WO2022118643A1 - 半導体受光素子 - Google Patents

半導体受光素子 Download PDF

Info

Publication number
WO2022118643A1
WO2022118643A1 PCT/JP2021/041898 JP2021041898W WO2022118643A1 WO 2022118643 A1 WO2022118643 A1 WO 2022118643A1 JP 2021041898 W JP2021041898 W JP 2021041898W WO 2022118643 A1 WO2022118643 A1 WO 2022118643A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
light absorption
absorption layer
substrate
Prior art date
Application number
PCT/JP2021/041898
Other languages
English (en)
French (fr)
Inventor
桂基 田口
兆 石原
美明 大重
健二 牧野
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN202180081005.XA priority Critical patent/CN116569344A/zh
Priority to JP2022566821A priority patent/JPWO2022118643A1/ja
Priority to EP21900398.5A priority patent/EP4250377A1/en
Priority to US18/039,502 priority patent/US20230420595A1/en
Publication of WO2022118643A1 publication Critical patent/WO2022118643A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Definitions

  • Patent Document 1 describes a photodiode.
  • This photodiode is composed of a slope reflecting portion formed on an InP substrate, a light receiving portion composed of a p electrode, a diffraction grating, and an InGaAs light absorbing layer, and an n electrode.
  • the light incident in the vertical direction from the surface is totally reflected by the slope reflecting portion, the optical path is converted diagonally upward, and the light is incident on the light absorbing layer in the light receiving portion from diagonally downward.
  • the obliquely incident light is reflected by the diffraction grating provided on the upper part of the light receiving portion and the p electrode in the direction opposite to the incident direction, and is absorbed again by the light absorption layer.
  • the object of the present disclosure is to provide a semiconductor light receiving element capable of increasing the speed while suppressing an increase in cost.
  • the semiconductor light receiving element is for receiving light incident from at least one wavelength band of 1.3 ⁇ m band, 1.55 ⁇ m band, and 1.6 ⁇ m band, and generating an electric signal according to the incident light. It is a semiconductor light receiving element and includes a substrate, a semiconductor laminated portion formed on the first region of the substrate, and a first electrode and a second electrode electrically connected to the semiconductor laminated portion, and the semiconductor laminated portion is provided. Is a first conductive type light absorbing layer containing In x Ga 1-x As, a first conductive type buffer layer provided between the substrate and the light absorbing layer, and a substrate with respect to the light absorbing layer.
  • the second region of the second conductive type which is located on the opposite side and is different from the first conductive type and is bonded to the light absorbing layer, is included, and the first electrode is a substrate of the semiconductor laminated portion with respect to the light absorbing layer.
  • the second electrode is connected to the first portion of the first conductive type located on the side, and the second electrode is the second portion of the second conductive type located on the side opposite to the substrate with respect to the light absorbing layer in the semiconductor laminated portion.
  • the In composition x in the light absorbing layer is 0.55 or more, and the thickness of the light absorbing layer is 1.8 ⁇ m or less.
  • the absorption coefficient is about doubled by setting the composition x to 0.62). Therefore, even if the thickness of the light absorption layer is reduced to 1.8 ⁇ m or less, a decrease in sensitivity can be avoided. That is, high speed is possible. Further, in this semiconductor light receiving element, it is not necessary to form a separate configuration (for example, a slope reflecting portion of the photodiode described in Patent Document 1 above) in order to realize high speed. Therefore, according to this semiconductor light receiving element, it is possible to increase the speed while suppressing the increase in cost.
  • the buffer layer may include a strain relaxation layer having a lattice constant between the lattice constant of the substrate and the lattice constant of the light absorption layer. In this case, the crystallinity of the semiconductor laminated portion is improved.
  • the semiconductor laminated portion is provided on the light absorption layer on the side opposite to the substrate with respect to the light absorption layer, and is provided with respect to the first conductive type cap layer containing InAsP and the light absorption layer.
  • the second region includes a first conductive type contact layer provided on the cap layer on the opposite side of the substrate and containing InGaAs, and a second region is formed from the contact layer to the light absorption layer via the cap layer.
  • the second portion to which the second electrode is connected may be the surface of the second region formed in the contact layer. In this case, the contact resistance of the second electrode is lowered.
  • the semiconductor laminated portion is provided between the light absorbing layer and the cap layer, and has a band gap between the band gap of the light absorbing layer and the band gap of the cap layer. It may include a layer. In this case, the band gap suddenly changes between the cap layer and the light absorption layer, which suppresses the difficulty in taking out the carrier.
  • At least one layer of the buffer layer may be semi-insulated by doping with Fe. In this case, the crystallinity is improved.
  • the substrate may include a semi-insulating semiconductor. In this case, the capacity can be reduced.
  • FIG. 1 is a schematic side view showing a laser device according to an embodiment.
  • FIG. 2 is a plan view of the semiconductor light receiving element shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a graph illustrating the relationship between the composition of the light absorption layer and the absorption coefficient. It is a schematic side view which shows the structure of the optical apparatus which concerns on a modification.
  • the 1.55 ⁇ m band is, for example, a wavelength range of 1.53 ⁇ m or more and 1.565 ⁇ m or less.
  • the 1.6 ⁇ m band is, for example, a wavelength range larger than 1.565 ⁇ m and 1.625 ⁇ m or less.
  • the light in the wavelength band for communication is light having a peak in the wavelength range of any of the above wavelength bands (that is, even if the wavelength other than the peak is outside the wavelength range of the above wavelength band. good).
  • the semiconductor light receiving element 1 also targets the above wavelength band, receives light L having a wavelength belonging to at least one wavelength band of the wavelength band, and generates an electric signal according to the incident light. It is for doing.
  • the semiconductor light receiving element 1 is mounted on the submount A1.
  • the light L is guided by the optical fiber A4 and condensed by the lens A3 toward the light receiving portion of the semiconductor light receiving element 1.
  • the electric signal generated by the semiconductor light receiving element 1 is transmitted to the transimpedance amplifier (TIA) A5 via an electrode pad (schematically shown by hatching in FIG. 1 and the like) provided on the submount A1 and a wire. It is input, converted into a voltage by the transimpedance amplifier A5, and then output to the outside.
  • the semiconductor light receiving element 1 is mounted on the submount A1 with the back surface 10b of the substrate 10 described later facing the lens A3 and the optical fiber A4. That is, here, the semiconductor light receiving element 1 is used as a back surface incident type.
  • the substrate 10 includes a semi-insulating semiconductor.
  • the substrate 10 is, for example, a semi-insulating semiconductor substrate made of InP.
  • the substrate 10 includes a front surface 10a and a back surface 10b on the opposite side of the front surface 10a.
  • the substrate 10 includes a plurality of regions RA, a region RB (first region), and a region RC arranged in order along the front surface 10a and the back surface 10b.
  • the region RB is a region between the region RA and the region RC, and is a region in which the semiconductor laminated portion 20 is provided. More specifically, the region RB includes a region RB1 on the center side and a region RB2 located on both sides of the region RB1 (regions RA and RC sides).
  • the back surface 10b of the substrate 10 is an incident surface of the light L, and a lens RL for condensing the light L is formed.
  • the lens RL is formed so as to partially overlap the region RB2 with the region RB
  • the semiconductor laminated portion 20 is formed on the region RB of the substrate 10, and is regarded as a semiconductor mesa protruding from the surface 10a.
  • the semiconductor laminated portion 20 includes a first conductive type (here, N type, N + type as an example) buffer layer 30.
  • the buffer layer 30 is provided so as to overlap the region RB2 with the region RB1 as the center.
  • the semiconductor laminated portion 20 is in contact with the surface 10a of the substrate 10 in the buffer layer 30.
  • the semiconductor laminated portion 20 has a buffer layer 21, 22, 23 laminated on the buffer layer 30 in order from the substrate 10 side, a light absorption layer 24, a cap layer 25, and a contact layer 26.
  • the buffer layers 21 and 22 have a first conductive type (for example, N + type).
  • the buffer layer 23 has a first conductive type (for example, N ⁇ type).
  • the buffer layers 21, 22, and 23 include InAsP.
  • the buffer layer 21 is composed of N + ⁇ InAs 0.05 P
  • the buffer layer 22 is composed of N + ⁇ InAs 0.10 P
  • the buffer layer 23 is composed of N ⁇ ⁇ InAs 0.15 P (or).
  • N - - InGaAsP InGaAsP
  • the buffer layer 23 is arranged on the light absorption layer 24 side of the buffer layers 21 and 22, and has an impurity concentration lower than that of the buffer layers 21 and 22. Therefore, the semiconductor laminated portion 20 has a first semiconductor layer (buffer layer 21 or buffer layer 22) arranged between the substrate 10 and the light absorption layer 24, and an impurity concentration lower than that of the first semiconductor layer. The second semiconductor layer (buffer layer 23) arranged between the first semiconductor layer and the light absorption layer 24 is included.
  • the light absorption layer 24 is a first conductive type (for example, N ⁇ type).
  • the light absorption layer 24 contains InGaAs.
  • the light absorption layer 24 is composed of N --In x Ga 1-x As.
  • the In composition x of the light absorption layer 24 is 0.55 or more (and less than 1). As an example, here, the In composition x is 0.59.
  • the thickness of the light absorption layer 24 is 1.8 ⁇ m or less, and here, as an example, it is 0.7 ⁇ m.
  • the light absorption layer 24 may be a mixed crystal absorption layer of Al, P, Sb, N, or other materials and InGaAs in a band gap of 0.72 eV or less.
  • the ratio of Al, P, Sb, and N (or other material) to be mixed with InGaAs can be, for example, 5% or less, or 10% or less.
  • the cap layer 25 has a first conductive type (for example, N ⁇ type).
  • the cap layer 25 contains InAsP.
  • the cap layer 25 is made of N ⁇ ⁇ InAs 0.15 P.
  • the contact layer 26 has a first conductive type (for example, N ⁇ type).
  • the contact layer 26 contains InGaAs.
  • the contact layer 26 is made of N - InGaAs.
  • a second conductive type (here, P + type) semiconductor region (second region) 27 is formed in the semiconductor laminated portion 20.
  • the semiconductor region 27 can be formed by, for example, impurity diffusion, ion implantation, or the like.
  • the semiconductor region 27 extends from the top surface 20a of the semiconductor laminated portion 20 toward the substrate 10.
  • the top surface 20a (the surface facing the opposite side of the substrate 10) of the semiconductor laminated portion 20 is the surface of the contact layer 26.
  • the P + type semiconductor region 27 is formed so as to extend from the contact layer 26 to the light absorption layer 24 via the cap layer 25.
  • the semiconductor region 27 is also formed in the light absorption layer 24.
  • the range of about 0.2 ⁇ m on the cap layer 25 side of the light absorption layer 24 is defined as the semiconductor region 27. That is, in this example, the N ⁇ region having a thickness of 0.5 ⁇ m and the P + region having a thickness of 0.2 ⁇ m are included in the light absorption layer 24, and a boundary between them is formed.
