WO2022113586A1 - ドップラー装置、俯角推定方法およびプログラム - Google Patents

ドップラー装置、俯角推定方法およびプログラム Download PDF

Info

Publication number
WO2022113586A1
WO2022113586A1 PCT/JP2021/038925 JP2021038925W WO2022113586A1 WO 2022113586 A1 WO2022113586 A1 WO 2022113586A1 JP 2021038925 W JP2021038925 W JP 2021038925W WO 2022113586 A1 WO2022113586 A1 WO 2022113586A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo signal
doppler frequency
doppler
depression angle
calculated
Prior art date
Application number
PCT/JP2021/038925
Other languages
English (en)
French (fr)
Inventor
敏志 川浪
昌彦 虫明
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to EP21897564.7A priority Critical patent/EP4254009A1/en
Priority to JP2022565120A priority patent/JPWO2022113586A1/ja
Priority to CN202180065540.6A priority patent/CN116261673A/zh
Publication of WO2022113586A1 publication Critical patent/WO2022113586A1/ja
Priority to US18/175,473 priority patent/US20230204766A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Definitions

  • the present invention relates to a Doppler device, a depression angle estimation method, and a program that perform a predetermined measurement using the Doppler effect.
  • thermometer thermometer
  • Patent Document 1 describes this type of method.
  • this method has a problem that the water temperature profile in water cannot be obtained in real time.
  • the temperature of the water surface As another method to meet the above needs, the temperature of the water surface, the relative speed between the own device and the reflector (floating matter), and the frequency difference between the sound wave transmitted at a predetermined depression angle and the reflected wave.
  • a method of calculating the water temperature on the surface of the reflector is known based on the Doppler frequency consisting of.
  • Patent Document 2 below describes this type of method.
  • this method has a problem that the cost of the device is high because various detectors are required to calculate the water temperature.
  • the two conventional methods have the problem that the water temperature profile cannot be obtained in real time and the problem that the cost of the device increases.
  • the speed of sound of ultrasonic waves propagating in water changes with changes in water temperature. Therefore, if the sound speed profile in water can be obtained easily and in real time, it is possible to calculate the water temperature profile in water from the obtained sound speed profile.
  • the "Doppler device” means a device that performs predetermined measurement using the Doppler effect, and in addition to the Doppler sonar, a tide gauge and ADCP (Acoustic Doppler Current profiler). Etc. can be broadly included.
  • the first aspect of the present invention relates to a Doppler device.
  • the Doppler device includes a transducer that sends ultrasonic waves into water and receives the reflected waves of the ultrasonic waves, an echo signal generation module, a Doppler frequency calculation module, and a depression angle calculation module.
  • the echo signal generation module generates a first echo signal in the first direction having a depression angle ⁇ with respect to the receiving surface of the transducer from the reflected wave. Further, the echo signal generation module generates a second echo signal in a second direction different from the first direction from the reflected wave, which has the depression angle ⁇ with respect to the receiving surface of the transducer.
  • the echo signal generation module generates a third echo signal in the third direction perpendicular to the receiving surface of the transducer from the reflected wave.
  • the Doppler frequency calculation module calculates the first Doppler frequency of the first echo signal, calculates the second Doppler frequency of the second echo signal, and calculates the third Doppler frequency of the third echo signal.
  • the depression angle calculation module calculates the depression angle ⁇ from the first Doppler frequency, the second Doppler frequency, and the third Doppler frequency.
  • the depression angle ⁇ can be calculated in real time by a simple configuration using a transducer.
  • the speed of sound of ultrasonic waves in water and the temperature in water can be calculated. Therefore, according to the Doppler device according to this aspect, the water temperature or the speed of sound in water can be obtained at low cost and in real time.
  • the Doppler frequency calculation module has the first Doppler frequency and the second Doppler frequency from the first echo signal, the second echo signal and the third echo signal at a plurality of water depths. And the third Doppler frequency is calculated, and the depression angle calculation module may be configured to calculate the depression angle ⁇ for each of the plurality of water depths.
  • the depression angle ⁇ can be calculated for each water depth for a plurality of water depths. Therefore, by applying the depression angle ⁇ calculated for each water depth to a predetermined calculation formula, the water temperature or sound velocity at each water depth can be obtained.
  • the first direction, the second direction, and the third direction can be set in the same plane perpendicular to the receiving surface of the transducer.
  • the plane on which the first beam, the second beam and the third beam are formed is parallel to the traveling direction of the ship.
  • the receiving surface of the transducer has an angle ⁇ that is not 0 degrees with respect to the water surface.
  • the depression angle ⁇ can be calculated even in a situation where there is no upwelling, and the sound velocity or water temperature can be calculated from the calculated depression angle ⁇ .
  • the depression angle calculation module is based on the ratio of the first Doppler frequency to the third Doppler frequency and the ratio of the second Doppler frequency to the third Doppler frequency. It can be configured to calculate the depression angle ⁇ .
  • the depression angle calculation module may be configured to calculate the depression angle ⁇ based on the sum of the first Doppler frequency and the second Doppler frequency and the reciprocal of the third Doppler frequency.
  • the depression angle ⁇ can be appropriately calculated using the first Doppler frequency, the second Doppler frequency, and the third Doppler frequency.
  • the Doppler device may further include a sound speed profile calculation module that calculates the sound velocity of ultrasonic waves in water from the depression angle ⁇ calculated by the depression angle calculation module.
  • the sound velocity of ultrasonic waves in water can be calculated in real time from the depression angle ⁇ calculated by the depression angle calculation module.
  • the Doppler device may further include a temperature profile calculation module that calculates the water temperature from the speed of sound.
  • the temperature in water can be calculated in real time from the sound velocity calculated by the sound speed profile calculation module.
  • the Doppler device may further include a temperature profile calculation module that calculates the water temperature from the depression angle ⁇ calculated by the depression angle calculation module.
  • the temperature in water can be directly calculated from the depression angle ⁇ calculated by the depression angle calculation module without calculating the sound velocity of ultrasonic waves in water.
  • the transducer includes a plurality of transducers arranged in an array, and the echo signal generation module has a first beam in the first direction, the second direction, and the third direction.
  • the second beam and the third beam respectively, may be configured to generate the first echo signal, the second echo signal and the third echo signal.
  • the transducer includes a first oscillator, a second oscillator, and a third oscillator that transmit and receive waves in the first direction, the second direction, and the third direction, respectively.
  • the echo signal generation module has the first echo signal, the second echo signal, and the third echo signal from the reflected waves received by the first vibrator, the second vibrator, and the third vibrator. Can be configured to produce.
  • the second aspect of the present invention relates to a depression angle estimation method.
  • an ultrasonic wave is sent from a transducer into water, the reflected wave of the ultrasonic wave is received by the transducer, and the depression angle ⁇ is relative to the receiving surface of the transducer in the first direction.
  • a first echo signal is generated from the reflected wave, and a second echo signal having the depression angle ⁇ with respect to the receiving surface and having a second echo signal different from the first direction is generated from the reflected wave.
  • a third echo signal in the third direction perpendicular to the receiving surface is generated from the reflected wave, the first Doppler frequency of the first echo signal is calculated, and the second Doppler frequency of the second echo signal is calculated.
  • the third Doppler frequency of the third echo signal is calculated, and the depression angle ⁇ is calculated from the first Doppler frequency, the second Doppler frequency, and the third Doppler frequency.
  • a third aspect of the present invention is a first direction having a depression angle ⁇ with respect to a receiving surface of the transducer by transmitting ultrasonic waves into water by a transducer and receiving reflected waves of the ultrasonic waves.
  • the echo signal, the second echo signal in the second direction having the depression angle ⁇ with respect to the receiving surface and different from the first direction, and the third echo signal in the third direction perpendicular to the receiving surface.
  • the present invention relates to a program that causes a control processing circuit of a Doppler device to execute a predetermined function.
  • the program according to this embodiment has a function of calculating the first Doppler frequency of the first echo signal, a function of calculating the second Doppler frequency of the second echo signal, and the third echo signal in the control processing circuit.
  • the function of calculating the third Doppler frequency and the function of calculating the depression angle ⁇ from the first Doppler frequency, the second Doppler frequency, and the third Doppler frequency are executed.
  • a Doppler device As described above, according to the present invention, it is possible to provide a Doppler device, a depression angle estimation method and a program capable of obtaining a water temperature profile or a sound speed profile in water at low cost and in real time.
  • FIG. 1 is a diagram showing a configuration used in the method for estimating the depression angle ⁇ according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of Doppler sonar according to the first embodiment.
  • FIG. 3 is a diagram schematically showing the configuration of the transducer according to the first embodiment.
  • FIG. 4A is a block diagram showing a configuration of a control processing circuit according to the first embodiment.
  • FIG. 4B is a block diagram showing another configuration of the control processing circuit according to the first embodiment.
  • FIG. 5 is a diagram schematically showing a state of formation of a received beam according to the first embodiment.
  • FIG. 6 is a flowchart showing a temperature profile generation process performed by the control processing circuit according to the first embodiment.
  • FIG. 7 is a side view schematically showing the configuration of the transducer used for the Doppler sonar according to the second embodiment.
  • FIG. 8 is a side view schematically showing an arrangement state of the transducer according to the second embodiment.
  • FIG. 9A is a plan view of the states of the first direction, the second direction, and the third direction according to the modified example 1 when viewed from above.
  • FIG. 9B shows the state of the first direction, the second direction, and the third direction when three sets of the first direction, the second direction, and the third direction are set according to the second modification of the ship S1. It is a plan view when viewed from above.
  • FIG. 1 is a diagram showing a configuration used in the method for estimating the depression angle ⁇ according to the embodiment.
  • the transducer 11 is installed on the bottom of the ship S1.
  • the transducer 11 transmits ultrasonic waves into water and receives reflected waves of ultrasonic waves.
  • the transducer 11 is installed on the bottom of the ship so that the wavefront surface 11a forms an angle ⁇ (rad) other than 0 degrees with respect to the water surface WS.
  • the tilting direction of the wavefront surface 11a is a direction parallel to the plane including the traveling direction and the vertical direction of the ship S1.
  • the transducer 11 transmits an echo signal based on the reflected wave in the first direction d1 and the second direction d2, which are tilted back and forth by the depression angle ⁇ (rad) with respect to the receiving surface 11a, and the third direction d3, which is perpendicular to the receiving surface 11a. It can be generated.
  • the first direction d1, the second direction d2, and the third direction d3 are included in the same plane perpendicular to the receiving surface 11a. This plane is parallel to the traveling direction of the ship S1.
  • the depression angle ⁇ is, for example, 60 ° ( ⁇ / 3 rad), and the angle ⁇ is, for example, 10 ° ( ⁇ / 18 rad).
  • the ultrasonic waves transmitted in the first direction d1 and the second direction d2 with the depression angle ⁇ set in this way are subsequently subjected to the changes in the sound velocity and temperature in the water depth direction, and the first direction d1 and the second direction d2. And the direction of travel changes in a direction parallel to the plane including the third direction d3.
  • the depression angle ⁇ between the traveling direction of the ultrasonic waves transmitted in the first direction d1 and the second direction d2 and the receiving surface 11a changes depending on the water depth. Therefore, if the depression angle ⁇ at each water depth can be estimated, the state of sound velocity and temperature at that water depth can be estimated.
  • the depression angle of each water depth is estimated by the following method.
  • the second Doppler frequency fd2 observed in the second direction d2 and the third Doppler frequency fd3 observed in the third direction d3 are calculated by the following equations, respectively.
  • the first Doppler frequency fd1 in the first direction d1 the second Doppler frequency fd2 in the second direction d2, and the third Doppler frequency fd3 in the third direction d3 are obtained.
  • the estimated value of the depression angle ⁇ on the seabed B1 can be calculated by extracting from the first echo signal in the first direction d1, the second echo signal in the second direction d2, and the third echo signal in the third direction d3.
  • the water velocity VW between the ship S1 and the water in the sea becomes constant at each water depth.
  • the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 at each water depth are obtained by replacing VG in the equations (1) to (3) with V W. Therefore, the estimated value of the depression angle ⁇ at each water depth can also be calculated by the calculation of the above equation (4).
  • the Doppler frequency fd3 from the first echo signal in the first direction d1, the second echo signal in the second direction d2, and the third echo signal in the third direction d3, the depression angle ⁇ at each water depth can be calculated.
  • the estimated value of the depression angle ⁇ at the water depth D11 can be calculated.
  • FIG. 2 is a block diagram showing the configuration of the Doppler sonar 10 according to the first embodiment.
  • the Doppler sonar 10 includes a transducer 11, a transmission drive signal generation circuit 12, a transmission amplifier 13, a transmission / reception wave switching circuit 14, a reception amplifier 15, a control processing circuit 16, and a display device 17. And prepare.
  • FIG. 3 is a diagram schematically showing the configuration of the transducer 11.
  • the transducer 11 has a configuration in which a large number of transducers 111 are arranged on the same plane at a predetermined pitch d.
  • Each oscillator 111 transmits an ultrasonic wave by applying a transmission drive signal, receives the reflected wave of the ultrasonic wave, and generates a received signal.
  • the wavefronts of these oscillators 111 are on the same plane. This plane becomes the receiving surface 11a of the transducer 11.
  • the pitch d of the vibrator 111 is set to, for example, (2/3) ⁇ .
  • the transducer 11 is arranged so as to be tilted by an angle ⁇ (rad) with respect to the water surface WS (horizontal plane when the ship S1 is in the horizontal posture).
