WO2022113500A1 - 非水電解質二次電池用負極材料および非水電解質二次電池 - Google Patents

非水電解質二次電池用負極材料および非水電解質二次電池 Download PDF

Info

Publication number
WO2022113500A1
WO2022113500A1 PCT/JP2021/034842 JP2021034842W WO2022113500A1 WO 2022113500 A1 WO2022113500 A1 WO 2022113500A1 JP 2021034842 W JP2021034842 W JP 2021034842W WO 2022113500 A1 WO2022113500 A1 WO 2022113500A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
aqueous electrolyte
phase
electrolyte secondary
lithium
Prior art date
Application number
PCT/JP2021/034842
Other languages
English (en)
French (fr)
Inventor
泰介 朝野
峻己 上平
直貴 関
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21897478.0A priority Critical patent/EP4254551A4/en
Priority to CN202180078909.7A priority patent/CN116636036A/zh
Priority to US18/038,864 priority patent/US20240021806A1/en
Priority to JP2022565086A priority patent/JPWO2022113500A1/ja
Publication of WO2022113500A1 publication Critical patent/WO2022113500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure mainly relates to the improvement of the negative electrode of a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries especially lithium ion secondary batteries, have high voltage and high energy density, and are therefore expected as power sources for small consumer applications, power storage devices and electric vehicles.
  • Patent Document 1 a negative electrode active material (hereinafter, also referred to as LSX) comprising a lithium silicate phase represented by Li 2z SiO 2 + z (0 ⁇ z ⁇ 2) and silicon particles dispersed in the lithium silicate phase. ) has been proposed.
  • LSX negative electrode active material
  • the LSX has a smaller irreversible capacity and an increased initial charge / discharge efficiency as compared with SiOx in which silicon particles are dispersed in the SiO 2 phase.
  • the lithium silicate phase in LSX has low alkali resistance (stability with respect to Li) and may still cause a side reaction with Li ions during initial charging, so further improvement in initial charge / discharge efficiency is required.
  • one aspect of the present disclosure relates to a negative electrode active material for a non-aqueous electrolyte secondary battery, which comprises composite particles containing a lithium aluminate phase and a silicon phase dispersed in the lithium aluminate phase. ..
  • Non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode comprises the negative electrode active material for the non-aqueous electrolyte secondary battery described above.
  • FIG. 1 is a diagram showing an example of an XRD pattern of a negative electrode active material (composite particle) according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing a negative electrode active material (composite particle) according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic perspective view in which a part of the non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure is cut out.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery is a composite particle containing a lithium aluminate phase and a silicon phase dispersed in the lithium aluminate phase (hereinafter, also referred to as LAX particles). .) Is provided.
  • the lithium aluminate phase in the LAX particles is superior in alkali resistance to the lithium silicate phase in the LSX particles in which the silicon phase is dispersed in the lithium silicate phase. Therefore, in the LAX particles, the side reaction with Li ions is suppressed as compared with the LSX particles at the time of initial charging, and the deterioration of the negative electrode active material due to the side reaction and the resulting decrease in the initial capacity are suppressed. That is, the initial decrease in charge / discharge efficiency is highly suppressed.
  • the LAX particles may be substantially free of lithium silicate and SiO 2 .
  • the LAX particles may contain lithium silicate and SiO 2 , but are preferably in small amounts.
  • the total content of lithium silicate and SiO 2 in the LAX particles may be, for example, 3% by mass or less.
  • the aluminum content ratio MAl with respect to the whole element other than oxygen is 10% by mass or more and 47% by mass or less, and the lithium content ratio MLi to the whole element other than oxygen is 0.7% by mass. % Or more, preferably 13.5% by mass or less.
  • the aluminum content ratio MAl and the lithium content ratio MLi are within the above ranges, an aluminate phase having excellent stability and ionic conductivity can be easily obtained.
  • the above stability includes both chemical stability (alkali resistance) and thermal stability.
  • the aluminum content ratio MAl is more preferably 11.5% by mass or more and 45.5% by mass or less.
  • the lithium content ratio MLi is more preferably 1.0% by mass or more and 9.5% by mass or less.
  • the ratio of aluminum content ratio MAl to lithium content ratio MLi: MAl / MLi is preferably 2 or more and 20 or less. .. It is more preferable that MAl / MLi is 4 or more and 12 or less.
  • the silicon content ratio MSi to the total of elements other than oxygen is preferably 40% by mass or more and 90% by mass or less, preferably 50.8% by mass. As mentioned above, 85.5% by mass or less is more preferable.
  • the above-mentioned silicon content ratio MSi is the amount of Si constituting the silicon phase in the LAX particles.
  • x ° is at least one selected from the group consisting of 19.4 °, 22.3 °, 31.9 °, 34.3 ° and 37.5 °.
  • Cu K ⁇ rays are used as X-rays for XRD measurement.
  • the vicinity of x ° means, for example, within the range of x ⁇ 1 °.
  • the content of the Al 2 O 3 phase in the LAX particles is, for example, 0% by mass or more and 10% by mass or less.
  • FIG. 1 shows an example of an XRD pattern of a negative electrode active material (composite particle) according to an embodiment of the present disclosure.
  • the XRD pattern shown by the solid line in FIG. 1 shows the XRD pattern of the Al-rich composite particle (LAX2) having a large Mal / MLi.
  • the XRD pattern shown by the broken line in FIG. 1 shows the XRD pattern of Li-rich composite particles (LAX4) having a small Mal / MLi.
  • LAX2 corresponds to Example 2 (battery A2) described later
  • LAX4 corresponds to Example 4 (battery A4) described later.
  • (I) to (v) in FIG. 1 show peaks derived from the lithium aluminate phase.
  • the composite particles have a sea-island structure in which fine silicon phases, which are islands, are dispersed in the lithium-aluminate phase, which is the sea part.
  • the lithium-aluminate phase has good ionic conductivity, and the lithium ion is smoothly stored and released by the silicon phase via the lithium-aluminate phase.
  • the capacity can be increased by controlling the amount of the silicon phase dispersed in the lithium aluminate phase.
  • the lithium-aluminate phase relaxes the expansion and contraction of the silicon phase. Therefore, it is possible to easily achieve both high battery capacity and improved cycle characteristics. From the viewpoint of mitigating the expansion and contraction of the silicon phase, the lithium aluminate phase may be amorphous.
  • a plurality of primary particles including a lithium aluminate phase and a silicon phase are bonded to form secondary particles.
  • the average particle size of the composite particles (secondary particles) is, for example, 1 ⁇ m or more and 25 ⁇ m or less, and may be 4 ⁇ m or more and 15 ⁇ m or less. In the above particle size range, it is easy to relax the stress due to the volume change of the composite particle due to charging and discharging, and it is easy to obtain good cycle characteristics.
  • the surface area of the composite particles also becomes an appropriate size, and the volume decrease due to side reactions with non-aqueous electrolytes is suppressed.
  • the average particle size of the composite particle means the particle size (volume average particle size) at which the volume integration value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • the measuring device for example, "LA-750" manufactured by HORIBA, Ltd. can be used.
  • the average particle size of the composite particle having the conductive layer is set to the composite particle. Can be regarded as the average particle size of.
  • Composite particles can be taken out of the battery by the following method.
  • the battery in a completely discharged state is disassembled, the negative electrode is taken out, and the negative electrode is washed with anhydrous ethylmethyl carbonate or dimethyl carbonate to remove the non-aqueous electrolyte component.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer supported on the surface thereof. Therefore, the negative electrode mixture layer is peeled off from the copper foil and pulverized in a mortar to obtain sample powder.
  • the sample powder is dried in a dry atmosphere for 1 hour and immersed in weakly boiled 6M hydrochloric acid for 10 minutes to remove elements derived from other than the composite particles.
  • the completely discharged state is a state in which the depth of discharge (DOD) is 90% or more (the state of charge (SOC) is 10% or less).
  • Lithium aluminate phase Lithium aluminate contains lithium (Li), aluminum (Al), and oxygen (O).
  • Atomic ratio of O to Al in lithium aluminate: O / Al is, for example, 1.6 or more and 4 or less. Further, the atomic ratio of Li to Al in lithium aluminate: Li / Al is, for example, 1/5 or more and 5 or less.
  • O / Al and Li / Al is within the above range, it is advantageous in terms of stability and ionic conductivity of the lithium aluminate phase.
  • the composition of lithium aluminate can be represented by the formula: Li u AlO (3 + u) / 2 .
  • u in the formula is, for example, more than 0 and 5 or less, and may be more than 0 and 1 or less.
  • u 1, it can be represented by LiAlO 2
  • the lithium aluminate phase is at least one selected from the group consisting of LiAl 5O 8 , Li 2 Al 4 O 7 , LiAlO 2 and Li 5 AlO 4 . It is preferable to include seeds. Above all, it is more preferable that the lithium aluminate phase contains LiAlO 2 as a main component.
  • the "main component” refers to a component that occupies 50% by mass or more of the total mass of the lithium aluminate phase, and may occupy 70% by mass or more of the component.
  • the lithium aluminate phase may contain another element M in addition to Li, Al and O.
  • the element M is composed of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), zirconium (Zr), iron (Fe), boron (B), phosphorus (P) and lanthanum (La). At least one selected from the group.
  • the inclusion of the element M in the aluminate phase further improves the stability and ionic conductivity of the aluminate phase. In addition, side reactions due to contact between the aluminate phase and the non-aqueous electrolyte are suppressed.
  • the element M preferably contains at least one selected from the group consisting of Zr, Fe, P and B. La can further improve the initial charge / discharge efficiency.
  • the element M may form a compound.
  • the compound may be, for example, an oxide of the element M or an aluminate of the element M, depending on the type of the element M.
  • the content of the element M is, for example, 0.3 mol% or more and 3 mol% or less with respect to the total amount of the elements other than oxygen.
  • the lithium aluminate phase may further contain a trace amount of elements such as chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), and molybdenum (Mo).
  • the content of Li, Al, and element M in the lithium-aluminate phase can be measured, for example, by analyzing the cross section of the negative electrode mixture layer.
  • the fully discharged battery is disassembled, the negative electrode is taken out, the negative electrode is washed with anhydrous ethylmethyl carbonate or dimethyl carbonate, the non-aqueous electrolyte component is removed, and after drying, the negative electrode is used with a cross section polisher (CP). Obtain a cross section of the mixture layer. Next, the cross section of the negative electrode mixture layer is observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the content of each element can be determined by any of the following methods.
  • the composition of the lithium aluminate phase is calculated from the content of each element.
  • ⁇ EDX> From the cross-sectional image of the backscattered electron image of the negative electrode mixture layer, 10 composite particles having a maximum particle diameter of 5 ⁇ m or more are randomly selected, and element mapping analysis is performed for each of them by energy dispersive X-ray (EDX). Calculate the content area of the target element using image analysis software. The observation magnification is preferably 2000 to 20000 times. The measured values of the content area of a predetermined element contained in 10 particles are averaged. The content of the target element is calculated from the obtained average value.
