WO2022102733A1 - 封止用シート - Google Patents

封止用シート Download PDF

Info

Publication number
WO2022102733A1
WO2022102733A1 PCT/JP2021/041654 JP2021041654W WO2022102733A1 WO 2022102733 A1 WO2022102733 A1 WO 2022102733A1 JP 2021041654 W JP2021041654 W JP 2021041654W WO 2022102733 A1 WO2022102733 A1 WO 2022102733A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
mass
moisture absorbing
transparent
sheet
Prior art date
Application number
PCT/JP2021/041654
Other languages
English (en)
French (fr)
Inventor
賢 大橋
英治 馬場
真奈美 奥野
麻衣 細井
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2022562192A priority Critical patent/JPWO2022102733A1/ja
Priority to KR1020237019327A priority patent/KR20230104692A/ko
Priority to CN202180076255.4A priority patent/CN116438649A/zh
Priority to DE112021005948.3T priority patent/DE112021005948T5/de
Publication of WO2022102733A1 publication Critical patent/WO2022102733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to a sealing sheet useful for sealing an element of an electronic device.
  • a sealing sheet having a sealing forming layer for example, a resin composition layer or a rubber composition layer
  • a support for example, a sealing forming layer is laminated on an element to form a sealing layer from the sealing forming layer (hereinafter, may be referred to as "sheet sealing") (for example, Patent Documents 1 to 3). ).
  • a dam material which is a liquid composition is used to form a dam portion having high hygroscopicity around the element, and then a fill material which is a liquid composition is used.
  • a fill material which is a liquid composition is used.
  • a encapsulation layer that protects the element from moisture can be easily formed.
  • the amount of the hygroscopic filler in the sealing forming layer is increased in order to enhance the moisture blocking property, the transparency of the sealing layer of the device formed from the sealing forming layer is lowered. Therefore, in sheet encapsulation using a conventional encapsulation sheet, it is difficult to achieve the same moisture barrier property as dumb-fill encapsulation while maintaining transparency.
  • dam-fill encapsulation In dam-fill encapsulation, a highly hygroscopic material is used as the dam material that forms the dam part around the element, and the fill material that forms the fill part that covers the element has low hygroscopicity but high transparency. By using the material, it is possible to achieve excellent moisture barrier properties in the entire sealing layer while maintaining high transparency of the fill portion. However, in the dumb-fill encapsulation, it takes more time to form the encapsulating layer than in the sheet encapsulation.
  • the present invention has been made by paying attention to the above circumstances, and an object of the present invention is to provide a sealing layer having high transparency and excellent moisture blocking property in a portion covering an element of an electronic device. -It is an object of the present invention to provide a sealing sheet that can be formed more easily than fill sealing.
  • the sealing cambium comprises a transparent portion and a moisture absorbing portion having a water absorption rate greater than that of the transparent portion.
  • the sealing cambium comprises a sealing portion formed from a transparent portion.
  • a sealing sheet in which a moisture absorbing portion surrounds the outer periphery of the sealing portion, and the total light transmittance of the sealing portion at a wavelength of 450 nm is 80% or more.
  • a sealing sheet containing a sealing forming layer contains a transparent part and a moisture absorbing part, and includes a transparent part and a moisture absorbing part.
  • the sealing cambium comprises a sealing portion formed from a transparent portion.
  • the moisture absorbing part surrounds the outer circumference of the sealing part,
  • the transparent part may contain a hygroscopic filler, the hygroscopic part contains a hygroscopic filler, and the content of the hygroscopic filler in the moisture-absorbing part is larger than the content of the hygroscopic filler in the transparent part. ..
  • the content of the hygroscopic filler in the moisture-absorbing portion is 10 to 80% by mass per 100% by mass of the total of the moisture-absorbing portion, and the content of the hygroscopic filler in the transparent portion is 100% by mass of the total of the transparent portion.
  • the sealing sheet of the present invention it is possible to easily form a sealing layer in which the portion covering the element has high transparency and excellent moisture blocking property as compared with dumb-fill sealing.
  • FIG. 1 It is a schematic diagram which shows the main surface of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect of this invention. It is a schematic sectional drawing of the sealing cambium in one aspect
  • the present invention relates to a sealing sheet containing a sealing forming layer.
  • the "sealing cambium” means a layer used for forming a sealing layer for an element of an electronic device
  • the "sealing sheet” is a sheet containing a sealing forming layer, in other words.
  • the sealing sheet of the present invention can be used in a method of laminating the sealing sheet of the present invention so that the sealing forming layer and the element are in contact with each other and forming the sealing layer of the element from the sealing forming layer.
  • the sealing sheet may be in contact with the device via a sealing film composed of an organic layer and / or an inorganic layer formed to protect the device.
  • the element is preferably an element that is vulnerable to moisture, such as an organic EL element or a solar cell element.
  • the present invention is a sealing sheet containing a sealing forming layer, wherein the sealing forming layer includes a transparent portion and a moisture absorbing portion having a water absorption rate larger than the water absorption rate of the transparent portion, and the sealing forming layer is formed. It is characterized by including a sealing portion formed from a transparent portion, a moisture absorbing portion surrounding the outer periphery of the sealing portion, and a total light transmittance of 80% or more at a wavelength of 450 nm of the sealing portion.
  • a sealing sheet is provided.
  • the present invention is a sealing sheet including a sealing forming layer, wherein the sealing forming layer includes a transparent portion and a moisture absorbing portion, and the sealing forming layer is formed from the transparent portion.
  • the hygroscopic part surrounds the outer periphery of the sealing part, the transparent part may contain the hygroscopic filler, the hygroscopic part contains the hygroscopic filler, and the content of the hygroscopic filler in the hygroscopic part.
  • a sealing sheet characterized by having a content larger than the content of a hygroscopic filler in a transparent portion.
  • the sealing portion corresponds to the portion of the sealing layer covering the element.
  • the sealing portion is formed from a transparent portion, and the total light transmittance at a wavelength of 450 nm is 80% or more.
  • the total light transmittance is preferably 85% or more, more preferably 90% or more.
  • the total light transmittance can be measured according to the single beam method (JIS K7375).
  • the apparatus include a fiber spectrophotometer equipped with a ⁇ 80 mm integrating sphere (“MCPD-7700” manufactured by Otsuka Electronics Co., Ltd., type 311C, external light source unit: halogen lamp MC-2564 (24V, 150W specification)).
  • FIG. 1 is a schematic view showing a main surface of a sealing cambium according to an aspect of the present invention.
  • the moisture absorbing portion 3 surrounds the entire outer periphery of the transparent portion 2.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms a sealing portion.
  • the sealing layer of the element it is presumed that moisture mainly moves through the end of the sealing layer in the in-plane direction (direction perpendicular to the thickness direction) and reaches the element. Therefore, if the sealing layer of the element is formed by using the sealing sheet of the present invention in which the moisture absorbing portion having a large water absorption rate surrounds the outer periphery of the sealing portion, the moisture transferred from the in-plane direction is absorbed in the moisture absorbing portion. It is presumed that the invasion of water into the element is blocked by being captured by the device, and excellent water blocking property is achieved. However, the present invention is not limited to such a guessing mechanism.
  • the water absorption rate of the moisture absorbing portion is preferably 5% by mass or more, more preferably 6% by mass or more, and further preferably 7% by mass or more.
  • the water absorption rate of the moisture absorbing portion is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferable. Is 30% by mass or less.
  • the water absorption rate of the transparent part and the moisture-absorbing part is based on JIS K7209 using a test piece prepared by fixing the transparent part or the moisture-absorbing part having a size of 40 mm square to non-alkali glass and drying at 130 ° C. for 30 minutes. Can be calculated. Specifically, the water absorption rate can be calculated from the initial weight of the dried test piece and the weight after moisture absorption after the test piece is stored in an environment of a temperature of 85 ° C. and a humidity of 85% RH for 24 hours. More specifically, the water absorption rate can be calculated by a method as described in the Example column described later.
  • the water absorption rate of the transparent portion is not particularly limited. However, if, for example, the amount of the hygroscopic filler in the transparent portion is increased in order to enhance the moisture blocking property, the transparency of the transparent portion and the sealing portion formed from the transparent portion is lowered. Therefore, from the viewpoint of transparency, the water absorption rate of the transparent portion is preferably 0% or more and less than 10%, more preferably 0% or more and less than 8%, further preferably 0% or more and less than 5%, and particularly preferably 0% or more and 3 %, Most preferably 0% or more and less than 1%.
  • the shape of the sealing portion surrounded by the moisture absorbing portion 3 on the main surface of the sealing forming layer is substantially square.
  • the shape of the sealing portion on the main surface of the sealing forming layer is not particularly limited, and the shape may be rectangular, circular, elliptical or the like.
  • the moisture absorbing portion surrounding the outer periphery of the sealing portion formed from the transparent portion has a partially missing portion within a range in which the effect (moisture blocking property) of the present invention is not impaired. May be good.
  • the moisture absorbing portion surrounds the outer periphery of the sealing portion, preferably 90 to 100%, more preferably 95 to 100%.
  • the ratio (%) is a value based on the length of the outer circumference.
  • the moisture absorbing portion surrounds the entire outer circumference of the sealing portion.
  • the numerical range described by using the symbol "-" in this specification includes the numerical values at both ends (upper limit and lower limit) of "-”. For example, "90 to 100%” represents "90% or more and 100% or less".
  • W3 indicates the width of the moisture absorbing portion 3.
  • the "width of the moisture absorbing portion” means the width of the moisture absorbing portion on the main surface of the sealing cambium or the surface parallel to the main surface.
  • the width of the moisture absorbing portion is preferably 0.25 to 30 mm, more preferably 0.50 to 20 mm, and even more preferably 0.50 to 10 mm.
  • FIG. 2 is a schematic cross-sectional view of the sealing cambium in one aspect of the present invention, corresponding to the AA'line cross-sectional view of FIG. However, the scales are not unified in FIGS. 1 and 2.
  • the cross-sectional direction of the schematic cross-sectional view of FIG. 3 and the like is the same as the cross-sectional direction of FIG.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms a sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3.
  • the moisture absorbing portion does not protrude on at least one surface of the sealing cambium.
  • S1 is used as a symbol of "a surface on which the moisture absorbing portion of the sealing forming layer does not protrude”
  • S2 is used as a symbol of "a surface on which the moisture absorbing portion of the sealing forming layer protrudes”.
  • both sides of the sealing cambium are surfaces S1 on which the moisture absorbing portion 3 does not protrude.
  • the thickness of the sealing portion formed from the transparent portion is preferably 5 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and even more preferably 5 to 50 ⁇ m.
  • the thickness of the hygroscopic portion is preferably 5 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and even more preferably 5 to 50 ⁇ m from the viewpoint of moisture blocking property and the like.
  • FIG. 3 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3.
  • the transparent portion 2 is also present on the outside of the moisture absorbing portion 3.
  • a transparent portion may be present not only on the inside of the moisture absorbing portion but also on the outside thereof.
  • the sealing forming layer may include a transparent portion that forms a sealing portion and is surrounded by a moisture absorbing portion, as well as a transparent portion that does not form a sealing portion on the outside of the moisture absorbing portion.
  • FIG. 4 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3
  • d3 indicates the moisture absorbing portion of the sealing forming layer. The distance between the two surfaces S1 and the moisture absorbing portion 3 is shown.
  • the moisture absorbing portion 3 is not exposed on one side of the sealing cambium 1.
  • the sealing cambium may have one side where the moisture absorbing portion is not exposed.
  • FIG. 5 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3
  • d3 indicates the moisture absorbing portion of the sealing forming layer. The distance between the two surfaces S1 and the moisture absorbing portion 3 is shown.
  • the transparent portion 2 is also present on the outside of the moisture absorbing portion 3.
  • FIG. 6 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3
  • d3 indicates the thickness of the moisture absorbing portion of the sealing forming layer.
  • the distance between one surface S1 and the moisture absorbing portion 3 is shown
  • D3 indicates the distance between one surface S1 and the moisture absorbing portion 3 where the moisture absorbing portion of the sealing cambium does not protrude (however, d3 ⁇ D3).
  • the moisture absorbing portion 3 is not exposed on both sides of the sealing cambium 1.
  • the sealing cambium may have both sides where the moisture absorbing portion is not exposed.
  • FIG. 7 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3
  • d3 indicates the thickness of the moisture absorbing portion of the sealing forming layer.
  • the distance between one surface S1 and the moisture absorbing portion 3 is shown
  • D3 indicates the distance between one surface S1 and the moisture absorbing portion 3 where the moisture absorbing portion of the sealing cambium does not protrude (however, d3 ⁇ D3).
  • the transparent portion 2 is also present on the outside of the moisture absorbing portion 3.
  • FIG. 8 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3.
  • the thickness T3 of the moisture absorbing portion is larger than the thickness T of the moisture permeable portion, and the sealing forming layer is the moisture absorbing portion. It has a surface S1 on which 3 does not protrude and a surface S2 on which the moisture absorbing portion 3 protrudes.
  • the sealing cambium may have a surface on which the moisture absorbing portion protrudes.
  • FIG. 9 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3.
  • the transparent portion 2 is also present on the outside of the moisture absorbing portion 3.
  • FIG. 10 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3
  • D3 indicates the surface on which the moisture absorbing portion of the sealing forming layer does not protrude.
  • the distance between S1 and the moisture absorbing portion 3 is shown.
  • the moisture absorbing portion 3 is not exposed on the surface S1 in which the moisture absorbing portion 3 does not protrude.
  • FIG. 11 is a schematic cross-sectional view of the sealing cambium according to one aspect of the present invention.
  • the transparent portion 2 surrounded by the moisture absorbing portion 3 forms the sealing portion.
  • W3 indicates the width of the moisture absorbing portion 3
  • T indicates the thickness of the sealing portion
  • T3 indicates the thickness of the moisture absorbing portion 3
  • D3 indicates the surface on which the moisture absorbing portion of the sealing forming layer does not protrude.
  • the distance between S1 and the moisture absorbing portion 3 is shown.
  • the transparent portion 2 is also present on the outside of the moisture absorbing portion 3.
  • the sealing layer of the element As described above, in the sealing layer of the element, it is presumed that moisture mainly moves through the end of the sealing layer in the in-plane direction (direction perpendicular to the thickness direction) and reaches the element. In order to effectively capture the moisture in the in-plane direction by the moisture absorbing portion, the moisture absorbing portion is exposed on the surface where the moisture absorbing portion of the sealing cambium does not protrude (for example, FIGS. 2 to 5, 8 and 9).
  • the embodiment shown in the above) is preferable.
  • the sealing sheet containing the sealing forming layer of such an embodiment is laminated so that the surface of the sealing forming layer having the moisture absorbing portion not protruding and the moisture absorbing portion is exposed is in contact with the element.
  • the shortest distance between the surface where the moisture absorbing portion of the sealing forming layer does not protrude and the moisture absorbing portion is It is preferably 0 to 50 ⁇ m, more preferably 0 to 30 ⁇ m, and even more preferably 0 to 25 ⁇ m.
  • the shortest distance between the surface of the sealing forming layer where the moisture absorbing portion does not protrude and the moisture absorbing portion means D3 in the embodiments of FIGS. 6, 7, 10 and 11. In the embodiments of FIGS. 2 to 5, 8 and 9, the shortest distance is 0 because the sealing cambium has one side in which the moisture absorbing portion is not projected and the moisture absorbing portion is exposed.
  • the transparent portion can be formed from any material (for example, resin composition, rubber composition).
  • the resin include polyolefin resins and thermosetting resins.
  • the polyolefin-based resin a known resin (for example, the resin described in Patent Document 1 or 2) can be used.
  • the thermosetting resin a known resin (for example, the resin described in Patent Document 3) can be used. It is preferable to use a resin composition as a material for forming the transparent portion in order to achieve excellent transparency.
  • a polyolefin-based resin is preferable.
  • the rubber a known rubber (for example, the polyolefin-based rubber described in International Publication No. 2019/189723) can be used.
  • an isobutene-isoprene copolymer is preferable.
  • Specific examples of the isobutylene-isoprene copolymer include "BUTYL 065" and “BUTYL 268" (butyl rubber) manufactured by JSR, "BROMOBUTYL 222" (butyl rubber brominated) manufactured by JSR, and "ER866” (glycidyl methacrylate) manufactured by Seikou PMC.
  • the moisture absorbing portion can be formed from any material (for example, resin composition, rubber composition).
  • the hygroscopic portion and the material for forming the moisture absorbing portion preferably contain a hygroscopic filler in order to achieve excellent moisture blocking properties.
  • the transparent portion and the material for forming the transparent portion may or may not contain a hygroscopic filler.
  • a known filler for example, the getter material described in JP-A-2017-505716
  • Both the transparent portion and the moisture absorbing portion can be formed from, for example, a composition containing a polyolefin-based resin.
  • the polyolefin-based resin is not particularly limited as long as it has a skeleton derived from an olefin monomer.
  • the polyolefin-based resin include polyethylene-based resin, polypropylene-based resin, polybutene-based resin, and polyisobutylene-based resin.
  • the polyolefin-based resin may be a homopolymer, or may be a copolymer such as a random copolymer or a block copolymer.
  • Examples of the copolymer include copolymers of two or more kinds of olefins, and copolymers of olefins with non-olefin monomers such as non-conjugated diene and styrene.
  • Examples of preferred copolymers are ethylene-non-conjugated diene copolymer, ethylene-propylene copolymer, ethylene-propylene-non-conjugated diene copolymer, ethylene-butene copolymer, propylene-butene copolymer, propylene.
  • -Buten-non-conjugated diene copolymer, styrene-isobutylene copolymer, styrene-isobutylene-styrene copolymer and the like can be mentioned.
  • the polyolefin-based resin is a polyolefin-based resin having an acid anhydride group (that is, a carbonyloxycarbonyl group (-CO-O-CO-)) and / / from the viewpoint of imparting excellent physical properties such as adhesiveness and adhesion wet heat resistance.
  • a polyolefin resin having an epoxy group it is preferable to contain a polyolefin resin having an epoxy group.
  • the polyolefin-based resin having an acid anhydride group is, for example, an unsaturated compound having an acid anhydride group, and can be obtained by graft-modifying the polyolefin resin under radical reaction conditions. Further, an unsaturated compound having an acid anhydride group may be radically copolymerized together with an olefin or the like.
  • the polyolefin resin having an epoxy group is an unsaturated compound having an epoxy group such as glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether, and the polyolefin resin is subjected to radical reaction conditions. It is obtained by graft modification at. Further, the unsaturated compound having an epoxy group may be radically copolymerized together with an olefin or the like. As the polyolefin resin, only one kind may be used, or two or more kinds may be used in combination. For example, a polyolefin-based resin having an acid anhydride group and a polyolefin-based resin having an epoxy group may be used in combination.
  • the concentration of the acid anhydride group in the polyolefin resin having the acid anhydride group is preferably 0.01 to 10 mmol / g, more preferably 0.05 to 5 mmol / g.
  • the concentration of the acid anhydride group is obtained from the value of the acid value defined as the number of mg of potassium hydroxide required to neutralize the acid present in 1 g of the resin according to the description of JIS K2501.
  • the amount of the polyolefin-based resin having an acid anhydride group in the polyolefin-based resin is preferably 0 to 70% by mass, more preferably 5 to 60% by mass, and further preferably 10 to 50% by mass.
  • the concentration of the epoxy group in the polyolefin resin having an epoxy group is preferably 0.01 to 10 mmol / g, more preferably 0.05 to 5 mmol / g.
  • the epoxy group concentration is obtained from the epoxy equivalent obtained based on JIS K 7236.
  • the amount of the polyolefin-based resin having an epoxy group in the polyolefin-based resin is preferably 0 to 70% by mass, more preferably 5 to 60% by mass, and further preferably 10 to 50% by mass.
  • the polyolefin-based resin preferably contains both a polyolefin-based resin having an acid anhydride group and a polyolefin-based resin having an epoxy group.
  • a polyolefin-based resin can react an acid anhydride group and an epoxy group by heating to form a crosslinked structure, and can form a sealing layer of an element having excellent moisture permeability and the like.
  • the ratio of the polyolefin resin having an acid anhydride group to the polyolefin resin having an epoxy group is not particularly limited as long as an appropriate crosslinked structure can be formed, but the molar ratio of the epoxy group to the acid anhydride group (epoxide group: acid anhydride).
  • the group) is preferably 100: 10 to 100: 500, more preferably 100: 25 to 100: 475, and particularly preferably 100: 40 to 100: 450.
  • the number average molecular weight of the polyolefin-based resin is not particularly limited, but is 1,000, from the viewpoint of providing good coatability of the varnish of the resin composition and good compatibility with other components in the resin composition.