  • the end of the P + region is, for example, a position where the P-type impurity concentration is 1 ⁇ 10 17 / cm 3 or less.
  • the boundary between the N ⁇ region and the P + region may be formed externally on the light absorption layer 24.
  • the semiconductor light receiving element 1 includes a protective film 60.
  • the protective film 60 is, for example, an insulating film. A part of the top surface 20a of the semiconductor laminated portion 20 and the side surface 20s of the semiconductor laminated portion 20 extending from the peripheral edge of the top surface 20a toward the substrate 10 side are covered with the protective film 60. On the other hand, the remaining portion of the top surface 20a of the semiconductor laminated portion 20, here, the surface of the P + type semiconductor region 27 is exposed from the protective film 60. A second electrode 50 is formed on the portion of the top surface 20a exposed from the protective film 60, and a bond between the second electrode 50 and the semiconductor region 27 (contact layer 26) is formed.
  • the second electrode 50 is connected to the second portion (semiconductor region 27) of the second conductive type located on the side opposite to the substrate 10 with respect to the light absorption layer 24 in the semiconductor laminated portion 20.
  • the first electrode 40 is exposed from the first portion 31 (protective film 60 of the buffer layer 30) of the first conductive type located on the substrate 10 side with respect to the light absorption layer 24 in the semiconductor laminated portion 20. Is connected to the part).
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • a semiconductor laminated portion 70 is formed on the surface 10a of the substrate 10 via the buffer layer 30.
  • the structure of the semiconductor laminated portion 70 is the same as that of the semiconductor laminated portion 20 other than the buffer layer 30 except that the P + type semiconductor region 27 is not formed.
  • the semiconductor laminated portion 70 is entirely covered with the protective film 60.
  • the second electrode 50 extends from the top surface 20a of the semiconductor laminated portion 20 to the top surface 70a of the semiconductor laminated portion 70 (the surface facing the opposite side of the substrate 10), and extends on the top surface 70a.
  • the anode pad 55 is formed by the above. That is, an anode pad 55 electrically connected to the second electrode 50 is formed on the top surface 70a of the semiconductor laminated portion 70 via the protective film 60.
  • a cathode pad 45 electrically connected to the first electrode 40 is formed on the top surface 90a of the semiconductor laminated portion 90 via the protective film 60.
  • a dummy pad 100 is formed on the top surface 80a of the semiconductor laminated portion 80 via the protective film 60.
  • the cathode pads 45 (and the semiconductor laminated portion 90) are formed in pairs so as to sandwich the anode pads 55 (and the semiconductor laminated portion 70), and the dummy pads 100 (and the semiconductor laminated portion 70) are formed. 80) is also formed in pairs.
  • the above-mentioned semiconductor light receiving element 1 is arranged so that the front surface 10a of the substrate 10 faces the submount A1 side, that is, the back surface 10b of the substrate 10 faces the side opposite to the submount A1. It is mounted on mount A1.
  • the pair of cathode pads 45, the anode pad 55, and the pair of dummy pads 100 are connected to each electrode pad provided on the submount A1.
  • the cathode pad 45 and the anode pad 55 are connected to the electrodes electrically connected to the transimpedance amplifier A5 in the submount A1.
  • the semiconductor light receiving element 1 targets light in a wavelength band for optical communication such as 1.3 ⁇ m band, 1.55 ⁇ m band, and 1.6 ⁇ m band.
  • the light absorption layer 24 provided on the substrate 10 of the semi-insulating semiconductor contains In x Ga 1-x As.
  • the In composition x of the light absorption layer 24 is 0.55 or more (and less than 1).
  • graph G2 in FIG. 6 the In composition x shown in graph G1 in FIG. 6 is 0.
  • the absorption coefficient is improved as compared with the case of .53 (in the example of FIG. 6, it is improved about twice in the 1.55 ⁇ m band).
  • Graph G0 in FIG. 6 shows a case where a light absorption layer made of InGaAsP is used.
  • the absorption end has a longer wavelength by increasing the In composition x of the light absorption layer 24.
  • the absorption coefficient in the target wavelength band (1.3 ⁇ m band, 1.55 ⁇ m band, and 1.6 ⁇ m band for optical communication described above) is improved instead of lengthening the wavelength of the absorption end. It is characterized by having it. That is, in the semiconductor light receiving element 1, the light absorption layer 24 can be thinned and high-speed operation can be realized by improving the absorption coefficient in the target wavelength band. In other words, in the semiconductor light receiving element 1, the combination of the target wavelength band and the definition of the In composition x and the thickness of the light absorption layer 24 is important.
  • the semiconductor laminated portion 20 has buffer layers 21 to 23 that function as a strain relaxation layer having a lattice constant between the lattice constant of the substrate 10 and the lattice constant of the light absorption layer 24. This improves the crystallinity of the semiconductor laminated portion 20 including the light absorption layer 24.
  • the buffer layers 21 to 23 are a plurality of strain relaxation layers arranged so that the lattice constants gradually approach the lattice constants of the light absorption layer 24 as the substrate 10 moves toward the light absorption layer 24. Functions as. Therefore, the crystallinity of the semiconductor laminated portion 20 is surely improved.
  • the semiconductor laminated portion 20 is provided on the light absorbing layer 24 on the side opposite to the substrate 10 with respect to the light absorbing layer 24, and is provided with a first conductive type cap layer 25 containing InAsP and light.
  • the second conductive semiconductor region 27 includes the first conductive type contact layer 26 provided on the cap layer 25 on the opposite side of the substrate 10 with respect to the absorbent layer 24 and containing InGaAs, and the second conductive type semiconductor region 27 is from the contact layer 26. It is formed over the light absorption layer 24 via the cap layer 25.
  • the portion to which the second electrode 50 is connected is the surface of the semiconductor region 27 formed in the contact layer 26. As a result, the contact resistance of the second electrode 50 is lowered.
  • the semiconductor laminated portion 20 is a first conductive type first semiconductor layer (buffer layer 21 or buffer layer 22) arranged between the substrate 10 and the light absorption layer 24, and a first. It has an impurity concentration lower than that of the semiconductor layer, and includes a first conductive type second semiconductor layer (buffer layer 23) arranged between the first semiconductor layer and the light absorption layer 24. .. Therefore, the speed can be further increased by reducing the capacity.
  • the substrate 10 includes a semi-insulating semiconductor.
  • the substrate and the semiconductor laminated portion 20 have the same potential because they are electrically conductive.
  • the capacitive coupling between the anode and the cathode is also performed via the protective film 60 (insulating film), and a decrease in capacitance cannot be expected.
  • the growth layer to be the semiconductor laminated portion 20 can be electrically separated by etching or the like to the semi-insulating or insulating substrate 10. As a result, it is possible to prevent capacitive coupling and reduce the capacitance.
  • the substrate 10 can be semi-insulated by doping InP, GaAs, or the like with Fe or the like.
  • InP can directly grow a good crystalline InGaAs layer on the semi-insulating substrate 10 because the lattice constant is matched with respect to InGaAs.
  • the thickness of the light absorption layer 24 may be 1.8 ⁇ m or less, and the In composition x may be 0.55 or more.
  • the In composition x in the light absorption layer 24 may be 0.57 or more, and the thickness of the light absorption layer may be 1.2 ⁇ m or less.
  • the In composition x in the light absorption layer 24 may be 0.59 or more, and the thickness of the light absorption layer 24 may be 0.7 ⁇ m or less. In these cases, the speed can be increased by further thinning the light absorption layer.
  • the semiconductor laminated portion 20 is provided between the light absorption layer 24 and the cap layer 25, and has a band gap between the band gap of the light absorption layer 24 and the band gap of the cap layer 25.
  • the third semiconductor layer having may be included.
  • the third semiconductor layer has a first conductive type (for example, N - type), and is made of N - InAsGaP as an example. In this case, the band gap suddenly changes between the cap layer 25 and the light absorption layer 24, which suppresses the difficulty in taking out the carrier.
  • At least one of the buffer layers 21 to 23, 30 may be semi-insulated and thickened by Fe doping. In this case, the crystallinity is improved.
  • the buffer layers 21 to 23, 30 are not limited to InAsP, but include InGaAsP for the purpose of increasing the bandgap and improving the transmittance in the 1.3 ⁇ m band, the 1.55 ⁇ m band, and the 1.6 ⁇ m band. It may be (may be composed of InGaAsP). Further, each layer of the semiconductor laminated portion 20 may contain other elements such as Al.
  • the buffer layers 21 to 23 whose lattice number changes stepwise from the substrate 10 toward the light absorption layer 24 are used, but continuously as the substrate 10 toward the light absorption layer 24.
  • a strain relaxation layer (buffer layer) whose lattice constant is changed so as to approach the lattice constant of the light absorption layer 24 may be used.
  • the semiconductor light receiving element 1 has a cap layer 25 and a contact layer 26 which are sequentially laminated on the light absorption layer 24, and the second electrode 50 is a semiconductor region 27 formed in the contact layer 26. Was connected to the surface of.
  • the cap layer 25 may be omitted, and the contact layer 26 may be directly formed on the light absorption layer 24. Even in this case, the contact resistance of the second electrode 50 can be lowered.
  • the above-mentioned light absorption layer 24 may be applied to a waveguide type semiconductor light receiving element.
  • a waveguide type semiconductor light receiving element a ridge waveguide is formed on a semi-insulating InP substrate, and a light receiving portion including a light absorption layer 24 is formed in the ridge waveguide.
  • the length of the light receiving surface along the extending direction of the waveguide is shortened and the capacitance is reduced. It becomes possible.
  • the responsiveness is improved by increasing the traveling speed of the electrons.
  • a semiconductor laminated portion is formed on a substrate made of an insulator such as quartz or a material of a semi-insulating semiconductor (for example, gallium arsenide) other than InP. 20 may be joined.
  • the substrate 10 includes an insulator or a semi-insulating semiconductor and is configured separately from the semiconductor laminated portion 20, and the semiconductor laminated portion 20 is attached to the substrate 10 (for example, directly). ) May be joined. In this way, by manufacturing the semiconductor light receiving element 1 by forming the substrate 10 and the semiconductor laminated portion 20 separately and joining them, it is possible to increase the diameter and to use inexpensive materials for optical components. It is possible to reduce the cost by making it.
  • a semiconductor light receiving element capable of speeding up while suppressing an increase in cost.
  • 1 semiconductor light receiving element, 20 ... semiconductor laminated portion 21, 22 ... buffer layer (strain relaxation layer, first semiconductor layer), 23 ... buffer layer (strain relaxation layer, second semiconductor layer), 24 ... light absorption layer, 25 ... cap layer, 26 ... contact layer, 27 ... semiconductor region (second part), 31 ... first part, 40 ... first electrode, 50 ... second electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