  • EDX energy dispersive X-ray
  • AES Auger electron spectroscopy
  • the measurement conditions may be, for example, an acceleration voltage of 10 kV, a beam current of 10 nA, and an analysis region of 20 ⁇ m ⁇ .
  • the content is calculated by averaging the contents of a predetermined element contained in 10 particles.
  • EDX analysis and AES analysis are performed on a range 1 ⁇ m or more inside the peripheral edge of the cross section of the composite particle.
  • ⁇ ICP> The composite particle sample is completely dissolved in a heated acid solution (mixed acid of hydrofluoric acid, nitric acid and sulfuric acid) and the carbon in the solution residue is filtered off. Then, the obtained filtrate is analyzed by inductively coupled plasma emission spectroscopy (ICP) to measure the spectral intensity of each element. Subsequently, a calibration curve is prepared using a standard solution of commercially available elements, and the content of each element contained in the composite particles is calculated.
  • ICP inductively coupled plasma emission spectroscopy
  • the quantification of each element can also be performed using an electron microanalyzer (EPMA), laser ablation ICP mass spectrometry (LA-ICP-MS), X-ray photoelectron spectroscopy (XPS), or the like.
  • EPMA electron microanalyzer
  • LA-ICP-MS laser ablation ICP mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the content of B, Na, K and Al contained in the composite particles may be quantitatively analyzed in accordance with JIS R3105 (1995) (analysis method for broomate glass).
  • the Ca content in the composite particles may be quantitatively analyzed in accordance with JIS R3101 (1995) (analysis method for soda-lime glass).
  • the carbon content contained in the composite particles may be measured using a carbon / sulfur analyzer (for example, EMIA-520 type manufactured by HORIBA, Ltd.).
  • a sample is measured on a magnetic board, a combustion improver is added, and the sample is inserted into a combustion furnace (carrier gas: oxygen) heated to 1350 ° C., and the amount of carbon dioxide gas generated during combustion is detected by infrared absorption.
  • the calibration curve is, for example, Bureau of Analyzed Samples. It is prepared using carbon steel manufactured by Ltd. (carbon content 0.49%), and the carbon content of the sample is calculated (high frequency induction heating furnace combustion-infrared absorption method).
  • the oxygen content contained in the composite particles may be measured using an oxygen / nitrogen / hydrogen analyzer (for example, EGMA-830 manufactured by HORIBA, Ltd.).
  • EGMA-830 manufactured by HORIBA, Ltd.
  • a sample is placed in a Ni capsule, and the sample is put into a carbon crucible heated with a power of 5.75 kW together with Sn pellets and Ni pellets as flux, and the emitted carbon monoxide gas is detected.
  • a calibration curve is prepared using the standard sample Y 2 O 3 and the oxygen content of the sample is calculated (inert gas melting-non-dispersive infrared absorption method).
  • the amount of Si constituting the silicon phase in the composite particles can be quantified using Si-NMR.
  • Measuring device Solid-state nuclear magnetic resonance spectrum measuring device (INOVA-400) manufactured by Varian. Probe: Varian 7mm CPMAS-2 MAS: 4.2 kHz MAS speed: 4kHz Pulse: DD (45 ° pulse + signal capture time 1H decoupler) Repeat time: 1200sec-3000sec Observation width: 100 kHz Observation center: Around -100ppm Signal capture time: 0.05sec Total number of times: 560 Sample amount: 207.6 mg (Silicon phase) The silicon phase is a simple substance phase of silicon (Si), and lithium ions are repeatedly stored and discharged as the battery is charged and discharged. Capacity is developed by a Faraday reaction involving the silicon phase. Since the silicon phase has a large capacity, the degree of expansion and contraction due to charging and discharging is also large. However, since the silicon phase is dispersed in the lithium aluminate phase, the stress due to the expansion and contraction of the silicon phase is relaxed.
  • INOVA-400 Solid-state nuclear magnetic
  • the silicon phase may be composed of a plurality of crystallites.
  • the crystallite size of the silicon phase is preferably 30 nm or less.
  • the amount of volume change due to expansion and contraction of the silicon phase due to charge and discharge can be reduced, and the cycle characteristics can be further improved.
  • the isolation of the silicon phase due to the formation of voids around the silicon phase when the silicon phase shrinks is suppressed, and the decrease in charge / discharge efficiency is suppressed.
  • the lower limit of the crystallite size of the silicon phase is not particularly limited, but is, for example, 1 nm or more.
  • the crystallite size of the silicon phase is more preferably 10 nm or more and 30 nm or less, and further preferably 15 nm or more and 25 nm or less.
  • the crystallite size of the silicon phase is 10 nm or more, the surface area of the silicon phase can be kept small, so that deterioration of the silicon phase accompanied by generation of irreversible capacitance is unlikely to occur.
  • the crystallite size of the silicon particles is 30 nm or less, the expansion and contraction of the silicon phase can be easily made uniform, the stress generated in the composite particles can be easily relaxed, and the cycle characteristics can be improved.
  • the crystallite size of the silicon phase is calculated by Scherrer's equation from the half width of the diffraction peak attributed to the (111) plane of the silicon phase (elemental Si) of the X-ray diffraction pattern.
  • the silicon phase of the composite particles contained in the battery before the first charge is, for example, particulate.
  • the average particle size of the particulate silicon phase is preferably 500 nm or less, more preferably 200 nm or less, and even more preferably 50 nm or less.
  • the average particle size of the silicon phase is preferably 400 nm or less, more preferably 100 nm or less.
  • the content of the silicon phase in the composite particles is preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 55% by mass or more. In this case, the diffusivity of lithium ions is good, and excellent load characteristics can be obtained.
  • the content of the silicon phase in the composite particles is preferably 95% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less. .. In this case, the surface of the silicon phase exposed without being covered with the silicate phase is reduced, and the side reaction between the non-aqueous electrolyte and the silicon phase is likely to be suppressed.
  • a conductive layer containing a conductive material may be formed on at least a part of the surface of the composite particle (secondary particle). This improves the conductivity of the composite particles. It is preferable that the thickness of the conductive layer is thin enough not to affect the average particle size of the composite particles.
  • the thickness of the conductive layer is preferably 1 to 200 nm, more preferably 5 to 100 nm, in consideration of ensuring conductivity and diffusivity of lithium ions.
  • the thickness of the conductive layer can be measured by observing the cross section of the composite particle using SEM or TEM.
  • the conductive material is preferably a conductive carbon material.
  • amorphous carbon amorphous carbon, graphite, easily graphitized carbon (soft carbon), non-graphitized carbon (hard carbon) and the like can be used. Of these, amorphous carbon is preferable because it is easy to form a thin conductive layer that covers the surface of the composite particles. Examples of amorphous carbon include carbon black, fired products of pitch, coke, activated carbon and the like. Examples of graphite include natural graphite, artificial graphite, graphitized mesophase carbon and the like.
  • the composite particles are produced, for example, by a production method including the following first to fourth steps.
  • First step A step of obtaining lithium aluminate as a raw material (hereinafter, also referred to as raw material aluminate).
  • Second step A step of compounding a raw material aluminate and a raw material silicon to disperse a silicon phase in a silicate phase to obtain a composite intermediate.
  • Third step A step of heat-treating a composite intermediate to obtain a sintered body containing an aluminate phase and a silicon phase dispersed in the aluminate phase.
  • Fullth step A step of crushing the sintered body to obtain composite particles containing an aluminate phase and a silicon phase dispersed in the aluminate phase.
  • the first step is, for example, a step 1a of mixing an aluminum compound, a lithium compound, and a compound containing an element M, if necessary, to obtain a mixture, and a step 1b of firing the mixture to obtain a raw material aluminate. including.
  • the firing of step 1b is performed, for example, in an oxidizing atmosphere.
  • the firing temperature in step 1b is preferably 400 ° C. or higher and 1200 ° C. or lower, and more preferably 800 ° C. or higher and 1100 ° C. or lower.
  • Examples of the aluminum compound include aluminum oxide (Al 2 O 3 ), aluminum hydroxide, aluminum carbonate and the like.
  • Al 2 O 3 aluminum oxide
  • aluminum hydroxide aluminum carbonate
  • the aluminum compound one kind may be used alone, or two or more kinds may be used in combination.
  • lithium compound examples include lithium carbonate, lithium oxide, lithium hydroxide, lithium hydride and the like.
  • the lithium compound one type may be used alone, or two or more types may be used in combination.
  • an oxide, a hydroxide, a hydride, a halide, a carbonate, a oxalate, a nitrate, a sulfate, or the like of the element M can be used.
  • the compound containing the element M one kind may be used alone, or two or more kinds may be used in combination.
  • the aluminum compound that did not react with the lithium compound in the process of producing the raw material aluminum can remain in the raw material aluminum.
  • the amount of the aluminum compound used is larger than that of the lithium compound, the aluminum compound tends to remain.
  • the aluminum compound remaining in the raw material aluminate is Al 2 O 3
  • the Al 2 O 3 phase dispersed in the lithium aluminate phase can be formed in the finally obtained composite particles.
  • the second step includes, for example, a step of pulverizing the mixture while applying a shearing force to the mixture of the raw material aluminate and the raw material silicon to obtain a finely divided composite intermediate.
  • the raw material aluminate and the raw material silicon may be mixed at a predetermined mass ratio, and the mixture may be agitated into fine particles using a crushing device such as a ball mill.
  • coarse silicon particles having an average particle size of several ⁇ m to several tens of ⁇ m may be used.
  • the finally obtained silicon particles should be controlled so that the crystallite size calculated by Scherrer's equation from the half width of the diffraction peak attributed to the Si (111) plane of the X-ray diffraction pattern is 10 nm or more. Is preferable.
  • the second step is not limited to the above.
  • silicon nanoparticles and nanoparticles of raw material aluminate may be synthesized and mixed without using a pulverizer.
  • the third step includes, for example, a step of firing the composite intermediate while applying pressure to the finely divided composite intermediate by hot pressing or the like to obtain a sintered body. Firing of the composite intermediate is carried out, for example, in an inert atmosphere (eg, an atmosphere of argon, nitrogen, etc.).
  • the firing temperature is preferably 450 ° C. or higher and 1000 ° C. or lower. In the above temperature range, fine silicon particles are easily dispersed in the aluminate phase having low crystallinity.
  • the raw material aluminate is stable in the above temperature range and hardly reacts with silicon.
  • the firing temperature is preferably 550 ° C. or higher and 900 ° C. or lower, and more preferably 650 ° C. or higher and 850 ° C. or lower.
  • the firing time is, for example, 1 hour or more and 10 hours or less.
  • the fourth step is a step of pulverizing the sintered body so as to have a desired particle size distribution to obtain composite particles containing an aluminate phase and a silicon phase dispersed in the aluminate phase.
