WO2023162689A1 - 非水電解質二次電池用負極活物質および非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質および非水電解質二次電池 Download PDF

Info

Publication number
WO2023162689A1
WO2023162689A1 PCT/JP2023/004222 JP2023004222W WO2023162689A1 WO 2023162689 A1 WO2023162689 A1 WO 2023162689A1 JP 2023004222 W JP2023004222 W JP 2023004222W WO 2023162689 A1 WO2023162689 A1 WO 2023162689A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
composite particles
phase
electrolyte secondary
active material
Prior art date
Application number
PCT/JP2023/004222
Other languages
English (en)
French (fr)
Inventor
拓弥 神
泰介 朝野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023162689A1 publication Critical patent/WO2023162689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode active material for nonaqueous electrolyte secondary batteries and a nonaqueous electrolyte secondary battery using the negative electrode active material.
  • non-aqueous electrolyte secondary batteries such as lithium-ion batteries have been widely used for applications that require high capacity, such as in-vehicle applications and power storage applications.
  • the negative electrode active material which is a main component of the negative electrode, is one of the important factors in increasing the capacity of the battery, various studies have been made on the negative electrode active material. Among them, the use of silicon-containing materials (Si-containing materials) has attracted attention as a negative electrode active material with a high theoretical capacity density.
  • Si-containing material examples include a material in which silicon particles are dispersed in the SiO2 phase (hereinafter referred to as "SiOx”), and silicon particles in the lithium silicate phase represented by Li2zSiO2 +z (0 ⁇ z ⁇ 2). is known (hereinafter referred to as "LSX”) in which is dispersed (for LSX, see, for example, Patent Document 1).
  • LSX Compared to SiOx, LSX has a smaller irreversible capacity and is superior in initial charge-discharge efficiency. However, the lithium silicate phase in LSX has low alkali resistance (stability to Li) and may still cause side reactions with Li ions during initial charging, and further improvement in initial charge/discharge efficiency is required.
  • Si-containing materials such as LSX undergo large volume changes during charging and discharging, so when charging and discharging are repeated, cracks and fractures of the particles are likely to occur, making it difficult to ensure good cycle characteristics.
  • a negative electrode active material for a non-aqueous electrolyte secondary battery according to the present disclosure includes composite particles containing a lithium aluminate phase and a silicon phase dispersed in the lithium aluminate phase, and the composite particles are first charged and discharged.
  • the porosity inside the particles is 25% or less.
  • a non-aqueous electrolyte secondary battery using the negative electrode active material according to the present disclosure has, for example, good cycle characteristics and high initial charge/discharge efficiency compared to the case of using LSX.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment
  • FIG. It is a figure which shows the particle
  • 4 is an XRD pattern of a negative electrode active material that is an example of an embodiment.
  • the present inventors have found that by using composite particles in which a silicon phase is dispersed in a lithium aluminate phase as a negative electrode active material for a non-aqueous electrolyte secondary battery, the initial charge and discharge efficiency of the battery is higher than when LSX is used. I found a big improvement.
  • the composite particles containing a lithium aluminate phase like other Si-containing materials, have a higher theoretical capacity density than carbon-based active materials such as graphite, and contribute to increasing the capacity of batteries.
  • non-aqueous electrolyte secondary battery a cylindrical battery in which a wound electrode body 14 is housed in a bottomed cylindrical outer can 16 will be exemplified.
  • the non-aqueous electrolyte secondary battery according to the present disclosure may be, for example, a prismatic battery with a prismatic outer can or a coin-shaped battery with a coin-shaped outer can, and a laminate including a metal layer and a resin layer. It may be a laminated battery having an outer package made of a sheet.
  • the electrode assembly is not limited to the wound type, and may be a laminated electrode assembly in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated with separators interposed therebetween.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery 10 that is an example of an embodiment.
  • a non-aqueous electrolyte secondary battery 10 includes a wound electrode body 14, an electrolyte, and an outer can 16 that accommodates the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 has a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 interposed therebetween.
  • the outer can 16 is a bottomed cylindrical metal container that is open at one end in the axial direction.
  • the side of the sealing member 17 of the battery will be referred to as the upper side
  • the bottom side of the outer can 16 will be referred to as the lower side.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents include esters, ethers, nitriles, amides, and mixed solvents of two or more thereof.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine.
  • non-aqueous solvents include ethylene carbonate (EC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), mixed solvents thereof, and the like.
  • Lithium salts such as LiPF 6 are used, for example, as electrolyte salts.
  • the positive electrode 11, the negative electrode 12, and the separator 13, which constitute the electrode assembly 14, are all strip-shaped elongated bodies, and are alternately laminated in the radial direction of the electrode assembly 14 by being spirally wound.
  • the negative electrode 12 is formed with a size one size larger than that of the positive electrode 11 in order to prevent deposition of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (transverse direction).
  • the separator 13 is at least one size larger than the positive electrode 11 and, for example, two separators 13 are arranged so as to sandwich the positive electrode 11 .
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • the positive electrode 11 has a positive electrode core and a positive electrode mixture layer formed on the positive electrode core.
  • a foil of a metal such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film having the metal on the surface layer, or the like can be used.
  • the positive electrode material mixture layer contains a positive electrode active material, a conductive agent, and a binder, and is preferably formed on both surfaces of the positive electrode core excluding the exposed portion to which the positive electrode lead 20 is welded.
  • a positive electrode slurry containing a positive electrode active material, a conductive agent, a binder, and the like is applied onto a positive electrode core, the coating is dried, and then compressed to form a positive electrode mixture layer on the positive electrode core.
  • a positive electrode slurry containing a positive electrode active material, a conductive agent, a binder, and the like is applied onto a positive electrode core, the coating is dried, and then compressed to form a positive electrode mixture layer on the positive electrode core.
  • the positive electrode mixture layer contains a particulate lithium metal composite oxide as a positive electrode active material.
  • a lithium metal composite oxide is a composite oxide containing metal elements such as Co, Mn, Ni and Al in addition to Li.
  • Metal elements constituting the lithium metal composite oxide include, for example, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Sn, Sb , W, Pb, and Bi. Among them, it is preferable to contain at least one selected from Co, Ni, and Mn.
  • suitable composite oxides include lithium metal composite oxides containing Ni, Co and Mn and lithium metal composite oxides containing Ni, Co and Al.
  • Examples of the conductive agent contained in the positive electrode mixture layer include carbon black such as acetylene black and Ketjen black, graphite, carbon nanotubes (CNT), carbon nanofiber, and carbon materials such as graphene.
  • Examples of the binder contained in the positive electrode mixture layer include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimides, acrylic resins, and polyolefins. Further, these resins may be used in combination with carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO), and the like.
  • the negative electrode 12 has a negative electrode core and a negative electrode mixture layer formed on the negative electrode core.
  • a foil of a metal such as copper or a copper alloy that is stable in the potential range of the negative electrode 12, a film having the metal on the surface layer, or the like can be used.
  • the negative electrode mixture layer contains a negative electrode active material, a binder, and optionally a conductive agent, and is preferably formed on both surfaces of the negative electrode core excluding the exposed portion to which the negative electrode lead 21 is welded.
  • a negative electrode active material, a negative electrode slurry containing a binder, etc. is applied to the surface of the negative electrode core, the coating film is dried, and then compressed to form negative electrode mixture layers on both sides of the negative electrode core. It can be produced by
  • the binder contained in the negative electrode mixture layer may be fluororesin, PAN, polyimide, acrylic resin, polyolefin, or the like, but preferably styrene-butadiene rubber (SBR). use.
  • the negative electrode mixture layer preferably contains CMC or its salt, polyacrylic acid (PAA) or its salt, polyvinyl alcohol (PVA), or the like. Among them, it is preferable to use SBR together with CMC or a salt thereof and PAA or a salt thereof.
  • the negative electrode mixture layer may contain a conductive agent such as CNT.
  • a porous sheet having ion permeability and insulation is used for the separator 13 .
  • porous sheets include microporous thin films, woven fabrics, and non-woven fabrics.
  • polyolefins such as polyethylene and polypropylene, cellulose, and the like are suitable.
  • the separator 13 may have a single layer structure or a multilayer structure.
  • a resin layer having high heat resistance such as aramid resin may be formed on the surface of the separator 13 .
  • a filler layer containing an inorganic filler may be formed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12 .
  • inorganic fillers include oxides containing metal elements such as Ti, Al, Si, and Mg, and phosphoric acid compounds.
  • the filler layer can be formed by applying slurry containing the filler to the surfaces of the positive electrode 11 , the negative electrode 12 , or the separator 13 .
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 extends through the through hole of the insulating plate 18 toward the sealing member 17
  • the negative electrode lead 21 extends through the outside of the insulating plate 19 toward the bottom of the outer can 16 .
  • the positive electrode lead 20 is connected to the lower surface of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 electrically connected to the internal terminal plate 23, serves as the positive electrode terminal.
  • the negative electrode lead 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17 to ensure hermeticity inside the battery.
  • the outer can 16 is formed with a grooved portion 22 that supports the sealing member 17 and has a portion of the side surface projecting inward.
  • the grooved portion 22 is preferably annularly formed along the circumferential direction of the outer can 16 and supports the sealing member 17 on its upper surface.
  • the sealing member 17 is fixed to the upper portion of the outer can 16 by the grooved portion 22 and the open end of the outer can 16 that is crimped to the sealing member 17 .
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are layered in order from the electrode body 14 side.
  • Each member constituting the sealing member 17 has, for example, a disk shape or a ring shape, and each member except for the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their central portions, and an insulating member 25 is interposed between their peripheral edge portions.
  • FIG. 1 The negative electrode active material will be described in detail below with reference to FIGS. 2 and 3.
  • FIG. 1 The negative electrode active material will be described in detail below with reference to FIGS. 2 and 3.
  • FIG. 2 is a schematic diagram showing a cross section of a composite particle 30 that is an example of an embodiment.
  • the negative electrode 12 contains at least composite particles 30, preferably composite particles 30 and a carbon material, as a negative electrode active material.
  • the content of the carbon material is preferably 98% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and particularly preferably 75% by mass or more and 95% by mass or less, relative to the total mass of the negative electrode active material.
  • Examples of carbon materials include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon). Among them, graphite is preferable because it has excellent charging/discharging stability and low irreversible capacity.
  • Graphite may be any of artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB), and natural graphite such as flake graphite, massive graphite, and earthy graphite.
