe diameter or the transport speed of the monomer mixture.
  • the transport pipe has a diameter of 0.002 to 0.01m, or 0.005 to 0.009m in the minimum diameter section, and a diameter of 0.011 to 0.020m, or 0.012 to 0.015m in the maximum diameter section before the minimum diameter section.
  • Can have The diameter of the transfer pipe may be appropriately determined within the above-mentioned range in consideration of the flow rate of the monomer mixture for achieving proper productivity of the superabsorbent polymer, the transfer speed for achieving the dynamic pressure described above, and the like.
  • the monomer mixture in the minimum diameter section of the transfer pipe, may be transferred at a speed of 0.45 to 2.5 m/s, or 0.7 to 2.0 m/s, and in the maximum diameter section of the transfer pipe, the monomer mixture is 0.1 It may be controlled to be transferred at a speed of 0.5 to 0.5 m/s, or 0.2 to 0.4 m/s.
  • the monomer mixture may be transferred through a transport pipe at a flow rate of 100 to 15000 kg/hr, or 100 to 13000 kg/hr, or 110 to 1000 kg/hr. .
  • the dynamic pressure applied to the monomer mixture can be controlled to the above-described range by changing the diameter of the transport tube and/or the transport rate of the monomer mixture in the above-described range.
  • the monomer mixture may be thermally polymerized or photopolymerized to form a hydrogel polymer.
  • the method/condition of the polymerization step is not particularly limited, and may be in accordance with the polymerization conditions and methods of a general superabsorbent polymer.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and in general, when performing thermal polymerization, it can be carried out in a reactor having a stirring axis such as a kneader, and when performing photopolymerization, it is movable Although it may be carried out in a reactor equipped with a conveyor belt, the polymerization method described above is an example, and the invention is not limited to the polymerization method described above.
  • a hydrogel polymer obtained by thermal polymerization by supplying hot air or heating a reactor to a reactor such as a kneader having a stirring shaft is used as a reactor outlet, depending on the type of the stirring shaft provided in the reactor.
  • the discharged hydrogel polymer may be in the form of several centimeters to several millimeters.
  • the size of the hydrogel polymer obtained may vary depending on the concentration and injection rate of the monomer mixture to be injected, and usually a hydrogel polymer having a weight average particle diameter of 2 to 50 mm, or 3 to 30 mm can be obtained. .
  • the shape of the hydrogel polymer usually obtained may be a hydrogel polymer on a sheet having a belt width.
  • the thickness of the polymer sheet varies depending on the concentration and injection rate of the monomer mixture to be injected, but it is preferable to supply the monomer mixture so that a polymer on the sheet having a thickness of 0.5 to 5 cm, or 1 to 3 cm is usually obtained. Do.
  • the monomer mixture is supplied to such an extent that the thickness of the polymer on the sheet is too thin, the production efficiency is low, which is undesirable.
  • the thickness of the polymer on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction does not occur evenly over the entire thickness. It may not.
  • the normal water content of the hydrogel polymer obtained in this way may be 40 to 80% by weight, or 50 to 70% by weight.
  • water content refers to a value obtained by subtracting the weight of the polymer in a dry state from the weight of the hydrogel polymer as the content of moisture to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180°C and then maintaining it at 180°C.
  • the total drying time is set to 20 minutes including 5 minutes of the temperature rise step to measure the water content.
  • the step of coarsely pulverizing before drying may be further performed.
  • the used grinder is not limited in configuration, but specifically, a vertical cutter (Vertical pulverizer), a turbo cutter (Turbo cutter), a turbo grinder (Turbo grinder), a rotary cutting mill (Rotary cutter mill), cutting Cutter mill, disc mill, shred crusher, crusher, chopper, and disc cutter
  • a vertical cutter Very pulverizer
  • turbo cutter Turbo cutter
  • Turbo grinder turbo grinder
  • rotary cutting mill Rotary cutting mill
  • cutting Cutter mill disc mill
  • shred crusher crusher
  • chopper chopper
  • disc cutter rotary cutting mill
  • the grinding step may be pulverized so that the particle diameter of the hydrogel polymer is 2 to 50 mm, or 3 to 30 mm.
  • the particle diameter of the hydrogel polymer may be defined as the longest distance among linear distances connecting arbitrary points on the hydrogel polymer surface.
  • the drying temperature of the drying step may be 150 to 250 °C.
  • the drying temperature is less than 150°C, the drying time is too long and there is a fear that the physical properties of the superabsorbent resin to be formed are lowered.
  • the drying temperature exceeds 250°C, only the polymer surface is dried excessively, and a subsequent grinding process is performed. In the fine powder may be generated, there is a fear that the physical properties of the superabsorbent polymer to be formed finally decreases. Therefore, preferably, the drying may be performed at a temperature of 150 to 200°C, more preferably at a temperature of 160 to 180°C.
  • process efficiency may be considered, and may be performed for 10 to 90 minutes, or 20 to 70 minutes, but is not limited thereto.
  • the drying method of the drying step may also be selected and used without limitation, as long as it is commonly used as a drying process for the hydrogel polymer.
  • the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after the drying step may be 0.1 to 10% by weight, or 1 to 8% by weight. If the water content after drying is too low, the water-containing gel polymer may deteriorate during the drying process, thereby deteriorating the physical properties of the superabsorbent polymer. On the contrary, when the water content is too high, the absorption performance may be deteriorated due to a large amount of moisture in the superabsorbent polymer, or subsequent processes. Progress can be difficult.
  • the polymer powder obtained after the grinding step may have a particle size of 150 to 850 ⁇ m.
  • the pulverizer used for pulverizing to such a particle size is specifically, a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill or a jog. A mill may be used, but the invention is not limited to the above-described example.
  • a separate process of classifying the polymer powder obtained after pulverization according to the particle diameter may be performed, and the polymer powder may be subjected to a certain weight ratio according to the particle size range. You can classify as possible.
  • the base resin powder is heated to perform surface crosslinking to the base resin powder.
  • the surface of the base resin powder is mixed by mixing a surface crosslinking solution containing a surface crosslinking agent in a dried, pulverized, and classified polymer, that is, a base resin powder, and then heating the mixture by heating.
  • the crosslinking reaction is performed.
  • the surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent, thereby forming a superabsorbent polymer having improved physical properties.
  • a surface crosslinking layer is formed on the surface of the pulverized and classified base resin powder through the surface crosslinking.
  • the surface crosslinking agent is applied to the surface of the base resin powder, so that the surface crosslinking reaction takes place on the surface of the base resin powder, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Therefore, the surface-crosslinked superabsorbent polymer particles have a higher crosslinking degree in the vicinity of the surface than in the interior because the crosslinked polymer on the surface of the base resin powder is further crosslinked.
  • the surface crosslinking agent a compound capable of reacting with a functional group of the base resin is used, and examples thereof include polyhydric alcohol compounds, polyhydric epoxy compounds, polyamine compounds, haloepoxy compounds, condensation products of haloepoxy compounds, and oxazoline compounds.
  • an alkylene carbonate-based compound or the like can be used without particular limitation.
  • examples of the polyhydric alcohol-based compound include di-, tri-, tetra- or polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3-pentanediol, polypropylene Glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,2-cyclohexane
  • dimethanol One or more selected from the group consisting of dimethanol may be used.
  • ethylene glycol diglycidyl ether and glycidol may be used as the polyvalent epoxy-based compound, and ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, and pentaethylene hexa as polyamine compounds.
  • ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, and pentaethylene hexa as polyamine compounds.
  • One or more selected from the group consisting of min, polyethyleneimine and polyamide polyamine can be used.
  • epichlorohydrin, epibromohydrin, and ⁇ -methylepichlorohydrin may be used as haloepoxy compounds.
  • the mono-, di- or polyoxazolidinone compound for example, 2-oxazolidinone and the like can be used.
  • alkylene carbonate or propylene carbonate may be used as the alkylene carbonate-based compound. These may be used alone or in combination with each other.
  • the content of the surface crosslinking agent to be added may be appropriately selected depending on the type or reaction conditions of the surface crosslinking agent to be added, but usually, based on 100 parts by weight of the base resin powder, 0.001 to 5 parts by weight, or 0.01 to 3 parts by weight, Alternatively, 0.05 to 2 parts by weight may be used.
  • the surface crosslinking reaction When the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when it exceeds 5 parts by weight with respect to 100 parts by weight of the polymer, a decrease in basic absorption properties such as water retention capacity may occur due to the progress of the excessive surface crosslinking reaction. have.
  • water When adding the surface crosslinking agent, water may be additionally mixed together and added in the form of a surface crosslinking solution.
  • water there is an advantage that the surface crosslinking agent can be evenly dispersed in the polymer.
  • the content of water to be added induces even dispersion of the surface crosslinking agent and prevents agglomeration of the polymer powder, and at the same time, the ratio of 1 to 10 parts by weight with respect to 100 parts by weight of the polymer for the purpose of optimizing the surface penetration depth of the surface crosslinking agent It is preferably added.
  • the above-mentioned surface crosslinking step further uses one or more selected from the group consisting of polyvalent metal salts, for example, aluminum salts, more specifically, sulfates, potassium salts, ammonium salts, sodium salts, and hydrochloride salts of aluminum, in addition to the surface crosslinking agent. You can proceed.
  • polyvalent metal salts for example, aluminum salts, more specifically, sulfates, potassium salts, ammonium salts, sodium salts, and hydrochloride salts of aluminum, in addition to the surface crosslinking agent. You can proceed.
  • the liquid permeability of the superabsorbent polymer produced by the method of one embodiment can be further improved.
  • the polyvalent metal salt may be added to the surface crosslinking solution together with the surface crosslinking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin powder.
  • a surface modification step is performed on the base resin powder by heating the mixture of the base resin powder and the surface crosslinking solution by heating.
  • the surface crosslinking step may be performed under well-known conditions according to the type of the surface crosslinking agent, for example, may be performed for 20 minutes to 60 minutes at a temperature of 100 to 200°C.
