WO2022102458A1 - 現像処理装置及び現像処理方法 - Google Patents
現像処理装置及び現像処理方法 Download PDFInfo
- Publication number
- WO2022102458A1 WO2022102458A1 PCT/JP2021/040266 JP2021040266W WO2022102458A1 WO 2022102458 A1 WO2022102458 A1 WO 2022102458A1 JP 2021040266 W JP2021040266 W JP 2021040266W WO 2022102458 A1 WO2022102458 A1 WO 2022102458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- developer
- developing
- wafer
- discharge nozzle
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 13
- 239000007789 gas Substances 0.000 claims abstract description 57
- 239000011261 inert gas Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 239000007788 liquid Substances 0.000 claims abstract description 44
- 238000001035 drying Methods 0.000 claims abstract description 27
- 238000007599 discharging Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 38
- 238000004090 dissolution Methods 0.000 abstract description 21
- 230000007547 defect Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 11
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 10
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000003028 elevating effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/02—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
- B05C11/08—Spreading liquid or other fluent material by manipulating the work, e.g. tilting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C9/00—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
- B05C9/08—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
- B05C9/12—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed after the application
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- This disclosure relates to a developing processing apparatus and a developing processing method.
- Patent Document 1 discloses a developing processing method in which a resist is applied to the surface and a developing solution containing an organic solvent is supplied to a substrate after exposure to perform development.
- This development processing method includes a liquid film forming step of supplying a developing solution from a developing solution supply nozzle to the center of the substrate to form a liquid film while rotating the substrate, and a developing solution from the developing solution supply nozzle to the substrate. It includes a developing step of developing the resist film on the substrate while rotating the substrate without drying the liquid film of the developer while stopping the supply. Further, Patent Document 1 discloses that a developer containing butyl acetate is used.
- the technique according to the present disclosure prevents many defects from occurring near the center of the substrate after the development process.
- One aspect of the present disclosure is a developing processing apparatus that performs a developing process on a substrate, wherein a developing solution is applied to a holding rotating portion that holds and rotates the substrate and a substrate held by the holding rotating portion.
- a developer supply unit to be supplied, a gas supply unit to supply an inert gas to the substrate held by the holding rotation unit, and a control unit are provided, and the control unit is a developing liquid on the substrate.
- the holding rotary unit and the developing liquid supply unit so that the step of supplying gas and discharging the dissolution product from the central region while maintaining the liquid film of the developing liquid in the central region is executed. And the gas supply unit.
- FIG. 1 It is a vertical sectional view which shows the outline of the structure of the development processing apparatus which concerns on this embodiment. It is sectional drawing which shows the outline of the structure of the development processing apparatus which concerns on this embodiment. It is a figure which shows the rotation speed of the wafer W at each time point during the development process of Example 1.
- FIG. It is a figure explaining the reason why the inert gas is supplied in the discharge process. It is a figure explaining the reason why the inert gas is supplied in the discharge process. It is a figure which shows the rotation speed of the wafer W at each time point during the development process of Example 2. It is a figure for demonstrating the specific example of the discharge position of a gas discharge nozzle and the discharge position of a developer discharge nozzle.
- a resist coating process for forming a resist film by applying a resist solution on a semiconductor wafer hereinafter referred to as "wafer"
- an exposure process for exposing the resist film and an exposed resist film are performed.
- Development processing and the like for developing are sequentially performed, and a resist pattern is formed on the wafer.
- the above-mentioned development processing is usually performed by a developing processing apparatus, and in the developing processing apparatus, for example, a developing solution is discharged from a developing solution ejection nozzle to a wafer held by a spin chuck, and a liquid film of the developing solution is formed on the wafer surface. Is formed and the resist film on the wafer is developed.
- a developing solution is discharged from a developing solution ejection nozzle to a wafer held by a spin chuck, and a liquid film of the developing solution is formed on the wafer surface. Is formed and the resist film on the wafer is developed.
- butyl acetate is used as the developing solution (see Patent Document 1).
- the technique according to the present disclosure prevents many defects from occurring near the center of the substrate after the development process.
- (Development processing equipment) 1 and 2 are a vertical sectional view and a horizontal sectional view showing an outline of the configuration of the developing processing apparatus 1 according to the present embodiment.