  • MAG massive artificial graphite
  • MCMB graphitized mesophase carbon microbeads
  • the composite particles 30 include a lithium aluminate phase 31 and silicon phases 32 dispersed within the lithium aluminate phase 31 .
  • Composite particle 30 preferably includes conductive layer 34 formed on the surface of base particle 33 composed of lithium aluminate phase 31 and silicon phase 32 .
  • the mother particles 33 have a sea-island structure in which fine silicon phases 32 are dispersed in a matrix of a lithium aluminate phase 31 .
  • voids 35 exist inside the mother particles 33, the porosity of the composite particles 30 before the first charge/discharge is 25% or less.
  • the voids 35 are considered to be starting points of cracks, fractures, etc. when charging and discharging are repeated, but by suppressing the void ratio to 25% or less, deterioration of the grain structure can be effectively suppressed.
  • the lithium aluminate phase 31 has better alkali resistance than the lithium silicate phase in the LSX particles. Therefore, when the composite particles 30 are used as the negative electrode active material, the side reaction with Li ions during the initial charge is suppressed compared to the case of using LSX, and the negative electrode active material deteriorates and deteriorates due to the side reaction. The accompanying decrease in initial capacity is suppressed. That is, the decrease in initial charge/discharge efficiency is highly suppressed.
  • Composite particles 30 may be substantially free of lithium silicate and SiO 2 .
  • Composite particles 30 may include lithium silicate and SiO 2 , but preferably in small amounts.
  • the total content of lithium silicate and SiO 2 in composite particles 30 is, for example, 3% by mass or less.
  • the content of aluminum (Al) relative to the total mass of elements other than oxygen (MAl) is preferably 10% by mass or more and 47% by mass or less.
  • the content of lithium (Li) relative to the total mass of elements other than oxygen (MLi) is preferably 0.7% by mass or more and 13.5% by mass or less.
  • the ratio (MLi/MAl) of the Li content (MLi) to the Al content (MAl) is 0.04 from the viewpoint of the stability of the lithium aluminate phase 31, the ionic conductivity, and the reduction of the porosity. Above, 0.50 or less is preferable, and 0.05 or more and 0.25 or less are more preferable.
  • the content (MAl) is more preferably 11.5% by mass or more and 45.5% by mass or less.
  • the content (MLi) is more preferably 1.0% by mass or more and 9.5% by mass or less, and particularly preferably 1.5% by mass or more and 3.5% by mass or less.
  • the content of silicon (Si) relative to the total mass of elements other than oxygen (MSi) is preferably 40% by mass or more and 90% by mass or less, and 50.8% by mass or more and 85.5% by mass or less. is more preferred. In this case, it is easy to achieve both high capacity and good cycle characteristics.
  • the Si content (MSi) is the amount of Si that constitutes the silicon phase 32 in the composite particle 30 .
  • is at least one selected from the group consisting of 19.4°, 22.3°, 31.9°, 34.3° and 37.5°.
  • K ⁇ rays of Cu are used as X-rays for XRD measurement. In this specification, being near x° means, for example, within the range of x ⁇ 1°.
  • a fine Al 2 O 3 phase with high crystallinity may be dispersed in the lithium aluminate phase 31 .
  • the Al 2 O 3 phase is distributed like islands in the matrix of the lithium aluminate phase 31, for example. In this case, expansion and cracking of the lithium aluminate phase 31 due to expansion and contraction of the silicon phase 32 are easily suppressed, and the effect of improving the cycle characteristics is enhanced.
  • the content of the Al 2 O 3 phase in the composite particles 30 is, for example, 10% by mass or less.
  • FIG. 3 shows an example of the XRD pattern of the composite particles 30 (mother particles 33).
  • the solid line in FIG. 3 indicates the XRD pattern of the Al-rich composite particles 30 with a large MAl/MLi.
  • the dashed line in FIG. 3 indicates the XRD pattern of the Li-rich composite particles 30 with a small MAl/MLi.
  • the base particles 33 of the composite particles 30 have a sea-island structure in which fine silicon phases 32, which are islands, are dispersed in lithium aluminate phases 31, which are seas.
  • the lithium aluminate phase 31 has good ionic conductivity, and absorption and release of Li ions by the silicon phase 32 through the lithium aluminate phase 31 are performed smoothly.
  • the lithium aluminate phase 31 mitigates the influence of expansion and contraction of the silicon phase 32 .
  • the lithium aluminate phase 31 may be amorphous, in which case the effects of expansion and contraction of the silicon phase 32 can be more effectively mitigated.
  • the composite particles 30 for example, a plurality of primary particles including a lithium aluminate phase 31 and a silicon phase 32 are combined to form secondary particles.
  • the average particle diameter of the composite particles 30 is, for example, 1 ⁇ m or more and 25 ⁇ m or less, and may be 4 ⁇ m or more and 15 ⁇ m or less.
  • the surface area of the composite particles 30 also has an appropriate size, and the decrease in capacity due to side reactions with the non-aqueous electrolyte is also suppressed.
  • the average particle size of the composite particles 30 means the particle size (volume average particle size) at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • “LA-750" manufactured by HORIBA, Ltd. can be used as the measuring device.
  • the composite particle 30 having the conductive layer 34 The average particle size may be considered the average particle size of the composite particles 30 .
  • the composite particles 30 can be taken out from the battery by the following method. First, a battery in a completely discharged state is disassembled, the negative electrode is taken out, and the negative electrode is washed with anhydrous ethyl methyl carbonate or dimethyl carbonate to remove non-aqueous electrolyte components. The negative electrode mixture layer is peeled off from the copper foil that is the negative electrode core, and the mixture layer is pulverized in a mortar to obtain a sample powder. Next, the sample powder is dried in a dry atmosphere for 1 hour and immersed in weakly boiled 6M hydrochloric acid for 10 minutes to remove elements derived from other than the composite particles.
  • the sample powder is washed with deionized water, separated by filtration, and dried at 200° C. for 1 hour. Thereafter, by heating to 900° C. in an oxygen atmosphere to remove the conductive layer 34, only the mother particles 33 can be isolated.
  • the fully discharged state is a state in which the depth of discharge (DOD) is 90% or more (the state of charge (SOC) is 10% or less).
  • the lithium aluminate phase 31 is a complex oxide phase containing Li, Al and O.
  • the atomic ratio of O to Al (O/Al) in lithium aluminate is, for example, 1.6 or more and 4 or less. Further, the atomic ratio of Li to Al (Li/Al) in lithium aluminate is, for example, 1/5 or more and 5 or less. When each atomic ratio is within the above range, the stability and ionic conductivity of the lithium aluminate phase 31 are improved.
  • the composition of lithium aluminate can be represented by the formula: Li u AlO (3+u)/2 .
  • u in the formula is, for example, greater than 0 and 5 or less, or may be greater than 0 and 1 or less.
  • the lithium aluminate phase 31 preferably contains at least one selected from the group consisting of LiAl 5 O 8 , Li 2 Al 4 O 7 , LiAlO 2 and Li 5 AlO 4 .
  • the lithium aluminate phase 31 more preferably contains LiAlO 2 as a main component.
  • the “main component” means a component that accounts for 50 mass % or more of the total mass of the lithium aluminate phase 31 .
  • the content of LiAlO 2 may be 70% by mass or more.
  • the lithium aluminate phase 31 may contain other element M in addition to Li, Al, and O.
  • Element M is, for example, sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), zirconium (Zr), iron (Fe), boron (B), phosphorus (P), and lanthanum (La ) is at least one selected from the group consisting of
  • the lithium aluminate phase 31 contains the element M, for example, the stability and ionic conductivity of the lithium aluminate phase 31 are further improved. Also, side reactions due to contact between the lithium aluminate phase 31 and the non-aqueous electrolyte are suppressed.
  • the element M preferably contains at least one selected from the group consisting of Zr, Fe, P, and B. La can further improve the initial charge/discharge efficiency.
  • the element M may form a compound.
  • the compound may be, for example, an oxide of the element M or an aluminate of the element M, depending on the type of the element M.
  • the content of the element M is, for example, 0.3 mol % or more and 3 mol % or less with respect to the total amount of elements other than oxygen.
  • the lithium aluminate phase 31 may further contain trace amounts of elements such as chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), and molybdenum (Mo).
  • the composite particles 30 have a porosity of 25% or less inside the particles before the first charge and discharge. Since the conductive layer 34 does not substantially affect the porosity of the composite particles 30, the porosity of the composite particles 30 and the porosity of the base particles 33 are substantially the same.
  • the porosity means the proportion of the voids 35 in the particle cross section of the composite particle 30, and is calculated from the SEM image of the particle cross section.
  • the porosity of the composite particles 30 is more preferably 20% or less, particularly preferably 15% or less. Although the lower limit of the porosity is not particularly limited, it is 1% as an example.
  • the voids 35 are, for example, substantially uniformly present throughout the base particles 33 . As schematically shown in FIG. 2 , each void 35 is small, and many voids 35 may exist so as to be dispersed throughout the lithium aluminate phase 31 , similar to the silicon phase 32 .
  • the porosity of the composite particle 30 is obtained by binarizing the SEM image of the cross section of the particle using image analysis software (eg, imageJ) to extract the area of the void 35, and calculating the total area of the void 35 as the total area of the cross section of the particle. Calculated by dividing by the area.
  • image analysis software eg, imageJ
  • the porosity of the composite particles 30 can be controlled by the sintering temperature of the composite particles 30, the compressive force applied to the particles during sintering, the ratio (MLi/MAl), the addition of the element M, and the like. By adding a predetermined amount of B, for example, as the element M, the porosity of the composite particles 30 can be reduced.
  • the composite particles 30 preferably have a Vickers hardness of 300HV or more. Since the conductive layer 34 does not substantially affect the Vickers hardness, the Vickers hardness of the composite particles 30 and the Vickers hardness of the base particles 33 are substantially the same. When the composite particles 30 have a high Vickers hardness, it is easy to suppress the volume change of the silicon phase 32 during charging and discharging, and deterioration of the particle structure can be reduced. As a result, the effect of improving cycle characteristics becomes more pronounced.
  • the Vickers hardness of the composite particles 30 is more preferably 350 HV or higher, and may be 400 HV or higher, or 500 HV or higher.