  • the surface crosslinking step is performed by adding a surface crosslinking agent or the like to the base resin powder having an initial temperature of 20°C to 80°C, and at a maximum temperature of 140°C to 200°C over 10 to 30 minutes. The temperature may be increased, and the maximum temperature may be maintained for 5 to 60 minutes to heat treatment.
  • the heating means for the surface crosslinking reaction is not particularly limited.
  • the heating medium may be supplied or a heat source may be directly supplied to heat.
  • heated fluid such as steam, hot air, hot oil, etc.
  • the present invention is not limited thereto, and the temperature of the supplied heat medium means the means of the heat medium, the rate of temperature increase, and the target temperature of temperature increase. It can be appropriately selected in consideration.
  • the heat source directly supplied may include a heating method through electricity or a gas, but the present invention is not limited to the above-described example.
  • the superabsorbent polymer prepared by the above-described method includes a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized; And it is formed on the base resin powder, the first crosslinked polymer is a super absorbent polymer comprising a surface crosslinking layer further crosslinked through a surface crosslinking agent, a plurality of pores are formed in the base resin powder.
  • the superabsorbent polymer substantially does not contain a blowing agent, and may exhibit excellent absorption rates.
  • the superabsorbent polymer has a T-20 of 170 seconds or less, or 165 seconds or less, representing the time required for 1 g of the resin to absorb 20 g of an aqueous solution of sodium ethoxylate and alcohol 12 to 14 carbon atoms under a pressure of 0.3 psi. , Or 163 seconds or less, 100 seconds or more, or 110 seconds or more, or 120 seconds or more. This may reflect the high absorption rate of the super absorbent polymer.
  • the superabsorbent polymer has a water retention capacity (CRC) of 30 g or more for physiological saline (0.9 wt% sodium chloride aqueous solution) measured according to EDANA method WSP 241.3 for 28 g/g or more, or 28.4 g/g or more However, it may have a range of 40 g/g or less, or 36 g/g or less, or 34 g/g or less.
  • CRC water retention capacity
  • the superabsorbent polymer has a pressure absorption capacity (AUP) of 0.7 psi measured according to EDANA method WSP 242.3-10 of 23 to 27 g/g, or 23.5 to 26.5 g/g, or 24 to 26 g/g. It may represent, such pressure absorption capacity can reflect the excellent absorption characteristics under pressure of the super absorbent polymer.
  • AUP pressure absorption capacity
  • the superabsorbent polymer of one embodiment has a flow inducibility (SFC, 10 -7 cm 3 ⁇ s/g) of physiological saline (0.685% by weight sodium chloride aqueous solution) of 30 ( ⁇ 10 -7 cm 3 ⁇ s/g) or more. , Or more than 35 ( ⁇ 10 -7 cm 3 ⁇ s/g) and 100 ( ⁇ 10 -7 cm 3 ⁇ s/g) or less, or 70 ( ⁇ 10 -7 cm 3 ⁇ s/g) or less Can be represented.
  • SFC flow inducibility
  • the physiological saline flow inducibility can be measured and calculated according to methods well known to those skilled in the art, for example, the methods disclosed in U.S. Patent No. 5556646 at columns 54 to 59.
  • the superabsorbent polymer prepared by the method of one embodiment may reduce other physical property degradation due to excessive use of the blowing agent, and at the same time, exhibit excellent absorption rate, excellent liquid permeability, and water absorption capacity.
  • the superabsorbent polymer may exhibit a characteristic that the superabsorbent polymer has an absorption rate of 5 to 50 seconds or 10 to 45 seconds by the vortex method, and this can also define an excellent absorption rate of the superabsorbent polymer. have.
  • the superabsorbent polymer obtained according to the manufacturing method of one embodiment exhibits an excellent absorption rate, and an excessive use of the blowing agent is not required, and other various physical properties can also be maintained excellently.
  • the superabsorbent polymer may suitably use hygiene materials such as diapers, particularly ultra-thin hygiene materials having a reduced pulp content.
  • a superabsorbent polymer exhibiting a porous structure developed by physical foaming and excellent absorption rate can be produced with only minimal use of the blowing agent.
  • the superabsorbent polymer produced by the above method exhibits an excellent absorption rate, and it is not necessary to use an excessive amount of the blowing agent, so that other various physical properties such as absorption capacity and liquid permeability can also be maintained excellent.
  • the superabsorbent polymer may suitably use hygiene materials such as diapers, particularly ultra-thin hygiene materials having a reduced pulp content.
  • aqueous monomer solution first, 0.17% by weight of sodium hydrogen carbonate blowing agent solution 0.3% by weight (based on the aqueous monomer solution), and the composition of the first flow rate of 1105 / h diameter of 0.015m (maximum diameter) Section), and then continuously transferred through a single tube (minimum diameter section) that was secondarily changed to a diameter of 0.008 m.
  • a monomer aqueous solution was introduced into a polymerization reactor consisting of a moving conveyor belt, and UV polymerization was performed for 2 minutes by irradiating ultraviolet rays (irradiation amount: 2 mW/cm 2) through a UV irradiation device to prepare a hydrogel polymer. .
  • the dynamic pressure of the aqueous monomer composition passing through the final secondary single tube was 152pa.
  • the hydrogel polymer After transferring the hydrogel polymer to a cutter, it was cut to a maximum length of 0.2 cm. At this time, the water content of the cut hydrogel polymer was 52% by weight.
  • the hydrogel polymer was dried for 30 minutes in a hot air dryer at a temperature of 190° C., and the dried hydrogel polymer was pulverized with a pin mill grinder. Then, a polymer having a particle diameter of less than 150 ⁇ m and a polymer having a particle size of 150 ⁇ m to 850 ⁇ m were classified using a sieve.
  • the surface of the superabsorbent polymer was treated by spraying an aqueous surface crosslinking agent containing 1.5 parts by weight of ethylene carbonate to 100 parts by weight of the prepared base resin powder.
  • the classified base resin powder was supplied to one surface crosslinking reactor, and the surface crosslinking reaction was performed at a temperature of 190° C. or higher for 35 minutes.
  • the temperature of the super absorbent polymer was cooled to 90° C., and surface treated super absorbent polymer having a particle size of 150 to 850 ⁇ m was obtained using a sieve.
  • the fine content of less than 150 ⁇ m contained in the super absorbent polymer was less than 2% by weight.
  • Example 1 except that the feed rate of the aqueous monomer solution was adjusted as shown in Table 1 below by adjusting the input amount of the aqueous monomer solution composition to 150 kg/h, the second single tube The dynamic pressure of the aqueous monomer solution passing through the (minimum diameter section) was 282pa.
  • Example 1 it was carried out in the same manner as in Example 1, except that the feed rate of the aqueous monomer solution was adjusted as shown in Table 1 below by adjusting the input amount of the aqueous monomer solution composition to 242 kg/h.
  • the dynamic pressure of the aqueous monomer solution passing through the (minimum diameter section) was 734pa.
  • Example 1 it was carried out in the same manner as in Example 1, except that the feed rate of the aqueous monomer solution was adjusted as shown in Table 1 below by adjusting the input amount of the aqueous monomer solution composition to 90 kg/h.
  • the dynamic pressure of the aqueous monomer solution passing through (minimum diameter section) was 101pa.
  • Example 1 the input amount of the monomer aqueous solution composition to be added was adjusted to 242 kg/h, and was carried out in the same manner as in Example 1, except that the monomer aqueous solution was transferred without changing the diameter of the transfer tube (single tube).
  • the dynamic pressure of the aqueous solution was 59pa.
  • the density of the monomer mixture just before being transported through the conveying tube was determined by Mettler Toledo. It was measured by a method using a hydrometer. As a result of these measurements, it was confirmed that the aqueous monomer solution prepared in Examples and Comparative Examples had a density of 1.05 g/cm 3 .
  • the feed rate of the aqueous monomer solution was calculated from the following formula by obtaining the cross-sectional area from the diameter of the feed tube in the transfer section and measuring the flow rate of the monomer mixture in the section:
  • Feed speed (m/s) Flow rate (m 3 /hr)/Sectional area (m 2 )
  • the particle diameters of the base resin powder and the super absorbent polymer used in Examples and Comparative Examples were measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • EDANA European Disposables and Nonwovens Association
  • the centrifugal water retention capacity (CRC) by non-load absorption ratio was measured in accordance with the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 241.3.
  • W 0 g, about 0.2 g
  • W 0 is uniformly put in a nonwoven fabric bag and sealed, it is immersed in physiological saline of 0.9 wt% sodium chloride aqueous solution at room temperature. Ordered.
  • the envelope was centrifuged and drained with 250G for 3 minutes, and then the mass W 2 (g) of the envelope was measured.
  • the mass W 1 (g) at that time was measured.
  • CRC g/g was calculated according to the following Equation 2 to check water retention capacity.
  • AUP Absorbency under Pressure
  • a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm.
  • the resin W 0 (g, 0.90 g) obtained in Examples and Comparative Examples was uniformly spread on a wire mesh under a temperature of 23 ⁇ 2° C. and a relative humidity of 45%, and a load of 4.83 kPa (0.7 psi) was uniformly applied thereon.
  • the piston, which can be imparted more, is slightly smaller than the outer diameter of 60 mm, has no gap with the inner wall of the cylinder, and prevents the movement of the top and bottom from being disturbed.
  • the weight W 3 (g) of the device was measured.
  • a 150 mm diameter petri dish was placed inside a 125 mm diameter glass filter with a thickness of 5 mm, and the physiological saline composed of 0.90% by weight sodium chloride was brought to the same level as the top surface of the glass filter.
  • the measuring device was mounted on a glass filter, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted, and the weight W 4 (g) was measured.
  • AUP (g/g) was calculated according to the following Equation 3 to check the absorbency under pressure.
  • W 0 (g) is the initial weight (g) of the super absorbent polymer
  • W 3 (g) is the sum of the weight of the super absorbent polymer and the weight of the device capable of applying a load to the super absorbent polymer
  • W 4 (g) is the sum of the weight of a superabsorbent polymer and the weight of a device capable of applying a load to the superabsorbent polymer after absorbing physiological saline in the superabsorbent polymer for 1 hour under a load (0.7 psi).
  • the absorption rate is 2 g of superabsorbent resin in 50 mL of physiological saline at 23°C to 24°C, and a magnetic bar (8 mm in diameter and 31.8 mm in length) is stirred at 600 rpm to vortex ( vortex) until the disappearance was calculated by measuring in seconds.
  • Table 1 shows the results of the evaluation of the above properties.
  • the superabsorbent polymers prepared in Examples 1 to 3 having a dynamic pressure of 140 Pa or more during the transfer of the aqueous monomer solution exhibited water retention capacity, pressure absorption capacity, and liquid permeability equivalent to or higher than those of the comparative example, It was confirmed that it shows a more improved absorption rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