  • the transmission drive signal generation circuit 12 outputs a transmission drive signal having a transmission frequency f0 to the transmission amplifier 13 under the control of the control processing circuit 16.
  • the transmission amplifier 13 amplifies the transmission drive signal input from the transmission drive signal generation circuit 12 and outputs it to the transmission / reception wave switching circuit 14.
  • the transmission / reception wave switching circuit 14 outputs the transmission drive signal input from the transmission drive signal generation circuit 12 to each oscillator 111 of the transducer 11 under the control of the control processing circuit 16.
  • ultrasonic waves having a transmission frequency of f0 are transmitted from each oscillator 111.
  • the transmission / reception wave switching circuit 14 outputs a reception signal to the reception amplifier 15 which each oscillator 111 receives and outputs the reflected wave of ultrasonic waves under the control of the control processing circuit 16.
  • the receiving amplifier 15 amplifies and noise-removes the received signal from each oscillator 111 input from the transmission / reception wave switching circuit 14, and outputs the signal to the control processing circuit 16.
  • the control processing circuit 16 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a storage medium such as a ROM (ReadOnly Memory), a RAM (Random Access Memory), and a hard disk.
  • the control processing circuit 16 executes estimation processing of the depression angle ⁇ and generation processing of the sound speed profile and the temperature profile based on the depression angle ⁇ by controlling each part according to the program held in the storage medium 16a in advance.
  • the control processing circuit 16 may be configured by an integrated circuit such as an FPGA (Field-Programmable Gate Array).
  • the display device 17 is composed of a liquid crystal display or the like, and displays an image showing a sound speed profile or a temperature profile generated by the control processing circuit 16.
  • the display device 17 does not necessarily have to be integrated with a processing unit including a transmission drive signal generation circuit 12, a transmission amplifier 13, a transmission / reception wave switching circuit 14, a reception amplifier 15, and a control processing circuit 16.
  • the display device 17 is composed of a general-purpose display, the display device 17 is installed on the ship S1 as a device separate from the Doppler sonar 10, and is connected to the processing unit of the Doppler sonar 10 via a signal line.
  • FIG. 4A is a block diagram showing the configuration of the control processing circuit 16.
  • the control processing circuit 16 includes an echo signal generation module 101, a Doppler frequency calculation module 102, a depression angle calculation module 103, a sound speed profile calculation module 104, and a temperature profile calculation module 105. These modules may be realized as software functions by a program stored in the storage medium 16a of the control processing circuit 16, or may be configured by hardware on which a logic circuit is mounted.
  • the echo signal generation module 101 applies phase control (beamforming) to the received signal from each oscillator 111 input from the receiving amplifier 15, and as shown in FIG. 5, the first reception in the first direction d1.
  • the beam RB1, the second received beam RB2 in the second direction d2, and the third received beam RB3 in the third direction d3 are formed, respectively, and the first echo signal, the second echo signal, and the third echo signal are generated by these received beams. do.
  • the first reception beam RB1, the second reception beam RB2, and the third reception beam RB3 are formed at a predetermined spread angle. Therefore, even if the traveling directions of the ultrasonic waves and the reflected waves change within the range of the spread angle due to the temperature change in water, the first echo signal, the second echo signal, and the third echo signal based on the reflected waves are properly produced. Can be generated.
  • the Doppler frequency calculation module 102 sets the first Doppler frequency fd1 of the first echo signal, the second Doppler frequency fd2 of the second echo signal, and the third Doppler frequency fd3 of the third echo signal to the water depth. Calculated for each. Specifically, the Doppler frequency calculation module 102 identifies and identifies the time position of each water depth in the first echo signal, the second echo signal, and the third echo signal from the elapsed time after transmitting the ultrasonic wave. The frequencies of the first echo signal, the second echo signal, and the third echo signal at the time position are extracted as the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 at each water depth, respectively.
  • the depression angle calculation module 103 applies the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 of each water depth to the above equation (4) to calculate the depression angle ⁇ of each water depth. As a result, a depression angle profile in which the water depth and the depression angle ⁇ are associated with each other is generated. The depression angle calculation module 103 outputs the generated depression angle profile to the sound speed profile calculation module 104.
  • the sound speed profile calculation module 104 calculates the sound speed of each water depth from the depression angle ⁇ of each water depth.
  • a predetermined relational expression holds between the depression angle ⁇ and the speed of sound. For example, when the depression angles ⁇ in the first direction d1 and the second direction d2 with respect to the receiving surface 11a are set to 60 ° ( ⁇ / 3rad), and the pitch d of the vibrator 111 is 2/3 of the wavelength ⁇ of the transmission drive signal. , The following relational expression holds between the depression angle ⁇ and the sound velocity c.
  • the sound speed profile calculation module 104 applies the depression angle ⁇ of each water depth, the transmission frequency f0 of the transmission drive signal, and the pitch d between the vibrators 111 to the above equation (5) to calculate the sound speed c of each water depth. As a result, a sound speed profile in which the water depth and the sound velocity c are associated with each other is generated. The sound speed profile calculation module 104 outputs the generated sound speed profile to the temperature profile calculation module 105.
  • the temperature profile calculation module 105 calculates the temperature of each water depth from the sound velocity c of each water depth.
  • a predetermined relational expression such as Machenzie's expression is established between the speed of sound and the temperature.
  • the temperature profile calculation module 105 applies the sound velocity c of each water depth to this relational expression to calculate the temperature of each water depth.
  • a temperature profile in which the water depth and the temperature are associated is generated.
  • the temperature profile calculation module 105 outputs the generated temperature profile to the display device 17. As a result, the display device 17 displays a temperature profile indicating the temperature of each water depth.
  • the sound velocity c is once calculated from the depression angle ⁇ , and the temperature is further calculated from the sound velocity c, but the temperature may be calculated directly from the depression angle ⁇ .
  • the configuration of the control processing circuit 16 is changed as shown in FIG. 4 (b).
  • the sound speed profile calculation module 104 is omitted, and the temperature profile calculation module 105 is changed to the temperature profile calculation module 106.
  • the temperature profile calculation module 106 uses a calculation formula that integrates a calculation formula that defines the relationship between the depression angle ⁇ and the sound velocity c and a calculation formula that defines the relationship between the sound velocity c and the temperature, and directly from the depression angle ⁇ of each water depth. , Calculate the temperature of each water depth. As a result, a temperature profile in which the water depth and the temperature are associated is generated.
  • FIG. 6 is a flowchart showing a temperature profile generation process performed by the control processing circuit 16.
  • the control processing circuit 16 transmits an ultrasonic wave having a transmission frequency f0 from the transducer 11, and receives the reflected wave by the transducer 11 (S11).
  • the control processing circuit 16 generates a first echo signal in the first direction d1 from the reflected wave (received signal output from each oscillator 111) received by the transducer 11 in the echo signal generation module 101.
  • a second echo signal in the second direction d2 and a third echo signal in the third direction d3 are generated (S13, S14).
  • these echo signals are generated by forming the first reception beam RB1, the second reception beam RB2, and the third reception beam RB3 by beamforming.
  • the control processing circuit 16 obtains the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 from the first echo signal, the second echo signal, and the third echo signal. Calculated for each water depth (S15, S16, S17). These Doppler frequencies are calculated by extracting the frequency of each echo signal at the time position corresponding to each water depth as described above.
  • the control processing circuit 16 applies the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 of each water depth to the above equation (4), and the depression angle ⁇ of each water depth. Is calculated (S18).
  • the control processing circuit 16 After calculating the depression angle ⁇ of each water depth in this way, the control processing circuit 16 applies the depression angle ⁇ of each water depth to the above equation (5) in the sound speed profile calculation module 104, and the sound speed c (sound speed profile) of each water depth. Further, in the temperature profile calculation module 105, the sound speed c of each water depth is applied to a predetermined relational expression such as Machenzie's equation to calculate the temperature (temperature profile) of each water depth (S19).
  • the control processing circuit 16 outputs the temperature profile calculated in step S19 to the display device 17. As a result, the display device 17 performs a process of displaying the temperature profile (S20).
  • the control processing circuit 16 executes the processing after step S11 at the start timing of the next ping. This updates the display of the temperature profile.
  • the control processing circuit 16 repeatedly executes the processing of steps S11 to S20 for each ping.
  • the temperature profile directly under the ship S1 at each time point is sequentially displayed on the display device 17.
  • the user can confirm the temperature profile of each water depth in real time by referring to the image displayed on the display device 17.
  • step S20 not only the temperature profile but also the sound speed profile and the depression angle profile may be further displayed. Further, when the control processing circuit 16 has the configuration shown in FIG. 4B, the temperature profile is directly calculated from the depression angle ⁇ of each water depth in step S19. Also in this case, in step S20, the temperature profile directly under the ship S1 is sequentially displayed on the display device 17 in real time.
  • the depression angle ⁇ can be calculated in real time. Further, by applying the calculated depression angle ⁇ to the equation (4), the sound velocity of ultrasonic waves in water can be calculated, and by applying the calculated sound velocity to a relational expression such as Machenzie's equation, the temperature in water can be calculated. Can be calculated. Therefore, according to the Doppler sonar 10 according to this aspect, the speed of sound and the temperature in water can be obtained at low cost and in real time.
  • the Doppler frequency calculation module 102 has a first Doppler frequency fd1, a second Doppler frequency fd2, and a third from the first echo signal, the second echo signal, and the third echo signal at a plurality of water depths.
  • the Doppler frequency fd3 is calculated (S15 to S17), and the depression angle calculation module 103 calculates the depression angle ⁇ for each of a plurality of water depths (S18).
  • the first direction d1, the second direction d2, and the third direction d3 are set in the same plane perpendicular to the receiving surface 11a of the transducer 11 and parallel to the traveling direction of the ship S1. There is. As a result, the difference between the first Doppler frequency fd1 and the second Doppler frequency fd2 can be maximized, and the calculation accuracy of the depression angle ⁇ can be maximized. As a result, the accuracy of the sound velocity or water temperature calculated from the depression angle ⁇ can be maximized.
  • the receiving surface 11a of the transducer 11 forms an angle ⁇ that is not 0 degrees with respect to the water surface WS.
  • the depression angle ⁇ can be calculated even in a situation where there is no upwelling, and the sound velocity or water temperature can be calculated from the calculated depression angle ⁇ .
  • the depression angle calculation module 103 includes the ratio (fd1 / fd3) of the first Doppler frequency fd1 and the third Doppler frequency fd3, and the second Doppler frequency fd2 and the third Doppler frequency fd3.
  • the depression angle ⁇ is calculated based on the ratio of (fd2 / fd3).
  • the depression angle calculation module 103 calculates the depression angle ⁇ based on the sum of the first Doppler frequency fd1 and the second Doppler frequency fd2 (fd1 + fd2) and the reciprocal of the third Doppler frequency fd3 (1 / fd3).
  • the depression angle ⁇ can be appropriately calculated using the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3.
  • the Doppler sonar 10 further includes a sound speed profile calculation module 104 that calculates the sound speed c of ultrasonic waves in water from the depression angle ⁇ calculated by the depression angle calculation module 103. This makes it possible to calculate the speed of sound of ultrasonic waves at a predetermined depth in water in the Doppler sonar 10.
  • the Doppler sonar 10 further includes a temperature profile calculation module 105 that calculates the water temperature from the speed of sound c. Thereby, in the Doppler sonar 10, the temperature at a predetermined water depth in the water can be calculated.
  • the Doppler sonar 10 may be configured to include a temperature profile calculation module 106 that calculates the water temperature from the depression angle ⁇ calculated by the depression angle calculation module 103. According to this configuration, the temperature in water can be directly calculated from the depression angle ⁇ calculated by the depression angle calculation module 103 without calculating the sound velocity of the ultrasonic wave in water.
  • the transducer 11 includes a plurality of oscillators 111 arranged in an array, and as shown in FIG. 5, the echo signal generation module 101 has a first direction d1.
  • the first receive beam RB1, the second receive beam RB2 and the third receive beam RB3 are formed in the second direction d2 and the third direction d3, respectively, to generate a first echo signal, a second echo signal and a third echo signal. do.
  • the first echo signal, the second echo signal, and the third echo signal based on the reflected waves from the first direction d1, the second direction d2, and the third direction d3 can be smoothly generated.
  • a transducer 11 in which a large number of transducers 111 are arranged on the same plane at a predetermined pitch d is used.
  • FIG. 7 is a side view schematically showing the configuration of the transducer 20 used in the Doppler sonar 10 according to the second embodiment.
  • the transducer 20 includes a first oscillator 211, a second oscillator 212, and a third oscillator 213.
  • the first vibrator 211 and the second vibrator 212 are each tilted in the left-right direction by the same angle ⁇ 'with respect to the receiving surface 20a of the transducer 20.
  • the third oscillator 213 is arranged parallel to the receiving surface 20a.
  • the first oscillator 211, the second oscillator 212, and the third oscillator 213 are molded in a support 220 made of a material such as urethane.
  • a temperature sensor 214 for detecting the temperature near the wavefront surface 20a in the support 220 is molded inside the support 220 together with the first vibrator 211, the second vibrator 212 and the third vibrator 213. ing.
  • the lower surface of the support 220 is a flat surface, and this flat surface is the wave receiving surface 20a.