  • the Vickers hardness of the composite particles 30 can be measured using a Vickers hardness tester. Specifically, the composite particles 30 are embedded in a thermosetting resin and polished with No. 400 abrasive paper to expose the cross section of the composite particles 30 . Further, the cross section is mirror-finished with 2000 abrasive paper and buffing. The Vickers hardness is measured under the conditions of a load of 1 kg and a holding time of 15 seconds. Although the upper limit of the Vickers hardness of the composite particles 30 is not particularly limited, it is 1500 HV as an example.
  • the contents of Li, Al, B, and the element M in the lithium aluminate phase 31 can be measured, for example, by analyzing the cross section of the negative electrode mixture layer.
  • a battery in a fully discharged state is disassembled, the negative electrode is taken out, the negative electrode is washed with anhydrous ethyl methyl carbonate or dimethyl carbonate to remove non-aqueous electrolyte components, dried, and then a cross section polisher (CP) is used.
  • CP cross section polisher
  • a cross section of the negative electrode mixture layer is obtained.
  • a cross section of the negative electrode mixture layer is observed using a scanning electron microscope (SEM).
  • the content of each element in the lithium aluminate phase 31 is measured by one of the following methods. Also, the composition of the lithium aluminate phase 31 can be known from the content of each element.
  • Desirable cross-sectional SEM-EDX analysis measurement conditions are shown below.
  • Processing equipment SM-09010 (Cross Section Polisher) manufactured by JEOL Processing conditions: acceleration voltage 6 kV Current value: 140 ⁇ A Degree of vacuum: 1 ⁇ 10 ⁇ 3 to 2 ⁇ 10 ⁇ 3 Pa
  • Measuring device Electron microscope SU-70 manufactured by HITACHI Acceleration voltage during analysis: 10 kV Field: Free Mode Probe Current Mode: Medium Probe current range: High Anode Ap.: 3 OBJ App.: 2 Analysis area: 1 ⁇ m square Analysis software: EDAX Genesis CPS: 20500 Lsec: 50 Time constant: 3.2
  • AES Alger Electron Spectroscopy
  • 10 composite particles 30 having a maximum particle diameter of 5 ⁇ m or more are randomly selected from the cross-sectional image of the backscattered electron image of the negative electrode mixture layer, and an AES analyzer (for example, JAMP-9510F manufactured by JEOL Ltd.) is analyzed for each of them.
  • Perform qualitative and quantitative analysis of elements using Measurement conditions may be, for example, an acceleration voltage of 10 kV, a beam current of 10 nA, and an analysis area of 20 ⁇ m ⁇ . The content is calculated by averaging the content of a predetermined element contained in 10 particles.
  • the EDX analysis and AES analysis are performed on a range of 1 ⁇ m or more inside from the peripheral edge of the cross section of the composite particle 30 .
  • ICP Inductively Coupled Plasma Emission Spectroscopy
  • Each element can be quantified using an electron microanalyzer (EPMA), laser ablation ICP mass spectrometry (LA-ICP-MS), X-ray photoelectron spectroscopy (XPS), etc.
  • EPMA electron microanalyzer
  • LA-ICP-MS laser ablation ICP mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the contents of B, Na, K, and Al contained in the composite particles 30 may be quantitatively analyzed in accordance with JIS R3105 (1995) (analysis method for borosilicate glass).
  • the Ca content may be quantitatively analyzed according to JIS R3101 (1995) (analysis method for soda-lime glass).
  • the carbon content contained in the composite particles 30 can be measured using a carbon/sulfur analyzer (for example, EMIA-520 model manufactured by Horiba, Ltd.).
  • EMIA-520 model manufactured by Horiba, Ltd. A sample is measured on a magnetic board, a combustion improver is added, the board is inserted into a combustion furnace (carrier gas: oxygen) heated to 1350° C., and the amount of carbon dioxide gas generated during combustion is detected by infrared absorption.
  • a calibration curve is prepared, for example, in Bureau of Analyzed Samples. Ltd. carbon steel (carbon content 0.49%) is used, and the carbon content of the sample is calculated (high-frequency induction heating furnace combustion-infrared absorption method).
  • the oxygen content contained in the composite particles 30 can be measured using an oxygen/nitrogen/hydrogen analyzer (eg, Model EGMA-830 manufactured by Horiba, Ltd.).
  • An oxygen/nitrogen/hydrogen analyzer eg, Model EGMA-830 manufactured by Horiba, Ltd.
  • a sample is placed in a Ni capsule, which is put into a carbon crucible heated with a power of 5.75 kW together with Sn pellets and Ni pellets as fluxes, and carbon monoxide gas released is detected.
  • a calibration curve is prepared using a standard sample Y 2 O 3 , and the oxygen content of the sample is calculated (inert gas fusion-nondispersive infrared absorption method).
  • the amount of Si constituting the silicon phase 32 in the composite particles 30 can be quantified using Si-NMR. Desirable Si-NMR measurement conditions are shown below.
  • Measurement device Solid-state nuclear magnetic resonance spectrometer (INOVA-400) manufactured by Varian Probe: Varian 7mm CPMAS-2 MAS: 4.2kHz MAS speed: 4kHz
  • Observation width 100 kHz Observation center: Around -100 ppm
  • Signal capture time 0.05 sec Cumulative count: 560
  • Sample amount 207.6 mg
  • the silicon phase 32 is a phase of simple Si, and repeats intercalation and deintercalation of Li ions as the battery is charged and discharged. Capacitance is developed by the Faradaic reaction involving the silicon phase 32 . Since the silicon phase 32 has a large capacity, the silicon phase 32 is dispersed in the lithium aluminate phase 31 although the degree of expansion and contraction due to charging and discharging is large. Therefore, stress due to expansion and contraction of the silicon phase 32 is relieved by the lithium aluminate phase 31 .
  • the silicon phase 32 is composed of, for example, a plurality of crystallites.
  • the crystallite size of the silicon phase 32 calculated by Scherrer's formula from the half width of the diffraction peak of the Si (111) plane obtained by XRD measurement of the composite particle 30 (mother particle 33) is preferably 30 nm or less, and 20 nm or less. More preferably, 15 nm or less is particularly preferable. In this case, the volume change of the composite particles 30 due to the expansion and contraction of the silicon phase 32 due to charging and discharging can be reduced, and the effect of improving the cycle characteristics becomes more pronounced.
  • the lower limit of the crystallite size of the silicon phase 32 is not particularly limited, it is 1 nm as an example.
  • An example of a suitable crystallite size of the silicon phase 32 is 1 nm or more and 15 nm or less, and may be 5 nm or more and 11 nm or less.
  • the crystallite size of the silicon phase 32 is 1 nm or more, for example, the surface area of the silicon phase 32 can be kept small, so that the deterioration of the silicon phase 32 accompanied by the generation of irreversible capacitance is less likely to occur.
  • the crystallite size is 15 nm or less, the expansion and contraction of the silicon phase 32 are likely to be uniform, and the stress generated in the composite particles 30 is effectively alleviated.
  • the silicon phase 32 is, for example, particulate at least before the initial charge.
  • the average particle size of the particulate silicon phase 32 is preferably 500 nm or less, more preferably 200 nm or less, and particularly preferably 50 nm or less.
  • the average grain size of the silicon phase 32 is preferably 400 nm or less, more preferably 100 nm or less after the initial charge.
  • the average particle size of the silicon phase 32 is measured using a cross-sectional image of the composite particles 30 obtained by SEM. Specifically, the average grain size of the silicon phase 32 is obtained by averaging the maximum diameters of arbitrary 100 silicon phases 32 .
  • the content of the silicon phase 32 in the composite particles 30 is preferably 30% by mass or more, more preferably 35% by mass or more, and particularly preferably 55% by mass or more.
  • the upper limit of the content of the silicon phase 32 is preferably 95% by mass or less, more preferably 75% by mass or less, and particularly preferably 70% by mass or less. In this case, the silicon phase 32 exposed on the surface of the composite particle 30 without being covered with the lithium aluminate phase 31 is reduced, and the side reaction between the non-aqueous electrolyte and the silicon phase 32 is also suppressed.
  • composite particle 30 preferably has conductive layer 34 formed on the surface of base particle 33 composed of lithium aluminate phase 31 and silicon phase 32 .
  • the conductive layer 34 covers at least part of the surface of the base particle 33 , preferably substantially covers the entire surface of the base particle 33 .
  • the conductive layer 34 is a thin film layer containing a conductive material and improves the conductivity of the composite particles 30 .
  • the thickness of the conductive layer 34 is preferably thin enough not to affect the average particle size of the composite particles 30 .
  • the thickness of the conductive layer 34 is preferably 1 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less, in consideration of ensuring conductivity and diffusibility of Li ions.
  • the thickness of the conductive layer 34 can be measured by cross-sectional observation of the composite particles using SEM or transmission electron microscope (TEM).
  • the conductive material forming the conductive layer 34 is preferably a conductive carbon material.
  • amorphous carbon graphite (natural graphite, artificial graphite, graphitized mesophase carbon, etc.), soft carbon, hard carbon, and the like can be used.
  • amorphous carbon is preferable because it facilitates formation of the thin conductive layer 34 covering the surface of the base particle 33 .
  • Examples of amorphous materials include carbon black, burned pitch, coke, and activated carbon.
  • the composite particles 30 are manufactured, for example, by a manufacturing method including the following first to fifth steps.
  • First step A step of obtaining a raw material, lithium aluminate (hereinafter referred to as "raw material aluminate").
  • Second step A step of compounding raw material aluminate and raw material silicon to disperse silicon phase 32 in lithium aluminate phase 31 to obtain a composite intermediate.
  • Third step heat-treating the composite intermediate to obtain a sintered body containing a lithium aluminate phase 31 and silicon phases 32 dispersed in the lithium aluminate phase 31 .
  • Fourth step A step of pulverizing the sintered body to obtain composite particles 30 .
  • the first step includes, for example, a step of mixing an aluminum compound, a lithium compound, and, if necessary, a compound containing the element M to obtain a mixture, and a step of calcining the mixture to obtain a raw material aluminate. Firing is performed, for example, in an oxidizing atmosphere.
  • the firing temperature is preferably 400° C. or higher and 1200° C. or lower, more preferably 700° C. or higher and 1100° C. or lower.
  • Examples of aluminum compounds include aluminum oxide, aluminum hydroxide, and aluminum carbonate.
  • An aluminum compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of lithium compounds include lithium carbonate, lithium oxide, lithium hydroxide, lithium hydride, and the like.
  • a lithium compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a boron compound as the compound containing the element M.
  • boron compounds include boron oxide, boric acid, borax, sodium tetraborate, and the like.