본 발명은 발포제의 사용량을 줄이면서도, 보다 향상된 흡수 속도를 나타내는 고흡수성 수지의 제조를 가능케 하는 고흡수성 수지의 제조 방법에 관한 것이다. 상기 고흡수성 수지의 제조 방법은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계; 상기 단량체 혼합물을 중합 반응기로 이송하면서, 이의 이송 속도를 제어하여 이송 중의 단량체 혼합물에 가해지는 동압을 140Pa 이상으로 조정하는 단계; 상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및 표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함한다.

Description

고흡수성 수지의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2018년 12월 7일자 한국 특허 출원 제 10-2018-0157082호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 발포제의 사용량을 줄이면서도, 보다 향상된 흡수 속도를 나타내는 고흡수성 수지의 제조를 가능케 하는 고흡수성 수지의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생 용품 외에 원예용 토양 보수제, 토목, 건축용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재 내에서, 상기 고흡수성 수지는 펄프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 펄프리스(pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다.
이와 같이, 펄프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되며, 이러한 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능 및 흡수 속도를 나타낼 필요가 있다.
이에 따라, 최근 들어서는 보다 향상된 흡수 속도를 나타내는 고흡수성 수지를 제조 및 제공하고자 하는 시도가 계속적으로 이루어지고 있다.
흡수 속도를 높이기 위한 가장 일반적인 방법으로는 고흡수성 수지의 내부에 다공성 구조를 형성하여 고흡수성 수지의 표면적을 넓히는 방법을 들 수 있다.
이와 같이, 고흡수성 수지의 표면적을 넓히기 위해, 기존에는 탄산염계 발포제를 사용하여 가교 중합을 진행함에 따라 베이스 수지 분말 내에 다공성 구조를 형성하는 방법을 대표적으로 적용하였다. 이러한 탄산염계 발포제를 사용하는 경우, 중합 과정에서 이산화탄소 기체가 발생하여 미세 기공이 형성될 수 있으므로, 다공성 구조를 갖는 고흡수성 수지가 제조될 수 있다.
그러나, 이러한 방법에서는, 중합 온도 및 시간에 따라, 이산화탄소 기체의 발생 효과가 감소되고, 그 결과 고흡수성 수지의 물성 간 편차가 일어나는 단점이 있었다. 또한, 상기 탄산염계 발포제를 적용한 화학적 발포를 진행하면, 건조 및 분쇄 등의 과정에서 원하지 않은 미분 등이 다량 발생하여 고흡수성 수지의 다른 물성이 저하될 뿐 아니라, 미분의 재순환이 필요하게 되는 등의 공정상 단점 역시 발생하였다.
이에 따라, 발포제의 사용량을 줄이면서도, 적절한 다공성 구조를 형성하여 보다 향상된 흡수 속도를 나타내는 고흡수성 수지의 제조를 가능케 하는 기술의 개발이 계속적으로 요청되고 있다.
이에 본 발명은 발포제의 사용량을 줄이면서도, 보다 향상된 흡수 속도를 나타내는 고흡수성 수지의 제조를 가능케 하는 고흡수성 수지의 제조 방법을 제공하는 것이다.
이에 본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계;
상기 단량체 혼합물을 중합 반응기로 이송하면서, 이의 이송 속도를 제어하여 하기 계산식 1로 산출되는 이송 중의 단량체 혼합물에 가해지는 동압을 140Pa 이상으로 조정하는 단계;
상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하는 고흡수성 수지의 제조 방법을 제공한다:
[계산식 1]
Figure PCTKR2019012832-appb-I000001
상기 계산식 1에서, p는 상기 이송 중인 단량체 혼합물의 밀도를 나타내며, V는 상기 단량체 혼합물의 이송 속도를 나타낸다.
이하, 발명의 구체적인 구현예에 따른 고흡수성 수지의 제조 방법 등에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성요소(또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
발명의 일 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계;
상기 단량체 혼합물을 중합 반응기로 이송하면서, 이의 이송 속도를 제어하여 하기 계산식 1로 산출되는 이송 중의 단량체 혼합물에 가해지는 동압을 140Pa 이상으로 조정하는 단계;
상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하는 고흡수성 수지의 제조 방법이 제공된다:
[계산식 1]
Figure PCTKR2019012832-appb-I000002
상기 계산식 1에서, p는 상기 이송 중인 단량체 혼합물의 밀도를 나타내며, V는 상기 단량체 혼합물의 이송 속도를 나타낸다.
본 발명자들은 발포제의 사용량을 줄이면서도, 발달된 다공성 구조 및 우수한 흡수 속도를 나타내는 고흡수성 수지의 제조 기술을 개발하기 위해 연구를 계속하였다.
이러한 발명자들의 연구 결과, 단량체 혼합물을 중합 반응기로 이송하는 과정에서, 이송관의 직경이나, 이송관을 통한 단량체 혼합물의 이송 속도를 변화시켜, 이송관 중의 특정 영역에서 단량체 혼합물에 인가되는 동압을 140Pa 이상, 혹은 150 내지 1000Pa, 혹은 150 내지 800Pa으로 조정할 경우, 물리적 발포에 의해, 탄산염계 발포제의 사용량을 줄이면서도 발달된 다공성 구조 및 우수한 흡수 속도를 나타내는 고흡수성 수지를 제조할 수 있음을 밝혀내고 발명을 완성하였다.
이는 상기 이송관을 통한 이송 중 단량체 혼합물에 인가되는 압력이 순간적으로 변화함에 따라, 상기 단량체 혼합물 중의 산소 등 기체 용해도가 감소하기 때문으로 예측된다. 따라서, 상기 동압 조정 단계에서, 상기 단량체 혼합물로부터 산소 기포가 발생하며, 상기 발생된 기포에 의해, 가교 중합 단계에서 발포 중합이 진행될 수 있으며, 그 결과 발포제를 사용하지 않거나 그 사용량을 줄이더라도 물리적 발포에 의해 발달된 다공성 구조를 갖는 고흡수성 수지가 제조될 수 있다.
이러한 고흡수성 수지는 발포제의 사용량이 최소화되어 이에 따른 문제점을 갖지 않으면서도, 우수한 흡수 속도를 나타낼 수 있으며, 발포제에 의한 물성 저하의 현상이 줄어들어 나머지 물성 또한 우수하게 유지될 수 있다. 결과적으로, 일 구현예의 방법에 따르면, 발포제의 사용량을 줄이면서도, 우수한 흡수 속도 및 제반 물성을 나타내는 고흡수성 수지가 제조될 수 있다.
이하, 일 구현예의 제조 방법을 각 단계별로 보다 구체적으로 설명하기로 한다.
일 구현예의 고흡수성 수지의 제조 방법에서, 먼저 상기 고흡수성 수지의 원료 물질인 단량체 혼합물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제, 및 중합 개시제와, 선택적으로 발포제를 포함하는 단량체 혼합물을 중합하여 함수겔상 중합체를 수득하고, 이를 건조, 분쇄, 및 분급하여 베이스 수지 분말을 형성한다.
이에 대해 하기에서 보다 상세히 설명한다.
상기 고흡수성 수지의 원료 물질인 단량체 혼합물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체, 보다 구체적으로, 아크릴산계 단량체 및 중합 개시제를 포함할 수 있다.
상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다:
[화학식 1]
Figure PCTKR2019012832-appb-I000003
상기 화학식 1에서,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 염기성 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는, 80몰% 이하, 혹은 40 내지 75몰%, 혹은 50 내지 70 몰%로 조절될 수 있다.
그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 더 나아가, 표면 가교 개시 이후의 추가 중화에 따른 효과가 실질적으로 없어져, 표면 가교층의 가교 정도가 최적화되지 못하고, 고흡수성 수지의 통액성 등이 충분치 못하게 될 수 있다. 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
상기 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 단량체 혼합물에 대해 20 내지 60 중량%, 혹은 30 내지 55 중량%, 혹은 40 내지 50 중량%로 될 수 있으며, 중합 시간 및 반응 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.
상기 일 구현예의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 'UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)' p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 단량체 혼합물에 대하여 0.01 내지 1.0 중량%, 혹은 0.1 내지 0.9 중량%, 혹은 0.3 내지 0.7 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate;(NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2-아조비스-(2-아미디노프로판)이염산염(2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2, 2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