  • the composite particles are pulverized so as to have an average particle size of 1 to 25 ⁇ m, for example.
  • the method for producing composite particles may include a fifth step of covering at least a part of the surface of the composite particles with a conductive material to form a conductive layer.
  • the conductive material is preferably electrochemically stable, and a conductive carbon material is preferable.
  • a CVD method using a hydrocarbon gas such as acetylene or methane as a raw material, coal pitch, petroleum pitch, phenol resin or the like is mixed with the composite particle and heated.
  • An example is a method of carbonizing.
  • carbon black may be attached to the surface of the composite particles.
  • a mixture of composite particles and a conductive carbon material is heated at 700 ° C. or higher and 950 ° C. or lower in an inert atmosphere (for example, an atmosphere of argon, nitrogen, etc.) to form a composite.
  • an inert atmosphere for example, an atmosphere of argon, nitrogen, etc.
  • FIG. 2 is a cross-sectional view schematically showing the negative electrode active material (composite particles) according to the embodiment of the present disclosure.
  • the composite particle 20 includes a mother particle 23 composed of secondary particles in which a plurality of primary particles 24 are aggregated.
  • the mother particle 23 (primary particle 24) includes a lithium aluminate phase 21 and a silicon phase 22 dispersed in the lithium aluminate phase 21.
  • the mother particle 23 has a sea-island structure in which a fine silicon phase is dispersed in the matrix of the lithium aluminate phase 21.
  • fine Al2O3 phase 28 may be dispersed in the lithium aluminate phase 21. At least a part of the surface of the mother particle 23 may be covered with the conductive layer 26.
  • the lithium aluminate phase 21 may contain the element M. With repeated charging and discharging, the particulate silicon phases 22 adjacent to each other can be connected to each other to form a network-shaped silicon phase.
  • the non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode includes the above-mentioned negative electrode active material for a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery will be described in detail below.
  • the negative electrode may include a negative electrode current collector and a negative electrode mixture layer supported on the surface of the negative electrode current collector.
  • the negative electrode mixture layer can be formed by applying a negative electrode slurry in which a negative electrode mixture is dispersed in a dispersion medium to the surface of a negative electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture contains a negative electrode active material as an essential component, and can include a binder, a conductive agent, a thickener and the like as optional components.
  • the negative electrode active material contains at least the above-mentioned composite particles.
  • the negative electrode active material preferably further contains a carbon material that electrochemically stores and releases lithium ions. Since the volume of the composite particle expands and contracts with charge and discharge, if the ratio of the composite particle to the negative electrode active material becomes large, poor contact between the negative electrode active material and the negative electrode current collector tends to occur with charge and discharge. On the other hand, by using the composite particle and the carbon material in combination, it becomes possible to achieve excellent cycle characteristics while imparting a high capacity of the silicon particle to the negative electrode. From the viewpoint of increasing the capacity and improving the cycle characteristics, the ratio of the carbon material to the total of the composite particles and the carbon material is preferably 98% by mass or less, more preferably 70% by mass or more and 98% by mass or less. More preferably, it is 75% by mass or more and 95% by mass or less.
  • the carbon material examples include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon). Of these, graphite, which has excellent charge / discharge stability and has a small irreversible capacity, is preferable.
  • the graphite means a material having a graphite-type crystal structure, and includes, for example, natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like. As the carbon material, one type may be used alone, or two or more types may be used in combination.
  • the negative electrode current collector a non-perforated conductive substrate (metal foil, etc.) and a porous conductive substrate (mesh body, net body, punching sheet, etc.) are used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m, from the viewpoint of the balance between the strength and weight reduction of the negative electrode.
  • the binder may be a resin material, for example, a fluororesin such as polytetrafluoroethylene or polyvinylidene fluoride (PVDF); a polyolefin resin such as polyethylene or polypropylene; a polyamide resin such as an aramid resin; a polyimide resin such as polyimide or polyamideimide.
  • PVDF polytetrafluoroethylene or polyvinylidene fluoride
  • a polyolefin resin such as polyethylene or polypropylene
  • a polyamide resin such as an aramid resin
  • a polyimide resin such as polyimide or polyamideimide.
  • Acrylic resin such as polyacrylic acid, methyl polyacrylic acid, ethylene-acrylic acid copolymer; vinyl resin such as polyacrylonitrile and vinyl acetate; polyvinylpyrrolidone; polyether sulfone; styrene-butadiene copolymer rubber (SBR)
  • SBR s
  • the conductive agent examples include carbons such as acetylene black; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; metal powders such as aluminum; conductive whiskers such as zinc oxide and potassium titanate; Examples thereof include conductive metal oxides such as titanium oxide; organic conductive materials such as phenylene derivatives.
  • the conductive agent one type may be used alone, or two or more types may be used in combination.
  • the thickener examples include carboxymethyl cellulose (CMC) and its modified product (including salts such as Na salt), cellulose derivatives such as methyl cellulose (cellulose ether and the like); and Ken, a polymer having a vinyl acetate unit such as polyvinyl alcohol.
  • CMC carboxymethyl cellulose
  • cellulose ether and the like examples include cellulose derivatives such as methyl cellulose (cellulose ether and the like); and Ken, a polymer having a vinyl acetate unit such as polyvinyl alcohol.
  • the thickener may be used alone or in combination of two or more.
  • the dispersion medium is not particularly limited, and examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), and a mixed solvent thereof. ..
  • the positive electrode may include a positive electrode current collector and a positive electrode mixture layer supported on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent, and the like as optional components.
  • As the dispersion medium of the positive electrode slurry NMP or the like is used.
  • a lithium-containing composite oxide can be used as the positive electrode active material.
  • a lithium-containing composite oxide can be used as the positive electrode active material.
  • Me is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al. , Cr, Pb, Sb, and B.
  • a 0 to 1.2
  • b 0 to 0.9
  • c 2.0 to 2.3.
  • the a value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
  • Li a Ni b Me 1-b O 2 (Me is at least one selected from the group consisting of Mn, Co and Al, 0 ⁇ a ⁇ 1.2, 0.3 ⁇ b ⁇ ".
  • the binder and the conductive agent the same ones as those exemplified for the negative electrode can be used.
  • the conductive agent graphite such as natural graphite or artificial graphite may be used.
  • the shape and thickness of the positive electrode current collector can be selected from the shape and range according to the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, titanium and the like.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably, for example, 0.5 mol / L or more and 2 mol / L or less. By setting the lithium salt concentration in the above range, a non-aqueous electrolyte having excellent ionic conductivity and appropriate viscosity can be obtained.
  • the lithium salt concentration is not limited to the above.
  • cyclic carbonate ester for example, cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester, chain carboxylic acid ester and the like are used.
  • cyclic carbonic acid ester examples include propylene carbonate (PC) and ethylene carbonate (EC).
  • chain carbonate ester examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like.
  • the non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiB 10 Cl 10, and LiCl. , LiBr, LiI, borates, imide salts and the like.
  • borates include bis (1,2-benzenediolate (2-) -O, O') lithium borate and bis (2,3-naphthalenedioleate (2-) -O, O') boric acid.
  • imide salts include bisfluorosulfonylimide lithium (LiN (FSO 2 ) 2 ), bistrifluoromethanesulfonate imide lithium (LiN (CF 3 SO 2 ) 2 ), and trifluoromethanesulfonate nonafluorobutane sulfonate imide lithium (LiN).
  • LiPF 6 is preferable.
  • the lithium salt one kind may be used alone, or two or more kinds may be used in combination.
  • Separator usually, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has moderate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • An example of the structure of a non-aqueous electrolyte secondary battery is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator is housed in an exterior body together with a non-aqueous electrolyte.
  • the present invention is not limited to this, and other forms of electrodes may be applied.
  • a laminated electrode group in which a positive electrode and a negative electrode are laminated via a separator may be used.
  • the form of the non-aqueous electrolyte secondary battery is not limited, and may be, for example, a cylindrical type, a square type, a coin type, a button type, a laminated type, or the like.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte.
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed between them.
  • the negative electrode current collector of the negative electrode is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via the negative electrode lead 3.
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • the positive electrode current collector of the positive electrode is electrically connected to the back surface of the sealing plate 5 via the positive electrode lead 2. That is, the positive electrode is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded.
  • the sealing plate 5 has an injection hole for a non-aqueous electrolyte, and is closed by the sealing 8 after injection.
  • the Li content ratio MLi, the Si content ratio MSi and the Al content ratio MAl in the LAX particles were obtained. rice field. The values of each content ratio are shown in Table 1.
  • NMP was added to a positive electrode mixture containing lithium cobalt oxide, acetylene black, and PVDF in a mass ratio of 95: 2.5: 2.5 and stirred to prepare a positive electrode slurry.
  • a positive electrode slurry was applied to the surface of the aluminum foil, the coating film was dried, and then rolled to prepare a positive electrode having a positive electrode mixture layer having a density of 3.6 g / cm 3 formed on both sides of the aluminum foil.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent containing EC and DEC in a volume ratio of 3: 7.
  • the raw material silicate was used instead of the raw material aluminate, and the raw material silicate (average particle size 10 ⁇ m) and the raw material silicon (3N, average particle size 10 ⁇ m) were mixed at a mass ratio of 25:75.
  • the raw material silicate was pulverized so as to have an average particle size of 10 ⁇ m.
  • composite particles having a conductive layer were obtained by the same method as in Example 1.
  • Battery B1 was produced by the same method as in Example 1 except that LSX particles having a conductive layer were used instead of LAX1 particles having a conductive layer.
  • the initial charge / discharge efficiency was determined by the following method.
  • Batteries A1 to A10 using LAX particles obtained higher initial charge / discharge efficiency than batteries B1 using LSX particles.
  • higher initial charge / discharge efficiency was obtained.
  • the non-aqueous electrolyte secondary battery according to the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池用負極活物質は、リチウムアルミネート相と、リチウムアルミネート相内に分散しているシリコン相と、を含む複合粒子を備える。