  • a boron compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ratio (MAl/MB) of the content of Al (MAl) and the content of B (MB) to the total mass of elements other than oxygen constituting the lithium aluminate phase 31 and the silicon phase 32 is, for example, 1.0. 30.0 or less, preferably 2.0 or more and 20.0 or less.
  • the ratio (MLi/MAl) is preferably 0.04 or more and 0.50 or less, more preferably 0.05 or more and 0.25 or less, as described above.
  • the Li content (MLi) is more preferably 1.0% by mass or more and 9.5% by mass or less. In this case, it becomes easy to set the porosity of the composite particles 30 to 25% or less.
  • the aluminum compound that did not react with the lithium compound during the production process of the raw aluminate may remain in the raw aluminate.
  • the amount of the aluminum compound used is larger than that of the lithium compound, the aluminum compound tends to remain.
  • the aluminum compound remaining in the raw material aluminate is Al 2 O 3 , an Al 2 O 3 phase dispersed within the lithium aluminate phase 31 can be formed in the finally obtained composite particles 30 .
  • a mixture of raw material aluminate and raw material silicon is pulverized while applying a shearing force to obtain a finely divided composite intermediate.
  • Silicon particles having an average particle diameter of about several ⁇ m to several tens of ⁇ m may be used as the raw material silicon. It is preferable to prepare so that the crystallite size of the silicon phase 32 calculated by the formula is 15 nm or less. Silicon nanoparticles and raw material aluminate nanoparticles may be synthesized and mixed without using a pulverizer.
  • a sintered body is obtained by sintering the finely divided composite intermediate while applying pressure to the composite intermediate by hot pressing or the like.
  • the pressure applied to the composite intermediate is, for example, 100 MPa or higher, and may be 100 MPa or higher and 300 MPa or lower.
  • the porosity of the composite particles 30 tends to decrease as the pressure in the third step increases.
  • Firing of the composite intermediate is preferably carried out in an inert atmosphere (eg, an atmosphere of argon, nitrogen, etc.).
  • the firing conditions in the third step also affect the crystallites of the silicon phase 32. Generally, the higher the firing temperature, the larger the crystallite size.
  • the firing temperature is 450°C or higher and 1000°C or lower. If the firing temperature is within this range, it is easy to form a structure in which the minute silicon phases 32 are dispersed in the lithium aluminate phase 31 with low crystallinity.
  • the starting aluminate is stable at this temperature and hardly reacts with silicon.
  • the firing temperature is preferably 550° C. or higher and 950° C. or lower, more preferably 650° C. or higher and 900° C. or lower.
  • the firing time is, for example, 1 hour or more and 10 hours or less. In order to reduce the porosity to 25% or less, firing at least at 650° C. is preferred.
  • the fourth step is a step of pulverizing the base particles 33 so as to have a desired particle size distribution.
  • the base particles 33 are pulverized to have an average particle size of, for example, 1 ⁇ m or more and 25 ⁇ m or less.
  • the manufacturing process of the composite particle 30 of the present embodiment includes a fifth step of forming the conductive layer 34 on the surface of the base particle 33 .
  • the conductive material forming the conductive layer 34 is preferably a conductive carbon material as described above.
  • Methods for coating the surface of the base particles 33 with the carbon material include a CVD method using a hydrocarbon gas such as acetylene or methane as a raw material, or a method in which coal pitch, petroleum pitch, phenol resin, or the like is mixed with the base particles 33 and heated.
  • a carbonization method and the like can be exemplified.
  • carbon black may be adhered to the surface of the base particles 33 .
  • a mixture of the mother particles 33 and the carbon material is heated in an inert atmosphere (eg, an atmosphere of argon, nitrogen, etc.) at 700° C. or higher and 950° C. or lower, so that the surface of the mother particles 33 is A composite particle 30 having a conductive layer 34 formed thereon is obtained.
  • an inert atmosphere eg, an atmosphere of argon, nitrogen, etc.
  • the sintered body obtained in the third step was pulverized and passed through a mesh of 40 ⁇ m to obtain base particles in which a silicon phase was dispersed in a lithium aluminate phase.
  • Coal pitch manufactured by JFE Chemical Co., Ltd., MCP250
  • mother particles obtained in the fourth step were mixed.
  • the mixture was sintered at 800° C. for 5 hours in an inert atmosphere to form a conductive layer containing a conductive carbon material on the surfaces of the base particles.
  • the coating amount of the conductive layer was 5% by mass with respect to the total mass of the base particles and the conductive layer.
  • a sieve was used to obtain composite particles having an average particle size of 5 ⁇ m and having a conductive layer.
  • a mixture of the composite particles and graphite at a mass ratio of 5:95 was used as a negative electrode active material.
  • Water was added to a negative electrode mixture containing a negative electrode active material, a CMC Na salt, and SBR at a mass ratio of 97.5:1:1.5, and the mixture was stirred to prepare a negative electrode slurry.
  • the negative electrode slurry was applied to the surface of the negative electrode core made of copper foil, and after the coating film was dried, it was rolled to form negative electrode mixture layers with a density of 1.5 g/cm 3 on both sides of the copper foil.
  • a negative electrode was produced.
  • NMP N-methyl-2-pyrrolidone
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol/L in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3:7 (25° C.). .
  • a positive electrode and a negative electrode to which a lead was attached were wound with a separator interposed therebetween to produce a wound electrode assembly.
  • the electrode body was inserted into an outer package made of an aluminum laminate film, vacuum-dried at 105° C. for 2 hours, a non-aqueous electrolyte was injected, and the opening of the outer package was sealed to obtain a non-aqueous electrolyte secondary battery A1.
  • Ta non-aqueous electrolyte secondary battery
  • ⁇ Experimental example 4> In the preparation of the composite particles, a composite was prepared in the same manner as in Experimental Example 1, except that the raw material aluminate was prepared and mixed with the raw material silicon so that the Si, Li, and Al contents were the values shown in Table 1. Particles were prepared to produce a non-aqueous electrolyte secondary battery A4.
  • ⁇ Experimental example 6> In the preparation of the composite particles, a composite was prepared in the same manner as in Experimental Example 1, except that the raw material aluminate was prepared and mixed with the raw material silicon so that the Si, Li, and Al contents were the values shown in Table 1. Particles were prepared to produce a non-aqueous electrolyte secondary battery B1.
  • the capacity retention rate was evaluated by the following method.
  • the evaluation results are shown in Table 1 together with the composition of the composite particles (negative electrode active material), firing conditions, porosity, and Vickers hardness.
  • Capacity retention rate (evaluation of cycle characteristics) Each battery to be evaluated was subjected to 100 cycles of charging and discharging as described below, and the capacity retention rate was calculated by the following formula.
  • Capacity retention rate (%) (100th cycle discharge capacity/1st cycle discharge capacity) x 100 ⁇ Charging>
  • the battery to be evaluated is charged at a constant current of 1 It (800 mA) at 25° C. until the voltage reaches 4.2 V, and then at a voltage of 4.2 V until the current reaches 1/20 It (40 mA). Constant voltage charging was performed.
  • the porosity of the composite particles containing the lithium aluminate phase By controlling the porosity of the composite particles containing the lithium aluminate phase to 25% or less, the deterioration of the particles due to charging and discharging can be highly suppressed, and when this is used as the negative electrode active material, good initial charging and discharging can be achieved. It is possible to achieve a high degree of compatibility between efficiency and cycle characteristics.