半導体受光素子(1)は、基板(10)と、前記基板(10)の第1領域(RB)上に形成された半導体積層部(20)と、前記半導体積層部(20)に電気的に接続された第1電極(40)及び第2電極(50)と、を備え、前記半導体積層部(20)は、InxGa1-xAsを含む第1導電型の光吸収層(24)と、前記光吸収層(24)に対して前記基板(10)と反対側に位置すると共に前記光吸収層(24)に接合された前記第1導電型と異なる第2導電型の第2領域(27)と、を含み、前記第1電極(40)は、前記半導体積層部(20)のうち、前記光吸収層(24)に対して前記基板(10)側に位置する前記第1導電型の第1部分(31)に接続されており、前記第2電極(50)は、前記半導体積層部(20)のうち、前記光吸収層(24)に対して前記基板(10)と反対側に位置する前記第2導電型の第2部分(27)に接続されており、前記光吸収層(24)におけるIn組成xは、0.55以上であり、前記光吸収層(24)の厚さは、1.8μm以下である。

Description

半導体受光素子
 本開示は、半導体受光素子に関する。
 特許文献1には、フォトダイオードが記載されている。このフォトダイオードは、InPの基板に形成された斜面反射部と、p電極と回折格子とInGaAs光吸収層とからなる受光部と、n電極と、から構成されている。表面から垂直方向に入射した光は、斜面反射部で全反射され、光路が斜め上方向に変換され、受光部内の光吸収層に斜め下方向から入射する。斜め入射した光は、光吸収層を伝播した後、受光部の上部に設けられた回折格子とp電極とにより、入射した方向とは逆方向に反射され、再び光吸収層で吸収される。
特開2009-117499号公報
 ところで、上記技術分野にあっては、さらなる動作速度の高速化が望まれている。そのためには、光吸収層を薄化することにより電子の移動距離を短縮することが考えられる。しかしながら、光吸収層を薄化すると感度の低下が生じる。これに対して、特許文献1に記載のフォトダイオードでは、光吸収層に対して斜め方向の光路で光を伝播させることにより、実効的な吸収層厚を増大させている。これによれば、光吸収層の薄化による感度低下を抑制して高速化が図られるとも考えられる。
 しかしながら、特許文献1に記載のフォトダイオードでは、光吸収層に対して斜めの光路を形成するために、斜面反射部を基板に形成する加工が必要となる等、コストが増大するおそれがある。
 本開示は、コストの増大を抑制しつつ高速化が可能な半導体受光素子を提供することを目的とする。
 本開示に係る半導体受光素子は、1.3μm帯、1.55μm帯、及び1.6μm帯の少なくとも1つの波長帯の光の入射を受け、当該入射光に応じて電気信号を生成するための半導体受光素子であって、基板と、基板の第1領域上に形成された半導体積層部と、半導体積層部に電気的に接続された第1電極及び第2電極と、を備え、半導体積層部は、InGa1-xAsを含む第1導電型の光吸収層と、基板と光吸収層との間に設けられた第1導電型のバッファ層と、光吸収層に対して基板と反対側に位置すると共に光吸収層に接合された第1導電型と異なる第2導電型の第2領域と、を含み、第1電極は、半導体積層部のうち、光吸収層に対して基板側に位置する第1導電型の第1部分に接続されており、第2電極は、半導体積層部のうち、光吸収層に対して基板と反対側に位置する第2導電型の第2部分に接続されており、光吸収層におけるIn組成xは、0.55以上であり、光吸収層の厚さは、1.8μm以下である。
 この半導体受光素子は、1.3μm帯(O-band(Original-band))、1.55μm帯(C-band (Conventional-band))、及び1.6μm帯(L-band (Long-wavelength-band))といった光通信用の波長帯の光を対象とする。この半導体受光素子では、基板上に設けられた光吸収層が、InGa1-xAsを含む。そして、光吸収層のIn組成xが0.55以上(且つ1未満)である。このように、光吸収層においてInGa1-xAsのIn組成xを0.55以上とすると、例えばIn組成xが0.53である場合と比較して、吸収係数が向上される(例えば1.55μm帯では組成xを0.62にすることで吸収係数が2倍程度に向上される)。したがって、光吸収層の厚さを1.8μm以下に薄化しても感度の低下が避けられる。つまり、高速化が可能となる。さらに、この半導体受光素子では、高速化の実現に際して別途の構成(例えば上記特許文献1に記載のフォトダイオードの斜面反射部等)を形成する必要が無い。よって、この半導体受光素子によれば、コストの増大を抑制しつつ高速化が可能となる。
 本開示に係る半導体受光素子では、バッファ層は、基板の格子定数と光吸収層の格子定数との間の格子定数を有する歪緩和層を含んでもよい。この場合、半導体積層部の結晶性が向上される。
 本開示に係る半導体受光素子では、バッファ層は、基板から光吸収層に向かうにつれて段階的に格子定数が光吸収層の格子定数に近づくように配置された複数の歪緩和層を含んでもよい。或いは、バッファ層は、基板から光吸収層に向かうにつれて連続的に格子定数が光吸収層の格子定数に近づくように変化された歪緩和層を含んでもよい。これらの場合、半導体積層部の結晶性が確実に向上される。
 本開示に係る半導体受光素子では、半導体積層部は、光吸収層に対して基板と反対側において光吸収層上に設けられると共にInAsPを含む第1導電型のキャップ層と、光吸収層に対して基板と反対側においてキャップ層上に設けられると共にInGaAsを含む第1導電型のコンタクト層と、を含み、第2領域は、コンタクト層からキャップ層を介して光吸収層に渡って形成されており、第2電極が接続される第2部分は、コンタクト層に形成された第2領域の表面であってもよい。この場合、第2電極のコンタクト抵抗が下げられる。
 本開示に係る半導体受光素子では、半導体積層部は、基板と光吸収層との間に配置された第1導電型の第1半導体層と、第1半導体層の不純物濃度よりも低い不純物濃度を有し、第1半導体層と光吸収層との間に配置された第1導電型の第2半導体層と、を含んでもよい。この場合、容量の低減によりさらなる高速化が図られる。
 本開示に係る半導体受光素子では、半導体積層部は、光吸収層とキャップ層との間に設けられ、光吸収層のバンドギャップとキャップ層のバンドギャップとの間のバンドギャップを有する第3半導体層を含んでもよい。この場合、キャップ層と光吸収層との間で急激にバンドギャップが変わることにより、キャリアが取り出しにくくなることが抑制される。
 本開示に係る半導体受光素子では、バッファ層の少なくとも1つの層は、Feのドープにより半絶縁化されていてもよい。この場合、結晶性が向上される。
 本開示に係る半導体受光素子では、光吸収層におけるIn組成xは、0.57以上であり、光吸収層の厚さは、1.2μm以下であってもよい。さらに、光吸収層におけるIn組成xは、0.59以上であり、光吸収層の厚さは、0.7μm以下であってもよい。これらの場合、光吸収層のさらなる薄化により高速化が図られる。
 本開示に係る半導体受光素子では、基板は、半絶縁性半導体を含んでもよい。この場合、容量の低減を図ることができる。
 本開示に係る半導体受光素子では、基板は、絶縁体又は半絶縁性半導体を含み、半導体積層部は、基板に直接接合されていてもよい。このように、基板と半導体積層部とを別体に構成して直接接合することにより半導体受光素子を構成することによって、大口径化を図ることや、安価な材料にて光学的な部品を作り込むことによってコストを抑えることが可能となる。
 本開示によれば、コストの増大を抑制しつつ高速化が可能な半導体受光素子を提供することができる。
図1は、一実施形態に係るレーザ装置を示す模式的な側面図である。 図2は、図1に示された半導体受光素子の平面図である。 図3は、図2のIII-III線に沿っての断面図である。 図4は、図2のIV-IV線に沿っての断面図である。 図5は、図2のV-V線に沿っての断面図である。 図6は、光吸収層の組成と吸収係数との関係を説明するグラフである。 変形例に係る光学装置の構成を示す模式的な側面図である。
 以下、一実施形態について、図面を参照して詳細に説明する。なお、各図において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する場合がある。