발명의 일 구현예에 따르면, 상기 단량체 혼합물은 고흡수성 수지의 원료 물질로서 내부 가교제를 포함한다. 이러한 내부 가교제는 아크릴산계 단량체가 중합된 중합체, 즉, 베이스 수지의 내부를 가교시키기 위한 것으로서, 상기 중합체의 표면을 가교시키기 위한 표면 가교제와 구분된다.
이러한 내부 가교제의 종류는 특히 한정되지 않으며, 이전부터 고흡수성 수지의 제조에 사용 가능한 것으로 임의의 내부 가교제를 사용할 수 있다. 이러한 내부 가교제의 구체적인 예로는, 탄소수 2 내지 20의 폴리올의 폴리(메트)아크릴레이트계 화합물, 탄소수 2 내지 20의 폴리올의 폴리글리시딜 에테르계 화합물 또는 탄소수 2 내지 20의 알릴 (메트)아크릴레이트계 화합물 등을 들 수 있다.
이들 내부 가교제의 보다 구체적인 예로는, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 디(메트)아크릴레이트, 폴리에틸렌글리콜 디(메트)아크릴레이트, 프로필렌글리콜 디(메트)아크릴레이트, 폴리프로필렌글리콜 디(메트)아크릴레이트, 부탄디올디(메트)아크릴레이트, 부틸렌글리콜디(메트)아크릴레이트, 디에틸렌글리콜 디(메트)아크릴레이트, 헥산디올디(메트)아크릴레이트, 트리에틸렌글리콜 디(메트)아크릴레이트, 트리프로필렌글리콜 디(메트)아크릴레이트, 테트라에틸렌글리콜 디(메트)아크릴레이트, 디펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 에틸렌글리콜 디글리시딜 에테르(ethyleneglycol diglycidyl ether), 폴리에틸렌글리콜 디글리시딜 에테르, 글리세롤 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르 또는 폴리프로필렌 글리콜 디글리시딜 에테르 등을 들 수 있고, 이외에도 다양한 다관능 화합물을 내부 가교제로서 사용할 수 있다.
이러한 내부 가교제는 상기 단량체 혼합물에 대하여 0.01 내지 1 중량%, 혹은 0.05 내지 0.8 중량%, 혹은 0.2 내지 0.7 중량%의 농도로 포함되어, 함수겔 중합체 및 이로부터 형성되는 베이스 수지 분말 내부에 가교 구조를 도입할 수 있다. 상기 내부 가교제의 함량이 지나치게 작으면, 고흡수성 수지의 내부 가교도가 낮아져 가압 흡수능 등 제반 물성이 저하될 수 있으며, 반대로 내부 가교제의 함량이 지나치게 높으면, 보수능 등 흡수 성능이 저하될 수 있다.
한편, 상술한 단량체 혼합물은 달성하고자 하는 흡수 속도의 정도에 따라, 필요한 경우, 전체 단량체 혼합물에 대해 0.01 내지 0.3 중량%, 혹은 0.05 내지 0.25 중량%, 혹은 0.1 내지 0.2 중량%의 함량으로 발포제를 더 포함할 수도 있다. 그러나, 일 구현예의 방법에서는, 이전에 알려진 것보다 동일 수준의 다공성을 얻기 위해 크게 감소된 함량의 발포제 사용이 가능해 지므로, 발포제의 과량 사용 등에 따른 문제점이 최소화될 수 있다.
상기 발포제로는 이전부터 고흡수성 수지의 발포 중합을 위해 사용 가능한 것으로 알려진 임의의 발포제, 예를 들어, 탄산염계 발포제를 사용할 수 있다. 이러한 탄산염계 발포제의 구체적인 예로는, 소디움 비카보네이트(sodium bicarbonate), 소디움 카보네이트(sodium carbonate), 포타슘 비카보네이트(potassium bicarbonate), 포타슘 카보네이트(potassium carbonate), 칼슘 비카보네이트(calcium bicarbonate), 칼슘 카보네이트(calcium bicarbonate), 마그네슘 비카보네이트(magnesiumbicarbonate) 또는 마그네슘 카보네이트(magnesium carbonate)를 들 수 있다.
한편, 상술한 단량체 혼합물은 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.
또, 이러한 단량체 혼합물은 상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제, 선택적 발포제 및 첨가제와 같은 원료 물질들이 용매에 용해된 용액의 형태로 준비될 수 있다.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.
상기 용매는 단량체 혼합물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.
한편, 상술한 방법으로 단량체 혼합물을 형성한 후에는, 상기 단량체 혼합물을 이송관을 통해 중합 반응기로 이송하면서, 이의 이송 속도를 제어하여 상기 계산식 1로 산출되는 이송 중의 단량체 혼합물에 가해지는 동압을 140Pa 이상, 혹은 150 내지 1000Pa, 혹은 150 내지 800Pa으로 조정할 수 있다.
이미 상술한 바와 같이, 상기 단량체 혼합물의 이송 중에 이송관 직경이나, 이송 속도 등을 변화시켜, 상기 단량체 혼합물에 가해지는 동압을 조정함에 따라, 단량체 혼합물 중의 산소 등 기체 용해도를 감소시킬 수 있다. 따라서, 상기 단량체 혼합물로부터 산소 기포가 발생하며, 상기 발생된 기포에 의해, 가교 중합 단계에서 발포 중합이 진행될 수 있으며, 이러한 물리적 발포에 의해 발달된 다공성 구조를 갖는 고흡수성 수지가 제조될 수 있다.
만일, 상기 동압이 지나치게 낮아지면, 물리적 발포 및 발포 중합이 제대로 진행되지 않아 고흡수성 수지의 다공성 구조 및 흡수 속도가 제대로 발현되지 못할 수 있다. 반대로, 동압이 지나치게 높아지는 경우, 추가적인 발포 효과가 크지 않을 뿐 아니라, 공정상 이송 속도 등이 제대로 제어되지 못하여 공정상 진행의 어려움이 발생할 수 있다.
상기 동압은 상기 계산식 1에서 확인되는대로, 단량체 혼합물의 밀도 및 이송 속도로부터 산출될 수 있으며, 단량체 혼합물의 밀도는 각 성분의 농도나 종류 등에 따라 당업자가 용이하게 측정 및 산출할 수 있다. 이러한 단량체 혼합물의 밀도는 일반적으로 비중병, 비중계 또는 밀도층의 방법으로 측정될수 있다. 가장 보편적인 방법은 비중계를 이용하는 방법으로 측정 될수 있다
한편, 상술한 동압의 제어를 위해, 이송관의 직경이나, 단량체 혼합물의 이송 속도를 변화시킬 수 있다. 예를 들어, 상기 단량체 혼합물은 구간에 따라 변화되는 직경을 갖는 이송관을 따라 이송되며, 구체적으로는, 이송관의 직경이 이송 경로에 따라 줄어들 수 있다. 이로서, 상기 이송관의 최소 직경 구간에서 상기 단량체 혼합물은 최대 이송 속도를 나타내도록 제어될 수 있으며, 이러한 이송관의 직경 또는 단량체 혼합물의 이송 속도 변화를 통해 상술한 동압을 달성할 수 있다.
보다 구체적인 일 예에서, 상기 이송관은 최소 직경 구간에서 0.002내지 0.01m, 혹은 0.005 내지 0.009m의 직경을 가지며, 최소 직경 구간 전의 최대 직경 구간에서 0.011 내지 0.020m, 혹은 0.012 내지 0.015m의 직경을 가질 수 있다. 이러한 이송관의 직경은 고흡수성 수지의 적절한 생산성을 달성하기 위한 단량체 혼합물의 유량과, 상술한 동압을 달성하기 위한 이송 속도 등을 고려하여 상술한 범위 내에서 적절히 결정될 수 있다.
또한, 상기 이송관의 최소 직경 구간에서는, 상기 단량체 혼합물이 0.45내지 2.5m/s, 혹은 0.7 내지 2.0m/s의 속도로 이송될 수 있으며, 상기 이송관의 최대 직경 구간에서는 상기 단량체 혼합물이 0.1 내지 0.5m/s, 혹은 0.2 내지 0.4m/s의 속도로 이송되게 제어될 수 있다.
통상 고흡수성 수지의 제조 과정에서, 적절한 생산성을 확보하기 이해, 상기 단량체 혼합물은 100 내지 15000kg/hr, 혹은 100 내지 13000kg/hr, 혹은 110 내지 1000kg/hr의 유량으로 이송관을 통해 이송될 수 있다. 이러한 유량으로 이송시, 상술한 범위로 이송관의 직경 및/또는 단량체 혼합물의 이송 속도를 변화시킴에 따라, 단량체 혼합물에 인가되는 동압을 상술한 범위로 제어할 수 있다. 이로서, 물리적 발포 정도를 최적화하여 발달된 다공성 구조 및 우수한 흡수 속도를 나타내는 고흡수성 수지의 제조가 가능해 진다.
한편, 상술한 방법으로 단량체 혼합물의 물리적 발포를 진행하면서, 이를 중합 반응기로 이송한 후에는, 상기 단량체 혼합물을 열중합 또는 광중합하여 함수겔상 중합체를 형성할 수 있다. 이러한 중합 단계의 진행 방법/조건은 특히 한정되지 않으며, 일반적인 고흡수성 수지의 중합 조건 및 방법에 따를 수 있다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 발명이 상술한 중합 방법에 한정되지는 않는다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 단량체 혼합물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm, 혹은 3 내지 30mm 인 함수겔상 중합체가 얻어질 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 혼합물의 농도 및 주입속도에 따라 달라지나, 통상 0.5 내지 5cm, 혹은 1 내지 3cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 혼합물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 혼합물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 40 내지 80 중량%, 혹은 50 내지 70 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.