  • non-aqueous electrolyte secondary battery 11 positive electrode 12 negative electrode 13 separator 14 electrode body 16 outer can 17 sealing body 18, 19 insulating plate 20 positive electrode lead 21 negative electrode lead 22 grooved portion 23 internal terminal plate, 24 lower valve body, 25 insulating member, 26 upper valve body, 27 cap, 28 gasket, 30 composite particle, 31 lithium aluminate phase, 32 silicon phase, 33 base particle, 34 conductive layer, 35 void

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

実施形態の一例である非水電解質二次電池用負極活物質は、リチウムアルミネート相(31)と、リチウムアルミネート相(31)内に分散しているシリコン相(32)とを含む複合粒子(30)を備える。複合粒子(30)は、初回充放電前において、粒子内部の空隙率が25%以下である。

Description

非水電解質二次電池用負極活物質および非水電解質二次電池
 本開示は、非水電解質二次電池用負極活物質および当該負極活物質を用いた非水電解質二次電池に関する。
 近年、リチウムイオン電池等の非水電解質二次電池は、車載用途、蓄電用途など、高容量を必要とする用途に広く用いられている。負極の主要構成要素である負極活物質は、電池の高容量化を図る上で重要な要素の1つであることから、負極活物質について種々の検討が行われている。その中で、理論容量密度が高い負極活物質として、シリコンを含有する材料(Si含有材料)の利用が注目されている。
 上記Si含有材料としては、SiO相中にシリコン粒子が分散した材料(以下、「SiOx」とする)、Li2zSiO2+z(0<z<2)で表されるリチウムシリケート相中にシリコン粒子が分散した材料(以下、「LSX」とする)などが知られている(LSXについて、例えば、特許文献1参照)。
国際公開第2016/35290号パンフレット
 LSXは、SiOxと比べて、不可逆容量が小さく、初期の充放電効率に優れる。しかし、LSX中のリチウムシリケート相は耐アルカリ性(Liに対する安定性)が低く、依然として初期の充電時にLiイオンと副反応を生じることがあり、更なる初期充放電効率の改善が求められている。
 また、LSX等のSi含有材料は、充放電に伴う体積変化が大きいことから、充放電を繰り返すと粒子の亀裂、割れ等が発生しやすく、良好なサイクル特性を確保することは容易ではない。
 本開示に係る非水電解質二次電池用負極活物質は、リチウムアルミネート相と、リチウムアルミネート相内に分散しているシリコン相とを含む複合粒子を備え、前記複合粒子は、初回充放電前において、粒子内部の空隙率が25%以下であることを特徴とする。
 本開示に係る負極活物質によれば、高容量でサイクル特性に優れた非水電解質二次電池を実現できる。本開示に係る負極活物質を用いた非水電解質二次電池は、例えば、良好なサイクル特性を有し、LSXを用いた場合と比較して初期充放電効率が高い。
実施形態の一例である非水電解質二次電池の断面図である。 実施形態の一例である負極活物質の粒子断面を示す図である。 実施形態の一例である負極活物質のXRDパターンである。
 本発明者らは、非水電解質二次電池の負極活物質として、リチウムアルミネート相中にシリコン相が分散した複合粒子を用いることにより、LSXを用いた場合よりも電池の初期充放電効率が大きく改善されることを突き止めた。なお、リチウムアルミネート相を含む当該複合粒子は、他のSi含有材料と同様に、黒鉛等の炭素系活物質よりも理論容量密度が高く、電池の高容量化に寄与する。
 一方、負極活物質として、リチウムアルミネート相を含む複合粒子を用いた場合、LSXを用いた場合と比較して充放電に伴う容量低下が大きく、良好なサイクル特性を確保することは容易ではない。本発明者らは、複合粒子の内部に存在する空隙に着目して鋭意検討した結果、空隙率を所定値以下まで低減することにより、サイクル特性が大きく向上することを突き止めた。複合粒子の内部に多くの空隙が存在する場合、充放電に伴う粒子の膨張収縮によって空隙を起点とした亀裂、割れが発生しやすくなり、粒子構造が崩壊して容量が低下すると考えられる。複合粒子の空隙率を25%以下に低減すれば、サイクル特性が効果的に改善される。
 以下、図面を参照しながら、本開示に係る非水電解質二次電池用負極活物質および当該負極活物質を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態、変形例の各構成要素を選択的に組み合わせてなる構成は本開示の範囲に含まれている。
 以下では、非水電解質二次電池として、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池を例示するが、電池の外装体は円筒形の外装缶に限定されない。本開示に係る非水電解質二次電池は、例えば、角形の外装缶を備えた角形電池、又はコイン形の外装缶を備えたコイン形電池であってもよく、金属層および樹脂層を含むラミネートシートで構成された外装体を備えたラミネート電池であってもよい。また、電極体は巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に示すように、非水電解質二次電池10は、巻回型の電極体14と、電解質と、電極体14および非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、およびセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一端側が開口した有底円筒形状の金属製容器であって、外装缶16の開口部は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。非水溶媒の一例としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびこれらの混合溶媒等が挙げられる。電解質塩には、例えば、LiPF等のリチウム塩が使用される。
 電極体14を構成する正極11、負極12、およびセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。すなわち、負極12は、正極11よりも長手方向および幅方向(短手方向)に長く形成される。セパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば、正極11を挟むように2枚配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
 正極11は、正極芯体と、正極芯体上に形成された正極合剤層とを有する。正極芯体には、アルミニウム、アルミニウム合金などの正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、正極活物質、導電剤、および結着剤を含み、正極リード20が溶接される露出部を除く正極芯体の両面に形成されることが好ましい。正極11は、例えば、正極芯体上に正極活物質、導電剤、および結着剤等を含む正極スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層を正極芯体の両面に形成することにより作製できる。
 正極合剤層は、正極活物質として、粒子状のリチウム金属複合酸化物を含む。リチウム金属複合酸化物は、Liの他に、Co、Mn、Ni、Al等の金属元素を含有する複合酸化物である。リチウム金属複合酸化物を構成する金属元素は、例えばMg、Al、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Sn、Sb、W、Pb、およびBiから選択される少なくとも1種である。中でも、Co、Ni、およびMnから選択される少なくとも1種を含有することが好ましい。好適な複合酸化物の一例としては、Ni、Co、Mnを含有するリチウム金属複合酸化物、Ni、Co、Alを含有するリチウム金属複合酸化物が挙げられる。
 正極合剤層に含まれる導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンナノファイバー、グラフェン等の炭素材料が例示できる。正極合剤層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の含フッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。
 負極12は、負極芯体と、負極芯体上に形成された負極合剤層とを有する。負極芯体には、銅、銅合金などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合剤層は、負極活物質、結着剤、および必要により導電剤を含み、負極リード21が溶接される露出部を除く負極芯体の両面に形成されることが好ましい。負極12は、負極芯体の表面に負極活物質、および結着剤等を含む負極スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層を負極芯体の両面に形成することにより作製できる。
 負極合剤層に含まれる結着剤には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン等を用いることもできるが、好ましくはスチレン-ブタジエンゴム(SBR)を用いる。また、負極合剤層は、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。中でも、SBRと、CMC又はその塩、PAA又はその塩を併用することが好適である。負極合剤層には、CNT等の導電剤が含まれていてもよい。
 セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、複層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層が形成されていてもよい。
 セパレータ13と正極11および負極12の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばTi、Al、Si、Mg等の金属元素を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、当該フィラーを含有するスラリーを正極11、負極12、又はセパレータ13の表面に塗布して形成することができる。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、およびキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。更に内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、図2および図3を参照しながら、負極活物質について詳説する。
 図2は、実施形態の一例である複合粒子30の断面を示す模式図である。負極12は、負極活物質として、少なくとも複合粒子30を含み、好ましくは複合粒子30および炭素材料を含む。負極活物質として、複合粒子30と炭素材料を併用すると、高容量と優れたサイクル特性を両立しやすくなる。炭素材料の含有量は、負極活物質の総質量に対して、98質量%以下が好ましく、70質量%以上、98質量%以下がより好ましく、75質量%以上、95質量%以下が特に好ましい。
 炭素材料としては、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等が例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛は、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛、および鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛のいずれであってもよい。
 図2に示すように、複合粒子30は、リチウムアルミネート相31と、リチウムアルミネート相31内に分散しているシリコン相32とを含む。また、複合粒子30は、リチウムアルミネート相31およびシリコン相32からなる母粒子33の表面に形成された導電層34を含むことが好ましい。母粒子33は、リチウムアルミネート相31のマトリックス中に微細なシリコン相32が分散した海島構造を有する。また、母粒子33の内部には空隙35が存在しているが、複合粒子30の初回充放電前における空隙率は25%以下である。空隙35は、充放電が繰り返されたときに亀裂、割れ等の起点になると考えられるが、空隙率を25%以下に抑えることで粒子構造の劣化を効果的に抑制できる。
 リチウムアルミネート相31は、LSX粒子中のリチウムシリケート相よりも耐アルカリ性に優れている。このため、負極活物質として複合粒子30を用いた場合、LSXを用いた場合と比較して初期充電時におけるLiイオンとの副反応が抑制され、副反応に伴う負極活物質の劣化および劣化に伴う初期容量の低下が抑制される。すなわち、初期の充放電効率の低下が高度に抑制される。