 図1は、一実施形態に係る光学装置を示す模式的な側面図である。図1に示されるように、光学装置Aは、半導体受光素子1を備えている。光学装置Aは、1.3μm帯(O-band (Original-band))、1.55μm帯(C-band(Conventional-band))、及び1.6μm帯(L-band(Long-wavelength-band))といった光通信用の波長帯の光を対象とし、当該光を電気信号に変換して出力するためのものである。1.3μm帯とは、例えば、1.26μm以上1.36μm以下の波長範囲である。1.55μm帯とは、例えば、1.53μm以上1.565μm以下の波長範囲である。1.6μm帯とは、例えば、1.565μmよりも大きく1.625μm以下の波長範囲である。また、通信用の波長帯の光とは、上記のいずれかの波長帯の波長範囲内にピークを有する光である(すなわち、ピーク以外の波長が上記の波長帯の波長範囲外となってもよい)。
 したがって、半導体受光素子1も、上記の波長帯を対象とするものであり、当該波長帯の少なくとも1つの波長帯に属する波長の光Lの入射を受け、当該入射光に応じて電気信号を生成するためのものである。半導体受光素子1は、サブマウントA1に搭載されている。光Lは、光ファイバA4によって導光され、レンズA3によって半導体受光素子1の受光部に向けて集光される。
 半導体受光素子1で生成された電気信号は、サブマウントA1に設けられた電極パッド(図1等では、模式的にハッチングで示されている)及びワイヤを介してトランスインピーダンスアンプ(TIA)A5に入力され、トランスインピーダンスアンプA5により電圧に変換された後に外部に出力される。なお、ここでは、半導体受光素子1は、後述する基板10の裏面10bがレンズA3及び光ファイバA4側に向けられた状態でサブマウントA1に搭載されている。すなわち、ここでは、半導体受光素子1は、裏面入射型として利用されている。
 図2は、図1に示された半導体受光素子の平面図である。図3は、図2のIII-III線に沿っての断面図である。図2,3に示されるように、半導体受光素子1は、基板10と、半導体積層部20と、第1電極40(ここではカソード)と、第2電極50(ここではアノード)と、を備えている。
 基板10は、半絶縁性半導体を含む。ここでは、基板10は、例えば、InPからなる半絶縁半導体基板である。基板10は、表面10aと表面10aの反対側の裏面10bとを含む。また、基板10は、表面10a及び裏面10bに沿って順に配列された複数の領域RA、領域RB(第1領域)、及び、領域RCを含む。領域RBは、領域RAと領域RCとの間の領域であって、半導体積層部20が設けられる領域である。より具体的には、領域RBは、中心側の領域RB1と、領域RB1の両側(領域RA,RC側)に位置する領域RB2と、を含む。ここでは、基板10の裏面10bは、光Lの入射面であり、光Lを集光するためのレンズRLが形成されている。レンズRLは、領域RB1を中心に領域RB2に部分的に重複するように形成されている。
 半導体積層部20は、上記のとおり、基板10の領域RB上に形成されており、表面10aから突出する半導体メサとされている。半導体積層部20は、第1導電型(ここではN型であり、一例としてN+型)のバッファ層30を含む。バッファ層30は、領域RB1を中心として領域RB2に重複するように設けられている。ここでは、半導体積層部20は、バッファ層30において基板10の表面10aに接している。
 半導体積層部20のバッファ層30以外の層は、表面10aに交差する方向からみてバッファ層30における領域RB1に重複する部分に設けられている。バッファ層30は、表面10aに交差する方向からみて半導体積層部20の他の層(及び後述する保護膜60)から露出する第1部分31を有しており、当該第1部分31において第1電極40との接合が形成されている。バッファ層30は、例えばInPを含む。一例として、バッファ層30は、N+-InPからなる。
 半導体積層部20は、基板10側から順にバッファ層30上に積層されたバッファ層21,22,23、光吸収層24、キャップ層25、及び、コンタクト層26を有している。バッファ層21,22は、第1導電型(例えばN+型)を有する。バッファ層23は、第1導電型(例えばN型)を有する。バッファ層21,22,23は、InAsPを含む。一例として、バッファ層21は、N+-InAs0.05Pからなり、バッファ層22は、N-InAs0.10Pからなり、バッファ層23は、N-InAs0.15P(或いは、N-InGaAsP)からなる。
 これにより、バッファ層21,22,23は、基板10の格子定数と光吸収層24の格子定数との間の格子定数を有する歪緩和層として機能する。すなわち、半導体積層部20は、基板10から光吸収層24に向かうにつれて段階的に格子定数が光吸収層24の格子定数に近づくように配置された複数の歪緩和層(ステップ層)を含むこととなる。
 また、バッファ層23は、バッファ層21,22よりも光吸収層24側に配置されており、且つ、バッファ層21,22の不純物濃度よりも低い不純物濃度を有する。したがって、半導体積層部20は、基板10と光吸収層24との間に配置された第1半導体層(バッファ層21又はバッファ層22)と、当該第1半導体層の不純物濃度よりも低い不純物濃度を有し、第1半導体層と光吸収層24との間に配置された第2半導体層(バッファ層23)と、を含むこととなる。
 光吸収層24は、第1導電型(例えばN型)である。光吸収層24は、InGaAsを含む。ここでは、光吸収層24は、N-InGa1-xAsからなる。そして、光吸収層24のIn組成xは、0.55以上(且つ1未満)である。一例として、ここでは、In組成xは、0.59である。また、光吸収層24の厚さ(半導体積層部20の積層方向に沿っての厚さ)は、1.8μm以下であり、ここでは、一例として0.7μmである。なお、光吸収層24は、バンドギャップが0.72eV以下の範囲で、Al、P、Sb、N、その他の材料とInGaAsとの混晶の吸収層とされてもよい。InGaAsに混ぜるAl、P、Sb、及び、N(或いはその他の材料)の割合は、例えば5%以下、又は10%以下とすることができる。
 キャップ層25は、第1導電型(例えばN型)を有する。キャップ層25は、InAsPを含む。一例として、キャップ層25は、N-InAs0.15Pからなる。コンタクト層26は、第1導電型(例えばN型)を有する。コンタクト層26は、InGaAsを含む。一例として、コンタクト層26は、N-InGaAsからなる。
 半導体積層部20には、第2導電型(ここではP+型)の半導体領域(第2領域)27が形成されている。半導体領域27は、例えば、不純物拡散やイオン注入等によって形成され得る。半導体領域27は、半導体積層部20の頂面20aから基板10側に向けて延在している。ここでは、半導体積層部20の頂面20a(基板10と反対側に臨む表面)はコンタクト層26の表面である。そして、P+型の半導体領域27は、コンタクト層26からキャップ層25を介して光吸収層24に渡るように形成されている。
 ここでは、半導体領域27は、光吸収層24内にも形成されている。光吸収層24の厚さが0.7μmの例では、光吸収層24のうちのキャップ層25側の0.2μm程度の範囲が半導体領域27とされる。つまり、この例では、光吸収層24の内部に、厚さ0.5μmのN領域と厚さ0.2μmのP+領域とが含まれ、それらの境界が形成されることとなる。P領域の終端は、一例として、P型の不純物濃度が1×1017/cm以下となる位置である。ただし、N領域とP+領域との境界は、光吸収層24に外部に形成されてもよい。
 なお、以上の例において、N+型とは、N型の不純物濃度が1×1017/cm程度以上であることを意味する。N型とは、N型の不純物濃度が8×1015/cm程度以下であり、N+型と比較して相対的に低いことを意味する。また、P+型とは、P型不純物の濃度が1×1017/cm程度以上であることを意味する。