- the developing processing apparatus 1 has a processing container 10 whose inside can be sealed.
- An inlet / outlet (not shown) for the wafer W as a substrate is formed on the side surface of the processing container 10.
- a holding rotation unit 20 for holding and rotating the wafer W is provided in the processing container 10. Specifically, the holding rotation unit 20 holds the wafer W and rotates it around a vertical axis. Further, the holding rotation unit 20 includes a spin chuck 21 configured to be rotatable while holding the wafer W, and a chuck drive unit 22 having an actuator such as a motor to rotate the spin chuck 21. The spin chuck 21 is configured to be rotatable at various speeds (rotational speeds) by the chuck drive unit 22. Further, the chuck drive unit 22 is provided with an elevating drive mechanism having an actuator such as a cylinder, and the spin chuck 21 is configured to be elevating freely by the elevating drive mechanism.
- a cup 30 is provided so as to surround the periphery of the wafer W held by the spin chuck 21.
- the cup 30 receives and recovers the liquid scattered or dropped from the wafer W.
- a drain pipe 31 for discharging the collected liquid and an exhaust pipe 32 for exhausting the atmosphere in the cup 30 are connected to the bottom surface of the cup 30.
- a rail 40 extending along the Y direction is formed on the X-direction negative direction (downward direction in FIG. 2) side of the cup 30.
- the rail 40 is formed, for example, from the outside of the cup 30 on the negative direction in the Y direction (left direction in FIG. 2) to the outside on the positive direction in the Y direction (right direction in FIG. 2).
- An arm 41 is attached to the rail 40.
- the arm 41 supports a developer discharge nozzle 51 and a gas discharge nozzle 61, which will be described later.
- the arm 41 is movable on the rail 40 by a nozzle driving unit 42 as a moving mechanism for moving the developer discharge nozzle 51 and the gas discharge nozzle 61.
- the nozzle drive unit 42 has an actuator such as a motor. By the nozzle drive unit 42, the developer discharge nozzle 51 and the gas discharge nozzle 61 can move from the standby unit 43 provided on the outside of the cup 30 on the positive side in the Y direction to the upper part of the central region of the wafer W in the cup 30. ..
- the arm 41 can be raised and lowered by the nozzle driving unit 42, and the heights of the developer discharge nozzle 51 and the gas discharge nozzle 61 can be adjusted.
- the developer discharge nozzle 51 and the gas discharge nozzle 61 are provided on the same arm 41, and the distance between them in a plan view is, for example, 20 mm to 25 mm.
- the developing processing apparatus 1 has a developing solution supply unit 50 that supplies a developing solution to the wafer W held by the holding rotating unit 20 (specifically, the spin chuck 21).
- the developer supply unit 50 includes a developer discharge nozzle 51 that discharges the developer downward, and a supply pipe 52 that connects the developer discharge nozzle 51 and the developer supply source 70.
- the developer supply unit 50 has a supply device group 53 for controlling the supply of the developer from the developer supply source 70 to the developer discharge nozzle 51.
- the supply equipment group 53 is provided in the supply pipe 52 and includes a supply valve for switching between supply and stop of the developer, a flow rate adjusting valve for adjusting the flow rate of the developer, and the like.
- As the developer a negative type developer is used, and specifically, butyl acetate is used.
- the developing processing apparatus 1 has a gas supply unit 60 that supplies an inert gas to the wafer W held by the holding rotation unit 20 (specifically, the spin chuck 21).
- the developer supply unit 50 includes a gas discharge nozzle 61 that discharges the inert gas downward, and a supply pipe 62 that connects the gas discharge nozzle 61 and the inert gas supply source 80.
- the gas supply unit 60 has a supply device group 63 for controlling the supply of the inert gas from the supply source 80 of the inert gas to the gas discharge nozzle 61.
- the supply equipment group 63 is provided in the supply pipe 62, and includes a supply valve for switching between supply and stop of the inert gas, a flow rate adjusting valve for adjusting the flow rate of the inert gas, and the like.
- a supply valve for switching between supply and stop of the inert gas for example, N 2 gas is used.
- the control unit 100 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown).
- a program for example, a holding rotation unit 20, a nozzle drive unit 42, a developer supply unit 50, a gas supply unit 60, etc.