  • the ultrasonic waves and reflected waves transmitted to and received from the first vibrator 211 and the second vibrator 212 are refracted by the receiving surface 20a.
  • the angle formed by the ultrasonic wave after refraction and the receiving surface 20a is the depression angle ⁇ . Since the third oscillator 213 is arranged parallel to the receiving surface 20a, the ultrasonic waves and reflected waves transmitted to and received from the third oscillator 213 are not refracted by the receiving surface 20a.
  • the ultrasonic waves transmitted from the first vibrator 211, the second vibrator 212, and the third vibrator 213 pass through the receiving surface 20a and then proceed into the water at a predetermined spreading angle.
  • FIG. 8 is a side view schematically showing the arrangement state of the transducer 20.
  • the transducer 20 is arranged so that the wave receiving surface 20a is tilted by the angle ⁇ with respect to the water surface WS.
  • the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 by VG are obtained for the ground speed by the above equations (1) to (3), respectively.
  • the depression angle ⁇ at each depth of water is calculated by the above equation (4).
  • the calculation formula for estimating the speed of sound at each water depth is changed from the above formula (5) to the following formula.
  • c' is the speed at which the ultrasonic waves transmitted from the first vibrator 211, the second vibrator 212, and the third vibrator 213 propagate the substance in the support 220, and the temperature thereof is the same. It can be defined by the material of the substance and the temperature of the substance near the receiving surface 20a, that is, the temperature detected by the temperature sensor 214. Further, ⁇ 'is a mounting angle of the first oscillator 211 and the second oscillator 212 shown in FIG. 8, and is defined in advance.
  • the depression angle ⁇ of each water depth calculated by the above formula (4), the sound velocity c'of the substance in the support 220, and the mounting angle ⁇ 'of the first vibrator 211 and the second vibrator 212 are set to the above formula (6).
  • the speed of sound c at each water depth can be calculated.
  • the Doppler sonar 10 has the same configuration as that of FIG. 2 except for the configuration of the transducer 20, and the control processing circuit 16 also has the same configuration as that of FIG. 4A. Further, the control processing circuit 16 performs the same processing as in FIG. 6 according to the configuration of FIG. 4A.
  • step S11 of FIG. 6 the control processing circuit 16 is superposed in the first direction d1, the second direction d2, and the third direction d3 by the first oscillator 211, the second oscillator 212, and the third oscillator 213.
  • the echo signal generation module 101 does not generate a received beam by beam forming as in the first embodiment, but receives the reflected wave to receive the first vibrator 211 and the second oscillator.
  • the first echo signal, the second echo signal, and the third echo signal are generated by using the received signal (received signal after amplification and noise removal by the receiving amplifier 15) output from the vibrator 212 and the third vibrator 213 as they are. (Steps S12 to S14 in FIG. 6).
  • the Doppler frequency calculation module 102 identifies a time position corresponding to each water depth from the input first echo signal, second echo signal, and third echo signal, and from the specified time position, the first The 1 Doppler frequency fd1, the 2nd Doppler frequency fd2, and the 3rd Doppler frequency fd3 are calculated (steps S15 to S17 in FIG. 6). Similar to the first embodiment, the depression angle calculation module 103 substitutes the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd3 calculated for each water depth into the above equation (4) for each water depth. The depression angle ⁇ is calculated (S18).
  • the sound speed profile calculation module 104 substitutes the calculated depression angle ⁇ of each water depth into the above equation (6) to calculate the sound speed c of each water depth.
  • the ultrasonic waves transmitted from the first vibrator 211, the second vibrator 212, and the third vibrator 213 are supported by the sound speed profile calculation module 104 based on the temperature detected by the temperature sensor 214.
  • the sound speed c'propagating the substance near the receiving surface 20a in the 220 is obtained, and the obtained sound speed c'and the known mounting angle ⁇ 'are substituted into the above equation (6).
  • the sound velocity c' may be acquired from a conversion table in which the temperature detected by the temperature sensor 214 and the sound velocity c'are associated with each other.
  • the sound speed profile calculation module 104 holds the conversion table in advance, and acquires the sound speed c'corresponding to the temperature detected by the temperature sensor 214 from the conversion table.
  • the sound speed profile calculation module 104 may be calculated from a relational expression that defines the relationship between the temperature detected by the temperature sensor 214 and the sound speed c'.
  • the processing of the temperature profile calculation module 105 in step S19 is the same as that of the first embodiment.
  • the temperature profile calculation module 105 applies the sound velocity c calculated for each water depth by the above equation (6) to a predetermined relational expression such as Machenzie's equation to calculate the temperature of each water depth.
  • the process of step S20 is the same as that of the first embodiment. In this way, the temperature profile directly under the ship S1 is displayed on the display device 17.
  • the temperature profile can be displayed in real time by the simpler configuration.
  • step S20 of FIG. 6 not only the temperature profile but also the sound speed profile and the depression angle profile may be displayed.
  • the control processing circuit 16 may have the configuration shown in FIG. 4 (b).
  • the temperature profile calculation module 106 has a depression angle ⁇ of each water depth calculated by the depression angle calculation module 103 by an equation that integrates the equation (6) and a relational expression such as the Machenzie equation, and the depression angle ⁇ in the support 20.
  • the temperature profile is directly calculated from the sound velocity c'and the mounting angle ⁇ 'of the first vibrator 211 and the second vibrator 212.
  • step S20 of FIG. 6 the temperature profile directly under the ship S1 is displayed on the display device 17 in real time.
  • the plane including the first direction d1, the second direction d2 and the third direction d3 is parallel to the traveling direction of the ship S1, but this plane is parallel to the traveling direction of the ship S1. It may be tilted by an angle ⁇ in the horizontal direction.
  • FIG. 9A is a plan view of the states of the first direction d1, the second direction d2, and the third direction d3 in this case when viewed from above the ship S1.
  • the plane P0 (the plane parallel to the vertical direction) including the first direction d1, the second direction d2, and the third direction d3 becomes the traveling direction d0 of the ship S1.
  • it is tilted horizontally by an angle ⁇ . That is, in this modification 1, the formation directions of the first reception beam RB1, the second reception beam RB2, and the third reception beam RB3 shown in the first embodiment are relative to the traveling direction d0 of the ship S1 in a plan view. It is tilted by the angle ⁇ .
  • the first direction d1 and the second direction d2 have a depression angle ⁇ with respect to the receiving surface 11a. Further, the wavefront surface 11a is tilted by an angle ⁇ with respect to the water surface WS.
  • the Doppler frequency of each water depth acquired by is calculated by the following formula.
  • the cos ⁇ of the denominator numerator is reduced and the same relational expression as the above equation (4) is established. Therefore, in this case as well, as in the first embodiment, the first Doppler frequency fd1, the second Doppler frequency fd2, and the third Doppler frequency fd1 at each water depth are provided by the first reception beam RB1, the second reception beam RB2, and the third reception beam RB3.
  • the frequency fd3 the depression angle ⁇ of each water depth can be calculated by the above equation (4), and the sound speed profile and the temperature profile can be calculated as in the first embodiment.
  • the first Doppler frequency fd1 and the second Doppler frequency fd2 have a cos ⁇ , as compared with the case where the plane P0 is parallel to the traveling direction of the ship S1 as in the first embodiment. It becomes smaller by the amount multiplied. Therefore, the difference between the first Doppler frequency fd1 and the second Doppler frequency fd2 calculated on the left side of the above equation (4) is smaller than that of the first embodiment. Therefore, in the case of FIG. 9A, this difference is more susceptible to noise and the like as compared with the first embodiment, and the calculation accuracy of the depression angle ⁇ is lowered.
  • the plane P0 close to the traveling direction d0 of the ship S1 and to make the plane P0 parallel to the traveling direction d0 of the ship S1 as in the first embodiment. It is most preferable to set it. As a result, the calculation accuracy of the sound speed profile and the temperature profile can be maximized.
  • the angle ⁇ between the traveling direction d0 of the ship S1 and the plane P0 is 90 °, that is, when the plane P0 is set parallel to the left-right direction of the ship S1, the first direction d1 and the second direction d1 and the second. Since the Doppler shift does not occur in the direction d2, the depression angle ⁇ of each water depth cannot be calculated. Therefore, when the plane P0 is tilted with respect to the traveling direction d0 of the ship S1 as shown in FIG. 9A, it is necessary to set the angle ⁇ to less than 90 °.
  • the method of FIG. 9A can also be applied to the above-mentioned second embodiment.
  • the calculation accuracy of the depression angle ⁇ is lower than that in the case where the plane P0 is set parallel to the traveling direction d0 of the ship S1. Therefore, even in the configuration of the second embodiment, it is most preferable that the plane P0 including the first direction d1, the second direction d2, and the third direction d3 is set parallel to the traveling direction d0 of the ship S1.
  • FIG. 9B shows the states of the first direction, the second direction, and the third direction when three pairs of the first direction, the second direction, and the third direction are set, when viewed from above the ship S1. It is a plan view of.
  • the plane P1 is parallel to the traveling direction d0 of the ship S1, and the planes P2 and P3 are tilted in horizontal directions different from each other by an angle ⁇ with respect to the traveling direction d0 of the ship S1.
  • the first direction d11, the second direction d12 and the third direction d13 are set in the plane P1
  • the first direction d21, the second direction d22 and the third direction d23 are set in the plane P2
  • the first direction d23 is set in the plane P3.
  • the direction d31, the second direction d32, and the third direction d33 are set.
  • reception beams are formed in the first direction d11, the second direction d12, and the third direction d13, respectively, and the above equation (4) is used.
  • the depression angle ⁇ of each water depth is calculated.
  • reception beams are formed in the first direction d21, the second direction d22, and the third direction d23, respectively, and the depression angle ⁇ of each water depth is calculated, and further, in the first direction d31, the second direction d32, and the third direction d33.
  • Each received beam is formed, and the depression angle ⁇ of each water depth is calculated. In this way, the depression angle ⁇ of each water depth is calculated for each pair of the first direction, the second direction, and the third direction (for each of the planes P1, P2, and P3).
  • the depression angle calculation module 103 of FIG. 4A sets a representative value of the depression angle ⁇ of each water depth by using the depression angle ⁇ of each water depth calculated for each set. For example, the depression angle calculation module 103 sets the average value of the depression angle ⁇ of each water depth calculated for each set as the representative value of the depression angle ⁇ of each water depth.
  • the sound speed profile calculation module 104 of FIG. 4A calculates a sound speed profile using a representative value of the depression angle ⁇ of each water depth.
  • the depression angle ⁇ calculated for the plane P1 parallel to the traveling direction d0 of the ship S1 is the depression angle calculated for the planes P2 and P3 tilted with respect to the traveling direction d0 of the ship S1.
  • the weighting of the depression angle ⁇ calculated for the plane P1 is set to be larger than the depression angle ⁇ calculated for the planes P2 and P3, and the weighted average is set. And this average value may be set as a representative value of the depression angle ⁇ .
  • the size of the weighting may be set so as to become smaller as the angle formed by the traveling direction d0 of the ship S1 and each plane becomes larger, for example.
  • the weighting of the depression angle ⁇ calculated for the plane P2 and the plane P3 may be different depending on the size of the formed angle ⁇ .
  • the depression angle ⁇ calculated for each plane may be selectively used and set as a representative value of the depression angle ⁇ at each water depth.
  • the most accurate depression angle ⁇ acquired for the plane P1 is set as a representative value
  • the depression angle ⁇ calculated for the plane P1 is relative to the depression angle ⁇ calculated for the other two planes P2 and P3.
  • the average value of the depression angles ⁇ calculated for the other two planes P2 and P3, or one of the depression angles ⁇ may be set as the representative value.
  • the depression angle ⁇ of each water depth can be calculated more accurately and stably. This can improve the accuracy of the sound speed profile and the temperature profile.
  • the method of FIG. 9B can also be applied to the second embodiment. In this case, it is necessary to arrange the transducer 20 individually for each plane.
  • the depression angle ⁇ , the sound velocity c and the temperature are calculated for a plurality of water depths, but the depression angle ⁇ , the sound velocity c and the temperature are calculated for one target water depth. May be good.
  • the user may be able to appropriately change the target water depth to a desired water depth.
  • the user may arbitrarily set a plurality of target water depths.
  • the oscillators both transmit and receive waves, but the Doppler is based on the reflected waves from the first direction, the second direction, and the third direction.
  • the oscillator for transmitting waves and the oscillator for receiving waves may be arranged separately.
  • the configurations of the transducers 11 and 20 are not limited to the configurations shown in the first and second embodiments, and the Doppler frequency based on the reflected waves from the first direction, the second direction and the third direction can be calculated. As long as it is, other configurations may be used.
  • the number and layout of the transducers 111 may be changed, and the pitch d between the transducers 111 may also be changed from 2/3 of the wavelength ⁇ of the transmission drive signal.
  • the above equation (5) is also changed.
  • the depression angle ⁇ in the first direction d1 and the second direction d2 with respect to the receiving surface 11a is set to 60 ° ( ⁇ / 3rad)
  • the pitch d between the oscillators 111 is set to 1/3 of the wavelength ⁇ of the transmission drive signal.
  • the denominator on the right side of the equation (5) is modified to 6f0 ⁇ d.
  • the equation (5) is also changed accordingly.
  • Doppler sonar 11 Transducer 11a Wave receiving surface 16
  • Control processing circuit 20 Transducer 20a Wave receiving surface 101
  • Echo signal generation module 102
  • Doppler frequency calculation module 103
  • Depression calculation module 104
  • Sound speed profile calculation module 105
  • Temperature profile calculation module 111
  • Transducer 211 First vibration Child 212 2nd oscillator 213 3rd oscillator d1 1st direction d2 2nd direction d3 3rd direction RB1 1st reception beam RB2 2nd reception beam RB3 3rd reception beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】水中の音速または温度を低コスト且つリアルタイムで得ることが可能なドップラー装置、俯角推定方法およびプログラムを提供する。 【解決手段】ドップラー装置は、トランスデューサ11の受波面11aに対して俯角θを有する第1方向d1の第1エコー信号を超音波の反射波から生成し、受波面11aに対して俯角θを有し、且つ、第1方向d1とは異なる第2方向d2の第2エコー信号を反射波から生成し、さらに、受波面11aに垂直な第3方向d3の第3エコー信号を反射波から生成する。ドップラー装置は、第1エコー信号の第1ドップラー周波数を算出し、第2エコー信号の第2ドップラー周波数を算出し、第3エコー信号の第3ドップラー周波数を算出する。ドップラー装置は、第1ドップラー周波数、第2ドップラー周波数および第3ドップラー周波数から俯角θを算出する。