  • 000 or less is preferable, 750,000 or less is more preferable, 500,000 or less is further preferable, 400,000 or less is further preferable, 300,000 or less is further preferable, 200,000 or less is particularly preferable, and 150,000 or less is particularly preferable. The following are the most preferable.
  • this number average molecular weight is 1,000.
  • the above is preferable, 3,000 or more is more preferable, 5,000 or more is further preferable, 10,000 or more is further preferable, 30,000 or more is further preferable, and 50,000 or more is particularly preferable.
  • the number average molecular weight is measured by a gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, for the number average molecular weight by the GPC method, LC-9A / RID-6A manufactured by Shimadzu Corporation is used as a measuring device, and Polystyrene K-800P / K-804L / K-804L manufactured by Showa Denko Corporation is used as a column. It can be measured at a column temperature of 40 ° C. using toluene or the like as a phase, and can be calculated using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the polyolefin resin is preferably amorphous from the viewpoint of suppressing the decrease in fluidity due to the thickening of the varnish.
  • amorphous means that the polyolefin-based resin does not have a clear melting point, and for example, when the melting point is measured by DSC (differential scanning calorimetry) of the polyolefin-based resin, no clear peak is observed. You can use things.
  • the content of the polyolefin resin is preferably 15 to 100% by mass per 100% by mass of the total non-volatile content of the composition from the viewpoint of ensuring adhesion. It is 99% by mass, more preferably 20 to 98% by mass, and even more preferably 25 to 96% by mass.
  • the content of the polyolefin resin is preferably 100% by mass based on the total non-volatile content of the composition from the viewpoint of adhesion and filler dispersibility. It is 15 to 60% by mass, more preferably 20 to 55% by mass, and even more preferably 25 to 50% by mass.
  • the content of the polyolefin resin is preferably 15 to 99% by mass, more preferably 20 to 98% by mass, based on 100% by mass of the total transparent portion, from the viewpoint of ensuring adhesion. %, More preferably 25 to 96% by mass.
  • the content of the polyolefin-based resin is preferably 15 to 60% by mass, more preferably 20 to 20 to 100% by mass per 100% by mass of the total of the moisture-absorbing parts from the viewpoint of adhesion and filler dispersibility. It is 55% by mass, more preferably 25 to 50% by mass.
  • polystyrene resin examples include "Opanol B100” manufactured by BASF (viscosity average molecular weight: 1,110,000), "B50SF” manufactured by BASF (viscosity average molecular weight: 400,000), and the like.
  • polybutene resin examples include "HV-1900” manufactured by ENEOS (polybutene, number average molecular weight: 2,900) and "HV-300M” manufactured by Toho Kagaku Kogyo Co., Ltd. (male anhydride-modified liquid polybutene ("HV-"). 300 ”(modified product with number average molecular weight: 1,400)), number average molecular weight: 2,100, number of carboxy groups constituting the acid anhydride group: 3.2 / 1 molecule, acid value: 43.4 mgKOH / G, acid anhydride group concentration: 0.77 mmol / g) and the like.
  • styrene-isobutylene copolymer examples include “SIBSTAR T102” manufactured by Kaneka (styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass), manufactured by Seikou PMC.
  • TiBSTAR T102 styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass
  • Seikou PMC Specific examples of the styrene-isobutylene copolymer.
  • T-YP757B maleic anhydride-modified styrene-isobutylene-styrene block copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 100,000
  • T-YP766 manufactured by Seikou PMC.
  • polyethylene-based resin or polypropylene-based resin examples include "EPT X-3012P” manufactured by Mitsui Chemicals, Inc. (ethylene-propylene-5-ethylidene-2-norbornen copolymer, "EPT1070” manufactured by Mitsui Chemicals, Inc. (ethylene-propylene). -Dicyclopentadiene copolymer), "Toughmer A4085” (ethylene-butene copolymer) manufactured by Mitsui Chemicals, Inc., and the like.
  • T-YP341 manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units in total). : 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000), “T-YP279” (maleic anhydride-modified propylene-butene random copolymer, propylene unit and butene) manufactured by Seikou PMC.
  • Amount of butene unit per 100% by mass of total unit 36% by mass, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 35,000), "T-YP276" (glycidyl methacrylate) manufactured by Seikou PMC.
  • Modified propylene-butene random copolymer amount of butene units per 100% by mass of propylene units and butene units: 36% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 57,000), starlight "T-YP312" manufactured by PMC (maleic anhydride-modified propylene-butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units in total: 29% by mass, acid anhydride group concentration: 0.
  • T-YP313 manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer, total amount of butene units per 100% by mass of propylene units and butene units) : 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000
  • T-YP429 maleic anhydride-modified ethylene-methylmethacrylate copolymer, ethylene unit and methyl
  • Amount of methyl methacrylate unit per 100% by mass of total methacrylate unit 32% by mass, acid anhydride group concentration: 0.46 mmol / g, number average molecular weight: 2,300), "T-YP430" manufactured by Seikou PMC Co., Ltd.
  • T-YP432 (Glysidyl methacrylate-modified ethylene-methyl methacrylate copolymer, epoxy group concentration: 1.63 mmol / g, number average molecular weight: 3,100) and the like can be mentioned.
  • the hygroscopic filler As the hygroscopic filler, a known one can be used. Examples of the hygroscopic filler include calcium oxide, semi-baked hydrotalcite, calcined hydrotalcite, magnesium oxide, strontium oxide, aluminum oxide, barium oxide, molecular sieve and the like. Only one type of hygroscopic filler may be used, or two or more types may be used in combination.
  • the content of the hygroscopic filler in the resin composition forming the hygroscopic portion is preferably per 100% by mass of the total non-volatile content of the composition from the viewpoint of achieving both excellent moisture blocking property and long-term reliability of adhesiveness. Is 10 to 80% by mass, more preferably 20 to 75% by mass, still more preferably 30 to 70% by mass.
  • the content of the hygroscopic filler in the hygroscopic part is preferably 10 to 80% by mass, more preferably 10 to 80% by mass, based on 100% by mass of the total of the hygroscopic parts, from the viewpoint of achieving both excellent moisture blocking property and long-term reliability of adhesiveness. It is 20 to 75% by mass, more preferably 30 to 70% by mass.
  • the content of the hygroscopic filler in the resin composition forming the transparent portion is preferably 0% by mass or more and less than 70% by mass, more preferably, per 100% by mass of the total non-volatile content of the composition. Is 0% by mass or more and less than 60% by mass, more preferably 0% by mass or more and less than 50% by mass.
  • the content of the hygroscopic filler in the transparent portion is preferably 0% by mass or more and less than 70% by mass, more preferably 0% by mass or more and less than 60% by mass, per 100% by mass of the total transparent part. More preferably, it is 0% by mass or more and less than 50% by mass.
  • the resin composition forming the transparent portion preferably contains a hygroscopic filler.
  • the content of the hygroscopic filler is preferably 1% by mass or more and less than 70% by mass, and more preferably 2% by mass or more per 100% by mass of the total non-volatile content of the composition from the viewpoint of transparency. It is less than mass%, more preferably 5% by mass or more and less than 60% by mass.
  • the transparent portion preferably contains a hygroscopic filler.
  • the content of the hygroscopic filler is preferably 1% by mass or more and less than 70% by mass, more preferably 2% by mass or more and less than 65% by mass, per 100% by mass of the total transparent portion from the viewpoint of transparency. More preferably, it is 3% by mass or more and less than 60% by mass.
  • the moisture absorbing portion and the material for forming the moisture absorbing portion preferably contain calcium oxide from the viewpoint of excellent moisture blocking property.
  • a mixture containing calcium oxide may be used as a hygroscopic filler.
  • examples of such a mixture include calcined dolomite (a mixture containing calcium oxide and magnesium oxide).
  • the calcined dolomite can be obtained from, for example, Yoshizawa Lime Industry Co., Ltd.
  • the particle size of calcium oxide and the particle size of a mixture containing calcium oxide are used to prevent calcium oxide, etc. from damaging the device in the sealing step, and to oxidize.
  • the thickness is preferably 0.03 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and even more preferably 0.1 to 3 ⁇ m, respectively.
  • These particle sizes are the median diameters of the particle size distribution when the particle size distribution is prepared on a volume basis by laser diffraction / scattering type particle size distribution measurement (JIS Z8825).
  • the content of calcium oxide is preferably 10 to 80% per 100% by mass of the total non-volatile content of the composition from the viewpoint of excellent water blocking property. It is by mass, more preferably 20 to 75% by mass, and even more preferably 30 to 70% by mass.
  • the content of calcium oxide is preferably 10 to 80% by mass, more preferably 20 to 75% by mass, based on 100% by mass of the total of the moisture absorbing portion, from the viewpoint of excellent moisture blocking property. , More preferably 30 to 70% by mass.
  • the composition for forming the transparent portion may contain semi-calcined hydrotalcite.
  • Hydrotalcite can be classified into uncalcined hydrotalcite, semi-calcined hydrotalcite, and calcined hydrotalcite.
  • the uncalcined hydrotalcite is, for example, a metal hydroxide having a layered crystal structure such as that represented by natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3.4H 2 O). It consists of a basic skeleton layer [Mg 1-X Al X (OH) 2 ] X + and an intermediate layer [(CO 3 ) X / 2 ⁇ mH 2 O] X- .
  • Unfired hydrotalcite in the present specification is a concept including hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of the hydrotalcite-like compound include those represented by the following formulas (I) and the following formula (II).
  • M 2+ represents a divalent metal ion such as Mg 2+ and Zn 2+
  • M 3+ represents a trivalent metal ion such as Al 3+ and Fe 3+
  • An ⁇ represents CO 3 2 and Cl.
  • M 2+ is preferably Mg 2+
  • M 3+ is preferably Al 3+
  • An ⁇ is preferably CO 3 2- .
  • M 2+ represents divalent metal ions such as Mg 2+ and Zn 2+
  • An ⁇ represents n- valent anions such as CO 3 2- , Cl ⁇ , NO 3 ⁇ , and x is 2 or more. Is a positive number, z is a positive number less than or equal to 2, m is a positive number, and n is a positive number.
  • M 2+ is preferably Mg 2+
  • An ⁇ is preferably CO 3 2- .
  • Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of interlayer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite.
  • interlayer water refers to "H 2 O" described in the above-mentioned composition formulas of uncalcined natural hydrotalcite and hydrotalcite-like compounds, if it is described using a composition formula.
  • calcined hydrotalcite refers to a metal oxide having an amorphous structure obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, in which not only interlayer water but also hydroxyl groups have disappeared.
  • Unfired hydrotalcite, semi-fired hydrotalcite and fired hydrotalcite can be distinguished by the saturated water absorption rate.
  • the saturated water absorption rate of the semi-baked hydrotalcite is 1% by mass or more and less than 20% by mass.
  • the saturated water absorption rate of unfired hydrotalcite is less than 1% by mass, and the saturated water absorption rate of calcined hydrotalcite is 20% by mass or more.
  • the saturated water absorption rate of the semi-baked hydrotalcite is preferably 3% by mass or more and less than 20% by mass, and more preferably 5% by mass or more and less than 20% by mass.
  • uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the thermogravimetric reduction rate measured by thermogravimetric analysis.
  • the thermogravimetric reduction rate of the semi-baked hydrotalcite at 280 ° C. is less than 15% by mass, and the thermogravimetric reduction rate at 380 ° C. is 12% by mass or more.
  • the thermogravimetric reduction rate of unfired hydrotalcite at 280 ° C. is 15% by mass or more
  • the thermogravimetric reduction rate of calcined hydrotalcite at 380 ° C. is less than 12% by mass.
  • thermogravimetric reduction rate 100 ⁇ (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii) Can be obtained at.
  • uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the peak and relative intensity ratio measured by powder X-ray diffraction.
  • Semi-calcined hydrotalcite shows a peak in which 2 ⁇ is split into two in the vicinity of 8 to 18 ° by powder X-ray diffraction, or a peak with a shoulder due to the synthesis of the two peaks, and the peak or shoulder that appears on the low angle side.
  • uncalcined hydrotalcite has only one peak near 8 to 18 °, or the relative intensity ratio of the diffraction intensity of the peak or shoulder appearing on the low angle side and the peak or shoulder appearing on the high angle side is in the above range. Be outside.
  • the calcined hydrotalcite does not have a characteristic peak in the region of 8 ° to 18 °, but has a characteristic peak in 43 °.
  • the powder X-ray diffraction measurement is performed by a powder X-ray diffractometer (Empyrean manufactured by PANalytical), anti-cathode CuK ⁇ (1.5405 ⁇ ), voltage: 45 V, current: 40 mA, sampling width: 0.
  • the measurement was performed under the conditions of 0260 °, scanning speed: 0.0657 ° / s, and measured diffraction angle range (2 ⁇ ): 5.0131 to 79.9711 °.
  • the peak search uses the peak search function of the software attached to the diffractive device, "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It can be performed under the condition of ".00 °, method: minimum value of second derivative".
  • the BET specific surface area of the semi-baked hydrotalcite is preferably 1 to 250 m 2 / g, more preferably 5 to 200 m 2 / g. These BET specific surface areas can be calculated by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM Model 1210, manufactured by Mountech) according to the BET method and using the BET multipoint method.
  • a specific surface area measuring device Macsorb HM Model 1210, manufactured by Mountech
  • the particle size of the semi-baked hydrotalcite is preferably 1 to 1,000 nm, more preferably 10 to 800 nm. These particle sizes are the median diameters of the particle size distribution when the particle size distribution is prepared on a volume basis by laser diffraction / scattering type particle size distribution measurement (JIS Z8825).
  • the semi-baked hydrotalcite one that has been surface-treated with a surface treatment agent can be used.
  • the surface treatment agent is not particularly limited, and known substances (higher fatty acids, alkylsilanes, silane coupling agents, etc.) can be used, and among them, higher fatty acids and alkylsilanes are preferable.
  • As the surface treatment agent only one kind may be used, or two or more kinds may be used in combination.
  • the composition forming the transparent portion may contain semi-baked hydrotalcite, and from the viewpoint of the balance between transparency and moisture blocking property, the content of the semi-baked hydrotalcite is the non-volatile content of the composition.
  • the content of the semi-baked hydrotalcite is the non-volatile content of the composition.
  • Per 100% by mass of the total it is preferably 0% by mass or more and less than 70% by mass, more preferably 0% by mass or more and less than 60% by mass, and further preferably 0% by mass or more and less than 50% by mass.
  • the transparent portion may contain semi-baked hydrotalcite, and from the viewpoint of the balance between transparency and moisture blocking property, the content of the semi-baked hydrotalsite is preferably 0 per 100% by mass of the total transparent portion.
  • mass or more and less than 70% by mass more preferably 0% by mass or more and less than 60% by mass, still more preferably 0% by mass or more and less than 50% by mass.
  • the composition forming the transparent portion preferably contains semi-baked hydrotalcite.
  • the content of semi-baked hydrotalcite is preferably 1% by mass or more and less than 70% by mass, based on 100% by mass of the total non-volatile content of the composition. It is more preferably 2% by mass or more and less than 65% by mass, and further preferably 5% by mass or more and less than 60% by mass.
  • the transparent portion preferably comprises semi-baked hydrotalcite.
  • the content of the semi-baked hydrotalcite is preferably 1% by mass or more and less than 70% by mass, more preferably 2 per 100% by mass of the total transparent portion. By mass or more and less than 65% by mass, more preferably 5% by mass or more and less than 60% by mass.
  • the composition for forming the transparent portion or the hygroscopic portion may contain components other than the above-mentioned polyolefin resin and hygroscopic filler (hereinafter, may be referred to as "other components").
  • Other components include, for example, tackifiers; curing accelerators; antioxidants; plasticizers; inorganic or organic fillers other than hygroscopic fillers (eg rubber particles, silicone powders, nylon powders, fluororesin powders, etc.).
  • a thickener such as Olben, Benton; a defoaming agent or a leveling agent; etc. may be mentioned.
  • the other components only one kind may be used, or two or more kinds may be used in combination.
  • tackifier examples include terpene resin, modified terpene resin (hydrogenated terpene resin, terpene phenol copolymer resin, aromatic modified terpene resin, etc.), kumaron resin, inden resin, petroleum resin (aliphatic petroleum resin, water).
  • Additive ring type petroleum resin, aromatic petroleum resin, aliphatic aromatic copolymerized petroleum resin, alicyclic petroleum resin, dicyclopentadiene petroleum resin, hydrogenated products thereof, etc. are preferably used.
  • Examples of commercially available products that can be used as a tackifier include the following.
  • Examples of the terpene resin include YS resin PX and YS resin PXN (both manufactured by Yasuhara Chemical Co., Ltd.), and examples of the aromatic-modified terpene resin include YS resin TO and TR series (both manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the terpene resin include Clearon P, Clearon M, and Clearon K series (all manufactured by Yasuhara Chemical Co., Ltd.), and examples of the terpene phenol copolymer resin include YS Polystar 2000, Polystar U, Polystar T, Polystar S, and Mighty Ace G (all of which are manufactured by Yasuhara Chemical Co., Ltd.).
  • Examples of the cyclohexane ring-containing hydrogenated petroleum resin include Archon P100, Archon P125, and Archon P140 (all manufactured by Arakawa Chemical Co., Ltd.), and examples of the cyclohexane ring-containing saturated hydrocarbon resin include TFS13-030 (manufactured by Arakawa Chemical Co., Ltd.).
  • T-REZ HA105 manufactured by ENEOS
  • petroleum resins and hydrides thereof are preferable from the viewpoints of adhesiveness, moisture permeability resistance, transparency and the like of the resin composition.
  • the petroleum resin include aliphatic petroleum resins, aromatic petroleum resins, aliphatic aromatic copolymerized petroleum resins, and alicyclic petroleum resins.
  • aromatic petroleum resins, aliphatic aromatic copolymerized petroleum resins, aliphatic petroleum resins, and hydrides thereof are more suitable from the viewpoints of the adhesiveness, moisture permeability resistance, compatibility, etc. of the composition. preferable.
  • alicyclic petroleum resins and hydrides thereof are particularly preferable.
  • the hydrogenation rate of the hydride of the alicyclic petroleum resin is preferably 30 to 99%, more preferably 40 to 97%, still more preferably 50 to 90%. If the hydrogenation rate is too low, there is a tendency for the transparency to decrease due to coloring, and if the hydrogenation rate is too high, the production cost tends to increase.
  • the hydrogenation rate can be determined from the ratio of the peak intensities of 1 H-NMR of hydrogen in the aromatic ring before and after hydrogenation.
  • a hydride of a cyclohexane ring-containing hydrogenated petroleum resin and a dicyclopentadiene petroleum resin is particularly preferable.
  • the petroleum resin and the hydride thereof only one kind may be used, or two or more kinds may be used in combination.
  • the number average molecular weights of the petroleum resin and its hydrogenated product are independently, preferably 100 to 2,000, more preferably 700 to 1,500, still more preferably 500 to 1,000.
  • the softening point of the tackifier is preferably 50 to 200 ° C, more preferably 60 to 180 ° C, and even more preferably 70 to 160 ° C.
  • the softening point is measured by the ring ball method according to JIS K2207.
  • the composition forming the transparent portion or the moisture absorbing portion may contain a tackifier, and the content of the tackifier is the total non-volatile content of the composition from the viewpoint of adhesion and flexibility. It is preferably 0 to 50% by mass, more preferably 0 to 40% by mass, and further preferably 0 to 30% by mass per 100% by mass.
  • the transparent portion or the moisture absorbing portion may contain a tackifier, and the content of the tackifier is preferably 100% by mass based on the total of the transparent portion or the moisture absorbing portion from the viewpoint of adhesion and flexibility. Is 0 to 50% by mass, more preferably 0 to 40% by mass, still more preferably 0 to 30% by mass.
  • curing accelerator examples include imidazole compounds, tertiary and quaternary amine compounds, dimethylurea compounds, organic phosphine compounds and the like.
  • imidazole compound examples include 1H-imidazole, 2-methylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole and 2-un.
  • Decylimidazole 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 2-phenyl-4,5-bis (hydroxymethyl) imidazole, 1-benzyl-2-methylimidazole , 1-benzyl-2-phenylimidazole, 2-phenylimidazole, 2-dodecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and the like. ..
  • imidazole compound examples include curesol 2MZ, 2P4MZ, 2E4MZ, 2E4MZ-CN, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2PHZ, 1B2MZ, 1B2PZ, 2PZ, C17Z, 1.2DMZ, 2P4MHZ-PW. , 2MZ-A, 2MA-OK (both manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.
  • the tertiary / quaternary amine compound is not particularly limited, and is, for example, a quaternary ammonium salt such as tetramethylammonium bromide or tetrabutylammonium bromide; DBU (1,8-diazabicyclo [5.4.0] undecene).
  • DBN (1,5-diazabicyclo [4.3.0] nonen-5)
  • DBU-phenol salt DBU-octylate
  • DBU-p-toluenesulfonate DBU-grate
  • DBU- Diazabicyclo compounds such as phenol novolac resin salts
  • tertiary amines such as benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol (TAP) or salts thereof, aromatics.
  • Dimethylurea compounds such as dimethylurea and aliphatic dimethylurea; and the like.
  • dimethylurea compound examples include aromatic dimethylurea such as DCMU (3- (3,4-dichlorophenyl) -1,1-dimethylurea) and U-CAT3512T (manufactured by San-Apro); U-CAT3503N (manufactured by San-Apro). ) And the like, and examples thereof include aliphatic dimethylurea. Among them, aromatic dimethylurea is preferably used from the viewpoint of curability.
  • organic phosphine compound examples include triphenylphosphine, tetraphenylphosphonium tetra-p-trilborate, tetraphenylphosphonium tetraphenylborate, tri-tert-butylphosphonium tetraphenylborate, and (4-methylphenyl) triphenylphosphonium thiocyanate. Examples thereof include tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, triphenylphosphine triphenylborane and the like. Specific examples of the organic phosphine compound include TPP, TPP-MK, TPP-K, TTBuP-K, TPP-SCN, TPP-S (all manufactured by Hokuko Chemical Industry Co., Ltd.) and the like.
  • the content of the curing accelerator is preferably 0 per 100% by mass of the total non-volatile content of the composition from the viewpoint of promoting curing. It is 0005 to 0.50% by mass, more preferably 0.001 to 0.45% by mass, still more preferably 0.0015 to 0.40% by mass.
  • the content of the curing accelerator is preferably 0.0005 to 0.50% by mass, more preferably 0.%, per 100% by mass of the total of the transparent portion or the moisture absorbing portion. It is 001 to 0.45% by mass, more preferably 0.0015 to 0.40% by mass.