 ここで、半導体受光素子1は、保護膜60を備えている。保護膜60は、例えば絶縁膜である。半導体積層部20の頂面20aの一部、及び、頂面20aの周縁から基板10側に向けて延びる半導体積層部20の側面20sは、保護膜60により覆われている。一方、半導体積層部20の頂面20aの残部、ここでは、P型の半導体領域27の表面は、保護膜60から露出されている。そして、頂面20aの保護膜60から露出した部分に第2電極50が形成され、第2電極50と半導体領域27(コンタクト層26)との接合が形成されている。すなわち、第2電極50は、半導体積層部20のうち、光吸収層24に対して基板10と反対側に位置する第2導電型の第2部分(半導体領域27)に接続されている。一方、第1電極40は、半導体積層部20のうち、光吸収層24に対して基板10側に位置する第1導電型の第1部分31(バッファ層30のうちの保護膜60から露出された部分)に接続されている。
 図4は、図2のIV-IV線に沿っての断面図である。図2,4に示されるように、基板10の表面10a上には、バッファ層30を介して、半導体積層部70が形成されている。半導体積層部70の構造は、P型の半導体領域27が形成されていない点を除き、半導体積層部20のバッファ層30以外の構成と同様である。半導体積層部70は、全体が保護膜60により覆われている。
 そして、ここでは、第2電極50が、半導体積層部20の頂面20aから半導体積層部70の頂面70a(基板10と反対側に臨む表面)に至るように延在し、頂面70a上でアノードパッド55を形成している。すなわち、半導体積層部70の頂面70a上には、保護膜60を介して、第2電極50に電気的に接続されたアノードパッド55が形成されている。
 図5は、図2のV-V線に沿っての断面図である。図2,5に示されるように、基板10の表面10a上には、バッファ層30を介して半導体積層部80,90が形成されている。半導体積層部80,90の構造は、P型の半導体領域27が形成されていない点を除き、半導体積層部20のバッファ層30以外の構成と同様である。半導体積層部80,90は、全体が保護膜60により覆われている。そして、ここでは、第1電極40が、バッファ層30に接合された部分から半導体積層部90の頂面90a(基板10と反対側に臨む表面)に至るように延在し、頂面90a上でカソードパッド45を形成している。
 すなわち、半導体積層部90の頂面90a上には、保護膜60を介して、第1電極40に電気的に接続されたカソードパッド45が形成されている。一方、半導体積層部80の頂面80a上には、保護膜60を介してダミーパッド100が形成されている。なお、図2に示されるように、カソードパッド45(及び半導体積層部90)は、アノードパッド55(及び半導体積層部70)を挟むように一対形成されており、ダミーパッド100(及び半導体積層部80)も一対形成されている。
 光学装置Aでは、以上の半導体受光素子1が、基板10の表面10aがサブマウントA1側に向くように、すなわち、基板10の裏面10bがサブマウントA1と反対側に向くように配置され、サブマウントA1に実装されている。これにより、一対のカソードパッド45、アノードパッド55、及び、一対のダミーパッド100が、サブマウントA1に設けられた各電極パッドに接続される。この結果、カソードパッド45及びアノードパッド55は、サブマウントA1において、トランスインピーダンスアンプA5に電気的に接続される電極と接続される。
 以上説明したように、半導体受光素子1は、1.3μm帯、1.55μm帯、及び1.6μm帯といった光通信用の波長帯の光を対象とする。半導体受光素子1では、半絶縁半導体の基板10上に設けられた光吸収層24が、InGa1-xAsを含む。そして、光吸収層24のIn組成xが0.55以上(且つ1未満)である。このように、光吸収層24においてInGa1-xAsのIn組成xを0.55以上(図6のグラフG2)とすると、例えば、図6のグラフG1で示されるIn組成xが0.53である場合と比較して、吸収係数が向上される(図6の例では、1.55μm帯では2倍程度に向上される)。なお、図6のグラフG0は、InGaAsPからなる光吸収層を用いた場合を示している。
 したがって、光吸収層24の厚さを1.8μm以下に薄化しても感度の低下が避けられる。つまり、高速化が可能となる。さらに、半導体受光素子1では、高速化の実現に際して別途の構成(例えば上記特許文献1に記載のフォトダイオードの斜面反射部等)を形成する必要が無い。よって、半導体受光素子1によれば、コストの増大を抑制しつつ高速化が可能となる。ただし、高速化の観点に着目すれば、半導体受光素子1は、光吸収層24の厚さ方向に対して斜めの光路が光吸収層24に形成されるように構成されてもよい。
 なお、図6のグラフG1,G2に示されるように、光吸収層24のIn組成xを大きくすることにより、吸収端が長波長化される。しかし、半導体受光素子1では、吸収端の長波長化ではなく、ターゲットとなる波長帯(上述した光通信用の1.3μm帯、1.55μm帯、及び1.6μm帯)における吸収係数を向上させることに特徴を有する。すなわち、半導体受光素子1では、ターゲットとなる波長帯での吸収係数を向上させることにより光吸収層24の薄化、及び高速動作を実現可能とする。換言すれば、半導体受光素子1では、ターゲットとなる波長帯と光吸収層24のIn組成x及び厚さの規定との組み合わせが重要である。さらに、光吸収層24が薄化されるほど、吸収係数が受光感度に与える影響が顕著となるため、半導体受光素子1のように拘束応答と高い受光感度とを両立するための構成が有効となる。
 一方で、光吸収層24のIn組成xを変更(大きく)すると、光吸収層24の格子定数と基板10の格子定数のずれが大きくなる傾向にあり、基板10上に光吸収層24を成長する際に結晶性が悪化するおそれがある。
 そこで、半導体受光素子1では、半導体積層部20が、基板10の格子定数と光吸収層24の格子定数との間の格子定数を有する歪緩和層として機能するバッファ層21~23を有する。これにより、光吸収層24を含む半導体積層部20の結晶性が向上される。特に、半導体受光素子1では、バッファ層21~23は、基板10から光吸収層24に向かうにつれて段階的に格子定数が光吸収層24の格子定数に近づくように配置された複数の歪緩和層として機能する。このため、半導体積層部20の結晶性が確実に向上される。
 また、半導体受光素子1では、半導体積層部20は、光吸収層24に対して基板10と反対側において光吸収層24上に設けられると共にInAsPを含む第1導電型のキャップ層25と、光吸収層24に対して基板10と反対側においてキャップ層25上に設けられると共にInGaAsを含む第1導電型のコンタクト層26と、を含み、第2導電型の半導体領域27は、コンタクト層26からキャップ層25を介して光吸収層24に渡って形成されている。第2電極50が接続される部分は、コンタクト層26に形成された半導体領域27の表面である。これにより、第2電極50のコンタクト抵抗が下げられる。
 また、半導体受光素子1では、半導体積層部20は、基板10と光吸収層24との間に配置された第1導電型の第1半導体層(バッファ層21又はバッファ層22)と、第1半導体層の不純物濃度よりも低い不純物濃度を有し、第1半導体層と光吸収層24との間に配置された第1導電型の第2半導体層(バッファ層23)と、を含んでいる。このため、容量の低減によりさらなる高速化が図られる。
 さらに、半導体受光素子1では、基板10が半絶縁性半導体を含む。基板10として導電性の基板を用いた場合、当該基板及び半導体積層部20は電気的に導通しているために同電位となる。その場合、アノードとカソードの容量的なカップリングは保護膜60(絶縁膜)を介しても行われ、容量の低下が見込めない。これに対して、半導体受光素子1では、半導体積層部20となる成長層を半絶縁性又は絶縁性の基板10までエッチング等を行うことによって電気的に分離することが可能となる。その結果、容量的なカップリングを防ぐことができ、容量の低下を図ることが可能となる。基板10は、例えば、InPやGaAsなどにFeなどをドーピングすることで半絶縁化され得る。InPは、InGaAsに対して、格子定数が合っているために半絶縁化した基板10上に良好な結晶性のInGaAs層を直接成長可能となる。
 以上の実施形態は、本開示の一態様を説明したものである。したがって、本開示は、上述した態様に限定されることなく、任意に変形され得る。引き続いて、変形例について説明する。