Description

ドップラー装置、俯角推定方法およびプログラム
 本発明は、ドップラー効果を用いて所定の計測を行うドップラー装置、俯角推定方法およびプログラムに関する。
 船底に装備された温度計(サーミスタ等)により容易に測定可能な表層の温度ではなく、中層に生息する魚の生態に直接影響する中層の海水温を、船上からリモートで測定したいとのニーズが、海洋漁業の分野において古くから存在する。
 このようなニーズに応える方法として、温度プローブを用いて様々な深度における水温を測定する方法が知られている。たとえば、以下の特許文献1に、この種の方法が記載されている。しかし、この方法には、水中の水温プロファイルをリアルタイムで得ることができないとの問題がある。
 また、上記ニーズに応える他の方法として、水面の温度と、自装置と反射体(浮遊物)との間の相対速度と、所定の俯角で送波された音波とその反射波との周波数差からなるドップラー周波数とに基づいて、反射体表面の水温を算出する方法が知られている。たとえば、以下の特許文献2に、この種の方法が記載されている。しかし、この方法には、水温の算出に様々な検出部が必要となるため、装置のコストが高くなるといった問題がある。
米国特許第4118782号 特開2016-031362号公報
 上記のように、従来の2つの方法には、リアルタイムで水温プロファイルを得られないといった問題と、装置のコストが上昇するといった問題がある。他方、水中を伝搬する超音波の音速は、水温の変化に伴い変化する。したがって、水中の音速プロファイルを簡易且つリアルタイムで得られれば、得られた音速プロファイルから水中の水温プロファイルを算出することが可能である。
 上記課題に鑑み、本発明は、水中の音速または温度を低コスト且つリアルタイムで得ることが可能なドップラー装置、俯角推定方法およびプログラムを提供することを目的とする。
 なお、「ドップラー装置」とは、ドップラー効果を用いて所定の計測を行う装置を意味し、ドップラーソナーの他、潮流計やADCP(Acoustic Doppler Current profiler)
等を広く含み得る。
 本発明の第1の態様はドップラー装置に関する。この態様に係るドップラー装置は、水中に超音波を送波するとともに前記超音波の反射波を受波するトランスデューサと、エコー信号生成モジュールと、ドップラー周波数演算モジュールと、俯角演算モジュールと、を備える。前記エコー信号生成モジュールは、前記トランスデューサの受波面に対して俯角θを有する第1方向の第1エコー信号を前記反射波から生成する。また、前記エコー信
号生成モジュールは、前記トランスデューサの前記受波面に対して前記俯角θを有し、且つ、前記第1方向とは異なる第2方向の第2エコー信号を前記反射波から生成する。さらに、前記エコー信号生成モジュールは、前記トランスデューサの前記受波面に垂直な第3方向の第3エコー信号を前記反射波から生成する。前記ドップラー周波数演算モジュールは、前記第1エコー信号の第1ドップラー周波数を算出し、前記第2エコー信号の第2ドップラー周波数を算出し、前記第3エコー信号の第3ドップラー周波数を算出する。前記俯角演算モジュールは、前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数から前記俯角θを算出する。
 本態様に係るドップラー装置によれば、トランスデューサを用いた簡素な構成により、俯角θをリアルタイムで算出できる。算出された俯角θを所定の数式に適用することにより、水中における超音波の音速および水中の温度を算出可能である。よって、本態様に係るドップラー装置によれば、水中の水温または音速を、低コスト且つリアルタイムで、得ることができる。
 本態様に係るドップラー装置において、前記ドップラー周波数演算モジュールは、複数の水深において、前記第1エコー信号、前記第2エコー信号および前記第3エコー信号から、前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数を算出し、前記俯角演算モジュールは、前記複数の水深ごとに前記俯角θを算出するよう構成され得る。
 この構成によれば、複数の水深について、水深ごとに、俯角θを算出できる。よって、水深ごとに算出された俯角θを所定の算出式に適用することで、各水深の水温または音速を得ることができる。
 本態様に係るドップラー装置において、前記第1方向、前記第2方向および前記第3方向は、前記トランスデューサの前記受波面に垂直な同一平面に設定され得る。
 前記第1方向、前記第2方向および前記第3方向が設定される平面が、船の進行方向に対して平行に近づくほど、第1ドップラー周波数と第3ドップラー周波数との間の差が大きくなる。第1ドップラー周波数と第3ドップラー周波数との間の差が大きくなるほど、俯角θの算出において、ノイズ等の影響を受けにくくなり、俯角θの算出精度が高まる。このため、前記第1方向、前記第2方向および前記第3方向が設定される平面が、船の進行方向に対して平行に近づくほど、俯角θの算出精度が高まり、結果、音速または水温の算出精度が高まる。
 したがって、第1ビーム、第2ビームおよび第3ビームが形成される前記平面は、船の進行方向に対して平行であることが最も好ましい。これにより、第1ドップラー周波数と第2ドップラー周波数との間の差を最も大きくでき、俯角θの算出精度を最も高めることができる。結果、俯角θから算出される音速または水温の精度を最も高めることができる。
 本態様に係るドップラー装置において、前記トランスデューサの前記受波面は、水面に対して、0度でない角度βをなしていることが好ましい。
 このように受波面を水面に対して傾けることにより、湧昇流がない状況においても俯角θを算出でき、算出した俯角θから音速または水温を算出することができる。
 本態様に係るドップラー装置において、前記俯角演算モジュールは、前記第1ドップラー周波数と前記第3ドップラー周波数との比、および前記第2ドップラー周波数と前記第
3ドップラー周波数との比とに基づいて、前記俯角θを算出するよう構成され得る。
 あるいは、前記俯角演算モジュールは、前記第1ドップラー周波数および前記第2ドップラー周波数の合計と、前記第3ドップラー周波数の逆数とに基づいて、前記俯角θを算出するよう構成され得る。
 これらの算出方法によれば、第1ドップラー周波数、第2ドップラー周波数および第3ドップラー周波数を用いて俯角θを適正に算出することができる。
 本態様に係るドップラー装置は、前記俯角演算モジュールにより算出された前記俯角θから、水中における超音波の音速を算出する音速プロファイル演算モジュールをさらに備え得る。
 この構成によれば、俯角演算モジュールにより算出された俯角θから、水中における超音波の音速をリアルタイムで算出することができる。
 この場合、ドップラー装置は、前記音速から水温を算出する温度プロファイル演算モジュールをさらに備え得る。
 この構成によれば、音速プロファイル演算モジュールにより算出された音速から、水中における温度をリアルタイムで算出することができる。
 あるいは、本態様に係るドップラー装置は、前記俯角演算モジュールにより算出された前記俯角θから水温を算出する温度プロファイル演算モジュールをさらに備え得る。
 この構成によれば、水中における超音波の音速を算出することなく、俯角演算モジュールにより算出された俯角θから水中の温度を直接算出することができる。
 本態様に係るドップラー装置において、前記トランスデューサは、アレイ状に配置された複数の振動子を備え、前記エコー信号生成モジュールは、前記第1方向、前記第2方向および前記第3方向に第1ビーム、第2ビームおよび第3ビームをそれぞれ形成して、前記第1エコー信号、前記第2エコー信号および前記第3エコー信号を生成するよう構成され得る。
 あるいは、本態様に係るドップラー装置において、前記トランスデューサは、前記第1方向、前記第2方向および前記第3方向にそれぞれ送受波する第1振動子、第2振動子および第3振動子を備え、前記エコー信号生成モジュールは、前記第1振動子、前記第2振動子および前記第3振動子により受波された反射波から、前記第1エコー信号、前記第2エコー信号および前記第3エコー信号を生成するよう構成され得る。
 本発明の第2の態様は、俯角推定方法に関する。この態様に係る俯角推定方法は、トランスデューサから水中に超音波を送波し、前記超音波の反射波を前記トランスデューサで受波し、前記トランスデューサの受波面に対して俯角θを有する第1方向の第1エコー信号を前記反射波から生成し、前記受波面に対して前記俯角θを有し、且つ、前記第1方向とは異なる第2方向の第2エコー信号を前記反射波から生成し、前記受波面に垂直な第3方向の第3エコー信号を前記反射波から生成し、前記第1エコー信号の第1ドップラー周波数を算出し、前記第2エコー信号の第2ドップラー周波数を算出し、前記第3エコー信号の第3ドップラー周波数を算出し、前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数から前記俯角θを算出する。
 本態様に係る俯角推定方法によれば、上記第1の態様と同様の効果が奏され得る。
 本発明の第3の態様は、トランスデューサにより水中に超音波を送波するとともに前記超音波の反射波を受波して、前記トランスデューサの受波面に対して俯角θを有する第1方向の第1エコー信号と、前記受波面に対して前記俯角θを有し、且つ、前記第1方向とは異なる第2方向の第2エコー信号と、前記受波面に垂直な第3方向の第3エコー信号とを生成するドップラー装置の制御処理回路に、所定の機能を実行させるプログラムに関する。この態様に係るプログラムは、前記制御処理回路に、前記第1エコー信号の第1ドップラー周波数を算出する機能と、前記第2エコー信号の第2ドップラー周波数を算出する機能と、前記第3エコー信号の第3ドップラー周波数を算出する機能と、前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数から前記俯角θを算出する機能と、を実行させる。
 本態様に係るプログラムによれば、上記第1の態様と同様の効果が奏され得る。
 以上のとおり、本発明によれば、水中の水温プロファイルまたは音速プロファイルを低コスト且つリアルタイムで得ることが可能なドップラー装置、俯角推定方法およびプログラムを提供できる。
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。
図1は、実施形態1に係る、俯角θの推定方法に用いる構成を示す図である。 図2は、実施形態1に係る、ドップラーソナーの構成を示すブロック図である。 図3は、実施形態1に係る、トランスデューサの構成を模式的に示す図である。 図4(a)は、実施形態1に係る、制御処理回路の構成を示すブロック図である。図4(b)は、実施形態1に係る、制御処理回路の他の構成を示すブロック図である。 図5は、実施形態1に係る、受信ビームの形成状態を模式的に示す図である。 図6は、実施形態1に係る、制御処理回路によって行われる温度プロファイルの生成処理を示すフローチャートである。 図7は、実施形態2に係る、ドップラーソナーに用いられるトランスデューサの構成を模式的に示す側面図である。 図8は、実施形態2に係る、トランスデューサの配置状態を模式的に示す側面図である。 図9(a)は、変更例1に係る、第1方向、第2方向および第3方向の状態を上方から見たときの平面図である。図9(b)は、変更例2に係る、第1方向、第2方向および第3方向の組が3つ設定される場合の第1方向、第2方向および第3方向の状態を船S1の上方から見たときの平面図である。
 以下、本発明の実施形態について図面を参照して説明する。以下の実施形態には、ドップラー装置の一例として、漁船等の船体に設置されるドップラーソナーに本発明を適用し
た例が示されている。ただし、以下の実施形態は、本発明の一実施形態あって、本発明は、以下の実施形態に何ら制限されるものではない。
 <俯角θの推定方法>
 図1は、実施形態に係る、俯角θの推定方法に用いる構成を示す図である。