 複合粒子30は、実質的に、リチウムシリケートおよびSiOを含まなくてもよい。複合粒子30は、リチウムシリケートおよびSiOを含んでもよいが、少量であることが望ましい。複合粒子30中のリチウムシリケートおよびSiOを合計した含有量は、例えば、3質量%以下である。
 複合粒子30において、酸素以外の元素の総質量に対するアルミニウム(Al)の含有率(MAl)は、10質量%以上、47質量%以下が好ましい。また、酸素以外の元素の総質量に対するリチウム(Li)の含有率(MLi)は、0.7質量%以上、13.5質量%以下が好ましい。Alの含有率(MAl)およびLiの含有率(MLi)が上記範囲内である場合、安定性とイオン伝導性に優れるアルミネート相が得られやすい。なお、上記の安定性は、化学的安定性(耐アルカリ性)および熱的安定性の両方を含む。
 Alの含有率(MAl)に対するLiの含有率(MLi)の比(MLi/MAl)は、リチウムアルミネート相31の安定性、イオン導電性、および空隙率の低減等の観点から、0.04以上、0.50以下が好ましく、0.05以上、0.25以下がより好ましい。含有率(MAl)は、11.5質量%以上、45.5質量%以下がより好ましい。含有率(MLi)は、1.0質量%以上、9.5質量%以下がより好ましく、1.5質量%以上、3.5質量%以下が特に好ましい。
 複合粒子30において、酸素以外の元素の総質量に対するシリコン(Si)の含有率(MSi)は、40質量%以上、90質量%以下が好ましく、50.8質量%以上、85.5質量%以下がより好ましい。この場合、高容量と良好なサイクル特性の両立を実現しやすい。Siの含有率(MSi)は,複合粒子30中のシリコン相32を構成するSiの量である。
 複合粒子30(母粒子33)のX線回折(XRD)測定により得られるXRDパターンにおいて、2θ=x°付近に、リチウムアルミネート相に由来するピークが観測される。x°は、19.4°、22.3°、31.9°、34.3°、および37.5°からなる群より選択される少なくとも1つである。XRD測定のX線には、CuのKα線が用いられる。なお、本明細書中、x°付近であるとは、例えば、x±1°の範囲内であることを意味する。
 リチウムアルミネート相31内には、結晶性の高い微細なAl相が分散してもよい。Al相は、例えば、リチウムアルミネート相31のマトリクス中に島状に分布している。この場合、シリコン相32の膨張収縮に伴うリチウムアルミネート相31の膨張や割れが抑制されやすく、サイクル特性の改善効果が高まる。Al相が存在する場合、X線回折測定により得られる複合粒子のX線回折パターンにおいて、2θ=25.4°付近に、Al相に由来するピークが観測され得る。複合粒子30中のAl相の含有量は、例えば、10質量%以下である。
 図3に、複合粒子30(母粒子33)のXRDパターンの一例を示す。図3中の実線は、MAl/MLiが大きいAlリッチの複合粒子30のXRDパターンを示す。図3中の破線は、MAl/MLiが小さいLiリッチの複合粒子30のXRDパターンを示す。いずれの場合も、2θ=28°付近に、シリコン相32のSi(111)面に由来するピークが観察される。Alリッチの複合粒子30では、2θ=25.4°付近に、Al相に由来するピークが観察される。
 図3中の(i)~(v)は、リチウムアルミネートに由来するピークを示す。Alリッチの複合粒子30では、2θ=19.4°付近および2θ=31.9°付近に、リチウムアルミネート相31のLiAlおよびLiAlOに由来するピークが観察される(図3中の(i)および(ii)のピーク)。また、Alリッチの複合粒子30では、2θ=37.5°付近に、LiAlおよびLiAlに由来するピークが観察される(図3中の(iii)のピーク)。Liリッチの複合粒子30では、2θ=22.3°付近および2θ=34.3付近に、リチウムアルミネート相31のLiAlOおよびLiAlOに由来するピークが観察される(図3中の(iv)および(v)のピーク)。
 複合粒子30の母粒子33は、海部であるリチウムアルミネート相31内に、島部である微細なシリコン相32が分散した海島構造を有する。リチウムアルミネート相31は良好なイオン伝導性を有し、リチウムアルミネート相31を介してシリコン相32によるLiイオンの吸蔵および放出がスムーズに行われる。また、リチウムアルミネート相31によりシリコン相32の膨張収縮の影響が緩和される。リチウムアルミネート相31は、非晶質であってもよく、この場合、シリコン相32の膨張収縮の影響をより効果的に緩和できる。
 複合粒子30では、例えば、リチウムアルミネート相31とシリコン相32とを含む複数の一次粒子が結合して二次粒子を構成している。複合粒子30(二次粒子)の平均粒径は、例えば、1μm以上、25μm以下であり、4μm以上、15μm以下であってもよい。この場合、充放電に伴う複合粒子30の体積変化による応力を緩和しやすく、良好なサイクル特性を得やすくなる。複合粒子30の表面積も適度な大きさになり、非水電解質との副反応による容量低下も抑制される。
 複合粒子30の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。母粒子33の表面が導電層34で覆われている場合、導電層34の厚みは、実質上、複合粒子30の平均粒径に影響しない程度に薄いため、導電層34を有する複合粒子30の平均粒径を複合粒子30の平均粒径と見なしてよい。
 複合粒子30は、以下の手法により、電池から取り出すことができる。まず、完全放電状態の電池を解体して負極を取り出し、負極を無水エチルメチルカーボネート又はジメチルカーボネートで洗浄し、非水電解質成分を除去する。負極芯体である銅箔から負極合剤層を剥がし取り、合剤層を乳鉢で粉砕して試料粉を得る。次に、試料粉を乾燥雰囲気中で1時間乾燥し、弱く煮立てた6M塩酸に10分間浸漬して、複合粒子以外に由来する元素を取り除く。次に、イオン交換水で試料粉を洗浄し、濾別して200℃で1時間乾燥する。その後、酸素雰囲気中、900℃に加熱して導電層34を除去することで、母粒子33だけを単離することができる。なお、完全放電状態とは、放電深度(DOD)が90%以上(充電状態(SOC)が10%以下)の状態である。
 [リチウムアルミネート相]
 リチウムアルミネート相31は、Li、Al、Oを含む複合酸化物の相である。リチウムアルミネートにおけるAlに対するOの原子比(O/Al)は、例えば、1.6以上、4以下である。また、リチウムアルミネートにおけるAlに対するLiの原子比(Li/Al)は、例えば、1/5以上、5以下である。当該各原子比が上記範囲内である場合、リチウムアルミネート相31の安定性とイオン伝導性がより良好になる。
 リチウムアルミネートの組成は、式:LiAlO(3+u)/2で表すことができる。作製し易さ、安定性、およびイオン伝導性等の観点から、式中のuは、例えば、0超、5以下であり、0超、1以下であってもよい。u=1/5の場合、LiAlで表すことができ、u=1/2の場合、LiAlで表すことができる。u=1の場合、LiAlOで表すことができ、u=5の場合、LiAlOで表すことができる。
 リチウムアルミネート相31は、LiAl、LiAl、LiAlO、およびLiAlOからなる群より選択される少なくとも1種を含むことが好ましい。中でも、リチウムアルミネート相31は、LiAlOを主成分として含むことがより好ましい。ここで、「主成分」とは、リチウムアルミネート相31の総質量の50質量%以上を占める成分を意味する。LiAlOの含有率は、70質量%以上であってもよい。
 リチウムアルミネート相31には、Li、Al、Oに加えて、更に他の元素Mが含有されていてもよい。元素Mは、例えば、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)、ジルコニウム(Zr)、鉄(Fe)、ホウ素(B)、リン(P)、およびランタン(La)からなる群より選択される少なくとも1種である。リチウムアルミネート相31が元素Mを含むことにより、例えば、リチウムアルミネート相31の安定性およびイオン伝導性がより向上する。また、リチウムアルミネート相31と非水電解質との接触による副反応が抑制される。中でも、元素Mは、Zr、Fe、P、およびBからなる群より選択される少なくとも1種を含むことが好ましい。Laは、初期の充放電効率を更に向上させ得る。
 元素Mは、化合物を形成していてもよい。当該化合物としては、元素Mの種類に応じて、例えば、元素Mの酸化物でもよく、元素Mのアルミネートでもよい。リチウムアルミネート相31において、元素Mの含有量は、酸素以外の元素の総量に対して、例えば、0.3モル%以上、3モル%以下である。リチウムアルミネート相31は、更に、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)等の元素を微量含んでもよい。
 複合粒子30は、上記の通り、初回充放電前において、粒子内部の空隙率が25%以下である。導電層34は複合粒子30の空隙率に略影響しないので、複合粒子30の空隙率と母粒子33の空隙率は実質的に同じである。空隙率は、複合粒子30の粒子断面に占める空隙35の割合を意味し、粒子断面のSEM画像から算出される。負極活物質として空隙率の低い複合粒子30を用いることにより、空隙35に起因して発生すると考えられる粒子構造の劣化が抑制され、電池のサイクル特性が大きく向上する。
 複合粒子30の空隙率は、20%以下がより好ましく、15%以下が特に好ましい。空隙率の下限値は特に限定されないが、一例としては1%である。空隙35は、例えば、母粒子33の全体に略均一に存在している。図2に模式的に示すように、1つ1つの空隙35は小さく、シリコン相32と同様に、多数の空隙35がリチウムアルミネート相31の全体に分散するように存在していてもよい。
 複合粒子30の空隙率は、画像解析ソフト(例えば、imageJ)を用いて、粒子断面のSEM画像を2値化処理して空隙35の領域を抽出し、空隙35の総面積を粒子断面の総面積で除することにより算出される。詳しくは後述するが、複合粒子30の空隙率は、複合粒子30の焼成温度、焼成時に粒子に加える圧縮力、比率(MLi/MAl)、元素Mの
加などにより制御できる。元素Mとして、例えば、所定量のBを添加することにより、複合粒子30の空隙率を低減できる。
 複合粒子30は、300HV以上のビッカース硬度を有することが好ましい。導電層34はビッカース硬度に略影響しないため、複合粒子30のビッカース硬度と母粒子33のビッカース硬度は実質的に同じである。複合粒子30が高いビッカース硬度を有する場合、充放電時のシリコン相32の体積変化を抑制しやすく、粒子構造の劣化を低減できる。その結果、サイクル特性の改善効果がより顕著になる。複合粒子30のビッカース硬度は、350HV以上がより好ましく、400HV以上、又は500HV以上であってもよい。
 複合粒子30のビッカース硬度は、ビッカース硬度計を用いて測定できる。具体的には、複合粒子30を熱硬化性樹脂に埋め込み、400番の研磨紙で研磨して複合粒子30の断面を表出させる。さらに2000番の研磨紙、バフ研磨で断面を鏡面仕上げする。荷重1kg、保持時間15秒の条件でビッカース硬度を測定する。複合粒子30のビッカース硬度の上限値は特に限定されないが、一例としては1500HVである。
 リチウムアルミネート相31中のLi、Al、B、元素Mの含有量は、例えば、負極合剤層の断面を分析することにより測定することができる。まず、完全放電状態の電池を分解し、負極を取り出し、負極を無水エチルメチルカーボネート又はジメチルカーボネートで洗浄し、非水電解質成分を除去し、乾燥させた後、クロスセクションポリッシャ(CP)を用いて負極合剤層の断面を得る。次に、走査型電子顕微鏡(SEM)を用いて負極合剤層の断面を観察する。
 リチウムアルミネート相31における各元素の含有量は、以下のいずれかの手法により測定される。また、各元素の含有量からリチウムアルミネート相31の組成が分かる。
 [エネルギー分散型X線(EDX)]
 負極合剤層の反射電子像の断面画像から、粒子の最大径が5μm以上の複合粒子30を無作為に10個選び出し、それぞれについてEDXによる元素のマッピング分析を行う。画像解析ソフトを用いて対象となる元素の含有面積を算出する。観察倍率は2000~20000倍が望ましい。粒子10個に含まれる所定の元素の含有面積の測定値を平均する。得られた平均値から対象となる元素の含有量が算出される。
 以下に、望ましい断面SEM-EDX分析の測定条件を示す。
  加工装置:JEOL製、SM-09010(Cross Section Polisher)
  加工条件:加速電圧6kV
  電流値:140μA
  真空度:1×10-3~2×10-3Pa
  測定装置:HITACHI製、電子顕微鏡SU-70
  分析時加速電圧:10kV
  フィールド:フリーモード
  プローブ電流モード:Medium
  プローブ電流範囲:High
  アノード Ap.:3
  OBJ Ap.:2
  分析エリア:1μm四方
  分析ソフト:EDAX Genesis
  CPS:20500
  Lsec:50
  時定数:3.2
 [オージェ電子分光(AES)]
 負極合剤層の反射電子像の断面画像から、粒子の最大径が5μm以上の複合粒子30を無作為に10個選び出し、それぞれについてAES分析装置(例えば、日本電子社製、JAMP-9510F)を用いて元素の定性定量分析を行う。測定条件は、例えば、加速電圧10kV、ビーム電流10nA、分析領域20μmφとすればよい。粒子10個に含まれる所定の元素の含有量を平均して含有量が算出される。
 なお、EDX分析やAES分析は、複合粒子30の断面の周端縁から1μm以上内側の範囲に対して行われる。
 [誘導結合プラズマ発光分光分析法(ICP)]