 図7は、半導体受光素子の搭載方法に関する変形例を示す図である。図7の(a)に示される光学装置Bでは、半導体受光素子1は、基板10の裏面10bがガラス基板B1に向くようにガラス基板B1上に搭載され、同様にガラス基板B1上に搭載されたトランスインピーダンスアンプA5に直接的にワイヤによって電気的に接続されている。レンズA3及び光ファイバA4は、ガラス基板B1の半導体受光素子1が搭載された面と反対側の面側に配置されており、光Lはガラス基板B1を介して裏面10b側から半導体受光素子1に入射される。また、図7の(b)に示される光学装置Cでは、図1に示された光学装置Aと比較してレンズA3が省略されている。さらに、半導体受光素子1は、トランスインピーダンスアンプA5に直接的に搭載されてもよい。
 このように、半導体受光素子1の搭載方法、及び、半導体受光素子1を含む光学装置は、種々の態様が考えられる。なお、以上の例では、いずれも、半導体受光素子1を裏面入射型として利用した。しかしながら、半導体受光素子1は、表面入射型として構成されてもよい。この場合、受光部(半導体領域27)上に設けられた第2電極50に対して受光部が露出されるように開口を形成すればよい。
 また、上記の例では、光吸収層24の厚さとして0.7μmを挙げ、光吸収層24のIn組成xとして0.59を挙げた。しかしながら、光吸収層24の厚さは1.8μm以下であればよく、In組成xは0.55以上であればよい。特に、光吸収層24におけるIn組成xは、0.57以上であり、且つ、光吸収層の厚さは、1.2μm以下であってもよい。さらに、光吸収層24におけるIn組成xは、0.59以上であり、且つ、光吸収層24の厚さは、0.7μm以下であってもよい。これらの場合、光吸収層のさらなる薄化により高速化が図られる。
 なお、各波長帯と光吸収層24の厚さ及び光吸収層24のIn組成xとの組み合わせの例について、以下に列記する。なお、例えば以下の(5)等については、C-band帯に限らず、O-band帯及びL-band帯でも同様に構成可能である。
  (1)C-band帯。
  感度:0.86A/W以上。
  遮断周波数:20GHz以上(28GB等の場合)。
  吸収層厚:1.5μm(内訳:N領域1.3μm、P+領域0.2μm)。
  In組成x:x=0.55。
  (2)C-band帯。
  感度:0.90A/W以上。
  遮断周波数:20GHz以上(28GBの高感度品の場合)。
  吸収層厚:1.5μm(内訳:N領域1.3μm、P領域0.2μm)。
  In組成x:x=0.57。
  (3)C-band帯。
  感度:0.80A/W以上。
  遮断周波数:30GHz以上(56GB等の場合)。
  吸収層厚:1.2μm(内訳:N領域1.0μm、P領域0.2μm)。
  In組成x:x=0.57。
  (4)C-band帯。
  感度0.85A/W以上。
  遮断周波数:30GHz以上(56GBの高感度品の場合)。
  吸収層厚:1.2μm(内訳:N領域1.0μm、P領域0.2μm)。
  In組成x:x=0.59。
 (5)C-band帯。
  感度0.7A/W以上。
  遮断周波数:45GHz以上(96GB等の場合)。
  吸収層厚:0.7μm(内訳:N領域0.5μm、P領域0.2μm)。
  In組成x:x=0.59。
  (6)C-band帯。
  感度0.90A/W以上。
  遮断周波数:16GHz以上(25GB等の場合)。
  吸収層厚:1.8μm(内訳:N領域1.6μm、P領域0.2μm)。
  In組成x:x=0.55。
  (7)C-band帯。
  感度0.93A/W以上。
  遮断周波数:16GHz以上(25GB等の場合)。
  吸収層厚:1.8μm(内訳:N領域1.6μm、P領域0.2μm)。
  In組成x:x=0.57。
 また、半導体受光素子1では、半導体積層部20は、光吸収層24とキャップ層25との間に設けられ、光吸収層24のバンドギャップとキャップ層25のバンドギャップとの間のバンドギャップを有する第3半導体層を含んでもよい。該第3半導体層は、第1導電型(例えばN型)を有し、一例としてN-InAsGaPからなる。この場合、キャップ層25と光吸収層24との間で急激にバンドギャップが変わることにより、キャリアが取り出しにくくなることが抑制される。
 また、半導体受光素子1では、バッファ層21~23,30の少なくとも1つの層は、Feのドープにより半絶縁化し厚膜化されていてもよい。この場合、結晶性が向上される。
 また、バッファ層21~23,30は、InAsPに限らず、バンドギャップを大きくして1.3μm帯、1.55μm帯、及び、1.6μm帯の透過率を向上させる目的から、InGaAsPを含んでもよい(InGaAsPから構成されてもよい)。さらに、半導体積層部20の各層は、Al等の他の元素を含んでもよい。
 また、半導体受光素子1では、基板10から光吸収層24に向かうにつれて格子状数が段階的に変化するバッファ層21~23を用いたが、基板10から光吸収層24に向かうにつれて連続的に格子定数が光吸収層24の格子定数に近づくように変化された歪緩和層(バッファ層)を用いてもよい。また、上記の例では、半導体受光素子1は、光吸収層24上に順に積層されたキャップ層25及びコンタクト層26を有し、第2電極50は、コンタクト層26に形成された半導体領域27の表面に接続されていた。しかし、半導体受光素子1では、キャップ層25が省略され、コンタクト層26が光吸収層24に直接的に形成されていてもよい。この場合であっても、第2電極50のコンタクト抵抗が下げられる。
 また、高速化の観点に着目した場合には、上記の光吸収層24を、導波路型の半導体受光素子に適用してもよい。導波路型の半導体受光素子では、半絶縁のInP基板上にリッジ導波路を形成し、当該リッジ導波路内に光吸収層24を含む受光部を形成する。このように、導波路型であっても、吸収率が向上された光吸収層24を採用することにより、導波路の延在方向に沿っての受光面の長さを短縮して容量を下げることが可能となる。また、同じ厚さだとしても電子の走行スピードが上がることによって応答性が向上する。
 さらに、半導体受光素子1では、例えばエッチングや研磨によって基板10を除去したうえで、石英等の絶縁体や、InP以外の半絶縁性半導体(例えばガリウムヒ素等)の材料からなる基板に半導体積層部20が接合されてもよい。換言すれば、半導体受光素子1では、基板10は、絶縁体又は半絶縁性半導体を含むと共に半導体積層部20とは別体に構成され、半導体積層部20が当該基板10に(例えば直接的に)接合されていてもよい。このように、基板10と半導体積層部20とを別体に構成して接合することにより半導体受光素子1を製造することによって、大口径化を図ることや、安価な材料にて光学的な部品を作り込むことによってコストを抑えることが可能となる。
 なお、互いに別体に構成された基板10と半導体積層部20とを接合する際には、直接接合(direct bonding)や樹脂を用いた接合を採用することができる。基板10と半導体積層部20との接合に樹脂を用いた場合、樹脂の性質によっては、ターゲット波長帯の光を吸収してしまう可能性があるが、直接接合によればその可能性がない。
 また、本開示に係る半導体受光素子は、1.3μm帯、1.55μm帯、及び1.6μm帯の少なくとも1つの波長帯の光の入射を受け、当該入射光に応じて電気信号を生成するための半導体受光素子であって、基板と、基板の第1領域上に形成された半導体積層部と、半導体積層部に電気的に接続された第1電極及び第2電極と、を備え、半導体積層部は、InGa1-xAsを含む第1導電型の光吸収層と、基板と光吸収層との間に設けられた第1導電型のバッファ層と、光吸収層に対して基板と反対側に位置すると共に光吸収層に接合された第1導電型と異なる第2導電型の第2領域と、を含み、第1電極は、半導体積層部のうち、光吸収層に対して基板側に位置する第1導電型の第1部分に接続されており、第2電極は、半導体積層部のうち、光吸収層に対して基板と反対側に位置する第2導電型の第2部分に接続されており、光吸収層におけるIn組成xは、0.55以上であり、光吸収層の厚さは、1.5μm以下であってもよい。
 コストの増大を抑制しつつ高速化が可能な半導体受光素子が提供される。
 1…半導体受光素子、20…半導体積層部、21,22…バッファ層(歪緩和層、第1半導体層)、23…バッファ層(歪緩和層、第2半導体層)、24…光吸収層、25…キャップ層、26…コンタクト層、27…半導体領域(第2部分)、31…第1部分、40…第1電極、50…第2電極。