다음에, 얻어진 함수겔상 중합체를 건조하는 단계를 수행한다.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 분쇄 단계는 함수겔상 중합체의 입경이 2 내지 50mm, 혹은 3 내지 30mm로 되도록 분쇄할 수 있다. 이러한 함수겔상 중합체의 입경은 함수겔상 중합체 표면의 임의의 점을 이은 직선 거리 중 최장 거리로 정의될 수 있다.
입경이 2mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 50mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미하다.
상기와 같이 분쇄되거나, 혹은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 150 내지 250℃일 수 있다. 건조 온도가 150℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 150 내지 200℃의 온도에서, 더욱 바람직하게는 160 내지 180℃의 온도에서 진행될 수 있다.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 10 내지 90분, 혹은 20 내지 70분 동안 진행될 수 있으나, 이에 한정되지는 않는다.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 0.1 내지 10 중량%, 혹은 1 내지 8 중량%일 수 있다. 건조 후의 함수율이 지나치게 낮아지면 건조 과정에서 함수겔 중합체가 열화되어 고흡수성 수지의 물성이 저하될 수 있고, 반대로 함수율이 지나치게 높아지면 고흡수성 수지 내의 다량의 수분으로 인해 흡수 성능이 저하되거나, 이후 공정의 진행이 어려워 질 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850㎛ 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 발명이 한정되는 것은 아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있으며, 상기 중합체 분말을 입경 범위에 따라 일정 중량비가 되도록 분급할 수 있다.
한편, 상술한 분급 단계를 거쳐 베이스 수지를 분말 형태로 얻은 후에는, 표면 가교제의 존재 하에, 상기 베이스 수지 분말을 승온하여 상기 베이스 수지 분말에 대한 표면 가교를 진행한다.
일반적인 고흡수성 수지의 제조방법에서, 건조, 분쇄 및 분급된 중합체, 즉 베이스 수지 분말에 표면 가교제를 포함하는 표면 가교 용액을 혼합한 다음, 이들 혼합물에 열을 가하여 승온함으로써 상기 베이스 수지 분말에 대해 표면 가교 반응을 수행한다.
상기 표면 가교 단계는 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반응을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄 및 분급된 베이스 수지 분말의 표면에는 표면 가교층이 형성된다.
일반적으로, 표면 가교제는 베이스 수지 분말 표면에 도포되므로 표면 가교 반응은 베이스 수지 분말 표면에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교된 고흡수성 수지 입자는 베이스 수지 분말 표면의 가교 중합체가 추가 가교되어 내부에서보다 표면 부근에서 더 높은 가교도를 갖는다.
한편, 상기 표면 가교제로는 베이스 수지가 갖는 관능기와 반응 가능한 화합물을 사용하며, 일례로 다가 알코올계 화합물, 다가 에폭시계 화합물, 폴리아민 화합물, 할로에폭시 화합물, 할로에폭시 화합물의 축합 산물, 옥사졸린 화합물류, 또는 알킬렌 카보네이트계 화합물 등을 별다른 제한 없이 모두 사용할 수 있다.
구체적으로, 다가 알코올계 화합물의 예로는 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸-1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2-부텐-1,4-디올, 1,4-부탄디올, 1,3-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 및 1,2-사이클로헥산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
또한, 다가 에폭시계 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다.
그리고, 알킬렌 카보네이트계 화합물로는 에틸렌 카보네이트 또는 프로필렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다.
상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 베이스 수지 분말 100 중량부에 대해, 0.001 내지 5 중량부, 혹은 0.01 내지 3 중량부, 혹은 0.05 내지 2 중량부를 사용할 수 있다.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반응의 진행으로 인해 보수능 등의 기본적인 흡수 특성 저하가 나타날 수 있다.
상기 표면 가교제 첨가시, 추가로 물을 함께 혼합하여 표면 가교 용액의 형태로 첨가할 수 있다. 물을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물의 함량은 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체 100 중량부에 대해, 1 내지 10 중량부의 비율로 첨가되는 것이 바람직하다.
한편, 상술한 표면 가교 단계는 상기 표면 가교제 외에 다가 금속염, 예를 들어, 알루미늄 염, 보다 구체적으로 알루미늄의 황산염, 칼륨염, 암모늄염, 나트륨염 및 염산염으로 이루어진 군에서 선택된 1종 이상을 더 사용하여 진행할 수 있다.
이러한 다가 금속염은 추가로 사용함에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지의 통액성 등을 더욱 향상시킬 수 있다. 이러한 다가 금속염은 상기 표면 가교제와 함께 표면 가교 용액에 첨가될 수 있으며, 상기 베이스 수지 분말 100 중량부에 대하여 0.01 내지 4 중량부의 함량으로 사용될 수 있다.
한편, 상기 베이스 수지 분말, 및 표면 가교 용액의 혼합물에 열을 가하여 승온함으로써 상기 베이스 수지 분말에 대해 표면 개질 단계를 수행한다.
상기 표면 가교 단계는 표면 가교제의 종류에 따라 잘 알려진 조건 하에 진행할 수 있으며, 예를 들어, 100 내지 200℃의 온도에서 20분 내지 60분 동안 진행할 수 있다. 보다 구체적인 일 예에서, 상기 표면 가교 단계는 20℃ 내지 80℃의 초기 온도를 갖는 베이스 수지 분말에 대해, 표면 가교제 등을 부가하고, 10분 내지 30분에 걸쳐 140℃ 내지 200℃의 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 60분 동안 유지하여 열처리함으로서 진행될 수 있다.
상기 표면 가교 조건에 따라, 고흡수성 수지의 보수능 등 기본적인 흡수 특성과, 통액성 및/또는 가압 흡수능이 함께 최적화될 수 있다.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.
상술한 방법으로 제조된 고흡수성 수지는 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 표면 가교층을 포함하는 고흡수성 수지로서, 상기 베이스 수지 분말 내에는 다수의 기공이 형성되어 있다.
상기 고흡수성 수지는 실질적으로 발포제를 포함하지 않으며, 우수한 흡수 속도를 나타낼 수 있다.
보다 구체적으로, 상기 고흡수성 수지는 수지 1g이 0.3psi의 가압 하에서, 염화나트륨 및 탄소수 12 내지 14의 알코올 에톡실레이트 수용액 20g을 흡수하는 소요 시간을 나타내는 T-20이 170초 이하, 혹은 165초 이하, 혹은 163초 이하이면서, 100초 이상, 혹은 110초 이상, 혹은 120초 이상인 특성을 나타낼 수 있다. 이는 상기 고흡수성 수지의 높은 흡수 속도를 반영할 수 있다.
또, 상기 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 보수능(CRC)이 28 g/g 이상, 혹은 28.4 g/g 이상이면서, 40 g/g 이하, 혹은 36 g/g 이하, 혹은 34 g/g 이하의 범위를 가질 수 있다.
그리고, 상기 고흡수성 수지는 EDANA 법 WSP 242.3-10에 따라 측정된 0.7psi의 가압 흡수능(AUP)이 23 내지 27 g/g, 혹은 23.5 내지 26.5 g/g, 혹은 24 내지 26 g/g인 특성을 나타낼 수 있고, 이러한 가압 흡수능은 상기 고흡수성 수지의 뛰어난 가압 하 흡수 특성을 반영할 수 있다.
또한, 일 구현예의 고흡수성 수지는 생리 식염수(0.685 중량% 염화나트륨 수용액)의 흐름 유도성(SFC, 10-7cm3·s/g)이 30(·10-7cm3·s/g) 이상, 혹은 35(·10-7cm3·s/g) 이상이면서, 100(·10-7cm3·s/g) 이하, 혹은 70(·10-7cm3·s/g) 이하인 특성을 나타낼 수 있다.
상기 생리 식염수 흐름 유도성(SFC)은 이전부터 당업자에게 잘 알려진 방법, 예를 들어, 미국특허 등록번호 제5562646호의 컬럼 54 내지 컬럼 59에 개시된 방법에 따라 측정 및 산출할 수 있다.
이와 같이, 일 구현예의 방법으로 제조된 고흡수성 수지는 발포제의 과량 사용에 따른 다른 물성 저하가 줄어들어, 뛰어난 흡수 속도와 함께, 우수한 통액성과, 보수능 등 흡수능을 동시에 나타낼 수 있다.
부가하여, 상기 고흡수성 수지는 상기 고흡수성 수지는 볼텍스법에 의한 흡수 속도가 5 내지 50초, 혹은 10 내지 45초인 특성을 나타낼 수 있고, 이 또한 상기 고흡수성 수지의 뛰어난 흡수 속도를 정의할 수 있다.
상술한 바와 같이, 일 구현예의 제조방법에 따라 수득된 고흡수성 수지는 뛰어난 흡수 속도를 나타내며, 발포제의 과량 사용 등이 필요치 않게 되어, 다른 제반 물성 또한 우수하게 유지될 수 있다. 이로서, 상기 고흡수성 수지는 기저귀 등 위생재, 특히, 펄프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다.