Description

非水電解質二次電池用負極材料および非水電解質二次電池
 本開示は、主として、非水電解質二次電池の負極の改良に関する。
 非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。電池の高エネルギー密度化が求められる中、理論容量密度の高い負極活物質として、リチウムと合金化するケイ素(シリコン)を含む材料の利用が期待されている。
 特許文献1では、Li2zSiO2+z(0<z<2)で表されるリチウムシリケート相と、リチウムシリケート相内に分散しているシリコン粒子と、を備える負極活物質(以下、LSXとも称する。)が提案されている。
国際公開第2016/35290号パンフレット
 LSXは、SiO相内にシリコン粒子が分散しているSiOxと比べて、不可逆容量が小さく、初期の充放電効率は増大する。
 しかし、LSX中のリチウムシリケート相は耐アルカリ性(Liに対する安定性)が低く、依然として初期の充電時にLiイオンと副反応を生じることがあり、更なる初期充放電効率の改善が求められている。
 以上に鑑み、本開示の一側面は、リチウムアルミネート相と、前記リチウムアルミネート相内に分散しているシリコン相と、を含む複合粒子を備える、非水電解質二次電池用負極活物質に関する。
 本開示の別の側面は、正極と、負極と、非水電解質と、を備え、前記負極は、上記の非水電解質二次電池用負極活物質を含む、非水電解質二次電池に関する。
 本開示によれば、非水電解質二次電池の初期の充放電効率の低下を抑制することができる。
図1は、本開示の一実施形態に係る負極活物質(複合粒子)のXRDパターンの例を示す図である。 図2は、本開示の一実施形態に係る負極活物質(複合粒子)を模式的に示す断面図である。 図3は、本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 [非水電解質二次電池用負極活物質]
 本開示の実施形態に係る非水電解質二次電池用負極活物質は、リチウムアルミネート相と、リチウムアルミネート相内に分散しているシリコン相と、を含む複合粒子(以下、LAX粒子とも称する。)を備える。
 LAX粒子中のリチウムアルミネート相は、リチウムシリケート相内にシリコン相が分散しているLSX粒子中のリチウムシリケート相よりも耐アルカリ性に優れている。よって、LAX粒子では、初期の充電時にLiイオンとの副反応がLSX粒子よりも抑制され、副反応に伴う負極活物質の劣化およびそれによる初期容量の低下が抑制される。すなわち、初期の充放電効率の低下が高度に抑制される。
 LAX粒子は、実質的に、リチウムシリケートおよびSiOを含まなくてもよい。LAX粒子はリチウムシリケートおよびSiOを含んでもよいが、少量であることが望ましい。LAX粒子中のリチウムシリケートおよびSiOを合計した含有量は、例えば、3質量%以下であってもよい。
 LAX粒子において、酸素以外の元素の全体に対するアルミニウムの含有比率MAlが、10質量%以上、47質量%以下であり、かつ、酸素以外の元素の全体に対するリチウムの含有比率MLiが、0.7質量%以上、13.5質量%以下であることが好ましい。アルミニウムの含有比率MAlおよびリチウムの含有比率MLiが上記範囲内である場合、安定性およびイオン伝導性に優れるアルミネート相が得られ易い。なお、上記の安定性は、化学的安定性(耐アルカリ性)および熱的安定性の両方を含む。アルミニウムの含有比率MAlは、11.5質量%以上、45.5質量%以下がより好ましい。リチウムの含有比率MLiは、1.0質量%以上、9.5質量%以下がより好ましい。
 また、安定性およびイオン伝導性に優れるリチウムアルミネート相が得られ易い観点から、リチウムの含有比率MLiに対するアルミニウムの含有比率MAlの比:MAl/MLiは、2以上、20以下であることが好ましい。MAl/MLiは、4以上、12以下であることがより好ましい。
 高容量化およびサイクル特性向上の両立の観点から、LAX粒子において、酸素以外の元素の全体に対するシリコンの含有比率MSiは、例えば、40質量%以上、90質量%以下が好ましく、50.8質量%以上、85.5質量%以下がより好ましい。上記のシリコンの含有比率MSiは,LAX粒子中のシリコン相を構成するSiの量である。
 複合粒子のX線回折(XRD)測定により得られる複合粒子のXRDパターンにおいて、2θ=x°付近に、リチウムアルミネート相に由来するピークが観測され得る。x°は、19.4°、22.3°、31.9°、34.3°および37.5°からなる群より選択される少なくとも1つである。XRD測定のX線には、CuのKα線が用いられる。なお、本明細書中、x°付近であるとは、例えばx±1°の範囲内であることを意味する。
 リチウムアルミネート相内にAl相が分散してもよい。アルミネート相のマトリクス中に結晶性の高い微細なAl相が島状に分布し得る。この場合、シリコン相の膨張収縮に伴うアルミネート相の膨張や割れが抑制され易く、サイクル特性が向上し易い。この場合、X線回折測定により得られる複合粒子のX線回折パターンにおいて、2θ=25.4°付近に、Al相に由来するピークが観測され得る。LAX粒子中のAl相の含有量は、例えば、0質量%以上、10質量%以下である。
 ここで、図1は、本開示の一実施形態の負極活物質(複合粒子)のXRDパターンの例を示す。図1中の実線で示されるXRDパターンは、MAl/MLiが大きいAlリッチの複合粒子(LAX2)のXRDパターンを示す。図1中の破線で示されるXRDパターンは、MAl/MLiが小さいLiリッチの複合粒子(LAX4)のXRDパターンを示す。LAX2は後述の実施例2(電池A2)に対応し、LAX4は後述の実施例4(電池A4)に対応する。
 LAX2、4のいずれも、2θ=28°付近に、シリコン相のSi(111)面に由来するピークが観察される。AlリッチのLAX2では、2θ=25.4°付近に、Al相に由来するピークが観察される。
 図1中の(i)~(v)は、リチウムアルミネート相に由来するピークを示す。LAX2では、2θ=19.4°付近および2θ=31.9°付近に、リチウムアルミネート相のLiAlおよびLiAlOに由来するピークが観察される(図1中の(i)および(ii)のピーク)。また、LAX2では、2θ=37.5°付近に、リチウムアルミネート相のLiAlおよびLiAlに由来するピークが観察される(図1中の(iii)のピーク)。
 LAX4では、2θ=22.3°付近および2θ=34.3付近に、リチウムアルミネート相のLiAlOおよびLiAlOに由来するピークが観察される(図1中の(iv)および(v)のピーク)。
 複合粒子は、海部であるリチウムアルミネート相内に、島部である微細なシリコン相が分散した海島構造を有する。リチウムアルミネート相は良好なイオン伝導性を有し、リチウムアルミネート相を介してシリコン相によるリチウムイオンの吸蔵および放出がスムーズに行われる。リチウムアルミネート相に分散するシリコン相の量の制御により高容量化が可能である。リチウムアルミネート相によりシリコン相の膨張収縮が緩和される。よって、電池の高容量化とサイクル特性の向上の両立が容易に可能である。シリコン相の膨張収縮の緩和の観点から、リチウムアルミネート相は非晶質であってもよい。
 複合粒子では、リチウムアルミネート相とシリコン相とを含む複数の一次粒子が結合し、二次粒子を構成している。複合粒子(二次粒子)の平均粒径は、例えば1μm以上、25μm以下であり、4μm以上、15μm以下でもよい。上記粒径範囲では、充放電に伴う複合粒子の体積変化による応力を緩和しやすく、良好なサイクル特性を得やすくなる。複合粒子の表面積も適度な大きさになり、非水電解質との副反応による容量低下も抑制される。複合粒子の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。複合粒子の表面が導電層で覆われている場合、導電層の厚みは、実質上、複合粒子の平均粒径に影響しない程度に小さいため、導電層を有する複合粒子の平均粒径を複合粒子の平均粒径と見なしてよい。
 複合粒子は、以下の手法により、電池から取り出すことができる。まず、完全放電状態の電池を解体して負極を取り出し、負極を無水エチルメチルカーボネートまたはジメチルカーボネートで洗浄し、非水電解質成分を除去する。後述するように、負極は、負極集電体とその表面に担持された負極合剤層とを具備する。そこで、銅箔から負極合剤層を剥がし取り、乳鉢で粉砕して試料粉を得る。次に、試料粉を乾燥雰囲気中で1時間乾燥し、弱く煮立てた6M塩酸に10分間浸漬して、複合粒子以外に由来する元素を取り除く。次に、イオン交換水で試料粉を洗浄し、濾別して200℃で1時間乾燥する。その後、酸素雰囲気中、900℃に加熱して導電層を除去することで、複合粒子だけを単離することができる。なお、完全放電状態とは、放電深度(DOD)が90%以上(充電状態(SOC)が10%以下)の状態である。
 (リチウムアルミネート相)
 リチウムアルミネートは、リチウム(Li)と、アルミニウム(Al)と、酸素(O)とを含む。リチウムアルミネートにおけるAlに対するOの原子比:O/Alは、例えば1.6以上、4以下である。また、リチウムアルミネートにおけるAlに対するLiの原子比:Li/Alは、例えば、1/5以上、5以下である。O/AlおよびLi/Alの原子比が上記範囲内の場合、リチウムアルミネート相の安定性およびイオン伝導性の面で有利である。
 リチウムアルミネートの組成は、式:LiAlO(3+u)/2で表すことができる。作製し易さ、安定性およびイオン伝導性等の観点から、式中のuは、例えば0超、5以下であり、0超、1以下であってもよい。例えば、u=1/5の場合、LiAlで表すことができ、u=1/2の場合、LiAlで表すことができる。u=1の場合、LiAlOで表すことができ、u=5の場合、LiAlOで表すことができる。作製し易さ、安定性およびイオン伝導性等の観点から、リチウムアルミネート相は、LiAl、LiAl、LiAlOおよびLiAlOからなる群より選択される少なくとも1種を含むことが好ましい。中でも、リチウムアルミネート相は、LiAlOを主成分として含むことがより好ましい。ここで、「主成分」とは、リチウムアルミネート相全体の質量の50質量%以上を占める成分をいい、70質量%以上の成分を占めてもよい。