  • the antioxidant is not particularly limited, and known ones can be used.
  • the content of the antioxidant is preferably 0 per 100% by mass of the total non-volatile content of the composition from the viewpoint of antioxidant. It is .005 to 1.0% by mass, more preferably 0.01 to 0.9% by mass, and further preferably 0.02 to 0.8% by mass.
  • the content of the antioxidant is preferably 0.005 to 1.0% by mass per 100% by mass of the total of the transparent part or the moisture-absorbing part from the viewpoint of antioxidant. %, More preferably 0.01 to 0.9% by mass, still more preferably 0.02 to 0.8% by mass.
  • the sealing sheet of the present invention may further include a support. That is, the sealing sheet of the present invention may have a laminated structure including a support and a sealing forming layer. Further, the sealing sheet of the present invention may further include a protective sheet. That is, the sealing sheet of the present invention may have a laminated structure including a sealing forming layer and a protective sheet. Further, the sealing sheet of the present invention may further include a support and a protective sheet. That is, the sealing sheet of the present invention may have a laminated structure including a support, a sealing forming layer, and a protective sheet in this order. Other layers (eg, mold release layers) may be present between the support and the cambium and between the cambium and the protective sheet.
  • Other layers eg, mold release layers
  • the support and the protective sheet include polyolefins such as polyethylene, polypropylene and polyvinyl chloride; cycloolefin polymers; polyethylene terephthalate (hereinafter sometimes referred to as “PET”), polyesters such as polyethylene naphthalate; polycarbonate; polyimide. Such as plastic film and the like.
  • PET polyethylene terephthalate
  • Both the support and the protective sheet may be a single-layer film or a laminated film.
  • a low moisture permeability film having a barrier layer or a laminated film of a low moisture permeability film having a barrier layer and another film can be used.
  • the barrier layer include an inorganic film such as a silica-deposited film, a silicon nitride film, and a silicon oxide film.
  • the barrier layer may be composed of a plurality of layers of a plurality of inorganic films (for example, a silica-deposited film). Further, the barrier layer may be composed of an organic substance and an inorganic substance, or may be a composite multilayer of the organic layer and the inorganic film.
  • the surface in contact with the sealing cambium is mold-released.
  • the support may or may not be mold-released.
  • the mold release treatment include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
  • the thickness of the support and the protective sheet is not particularly limited, but is preferably 5 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, respectively, from the viewpoint of handleability of the sealing sheet and the like.
  • the thickness is the thickness of the entire laminated film.
  • FIG. 12A a laminated sheet containing the support 4, the moisture absorbing layer 5, and the protective sheet 6 in this order is prepared.
  • FIG. 12B the central portion of the moisture absorbing layer 5 and the protective sheet 6 of the laminated sheet is hollowed out while leaving the support 4 of the laminated sheet, and the support 4 and the moisture absorbing portion 3 (that is, that is). , The rest of the moisture absorbing layer 5) and the protective sheet 6 are included in this order to prepare a laminated sheet.
  • FIG. 12B the central portion of the moisture absorbing layer 5 and the protective sheet 6 of the laminated sheet is hollowed out while leaving the support 4 of the laminated sheet, and the support 4 and the moisture absorbing portion 3 (that is, that is).
  • the rest of the moisture absorbing layer 5) and the protective sheet 6 are included in this order to prepare a laminated sheet.
  • the laminated sheet including the transparent portion 2 and the protective sheet 6 is installed so as to be fitted into the hollowed-out central portion, whereby the support 4 and the sealing forming layer 1 (that is, the sealing forming layer 1) are installed.
  • the sealing sheet of the present invention containing the transparent portion 2 and the layer including the moisture absorbing portion 3) and the protective sheet 6 in this order can be manufactured.
  • FIG. 12 shows an embodiment in which the central portion of the moisture absorbing layer 5 and the protective sheet 6 of the laminated sheet is hollowed out while the support 4 of the laminated sheet is left, but conversely, the laminated sheet of the laminated sheet is hollowed out.
  • the sealing sheet of the present invention can be manufactured in the same manner as shown in FIG. 12 by hollowing out the central portion of the support 4 and the moisture absorbing layer 5 of the laminated sheet while leaving the protective sheet 6. ..
  • a laminate having a transparent layer for forming a transparent portion or a moisture absorbing layer for forming a moisture absorbing portion on a support or a protective sheet which can be used in one aspect of the method for producing a sealing sheet of the present invention described above.
  • the sheet is prepared, for example, by (1) dissolving or dispersing the above-mentioned components in an organic solvent to produce a varnish of a composition for forming a transparent portion or a varnish of a composition for forming a hygroscopic portion (2). ) The obtained varnish is applied to a support or a protective sheet to form a coating film, and (3) the organic solvent is removed (that is, dried) from the obtained coating film to produce the product.
  • Examples of the organic solvent that can be used for producing varnish include ketones such as acetone, methyl ethyl ketone and cyclohexanone; acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate; cellosolve and the like.
  • Cellosolves; carbitols such as butyl carbitol; aromatic hydrocarbons such as toluene and xylene; dimethylformamides, dimethylacetamides, N-methylpyrrolidone amides; and the like. Only one kind of organic solvent may be used, or two or more kinds may be used in combination.
  • a commercially available product may be used as the organic solvent.
  • Examples of the commercially available product include "Swazole” manufactured by Maruzen Petrochemical Co., Ltd. and "Ipsol” manufactured by Idemitsu Kosan Co., Ltd.
  • the varnish may be applied by a known method (for example, a method using a die coater), and the application method is not particularly limited.
  • the coating film can be dried by heating and / or depressurizing.
  • the coating film is preferably dried by heating because it can be easily performed.
  • the heating temperature of the coating film is preferably 50 to 200 ° C., more preferably 80 to 150 ° C., and the time is preferably 1 to 60 minutes.
  • the sealing sheet of the present invention can also be produced, for example, by the following method: (A) A method of forming a hygroscopic portion by applying a varnish of a composition for forming a hygroscopic portion so as to surround the outer periphery of a sheet corresponding to the transparent portion and drying the obtained coating film. (B) A liquid curable composition for forming a hygroscopic portion is applied so as to surround the outer periphery of the sheet corresponding to the transparent portion, and the obtained coating film is cured by heating or light irradiation to form the hygroscopic portion. How to form.
  • the sealing sheet of the present invention is preferably used for sealing electronic parts such as semiconductors, solar cells, high-brightness LEDs, LCDs, and organic EL elements, and more preferably for sealing solar cell elements and organic EL elements. Can be done.
  • Antioxidant "Irganox 1010” (manufactured by BASF): Hindered phenolic antioxidant (curing accelerator) 2,4,6-Tris (dimethylaminomethyl) phenol (hereinafter abbreviated as "TAP”) (manufactured by Kayaku Akzo Corporation)
  • a varnish with the amount of components shown in Table 1 below is prepared by the following procedure, and a resin composition layer (hereinafter sometimes referred to as "moisture absorbing layer”) and a transparent layer for forming a moisture absorbing portion using the obtained varnish.
  • a resin composition layer (hereinafter, may be referred to as a “transparent layer”) for forming a portion was prepared.
  • the amount (part) of each component shown in Table 1 below indicates the amount of the non-volatile content of each component in the varnish. Further, Table 1 below shows the water absorption rate of the resin composition layer (that is, the moisture absorbing layer or the transparent layer).
  • a swazole solution (nonvolatile content 15%) of a glycidyl methacrylate-modified propylene-butene random copolymer (“T-YP341” manufactured by Starlight PMC) and a hindered phenolic antioxidant (“Irganox 1010” manufactured by BASF). ”), TAP (hardening accelerator, manufactured by Kayaku Akzo Corporation) and toluene were blended, and the obtained mixture was uniformly dispersed with a high-speed rotary mixer to obtain a varnish of a resin composition.
  • T-YP341 glycidyl methacrylate-modified propylene-butene random copolymer
  • Irganox 1010 antioxidant
  • Polyester terephthalate (PET) film (“SP4020” manufactured by Toyo Cloth Co., Ltd., PET film thickness: 50 ⁇ m) and low moisture permeable polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Co., Ltd.) whose one side is treated with a silicone-based release agent.
  • PET film thickness: 12 ⁇ m PET film thickness: 12 ⁇ m
  • SP4020-HX film A laminated film (hereinafter referred to as "SP4020-HX film”) was prepared by laminating with an adhesive.
  • SP4020 manufactured by Toyo Cloth Co., Ltd. was changed to a polyethylene terephthalate (PET) film ("SP3000” manufactured by Toyo Cloth Co., Ltd., PET film thickness: 50 ⁇ m) whose one side was treated with a silicone-based release agent.
  • PET polyethylene terephthalate
  • SP3000-HX film Made a laminated film (hereinafter referred to as "SP3000-HX film") in the same manner as in the preparation of the SP4020-HX film.
  • the varnish of the resin composition is uniformly applied to the surface of the SP4020-HX film treated with the silicone-based mold release agent with a die coater, and heated at 140 ° C. for 30 minutes to form a resin composition layer having a crosslinked structure.
  • a laminated sheet having a laminated structure with the resin composition layer / SP4020-HX film was obtained.
  • the SP3000-HX film was laminated on the obtained laminated sheet so that the release-treated surface and the composition layer were in contact with each other, and then heated (aged) at 130 ° C. for 60 minutes to form the SP3000-HX film / resin composition.
  • a laminated sheet having a laminated structure with a material layer (that is, a moisture absorbing layer, a thickness: 50 ⁇ m) / SP4020-HX film was obtained.
  • the water absorption rates of the moisture-absorbing layer and the transparent layer were measured by the following methods. Of the two types of transparent layers, the water absorption rate of the transparent layer having a thickness of 50 ⁇ m was measured. First, the SP3000-HX film is peeled off from the laminated sheet cut into a 40 mm square, and the weight of the laminated sheet having a laminated structure with the resin composition layer (that is, the moisture absorbing layer or the transparent layer) / SP4020-HX film is measured in advance.
  • a batch type vacuum laminator (Nichigo Morton "V-160") is placed on a 50 mm square non-alkali glass plate ("OA-10G” manufactured by Nippon Electric Glass Co., Ltd., glass thickness: 700 ⁇ m, weight: w1). It is bonded under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MP, and has a laminated structure with a non-alkali glass plate / resin composition layer (that is, a moisture absorbing layer or a transparent layer) / SP4020-HX film. A laminate was produced.
  • the SP4020-HX film was peeled off from the laminated body to obtain a test piece having a laminated structure with a non-alkali glass plate / resin composition layer (that is, a moisture absorbing layer or a transparent layer).
  • the obtained test piece was dried at 130 ° C. for 30 minutes, and the weight of the test piece before the water absorption test was measured (weight: w2).
  • the test piece was stored in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a humidity of 85% RH for 24 hours to absorb moisture, and then the weight w3 of the test piece after moisture absorption was measured.
  • Water absorption rate of the resin composition layer (w3-w2) / (w2-w1) ⁇ 100 From, the water absorption rate of the resin composition layer (that is, the moisture absorbing layer or the transparent layer) was calculated.
  • Example 1 The laminated sheet having the hygroscopic layer produced as described above was cut out into a length of 60 mm and a width of 60 mm. Next, the central portion (length 48 mm ⁇ width 48 mm) of the cut-out laminated sheet is cut so that the SP4020-HX film remains, and the resin composition layer and the SP3000-HX film in the central portion are removed to remove the peripheral portion.
  • a laminated sheet (hereinafter referred to as "moisture absorbing sheet 1") having the SP3000-HX film, the moisture absorbing portion (that is, the remaining moisture absorbing layer), and the SP4020-HX film was prepared.
  • a laminated sheet having a transparent layer having a thickness of 50 ⁇ m is cut into a length of 48 mm ⁇ a width of 48 mm, and the SP3000-HX film is peeled off to form a transparent portion (that is, a transparent layer) having a thickness of 50 ⁇ m and SP4020-.
  • a laminated sheet having an HX film (hereinafter referred to as "transparent sheet 1") was produced.
  • the transparent sheet 1 was installed so as to be fitted in the central portion of the moisture absorbing sheet 1 so that the transparent portion of the transparent sheet 1 was in contact with the SP4020-HX film of the moisture absorbing sheet 1.
  • the obtained laminate was pressed using a batch type vacuum laminator (Morton-724 manufactured by Nichigo Morton) at a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MPa to obtain an SP3000-HX film and a pressure of 0.3 MPa.
  • a sealing sheet having a laminated structure with the SP4020-HX film / sealing cambium / SP4020-HX film was produced.
  • the "SP3000-HX film and SP4020-HX film” were peeled off from the obtained sealing sheet, and the length was 60 mm ⁇ using a batch type vacuum laminator under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MP.
  • Example 2 A laminated sheet having a moisture absorbing layer was cut out into a length of 60 mm and a width of 60 mm. Next, the central portion (length 48 mm ⁇ width 48 mm) of the cut-out laminated sheet is cut so that the SP4020-HX film remains, and the SP3000-HX film in the peripheral portion is peeled off to remove the moisture absorbing portion (that is, the remaining moisture absorbing layer). ) And a laminated sheet having the SP4020-HX film (hereinafter referred to as "moisture absorbing sheet 2”) were prepared.
  • a laminated sheet having a transparent layer having a thickness of 50 ⁇ m is cut into a length of 48 mm ⁇ a width of 48 mm, and the SP3000-HX film is peeled off to form a transparent portion (that is, a transparent layer) having a thickness of 50 ⁇ m and SP4020-.
  • a laminated sheet having an HX film (hereinafter referred to as "transparent sheet 1") was produced.
  • a laminated sheet having a transparent layer having a thickness of 50 ⁇ m is cut into a length of 60 mm ⁇ a width of 60 mm, and the SP3000-HX film is peeled off to form a transparent portion (that is, a transparent layer) having a thickness of 50 ⁇ m and SP4020-HX.
  • a laminated sheet having a film (hereinafter referred to as "transparent sheet 2") was produced.
  • the transparent sheet 1 was installed so as to be fitted in the central portion of the moisture absorbing sheet 2 so that the transparent portion of the transparent sheet 1 was in contact with the SP4020-HX film of the moisture absorbing sheet 2.
  • the SP4020-HX film derived from the transparent sheet 1 was peeled off from the obtained laminated body, and the transparent sheet 2 was laminated so that the transparent portion of the transparent sheet 2 was in contact with the transparent portion and the moisture absorbing portion of the laminated body.
  • the obtained laminate was pressed using a batch type vacuum laminator (Morton-724 manufactured by Nichigo Morton) under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MPa to obtain an SP4020-HX film /.
  • a sealing sheet having a laminated structure with a sealing forming layer / SP4020-HX film was produced.
  • the SP4020-HX film derived from the transparent sheet 2 was peeled off from the obtained sealing sheet, and a batch type vacuum laminator was used under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MP, in a length of 60 mm ⁇ width.
  • a batch type vacuum laminator was used under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MP, in a length of 60 mm ⁇ width.
  • Example 3 A laminated sheet having a moisture absorbing layer was cut out into a length of 60 mm and a width of 60 mm. Next, the central portion (length 48 mm ⁇ width 48 mm) of the cut-out laminated sheet is cut so that the SP4020-HX film remains, and the SP3000-HX film in the peripheral portion is peeled off to remove the moisture absorbing portion (that is, the remaining moisture absorbing layer). ) And a laminated sheet having the SP4020-HX film (hereinafter referred to as "moisture absorbing sheet 2”) were prepared.
  • a laminated sheet having a transparent layer having a thickness of 50 ⁇ m is cut into a length of 48 mm ⁇ a width of 48 mm, the SP3000-HX film is peeled off, and a transparent portion (that is, a transparent layer) having a thickness of 50 ⁇ m and SP4020-
  • transparent sheet 1 A laminated sheet having an HX film (hereinafter referred to as "transparent sheet 1") was produced.
  • a laminated sheet having a transparent layer having a thickness of 25 ⁇ m is cut into a length of 60 mm ⁇ a width of 60 mm, and the SP3000-HX film is peeled off to form a transparent portion (that is, a transparent layer) having a thickness of 25 ⁇ m and SP4020-HX.
  • Two laminated sheets having a film (hereinafter referred to as "transparent sheet 3") were produced.
  • the transparent sheet 1 was installed so as to be fitted in the central portion of the moisture absorbing sheet 1 so that the transparent portion of the transparent sheet 1 was in contact with the SP4020-HX film of the moisture absorbing sheet 2.
  • the SP4020-HX film derived from the transparent sheet 1 is peeled off from the obtained laminated body, and the transparent portion 3 of the transparent sheet 3 is in contact with the transparent portion and the moisture absorbing portion of the laminated body.
  • the SP4020-HX film derived from the moisture absorbing sheet 2 is peeled off from the obtained laminate, and the transparent portion of the remaining one transparent sheet 3 is in contact with the transparent portion and the moisture absorbing portion of the laminate. Sheets 3 were laminated.
  • the obtained laminate was pressed using a batch type vacuum laminator under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MPa to form an SP4020-HX film / sealing cambium / SP4020-HX film.
  • a sealing sheet having a laminated structure was produced.
  • One SP4020-HX film was peeled off, and the SP3000-HX film having a size of 60 mm in length ⁇ 60 mm in width was exposed using a batch type vacuum laminator under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MP.
  • a batch type vacuum laminator under the conditions of a temperature of 80 ° C., a time of 30 seconds, and a pressure of 0.3 MP.
  • the sealing sheet of Examples and Comparative Examples was cut into 40 mm squares, the SP3000-HX film was peeled off, and the sealing sheet and 50 mm square non-alkali glass (thickness 700 ⁇ m, Nippon Electric Glass “OA-10G”” ), The sealing sheet was attached to non-alkali glass using a batch type vacuum laminator to obtain a laminated body.
  • the SP4020-HX film was peeled off from the obtained laminate to prepare a sample for measuring the total light transmittance (that is, a laminate of a sealing cambium and non-alkali glass).
  • the light transmittance spectrum of the central part of the obtained sample (the part where the sealing part exists in the sample prepared by using the sealing sheet of the example) is measured by a fiber spectrophotometer (Otsuka) equipped with a ⁇ 80 mm integrating sphere. Measurement was performed using "MCPD-7700” manufactured by Denshi Co., Ltd., type 311C, external light source unit: halogen lamp MC-2564 (24V, 150W specification)), and the total light transmittance at a wavelength of 450 nm was calculated. As the standard white plate, “Spectran Reflective Standard” (model name SRS-99-010, reflectance 99%) manufactured by Lovesphere Co., Ltd. was used.
  • the distance between the integrating sphere and the sample (laminated body) was set to 0 mm, and the atmosphere was used as a reference. From the obtained total light transmittance, the transparency was evaluated according to the following criteria. The results are shown in Table 2 below. (Transparency standard) Good ( ⁇ ): Total light transmittance at wavelength 450 nm is 90% or more Poor ( ⁇ ): Total light transmittance at wavelength 450 nm is less than 90%
  • a composite film provided with an aluminum foil and a polyethylene terephthalate (PET) film by peeling off the SP3000-HX film of the sealing sheet produced in Examples 1 to 3 and Comparative Examples 1 and 2 (“PET Tsuki” manufactured by Tokai Toyo Aluminum Sales Co., Ltd. AL1N30 ”, aluminum foil thickness: 30 ⁇ m, PET thickness: 25 ⁇ m) was bonded using a batch type vacuum laminator to obtain a test sheet.
  • a 50 mm x 50 mm square non-alkali glass plate was prepared.
  • the glass plate was washed with boiling isopropyl alcohol for 5 minutes and dried at 150 ° C. for 30 minutes or more.
  • Calcium was vapor-deposited on one side of the dried glass plate using a mask covering the peripheral area where the distance from the end of the glass plate was 0 mm to 1.5 mm. As a result, a calcium film having a thickness of 200 nm was formed on one side of the glass plate at the central portion excluding the peripheral area of the glass plate.
  • the SP4020-HX film of the test sheet was peeled off in a nitrogen atmosphere.
  • the test sheet was laminated on the glass plate so that the sealing forming layer of the test sheet and the calcium film of the glass plate were in contact with each other, and a thermal laminator (“Lamipacker DAiSY A4 (LPD2325)” manufactured by Fujipla Co., Ltd.) was used.
  • a thermal laminator (“Lamipacker DAiSY A4 (LPD2325)” manufactured by Fujipla Co., Ltd.) was used.
  • the test sheet produced using the sealing sheet of Example 2 the test sheet is placed on a glass plate so that the surface of the sealing cambium with the exposed moisture absorbing portion and the calcium film of the glass plate are in contact with each other. Laminated in.
  • the evaluation sample when calcium comes into contact with water and becomes calcium oxide, it becomes transparent. Further, in the evaluation sample, since the glass plate and PET Tsuki AL1N30 have a high moisture barrier property, the moisture moves in the in-plane direction (direction perpendicular to the thickness direction) through the end portion of the sealing layer. , It is thought that it reaches the calcium membrane. When water infiltrates into the evaluation sample, the calcium film is gradually oxidized from the end and becomes transparent, so that the calcium film shrinks is observed. Therefore, the intrusion of water into the evaluation sample can be evaluated by measuring the distance [mm] from the end of the evaluation sample to the calcium film. Therefore, the evaluation sample having a calcium film can be used as a model of an electronic device having an element.
  • the evaluation sample was stored in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a humidity of 85% RH.
  • the time point T1 when the evaluation sample was stored in the thermo-hygrostat and the time point T2 when the distance between the end of the evaluation sample and the end of the calcium film increased by 0.1 mm were measured, and the shrinkage time (that is, T2-T1) was measured. ) was calculated. From the obtained shrinkage time, the water blocking property was evaluated according to the following criteria. The results are shown in Table 2 below. Good ( ⁇ ): Shrinkage time of 200 hours or more Poor ( ⁇ ): Shrinkage time of less than 200 hours
  • the sealing sheet of the present invention is useful for forming a sealing layer for an element (preferably a sealing layer for protecting an organic EL element).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、封止形成層を含む封止用シートであって、封止形成層が、透明部、および透明部の吸水率よりも大きい吸水率を有する吸湿部を含み、封止形成層が、透明部から形成される封止部を含み、吸湿部が、封止部の外周を囲んでおり、並びに封止部の波長450nmでの全光線透過率が90%以上である封止用シートを提供する。