 図1に示すように、この推定方法では、船S1の船底に、トランスデューサ11が設置される。トランスデューサ11は、水中に超音波を送波するとともに、超音波の反射波を受波する。トランスデューサ11は、受波面11aが水面WSに対して0度以外の角度β(rad)をなすように、船底に設置される。受波面11aの傾く方向は、船S1の進行方向と鉛直方向とを含む平面に平行な方向である。
 トランスデューサ11は、受波面11aに対して俯角θ(rad)だけ前後にそれぞれ傾く第1方向d1および第2方向d2と、受波面11aに垂直な第3方向d3において、反射波に基づくエコー信号を生成可能である。第1方向d1、第2方向d2および第3方向d3は、受波面11aに垂直な同一の平面に含まれる。この平面は、船S1の進行方向に平行である。俯角θは、たとえば60°(π/3rad)であり、角度βは、たとえば10°(π/18rad)である。
 このように俯角θが設定されて、第1方向d1および第2方向d2に送波された超音波は、その後、水深方向における音速および温度の変化に伴い、第1方向d1、第2方向d2および第3方向d3を含む平面に平行な方向に、進行方向が変化する。これにより、第1方向d1および第2方向d2に送波された超音波の進行方向と受波面11aとの間の俯角θが、水深により変化する。したがって、各水深における俯角θを推定できれば、その水深の音速および温度の状態を推定できる。本実施形態では、各水深の俯角を、以下の手法により推定する。
 図1の構成において、船S1の対地速度をV(m/s)、対水速度をV(m/s)とすると、第1方向d1におけるトランスデューサ11と海底B1との間の音軸方向の相対速度は、Vcos(θ+β)となる。したがって、トランスデューサ11の送信周波数をf0、海底付近の音速をcとしたとき、第1方向d1において観測される第1ドップラー周波数fd1は、次式で算出される。
Figure JPOXMLDOC01-appb-M000001
 同様に、第2方向d2において観測される第2ドップラー周波数fd2と、第3方向d3において観測される第3ドップラー周波数fd3は、それぞれ、次式で算出される。
Figure JPOXMLDOC01-appb-M000002
  したがって、上記式(1)~(3)から次式が得られる。
Figure JPOXMLDOC01-appb-M000003
 上記式(4)から、海底B1から反射された反射波について、第1方向d1の第1ドップラー周波数fd1、第2方向d2の第2ドップラー周波数fd2および第3方向d3の第3ドップラー周波数fd3を、第1方向d1の第1エコー信号、第2方向d2の第2エコー信号および第3方向d3の第3エコー信号から抽出することにより、海底B1における俯角θの推定値を算出できる。
 また、各水深における流速が一定である場合、船S1と海中の水との間の対水速度Vは水深ごとに一定となる。この場合、各水深における第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3は、式(1)~(3)のVをVに置き換えることにより求められる。したがって、各水深における俯角θの推定値も、上記式(4)の演算により算出できる。
 この場合、各水深の浮遊物等(反射体)で反射された反射波について、第1方向d1の第1ドップラー周波数fd1、第2方向d2の第2ドップラー周波数fd2および第3方向d3の第3ドップラー周波数fd3を、第1方向d1の第1エコー信号、第2方向d2の第2エコー信号および第3方向d3の第3エコー信号から抽出することにより、各水深における俯角θを算出できる。たとえば、第1方向d1の第1エコー信号、第2方向d2の第2エコー信号および第3方向d3の第3エコー信号から、図1の水深D11に対応する位置(時間位置)の周波数を第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3として抽出して上記式(4)に適用することにより、水深D11における俯角θの推定値を算出できる。
 <実施形態1>
 上記俯角θの推定方法が適用されたドップラーソナーの構成例について以下に説明する。以下のドップラーソナーでは、上記推定方法に基づいて俯角θが推定され、さらに、推定された俯角θから、各水深の音速プロファイルおよび温度プロファイルが生成される。
 図2は、実施形態1に係る、ドップラーソナー10の構成を示すブロック図である。
 図2に示すように、ドップラーソナー10は、トランスデューサ11と、送信駆動信号
生成回路12と、送信アンプ13と、送受波切替回路14と、受信アンプ15と、制御処理回路16と、表示装置17とを備える。
 図3は、トランスデューサ11の構成を模式的に示す図である。
 トランスデューサ11は、多数の振動子111が所定のピッチdで同一平面上に配置された構成である。各振動子111は、送信駆動信号が印加されることにより超音波を送波し、当該超音波の反射波を受波して受信信号を生成する。これら振動子111の送受波面は、同一平面上にある。この平面が、トランスデューサ11の受波面11aとなる。送信駆動信号の波長(超音波の基準波長)をλとした場合、振動子111のピッチdは、たとえば、(2/3)λに設定される。上記のように、トランスデューサ11は、水面WS(船S1が水平姿勢にあるときの水平面)に対して角度β(rad)だけ傾くように配置される。
 図2に戻り、送信駆動信号生成回路12は、制御処理回路16からの制御により、送信周波数f0の送信駆動信号を送信アンプ13に出力する。送信アンプ13は、送信駆動信号生成回路12から入力された送信駆動信号を増幅して送受波切替回路14に出力する。送受波切替回路14は、制御処理回路16からの制御により、送信駆動信号生成回路12から入力された送信駆動信号を、トランスデューサ11の各振動子111に出力する。これにより、各振動子111から送信周波数f0の超音波が送波される。また、送受波切替回路14は、制御処理回路16からの制御により、各振動子111が超音波の反射波を受波して出力する受信信号を受信アンプ15に出力する。
 受信アンプ15は、送受波切替回路14から入力された各振動子111からの受信信号を増幅およびノイズ除去して制御処理回路16に出力する。制御処理回路16は、CPU(Central Processing Unit)等の演算処理回路と、ROM(ReadOnly Memory)、RAM(Random Access Memory)や、ハードディスク等の記憶媒体とを備える。制御処理回路16は、記憶媒体16aに予め保持したプログラムに従って各部を制御することにより、俯角θの推定処理と、俯角θに基づく音速プロファイルおよび温度プロファイルの生成処理を実行する。制御処理回路16が、FPGA(Field-Programmable Gate Array)等の集
積回路で構成されてもよい。
 表示装置17は、液晶ディスプレイ等により構成され、制御処理回路16により生成された音速プロファイルまたは温度プロファイルを示す画像を表示する。表示装置17は、必ずしも、送信駆動信号生成回路12、送信アンプ13、送受波切替回路14、受信アンプ15および制御処理回路16を含む処理ユニットと一体化されていなくてもよい。表示装置17が汎用のディスプレイからなる場合、表示装置17は、ドップラーソナー10とは別の装置として、船S1に設置され、信号線を介して、ドップラーソナー10の処理ユニットに接続される。
 図4(a)は、制御処理回路16の構成を示すブロック図である。
 制御処理回路16は、エコー信号生成モジュール101と、ドップラー周波数演算モジュール102と、俯角演算モジュール103と、音速プロファイル演算モジュール104と、温度プロファイル演算モジュール105と、を備える。これらのモジュールは、制御処理回路16の記憶媒体16aに記憶されたプログラムによりソフトウエアの機能として実現されてもよく、あるいは、ロジック回路を実装したハードウエアにより構成されてもより。
 エコー信号生成モジュール101は、受信アンプ15から入力される各振動子111か
らの受信信号に、位相制御(ビームフォーミング)を適用して、図5に示すように、第1方向d1の第1受信ビームRB1、第2方向d2の第2受信ビームRB2および第3方向d3の第3受信ビームRB3をそれぞれ形成し、これら受信ビームにより、第1エコー信号、第2エコー信号および第3エコー信号を生成する。
 図5に示すように、第1受信ビームRB1、第2受信ビームRB2および第3受信ビームRB3は、所定の広がり角で形成される。このため、水中の温度変化により超音波および反射波の進行方向が当該広がり角の範囲内で変化しても、反射波に基づく第1エコー信号、第2エコー信号および第3エコー信号が適正に生成され得る。
 図4(a)に戻り、ドップラー周波数演算モジュール102は、第1エコー信号の第1ドップラー周波数fd1、第2エコー信号の第2ドップラー周波数fd2および第3エコー信号の第3ドップラー周波数fd3を、水深ごとに算出する。具体的には、ドップラー周波数演算モジュール102は、超音波を送波した後の経過時間から、第1エコー信号、第2エコー信号および第3エコー信号における各水深の時間位置を特定し、特定した時間位置における第1エコー信号、第2エコー信号および第3エコー信号の周波数を、各水深における第1ドップラー周波数fd1、第2ドップラー周波数fd2およびの第3ドップラー周波数fd3としてそれぞれ抽出する。
 俯角演算モジュール103は、各水深の第1ドップラー周波数fd1、第2ドップラー周波数fd2およびの第3ドップラー周波数fd3を上記式(4)に適用して、各水深の俯角θを算出する。これにより、水深と俯角θとが対応付けられた俯角プロファイルが生成される。俯角演算モジュール103は、生成した俯角プロファイルを音速プロファイル演算モジュール104に出力する。
 音速プロファイル演算モジュール104は、各水深の俯角θから各水深の音速を算出する。俯角θと音速との間には、所定の関係式が成立する。たとえば、受波面11aに対する第1方向d1および第2方向d2の俯角θが60°(π/3rad)に設定され、振動子111のピッチdが送信駆動信号の波長λの2/3である場合、俯角θと音速cとの間に以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000004
 音速プロファイル演算モジュール104は、上記式(5)に各水深の俯角θと、送信駆動信号の送信周波数f0および振動子111間のピッチdを適用して、各水深の音速cを算出する。これにより、水深と音速cとが対応付けられた音速プロファイルが生成される。音速プロファイル演算モジュール104は、生成した音速プロファイルを温度プロファイル演算モジュール105に出力する。
 温度プロファイル演算モジュール105は、各水深の音速cから各水深の温度を算出する。音速と温度との間には、Machenzieの式等の所定の関係式が成立する。温度プロファイル演算モジュール105は、この関係式に各水深の音速cを適用して、各水深の温度を算出する。これにより、水深と温度とが対応付けられた温度プロファイルが生成される。温度プロファイル演算モジュール105は、生成した温度プロファイルを表示装
置17に出力する。これにより、表示装置17において、各水深の温度を示す温度プロファイルが表示される。
 なお、ここでは、俯角θから、一旦、音速cが算出され、さらに音速cから温度が算出されたが、俯角θから直接、温度が算出されてもよい。この場合、制御処理回路16の構成は、図4(b)のように変更される。この構成では、音速プロファイル演算モジュール104が省略され、温度プロファイル演算モジュール105が温度プロファイル演算モジュール106に変更される。温度プロファイル演算モジュール106は、俯角θと音速cとの関係を規定する演算式と、音速cと温度との関係を規定する演算式とを統合した演算式により、各水深の俯角θから、直接、各水深の温度を算出する。これにより、水深と温度とが対応付けられた温度プロファイルが生成される。
 図6は、制御処理回路16によって行われる温度プロファイルの生成処理を示すフローチャートである。