- the program to be realized is stored.
- the program may be recorded on a storage medium M that can be read by a computer, and may be installed on the control unit 100 from the storage medium M.
- the storage medium H may be temporary or non-temporary. Further, a part or all of the program may be realized by dedicated hardware (circuit board).
- FIG. 3 is a diagram showing the rotation speed of the wafer W at each time point during the development process of this example.
- 4 and 5 are diagrams illustrating the reason for supplying the inert gas in the discharge process.
- a resist film is formed in advance on the surface of the wafer W carried into the processing container 10, and the resist film is subjected to an exposure treatment and a subsequent heat treatment in advance. It is assumed that it is. Further, the following development processing is performed under the control of the control unit 100.
- Step S1 Development step
- the resist film on the wafer W is developed. Specifically, the wafer W is carried into the processing container 10, placed on the spin chuck 21 of the holding rotation unit 20, and sucked. Next, as shown in FIG. 3, the wafer W adsorbed on the spin chuck 21 is rotated at a rotation speed of 1000 rpm to 1500 rpm, and the developer (specifically, the developer) is discharged from the developer discharge nozzle 51 toward the center of the wafer W. Discharges butyl acetate) to cover the surface of the wafer W with a film of developer, that is, to form a developer paddle that covers the entire surface of the developer W.
- the supply of the developer is stopped, and for example, static development is performed in which the wafer W is stationary for a predetermined time without being rotated.
- static development is performed in which the wafer W is stationary for a predetermined time without being rotated.
- Step S2 Discharge process
- a developer specifically, butyl acetate
- a dissolution product that causes defects is extruded radially outward on the central region of the wafer W, and the dissolution product is discharged from the central region.
- the wafer W is rotated and, in addition, the inert gas is supplied to the center of the wafer W, so that the developer containing the dissolution product is extruded radially outward from the central region of the wafer W. And discharge the dissolution product.
- the reason for supplying the inert gas to the center of the wafer W in this step is as follows.
- butyl acetate used as a developer Since butyl acetate used as a developer has a high volume resistivity, it is supplied to the developer discharge nozzle 51 via a supply pipe 52 formed of an insulating material and is charged when it is discharged from the developer discharge nozzle 51. Therefore, as shown in FIG. 4, the developer L is charged in a state of being located on the wafer W. Further, the wafer W on which the developer L is discharged is also charged in the same manner. Therefore, a repulsive force F due to an electrostatic force is generated in the developer between the developer L on the wafer W and the wafer W. Then, the developer, which was in the form of a film on the wafer W, tends to become small spherical liquid particles as shown in FIG. 5 so that the repulsive force F becomes small.
- the developer L becomes spherical liquid particles, it does not return to a film shape, and the liquid particles of the developer L located on the central region of the wafer W become the liquid particles even if the wafer W is rotated. Since the applied centrifugal force is small, it remains on the wafer W. Then, when the liquid particles of the developer L volatilize, the dissolution product contained in the liquid particles of the developer L remains as a defect on the central region of the wafer W. In other words, it causes center mode.
- Another reason for supplying the inert gas to the center of the wafer W in the discharge step of step S2 is that the flow of the inert gas pushes more developer on the central region of the wafer W radially outward. That is.
- step S2 by supplying the inert gas to the center of the wafer W, the developer in the central region of the wafer W is suppressed so as not to become liquid particles from the state of the liquid film, and the central region of the wafer W is formed. Keep the liquid film of the developer. In this state, the airflow formed by the inert gas discharged to the center of the wafer W and the centrifugal force due to the rotation of the wafer W push the developer containing the dissolution product outward from the central region of the wafer W in the radial direction. , Discharge the dissolution product.
- the wafer W adsorbed on the spin chuck 21 is rotated at a lower rotation speed (for example, 500 rpm to 700 rpm) than the drying step of step S3 described later, as shown in FIG. While rotating, the inert gas is discharged from the gas discharge nozzle 61 toward the center of the wafer W.
- the developer containing the dissolution product can be extruded radially outward from the central region, and the dissolution product can be discharged. The amount of lysate product on the central region of the can be reduced.