Description

封止用シート
 本発明は、電子機器の素子の封止に有用な封止用シートに関する。
 電子機器の素子(例えば、有機EL素子)を水分から遮断するために、封止形成層(例えば、樹脂組成物層またはゴム組成物層)および支持体を有する封止用シートを用いて、前記封止形成層を素子に積層し、前記封止形成層から封止層を形成すること(以下「シート封止」と記載することがある)が知られている(例えば、特許文献1~3)。
 また、優れた水分遮断性を達成するために、液状組成物であるダム材を用いて、素子の周りに吸湿性の高いダム部を形成し、次いで液状組成物であるフィル材を用いて、素子を覆う透明性の高いフィル部を形成し、素子の周りのダム部および素子を覆うフィル部から構成される封止層を形成すること(以下「ダム-フィル封止」と記載することがある)が知られている(例えば、特許文献4)。
国際公開第2016/158770号 国際公開第2017/057708号 国際公開第2018/066548号 特開2017-59413号公報
 従来の封止用シートを用いるシート封止では、水分から素子を保護する封止層を簡便に形成することができる。しかし、水分遮断性を高めるために、例えば封止形成層中の吸湿性フィラー量を増大させると、前記封止形成層から形成される、素子の封止層の透明性が低下する。そのため、従来の封止用シートを用いるシート封止では、透明性を維持しながら、ダム-フィル封止と同等の水分遮断性を達成することは困難である。
 ダム-フィル封止では、素子の周りのダム部を形成するダム材として吸湿性の高い材料を使用し、素子を覆うフィル部を形成するフィル材として、吸湿性は低いが、透明性の高い材料を使用することによって、フィル部の高い透明性を維持しながら、封止層全体で優れた水分遮断性を達成することができる。しかし、ダム-フィル封止では、シート封止に比べて、封止層の形成に手間がかかる。
 本発明は上記のような事情に着目してなされたものであって、その目的は、電子機器の素子を被覆する部分は透明性が高く、且つ水分遮断性に優れた封止層を、ダム-フィル封止よりも簡便に形成することができる封止用シートを提供することにある。
 上記目的を達成し得る本発明は、以下の通りである。
 [1] 封止形成層を含む封止用シートであって、
 封止形成層が、透明部、および透明部の吸水率よりも大きい吸水率を有する吸湿部を含み、
 封止形成層が、透明部から形成される封止部を含み、
 吸湿部が、封止部の外周を囲んでおり、並びに
 封止部の波長450nmでの全光線透過率が80%以上である封止用シート。
 [2] 吸湿部の吸水率が、5質量%以上である前記[1]に記載の封止用シート。
 [3] 封止部の厚さが、5~100μmである前記[1]または[2]に記載の封止用シート。
 [4] 吸湿部の幅が、0.25~30mmである前記[1]~[3]のいずれか一つに記載の封止用シート。
 [5] さらに支持体を含む前記[1]~[4]のいずれか一つに記載の封止用シート。
 本発明はさらに以下の態様も含む。
 [6] 封止形成層を含む封止用シートであって、
 封止形成層が、透明部および吸湿部を含み、
 封止形成層が、透明部から形成される封止部を含み、
 吸湿部が、封止部の外周を囲んでおり、
 透明部が吸湿性フィラーを含んでいてもよく、吸湿部が吸湿性フィラーを含み、並びに
 吸湿部の吸湿性フィラーの含有量が、透明部の吸湿性フィラーの含有量よりも大きい封止用シート。
 [7] 吸湿部中の吸湿性フィラーの含有量が、吸湿部の合計100質量%あたり10~80質量%であり、および透明部中の吸湿性フィラーの含有量が、透明部の合計100質量%あたり0質量%以上70質量%未満である前記[6]に記載の封止用シート。
 [8] 封止部の波長450nmでの全光線透過率が80%以上である前記[6]または[7]に記載の封止用シート。
 [9] 封止部の厚さが、5~100μmである前記[6]~[8]のいずれか一つに記載の封止用シート。
 [10] 吸湿部の幅が、0.25~30mmである前記[6]~[9]のいずれか一つに記載の封止用シート。
 [11] さらに支持体を含む前記[6]~[10]のいずれか一つに記載の封止用シート。
 本発明の封止用シートを用いれば、素子を被覆する部分は透明性が高く、且つ水分遮断性に優れた封止層を、ダム-フィル封止に比べて簡便に形成することができる。
本発明の一態様における封止形成層の主面を示す概略図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の一態様における封止形成層の概略断面図である。 本発明の封止用シートの製造方法の一態様を説明するための概略図である。
 本発明は、封止形成層を含む封止用シートに関するものである。本発明において「封止形成層」とは、電子機器の素子の封止層を形成するために用いられる層を意味し、「封止用シート」とは、封止形成層を含むシート、言い換えると、素子の封止層を形成するために用いられるシートを意味する。本発明の封止用シートは、封止形成層と素子とが接するように本発明の封止用シートを積層し、封止形成層から素子の封止層を形成する方法に用いられることが好ましい。封止用シートは、素子を保護するために形成された有機層および/または無機層から構成される封止膜を介して素子と接してもよい。素子は、好ましくは有機EL素子、太陽電池素子等の水分に弱い素子である。
 本発明は、封止形成層を含む封止用シートであって、封止形成層が、透明部、および透明部の吸水率よりも大きい吸水率を有する吸湿部を含み、封止形成層が、透明部から形成される封止部を含み、吸湿部が、封止部の外周を囲んでおり、並びに封止部の波長450nmでの全光線透過率が80%以上であることを特徴とする封止用シートを提供する。また、本発明は、封止形成層を含む封止用シートであって、封止形成層が、透明部および吸湿部を含み、封止形成層が、透明部から形成される封止部を含み、吸湿部が、封止部の外周を囲んでおり、透明部が吸湿性フィラーを含んでいてもよく、吸湿部が吸湿性フィラーを含み、並びに吸湿部の吸湿性フィラーの含有量が、透明部の吸湿性フィラーの含有量よりも大きいことを特徴とする封止用シートを提供する。
 本発明の封止用シートでは、その封止部が、素子を覆う封止層の部分に対応する。本発明の一態様では、封止部が透明部から形成され、その波長450nmでの全光線透過率が80%以上である。前記全光線透過率は、好ましくは85%以上、より好ましくは90%以上である。
 前記全光線透過率は、シングルビーム法(JIS K7375)に準拠して測定することができる。装置としては、φ80mm積分球を装着したファイバー式分光光度計(大塚電子社製「MCPD-7700」、形式311C、外部光源ユニット:ハロゲンランプMC-2564(24V、150W仕様))が挙げられる。
 以下、図面を用いて本発明の各態様を順に説明するが、本発明はこれら態様に限定されない。また、後述する好ましい態様、数値範囲等は、「図1」等の限定が記載されていない場合、本発明における好ましい態様、数値範囲等を意味する。
 図1は、本発明の一態様における封止形成層の主面を示す概略図である。図1の封止形成層1では、吸湿部3が透明部2の外周の全てを囲んでいる。この吸湿部3で囲まれた透明部2が封止部を形成する。
 素子の封止層では、主に、水分が封止層の端部を通って面内方向(厚さ方向に垂直な方向)に移動して素子に到達すると推測される。そのため、吸水率が大きい吸湿部が封止部の外周を囲んでいる本発明の封止用シートを用いて、素子の封止層を形成すれば、面内方向から移動してきた水分が吸湿部で捕捉されることによって、素子への水分の侵入が遮断され、優れた水分遮断性が達成されると推測される。但し、本発明はこのような推測メカニズムに限定されない。
 吸湿部の吸水率は、水分遮断性の観点から、好ましくは5質量%以上、より好ましくは6質量%以上、さらに好ましくは7質量%以上である。吸湿部の吸水率は高ければ、高いほど望ましいが、接着性の長期信頼性を担保する観点から、吸湿部の吸水率は、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。
 透明部および吸湿部の吸水率は、40mm角の大きさの透明部または吸湿部を無アルカリガラスに固定し、130℃で30分乾燥させて調製した試験片を用いて、JIS K7209に準拠して算出することができる。具体的には乾燥した試験片の初期重量と、該試験片を温度85℃および湿度85%RHの環境に24時間保管した後の吸湿後の重量とから、吸水率を算出することができる。より詳しくは、後述の実施例欄に記載するような方法によって、吸水率を算出することができる。
 本発明では吸湿部によって優れた水分遮断性が達成される。そのため水分遮断性の観点からは、透明部の吸水率に特に限定はない。しかし、水分遮断性を高めるために、例えば透明部の吸湿性フィラー量を増大させると、透明部およびそれから形成される封止部の透明性が低下する。そのため透明性の観点から、透明部の吸水率は、好ましくは0%以上10%未満、より好ましくは0%以上8%未満、さらに好ましくは0%以上5%未満、特に好ましくは0%以上3%未満、最も好ましくは0%以上1%未満である。
 図1では、封止形成層の主面における、吸湿部3で囲まれた封止部の形状が略正方形である。しかし、本発明において、封止形成層の主面における封止部の形状に特に限定はなく、該形状は、長方形、円形、楕円形等であってもよい。
 図1では、透明部2から形成される封止部の外周の全てが吸湿部3で囲まれている。しかし、本発明では、透明部から形成される封止部の外周を囲む吸湿部には、本発明の効果(水分遮断性)が損なわれない範囲で、一部、欠落部分が存在していてもよい。吸湿部は、封止部の外周の、好ましくは90~100%、より好ましくは95~100%を囲んでいる。ここで前記割合(%)は、外周の長さを基準とする値である。吸湿部が封止部の外周の全てを囲んでいることが最も好ましい。なお、本明細書において記号「~」を用いて記載される数値範囲は、「~」の両端(上限および下限)の数値を含む。例えば「90~100%」は、「90%以上100%以下」を表す。
 図1において、W3が吸湿部3の幅を示す。本発明において「吸湿部の幅」とは、封止形成層の主面または該主面と平行な面における吸湿部の幅を意味する。吸湿部の幅は、好ましくは0.25~30mm、より好ましくは0.50~20mm、さらに好ましくは0.50~10mmである。
 図2は、図1のA-A’線断面図に対応する、本発明の一態様における封止形成層の概略断面図である。但し、図1および図2では縮尺を統一していない。なお、図3等の概略断面図の断面方向は、図2の断面方向と同様である。図2では、吸湿部3で囲まれた透明部2が封止部を形成する。図2において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示す。
 本発明において、封止形成層の少なくとも片面では、吸湿部が突出していないことが好ましい。以下、「封止形成層の吸湿部が突出していない表面」の符号として「S1」を使用し、「封止形成層の吸湿部が突出している表面」の符号として「S2」を使用する。ここで、図2に示す本発明の一態様では、封止形成層の両面が、それぞれ、吸湿部3が突出していない表面S1である。封止形成層の吸湿部が突出していない表面を素子と接するように、本発明の封止用シートを積層させることによって、素子を良好に封止することができる。
 透明部から形成される封止部の厚さは、好ましくは5~100μm、より好ましくは5~75μm、さらに好ましくは5~50μmである。また、吸湿部の厚さは、水分遮断性等の観点から、好ましくは5~100μm、より好ましくは5~75μm、さらに好ましくは5~50μmである。
 図3は、本発明の一態様における封止形成層の概略断面図である。図3では、吸湿部3で囲まれた透明部2(即ち、図3の中央部分の透明部2)が封止部を形成する。図3において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示す。この図3に示す本発明の一態様では、図2に示す本発明の一態様と異なり、吸湿部3の外側にも透明部2が存在する。この図3に示すように、封止形成層では、吸湿部の内側だけでなく、その外側にも透明部が存在していてもよい。言い換えると、封止形成層は、吸湿部で囲まれた、封止部を形成する透明部に加えて、吸湿部の外側の、封止部を形成しない透明部を含んでいてもよい。
 図4は、本発明の一態様における封止形成層の概略断面図である。図4では、吸湿部3で囲まれた透明部2が封止部を形成する。図4において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示し、d3が封止形成層の吸湿部が突出していない一つの表面S1と吸湿部3との距離を示す。この図4に示す本発明の一態様では、図2に示す本発明の一態様と異なり、封止形成層1の片面では、吸湿部3が露出していない。この図4に示すように、本発明では、封止形成層は、吸湿部が露出していない片面を有していてもよい。
 図5は、本発明の一態様における封止形成層の概略断面図である。図5では、吸湿部3で囲まれた透明部2(即ち、図5の中央部分の透明部2)が封止部を形成する。図5において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示し、d3が封止形成層の吸湿部が突出していない一つの表面S1と吸湿部3との距離を示す。この図5に示す本発明の一態様では、図4に示す本発明の一態様と異なり、吸湿部3の外側にも透明部2が存在する。
 図6は、本発明の一態様における封止形成層の概略断面図である。図6では、吸湿部3で囲まれた透明部2が封止部を形成する。図6において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示し、d3が封止形成層の吸湿部が突出していない一つの表面S1と吸湿部3との距離を示し、D3が封止形成層の吸湿部が突出していない一つの表面S1と吸湿部3との距離を示す(但し、d3≧D3)。この図6に示す本発明の一態様では、図2に示す本発明の一態様と異なり、封止形成層1の両面で、吸湿部3が露出していない。この図6に示すように、本発明では、封止形成層は、吸湿部が露出していない両面を有していてもよい。
 図7は、本発明の一態様における封止形成層の概略断面図である。図7では、吸湿部3で囲まれた透明部2(即ち、図7の中央部分の透明部2)が封止部を形成する。図7において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示し、d3が封止形成層の吸湿部が突出していない一つの表面S1と吸湿部3との距離を示し、D3が封止形成層の吸湿部が突出していない一つの表面S1と吸湿部3との距離を示す(但し、d3≧D3)。この図7に示す本発明の一態様では、図6に示す本発明の一態様と異なり、吸湿部3の外側にも透明部2が存在する。
 図8は、本発明の一態様における封止形成層の概略断面図である。図8では、吸湿部3で囲まれた透明部2が封止部を形成する。図8において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示す。この図8に示す本発明の一態様では、図2に示す本発明の一態様と異なり、吸湿部の厚さT3が透湿部の厚さTよりも大きく、封止形成層が、吸湿部3が突出していない表面S1および吸湿部3が突出している表面S2を有する。この図8に示すように、封止形成層は、吸湿部が突出している表面を有していてもよい。
 図9は、本発明の一態様における封止形成層の概略断面図である。図9では、吸湿部3で囲まれた透明部2が封止部を形成する。図8において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示す。この図9に示す本発明の一態様では、図8に示す本発明の一態様と異なり、吸湿部3の外側にも透明部2が存在する。
 図10は、本発明の一態様における封止形成層の概略断面図である。図10では、吸湿部3で囲まれた透明部2が封止部を形成する。図10において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示し、D3が封止形成層の吸湿部が突出していない表面S1と吸湿部3との距離を示す。この図10に示す本発明の一態様では、図8に示す本発明の一態様と異なり、吸湿部3が突出していない表面S1において吸湿部3が露出していない。
 図11は、本発明の一態様における封止形成層の概略断面図である。図11では、吸湿部3で囲まれた透明部2が封止部を形成する。図11において、W3が吸湿部3の幅を示し、Tが封止部の厚さを示し、T3が吸湿部3の厚さを示し、D3が封止形成層の吸湿部が突出していない表面S1と吸湿部3との距離を示す。この図11に示す本発明の一態様では、図10に示す本発明の一態様と異なり、吸湿部3の外側にも透明部2が存在する。
 上述したように、素子の封止層では、主に、水分が封止層の端部を通って面内方向(厚さ方向に垂直な方向)に移動して素子に到達すると推測される。この面内方向の水分を吸湿部で有効に捕捉するために、封止形成層の吸湿部が突出していない表面において、吸湿部が露出していること(例えば、図2~5、8および9に示す態様)が好ましい。このような態様の封止形成層を含む封止用シートを、吸湿部が突出しておらず、且つ吸湿部が露出している封止形成層の表面と素子とが接するように積層し、前記封止形成層から素子の封止層を形成することによって、水分遮断性に優れた封止層を形成することができる。
 封止層の面内方向を移動する水分を捕捉し、水分遮断性に優れた封止層を形成するために、封止形成層の吸湿部が突出していない表面と吸湿部との最短距離は、好ましくは0~50μm、より好ましくは0~30μm、さらに好ましくは0~25μmである。ここで、封止形成層の吸湿部が突出していない表面と吸湿部との最短距離とは、図6、7、10および11の態様ではD3を意味する。図2~5、8および9の態様では、封止形成層は、吸湿部が突出しておらず、且つ吸湿部が露出している片面を有するため、前記最短距離は0である。
 透明部は、あらゆる材料(例えば、樹脂組成物、ゴム組成物)から形成することができる。樹脂としては、例えば、ポリオレフィン系樹脂、熱硬化性樹脂が挙げられる。ポリオレフィン系樹脂としては、公知の樹脂(例えば、特許文献1または2に記載の樹脂)を使用することができる。熱硬化性樹脂としては、公知の樹脂(例えば、特許文献3に記載の樹脂)を使用することができる。透明部を形成するための材料として樹脂組成物を使用することが、優れた透明性を達成するために好ましい。樹脂としては、ポリオレフィン系樹脂が好ましい。
 ゴムとしては、公知のゴム(例えば、国際公開第2019/189723号に記載のポリオレフィン系ゴム)を使用することができる。ポリオレフィン系ゴムとしては、イソブテン-イソプレン共重合体が好ましい。イソブテン-イソプレン共重合体の具体例としては、JSR社製「BUTYL 065」「BUTYL 268」(ブチルゴム)、JSR社製「BROMOBUTYL 222」(臭素化ブチルゴム)、星光PMC社製「ER866」(グリシジルメタクリレート変性ブチルゴム)、星光PMC社製「ER850」(グリシジルメタクリレート変性ブチルゴム、星光PMC社製「ER661」(無水マレイン酸変性ブチルゴム)、星光PMC社製「ER641」(無水マレイン酸変性ブチルゴム)等が挙げられる。