 複合粒子30の試料を、加熱した酸溶液(フッ化水素酸、硝酸、および硫酸の混酸)中で全溶解し、溶液残渣の炭素を濾過して除去する。その後、得られた濾液をICPで分析して、各元素のスペクトル強度を測定する。続いて、市販されている元素の標準溶液を用いて検量線を作成し、複合粒子30に含まれる各元素の含有量を算出する。
 各元素の定量は、電子マイクロアナライザー(EPMA)、レーザアブレーションICP質量分析(LA-ICP-MS)、X線光電子分光分析(XPS)等を用いて行うこともできる。また、複合粒子30に含まれるB、Na、K、およびAlの含有量は、JIS R3105(1995)(ほうけい酸ガラスの分析方法)に準拠して定量分析してもよい。Caの含有量は、JIS R3101(1995)(ソーダ石灰ガラスの分析方法)に準拠して定量分析してもよい。
 複合粒子30に含まれる炭素含有量は、炭素・硫黄分析装置(例えば、株式会社堀場製作所製のEMIA-520型)を用いて測定できる。磁性ボードに試料を測り取り、助燃剤を加え、1350℃に加熱された燃焼炉(キャリアガス:酸素)に挿入し、燃焼時に発生した二酸化炭素ガス量を赤外線吸収により検出する。検量線は、例えば、Bureauof Analysed Samples.Ltd製の炭素鋼(炭素含有量0.49%)を用いて作成し、試料の炭素含有量を算出する(高周波誘導加熱炉燃焼-赤外線吸収法)。
 複合粒子30に含まれる酸素含有量は、酸素・窒素・水素分析装置(例えば、株式会社堀場製作所製のEGMA-830型)を用いて測定できる。Niカプセルに試料を入れ、フラックスとなるSnペレットおよびNiペレットとともに、電力5.75kWで加熱された炭素坩堝に投入し、放出される一酸化炭素ガスを検出する。検量線は、標準試料Yを用いて作成し、試料の酸素含有量を算出する(不活性ガス融解-非分散型赤外線吸収法)。
 複合粒子30中のシリコン相32を構成するSi量は、Si-NMRを用いて定量することができる。以下に、望ましいSi-NMRの測定条件を示す。
  測定装置:バリアン社製、固体核磁気共鳴スペクトル測定装置(INOVA‐400)
  プローブ:Varian 7mm CPMAS-2
  MAS:4.2kHz
  MAS速度:4kHz
  パルス:DD(45°パルス+シグナル取込時間1Hデカップル)
  繰り返し時間:1200sec~3000sec
  観測幅:100kHz
  観測中心:-100ppm付近
  シグナル取込時間:0.05sec
  積算回数:560
  試料量:207.6mg
 [シリコン相]
 シリコン相32は、Si単体の相であり、電池の充放電に伴ってLiイオンの吸蔵と放出を繰り返す。シリコン相32が関与するファラデー反応によって容量が発現する。シリコン相32は、容量が大きいため、充放電に伴う膨張と収縮の程度も大きいが、シリコン相32はリチウムアルミネート相31内に分散している。このため、シリコン相32の膨張と収縮による応力はリチウムアルミネート相31によって緩和される。
 シリコン相32は、例えば、複数の結晶子で構成されている。複合粒子30(母粒子33)のXRD測定により得られるSi(111)面の回折ピークの半値幅からシェラーの式により算出されるシリコン相32の結晶子サイズは、30nm以下が好ましく、20nm以下がより好ましく、15nm以下が特に好ましい。この場合、充放電に伴うシリコン相32の膨張収縮による複合粒子30の体積変化を小さくでき、サイクル特性の改善効果がより顕著になる。
 シリコン相32の結晶子サイズの下限値は、特に限定されないが、一例としては1nmである。シリコン相32の好適な結晶子サイズの一例は、1nm以上、15nm以下であり、5nm以上、11nm以下であってもよい。シリコン相32の結晶子サイズが1nm以上である場合、例えば、シリコン相32の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン相32の劣化を生じ難い。結晶子サイズが15nm以下である場合、シリコン相32の膨張収縮を均一化しやすく、複合粒子30に生じる応力が効果的に緩和される。
 シリコン相32は、例えば、少なくとも初回充電前において粒子状である。粒子状のシリコン相32の平均粒径は、500nm以下が好ましく、200nm以下がより好ましく、50nm以下が特に好ましい。シリコン相32の平均粒径は、初回充電後において、400nm以下が好ましく、100nm以下がより好ましい。シリコン相32を微細化して分散させることにより、充放電時の複合粒子30の体積変化が小さくなり、複合粒子30の構造安定性が更に向上する。シリコン相32の平均粒径は、SEMにより得られる複合粒子30の断面画像を用いて測定される。具体的には、シリコン相32の平均粒径は、任意の100個のシリコン相32の最大径を平均して求められる。
 複合粒子30におけるシリコン相32の含有率は、高容量化の観点から、30質量%以上が好ましく、35質量%以上がより好ましく、55質量%以上が特に好ましい。シリコン相32の含有率の上限は、良好なサイクル特性確保の観点から、95質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下が特に好ましい。この場合、リチウムアルミネート相31に覆われずに複合粒子30の表面に露出するシリコン相32が減少して、非水電解質とシリコン相32の副反応も抑制される。
 [導電層]
 複合粒子30は、上記の通り、リチウムアルミネート相31とシリコン相32からなる母粒子33の表面に形成された導電層34を有することが好ましい。導電層34は、母粒子33の表面の少なくとも一部を覆い、好ましくは実質的に母粒子33の表面全体を覆っている。導電層34は、導電性材料を含む薄膜層であって、複合粒子30の導電性を向上させる。導電層34の厚みは、複合粒子30の平均粒径に影響しない程度に薄いことが好ましい。導電層34の厚みは、導電性の確保とLiイオンの拡散性を考慮すると、1nm以上、200nm以下が好ましく、5nm以上、100nm以下がより好ましい。導電層34の厚みは、SEM又は透過型電子顕微鏡(TEM)を用いた複合粒子の断面観察により計測できる。
 導電層34を構成する導電性材料は、導電性の炭素材料が好ましい。炭素材料としては、非晶質カーボン、黒鉛(天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン等)、ソフトカーボン、ハードカーボンなどを用いることができる。中でも、母粒子33の表面を覆う薄い導電層34を形成しやすい点で、非晶質カーボンが好ましい。非晶質としては、カーボンブラック、ピッチの焼成物、コークス、活性炭等が挙げられる。
 [複合粒子の製造方法]
 複合粒子30は、例えば、下記第1から第5工程を含む製造方法により製造される。
 第1工程:原料であるリチウムアルミネート(以下、「原料アルミネート」する)を得る工程。
 第2工程:原料アルミネートと原料シリコンとを複合化してリチウムアルミネート相31内にシリコン相32を分散させて複合中間体を得る工程。
 第3工程:複合中間体を熱処理して、リチウムアルミネート相31とリチウムアルミネート相31内に分散しているシリコン相32とを含む焼結体を得る工程。
 第4工程:焼結体を粉砕して複合粒子30を得る工程。
 [第1工程]
 第1工程は、例えば、アルミニウム化合物と、リチウム化合物と、必要により、元素Mを含有する化合物とを混合して混合物を得る工程と、混合物を焼成して原料アルミネートを得る工程とを含む。焼成は、例えば、酸化雰囲気中で行われる。焼成温度は、好ましくは400℃以上、1200℃以下であり、より好ましくは700℃以上、1100℃以下である。
 アルミニウム化合物の例としては、酸化アルミニウム、水酸化アルミニウム、炭酸アルミニウム等が挙げられる。アルミニウム化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウム化合物の例としては、炭酸リチウム、酸化リチウム、水酸化リチウム、水素化リチウム等が挙げられる。リチウム化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 複合粒子30の空隙率を低減するために、元素Mを含有する化合物として、例えば、ホウ素化合物を用いることが好ましい。ホウ素化合物の例としては、酸化ホウ素、ホウ酸、ホウ砂、四ホウ酸ナトリウム等が挙げられる。ホウ素化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウムアルミネート相31およびシリコン相32を構成する酸素以外の元素の総質量に対する、Alの含有率(MAl)とBの含有率(MB)の比(MAl/MB)は、例えば、1.0以上、30.0以下であり、好ましくは2.0以上、20.0以下である。
 また、比率(MLi/MAl)は、上記のように、0.04以上、0.50以下が好ましく、0.05以上、0.25以下がより好ましい。Liの含有率(MLi)は、1.0質量%以上、9.5質量%以下がより好ましい。この場合、複合粒子30の空隙率を25%以下とすることが容易になる。
 第1工程では、原料アルミネートの作製過程でリチウム化合物と反応しなかったアルミニウム化合物が原料アルミネート中に残存し得る。リチウム化合物に対してアルミニウム化合物の使用量が大きい場合、アルミニウム化合物が残存し易い。原料アルミネート中に残存するアルミニウム化合物がAlである場合、最終的に得られる複合粒子30において、リチウムアルミネート相31内に分散するAl相が形成され得る。
 [第2工程]
 第2工程では、例えば、原料アルミネートと原料シリコンとの混合物にせん断力を付与しながら混合物を粉砕して微粒子化された複合中間体を得る。一例としては、原料アルミネートと原料シリコンとを所定の質量比で混合し、ボールミル等の粉砕装置を用いて混合物を微粒子化する方法が挙げられる。
 原料シリコンには、平均粒径が数μm~数十μm程度のシリコンの粗粒子を用いればよいシリコン粒子は、XRDパターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出されるシリコン相32の結晶子サイズが15nm以下になるように準備されることが好ましい。なお、粉砕装置を使用せずに、シリコンナノ粒子と、原料アルミネートのナノ粒子とを合成し、これらを混合してもよい。
 [第3工程]
 第3工程では、例えば、微粒子化された複合中間体にホットプレス等で圧力を印加しながら複合中間体を焼成して焼結体を得る。複合中間体に加える圧力は、例えば、100MPa以上であり、100MPa以上、300MPa以下であってもよい。第3工程の圧力が高いほど、複合粒子30の空隙率は小さくなる傾向にある。複合中間体の焼成は、不活性雰囲気(例えば、アルゴン、窒素等の雰囲気)中で行われることが好ましい。第3工程の焼成条件は、シリコン相32の結晶子にも影響し、一般的に焼成温度が高くなるほど、結晶子サイズは大きくなる。
 焼成温度の一例は、450℃以上、1000℃以下である。焼成温度が当該範囲内であれば、結晶性の低いリチウムアルミネート相31内に微小なシリコン相32が分散した構造を形成しやすい。原料アルミネートは、当該温度では安定であり、シリコンとほとんど反応しない。焼成温度は、好ましくは550℃以上、950℃以下であり、より好ましくは650℃以上、900℃以下である。焼成時間は、例えば、1時間以上、10時間以下である。空隙率を25%以下に低減するためには、少なくとも650℃で焼成することが好ましい。
 [第4工程]
 第4工程は、母粒子33が所望の粒度分布を有するように粉砕する工程である。母粒子33は、例えば、平均粒径が1μm以上、25μm以下となるように粉砕される。
 [第5工程]
 本実施形態の複合粒子30の製造工程には、母粒子33の表面に導電層34を形成する第5工程が含まれる。導電層34を構成する導電性材料は、上記のように、導電性の炭素材料が好ましい。炭素材料で母粒子33の表面を被覆する方法としては、アセチレン、メタン等の炭化水素ガスを原料に用いるCVD法、石炭ピッチ、石油ピッチ、フェノール樹脂等を母粒子33と混合し、加熱して炭化させる方法等が例示できる。また、カーボンブラックを母粒子33の表面に付着させてもよい。
 第5工程では、例えば、母粒子33と炭素材料の混合物を不活性雰囲気(例えば、アルゴン、窒素等の雰囲気)中で、700℃以上、950℃以下で加熱することにより、母粒子33の表面に導電層34が形成された複合粒子30を得る。
 以下、実験例により本開示を更に説明するが、本開示はこれらの実験例に限定されるものではない。
 <実験例1>
 [複合粒子の調製]
 (第1工程)
 Alと、LiCOとを混合し、当該混合物を、空気中、950℃で10時間焼成して、原料アルミネートを得た。第1工程では、リチウムアルミネート相の各構成元素が表1に示す元素比となるように、AlおよびLiCOの混合比を調整した。また、原料アルミネートは平均粒径が10μmになるように粉砕した。
 (第2工程)
 原料シリコン(3N、平均粒径10μm)と、第1工程で得た原料アルミネート(平均粒径10μm)とを混合した。第2工程では、複合粒子を構成する各元素が表1に示す元素比となるように、原料シリコンと原料アルミネートの混合比を調整した。混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
 (第3工程)
 第2工程で得た粉末状の混合物を不活性雰囲気中で取り出し、不活性雰囲気中において、ホットプレス機を用いて200MPaの圧力を印加しながら900℃で4時間焼成することにより、混合物の焼結体を得た。
 (第4工程)
 第3工程で得られた焼結体を粉砕し、40μmのメッシュに通して、リチウムアルミネート相にシリコン相が分散した母粒子を得た。
 (第5工程)