- Step S3 Drying step
- the wafer W is rotated and dried. Specifically, the ejection of the inert gas from the gas ejection nozzle 61 is stopped, the rotation speed of the wafer W is increased, the wafer W is rotated at a predetermined rotation speed, the developer on the wafer W is shaken off, and the wafer W is dried.
- the predetermined rotation speed is 2000 rpm to 3000 rpm, preferably 2000 rpm to 2500 rpm. Further, the rotational acceleration until the rotation speed of the wafer W is increased to the predetermined rotation speed is, for example, 3000 rpm / s.
- the wafer W By rotating the wafer W at the rotation speed and rotational acceleration of the wafer W as described above, the developer shaken off from the wafer W is prevented from being bounced off by the cup 30 and causing defects, while suppressing the center of the wafer W. A large amount of developer in the region can be discharged to the outside of the wafer W. After that, the wafer W is carried out from the processing container 10.
- the developing solution is placed on the central region of the wafer W after shake-off drying for the same reason as described with reference to FIGS. 4 and 5. May remain as liquid particles.
- the discharge step of step S2 reduces the dissolution products on the central region of the wafer W that cause defects, so that the wafer is a wafer. Many defects do not occur in the central region of W.
- processing example 1 Modification of Example 1 of development processing
- the inert gas is discharged from the gas discharge nozzle 61 to the center of the wafer W in the discharge step of step S2.
- the inert gas may be discharged from the gas discharge nozzle 61 at a position (offset position) away from the center of the wafer W by a predetermined distance.
- the region on the wafer W on which the dissolution product is discharged by the nitrogen gas in the discharge step of step S2 can be expanded.
- the distance from the gas discharge nozzle 61 at the offset position to the center of the wafer W in a plan view, that is, the offset amount, is such that the developing liquid on the center of the wafer W is radially outward due to the inert gas from the gas discharge nozzle 61. Any position may be used as long as it is extruded.
- FIG. 6 is a diagram showing the rotation speed of the wafer W at each time point during the development process of this example.
- Step S11 Development step
- the resist film on the wafer W is developed as in the development step of step S1 in the processing example 1.
- Step S12 Discharge process
- the wafer W is rotated and the inert gas is supplied to the center of the wafer W, and the central region of the wafer W is maintained while maintaining the liquid film of the developer in the central region of the wafer W.
- the developer containing the lysis product is pushed outward in the radial direction, and the lysis product is discharged.
- the discharge step of this example unlike the discharge step of step S2 in the processing example 1, the developer is also supplied to the central region of the wafer W, and the amount of the developer on the central region is increased.
- the wafer W adsorbed on the spin chuck 21 is rotated at a rotation speed of 1000 rpm to 1500 rpm as shown in FIG. 6, and a predetermined distance from the center of the wafer W.
- the developer is discharged from the developer discharge nozzle 51 to a distant position (offset position).
- the rotation speed of the wafer W is lowered, and the developer W and the inert gas are simultaneously supplied to the wafer W.
- the wafer W adsorbed on the spin chuck 21 is rotated at a rotation speed of 500 rpm to 700 rpm, and the gas is centered on the wafer W while maintaining the discharge of the developer from the developer discharge nozzle 51.
- the inert gas is discharged from the discharge nozzle 61.
- Step S13 Drying step
- the wafer W is rotated and dried. Specifically, the developer discharge from the developer discharge nozzle 51 and the discharge of the inert gas from the gas discharge nozzle 61 are stopped, and the rotation speed of the wafer W is increased to rotate at a rotation speed of 2000 rpm to 3000 rpm. , The developer on the wafer W is shaken off to dry the wafer W. After that, the wafer W is carried out from the processing container 10.
- the allowable range of the supply conditions of the inert gas in the discharge process can be expanded.
- the following effects can be obtained. That is, by supplying the inert gas in the discharge step, the dissolution product on the central region of the wafer W can be discharged, but in the discharge step, the dissolution product is not sufficiently discharged from the wafer.
- the developer on the central region of W may dry (volatilize).
- Such drying can be prevented by supplying a developing solution to the central region of the wafer W in the discharging process. Further, by supplying the developer to the central region of the wafer W in the discharge step, the concentration of the dissolution product in the developer on the central region of the wafer W can be reduced. Therefore, the number of defects caused by the dissolution products generated in the central region of the wafer W can be further suppressed.