 まず、制御処理回路16は、トランスデューサ11から送信周波数f0の超音波を送波し、その反射波をトランスデューサ11で受波する(S11)。次に、制御処理回路16は、エコー信号生成モジュール101において、トランスデューサ11が受波した反射波(各振動子111から出力される受信信号)から、第1方向d1の第1エコー信号を生成するとともに(S12)、第2方向d2の第2エコー信号および第3方向d3の第3エコー信号を生成する(S13、S14)。これらエコー信号の生成は、図5を参照して説明したとおり、ビームフォーミングにより、第1受信ビームRB1、第2受信ビームRB2および第3受信ビームRB3を形成することにより行われる。
 さらに、制御処理回路16は、ドップラー周波数演算モジュール102において、第1エコー信号、第2エコー信号および第3エコー信号から、第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を、水深ごとに算出する(S15、S16、S17)。これらドップラー周波数の算出は、上記のとおり、各水深に対応する時間位置における各エコー信号の周波数を抽出することにより行われる。
 そして、制御処理回路16は、俯角演算モジュール103において、各水深の第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を上記式(4)に適用して、各水深の俯角θを算出する(S18)。
 こうして、各水深の俯角θを算出した後、制御処理回路16は、音速プロファイル演算モジュール104において、各水深の俯角θを上記式(5)に適用して、各水深の音速c(音速プロファイル)を算出し、さらに、温度プロファイル演算モジュール105において、各水深の音速cをMachenzieの式等の所定の関係式に適用して、各水深の温度(温度プロファイル)を算出する(S19)。
 制御処理回路16は、ステップS19で算出した温度プロファイルを表示装置17に出力する。これにより、表示装置17において、温度プロファイルを表示する処理が行われる(S20)。
 こうして、1ピングの処理が終了すると、制御処理回路16は、次のピングの開始タイミングにおいて、ステップS11以降の処理を実行する。これにより、温度プロファイルの表示が更新される。制御処理回路16は、ピングごとに、ステップS11~S20の処理を繰り返し実行する。これにより、各時点における船S1の直下の温度プロファイルが、逐次、表示装置17に表示される。使用者は、表示装置17に表示される画像を参照することにより、各水深の温度プロファイルをリアルタイムで確認できる。
 なお、ステップS20では、温度プロファイルに限らず、音速プロファイルや俯角プロファイルがさらに表示されてもよい。また、制御処理回路16が図4(b)に示す構成である場合は、ステップS19において、各水深の俯角θから温度プロファイルが直接算出される。この場合も、ステップS20において、船S1の直下の温度プロファイルが、逐次、リアルタイムで、表示装置17に表示される。
 <実施形態1の効果>
 上記実施形態1によれば、以下の効果が奏され得る。
 トランスデューサ11を用いた簡素な構成により、俯角θをリアルタイムで算出できる。また、算出された俯角θを式(4)に適用することにより、水中における超音波の音速を算出でき、さらに算出した音速をMachenzieの式等の関係式に適用することにより、水中の温度を算出できる。よって、本態様に係るドップラーソナー10によれば、水中の音速および温度を、低コスト且つリアルタイムで、得ることができる。
 図6に示したように、ドップラー周波数演算モジュール102は、複数の水深において、第1エコー信号、第2エコー信号および第3エコー信号から、第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を算出し(S15~S17)、俯角演算モジュール103は、複数の水深ごとに俯角θを算出する(S18)。これにより、水深ごとに算出された俯角θを上記式(4)に適用することで、各水深の音速プロファイルを得ることができ、さらに、算出した音速プロファイルをMachenzieの式等の関係式に適用することにより、各水深の温度プロファイルを得ることができる。
 図1に示したように、第1方向d1、第2方向d2および第3方向d3は、トランスデューサ11の受波面11aに垂直で、且つ、船S1の進行方向に平行な同一平面に設定されている。これにより、第1ドップラー周波数fd1と第2ドップラー周波数fd2との間の差を最も大きくでき、俯角θの算出精度を最も高めることができる。結果、俯角θから算出される音速または水温の精度を最も高めることができる。
 図1に示したように、トランスデューサ11の受波面11aは、水面WSに対して、0度でない角度βをなしている。このように受波面11aを水面WSに対して傾けることにより、湧昇流がない状況においても俯角θを算出でき、算出した俯角θから音速または水温を算出することができる。
 上記式(4)に示したように、俯角演算モジュール103は、第1ドップラー周波数fd1と第3ドップラー周波数fd3との比(fd1/fd3)、および第2ドップラー周波数fd2と第3ドップラー周波数fd3との比(fd2/fd3)とに基づいて、俯角θを算出する。あるいは、俯角演算モジュール103は、第1ドップラー周波数fd1および第2ドップラー周波数fd2の合計(fd1+fd2)と、第3ドップラー周波数fd3の逆数(1/fd3)とに基づいて、俯角θを算出する。上記のとおり、この算出方法によれば、第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を用いて俯角θを適正に算出することができる。
 図4(a)に示したように、ドップラーソナー10は、俯角演算モジュール103により算出された俯角θから、水中における超音波の音速cを算出する音速プロファイル演算モジュール104をさらに備える。これにより、ドップラーソナー10において、水中の所定水深における超音波の音速を算出することができる。
 また、図4(a)に示したように、ドップラーソナー10は、音速cから水温を算出する温度プロファイル演算モジュール105をさらに備える。これにより、ドップラーソナー10において、水中の所定水深における温度を算出することができる。
 また、図4(b)に示したように、ドップラーソナー10は、俯角演算モジュール103により算出された俯角θから水温を算出する温度プロファイル演算モジュール106を備える構成であってもよい。この構成によれば、水中における超音波の音速を算出することなく、俯角演算モジュール103により算出された俯角θから水中の温度を直接算出することができる。
 図3に示したように、ドップラーソナー10において、トランスデューサ11は、アレイ状に配置された複数の振動子111を備え、図5に示したように、エコー信号生成モジュール101は、第1方向d1、第2方向d2および第3方向d3に第1受信ビームRB1、第2受信ビームRB2および第3受信ビームRB3をそれぞれ形成して、第1エコー信号、第2エコー信号および第3エコー信号を生成する。これにより、第1方向d1、第2方向d2および第3方向d3からの反射波に基づく第1エコー信号、第2エコー信号および第3エコー信号を円滑に生成できる。
 <実施形態2>
 上記実施形態1では、図3に示すように、多数の振動子111が所定ピッチdで同一平面上に配置されたトランスデューサ11が用いられた。これに対し、本実施形態では、第1方向d1、第2方向d2および第3方向d3にそれぞれ送受波する第1振動子、第2振動子および第3振動子を備えたトランスデューサが用いられる。
 図7は、実施形態2に係る、ドップラーソナー10に用いられるトランスデューサ20の構成を模式的に示す側面図である。
 図7に示すように、トランスデューサ20は、第1振動子211、第2振動子212および第3振動子213を備えている。第1振動子211および第2振動子212は、トランスデューサ20の受波面20aに対し、それぞれ、左右方向に同じ角度θ'だけ傾いている。第3振動子213は、受波面20aに平行に配置されている。第1振動子211、第2振動子212および第3振動子213は、ウレタン等の材料からなる支持体220内にモールドされている。
 さらに、支持体220内の受波面20a付近の温度を検出するための温度センサ214が、第1振動子211、第2振動子212および第3振動子213とともに、支持体220の内部にモールドされている。支持体220の下面は平面であり、この平面が受波面20aとなっている。
 第1振動子211および第2振動子212に対して送受波される超音波および反射波は、受波面20aで屈折する。屈折後の超音波と受波面20aとのなす角が、俯角θとなる。第3振動子213は、受波面20aに平行に配置されているため、第3振動子213に対して送受波される超音波および反射波は、受波面20aで屈折しない。第1振動子211、第2振動子212および第3振動子213から送波された超音波は、受波面20aを透過した後、所定の広がり角で水中へと進む。
 図8は、トランスデューサ20の配置状態を模式的に示す側面図である。
 実施形態2においても、実施形態1と同様、受波面20aが水面WSに対して角度βだけ傾くように、トランスデューサ20が配置される。これにより、図1の場合と同様、対
地速度にVによる第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3が、それぞれ、上記式(1)~(3)により求められ、水中の各水深における俯角θが、上記式(4)により算出される。
 但し、実施形態2の構成では、受波面20aで屈折が生じ、且つ、支持体220内外で音速が変わる。このため、実施形態2では、各水深の音速を推定するための算出式が、上記式(5)から、以下の式に変更される。
Figure JPOXMLDOC01-appb-M000005
 上記式(6)において、c'は、第1振動子211、第2振動子212および第3振動子213から送波された超音波が支持体220内の物質を伝搬する速度であり、当該物質の材料と、受波面20a付近の当該物質の温度、すなわち温度センサ214によって検出される温度とによって規定できる。また、θ'は、図8に示した第1振動子211および第2振動子212の取り付け角であり、予め規定される。よって、上記式(4)により算出される各水深の俯角θと、支持体220内の物質の音速c'および第1振動子211および第2振動子212の取り付け角θ'を上記式(6)に代入することにより、各水深の音速cが算出され得る。
 ドップラーソナー10は、トランスデューサ20の構成を除いて、図2と同様の構成であり、また、制御処理回路16も、図4(a)と同様の構成である。また、制御処理回路16は、図4(a)の構成により、図6と同様の処理を行う。
 但し、図6のステップS11において、制御処理回路16は、第1振動子211、第2振動子212および第3振動子213により、第1方向d1、第2方向d2および第3方向d3における超音波の送波および反射波の受波を行う。また、図4(a)の構成において、エコー信号生成モジュール101は、上記実施形態1のようにビームフォーミングによる受信ビームを生成することなく、反射波の受波により第1振動子211、第2振動子212および第3振動子213から出力される受信信号(受信アンプ15により増幅およびノイズ除去後の受信信号)をそのまま用いて、第1エコー信号、第2エコー信号および第3エコー信号を生成する(図6のステップS12~S14)。
 ドップラー周波数演算モジュール102は、上記実施形態1と同様、入力された第1エコー信号、第2エコー信号および第3エコー信号から、各水深に対応する時間位置を特定し、特定した時間位置から第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を算出する(図6のステップS15~S17)。俯角演算モジュール103は、上記実施形態1と同様、各水深について算出された第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を上記式(4)に代入して、水深ごとの俯角θを算出する(S18)。