 吸湿部は、あらゆる材料(例えば、樹脂組成物、ゴム組成物)から形成することができる。但し、吸湿部およびそれを形成するための材料は、優れた水分遮断性を達成するために、吸湿性フィラーを含有することが好ましい。他方、透明部およびそれを形成するための材料は、吸湿性フィラーを含有していてもよく、含有していなくてもよい。吸湿性フィラーとしては、公知のフィラー(例えば、特表2017-505716号公報に記載のゲッター材料)を使用することができる。
 以下、透明部または吸湿部を形成するための材料の一例を説明するが、本発明はこれに限定されない。透明部および吸湿部のいずれも、例えば、ポリオレフィン系樹脂を含む組成物から形成することができる。
 ポリオレフィン系樹脂としては、オレフィンモノマー由来の骨格を有するものであれば特に限定されない。ポリオレフィン系樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、ポリイソブチレン系樹脂が挙げられる。ポリオレフィン系樹脂は、単独重合体でもよく、ランダム共重合体、ブロック共重合体等の共重合体でもよい。共重合体としては、2種以上のオレフィンの共重合体、およびオレフィンと非共役ジエン、スチレン等のオレフィン以外のモノマーとの共重合体が挙げられる。好ましい共重合体の例として、エチレン-非共役ジエン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン共重合体、プロピレン-ブテン共重合体、プロピレン-ブテン-非共役ジエン共重合体、スチレン-イソブチレン共重合体、スチレン-イソブチレン-スチレン共重合体等が挙げられる。
 ポリオレフィン系樹脂は、接着性、接着湿熱耐性等の優れた物性を付与する観点から、酸無水物基(即ち、カルボニルオキシカルボニル基(-CO-O-CO-))を有するポリオレフィン系樹脂および/またはエポキシ基を有するポリオレフィン系樹脂を含むことが好ましい。酸無水物基を有するポリオレフィン系樹脂は、例えば、酸無水物基を有する不飽和化合物で、ポリオレフィン系樹脂をラジカル反応条件下にてグラフト変性することで得られる。また、酸無水物基を有する不飽和化合物を、オレフィン等とともにラジカル共重合するようにしてもよい。同様に、エポキシ基を有するポリオレフィン系樹脂は、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、アリルグリシジルエーテル等のエポキシ基を有する不飽和化合物で、ポリオレフィン系樹脂をラジカル反応条件下にてグラフト変性することで得られる。また、エポキシ基を有する不飽和化合物を、オレフィン等とともにラジカル共重合するようにしてもよい。ポリオレフィン系樹脂は、1種のみを使用してもよく、2種以上を併用してもよい。例えば、酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂を併用してもよい。
 酸無水物基を有するポリオレフィン系樹脂中の酸無水物基の濃度は、0.01~10mmol/gが好ましく、0.05~5mmol/gがより好ましい。酸無水物基の濃度はJIS K 2501の記載に従い、樹脂1g中に存在する酸を中和するのに必要な水酸化カリウムのmg数として定義される酸価の値より得られる。また、ポリオレフィン系樹脂中の酸無水物基を有するポリオレフィン系樹脂の量は、好ましくは0~70質量%、より好ましくは5~60質量%、さらに好ましくは10~50質量%である。
 また、エポキシ基を有するポリオレフィン系樹脂中のエポキシ基の濃度は、0.01~10mmol/gが好ましく、0.05~5mmol/gがより好ましい。エポキシ基濃度はJIS K 7236に基づいて得られるエポキシ当量から求められる。また、ポリオレフィン系樹脂中のエポキシ基を有するポリオレフィン系樹脂の量は、好ましくは0~70質量%、より好ましくは5~60質量%、さらに好ましくは10~50質量%である。
 ポリオレフィン系樹脂は、耐透湿性等の優れた物性を付与する観点から、特に酸無水物基を有するポリオレフィン系樹脂およびエポキシ基を有するポリオレフィン系樹脂の両方を含むことが好ましい。このようなポリオレフィン系樹脂は、酸無水物基とエポキシ基を加熱により反応させ架橋構造を形成し、耐透湿性等に優れた、素子の封止層を形成することができる。酸無水物基を有するポリオレフィン系樹脂とエポキシ基を有するポリオレフィン系樹脂の割合は適切な架橋構造が形成できれば特に限定されないが、エポキシ基と酸無水物基とのモル比(エポキシ基:酸無水物基)は、好ましくは100:10~100:500、より好ましくは100:25~100:475、特に好ましくは100:40~100:450である。
 ポリオレフィン系樹脂の数平均分子量は、特に限定はされないが、樹脂組成物のワニスの良好な塗工性と樹脂組成物における他の成分との良好な相溶性をもたらすという観点から、1,000,000以下が好ましく、750,000以下がより好ましく、500,000以下がより一層好ましく、400,000以下がさらに好ましく、300,000以下がさらに一層好ましく、200,000以下が特に好ましく、150,000以下が最も好ましい。一方、樹脂組成物のワニスの塗工時のハジキを防止し、形成される樹脂組成物層の耐透湿性を発現させ、機械強度を向上させるという観点から、この数平均分子量は、1,000以上が好ましく、3,000以上がより好ましく、5,000以上がより一層好ましく、10,000以上がさらに好ましく、30,000以上がさらに一層好ましく、50,000以上が特に好ましい。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による数平均分子量は、具体的には、測定装置として社島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてトルエン等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 ポリオレフィン系樹脂は、ワニスの増粘による流動性の低下を抑制する観点から非晶性であるのが好ましい。ここで、非晶性とは、ポリオレフィン系樹脂が明確な融点を有しないことを意味し、例えば、ポリオレフィン系樹脂のDSC(示差走査熱量測定)で融点を測定した場合に明確なピークが観察されないものを使用することができる。
 ポリオレフィン系樹脂を含む組成物を用いて透明部を形成する場合、密着性を確保する観点から、ポリオレフィン系樹脂の含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは15~99質量%、より好ましくは20~98質量%、さらに好ましくは25~96質量%である。ポリオレフィン系樹脂を含む組成物を用いて吸湿部を形成する場合、ポリオレフィン系樹脂の含有量は、密着性およびフィラー分散性の観点から、前記組成物の不揮発分の合計100質量%あたり、好ましくは15~60質量%、より好ましくは20~55質量%、さらに好ましくは25~50質量%である。
 透明部がポリオレフィン系樹脂を含む場合、密着性を確保する観点から、ポリオレフィン系樹脂の含有量は、透明部の合計100質量%あたり、好ましくは15~99質量%、より好ましくは20~98質量%、さらに好ましくは25~96質量%である。吸湿部がポリオレフィン系樹脂を含む場合、ポリオレフィン系樹脂の含有量は、密着性およびフィラー分散性の観点から、吸湿部の合計100質量%あたり、好ましくは15~60質量%、より好ましくは20~55質量%、さらに好ましくは25~50質量%である。
 次に、ポリオレフィン系樹脂の具体例を説明する。ポリイソブチレン樹脂の具体例としては、BASF社製「オパノールB100」(粘度平均分子量:1,110,000)、BASF社製「B50SF」(粘度平均分子量:400,000)等が挙げられる。
 ポリブテン系樹脂の具体例としては、ENEOS社製「HV-1900」(ポリブテン、数平均分子量:2,900)、東邦化学工業社製「HV-300M」(無水マレイン酸変性液状ポリブテン(「HV-300」(数平均分子量:1,400)の変性品)、数平均分子量:2,100、酸無水物基を構成するカルボキシ基の数:3.2個/1分子、酸価:43.4mgKOH/g、酸無水物基濃度:0.77mmol/g)等が挙げられる。
 スチレン-イソブチレン共重合体の具体例としては、カネカ社製「SIBSTAR T102」(スチレン-イソブチレン-スチレンブロック共重合体、数平均分子量:100,000、スチレン含量:30質量%)、星光PMC社製「T-YP757B」(無水マレイン酸変性スチレン-イソブチレン-スチレンブロック共重合体、酸無水物基濃度:0.464mmol/g、数平均分子量:100,000)、星光PMC社製「T-YP766」(グリシジルメタクリレート変性スチレン-イソブチレン-スチレンブロック共重合体、エポキシ基濃度:0.638mmol/g、数平均分子量:100,000)、星光PMC社製「T-YP8920」(無水マレイン酸変性スチレン-イソブチレン-スチレン共重合体、酸無水物基濃度:0.464mmol/g、数平均分子量:35,800)、星光PMC社製「T-YP8930」(グリシジルメタクリレート変性スチレン-イソブチレン-スチレン共重合体、エポキシ基濃度:0.638mmol/g、数平均分子量:48,700)等が挙げられる。
 ポリエチレン系樹脂またはポリプロピレン系樹脂の具体例としては、三井化学社製「EPT X-3012P」(エチレン-プロピレン-5-エチリデン-2-ノルボルネン共重合体、三井化学社製「EPT1070」(エチレン-プロピレン-ジシクロペンタジエン共重合体)、三井化学社製「タフマーA4085」(エチレン-ブテン共重合体)等が挙げられる。
 プロピレン-ブテン系共重合体の具体例としては、星光PMC社製「T-YP341」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)、星光PMC社製「T-YP279」(無水マレイン酸変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:35,000)、星光PMC社製「T-YP276」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:57,000)、星光PMC社製「T-YP312」(無水マレイン酸変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:60,900)、星光PMC社製「T-YP313」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)、星光PMC社製「T-YP429」(無水マレイン酸変性エチレン-メチルメタクリレート共重合体、エチレン単位とメチルメタクリレート単位の合計100質量%あたりのメチルメタクリレート単位の量:32質量%、酸無水物基濃度:0.46mmol/g、数平均分子量:2,300)、星光PMC社製「T-YP430」(無水マレイン酸変性エチレン-メチルメタクリレート共重合体、エチレン単位とメチルメタクリレート単位の合計100質量%あたりのメチルメタクリレート単位の量:32質量%、酸無水物基濃度:1.18mmol/g、数平均分子量:4,500)、星光PMC社製「T-YP431」(グリシジルメタクリレート変性エチレン-メチルメタクリレート共重合体、エポキシ基濃度:0.64mmol/g、数平均分子量:2,400)、星光PMC社製「T-YP432」(グリシジルメタクリレート変性エチレン-メチルメタクリレート共重合体、エポキシ基濃度:1.63mmol/g、数平均分子量:3,100)等が挙げられる。
 吸湿性フィラーとしては、公知のものを使用することができる。吸湿性フィラーとしては、例えば、酸化カルシウム、半焼成ハイドロタルサイト、焼成ハイドロタルサイト、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化バリウム、モレキュラーシーブ等が挙げられる。吸湿性フィラーは、1種のみを使用してもよく、2種以上を併用してもよい。
 吸湿部を形成する樹脂組成物中の吸湿性フィラーの含有量は、優れた水分遮断性と接着性の長期信頼性の両立の観点から、前記組成物の不揮発分の合計100質量%あたり、好ましくは10~80質量%、より好ましくは20~75質量%、さらに好ましくは30~70質量%である。
 吸湿部中の吸湿性フィラーの含有量は、優れた水分遮断性と接着性の長期信頼性の両立の観点から、吸湿部の合計100質量%あたり、好ましくは10~80質量%、より好ましくは20~75質量%、さらに好ましくは30~70質量%である。
 透明部を形成する樹脂組成物中の吸湿性フィラーの含有量は、透明性の観点から、前記組成物の不揮発分の合計100質量%あたり、好ましくは0質量%以上70質量%未満、より好ましくは0質量%以上60質量%未満、さらに好ましくは0質量%以上50質量%未満である。
 透明部中の吸湿性フィラーの含有量は、透明性の観点から、透明部の合計100質量%あたり、好ましくは0質量%以上70質量%未満、より好ましくは0質量%以上60質量%未満、さらに好ましくは0質量%以上50質量%未満である。
 本発明の一態様において、透明部を形成する樹脂組成物は、好ましくは吸湿性フィラーを含む。この態様において、吸湿性フィラーの含有量は、透明性の観点から、前記組成物の不揮発分の合計100質量%あたり、好ましくは1質量%以上70質量%未満、より好ましくは2質量%以上65質量%未満、さらに好ましくは5質量%以上60質量%未満である。
 本発明の一態様において、透明部は、好ましくは吸湿性フィラーを含む。この態様において、吸湿性フィラーの含有量は、透明性の観点から、透明部の合計100質量%あたり、好ましくは1質量%以上70質量%未満、より好ましくは2質量%以上65質量%未満、さらに好ましくは3質量%以上60質量%未満である。
 吸湿部およびそれを形成するための材料(例えば、上述のポリオレフィン系樹脂を含む組成物)は、優れた水分遮断性の観点から、酸化カルシウムを含むことが好ましい。
 酸化カルシウムは、市販品を使用することができる。市販品としては、例えば、井上石灰工業社製「QC-X」;三共製粉社製「モイストップ#10」;吉澤石灰工業社製「HAL-G」、「HAL-J」、「HAL-F」;Filgen社製「CaO Nano Powder」等が挙げられる。
 酸化カルシウムを含む混合物を、吸湿性フィラーとして用いてもよい。そのような混合物としては、例えば、焼成ドロマイト(酸化カルシウムおよび酸化マグネシウムを含む混合物)が挙げられる。焼成ドロマイトは、例えば、吉澤石灰工業社等から入手することができる。
 酸化カルシウムの粒子径および酸化カルシウムを含む混合物(以下「酸化カルシウム等」と記載することがある)の粒子径は、封止工程で酸化カルシウム等が素子を損傷することを防止するため、および酸化カルシウム等とポリマーとの界面結合力を高めるために、それぞれ、好ましくは0.03~10μm、より好ましくは0.05~5μm、さらに好ましくは0.1~3μmである。これらの粒子径は、レーザー回折散乱式粒度分布測定(JIS Z 8825)により粒度分布を体積基準で作成したときの該粒度分布のメジアン径である。
 酸化カルシウムを含む組成物を用いて吸湿部を形成する場合、優れた水分遮断性の観点から、酸化カルシウムの含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは10~80質量%、より好ましくは20~75質量%、さらに好ましくは30~70質量%である。
 吸湿部が酸化カルシウムを含む場合、優れた水分遮断性の観点から、酸化カルシウムの含有量は、吸湿部の合計100質量%あたり、好ましくは10~80質量%、より好ましくは20~75質量%、さらに好ましくは30~70質量%である。
 半焼成ハイドロタルサイトを用いれば、透明性および吸湿性のバランスに優れた透明部を形成することができる。そのため、透明部を形成するための組成物は、半焼成ハイドロタルサイトを含んでいてもよい。
 ハイドロタルサイトは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイト、および焼成ハイドロタルサイトに分類することができる。未焼成ハイドロタルサイトは、例えば、天然ハイドロタルサイト(MgAl(OH)16CO・4HO)に代表されるような層状の結晶構造を有する金属水酸化物であり、例えば、基本骨格となる層[Mg1-XAl(OH)X+と中間層[(COX/2・mHO]X-からなる。本明細書における未焼成ハイドロタルサイトは、合成ハイドロタルサイト等のハイドロタルサイト様化合物を含む概念である。ハイドロタルサイト様化合物としては、例えば、下記式(I)および下記式(II)で表されるものが挙げられる。
 [M2+ 1-x3+ (OH)x+・[(An-x/n・mHO]x-  
 (I)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、M3+はAl3+、Fe3+などの3価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを表し、0<x<1であり、0≦m<1であり、nは正の数である。)
 式(I)中、M2+は、好ましくはMg2+であり、M3+は、好ましくはAl3+であり、An-は、好ましくはCO 2-である。
 M2+ Al(OH)2x+6-nz(An-・mHO   (II)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを表し、xは2以上の正の数であり、zは2以下の正の数であり、mは正の数であり、nは正の数である。)
 式(II)中、M2+は、好ましくはMg2+であり、An-は、好ましくはCO 2-である。
 半焼成ハイドロタルサイトは、未焼成ハイドロタルサイトを焼成して得られる、層間水の量が減少または消失した層状の結晶構造を有する金属水酸化物をいう。「層間水」とは、組成式を用いて説明すれば、上述した未焼成の天然ハイドロタルサイトおよびハイドロタルサイト様化合物の組成式に記載の「HO」を指す。
 一方、焼成ハイドロタルサイトは、未焼成ハイドロタルサイトまたは半焼成ハイドロタルサイトを焼成して得られ、層間水だけでなく、水酸基も消失した、アモルファス構造を有する金属酸化物をいう。
 未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、飽和吸水率により区別することができる。半焼成ハイドロタルサイトの飽和吸水率は、1質量%以上20質量%未満である。一方、未焼成ハイドロタルサイトの飽和吸水率は、1質量%未満であり、焼成ハイドロタルサイトの飽和吸水率は、20質量%以上である。
 本明細書における「飽和吸水率」とは、測定試料(例えば、半焼成ハイドロタルサイト)を天秤にて1.5g量り取り、初期質量を測定した後、大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製SH-222)に200時間静置した場合の、初期質量に対する質量増加率を言い、下記式(i):
 飽和吸水率(質量%)
=100×(吸湿後の質量-初期質量)/初期質量   (i)
で求めることができる。
 半焼成ハイドロタルサイトの飽和吸水率は、好ましくは3質量%以上20質量%未満、より好ましくは5質量%以上20質量%未満である。
 また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、熱重量分析で測定される熱重量減少率により区別することができる。半焼成ハイドロタルサイトの280℃における熱重量減少率は15質量%未満であり、かつその380℃における熱重量減少率は12質量%以上である。一方、未焼成ハイドロタルサイトの280℃における熱重量減少率は、15質量%以上であり、焼成ハイドロタルサイトの380℃における熱重量減少率は、12質量%未満である。