- processing example 2 In the above-mentioned development processing example 2 (hereinafter, processing example 2), in the discharge step of step S12, the developer is discharged from the developer discharge nozzle to a position offset from the center of the wafer W, and the developer is discharged to the center of the wafer W. , The inert gas is discharged from the gas discharge nozzle 61.
- the position where the inert gas is discharged from the gas discharge nozzle 61 may also be a position (offset position) separated from the center of the wafer W by a predetermined distance.
- FIG. 7 is a diagram for explaining specific examples of the discharge position of the gas discharge nozzle 61 and the discharge position of the developer discharge nozzle 51.
- the discharge position of the developer discharge nozzle 51 and the discharge position of the gas discharge nozzle 61 in the discharge step of step S12 are separated from each other by 20 mm to 25 mm with the center WC of the wafer W in between.
- the discharge position of the developer discharge nozzle 51 and the discharge position of the gas discharge nozzle 61 in the discharge step of step S12 sandwich the center WC of the wafer W in a plan view, and the distance L1 between the two nozzles is sandwiched between them. (See FIG. 7) is 20 mm to 25 mm.
- the discharge position of the gas discharge nozzle 61 in the discharge step of step S12 is set to a position separated from the center of the wafer W by, for example, 5 to 15 mm, that is, the discharge position of the gas discharge nozzle 61 in the discharge step of step S12.
- the distance L2 (see FIG. 7) between the wafer W and the center WC of the wafer W in a plan view is 5 to 15 mm.
- the reason why the number of defects can be reduced by setting the discharge position of the gas discharge nozzle 61 to 5 mm or more from the center of the wafer W when the gas discharge nozzles 61 are separated from each other by 20 mm to 25 mm as described above is the wafer. It is believed that it is possible to expel a wider range of dissolution products of W. Further, the reason why the discharge position of the gas discharge nozzle 61 is set to 15 mm or less from the center of the wafer W when the gas discharge nozzles 61 are separated from each other by 20 mm to 25 mm as described above is as follows.
- the discharge position of the developer discharge nozzle 51 becomes closer to the center of the wafer W, and the inert gas from the gas discharge nozzle 61 may push the developer on the center of the wafer W outward in the radial direction. This is because it becomes difficult to be hindered by the developer from the developer discharge nozzle 51.
- the supply period of the developer and the supply period of the inert gas overlap, but the supply start timing of the developer and the supply start timing of the inert gas are different. ..
- the supply start timing of the developer and the supply start timing of the inert gas may be the same.
- the supply start timing of the inert gas is later than the supply start timing of the developer, but it may be earlier.
- the wafer W is rotated and the inert gas is supplied to the central region of the wafer W to form a liquid film of the developer in the central region.
- a discharge step is provided for discharging the dissolution product from the central region while maintaining the temperature. Therefore, it is possible to prevent many defects from occurring near the center of the wafer after the development process, that is, it is possible to suppress the occurrence of the center mode.
- a method of suppressing the generation of the center mode a method of supplying the developer for a long time can be considered, but the developing method according to the present embodiment suppresses the generation of the center mode at a lower cost than this method. be able to.
- the rotation speed of the wafer W at the time of supplying the inert gas in the discharging process is lower than the rotation speed of the wafer W in the drying process. Therefore, it is possible to prevent the central region of the wafer W from drying out in a state where the dissolution product is not sufficiently discharged from the central region of the wafer W when the inert gas is supplied in the discharge step.
- the rotation speed of the wafer W at the time of supplying the inert gas in the discharge step is a period during which the developer is spread over the entire surface of the wafer W (for example, the formation of the developer paddle in the developing steps of steps S1 and S11). It is lower than the number of rotations of the wafer W in time or in the period from the start of ejection of the developing solution in the ejection step in step S12 to the start of ejection of the inert gas). Therefore, it is possible to more reliably prevent the central region of the wafer W from drying out in a state where the dissolution product is not sufficiently discharged from the central region of the wafer W when the inert gas is supplied in the discharge step. ..
- Example 1 and Example 2 of development processing In the drying step in the above example, the developer is assumed to remain as liquid particles on the central region of the wafer W after drying. Instead of this, the wafer W is rotated at a rotation speed at which the liquid film on the central region of the wafer W after drying is maintained, and the developer on the central region of the wafer W is centrifuged in the state of the liquid film. It may be shaken off by force and dried so that no liquid particles of the developer remain on the central region of the dried wafer W.