 リチウムアルミネート相は、LiとAlとOに加え、更に、別の元素Mを含んでもよい。元素Mは、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)、ジルコニウム(Zr)、鉄(Fe)、ホウ素(B)、リン(P)およびランタン(La)からなる群より選択される少なくとも1種である。アルミネート相が元素Mを含むことにより、アルミネート相の安定性およびイオン伝導性がより向上する。また、アルミネート相と非水電解質との接触による副反応が抑制される。非水電解質に対する耐性およびアルミネート相の構造安定性の観点から、元素Mは、Zr、Fe、PおよびBからなる群より選択される少なくとも1種を含むことが好ましい。Laは、初期の充放電効率を更に向上させ得る。
 元素Mは、化合物を形成していてもよい。当該化合物としては、元素Mの種類に応じて、例えば、元素Mの酸化物でもよく、元素Mのアルミネートでもよい。リチウムアルミネート相において、元素Mの含有量は、酸素以外の元素の総量に対して、例えば、0.3モル%以上、3モル%以下である。
 リチウムアルミネート相は、更に、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)等の元素を微量含んでもよい。
 リチウムアルミネート相中のLi、Al、元素Mの含有量は、例えば、負極合剤層の断面を分析することにより測定することができる。
 まず、完全放電状態の電池を分解し、負極を取り出し、負極を無水エチルメチルカーボネートまたはジメチルカーボネートで洗浄し、非水電解質成分を除去し、乾燥した後、クロスセクションポリッシャ(CP)を用いて負極合剤層の断面を得る。次に、走査型電子顕微鏡(SEM)を用いて負極合剤層の断面を観察する。
 そして、以下の何れかの方法により、各元素の含有量を求めることができる。また、各元素の含有量からリチウムアルミネート相の組成が算出される。
 <EDX>
 負極合剤層の反射電子像の断面画像から、粒子の最大径が5μm以上の複合粒子を無作為に10個選び出して、それぞれについてエネルギー分散型X線(EDX)による元素のマッピング分析を行う。画像解析ソフトを用いて対象となる元素の含有面積を算出する。観察倍率は2000~20000倍が望ましい。粒子10個に含まれる所定の元素の含有面積の測定値を平均する。得られた平均値から対象となる元素の含有量が算出される。
 以下に、望ましい断面SEM-EDX分析の測定条件を示す。
 <SEM-EDX測定条件>
 加工装置:JEOL製、SM-09010(Cross Section Polisher)
 加工条件:加速電圧6kV
 電流値:140μA
 真空度:1×10-3~2×10-3Pa
 測定装置:電子顕微鏡HITACHI製SU-70
 分析時加速電圧:10kV
 フィールド:フリーモード
 プローブ電流モード:Medium
 プローブ電流範囲:High
 アノード Ap.:3
 OBJ Ap.:2
 分析エリア:1μm四方
 分析ソフト:EDAX Genesis
 CPS:20500
 Lsec:50
 時定数:3.2
 <AES>
 負極合剤層の反射電子像の断面画像から、粒子の最大径が5μm以上の複合粒子を無作為に10個選び出して、それぞれについてオージェ電子分光(AES)分析装置(例えば日本電子社製、JAMP-9510F)を用いて元素の定性定量分析を行う。測定条件は、例えば、加速電圧10kV、ビーム電流10nA、分析領域20μmφとすればよい。粒子10個に含まれる所定の元素の含有量を平均して含有量が算出される。
 なお、EDX分析やAES分析は、複合粒子の断面の周端縁から1μm以上内側の範囲に対して行われる。
 <ICP>
 複合粒子の試料を、加熱した酸溶液(フッ化水素酸、硝酸および硫酸の混酸)中で全溶解し、溶液残渣の炭素を濾過して除去する。その後、得られた濾液を誘導結合プラズマ発光分光分析法(ICP)で分析して、各元素のスペクトル強度を測定する。続いて、市販されている元素の標準溶液を用いて検量線を作成し、複合粒子に含まれる各元素の含有量を算出する。
 その他、各元素の定量は、電子マイクロアナライザー(EPMA)、レーザアブレーションICP質量分析(LA-ICP-MS)、X線光電子分光分析(XPS)等を用いて行うこともできる。
 また、複合粒子に含まれるB、Na、KおよびAlの含有量は、JIS R3105(1995)(ほうけい酸ガラスの分析方法)に準拠して定量分析してもよい。
 複合粒子に含まれるCaの含有量は、JIS R3101(1995)(ソーダ石灰ガラスの分析方法)に準拠して定量分析してもよい。
 複合粒子に含まれる炭素含有量を、炭素・硫黄分析装置(例えば、株式会社堀場製作所製のEMIA-520型)を用いて測定してもよい。磁性ボードに試料を測り取り、助燃剤を加え、1350℃に加熱された燃焼炉(キャリアガス:酸素)に挿入し、燃焼時に発生した二酸化炭素ガス量を赤外線吸収により検出する。検量線は、例えば、Bureau of Analysed Samples.Ltd製の炭素鋼(炭素含有量0.49%)を用いて作成し、試料の炭素含有量を算出する(高周波誘導加熱炉燃焼-赤外線吸収法)。
 複合粒子に含まれる酸素含有量を、酸素・窒素・水素分析装置(例えば、株式会社堀場製作所製のEGMA-830型)を用いて測定してもよい。Niカプセルに試料を入れ、フラックスとなるSnペレットおよびNiペレットとともに、電力5.75kWで加熱された炭素坩堝に投入し、放出される一酸化炭素ガスを検出する。検量線は、標準試料Y23を用いて作成し、試料の酸素含有量を算出する(不活性ガス融解-非分散型赤外線吸収法)。
 複合粒子中のシリコン相を構成するSi量は、Si-NMRを用いて定量することができる。
 以下に、望ましいSi-NMRの測定条件を示す。
 <Si-NMR測定条件>
 測定装置:バリアン社製、固体核磁気共鳴スペクトル測定装置(INOVA‐400)
 プローブ:Varian 7mm CPMAS-2
 MAS:4.2kHz
 MAS速度:4kHz
 パルス:DD(45°パルス+シグナル取込時間1Hデカップル)
 繰り返し時間:1200sec~3000sec
 観測幅:100kHz
 観測中心:-100ppm付近
 シグナル取込時間:0.05sec
 積算回数:560
 試料量:207.6mg
 (シリコン相)
 シリコン相は、ケイ素(Si)単体の相であり、電池の充放電に伴ってリチウムイオンの吸蔵と放出を繰り返す。シリコン相が関与するファラデー反応によって容量が発現する。シリコン相は、容量が大きいため、充放電に伴う膨張と収縮の程度も大きい。ただし、シリコン相はリチウムアルミネート相内に分散しているため、シリコン相の膨張と収縮による応力は緩和される。
 シリコン相は、複数の結晶子で構成され得る。シリコン相の結晶子サイズは、30nm以下であることが好ましい。シリコン相の結晶子サイズが30nm以下である場合、充放電に伴うシリコン相の膨張収縮による体積変化量を小さくでき、サイクル特性が更に高められる。例えば、シリコン相の収縮時にシリコン相の周囲に空隙が形成されることによるシリコン相の孤立が抑制され、充放電効率の低下が抑制される。シリコン相の結晶子サイズの下限値は、特に限定されないが、例えば1nm以上である。
 シリコン相の結晶子サイズは、より好ましくは10nm以上、30nm以下であり、更に好ましくは15nm以上、25nm以下である。シリコン相の結晶子サイズが10nm以上である場合、シリコン相の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン相の劣化を生じ難い。シリコン粒子の結晶子サイズが30nm以下である場合、シリコン相の膨張収縮を均一化しやすく、複合粒子に生じる応力が緩和されやすく、サイクル特性を向上させることができる。シリコン相の結晶子サイズは、X線回折パターンのシリコン相(単体Si)の(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
 初回充電前の電池に含まれる複合粒子のシリコン相は、例えば粒子状である。粒子状のシリコン相の平均粒径は、500nm以下が好ましく、200nm以下がより好ましく、50nm以下が更に好ましい。初回充電後においては、シリコン相の平均粒径は、400nm以下が好ましく、100nm以下がより好ましい。シリコン相を微細化することにより、充放電時の複合粒子の体積変化が小さくなり、複合粒子の構造安定性が更に向上する。シリコン相の平均粒径は、SEMにより得られる複合粒子の断面画像を用いて測定される。具体的には、シリコン相の平均粒径は、任意の100個のシリコン相の最大径を平均して求められる。
 高容量化の観点から、複合粒子中のシリコン相の含有量は、好ましくは30質量%以上であり、より好ましくは35質量%以上であり、更に好ましくは55質量%以上である。この場合、リチウムイオンの拡散性が良好であり、優れた負荷特性が得られる。一方、サイクル特性の向上の観点からは、複合粒子中のシリコン相の含有量は、好ましくは95質量%以下であり、より好ましくは75質量%以下であり、更に好ましくは70質量%以下である。この場合、シリケート相で覆われずに露出するシリコン相の表面が減少し、非水電解質とシリコン相との副反応が抑制されやすい。
 (導電層)
 複合粒子(二次粒子)の表面の少なくとも一部に導電性材料を含む導電層が形成されていてもよい。これにより、複合粒子の導電性が向上する。導電層の厚さは、実質上、複合粒子の平均粒径に影響しない程度に薄いことが好ましい。導電層の厚さは、導電性の確保とリチウムイオンの拡散性を考慮すると、1~200nmが好ましく、5~100nmがより好ましい。導電層の厚さは、SEMまたはTEMを用いた複合粒子の断面観察により計測できる。