 図6のステップS19において、音速プロファイル演算モジュール104は、上記実施形態1と異なり、算出された各水深の俯角θを上記式(6)に代入して、各水深の音速cを算出する。このとき、音速プロファイル演算モジュール104は、温度センサ214によって検出された温度に基づいて、第1振動子211、第2振動子212および第3振動
子213から送波された超音波が、支持体220内の受波面20a付近の物質を伝搬する音速c'を求め、求めた音速c'と、既知の取り付け角θ'とを上記式(6)に代入する。
 なお、音速c'は、温度センサ214によって検出される温度と音速c'とを対応付けた変換テーブルから取得されてもよい。この場合、音速プロファイル演算モジュール104は、予め、当該変換テーブルを保持しており、温度センサ214によって検出される温度に対応する音速c'を当該変換テーブルから取得する。この他、音速プロファイル演算モジュール104は、温度センサ214によって検出される温度と音速c'との関係を規定する関係式から算出してもよい。
 ステップS19における温度プロファイル演算モジュール105の処理は、上記実施形態1と同様である。温度プロファイル演算モジュール105は、上記式(6)により水深ごとに算出された音速cをMachenzieの式等の所定の関係式に適用して、各水深の温度を算出する。ステップS20の処理は、上記実施形態1と同様である。こうして、船S1の直下の温度プロファイルが、表示装置17に表示される。
 <実施形態2の効果>
 実施形態2においても、実施形態1と同様の効果が奏され得る。
 さらに、実施形態2では、図7に示したように、上記実施形態1のトランスデューサ11に比べて、トランスデューサ20の構成がシンプルであるため、より簡素な構成により、温度プロファイルをリアルタイムで表示できる。
 なお、実施形態2においても、図6のステップS20において、温度プロファイルに限らず、音速プロファイルや俯角プロファイルが表示されてもよい。また、実施形態2においても、制御処理回路16は、図4(b)の構成であってもよい。この場合、温度プロファイル演算モジュール106は、式(6)と、Machenzieの式等の関係式とを統合した式により、俯角演算モジュール103によって算出された各水深の俯角θと、支持体20内の音速c'および第1振動子211および第2振動子212の取り付け角θ'とから、温度プロファイルを直接算出する。この場合も、図6のステップS20において、船S1の直下の温度プロファイルが、リアルタイムで表示装置17に表示される。
 <変更例1>
 上記実施形態1、2では、第1方向d1、第2方向d2および第3方向d3を含む平面が船S1の進行方向に平行であったが、この平面が、船S1の進行方向に対して水平方向に角度αだけ傾いていてもよい。
 図9(a)は、この場合の第1方向d1、第2方向d2および第3方向d3の状態を船S1の上方から見たときの平面図である。
 図9(a)に示すように、変更例1では、第1方向d1、第2方向d2および第3方向d3を含む平面P0(鉛直方向に平行な平面)が、船S1の進行方向d0に対して、水平方向に角度αだけ傾いている。すなわち、この変更例1では、上記実施形態1において示した第1受信ビームRB1、第2受信ビームRB2および第3受信ビームRB3の形成方向が、平面視において、船S1の進行方向d0に対し、角度αだけ傾いている。実施形態1と同様、第1方向d1および第2方向d2は、受波面11aに対して俯角θを有する。また、受波面11aは、水面WSに対して、角度βだけ傾いている。
 この場合、第1受信ビームRB1、第2受信ビームRB2および第3受信ビームRB3
により取得される各水深のドップラー周波数は、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000006
 上記式(7)~(9)により上記式(4)の左辺の演算を行った場合、分母分子のcosαが約分されて、上記式(4)と同じ関係式が成立する。したがって、この場合も、上記実施形態1と同様、第1受信ビームRB1、第2受信ビームRB2および第3受信ビームRB3により、各水深の第1ドップラー周波数fd1、第2ドップラー周波数fd2および第3ドップラー周波数fd3を算出することで、上記式(4)により、各水深の俯角θを算出でき、上記実施形態1と同様、音速プロファイルおよび温度プロファイルを算出できる。
 なお、図9(a)の方法では、上記実施形態1のように平面P0が船S1の進行方向に平行である場合に比べて、第1ドップラー周波数fd1および第2ドップラー周波数fd2が、cosαが乗じられている分だけ小さくなる。このため、上記式(4)の左辺において算出される第1ドップラー周波数fd1と第2ドップラー周波数fd2との差分が、上記実施形態1に比べて小さくなる。このため、図9(a)の場合は、上記実施形態1に比べて、この差分がノイズ等の影響を受けやすくなり、俯角θの算出精度が低下する。
 このため、俯角θの算出精度を高めるには、上記実施形態1のように、平面P0を船S1の進行方向d0に平行に近づけることが好ましく、平面P0を船S1の進行方向d0に平行に設定することが最も好ましい。これにより、音速プロファイルおよび温度プロファイルの算出精度も最も高めることができる。
 なお、船S1の進行方向d0と平面P0の間の角度αが90°である場合、すなわし、平面P0が船S1の左右方向に平行に設定された場合、第1方向d1と第2方向d2においてドップラーシフトが生じないため、各水深の俯角θを算出できない。したがって、図9(a)のように、平面P0が船S1の進行方向d0に対して傾く場合は、角度αを90°未満に設定する必要がある。
 また、図9(a)の手法は、上記実施形態2にも適用可能である。但し、この場合も、上記と同様の理由から、平面P0を船S1の進行方向d0に平行に設定する場合に比べて、俯角θの算出精度が低下する。よって、実施形態2の構成においても、第1方向d1、第2方向d2および第3方向d3を含む平面P0は、船S1の進行方向d0に平行に設定されるのが最も好ましい。
 <変更例2>
 上記実施形態1、2では、第1方向d1、第2方向d2および第3方向d3の組が1つ
であったが、この組が複数設定されてもよい。
 図9(b)は、第1方向、第2方向および第3方向の組が3つ設定される場合の第1方向、第2方向および第3方向の状態を船S1の上方から見たときの平面図である。
 ここでは、鉛直方向に平行な3つの平面P1、P2、P3が設定される。平面P1は、船S1の進行方向d0に平行であり、平面P2、P3は、船S1の進行方向d0に対して、角度αだけ互いに異なる水平方向に傾いている。平面P1に、第1方向d11、第2方向d12および第3方向d13が設定され、平面P2に、第1方向d21、第2方向d22および第3方向d23が設定され、平面P3に、第1方向d31、第2方向d32および第3方向d33が設定される。
 図9(b)の構成が上記実施形態1の構成に適用される場合、第1方向d11、第2方向d12および第3方向d13にそれぞれ受信ビームが形成されて、上記式(4)により、各水深の俯角θが算出される。また、第1方向d21、第2方向d22および第3方向d23にそれぞれ受信ビームが形成されて各水深の俯角θが算出され、さらに、第1方向d31、第2方向d32および第3方向d33にそれぞれ受信ビームが形成されて、各水深の俯角θが算出される。こうして、第1方向、第2方向および第3方向の組ごと(平面P1、P2、P3ごと)に、各水深の俯角θが算出される。
 この場合、図4(a)の俯角演算モジュール103は、各組について算出した各水深の俯角θを用いて、各水深の俯角θの代表値を設定する。たとえば、俯角演算モジュール103は、各組について算出した各水深の俯角θの平均値を、各水深の俯角θの代表値に設定する。図4(a)の音速プロファイル演算モジュール104は、各水深の俯角θの代表値を用いて、音速プロファイルを算出する。
 但し、上記変更例1で説明したとおり、船S1の進行方向d0に平行な平面P1について算出された俯角θは、船S1の進行方向d0に対して傾いた平面P2、P3について算出された俯角θよりも精度が高い。このため、上記のように、俯角θの平均値を代表値とする場合は、平面P1について算出された俯角θの重み付けを、平面P2、P3について算出された俯角θより大きく設定して重み付け平均を行い、この平均値を、俯角θの代表値に設定してもよい。
 この場合、重み付けの大きさは、たとえば、船S1の進行方向d0と各平面のなす角が大きくなるほど小さくなるように設定すればよい。平面P2および平面P3と進行方向d0とのなす角αが異なる場合、なす角αの大きさに応じて、平面P2および平面P3について算出される俯角θの重み付けを相違させればよい。
 あるいは、各平面について算出した俯角θを選択的に用いて、各水深の俯角θの代表値に設定してもよい。たとえば、通常は、平面P1について取得された、精度が最も高い俯角θを代表値に設定し、平面P1について算出した俯角θが、他の2つの平面P2、P3について算出した俯角θに対して大きく相違する場合に、他の2つの平面P2、P3について算出した俯角θの平均値、あるいは何れか一方の俯角θを代表値に設定してもよい。
 このように、第1方向、第2方向および第3方向の組を複数設定することにより、演算処理が増加するものの、各水深の俯角θを、より精度よく且つ安定的に算出できる。これにより、音速プロファイルおよび温度プロファイルの精度を高めることができる。
 なお、図9(b)の手法は、上記実施形態2にも適用可能である。この場合、平面ごとに、トランスデューサ20を個別に配置する必要がある。
 <その他の変更例>
 上記実施形態1、2および変更例1、2では、複数の水深について俯角θ、音速cおよび温度を算出したが、目標とする1つの水深に対して俯角θ、音速cおよび温度が算出されてもよい。この場合、使用者は、目標の水深を所望の水深に適宜変更できてもよい。あるいは、使用者は、目標の水深を任意に複数設定できてもよい。
 また、上記実施形態1、2および変更例1、2では、各振動子が送波と受波の両方を行ったが、第1方向、第2方向および第3方向からの反射波に基づくドップラー周波数を算出可能な限りにおいて、送波用の振動子と受波用の振動子が個別に配置されてもよい。
 また、トランスデューサ11、20の構成は、上記実施形態1、2に示した構成に限られるものではなく、第1方向、第2方向および第3方向からの反射波に基づくドップラー周波数を算出可能な限りにおいて、他の構成であってもよい。たとえば、実施形態1のトランスデューサ11において、振動子111の数およびレイアウトが変更されてもよく、振動子111間のピッチdも、送信駆動信号の波長λの2/3から変更されてもよい。
 振動子111間のピッチdが変更される場合は、上記式(5)も変更される。たとえば、受波面11aに対する第1方向d1および第2方向d2の俯角θが60°(π/3rad)に設定され、振動子111間のピッチdが、送信駆動信号の波長λの1/3に変更される場合、式(5)の右辺の分母は、6f0・dに修正される。また、受波面11aに対する第1方向d1および第2方向d2の俯角θが60°(π/3rad)から変更される場合は、それに応じて、式(5)も変更される。
 この他、本発明の実施形態は、特許請求の範囲に記載の範囲で適宜種々の変更可能である。
 10 ドップラーソナー
 11 トランスデューサ
 11a 受波面
 16 制御処理回路
 20 トランスデューサ
 20a 受波面
 101 エコー信号生成モジュール
 102 ドップラー周波数演算モジュール
 103 俯角演算モジュール
 104 音速プロファイル演算モジュール
 105、106 温度プロファイル演算モジュール
 111 振動子
 211 第1振動子
 212 第2振動子
 213 第3振動子
 d1 第1方向
 d2 第2方向
 d3 第3方向
 RB1 第1受信ビーム
 RB2 第2受信ビーム
 RB3 第3受信ビーム