Claims (12)

  1.  1.3μm帯、1.55μm帯、及び1.6μm帯の少なくとも1つの波長帯の光の入射を受け、入射光に応じて電気信号を生成するための半導体受光素子であって、
     基板と、
     前記基板の第1領域上に形成された半導体積層部と、
     前記半導体積層部に電気的に接続された第1電極及び第2電極と、
     を備え、
     前記半導体積層部は、
     InGa1-xAsを含む第1導電型の光吸収層と、
     前記基板と前記光吸収層との間に設けられた前記第1導電型のバッファ層と、
     前記光吸収層に対して前記基板と反対側に位置すると共に前記光吸収層に接合された前記第1導電型と異なる第2導電型の第2領域と、
     を含み、
     前記第1電極は、前記半導体積層部のうち、前記光吸収層に対して前記基板側に位置する前記第1導電型の第1部分に接続されており、
     前記第2電極は、前記半導体積層部のうち、前記光吸収層に対して前記基板と反対側に位置する前記第2導電型の第2部分に接続されており、
     前記光吸収層におけるIn組成xは、0.55以上であり、
     前記光吸収層の厚さは、1.8μm以下である、
     半導体受光素子。
  2.  前記バッファ層は、前記基板の格子定数と前記光吸収層の格子定数との間の格子定数を有する歪緩和層を含む、
     請求項1に記載の半導体受光素子。
  3.  前記バッファ層は、前記基板から前記光吸収層に向かうにつれて段階的に格子定数が前記光吸収層の格子定数に近づくように配置された複数の前記歪緩和層を含む、
     請求項2に記載の半導体受光素子。
  4.  前記バッファ層は、前記基板から前記光吸収層に向かうにつれて連続的に格子定数が前記光吸収層の格子定数に近づくように変化された前記歪緩和層を含む、
     請求項2に記載の半導体受光素子。
  5.  前記半導体積層部は、
     前記光吸収層に対して前記基板と反対側において前記光吸収層上に設けられると共にInAsPを含む前記第1導電型のキャップ層と、
     前記光吸収層に対して前記基板と反対側において前記キャップ層上に設けられると共にInGaAsを含む前記第1導電型のコンタクト層と、
     を含み、
     前記第2領域は、前記コンタクト層から前記キャップ層を介して前記光吸収層に渡って形成されており、
     前記第2電極が接続される前記第2部分は、前記コンタクト層に形成された前記第2領域の表面である、
     請求項1~4のいずれか一項に記載の半導体受光素子。
  6.  前記半導体積層部は、
     前記基板と前記光吸収層との間に配置された前記第1導電型の第1半導体層と、
     前記第1半導体層の不純物濃度よりも低い不純物濃度を有し、前記第1半導体層と前記光吸収層との間に配置された前記第1導電型の第2半導体層と、
     を含む、
     請求項1~5のいずれか一項に記載の半導体受光素子。
  7.  前記半導体積層部は、前記光吸収層と前記キャップ層との間に設けられ、前記光吸収層のバンドギャップと前記キャップ層のバンドギャップとの間のバンドギャップを有する第3半導体層を含む、
     請求項5に記載の半導体受光素子。
  8.  前記バッファ層の少なくとも1つの層は、Feのドープにより半絶縁化されている、
     請求項1~7のいずれか一項に記載の半導体受光素子。
  9.  前記光吸収層におけるIn組成xは、0.57以上であり、
     前記光吸収層の厚さは、1.2μm以下である、
     請求項1~7のいずれか一項に記載の半導体受光素子。
  10.  前記光吸収層におけるIn組成xは、0.59以上であり、
     前記光吸収層の厚さは、0.7μm以下である、
     請求項1~8のいずれか一項に記載の半導体受光素子。
  11.  前記基板は、半絶縁性半導体を含む、
     請求項1~10のいずれか一項に記載の半導体受光素子。
  12.  前記基板は、絶縁体又は半絶縁性半導体を含み、
     前記半導体積層部は、前記基板に接合されている、
     請求項1~10のいずれか一項に記載の半導体受光素子。
PCT/JP2021/041898 2020-12-04 2021-11-15 半導体受光素子 WO2022118643A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180081005.XA CN116569344A (zh) 2020-12-04 2021-11-15 半导体受光元件
JP2022566821A JPWO2022118643A1 (ja) 2020-12-04 2021-11-15
EP21900398.5A EP4250377A1 (en) 2020-12-04 2021-11-15 Semiconductor light reception element
US18/039,502 US20230420595A1 (en) 2020-12-04 2021-11-15 Semiconductor light reception element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020201986 2020-12-04
JP2020-201986 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118643A1 true WO2022118643A1 (ja) 2022-06-09