 熱重量分析は、日立ハイテクサイエンス社製TG/DTA EXSTAR6300を用いて、アルミニウム製のサンプルパンにハイドロタルサイトを5mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下、30℃から550℃まで昇温速度10℃/分の条件で行うことができる。熱重量減少率は、下記式(ii):
 熱重量減少率(質量%)
=100×(加熱前の質量-所定温度に達した時の質量)/加熱前の質量   (ii)
で求めることができる。
 また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、粉末X線回折で測定されるピークおよび相対強度比により区別することができる。半焼成ハイドロタルサイトは、粉末X線回折により2θが8~18°付近に二つにスプリットしたピーク、または二つのピークの合成によりショルダーを有するピークを示し、低角側に現れるピークまたはショルダーの回折強度(=低角側回折強度)と、高角側に現れるピークまたはショルダーの回折強度(=高角側回折強度)の相対強度比(低角側回折強度/高角側回折強度)は、0.001~1,000である。一方、未焼成ハイドロタルサイトは8~18°付近で一つのピークしか有しないか、または低角側に現れるピークまたはショルダーと高角側に現れるピークまたはショルダーの回折強度の相対強度比が前述の範囲外となる。焼成ハイドロタルサイトは8°~18°の領域に特徴的ピークを有さず、43°に特徴的なピークを有する。粉末X線回折測定は、粉末X線回折装置(パナリティカル(PANalytical)社製、エンピリアン(Empyrean))により、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131~79.9711°の条件で行った。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行うことができる。
 半焼成ハイドロタルサイトのBET比表面積は、1~250m/gが好ましく、5~200m/gがより好ましい。これらのBET比表面積は、BET法に従って、比表面積測定装置(Macsorb HM Model 1210 マウンテック社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて算出することができる。
 半焼成ハイドロタルサイトの粒子径は、1~1,000nmが好ましく、10~800nmがより好ましい。これらの粒子径は、レーザー回折散乱式粒度分布測定(JIS Z 8825)により粒度分布を体積基準で作成したときの該粒度分布のメジアン径である。
 半焼成ハイドロタルサイトは、表面処理剤で表面処理したものを用いることができる。表面処理剤に特に限定はなく、公知のもの(高級脂肪酸、アルキルシラン類、シランカップリング剤等)を使用することができ、なかでも、高級脂肪酸、アルキルシラン類が好適である。表面処理剤は、1種のみを使用してもよく、2種以上を併用してもよい。
 透明部を形成する組成物は、半焼成ハイドロタルサイトを含んでいてもよく、透明性および水分遮断性のバランスの観点から、半焼成ハイドロタルサイトの含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは0質量%以上70質量%未満、より好ましくは0質量%以上60質量%未満、さらに好ましくは0質量%以上50質量%未満である。
 透明部は、半焼成ハイドロタルサイトを含んでいてもよく、透明性および水分遮断性のバランスの観点から、半焼成ハイドロタルサイトの含有量は、透明部の合計100質量%あたり、好ましくは0質量%以70質量%未満、より好ましくは0質量%以上60質量%未満、さらに好ましくは0質量%以50質量%未満である。
 本発明の一態様において、透明部を形成する組成物は、好ましくは半焼成ハイドロタルサイトを含む。この態様において、透明性および水分遮断性のバランスの観点から、半焼成ハイドロタルサイトの含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは1質量%以上70質量%未満、より好ましくは2質量%以上65質量%未満、さらに好ましくは5質量%以上60質量%未満である。
 本発明の一態様において、透明部は、好ましくは半焼成ハイドロタルサイトを含む。この態様において、透明性および水分遮断性のバランスの観点から、半焼成ハイドロタルサイトの含有量は、透明部の合計100質量%あたり、好ましくは1質量%以上70質量%未満、より好ましくは2質量%以上65質量%未満、さらに好ましくは5質量%以上60質量%未満である。
 透明部または吸湿部を形成するための組成物は、上述のポリオレフィン系樹脂および吸湿性フィラー以外の成分(以下「他の成分」と記載することがある)を含んでいてもよい。他の成分としては、例えば、粘着付与剤;硬化促進剤;酸化防止剤;可塑剤;吸湿性フィラー以外の無機または有機充填材(例えば、ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等);オルベン、ベントン等の増粘剤;消泡剤またはレベリング剤;等を挙げることができる。他の成分は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。
 粘着付与剤としては、例えば、テルペン樹脂、変性テルペン樹脂(水素添加テルペン樹脂、テルペンフェノール共重合樹脂、芳香族変性テルペン樹脂等)、クマロン樹脂、インデン樹脂、石油樹脂(脂肪族系石油樹脂、水添脂環式石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、脂環族系石油樹脂、ジシクロペンタジエン系石油樹脂、およびこれらの水素化物等)が好ましく使用される。
 粘着付与剤として使用できる市販品としては、例えば、以下のものが挙げられる。テルペン樹脂として、YSレジンPX、YSレジンPXN(いずれもヤスハラケミカル社製)等が挙げられ、芳香族変性テルペン樹脂として、YSレジンTO、TRシリーズ(いずれもヤスハラケミカル社製)等が挙げられ、水素添加テルペン樹脂として、クリアロンP、クリアロンM、クリアロンKシリーズ(いずれもヤスハラケミカル社製)等が挙げられ、テルペンフェノール共重合樹脂として、YSポリスター2000、ポリスターU、ポリスターT、ポリスターS、マイティエースG(いずれもヤスハラケミカル社製)等が挙げられ、水添脂環式石油樹脂として、Escorez5300シリーズ、5600シリーズ(いずれもエクソンモービル社製)等が挙げられ、芳香族系石油樹脂としてENDEX155(イーストマン社製)等が挙げられ、脂肪族芳香族共重合系石油樹脂としてQuintoneD100(日本ゼオン社製)等が挙げられ、脂環族系石油樹脂としてQuintone1325、Quintone1345(いずれも日本ゼオン社製)等が挙げられ、シクロヘキサン環含有水素化石油樹脂としてアルコンP100、アルコンP125、アルコンP140(いずれも荒川化学社製)等が挙げられ、シクロヘキサン環含有飽和炭化水素樹脂としてTFS13-030(荒川化学社製)等が挙げられ、ジシクロペンタジエン系石油樹脂の水素化物としてT-REZ HA105(ENEOS社製)等が挙げられる。
 なかでも、樹脂組成物の接着性、耐透湿性、透明性等の観点から、石油樹脂およびその水素化物が好ましい。石油樹脂としては、例えば、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、脂環族系石油樹脂等が挙げられる。なかでも、組成物の接着性、耐透湿性、相溶性等の観点から、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、脂環族系石油樹脂、およびこれらの水素化物がより好ましい。また透明性を良好にする観点から、脂環族系石油樹脂およびその水素化物が特に好ましい。脂環族系石油樹脂の水素化物の水素化率は30~99%が好ましく、40~97%がより好ましく、50~90%がさらに好ましい。水素化率が低すぎると、着色により透明性が低下する問題が生じる傾向にあり、水素化率が高すぎると生産コストが上昇する傾向となる。水素化率は水素添加前と水素添加後の芳香環の水素のH-NMRのピーク強度の比から求めることができる。脂環族系石油樹脂としては、特にシクロヘキサン環含有水素化石油樹脂、ジシクロペンタジエン系石油樹脂の水素化物が好ましい。石油樹脂およびその水素化物は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。石油樹脂およびその水素化物の数平均分子量は、それぞれ独立に、好ましくは100~2,000、より好ましくは700~1,500、さらに好ましくは500~1,000である。
 粘着付与剤の軟化点は、50~200℃が好ましく、60~180℃がより好ましく、70~160℃がさらに好ましい。なお、軟化点の測定は、JIS K2207に従い環球法により測定される。
 透明部または吸湿部を形成する組成物は、いずれも粘着付与剤を含有していてもよく、密着性および柔軟性の観点から、粘着付与剤の含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは0~50質量%、より好ましくは0~40質量%、さらに好ましくは0~30質量%である。
 透明部または吸湿部は、いずれも粘着付与剤を含有していてもよく、密着性および柔軟性の観点から、粘着付与剤の含有量は、透明部または吸湿部の合計100質量%あたり、好ましくは0~50質量%、より好ましくは0~40質量%、さらに好ましくは0~30質量%である。
 硬化促進剤としては、例えば、イミダゾール化合物、3級・4級アミン系化合物、ジメチルウレア化合物、有機ホスフィン化合物等が挙げられる。
 イミダゾール化合物としては、例えば、1H-イミダゾール、2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、2-フェニル-4,5-ビス(ヒドロキシメチル)イミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニルイミダゾール、2-ドデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。イミダゾール化合物の具体例としては、キュアゾール2MZ、2P4MZ、2E4MZ、2E4MZ-CN、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2PHZ、1B2MZ、1B2PZ、2PZ、C17Z、1.2DMZ、2P4MHZ-PW、2MZ-A、2MA-OK(いずれも四国化成工業社製)等が挙げられる。
 3級・4級アミン系化合物としては、特に制限はないが、例えば、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;DBU(1,8-ジアザビシクロ[5.4.0]ウンデセン-7)、DBN(1,5-ジアザビシクロ[4.3.0]ノネン-5)、DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-フェノールノボラック樹脂塩等のジアザビシクロ化合物;ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール(TAP)等の3級アミンまたはそれらの塩、芳香族ジメチルウレア、脂肪族ジメチルウレア等のジメチルウレア化合物;等が挙げられる。
 ジメチルウレア化合物としては、例えば、DCMU(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)、U-CAT3512T(サンアプロ社製)等の芳香族ジメチルウレア;U-CAT3503N(サンアプロ社製)等の脂肪族ジメチルウレア等が挙げられる。中でも硬化性の点から、芳香族ジメチルウレアが好ましく用いられる。
 有機ホスフィン化合物としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、トリ-tert-ブチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート、トリフェニルホスフィントリフェニルボラン等が挙げられる。有機ホスフィン化合物の具体例としては、TPP、TPP-MK、TPP-K、TTBuP-K、TPP-SCN、TPP-S(いずれも北興化学工業社製)等が挙げられる。
 硬化促進剤を含む組成物を用いて透明部または吸湿部を形成する場合、硬化促進の観点から、硬化促進剤の含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは0.0005~0.50質量%、より好ましくは0.001~0.45質量%、さらに好ましくは0.0015~0.40質量%である。
 透明部または吸湿部が硬化促進剤を含む場合、硬化促進剤の含有量は、透明部または吸湿部の合計100質量%あたり、好ましくは0.0005~0.50質量%、より好ましくは0.001~0.45質量%、さらに好ましくは0.0015~0.40質量%である。
 本発明において酸化防止剤に特に限定はなく、公知のものを使用することができる。酸化防止剤を含む組成物を用いて透明部または吸湿部を形成する場合、酸化防止の観点から、酸化防止剤の含有量は、前記組成物の不揮発分の合計100質量%あたり、好ましくは0.005~1.0質量%、より好ましくは0.01~0.9質量%、さらに好ましくは0.02~0.8質量%である。
 透明部または吸湿部が、酸化防止剤を含む場合、酸化防止の観点から、酸化防止剤の含有量は、透明部または吸湿部の合計100質量%あたり、好ましくは0.005~1.0質量%、より好ましくは0.01~0.9質量%、さらに好ましくは0.02~0.8質量%である。
 本発明の封止用シートは、さらに支持体を含んでいてもよい。即ち、本発明の封止用シートは、支持体および封止形成層を含む積層構造を有していてもよい。また、本発明の封止用シートは、さらに保護シートを含んでいてもよい。即ち、本発明の封止用シートは、封止形成層および保護シートを含む積層構造を有していてもよい。また、本発明の封止用シートは、さらに支持体および保護シートを含んでいてもよい。即ち、本発明の封止用シートは、支持体、封止形成層および保護シートをこの順に含む積層構造を有していてもよい。支持体と封止形成層との間、および封止形成層と保護シートとの間に、他の層(例えば離型層)が存在していてもよい。
 支持体および保護シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン;シクロオレフィンポリマー;ポリエチレンテレフタレート(以下「PET」と記載することがある)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;ポリイミド等のプラスチックフィルム等が挙げられる。支持体および保護シートは、いずれも単層フィルムでもよく、積層フィルムでもよい。
 支持体および保護シートとして、例えば、バリア層を有する低透湿性フィルム、またはバリア層を有する低透湿性フィルムと別のフィルムとの積層フィルムを使用することができる。バリア層としては、例えば、シリカ蒸着膜、窒化ケイ素膜、酸化ケイ素膜等の無機膜が挙げられる。バリア層は、複数の無機膜の複数層(例えば、シリカ蒸着膜)で構成されていてもよい。また、バリア層は、有機物と無機物から構成されていてもよく、有機層と無機膜の複合多層であってもよい。
 保護シートでは、封止形成層と接する面が離型処理されていることが好ましい。一方、支持体は、離型処理されていてもよく、されていなくてもよい。離型処理としては、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。
 支持体および保護シートの厚さは、特に限定されないが、封止用シートの取り扱い性等の観点から、それぞれ、好ましくは5~150μm、より好ましくは10~100μmである。なお、支持体または保護シートが積層フィルムである場合、前記厚さは、積層フィルム全体の厚さである。
 次に、図12を用いて、本発明の封止用シートの製造方法の一態様を説明する。但し、本発明は、図12に示す態様に限定されない。まず、図12(a)に示すように、支持体4、吸湿層5および保護シート6を、この順に含む積層シートを準備する。次いで、図12(b)に示すように、前記積層シートの支持体4を残したまま、前記積層シートの吸湿層5および保護シート6の中央部をくり抜き、支持体4、吸湿部3(即ち、吸湿層5の残り)および保護シート6を、この順に含む積層シートを作製する。次いで、図12(c)に示すように、透明部2および保護シート6を含む積層シートを、くり抜いた中央部にはめ込むように設置することによって、支持体4、封止形成層1(即ち、透明部2および吸湿部3を含む層)および保護シート6を、この順に含む本発明の封止用シートを製造することができる。なお、図12では、前記積層シートの支持体4を残したまま、前記積層シートの吸湿層5および保護シート6の中央部をくり抜く態様を示したが、これとは逆に、前記積層シートの保護シート6を残したまま、前記積層シートの支持体4および吸湿層5の中央部をくり抜き、その他は図12に示す態様と同様にして、本発明の封止用シートを製造することができる。
 上述の本発明の封止用シートの製造方法の一態様で使用し得る、透明部を形成するための透明層または吸湿部を形成するための吸湿層を、支持体または保護シート上に有する積層シートは、例えば、(1)上述の成分を有機溶剤に溶解または分散させて、透明部を形成するための組成物のワニスまたは吸湿部を形成するための組成物のワニスを製造し、(2)得られたワニスを支持体または保護シートに塗布して塗膜を形成し、(3)得られた塗膜から有機溶剤を除去(即ち、乾燥)することによって、製造することができる。
 ワニスの製造に使用し得る有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類;セロソルブ等のセロソルブ類;ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンのアミド類;等を挙げることができる。有機溶剤は1種のみを使用してもよく、2種以上を併用してもよい。有機溶剤として市販品を使用してもよい。その市販品としては、例えば、丸善石油化学社製「スワゾール」、出光興産社製「イプゾール」等が挙げられる。ワニスの塗布は、公知の方法(例えば、ダイコーターを使用する方法)で行えばよく、塗布方法に特に限定はない。
 塗膜の乾燥は、加熱および/または減圧によって行うことができる。簡便に行うことができるため、塗膜の乾燥は、加熱によって行うことが好ましい。塗膜の加熱温度は、好ましくは50~200℃、より好ましくは80~150℃であり、その時間は、好ましくは1~60分である。
 本発明の封止用シートは、例えば、以下の方法でも製造することができる:
 (A)吸湿部を形成するための組成物のワニスを、透明部に対応するシートの外周を囲うように塗布し、得られた塗膜を乾燥することによって、吸湿部を形成する方法。
 (B)吸湿部を形成するための液状硬化性組成物を、透明部に対応するシートの外周を囲うように塗布し、得られた塗膜を加熱または光照射によって硬化させて、吸湿部を形成する方法。