상술한 바와 같이, 본 발명에 따르면, 발포제의 최소화된 사용만으로 물리적 발포에 의해 발달된 다공성 구조 및 우수한 흡수 속도를 나타내는 고흡수성 수지가 제조될 수 있다.
따라서, 위 방법으로 제조된 고흡수성 수지는 뛰어난 흡수 속도를 나타내며, 발포제의 과량 사용 등이 필요치 않게 되어, 흡수능, 통액성 등 다른 제반 물성 또한 우수하게 유지될 수 있다. 이로서, 상기 고흡수성 수지는 기저귀 등 위생재, 특히, 펄프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
실시예1
아크릴산, 가성소다, 내부 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=523; 아크릴산 기준 0.5 중량%), 및 UV개시제로 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.033g을 포함하고, 아크릴산의 중화도가 70몰%이며, 단량체의 농도가 43 중량%인 단량체 수용액을 제조하였다.
이후, 상기 단량체 수용액에, 먼저, 0.17중량% 탄산수소 나트륨의 발포제 용액 0.3중량%(상기 단량체 수용액 기준)을 혼합하고, 이러한 조성물을 110kg/h 의 유량으로 1차적으로 0.015m의 직경(최대 직경 구간)을 가지는 단관을 통해 투입한 후, 2차적으로 0.008m의 직경으로 변화된 단관(최소 직경 구간)을 통해 연속 이송하였다. 이러한 이송을 통해, 이동하는 컨베이어 벨트로 이루어진 중합 반응기로 단량체 수용액을 투입하고, UV조사 장치를 통해 자외선을 조사(조사량: 2mW/㎠)하여 2분 동안 UV 중합을 진행하여 함수겔 중합체를 제조하였다.
이때, 최종 2차 단관을 통과는 단량체 수용액 조성물의 동압은 152pa 이었다.
상기 함수겔 중합체를 절단기로 이송한 후, 최대 길이 0.2cm로 절단하였다. 이때 절단된 함수겔 중합체의 함수율은 52 중량%였다.
이어서, 상기 함수겔 중합체에 대하여 190 ℃ 온도의 열풍건조기에서 30분 동안 건조하고, 건조된 함수겔 중합체를 핀밀 분쇄기로 분쇄하였다. 그런 다음, 시브(sieve)를 이용하여 입경이 150 ㎛ 미만인 중합체와, 입도 150㎛ 내지 850 ㎛인 중합체를 분급하였다.
이후, 제조된 베이스 수지 분말 100 중량부에, 에틸렌 카보네이트 1.5 중량부를 포함하는 표면 가교제 수용액을 분사하여 고흡수성 수지의 표면을 처리하였다. 또한, 상기 표면을 처리하는 단계에서, 분급된 베이스 수지 분말을 하나의 표면 가교 반응기에 공급하고, 190 ℃ 이상의 온도에서 35 분 동안 상기 표면 가교 반응을 진행하였다.
이후, 상기 표면 처리 후, 고흡수성 수지의 온도를 90 ℃로 냉각한 후, 시브(sieve)를 이용하여 입경이 150 내지 850 ㎛인 표면 처리된 고흡수성 수지를 얻었다. 상기 고흡수성 수지에 포함된 150 ㎛ 미만의 미분 함량은 2 중량% 미만이었다.
실시예 2
실시예 1에 있어, 투입되는 단량체 수용액 조성물의 투입량을 150kg/h로 조정하여 단량체 수용액의 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 이때 2차 단관(최소 직경 구간)을 통과하는 단량체 수용액의 동압은 282pa 이었다.
실시예 3
실시예 1에 있어, 투입되는 단량체 수용액 조성물의 투입량을 242kg/h로 조정하여 단량체 수용액의 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 이때 2차 단관(최소 직경 구간)을 통과하는 단량체 수용액의 동압은 734pa 이었다.
비교예 1
실시예 1에 있어, 투입되는 단량체 수용액 조성물의 투입량을 90kg/h로 조정하여 단량체 수용액의 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 이때 2차 단관(최소 직경 구간)을 통과하는 단량체 수용액의 동압은 101pa 이었다.
비교예 2
실시예 1에 있어, 투입되는 단량체 수용액 조성물의 투입량을 242kg/h로 조정하고, 이송관(단관)의 직경 변화 없이 단량체 수용액을 이송한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 이때 단량체 수용액의 동압은 59pa 이었다.
실험예
실시예 및 비교예에서 제조한 각 고흡수성 수지의 물성, 그리고 제조 과정 중의 제반 인자를 다음의 방법으로 측정 및 평가하였다.
(1) 단량체 수용액의 밀도
이송관을 통해 이송되기 직전의 단량체 혼합물의 밀도는 Mettler Toledo의 비중계를 사용한 방법으로 측정하였다. 이러한 측정 결과, 상기 실시예 및 비교예에서 제조된 단량체 수용액은 1.05g/cm3의 밀도를 갖는 것으로 확인되었다.
(2) 단량체 수용액의 이송 속도(m/s)
단량체 수용액의 이송 속도는 이송 구간에서 이송관의 직경으로부터 단면적을 구하고, 해당 구간에서 단량체 혼합물의 유량을 측정하여 하기 식으로부터 산출하였다:
이송속도(m/s) = 유량(m3/hr)/단면적(m2)
(3) 동압 (Pa)
상기 (1) 및 (2)에서 각각 측정된 밀도 및 이송 속도를 계산식 1에 대입하여, 단량체 수용액의 이송 중의 동압을 산출하였다.
(4) 입경평가
실시예 및 비교예에서 사용된 베이스 수지 분말 및 고흡수성 수지의 입경은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정을 하였다.
(5) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)
유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 무하중하 흡수배율에 의한 원심분리 보수능(CRC)을 측정하였다. 고흡수성 수지(또는 베이스 수지 분말; 이하 동일) W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후에, 상온에 0.9 중량%의 염화나트륨 수용액의 생리 식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또한, 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정했다. 이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[계산식 2]
Figure PCTKR2019012832-appb-I000004
(6) 가압 흡수능(Absorbing under Pressure, AUP)
실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회(European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3-10의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을 측정하였다.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23±2℃의 온도 및 45%의 상대 습도 조건하에서 철망상에 실시예 및 비교예에서 얻어진 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa(0.7 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤(piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 유리 필터 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 3에 따라 AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.
[계산식 3]
Figure PCTKR2019012832-appb-I000005
상기 계산식 2에서,
W0(g)는 고흡수성 수지의 초기 무게(g)이고,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,
W4(g)는 하중(0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(7) 생리 식염수 흐름 유도성(SFC; saline flow conductivity)
미국특허 등록번호 제5562646호의 컬럼 54 내지 컬럼 59에 개시된 방법에 따라 측정 및 산출하였다. 단지 측정시 사용된 고흡수성 수지의 양을 0.9g대신 1.5g을 사용한 것만을 위 미국특허와 달리하였다.
(8) T-20
증류수 1L에 9 g의 염화나트륨 및 0.1 g의 Lorodac(주성분: 선형 탄소수 12 내지 14의 알코올 에톡실레이트, CAS# 68439-50-9)을 용해시킨 수용액을 만들고, 0.3psi의 가압 하에서, 고흡수성 수지 1 g이 이러한 수용액 20 g을 흡수하는데 소요되는 시간으로서 산출 및 측정하였다. 이러한 T-20의 구체적인 측정 방법은 미국특허 공개번호 제2013-007940호에 상세히 기술되어 있다.
(9) 흡수 속도(Vortex time)
실시예 및 비교예의 고흡수성 수지의 흡수 속도는 국제특허 공개번호 제1987-003208호에 기재된 방법에 준하여 초 단위로 측정되었다.
구체적으로, 흡수 속도(혹은 vortex time)는 23℃ 내지 24℃의 50 mL의 생리 식염수에 2g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 31.8 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출되었다.
위 물성 평가 결과를 하기 표 1에 정리하여 나타내었다.
Figure PCTKR2019012832-appb-T000001
상기 표 1을 참고하면, 단량체 수용액의 이송 중 동압이 140Pa 이상으로 인가된 실시예 1 내지 3에서 제조된 고흡수성 수지는 비교예와 동등 수준 이상의 보수능, 가압 흡수능 및 통액성 등을 나타내면서도, 보다 향상된 흡수 속도를 나타냄이 확인되었다.