Family

ID=81853701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041898 WO2022118643A1 (ja) 2020-12-04 2021-11-15 半導体受光素子

Country Status (5)

Country Link
US (1) US20230420595A1 (ja)
EP (1) EP4250377A1 (ja)
JP (1) JPWO2022118643A1 (ja)
CN (1) CN116569344A (ja)
WO (1) WO2022118643A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216403A (ja) * 1993-01-14 1994-08-05 Hamamatsu Photonics Kk 半導体受光素子
JPH09283786A (ja) * 1996-04-19 1997-10-31 Nec Corp 導波路型半導体受光素子とその製造方法
JP2002064217A (ja) * 2000-06-06 2002-02-28 Fujitsu Quantum Devices Ltd 半導体受光装置およびその製造方法
JP2002373999A (ja) * 2001-06-14 2002-12-26 Yokogawa Electric Corp 半導体素子
JP2008205001A (ja) * 2007-02-16 2008-09-04 Sumitomo Electric Ind Ltd 受光素子、センサおよび撮像装置
JP2009117499A (ja) 2007-11-05 2009-05-28 Opnext Japan Inc 受光素子
US20110254052A1 (en) * 2008-10-15 2011-10-20 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Hybrid Group IV/III-V Semiconductor Structures
JP2015211166A (ja) * 2014-04-28 2015-11-24 日本電信電話株式会社 半導体受光素子及びその製造方法
JP2017034028A (ja) * 2015-07-30 2017-02-09 三菱電機株式会社 半導体受光素子
JP2019197794A (ja) * 2018-05-09 2019-11-14 住友電工デバイス・イノベーション株式会社 光導波路型受光素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216403A (ja) * 1993-01-14 1994-08-05 Hamamatsu Photonics Kk 半導体受光素子
JPH09283786A (ja) * 1996-04-19 1997-10-31 Nec Corp 導波路型半導体受光素子とその製造方法
JP2002064217A (ja) * 2000-06-06 2002-02-28 Fujitsu Quantum Devices Ltd 半導体受光装置およびその製造方法
JP2002373999A (ja) * 2001-06-14 2002-12-26 Yokogawa Electric Corp 半導体素子
JP2008205001A (ja) * 2007-02-16 2008-09-04 Sumitomo Electric Ind Ltd 受光素子、センサおよび撮像装置
JP2009117499A (ja) 2007-11-05 2009-05-28 Opnext Japan Inc 受光素子
US20110254052A1 (en) * 2008-10-15 2011-10-20 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Hybrid Group IV/III-V Semiconductor Structures
JP2015211166A (ja) * 2014-04-28 2015-11-24 日本電信電話株式会社 半導体受光素子及びその製造方法
JP2017034028A (ja) * 2015-07-30 2017-02-09 三菱電機株式会社 半導体受光素子
JP2019197794A (ja) * 2018-05-09 2019-11-14 住友電工デバイス・イノベーション株式会社 光導波路型受光素子

Also Published As

Publication number Publication date
US20230420595A1 (en) 2023-12-28
EP4250377A1 (en) 2023-09-27
CN116569344A (zh) 2023-08-08
JPWO2022118643A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
WO2016190346A1 (ja) 受光素子および光集積回路
JP6538969B2 (ja) 光導波路集積受光素子およびその製造方法
JP2001284633A (ja) 半導体アバランシェホトディテクタ
JP7056827B2 (ja) 光導波路型受光素子
US20230011341A1 (en) Light-Receiving Device
WO2022118643A1 (ja) 半導体受光素子
JPS5984589A (ja) アバランシフオトダイオード
JPH09283786A (ja) 導波路型半導体受光素子とその製造方法
WO2023233721A1 (ja) 半導体受光素子
JP2004111763A (ja) 半導体受光装置
JP2590817B2 (ja) ホトデイテクタ
WO2023233719A1 (ja) 半導体受光素子
WO2023233718A1 (ja) 半導体受光素子
WO2023233720A1 (ja) 半導体受光素子
JP3061203B2 (ja) 半導体受光装置
JP2001068717A (ja) 進行波型半導体光検出器
JPS6049681A (ja) 半導体受光装置
JP2008502943A (ja) 半導体量子井戸素子
JP4284781B2 (ja) Msm型フォトダイオード
JP3739273B2 (ja) 半導体光検出器
JP7435786B2 (ja) 受光器
JP2005086028A (ja) 半導体受光装置
JPH0567804A (ja) 受光素子
JP2023010832A (ja) 光導波路型受光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566821

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18039502

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081005.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900398

Country of ref document: EP

Effective date: 20230622