 (C)吸湿部に対応するシートの中央部をくり抜き、そのくり抜いた中央部に、透湿部を形成するための組成物のワニスを塗布し、得られた塗膜を乾燥することによって、中央部の封止部(=透明部)を形成する方法。
 (D)吸湿部に対応するシートの中央部をくり抜き、そのくり抜いた中央部に、透湿部を形成するための液状硬化性組成物を塗布し、得られた塗膜を加熱または光照射によって硬化させて、中央部の封止部(=透明部)を形成する方法。
 (E)透湿部を形成するための、組成物のワニスまたは液状硬化性組成物を塗布後、得られた塗膜の外周を囲うように、吸湿部を形成するための、組成物のワニスまたは液状硬化性組成物を塗布し、中央部の塗膜およびその外周の塗膜を、乾燥または硬化させて、中央部の封止部(=透明部)およびその外周の吸湿部を形成する方法。
 本発明の封止用シートは、好ましくは半導体、太陽電池、高輝度LED、LCD、有機EL素子等の電子部品の封止、より好ましくは太陽電池素子、有機EL素子の封止に使用することができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、成分の量および共重合単位の量における「部」および「%」は、特に断りがない限り、それぞれ「質量部」および「質量%」を意味する。
<成分>
 実施例および比較例で用いた成分を以下に示す。
(ポリオレフィン系樹脂)
 「T-YP341」(星光PMC社製):グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位/ブテン単位71%/29%、エポキシ基濃度0.64mmol/g、数平均分子量155,000
 「HV-300M」(東邦化学工業社製):無水マレイン酸変性液状ポリブテン、酸無水物基濃度0.77mmol/g、数平均分子量2,100
 「HV-1900」(ENEOS社製):液状ポリブテン、数平均分子量2,900
(吸湿性フィラー)
 「HAL-G」(吉澤石灰工業社製):生石灰、メジアン径2.1μm
 「DHT-4C」(協和化学工業社製):半焼成ハイドロタルサイト、メジアン径400nm、BET比表面積15m/g
(粘着付与剤)
 「T-REZ HA105」(ENEOS社製):ジシクロペンタジエン系石油樹脂の水素化物、軟化点105℃
(酸化防止剤)
 「Irganox1010」(BASF社製):ヒンダードフェノール系酸化防止剤
(硬化促進剤)
 2,4,6-トリス(ジメチルアミノメチル)フェノール(以下「TAP」と略記する。)(化薬ヌーリオン社製)
 下記表1に示す成分量のワニスを以下の手順で作製し、得られたワニスを用いて吸湿部を形成するための樹脂組成物層(以下「吸湿層」と記載することがある)および透明部を形成するための樹脂組成物層(以下「透明層」と記載することがある)を作製した。下記表1に記載の各成分の使用量(部)は、ワニス中の各成分の不揮発分の量を示す。また、下記表1には、樹脂組成物層(即ち、吸湿層または透明層)の吸水率を示す。
<吸湿層を有する積層シートの作製>
 下記表1に示す量で、水添炭化水素樹脂(粘着付与剤、ENEOS社製「T-REZ HA105」)のスワゾール溶液(不揮発分60%)に、無水マレイン酸変性液状ポリブテン(東邦化学工業社製「HV-300M」)、ポリブテン(ENEOS社製「HV-1900」)、生石灰(吉澤石灰工業社製「HAL-G」)を3本ロールで分散させて、混合物を得た。得られた混合物に、グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体(星光PMC社製「T-YP341」)のスワゾール溶液(不揮発分15%)、ヒンダードフェノール系酸化防止剤(BASF社製「Irganox1010」)、TAP(硬化促進剤、化薬ヌーリオン社製)およびトルエンを配合し、得られた混合物を高速回転ミキサーで均一に分散して、樹脂組成物のワニスを得た。
 片面がシリコーン系離型剤で処理されたポリエチレンテレフタレート(PET)フィルム(東洋クロス社製「SP4020」、PETフィルムの厚さ:50μm)と、低透湿性ポリエチレンテレフタレート(PET)フィルム(三菱ケミカル社製「テックバリアHX」、PETフィルムの厚さ:12μm)とを、前者(SP4020)のシリコーン系離型剤で処理されていない面と、後者(テックバリアHX)とが接触するように、ポリエステル系接着剤で貼合せて、積層フィルム(以下「SP4020-HXフィルム」と記載する)を作製した。
 同様に東洋クロス社製「SP4020」を、片面がシリコーン系離型剤で処理されたポリエチレンテレフタレート(PET)フィルム(東洋クロス社製「SP3000」、PETフィルムの厚さ:50μm)に変更したこと以外はSP4020-HXフィルムの作製と同様にして、積層フィルム(以下「SP3000-HXフィルム」と記載する)を作製した。
 樹脂組成物のワニスを、SP4020-HXフィルムのシリコーン系離型剤で処理された面にダイコーターにて均一に塗布し、140℃で30分間加熱して、架橋構造を有する樹脂組成物層を形成し、樹脂組成物層/SP4020-HXフィルムとの積層構造を有す積層シートを得た。
 SP3000-HXフィルムを、その離型処理面と組成物層とが接触するように、得られた積層シートに積層した後、130℃で60分間加熱(エージング)し、SP3000-HXフィルム/樹脂組成物層(即ち、吸湿層、厚さ:50μm)/SP4020-HXフィルムとの積層構造を有する積層シートを得た。
<透明層を有する積層シートの作製>
 吸湿フィラーを生石灰(吉澤石灰工業社製「HAL-G」)260部から半焼成ハイドロタルサイト(協和化学工業社製「DHT-4C」)110部に変えたこと以外は、吸湿層の作製と同様にして、樹脂組成物のワニス、およびSP3000-HXフィルム/樹脂組成物層(即ち、透明層、厚さ:50μmまたは25μm)/SP4020-HXフィルムとの積層構造を有する積層シートを作製した。
<吸水率の測定>
 吸湿層および透明層の吸水率は以下の方法で測定した。なお、2種の透明層のうち、厚さが50μmである透明層の吸水率を測定した。まず、40mm角に切り出した積層シートからSP3000-HXフィルムを剥離し、樹脂組成物層(即ち、吸湿層または透明層)/SP4020-HXフィルムとの積層構造を有する積層シートを、予め重量を測定した50mm角の無アルカリガラス板(日本電気硝子社製「OA-10G」、ガラスの厚さ:700μm、重量:w1)に、バッチ式真空ラミネーター(ニチゴ・モートン社製「V-160」)を用いて、温度80℃、時間30秒、圧力0.3MPの条件で貼合せ、無アルカリガラス板/樹脂組成物層(即ち、吸湿層または透明層)/SP4020-HXフィルムとの積層構造を有する積層体を作製した。前記積層体からSP4020-HXフィルムを剥離して、無アルカリガラス板/樹脂組成物層(即ち、吸湿層または透明層)との積層構造を有する試験片を得た。得られた試験片を130℃で30分間乾燥し、吸水試験前の試験片の重量を計測した(重量:w2)。次いで、試験片を、温度85℃および湿度85%RHに設定した恒温恒湿槽に24時間保存して吸湿させた後、吸湿後の試験片の重量w3を計測した。下記式:
 樹脂組成物層(即ち、吸湿層または透明層)の吸水率
=(w3-w2)/(w2-w1)×100
から、樹脂組成物層(即ち、吸湿層または透明層)の吸水率を算出した。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 上記のようにして作製した吸湿層を有する積層シートを縦60mm×横60mmに切り出した。次に、切り出した積層シートの中央部(縦48mm×横48mm)をSP4020-HXフィルムが残る形で断裁し、中央部の樹脂組成物層およびSP3000-HXフィルムを除去することで、周辺部のSP3000-HXフィルムおよび吸湿部(即ち、残った吸湿層)、並びにSP4020-HXフィルムを有する積層シート(以下「吸湿シート1」と記載する)を作製した。
 次に、厚さが50μmである透明層を有する積層シートを縦48mm×横48mmに切り出し、SP3000-HXフィルムを剥離して、厚さが50μmである透明部(即ち、透明層)およびSP4020-HXフィルムを有する積層シート(以下「透明シート1」と記載する)を作製した。
 透明シート1の透明部が吸湿シート1のSP4020-HXフィルムと接するように、透明シート1を、吸湿シート1の中央部にはめ込むように設置した。得られた積層体を、バッチ式真空ラミネーター(ニチゴ・モートン社製、Morton-724)を用いて、温度80℃、時間30秒、圧力0.3MPaの条件でプレスして、SP3000-HXフィルムおよびSP4020-HXフィルム/封止形成層/SP4020-HXフィルムとの積層構造を有する封止用シートを作製した。
 得られた封止用シートから、「SP3000-HXフィルムおよびSP4020-HXフィルム」を剥離し、温度80℃、時間30秒および圧力0.3MPの条件でバッチ式真空ラミネーターを用いて、縦60mm×横60mmのサイズのSP3000-HXフィルムを、露出した封止形成層に貼合することで、SP3000-HXフィルム(=保護シート)/図2に示す態様の封止形成層/SP4020-HXフィルム(=支持体)との積層構造を有する封止用シートを作製した(透明部2から形成される封止部の厚さT=吸湿部3の厚さT3=50μm、吸湿部3の幅W3=1mm、透明部2から形成される封止部の面積=48mm×48mm=2304mm)。
<実施例2>
 吸湿層を有する積層シートを縦60mm×横60mmに切り出した。次に、切り出した積層シートの中央部(縦48mm×横48mm)をSP4020-HXフィルムが残る形で断裁し、周辺部のSP3000-HXフィルムを剥離して、吸湿部(即ち、残った吸湿層)およびSP4020-HXフィルムを有する積層シート(以下「吸湿シート2」と記載する)を作製した。
 次に、厚さが50μmである透明層を有する積層シートを縦48mm×横48mmに切り出し、SP3000-HXフィルムを剥離して、厚さが50μmである透明部(即ち、透明層)およびSP4020-HXフィルムを有する積層シート(以下「透明シート1」と記載する)を作製した。また、厚さが50μmである透明層を有する積層シートを縦60mm×横60mmに切り出し、SP3000-HXフィルムを剥離して、厚さが50μmである透明部(即ち、透明層)およびSP4020-HXフィルムを有する積層シート(以下「透明シート2」と記載する)を作製した。
 透明シート1の透明部が吸湿シート2のSP4020-HXフィルムと接するように、透明シート1を吸湿シート2の中央部にはめ込むように設置した。得られた積層体から、透明シート1に由来するSP4020-HXフィルムを剥離し、透明シート2の透明部が、前記積層体の透明部および吸湿部と接するように透明シート2を積層した。得られた積層体を、バッチ式真空ラミネーター(ニチゴ・モートン社製、Morton-724)を用いて、温度80℃、時間30秒、圧力0.3MPaの条件でプレスして、SP4020-HXフィルム/封止形成層/SP4020-HXフィルムとの積層構造を有する封止用シートを作製した。
 得られた封止用シートから、透明シート2に由来するSP4020-HXフィルムを剥離し、温度80℃、時間30秒および圧力0.3MPの条件でバッチ式真空ラミネーターを用いて、縦60mm×横60mmのサイズのSP3000-HXフィルムを、露出した封止形成層に貼合することで、SP3000-HXフィルム(=保護シート)/図4に示す態様の封止形成層/SP4020-HXフィルム(=支持体)との積層構造を有する封止用シートを作製した(透明部2から形成される封止部の厚さT=100μm、吸湿部3の厚さT3=50μm、吸湿部3の幅W3=1mm、透明部2から形成される封止部の面積=48mm×48mm=2304mm)。
<実施例3>
 吸湿層を有する積層シートを縦60mm×横60mmに切り出した。次に、切り出した積層シートの中央部(縦48mm×横48mm)をSP4020-HXフィルムが残る形で断裁し、周辺部のSP3000-HXフィルムを剥離して、吸湿部(即ち、残った吸湿層)およびSP4020-HXフィルムを有する積層シート(以下「吸湿シート2」と記載する)を作製した。
 次に、厚さが50μmである透明層を有する積層シートを縦48mm×横48mmに切り出し、SP3000-HXフィルムを剥離して、厚さが50μmである透明部(即ち、透明層)およびSP4020-HXフィルムを有する積層シート(以下「透明シート1」と記載する)を作製した。また、厚さが25μmである透明層を有する積層シートを縦60mm×横60mmに切り出し、SP3000-HXフィルムを剥離して、厚さが25μmである透明部(即ち、透明層)およびSP4020-HXフィルムを有する2枚の積層シート(以下「透明シート3」と記載する)を作製した。
 透明シート1の透明部が吸湿シート2のSP4020-HXフィルムと接するように、透明シート1を吸湿シート1の中央部にはめ込むように設置した。得られた積層体から、透明シート1に由来するSP4020-HXフィルムを剥離し、1枚の透明シート3の透明部が、前記積層体の透明部および吸湿部と接するように、該透明シート3を積層した。得られた積層体から、吸湿シート2に由来するSP4020-HXフィルムを剥離し、残りの1枚の透明シート3の透明部が、前記積層体の透明部および吸湿部と接するように、該透明シート3を積層した。得られた積層体を、バッチ式真空ラミネーターを用いて、温度80℃、時間30秒、圧力0.3MPaの条件でプレスして、SP4020-HXフィルム/封止形成層/SP4020-HXフィルムとの積層構造を有する封止用シートを作製した。
 1枚のSP4020-HXフィルムを剥離し、温度80℃、時間30秒および圧力0.3MPの条件でバッチ式真空ラミネーターを用いて、縦60mm×横60mmのサイズのSP3000-HXフィルムを、露出した封止形成層に貼合することで、SP3000-HXフィルム(=保護シート)/図6に示す態様の封止形成層/SP4020-HXフィルム(=支持体)との積層構造を有する封止用シートを作製した(透明部2から形成される封止部の厚さT=100μm、吸湿部3の厚さT3=50μm、吸湿部3の幅W3=1mm、透明部2から形成される封止部の面積=48mm×48mm=2304mm、封止形成層1の表面と吸湿部3との最短距離D3(=d3)=25μm)を作製した。
<比較例1>
 上述の透明層を有する積層シートの作製と同様にして得られた積層シートを、封止用シートとして使用した(封止形成層(=透明層)の厚さ=50μm)。
<比較例2>
 上述の吸湿層を有する積層シートの作製と同様にして得られた積層シートを、封止用シートとして使用した(封止形成層(=吸湿層)の厚さ=50μm)。
<透明性の評価>
 実施例および比較例の封止用シートを40mm角に切り出し、SP3000-HXフィルムを剥離して、封止用シートと50mm角の無アルカリガラス(厚さ700μm、日本電気硝子製「OA-10G」)とが接するように、バッチ式真空ラミネーターを用いて封止用シートを無アルカリガラスに貼り合わせて、積層体を得た。得られた積層体からSP4020-HXフィルムを剥離し、全光線透過率測定用の試料(即ち、封止形成層と無アルカリガラスとの積層体)を作製した。得られた試料の中央部(実施例の封止用シートを用いて作製した試料では封止部が存在する部分)の光透過率スペクトルを、φ80mm積分球を装着したファイバー式分光光度計(大塚電子社製「MCPD-7700」、形式311C、外部光源ユニット:ハロゲンランプMC-2564(24V、150W仕様))を用いて測定し、波長450nmでの全光線透過率を算出した。なお、標準白色板はラブスフェア社製「スペクトラン反射標準」(型名SRS-99-010、反射率99%)を用いた。また、積分球とサンプル(積層体)の距離を0mmとし、大気をリファレンスとした。得られた全光線透過率から、以下の基準で透明性を評価した。結果を下記表2に記載する。
(透明性の基準)
 良好(○):波長450nmでの全光線透過率が90%以上
 不良(×):波長450nmでの全光線透過率が90%未満
<水分遮断性の評価>
 実施例1~3並びに比較例1および2で作製した封止用シートのSP3000-HXフィルムを剥離し、アルミニウム箔およびポリエチレンテレフタレート(PET)フィルムを備える複合フィルム(東海東洋アルミ販売社製「PETツキAL1N30」、アルミニウム箔の厚さ:30μm、PETの厚さ:25μm)にバッチ式真空ラミネーターを用いて貼合せ、試験用シートを得た。
 50mm×50mm角の無アルカリガラス板を用意した。このガラス板を、煮沸したイソプロピルアルコールで5分間洗浄し、150℃において30分以上乾燥した。
 乾燥後のガラス板の片面に、当該ガラス板の端部からの距離が0mm~1.5mmである周縁エリアを覆うマスクを用いて、カルシウムを蒸着した。これにより、ガラス板の片面の、前記ガラス板の周縁エリアを除く中央部分に、厚さ200nmのカルシウム膜が形成された。
 窒素雰囲気内で、試験用シートのSP4020-HXフィルムを剥離した。次いで、試験用シートの封止形成層と、ガラス板のカルシウム膜とが接するように、試験用シートをガラス板に積層し、熱ラミネーター(フジプラ社製「ラミパッカーDAiSY A4(LPD2325)」)を用いて貼り合わせ、封止形成層によって形成された封止層でカルシウム膜が封止された評価サンプルを得た。なお、実施例2の封止用シートを用いて作製した試験用シートでは、吸湿部が露出した封止形成層の表面と、ガラス板のカルシウム膜とが接するように、試験用シートをガラス板に積層した。
 一般に、カルシウムが水と接触して酸化カルシウムになると、透明になる。また、前記評価サンプルでは、ガラス板およびPETツキAL1N30が高い水分遮断性を有するので、水分は、封止層の端部を通って面内方向(厚さ方向に垂直な方向)に移動して、カルシウム膜に到達すると考えられる。評価サンプルに水分が浸入すると、カルシウム膜は端部から次第に酸化されて透明になるので、カルシウム膜の縮小が観察される。したがって、評価サンプルへの水分侵入は、評価サンプルの端部からカルシウム膜までの距離[mm]を測定することによって、評価できる。そのため、カルシウム膜を有する評価サンプルを、素子を有する電子機器のモデルとして使用できる。
 評価サンプルを温度85℃および湿度85%RHに設定した恒温恒湿槽に収納した。評価サンプルを温恒湿槽に収納した時点T1、および評価サンプルの端部からカルシウム膜の端部までの間の距離が0.1mm増加した時点T2を計測し、収縮時間(即ち、T2-T1)を算出した。得られた収縮時間から、以下の基準で水分遮断性を評価した。結果を下記表2に記載する。
 良好(○):収縮時間が200時間以上
 不良(×):収縮時間が200時間未満
Figure JPOXMLDOC01-appb-T000002
 本発明の封止用シートは、素子の封止層(好ましくは有機EL素子を保護するための封止層)を形成するために有用である。
 本願は、日本で出願された特願2020-189431号を基礎としており、その内容は本願明細書に全て包含される。
 1 封止形成層
 2 透明部
 3 吸湿部
 4 支持体
 5 吸湿層
 6 保護シート
 7 封止用シート
 W3 吸湿部の幅
 T 封止部の厚さ
 T3 吸湿部の厚さ
 S1 封止形成層の吸湿部が突出していない表面
 S2 封止形成層の吸湿部が突出している表面
 d3 封止形成層の吸湿部が突出していない一つの表面と吸湿部との距離(但し、d3≧D3)
 D3 封止形成層の吸湿部が突出していない一つの表面と吸湿部との距離(但し、d3≧D3)