 石炭ピッチ(JFEケミカル社製、MCP250)と、第4工程で得られた母粒子とを混合した。当該混合物を、不活性雰囲気中、800℃で5時間焼成し、母粒子の表面に導電性炭素材料を含む導電層を形成した。導電層の被覆量は、母粒子と導電層との総質量に対して5質量%とした。その後、篩を用いて、導電層を有する平均粒径5μmの複合粒子を得た。
 XRD測定により得られた上記複合粒子のXRDパターンにおいて、シリコン相およびリチウムアルミネート相に由来するピークを確認した。上記方法により求めた複合粒子中のシリコン相の結晶子サイズは、14.9nmであった。また、上記方法により、リチウムアルミネート相およびシリコン相を構成する酸素以外の元素の総質量に対する、Si、Li、Alの含有率、および母粒子中の空隙率を求め、測定結果を表1に示した。複合粒子のビッカース硬度は、ビッカース硬度計(島津製作所製、島津ダイナミック超微小硬度計、DUH―211S)を用いて、試験力1900mNの条件で測定した。
 [負極の作製]
 上記複合粒子と黒鉛とを、5:95の質量比で混合したものを負極活物質として用いた。負極活物質と、CMCのNa塩と、SBRとを、97.5:1:1.5の質量比で含む負極合剤に水を添加して攪拌し、負極スラリーを調製した。次に、銅箔からなる負極芯体の表面に負極スラリーを塗布し、塗膜を乾燥後、圧延して、銅箔の両面に密度1.5g/cmの負極合剤層が形成された負極を作製した。
 [正極の作製]
 コバルト酸リチウムと、アセチレンブラックと、PVDFとを、95:2.5:2.5の質量比で含む正極合剤にN-メチル-2-ピロリドン(NMP)を添加して攪拌し、正極スラリーを調製した。次に、アルミニウム箔からなる正極芯体の表面に正極スラリーを塗布し、塗膜を乾燥後、圧延して、アルミニウム箔の両面に密度3.6g/cmの正極合剤層が形成された正極を作製した。
 [非水電解質の調製]
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、3:7の体積比(25℃)で混合した溶媒に、LiPFを1.0mol/L濃度で溶解して、非水電解質を調製した。
 [非水電解質二次電池の作製]
 セパレータを介して、リードを取り付けた正極と負極を巻回し、巻回型の電極体を作製した。電極体をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥後、非水電解質を注入し、外装体の開口部を封止して、非水電解質二次電池A1を得た。
 <実験例2,3>
 複合粒子の調製において、第3工程の焼成温度を800℃と700℃にそれぞれ変更したこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池A2,A3を作製した。
 <実験例4>
 複合粒子の調製において、Si、Li、Alの含有率が表1に示す値となるように、原料アルミネートを準備して、原料シリコンと混合したこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池A4を作製した。
 <実験例5>
 複合粒子の調製において、第3工程の焼成温度を800℃に変更したこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池A5を作製した。
 <実験例6>
 複合粒子の調製において、Si、Li、Alの含有率が表1に示す値となるように、原料アルミネートを準備して、原料シリコンと混合したこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池B1を作製した。
 <実験例7>
 複合粒子の調製において、第3工程の焼成温度を600℃に変更したこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池B2を作製した。
 <実験例8>
 複合粒子の調製において、第3工程で混合物に圧力を印加しなかったこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池B3を作製した。
 <実験例9>
 複合粒子の調製において、第3工程を省略したこと以外は、実験例1と同様にして複合粒子を調製し、非水電解質二次電池B4を作製した。
 各実験例の電池について、以下の方法により、容量維持率について評価を行った。評価結果は、複合粒子(負極活物質)の組成、焼成条件、空隙率、ビッカース硬度と共に、表1に示した。
 [容量維持率(サイクル特性の評価)]
 評価対象の各電池について、下記の充放電を100サイクル行い、下記式にて容量維持率を算出した。
   容量維持率(%)=(100サイクル目放電容量÷1サイクル目放電容量)×100
 <充電>
 評価対象の電池を、25℃で、1It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行った後、4.2Vの電圧で電流が1/20It(40mA)になるまで定電圧充電を行った。
 <放電>
 10分間の休止後、25℃で、1It(800mA)の電流で電圧が2.75Vになるまで定電流放電を行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実験例1~5の電池はいずれも、実験例6~9の電池と比べて充放電試験後の容量維持率が高く、サイクル特性に優れる。空隙率が25%を超える複合粒子を負極活物質として用いた実験例6~9の電池ではサイクル特性の大きな低下が確認された。空隙率が25%を超えると、粒子のビッカース硬度も大きく低下し、空隙を起点とする粒子の劣化が進行し、その結果、サイクル特性が大きく低下すると考えられる。リチウムアルミネート相を含む複合粒子の空隙率を25%以下に制御することで、充放電に伴う粒子の劣化を高度に抑制でき、これを負極活物質として用いた場合に、良好な初期充放電効率とサイクル特性を高度に両立することが可能である。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 複合粒子、31 リチウムアルミネート相、32 シリコン相、33 母粒子、34 導電層、35 空隙
 

Claims (6)

  1.  リチウムアルミネート相と、
     前記リチウムアルミネート相内に分散しているシリコン相と、
     を含む複合粒子を備え、
     前記複合粒子は、初回充放電前において、粒子内部の空隙率が25%以下である、非水電解質二次電池用負極活物質。
  2.  前記複合粒子は、300HV以上のビッカース硬度を有する、請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記複合粒子のX線回折測定により得られるSi(111)面の回折ピークの半値幅からシェラーの式により算出される前記シリコン相の結晶子サイズが、15nm以下である、請求項1又は2に記載の非水電解質二次電池用負極活物質。
  4.  前記リチウムアルミネート相および前記シリコン相を構成する酸素以外の元素の総質量に対する、リチウムの含有率(MLi)とアルミニウムの含有率(MAl)の比(MLi/MAl)が、0.05以上、0.50以下である、請求項1~3のいずれか一項に記載の非水電解質二次電池用負極活物質。
  5.  前記複合粒子は、前記リチウムアルミネート相および前記シリコン相からなる母粒子の表面に形成された導電層を含む、請求項1~4のいずれか一項に記載の非水電解質二次電池用負極活物質。
  6.  正極と、負極と、非水電解質とを備え、
     前記負極は、請求項1~5のいずれか一項に記載の負極活物質を含む、非水電解質二次電池。
PCT/JP2023/004222 2022-02-28 2023-02-08 非水電解質二次電池用負極活物質および非水電解質二次電池 WO2023162689A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029330 2022-02-28
JP2022029330 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162689A1 true WO2023162689A1 (ja) 2023-08-31

Family

ID=87765671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004222 WO2023162689A1 (ja) 2022-02-28 2023-02-08 非水電解質二次電池用負極活物質および非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2023162689A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197012A (ja) * 2012-03-22 2013-09-30 Toyota Industries Corp リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2017199606A1 (ja) * 2016-05-17 2017-11-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197012A (ja) * 2012-03-22 2013-09-30 Toyota Industries Corp リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2017199606A1 (ja) * 2016-05-17 2017-11-23 Jfeケミカル株式会社 Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池

Similar Documents

Publication Publication Date Title
US11909033B2 (en) Negative electrode including first layer having low compressive strength carbon active material and silicon active material and second layer having high compressive strength carbon active material and nonaqueous electrolyte secondary battery including the same
JP6876946B2 (ja) 負極材料および非水電解質二次電池
WO2016136180A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
WO2023162716A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
JP6323814B2 (ja) ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池
JP6555051B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2018179970A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
JP7126840B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6070222B2 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系二次電池用正極を有する非水系二次電池
WO2022113500A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2021241618A1 (ja) 二次電池用負極活物質および二次電池
JP2021134113A (ja) 複合炭素材およびその製造方法、リチウムイオン二次電池用負極活物質並びにリチウムイオン二次電池
WO2022113499A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
JP5133543B2 (ja) メソカーボン小球体黒鉛化物の製造方法
WO2021241388A1 (ja) 二次電池用負極活物質および二次電池
WO2023162689A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2024116847A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2024116814A1 (ja) 非水電解質二次電池用負極活物質および非水電解質二次電池
WO2022137732A1 (ja) 非水電解質二次電池用の複合粒子および非水電解質二次電池
WO2023008098A1 (ja) 二次電池用負極活物質および二次電池
WO2023162961A1 (ja) 二次電池用負極及び二次電池
WO2023026642A1 (ja) 負極活物質、及びリチウムイオン電池
WO2023189467A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2021200529A1 (ja) 非水電解質二次電池用負極、及び非水電解質二次電池
JP2015056222A (ja) 非水系二次電池用正極活物質、非水系二次電池用正極活物質の製造方法、非水系二次電池用正極および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759693

Country of ref document: EP

Kind code of ref document: A1