 導電性材料は導電性炭素材料が好ましい。導電性炭素材料としては、アモルファスカーボン、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等を用いることができる。中でも複合粒子の表面を覆う薄い導電層を形成しやすい点でアモルファスカーボンが好ましい。アモルファスカーボンとしては、カーボンブラック、ピッチの焼成物、コークス、活性炭等が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン等が挙げられる。
 [複合粒子の製造方法]
 複合粒子は、例えば、以下の第1工程から第4工程を含む製造方法により製造される。
(第1工程)原料であるリチウムアルミネート(以下、原料アルミネートとも称する。)を得る工程。
(第2工程)原料アルミネートと原料シリコンとを複合化してシリケート相内にシリコン相を分散させて複合中間体を得る工程。
(第3工程)複合中間体に熱処理を施してアルミネート相とアルミネート相内に分散しているシリコン相とを含む焼結体を得る工程。
(第4工程)焼結体を粉砕してアルミネート相とアルミネート相内に分散しているシリコン相とを含む複合粒子を得る工程。
 (第1工程)
 第1工程は、例えば、アルミニウム化合物と、リチウム化合物と、必要に応じて、元素Mを含む化合物とを混合し、混合物を得る工程1aと、混合物を焼成し、原料アルミネートを得る工程1bとを含む。工程1bの焼成は、例えば、酸化雰囲気中で行われる。工程1bの焼成温度は、好ましくは400℃以上、1200℃以下であり、より好ましくは800℃以上、1100℃以下である。
 アルミニウム化合物としては、酸化アルミニウム(Al)、水酸化アルミニウム、炭酸アルミニウム等が挙げられる。アルミニウム化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム化合物としては、炭酸リチウム、酸化リチウム、水酸化リチウム、水素化リチウム等が挙げられる。リチウム化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 元素Mを含む化合物としては、元素Mの酸化物、水酸化物、水素化物、ハロゲン化物、炭酸塩、シュウ酸塩、硝酸塩、硫酸塩等を用い得る。元素Mを含む化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第1工程では、原料アルミネートの作製過程でリチウム化合物と反応しなかったアルミニウム化合物が原料アルミネート中に残存し得る。リチウム化合物に対してアルミニウム化合物の使用量が大きい場合、アルミニウム化合物が残存し易い。原料アルミネート中に残存するアルミニウム化合物がAlの場合、最終的に得られる複合粒子において、リチウムアルミネート相内に分散するAl相が形成され得る。
 (第2工程)
 第2工程は、例えば、原料アルミネートと原料シリコンとの混合物にせん断力を付与しながら混合物を粉砕して微粒子化された複合中間体を得る工程を有する。ここでは、例えば、原料アルミネートと原料シリコンとを所定の質量比で混合し、ボールミルのような粉砕装置を用いて、混合物を攪拌しながら微粒子化すればよい。
 原料シリコンには、平均粒径が数μm~数十μm程度のシリコンの粗粒子を用いればよい。最終的に得られるシリコン粒子は、X線回折パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される結晶子サイズが10nm以上になるように制御することが好ましい。
 なお、第2工程は上記に限定されない。例えば、粉砕装置を使用せず、シリコンナノ粒子と、原料アルミネートのナノ粒子とを合成し、これらを混合してもよい。
 (第3工程)
 第3工程は、例えば、微粒子化された複合中間体にホットプレス等で圧力を印加しながら複合中間体を焼成して焼結体を得る工程を有する。複合中間体の焼成は、例えば、不活性雰囲気(例えば、アルゴン、窒素等の雰囲気)中で行われる。焼成温度は、450℃以上、1000℃以下であることが好ましい。上記温度範囲である場合、結晶性が低いアルミネート相内に微小なシリコン粒子を分散させやすい。原料アルミネートは、上記温度範囲では安定であり、シリコンとほとんど反応しない。焼成温度は、好ましくは550℃以上、900℃以下であり、より好ましくは650℃以上、850℃以下である。焼成時間は、例えば、1時間以上、10時間以下である。
 (第4工程)
 第4工程は、焼結体を所望の粒度分布を有するように粉砕して、アルミネート相とアルミネート相内に分散しているシリコン相とを含む複合粒子を得る工程である。複合粒子は、例えば、平均粒径1~25μmとなるように粉砕される。
 (第5工程)
 さらに、複合粒子の製造方法は、複合粒子の表面の少なくとも一部を導電性材料で被覆して導電層を形成する第5工程を含んでもよい。導電性材料は、電気化学的に安定であることが好ましく、導電性炭素材料が好ましい。導電性炭素材料で複合粒子の表面を被覆する方法としては、アセチレン、メタン等の炭化水素ガスを原料に用いるCVD法、石炭ピッチ、石油ピッチ、フェノール樹脂等を複合粒子と混合し、加熱して炭化させる方法等が例示できる。また、カーボンブラックを複合粒子の表面に付着させてもよい。第5工程では、例えば、複合粒子と導電性炭素材料との混合物を、例えば不活性雰囲気(例えば、アルゴン、窒素等の雰囲気)中で、700℃以上、950℃以下で加熱することで、複合粒子の表面に導電層を形成してもよい。
 ここで、図2は、本開示の一実施形態に係る負極活物質(複合粒子)を模式的に示す断面図である。
 複合粒子20は、複数の一次粒子24が凝集した二次粒子で構成される母粒子23を備える。母粒子23(一次粒子24)は、リチウムアルミネート相21と、リチウムアルミネート相21内に分散しているシリコン相22と、を備える。母粒子23は、リチウムアルミネート相21のマトリックス中に微細なシリコン相が分散した海島構造を有する。
 さらに、リチウムアルミネート相21内に微細なAl相28が分散し得る。母粒子23の表面の少なくとも一部は、導電層26で被覆され得る。リチウムアルミネート相21は元素Mを含んでもよい。充放電の繰り返しに伴い、互いに隣り合う粒子状のシリコン相22同士が連結し、ネットワーク状のシリコン相が形成され得る。
 [非水電解質二次電池]
 本開示の実施形態に係る非水電解質二次電池は、正極と、負極と、非水電解質と、を備え、負極は、上記の非水電解質二次電池用負極活物質を含む。
 以下、非水電解質二次電池について詳細に説明する。
 [負極]
 負極は、負極集電体と、負極集電体の表面に担持された負極合剤層とを備えてもよい。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、負極活物質を必須成分として含み、任意成分として、結着剤、導電剤、増粘剤等を含むことができる。負極活物質は、少なくとも、上記の複合粒子を含む。
 負極活物質は、更に、電気化学的にリチウムイオンを吸蔵および放出する炭素材料を含むことが好ましい。複合粒子は、充放電に伴って体積が膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴って負極活物質と負極集電体との接触不良が生じ易い。一方、複合粒子と炭素材料とを併用することで、シリコン粒子の高容量を負極に付与しながら優れたサイクル特性を達成することが可能になる。高容量化およびサイクル特性向上の観点から、複合粒子と炭素材料との合計に占める炭素材料の割合は、好ましくは98質量%以下であり、より好ましくは70質量%以上、98質量%以下であり、更に好ましくは75質量%以上、95質量%以下である。
 炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等が例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子等が含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極集電体としては、無孔の導電性基板(金属箔等)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシート等)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金等が例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1~50μmが好ましく、5~20μmがより望ましい。
 結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アラミド樹脂等のポリアミド樹脂;ポリイミド、ポリアミドイミド等のポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体等のアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニル等のビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)等のゴム状材料等が例示できる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、例えば、アセチレンブラック等のカーボン類;炭素繊維や金属繊維等の導電性繊維類;フッ化カーボン;アルミニウム等の金属粉末類;酸化亜鉛やチタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;フェニレン誘導体等の有機導電性材料等が例示できる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩等の塩も含む)、メチルセルロース等のセルロース誘導体(セルロースエーテル等);ポリビニルアルコール等の酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシド等のポリアルキレンオキサイド等)等が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 分散媒としては、特に制限されないが、例えば、水、エタノール等のアルコール、テトラヒドロフラン等のエーテル、ジメチルホルムアミド等のアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒等が例示できる。