Claims (12)

  1. 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계;
    상기 단량체 혼합물을 중합 반응기로 이송하면서, 이의 이송 속도를 제어하여 하기 계산식 1로 산출되는 이송 중의 단량체 혼합물에 가해지는 동압을 140Pa 이상으로 조정하는 단계;
    상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 함수겔 중합체를 형성하는 단계;
    상기 함수겔 중합체를 건조, 분쇄 및 분급하여 베이스 수지 분말을 형성하는 단계; 및
    표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하는 고흡수성 수지의 제조 방법:
    [계산식 1]
    Figure PCTKR2019012832-appb-I000006
    상기 계산식 1에서, p는 상기 이송 중인 단량체 혼합물의 밀도(g/cm3)를 나타내며, V는 상기 단량체 혼합물의 이송 속도(m/s)를 나타낸다.
  2. 제 1 항에 있어서, 상기 단량체 혼합물은 구간에 따라 변화되는 직경을 갖는 이송관을 따라 이송되며, 상기 이송관의 최소 직경 구간에서 상기 단량체 혼합물은 최대 이송 속도를 나타내며, 이러한 최대 이송 속도 구간에서 상기 단량체 혼합물에 가해지는 동압이 140 Pa 이상으로 조절되는 고흡수성 수지의 제조 방법.
  3. 제 2 항에 있어서, 상기 이송관은 최소 직경 구간에서 0.002내지 0.01m의 직경을 가지며, 최소 직경 구간 전의 최대 직경 구간에서 0.011 내지 0.020m의 직경을 갖는 고흡수성 수지의 제조 방법.
  4. 제 3 항에 있어서, 상기 단량체 혼합물은 100 내지 15000kg/hr의 유량으로 이송관을 통해 이송되는 고흡수성 수지의 제조 방법.
  5. 제 2 항에 있어서, 상기 이송관의 최소 직경 구간에서는, 상기 단량체 혼합물이 0.45 내지 2.5m/s의 속도로 이송되며, 상기 이송관의 최대 직경 구간에서는 상기 단량체 혼합물이 0.1 내지 0.4m/s의 속도로 이송되는 고흡수성 수지의 제조 방법.
  6. 제 1 항에 있어서, 상기 단량체 혼합물은 전체 혼합물에 대해 0.01 내지 0.3 중량%의 함량의 발포제를 더 포함하는 고흡수성 수지의 제조 방법.
  7. 제 1 항에 있어서, 상기 동압 조정 단계에서, 상기 단량체 혼합물 중의 산소 기포가 발생하며, 상기 발생된 기포에 의해, 가교 중합 단계에서 발포 중합이 진행되는 고흡수성 수지의 제조 방법.
  8. 제 1 항에 있어서, 상기 고흡수성 수지는 수지 1g이 0.3psi의 가압 하에서 염화나트륨 및 탄소수 12 내지 14의 알코올 에톡실레이트 수용액 20g을 흡수하는 소요 시간을 나타내는 T-20이 170초 이하인 고흡수성 수지의 제조 방법.
  9. 제 1 항에 있어서, 상기 고흡수성 수지는 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 28 g/g 이상인 고흡수성 수지의 제조 방법.
  10. 제 1 항에 있어서, 상기 고흡수성 수지는 EDANA 법 WSP 242.3-10에 따라 측정된 0.7psi의 가압 흡수능(AUP)이 23 내지 27 g/g인 고흡수성 수지.
  11. 제 1 항에 있어서, 상기 고흡수성 수지는 생리 식염수(0.685 중량% 염화 나트륨 수용액)의 흐름 유도성(SFC; ·10-7cm3·s/g)이 30(·10-7cm3·s/g) 이상인 고흡수성 수지의 제조 방법.
  12. 제 1 항에 있어서, 상기 고흡수성 수지는 볼텍스법에 의한 흡수 속도가 5 내지 50초인 고흡수성 수지의 제조 방법.
PCT/KR2019/012832 2018-12-07 2019-10-01 고흡수성 수지의 제조 방법 WO2020116760A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/057,790 US12030967B2 (en) 2018-12-07 2019-10-01 Preparation method of super absorbent polymer
CN201980036694.5A CN112204091B (zh) 2018-12-07 2019-10-01 超吸收性聚合物的制备方法
BR112020025960-8A BR112020025960B1 (pt) 2018-12-07 2019-10-01 Método para preparar polímero superabsorvente
JP2020532009A JP7080539B2 (ja) 2018-12-07 2019-10-01 高吸水性樹脂の製造方法
EP19893049.7A EP3783053A4 (en) 2018-12-07 2019-10-01 SUPERABSORBENT POLYMER PREPARATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180157082A KR102461120B1 (ko) 2018-12-07 2018-12-07 고흡수성 수지의 제조 방법
KR10-2018-0157082 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020116760A1 true WO2020116760A1 (ko) 2020-06-11