Claims (11)

  1.  封止形成層を含む封止用シートであって、
     封止形成層が、透明部、および透明部の吸水率よりも大きい吸水率を有する吸湿部を含み、
     封止形成層が、透明部から形成される封止部を含み、
     吸湿部が、封止部の外周を囲んでおり、並びに
     封止部の波長450nmでの全光線透過率が80%以上である封止用シート。
  2.  吸湿部の吸水率が、5質量%以上である請求項1に記載の封止用シート。
  3.  封止部の厚さが、5~100μmである請求項1または2に記載の封止用シート。
  4.  吸湿部の幅が、0.25~30mmである請求項1~3のいずれか一項に記載の封止用シート。
  5.  さらに支持体を含む請求項1~4のいずれか一項に記載の封止用シート。
  6.  封止形成層を含む封止用シートであって、
     封止形成層が、透明部および吸湿部を含み、
     封止形成層が、透明部から形成される封止部を含み、
     吸湿部が、封止部の外周を囲んでおり、
     透明部が吸湿性フィラーを含んでいてもよく、および吸湿部が吸湿性フィラーを含み、並びに
     吸湿部の吸湿性フィラーの含有量が、透明部の吸湿性フィラーの含有量よりも大きい封止用シート。
  7.  吸湿部中の吸湿性フィラーの含有量が、吸湿部の合計100質量%あたり10~80質量%であり、および透明部中の吸湿性フィラーの含有量が、透明部の合計100質量%あたり0質量%以上70質量%未満である請求項6に記載の封止用シート。
  8.  封止部の波長450nmでの全光線透過率が80%以上である請求項6または7に記載の封止用シート。
  9.  封止部の厚さが、5~100μmである請求項6~8のいずれか一項に記載の封止用シート。
  10.  吸湿部の幅が、0.25~30mmである請求項6~9のいずれか一項に記載の封止用シート。
  11.  さらに支持体を含む請求項6~10のいずれか一項に記載の封止用シート。
PCT/JP2021/041654 2020-11-13 2021-11-12 封止用シート WO2022102733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022562192A JPWO2022102733A1 (ja) 2020-11-13 2021-11-12
KR1020237019327A KR20230104692A (ko) 2020-11-13 2021-11-12 밀봉용 시트
CN202180076255.4A CN116438649A (zh) 2020-11-13 2021-11-12 密封用片材
DE112021005948.3T DE112021005948T5 (de) 2020-11-13 2021-11-12 Dichtungsbahn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-189431 2020-11-13
JP2020189431 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102733A1 true WO2022102733A1 (ja) 2022-05-19

Family

ID=81602350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041654 WO2022102733A1 (ja) 2020-11-13 2021-11-12 封止用シート

Country Status (6)

Country Link
JP (1) JPWO2022102733A1 (ja)
KR (1) KR20230104692A (ja)
CN (1) CN116438649A (ja)
DE (1) DE112021005948T5 (ja)
TW (1) TW202224917A (ja)
WO (1) WO2022102733A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179491A (ja) * 2004-12-20 2006-07-06 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2017512360A (ja) * 2014-02-18 2017-05-18 エルジー・ケム・リミテッド 封止フィルム及びこれを含む有機電子装置
JP2020158739A (ja) * 2019-03-28 2020-10-01 味の素株式会社 樹脂組成物および樹脂シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200948A1 (de) 2014-01-20 2015-07-23 Tesa Se Verfahren zum Entfernen von Permeaten aus Flächengebilden
TWI769977B (zh) 2015-03-27 2022-07-11 日商味之素股份有限公司 密封用樹脂組成物
JP6560940B2 (ja) 2015-09-16 2019-08-14 株式会社ジャパンディスプレイ 表示装置、及び、表示装置の製造方法
CN108026430B (zh) 2015-09-30 2020-09-01 味之素株式会社 密封用树脂组合物
WO2018066548A1 (ja) 2016-10-04 2018-04-12 味の素株式会社 封止用の樹脂組成物および封止用シート
CN111868162A (zh) 2018-03-30 2020-10-30 味之素株式会社 密封用组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179491A (ja) * 2004-12-20 2006-07-06 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2017512360A (ja) * 2014-02-18 2017-05-18 エルジー・ケム・リミテッド 封止フィルム及びこれを含む有機電子装置
JP2020158739A (ja) * 2019-03-28 2020-10-01 味の素株式会社 樹脂組成物および樹脂シート

Also Published As

Publication number Publication date
KR20230104692A (ko) 2023-07-10
JPWO2022102733A1 (ja) 2022-05-19
TW202224917A (zh) 2022-07-01
DE112021005948T5 (de) 2023-09-21
CN116438649A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
JP6683204B2 (ja) 封止用樹脂組成物
JP5768718B2 (ja) 樹脂組成物
JP6680295B2 (ja) 封止用樹脂組成物
JP6903992B2 (ja) 封止用樹脂組成物および封止用シート
JP6821985B2 (ja) 封止用樹脂組成物
WO2021111855A1 (ja) 封止剤、封止シート、電子デバイスおよびペロブスカイト型太陽電池
WO2018181426A1 (ja) 封止用シート
CN114731744A (zh) 密封用片材
WO2022102733A1 (ja) 封止用シート
CN113646171A (zh) 树脂组合物及树脂片材
JP2022021714A (ja) 封止用シートおよびポリマー組成物層
JP2023138466A (ja) 封止用組成物および封止用シート
TWI843699B (zh) 密封用薄片
WO2021065974A1 (ja) 樹脂組成物および樹脂シート
JP7099441B2 (ja) 封止用シート
WO2023182493A1 (ja) 樹脂シートおよびその製造方法
JP2022021717A (ja) 封止用シートおよび粘着組成物層
WO2020105707A1 (ja) 接着剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562192

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237019327

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021005948

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891978

Country of ref document: EP

Kind code of ref document: A1