Claims (13)

  1.  水中に超音波を送波するとともに前記超音波の反射波を受波するトランスデューサと、
     エコー信号生成モジュールと、
     ドップラー周波数演算モジュールと、
     俯角演算モジュールと、を備え、
     前記エコー信号生成モジュールは、
      前記トランスデューサの受波面に対して俯角θを有する第1方向の第1エコー信号を前記反射波から生成し、
      前記トランスデューサの前記受波面に対して前記俯角θを有し、且つ、前記第1方向とは異なる第2方向の第2エコー信号を前記反射波から生成し、
      前記トランスデューサの前記受波面に垂直な第3方向の第3エコー信号を前記反射波から生成し、
     前記ドップラー周波数演算モジュールは、
      前記第1エコー信号の第1ドップラー周波数を算出し、
      前記第2エコー信号の第2ドップラー周波数を算出し、
      前記第3エコー信号の第3ドップラー周波数を算出し、
     前記俯角演算モジュールは、
      前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数から前記俯角θを算出する、
    ことを特徴とするドップラー装置。
  2.  請求項1に記載のドップラー装置において、
     前記ドップラー周波数演算モジュールは、複数の水深において、前記第1エコー信号、前記第2エコー信号および前記第3エコー信号から、前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数を算出し、
     前記俯角演算モジュールは、前記複数の水深ごとに前記俯角θを算出する、
    ことを特徴とするドップラー装置。
  3.  請求項1または2に記載のドップラー装置において、
     前記第1方向、前記第2方向および前記第3方向は、前記トランスデューサの前記受波面に垂直な同一平面に設定される、
    ことを特徴とするドップラー装置。
  4.  請求項1ないし3の何れか一項に記載のドップラー装置において、
     前記トランスデューサの前記受波面は、水面に対して、0度でない角度βをなしている、
    ことを特徴とするドップラー装置。
  5.  請求項1ないし4の何れか一項に記載のドップラー装置において、
     前記俯角演算モジュールは、前記第1ドップラー周波数と前記第3ドップラー周波数との比、および前記第2ドップラー周波数と前記第3ドップラー周波数との比とに基づいて、前記俯角θを算出する、
    ことを特徴とするドップラー装置。
  6.  請求項1ないし5の何れか一項に記載のドップラー装置において、
     前記俯角演算モジュールは、前記第1ドップラー周波数および前記第2ドップラー周波数の合計と、前記第3ドップラー周波数の逆数とに基づいて、前記俯角θを算出する、
    ことを特徴とするドップラー装置。
  7.  請求項1ないし6の何れか一項に記載のドップラー装置において、
     前記俯角θから、水中における超音波の音速を算出する音速プロファイル演算モジュールをさらに備える、
    ことを特徴とするドップラー装置。
  8.  請求項7に記載のドップラー装置において、
     前記音速から水温を算出する温度プロファイル演算モジュールをさらに備える、
    ことを特徴とするドップラー装置。
  9.  請求項1ないし8の何れか一項に記載のドップラー装置において、
     前記俯角θから水温を算出する温度プロファイル演算モジュールをさらに備える、
    ことを特徴とするドップラー装置。
  10.  請求項1ないし9の何れか一項に記載のドップラー装置において、
     前記トランスデューサは、アレイ状に配置された複数の振動子を備え、
     前記エコー信号生成モジュールは、前記第1方向、前記第2方向および前記第3方向に第1ビーム、第2ビームおよび第3ビームをそれぞれ形成して、前記第1エコー信号、前記第2エコー信号および前記第3エコー信号を生成する、
    ことを特徴とするドップラー装置。
  11.  請求項1ないし9の何れか一項に記載のドップラー装置において、
     前記トランスデューサは、前記第1方向、前記第2方向および前記第3方向にそれぞれ送受波する第1振動子、第2振動子および第3振動子を備え、
     前記エコー信号生成モジュールは、前記第1振動子、前記第2振動子および前記第3振動子により受波された反射波から、前記第1エコー信号、前記第2エコー信号および前記第3エコー信号を生成する、
    ことを特徴とするドップラー装置。
  12.  トランスデューサから水中に超音波を送波し、
     前記超音波の反射波を前記トランスデューサで受波し、
     前記トランスデューサの受波面に対して俯角θを有する第1方向の第1エコー信号を前記反射波から生成し、
     前記受波面に対して前記俯角θを有し、且つ、前記第1方向とは異なる第2方向の第2エコー信号を前記反射波から生成し、
     前記受波面に垂直な第3方向の第3エコー信号を前記反射波から生成し、
     前記第1エコー信号の第1ドップラー周波数を算出し、
     前記第2エコー信号の第2ドップラー周波数を算出し、
     前記第3エコー信号の第3ドップラー周波数を算出し、
     前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数から前記俯角θを算出する、
    ことを特徴とする俯角推定方法。
  13.  トランスデューサにより水中に超音波を送波するとともに前記超音波の反射波を受波して、前記トランスデューサの受波面に対して俯角θを有する第1方向の第1エコー信号と、前記受波面に対して前記俯角θを有し、且つ、前記第1方向とは異なる第2方向の第2エコー信号と、前記受波面に垂直な第3方向の第3エコー信号とを生成するドップラー装置の制御処理回路に、
     前記第1エコー信号の第1ドップラー周波数を算出する機能と、
     前記第2エコー信号の第2ドップラー周波数を算出する機能と、
     前記第3エコー信号の第3ドップラー周波数を算出する機能と、
     前記第1ドップラー周波数、前記第2ドップラー周波数および前記第3ドップラー周波数から前記俯角θを算出する機能と、を実行させるプログラム。
PCT/JP2021/038925 2020-11-24 2021-10-21 ドップラー装置、俯角推定方法およびプログラム WO2022113586A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21897564.7A EP4254009A1 (en) 2020-11-24 2021-10-21 Doppler device, depression angle estimation method, and program
JP2022565120A JPWO2022113586A1 (ja) 2020-11-24 2021-10-21
CN202180065540.6A CN116261673A (zh) 2020-11-24 2021-10-21 多普勒装置、俯角推测方法及程序
US18/175,473 US20230204766A1 (en) 2020-11-24 2023-02-27 Doppler device, and depression angle estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020194724 2020-11-24
JP2020-194724 2020-11-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/175,473 Continuation-In-Part US20230204766A1 (en) 2020-11-24 2023-02-27 Doppler device, and depression angle estimation method

Publications (1)

Publication Number Publication Date
WO2022113586A1 true WO2022113586A1 (ja) 2022-06-02

Family

ID=81754228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038925 WO2022113586A1 (ja) 2020-11-24 2021-10-21 ドップラー装置、俯角推定方法およびプログラム

Country Status (5)

Country Link
US (1) US20230204766A1 (ja)
EP (1) EP4254009A1 (ja)
JP (1) JPWO2022113586A1 (ja)
CN (1) CN116261673A (ja)
WO (1) WO2022113586A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118782A (en) 1977-03-24 1978-10-03 The United States Of America As Represented By The Secretary Of The Navy Digital sound velocity calculator
JPS60181625A (ja) * 1984-02-28 1985-09-17 Furuno Electric Co Ltd 水中の水温測定装置
JPH04282484A (ja) * 1991-03-08 1992-10-07 Kaijo Corp 船速計を有する魚群探知機
JPH05240719A (ja) * 1992-02-28 1993-09-17 Japan Radio Co Ltd 超音波遠隔水温測定装置
JPH09203634A (ja) * 1996-01-24 1997-08-05 Japan Radio Co Ltd 車載用傾斜計測装置、車速計測装置および傾斜車速計測装置
JPH11352225A (ja) * 1998-06-11 1999-12-24 Furuno Electric Co Ltd 速度測定装置
JP2011089800A (ja) * 2009-10-20 2011-05-06 Furuno Electric Co Ltd ドップラー速度計
US20130165777A1 (en) * 2011-12-27 2013-06-27 Samsung Medison Co., Ltd. Ultrasound system and method for detecting vector information using transmission delays
JP2016031362A (ja) 2014-07-25 2016-03-07 日本無線株式会社 温度測定装置
WO2017149637A1 (ja) * 2016-03-01 2017-09-08 本多電子株式会社 潮流計
JP2020128894A (ja) * 2019-02-07 2020-08-27 日本無線株式会社 水温測定装置、及び水温測定方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118782A (en) 1977-03-24 1978-10-03 The United States Of America As Represented By The Secretary Of The Navy Digital sound velocity calculator
JPS60181625A (ja) * 1984-02-28 1985-09-17 Furuno Electric Co Ltd 水中の水温測定装置
JPH04282484A (ja) * 1991-03-08 1992-10-07 Kaijo Corp 船速計を有する魚群探知機
JPH05240719A (ja) * 1992-02-28 1993-09-17 Japan Radio Co Ltd 超音波遠隔水温測定装置
JPH09203634A (ja) * 1996-01-24 1997-08-05 Japan Radio Co Ltd 車載用傾斜計測装置、車速計測装置および傾斜車速計測装置
JPH11352225A (ja) * 1998-06-11 1999-12-24 Furuno Electric Co Ltd 速度測定装置
JP2011089800A (ja) * 2009-10-20 2011-05-06 Furuno Electric Co Ltd ドップラー速度計
US20130165777A1 (en) * 2011-12-27 2013-06-27 Samsung Medison Co., Ltd. Ultrasound system and method for detecting vector information using transmission delays
JP2016031362A (ja) 2014-07-25 2016-03-07 日本無線株式会社 温度測定装置
WO2017149637A1 (ja) * 2016-03-01 2017-09-08 本多電子株式会社 潮流計
JP2020128894A (ja) * 2019-02-07 2020-08-27 日本無線株式会社 水温測定装置、及び水温測定方法

Also Published As

Publication number Publication date
CN116261673A (zh) 2023-06-13
US20230204766A1 (en) 2023-06-29
JPWO2022113586A1 (ja) 2022-06-02
EP4254009A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
EP3096159B1 (en) Sonar systems and methods using interferometry and beamforming for 3d imaging
JP5389267B2 (ja) 海底輪郭を測定するための方法と装置
JP5072400B2 (ja) 水中探知装置
CN110063749B (zh) 超声波测定装置、超声波图像装置及超声波测定方法
US20160377716A1 (en) Sonar transducer assembly
US20130058194A1 (en) Multi-state beamforming array
JP2016510106A5 (ja)
EP3018493A1 (en) Ctfm detection apparatus and underwater detection apparatus
US9636086B2 (en) Three dimensional (3D) transverse oscillation vector velocity ultrasound imaging
JP4686648B1 (ja) 超音波検査方法
RU2346295C1 (ru) Активный гидролокатор
JP2016090453A (ja) 探知装置及び水中探知装置
JP5767002B2 (ja) 超音波送受信装置、および魚量検出方法
JP2012117825A (ja) 超音波センサおよび超音波探傷装置
JP6671565B2 (ja) 超音波探傷装置
WO2022113586A1 (ja) ドップラー装置、俯角推定方法およびプログラム
JP2012170467A (ja) 超音波プローブおよび超音波診断装置
JP6179973B2 (ja) 信号処理装置、水中探知装置、信号処理方法、及びプログラム
JP5496338B2 (ja) 海底輪郭を測定するための方法と装置
JP6463962B2 (ja) 超音波探傷システム及び検査方法
RU153808U1 (ru) Параметрический эхоледомер
JP2008076294A (ja) 水底下探査方法及び装置
CN105823901B (zh) 潮流计
JP2012192133A (ja) 超音波診断装置および超音波画像生成方法
JP7242243B2 (ja) 距離/速度測定装置及び距離/速度測定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897564

Country of ref document: EP

Effective date: 20230626