Family

ID=70973735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012832 WO2020116760A1 (ko) 2018-12-07 2019-10-01 고흡수성 수지의 제조 방법

Country Status (7)

Country Link
US (1) US12030967B2 (ko)
EP (1) EP3783053A4 (ko)
JP (1) JP7080539B2 (ko)
KR (1) KR102461120B1 (ko)
CN (1) CN112204091B (ko)
BR (1) BR112020025960B1 (ko)
WO (1) WO2020116760A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819330A4 (en) * 2019-01-07 2021-10-20 LG Chem, Ltd. SUPERABSORBIVE RESIN AND MANUFACTURING METHOD FOR IT
WO2022025003A1 (ja) * 2020-07-28 2022-02-03 住友精化株式会社 吸水性樹脂粒子及び吸水性樹脂粒子を製造する方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230080067A (ko) 2021-11-29 2023-06-07 주식회사 엘지화학 고흡수성 수지의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
US20110088806A1 (en) * 2008-03-28 2011-04-21 Nippon Shokubai Co., Ltd. Method of transporting absorbent resin powder
JP2011526962A (ja) * 2008-07-07 2011-10-20 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による吸収性ポリマー粒子の製造法
KR20110138636A (ko) * 2010-06-21 2011-12-28 주식회사 엘지화학 고흡수성 수지의 제조 장치 및 이를 이용한 고흡수성 수지의 제조 방법
US20130007940A1 (en) 2011-07-06 2013-01-10 Claudia Jane Ryerson Child garment for car seat and method of clothing child restrained in car seat
KR20180087049A (ko) * 2017-01-24 2018-08-01 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20180112110A (ko) * 2010-04-07 2018-10-11 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지분말의 제조방법 및 폴리아크릴산(염)계 흡수성 수지분말

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590501B1 (fr) 1985-11-22 1994-01-14 Beghin Say Sa Composition absorbant les liquides
JP3409133B2 (ja) 1997-04-22 2003-05-26 三菱化学株式会社 高吸水性ポリマーの製造法および高吸水性ポリマー
US6187828B1 (en) * 1998-11-24 2001-02-13 Basf Corporation Continuous process for manufacturing superabsorbent polymer
JP4087682B2 (ja) 2002-11-07 2008-05-21 株式会社日本触媒 吸水性樹脂の製造方法および製造装置
JP4754169B2 (ja) 2003-12-01 2011-08-24 株式会社日本触媒 吸水性樹脂の製法
JP4721780B2 (ja) 2005-06-10 2011-07-13 住友精化株式会社 多孔質吸水性ポリマー粒子の製造法
DE102005042609A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
DE102005042607A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
DE102005042604A1 (de) 2005-09-07 2007-03-08 Basf Ag Neutralisationsverfahren
DE102005042608A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
TWI500663B (zh) 2008-10-07 2015-09-21 Evonik Degussa Gmbh 用於製造超吸性聚合物的連續方法
TWI454488B (zh) 2008-10-07 2014-10-01 Evonik Degussa Gmbh 用於製造超吸性聚合物的方法
JP5600670B2 (ja) 2009-02-17 2014-10-01 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法
EP2518092B1 (en) 2009-12-24 2017-03-15 Nippon Shokubai Co., Ltd. Water-absorbable polyacrylic acid resin powder, and process for production thereof
US9272068B2 (en) * 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
EP2589613B1 (en) 2010-06-30 2015-05-13 Nippon Shokubai Co., Ltd. Polyacrylic acid-based water-absorbing resin and process for producing same
EP2927266B2 (en) * 2012-12-03 2024-10-02 Nippon Shokubai Co., Ltd. Polyacrylate super-absorbent polymer and manufacturing method therefor
KR102402261B1 (ko) * 2014-03-03 2022-05-26 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법
KR20170057705A (ko) 2015-11-17 2017-05-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR101949996B1 (ko) * 2016-01-28 2019-02-19 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2018065500A1 (en) 2016-10-04 2018-04-12 Koninklijke Philips N.V. Interface device formable by additive manufacturing process
KR102075733B1 (ko) 2016-12-13 2020-02-10 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102162503B1 (ko) 2016-12-23 2020-10-06 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
US20110088806A1 (en) * 2008-03-28 2011-04-21 Nippon Shokubai Co., Ltd. Method of transporting absorbent resin powder
JP2011526962A (ja) * 2008-07-07 2011-10-20 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による吸収性ポリマー粒子の製造法
KR20180112110A (ko) * 2010-04-07 2018-10-11 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지분말의 제조방법 및 폴리아크릴산(염)계 흡수성 수지분말
KR20110138636A (ko) * 2010-06-21 2011-12-28 주식회사 엘지화학 고흡수성 수지의 제조 장치 및 이를 이용한 고흡수성 수지의 제조 방법
US20130007940A1 (en) 2011-07-06 2013-01-10 Claudia Jane Ryerson Child garment for car seat and method of clothing child restrained in car seat
KR20180087049A (ko) * 2017-01-24 2018-08-01 주식회사 엘지화학 고흡수성 수지의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3783053A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819330A4 (en) * 2019-01-07 2021-10-20 LG Chem, Ltd. SUPERABSORBIVE RESIN AND MANUFACTURING METHOD FOR IT
US11718694B2 (en) 2019-01-07 2023-08-08 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
WO2022025003A1 (ja) * 2020-07-28 2022-02-03 住友精化株式会社 吸水性樹脂粒子及び吸水性樹脂粒子を製造する方法

Also Published As

Publication number Publication date
BR112020025960A2 (pt) 2021-06-15
US12030967B2 (en) 2024-07-09
BR112020025960B1 (pt) 2024-03-12
EP3783053A4 (en) 2021-05-05
KR102461120B1 (ko) 2022-10-28
US20210230316A1 (en) 2021-07-29
CN112204091B (zh) 2022-11-08
JP7080539B2 (ja) 2022-06-06
EP3783053A1 (en) 2021-02-24
JP2021510743A (ja) 2021-04-30
CN112204091A (zh) 2021-01-08
KR20200069717A (ko) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2020145548A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2017014400A1 (ko) 우수한 항균 및 소취 특성을 갖는 고흡수성 수지 및 이의 제조 방법
WO2016200041A1 (ko) 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
WO2020116760A1 (ko) 고흡수성 수지의 제조 방법
WO2020226385A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2020122442A1 (ko) 고흡수성 수지의 제조 방법
KR20180074384A (ko) 고흡수성 수지 및 이의 제조 방법
WO2020067705A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2020145533A1 (ko) 고흡수성 수지의 제조 방법
KR20180046905A (ko) 고흡수성 수지 및 이의 제조방법
WO2020122444A1 (ko) 고흡수성 수지의 제조 방법
WO2016200054A1 (ko) 고흡수성 수지 및 그의 제조 방법
KR102555380B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2020101287A1 (ko) 고흡수성 수지의 제조 방법
KR20200041644A (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2020122390A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2020122426A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2023120907A1 (ko) 고흡수성 수지의 제조방법
WO2020122559A1 (ko) 고흡수성 수지의 제조 방법
WO2024106836A1 (ko) 고흡수성 수지의 제조 방법
WO2024186079A1 (ko) 고흡수성 수지 제조용 조성물 및 이를 이용한 고흡수성 수지의 제조방법
WO2020101167A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2022131837A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2023038340A1 (ko) 고흡수성 수지의 제조 방법
WO2022131836A1 (ko) 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020532009

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019893049

Country of ref document: EP

Effective date: 20201118

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020025960

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020025960

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201218