 [正極]
 正極は、正極集電体と、正極集電体の表面に担持された正極合剤層とを備えてもよい。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、導電剤等を含むことができる。正極スラリーの分散媒としては、NMP等が用いられる。
 正極活物質としては、例えば、リチウム含有複合酸化物を用いることができる。例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-b、LiCoMe1-bOc、LiNi1-bMe、LiMn、LiMn2-bMe、LiMePO、LiMePOF(Meは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bからなる群より選択される少なくとも1種である。)が挙げられる。ここで、a=0~1.2、b=0~0.9、c=2.0~2.3である。なお、リチウムのモル比を示すa値は、充放電により増減する。
 中でも、LiNiMe1-b(Meは、Mn、CoおよびAlからなる群より選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b<1を満たすことがより好ましい。結晶構造の安定性の観点からは、MeとしてCoおよびAlを含むLiNiCoAl(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)が更に好ましい。
 結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタン等が例示できる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含む。非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下が好ましい。リチウム塩濃度を上記範囲とすることで、イオン伝導性に優れ、適度の粘性を有する非水電解質を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステル等が用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。これらの中でも、LiPFが好ましい。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 [セパレータ]
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布等を用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレン等のポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群が非水電解質と共に外装体に収容された構造が挙げられる。ただし、これに限られず、他の形態の電極群が適用されてもよい。例えば、正極と負極とがセパレータを介して積層された積層型の電極群でもよい。非水電解質二次電池の形態も限定されず、例えば、円筒型、角型、コイン型、ボタン型、ラミネート型などであればよい。
 以下、本開示に係る非水電解質二次電池の一例として角形の非水電解質二次電池の構造を、図3を参照しながら説明する。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極の負極集電体は、負極リード3を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製ガスケット7により封口板5から絶縁されている。正極の正極集電体は、正極リード2を介して、封口板5の裏面に電気的に接続されている。すなわち、正極は、正極端子を兼ねる電池ケース4に電気的に接続されている。封口板5の周縁は、電池ケース4の開口端部に嵌合し、嵌合部はレーザー溶接されている。封口板5には非水電解質の注入孔があり、注液後に封栓8により塞がれる。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <実施例1~10>
 [複合粒子(LAX粒子)の調製]
 (第1工程)
 Alと、LiCOとを混合し、空気中、混合物を950℃で10時間焼成し、原料アルミネートを得た。混合物において、AlとLiCOとのモル比は、表1に示す値とした。原料アルミネートは平均粒径10μmになるように粉砕した。
 (第2工程)
 次に、原料アルミネート(平均粒径10μm)と、原料シリコン(3N、平均粒径10μm)とを混合した。混合物において、原料アルミネートと原料シリコンとの質量比は、表1に示す値とした。
 混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
 (第3工程)
 次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機を用いて圧力を印加しながら800℃で4時間焼成して、混合物の焼結体を得た。
 (第4工程)
 得られた焼結体を粉砕し、40μmのメッシュに通し、複合粒子を得た。
 (第5工程)
 複合粒子と、石炭ピッチ(JFEケミカル社製、MCP250)とを混合した。混合物を、不活性雰囲気中、800℃で5時間焼成し、複合粒子の表面に導電性炭素材料を含む導電層を形成した。導電層の被覆量は、複合粒子と導電層との総質量に対して5質量%とした。その後、篩を用いて、導電層を有する平均粒径5μmの複合粒子(リチウムアルミネート相内にシリコン相が分散しているLAX粒子)を得た。
 XRD測定により得られたLAX粒子のXRDパターンにおいて、シリコン相およびリチウムアルミネート相に由来するピークを確認した。LAX1~LAX3およびLAX6~LAX8の粒子では、Al相に由来するピークも確認した。既述の方法により求められたLAX粒子中のシリコン相の結晶子サイズは、15nmであった。
 既述の方法により求められたリチウムアルミネート相の組成およびLAX粒子中のシリコン相を構成するSi量に基づいて、LAX粒子中のLi含有比率MLi、Si含有比率MSiおよびAl含有比率MAlを求めた。各含有比率の値を表1に示す。
 [負極の作製]
 導電層を有する複合粒子と黒鉛とを、5:95の質量比で混合し、負極活物質として用いた。負極活物質と、CMCのNa塩と、SBRとを、97.5:1:1.5の質量比で含む負極合剤に水を添加して攪拌し、負極スラリーを調製した。次に、銅箔の表面に負極スラリーを塗布し、塗膜を乾燥後、圧延して、銅箔の両面に密度1.5g/cmの負極合剤層が形成された負極を作製した。
 [正極の作製]
 コバルト酸リチウムと、アセチレンブラックと、PVDFとを、95:2.5:2.5の質量比で含む正極合剤にNMPを添加して攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥後、圧延して、アルミニウム箔の両面に密度3.6g/cmの正極合剤層が形成された正極を作製した。
 [非水電解質の調製]
 ECとDECとを3:7の体積比で含む混合溶媒にLiPFを1.0mol/L濃度で溶解して非水電解質を調製した。
 [非水電解質二次電池の作製]
 それぞれタブを取り付けた正極と負極とをセパレータを介して巻回し、タブが最外周部に位置する電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥後、非水電解質を注入し、外装体の開口部を封止して、非水電解質二次電池を得た。表1中のLAX1~10およびA1~A10は、実施例1~10の複合粒子および電池を示す。
 <比較例1>
 第2工程で、原料アルミネートの代わりに原料シリケートを用い、原料シリケート(平均粒径10μm)と原料シリコン(3N、平均粒径10μm)とを、25:75の質量比で混合した。原料シリケートは、SiOとLiCOとを、SiO:LiCO=70:30のモル比で混合し、空気中、混合物を950℃で10時間焼成することにより得た。原料シリケートは平均粒径10μmになるように粉砕した。
 上記以外は、実施例1と同様の方法により、導電層を有する複合粒子(リチウムシリケート相内にシリコン相が分散しているLSX粒子)を得た。
 XRD測定により得られたLSX粒子のXRDパターンにおいて、リチウムシリケート相(LiSiおよびLiSiO)およびシリコン相に由来するピークを確認した。LSX粒子中のシリコン相の結晶子サイズは15nmであった。
 導電層を有するLAX1粒子の代わりに導電層を有するLSX粒子を用いた以外、実施例1と同様の方法により、電池B1を作製した。
 上記で得られた各電池について、以下の方法により初回充放電効率を求めた。
 [初回充放電効率]
 <充電>
 25℃で、1It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行った後、4.2Vの電圧で電流が1/20It(40mA)になるまで定電圧充電を行った。
 <放電>
 10分間の休止後、25℃で、1It(800mA)の電流で電圧が2.75Vになるまで定電流放電を行った。
 各電池について、上記の充放電より充電容量および放電容量を求め、充電容量に対する放電容量の割合を初回充放電効率として求めた。表1に、比較例1の電池B1で得られた初回充放電効率の値を100として、各電池の初回充放電効率の値を相対値で示した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 LAX粒子を用いた電池A1~A10では、LSX粒子を用いた電池B1よりも高い初回充放電効率が得られた。特に、電池A2~A4、A7~A9では、より高い初回充放電効率が得られた。
 本開示に係る非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。
1  電極群
2  正極リード
3  負極リード
4  電池ケース
5  封口板
6  負極端子
7  ガスケット
8  封栓
20  複合粒子
21  リチウムアルミネート相
22  シリコン相
23  母粒子
24  一次粒子
26  導電層
28  Al