- a negative developer called butyl acetate was used as the developer, but the technique according to the present disclosure is for developing other negative developers having a volume resistivity of 3.4 ⁇ 10 11 ⁇ ⁇ cm or more. It can also be applied when a liquid is used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
基板に対して現像処理を行う現像処理装置であって、基板を保持して回転させる保持回転部と、前記保持回転部により保持されている基板に対して現像液を供給する現像液供給部と、前記保持回転部により保持されている基板に対して不活性ガスを供給するガス供給部と、制御部と、を備え、前記制御部は、現像液で、基板上のレジスト膜を現像する工程(S1)と、前記現像する工程後、基板を回転させ乾燥させる工程(S3)と、前記現像する工程後、前記乾燥させる工程前に、基板を回転させると共に当該基板の中心領域に不活性ガスを供給し、前記中心領域の現像液の液膜を保ちつつ、前記中心領域から、溶解生成物を排出する工程(S2)と、が実行されるように、前記保持回転部と、前記現像液供給部と、前記ガス供給部とを制御する。
Description
本開示は、現像処理装置及び現像処理方法に関する。
特許文献1は、表面にレジストが塗布され、露光された後の基板に有機溶剤を含有する現像液を供給して現像を行う現像処理方法が開示されている。この現像処理方法は、基板を回転させながら、現像液供給ノズルから基板の中心部に現像液を供給して液膜を形成する液膜形成工程と、現像液供給ノズルから基板への現像液の供給を停止すると共に、現像液の液膜を乾燥させない状態で基板を回転させながら基板上のレジスト膜を現像する現像工程と、を含む。また、特許文献1には、酢酸ブチルを含有する現像液を用いることが開示されている。
本開示にかかる技術は、現像処理後の基板の中心付近に欠陥が多く生じるのを防ぐ。
本開示の一態様は、基板に対して現像処理を行う現像処理装置であって、基板を保持して回転させる保持回転部と、前記保持回転部により保持されている基板に対して現像液を供給する現像液供給部と、前記保持回転部により保持されている基板に対して不活性ガスを供給するガス供給部と、制御部と、を備え、前記制御部は、現像液で、基板上のレジスト膜を現像する工程と、前記現像する工程後、基板を回転させ乾燥させる工程と、前記現像する工程後、前記乾燥させる工程前に、基板を回転させると共に当該基板の中心領域に不活性ガスを供給し、前記中心領域の現像液の液膜を保ちつつ、前記中心領域から、溶解生成物を排出する工程と、が実行されるように、前記保持回転部と、前記現像液供給部と、前記ガス供給部とを制御する。
本開示によれば、現像処理後の基板の中心付近に欠陥が多く生じるのを防ぐことができる。
半導体デバイス等の製造工程では、半導体ウェハ(以下、「ウェハ」という。)上にレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、レジスト膜を露光する露光処理、露光されたレジスト膜を現像する現像処理等が順次行われ、ウェハ上にレジストパターンが形成される。
上述の現像処理は、通常、現像処理装置で行われ、当該現像処理装置では、例えばスピンチャックに保持されたウェハに現像液吐出ノズルから現像液が吐出され、ウェハ表面上に現像液の液膜が形成されて、ウェハ上のレジスト膜が現像される。現像液としては例えば酢酸ブチルが用いられる(特許文献1参照)。
本発明者らが確認したところによれば、現像液として酢酸ブチルを用いた場合、現像処理後のウェハの中心付近に欠陥が多く生じるセンターモードが発生することがある。また、酢酸ブチル以外の現像液を用いた場合にも、上記センターモードが発生することがある。
そこで、本開示にかかる技術は、現像処理後の基板の中心付近に欠陥が多く生じるのを防ぐ。
以下、本実施形態にかかる現像処理装置及び現像処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。
(現像処理装置)
図1及び図2は、本実施形態にかかる現像処理装置1の構成の概略を示す縦断面図及び横断面図である。