Claims (9)

  1.  リチウムアルミネート相と、前記リチウムアルミネート相内に分散しているシリコン相と、を含む複合粒子を備える、非水電解質二次電池用負極活物質。
  2.  前記複合粒子において、
     酸素以外の元素の全体に対するアルミニウムの含有比率MAlが、10質量%以上、47質量%以下であり、かつ、
     酸素以外の元素の全体に対するリチウムの含有比率MLiが、0.7質量%以上、13.5質量%以下である、請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記リチウムの含有比率MLiに対する前記アルミニウムの含有比率MAlの比:MAl/MLiは、2以上、20以下である、請求項2に記載の非水電解質二次電池用負極活物質。
  4.  前記リチウムアルミネート相は、LiAl、LiAl、LiAlOおよびLiAlOからなる群より選択される少なくとも1種を含む、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極活物質。
  5.  X線回折測定により得られる前記複合粒子のX線回折パターンにおいて、
     2θ=x°付近に、前記リチウムアルミネート相に由来するピークが現れ、
     前記x°は、19.4°、22.3°、31.9°、34.3°および37.5°からなる群より選択される少なくとも1つである、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極活物質。
  6.  前記リチウムアルミネート相内にAl相が分散している、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極活物質。
  7.  X線回折測定により得られる前記複合粒子のX線回折パターンにおいて、2θ=25.4°付近に、前記Al相に由来するピークが現れる、請求項6に記載の非水電解質二次電池用負極活物質。
  8.  前記リチウムアルミネート相は、ナトリウム、カリウム、カルシウム、マグネシウム、ジルコニウム、鉄、ホウ素、リンおよびランタンからなる群より選択される少なくとも1種の元素を含む、請求項1~7のいずれか1項に記載の非水電解質二次電池用負極活物質。
  9.  正極と、負極と、非水電解質と、を備え、
     前記負極は、請求項1~8のいずれか1項に記載の非水電解質二次電池用負極活物質を含む、非水電解質二次電池。
PCT/JP2021/034842 2020-11-30 2021-09-22 非水電解質二次電池用負極材料および非水電解質二次電池 WO2022113500A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21897478.0A EP4254551A4 (en) 2020-11-30 2021-09-22 NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
CN202180078909.7A CN116636036A (zh) 2020-11-30 2021-09-22 非水电解质二次电池用负极材料和非水电解质二次电池
US18/038,864 US20240021806A1 (en) 2020-11-30 2021-09-22 Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2022565086A JPWO2022113500A1 (ja) 2020-11-30 2021-09-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199066 2020-11-30
JP2020199066 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113500A1 true WO2022113500A1 (ja) 2022-06-02

Family

ID=81755507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034842 WO2022113500A1 (ja) 2020-11-30 2021-09-22 非水電解質二次電池用負極材料および非水電解質二次電池

Country Status (5)

Country Link
US (1) US20240021806A1 (ja)
EP (1) EP4254551A4 (ja)
JP (1) JPWO2022113500A1 (ja)
CN (1) CN116636036A (ja)
WO (1) WO2022113500A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116847A1 (ja) * 2022-11-30 2024-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2024116814A1 (ja) * 2022-11-30 2024-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質および非水電解質二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277509A (ja) * 2008-05-15 2009-11-26 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極
JP2013197012A (ja) * 2012-03-22 2013-09-30 Toyota Industries Corp リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
WO2016035290A1 (ja) 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2017199606A1 (ja) * 2016-05-17 2017-11-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池
WO2019087771A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277509A (ja) * 2008-05-15 2009-11-26 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極
JP2013197012A (ja) * 2012-03-22 2013-09-30 Toyota Industries Corp リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
WO2016035290A1 (ja) 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2017199606A1 (ja) * 2016-05-17 2017-11-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池
WO2019087771A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254551A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116847A1 (ja) * 2022-11-30 2024-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2024116814A1 (ja) * 2022-11-30 2024-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質および非水電解質二次電池

Also Published As

Publication number Publication date
CN116636036A (zh) 2023-08-22
EP4254551A1 (en) 2023-10-04
JPWO2022113500A1 (ja) 2022-06-02
US20240021806A1 (en) 2024-01-18
EP4254551A4 (en) 2024-08-14

Similar Documents

Publication Publication Date Title
JP6876946B2 (ja) 負極材料および非水電解質二次電池
JP6994690B2 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2018179970A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2021241618A1 (ja) 二次電池用負極活物質および二次電池
WO2022113500A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2023162716A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2020195575A1 (ja) 非水電解質二次電池
WO2020195335A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
JPWO2020137560A1 (ja) 非水電解質二次電池
WO2021199587A1 (ja) 二次電池用負極活物質およびこれを用いた二次電池
WO2021020226A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2024004520A1 (ja) 二次電池用負極材料、および、二次電池
WO2020202843A1 (ja) 非水電解質二次電池
WO2023171580A1 (ja) 二次電池用負極活物質および二次電池
CN111033854B (zh) 非水电解质二次电池
WO2022113499A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2022044454A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2021241388A1 (ja) 二次電池用負極活物質および二次電池
WO2020189452A1 (ja) 非水電解液二次電池用負極および非水電解液二次電池
WO2022137732A1 (ja) 非水電解質二次電池用の複合粒子および非水電解質二次電池
WO2023008098A1 (ja) 二次電池用負極活物質および二次電池
WO2024116814A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2023162689A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2024116847A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2021039217A1 (ja) 二次電池用負極および非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565086

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180078909.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18038864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897478

Country of ref document: EP

Effective date: 20230630