図1及び図2は、本実施形態にかかる現像処理装置1の構成の概略を示す縦断面図及び横断面図である。
現像処理装置1は、図1に示すように内部を密閉可能な処理容器10を有している。処理容器10の側面には、基板としてのウェハWの搬入出口(図示せず)が形成されている。
処理容器10内には、ウェハWを保持して回転させる保持回転部20が設けられている。保持回転部20は、具体的には、ウェハWを保持して鉛直軸周りに回転させる。また、保持回転部20は、ウェハWを保持した状態で回転可能に構成されたスピンチャック21と、モータ等のアクチュエータを有しスピンチャック21を回転させるチャック駆動部22と、を有する。スピンチャック21は、チャック駆動部22により様々な速度(回転数)で回転自在に構成されている。また、チャック駆動部22には、例えばシリンダ等のアクチュエータを有する昇降駆動機構が設けられており、スピンチャック21は昇降駆動機構により昇降自在に構成されている。
スピンチャック21に保持されたウェハWの周囲を取り囲むようにカップ30が設けられている。カップ30は、ウェハWから飛散又は落下する液体を受け止め、回収するものである。カップ30の底面には、回収した液体を排出する排液管31と、カップ30内の雰囲気を排気する排気管32が接続されている。
図2に示すようにカップ30のX方向負方向(図2の下方向)側には、Y方向(図2の左右方向)に沿って延伸するレール40が形成されている。レール40は、例えばカップ30のY方向負方向(図2の左方向)側の外方からY方向正方向(図2の右方向)側の外方まで形成されている。レール40にはアーム41が取り付けられている。
アーム41には、後述の現像液吐出ノズル51とガス吐出ノズル61が支持されている。アーム41は、現像液吐出ノズル51及びガス吐出ノズル61を移動させる移動機構としてのノズル駆動部42によってレール40上を移動自在となっている。ノズル駆動部42は、例えばモータ等のアクチュエータを有する。ノズル駆動部42により、現像液吐出ノズル51及びガス吐出ノズル61は、カップ30のY方向正方向側の外側に設けられた待機部43から、カップ30内のウェハWの中心領域上方まで移動できる。また、ノズル駆動部42によって、アーム41は昇降自在であり、現像液吐出ノズル51及びガス吐出ノズル61の高さを調節できる。
本実施形態では、現像液吐出ノズル51及びガス吐出ノズル61は、同一のアーム41に設けられており、平面視における両者間の距離は例えば20mm~25mmである。
本実施形態では、現像液吐出ノズル51及びガス吐出ノズル61は、同一のアーム41に設けられており、平面視における両者間の距離は例えば20mm~25mmである。
また、現像処理装置1は、保持回転部20(具体的にはスピンチャック21)により保持されているウェハWに対して現像液を供給する現像液供給部50を有する。現像液供給部50は、下方に向けて現像液を吐出する現像液吐出ノズル51と、現像液吐出ノズル51と現像液の供給源70とを接続する供給管52と、を有する。また、現像液供給部50は、現像液の供給源70から現像液吐出ノズル51への現像液の供給を制御するための供給機器群53を有する。供給機器群53は、供給管52に設けられ、現像液の供給及び供給停止を切り換える供給弁や現像液の流量を調節する流量調整弁等を含む。現像液としては、ネガ型のものが用いられ、具体的には酢酸ブチルが用いられる。
また、現像処理装置1は、保持回転部20(具体的にはスピンチャック21)により保持されているウェハWに対して不活性ガスを供給するガス供給部60を有する。現像液供給部50は、下方に向けて不活性ガスを吐出するガス吐出ノズル61と、ガス吐出ノズル61と不活性ガスの供給源80とを接続する供給管62と、を有する。また、ガス供給部60は、不活性ガスの供給源80からガス吐出ノズル61への不活性ガスの供給を制御するための供給機器群63を有する。供給機器群63は、供給管62に設けられ、不活性ガスの供給及び供給停止を切り換える供給弁や不活性ガスの流量を調節する流量調整弁等を含む。不活性ガスとしては、例えばN2ガスが用いられる。
以上の現像処理装置1には、図1に示すように、制御部100が設けられている。制御部100は、例えばCPUやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、現像処理装置1における各種処理を実現するプログラム(例えば、保持回転部20、ノズル駆動部42、現像液供給部50、ガス供給部60等を制御して後述の現像処理を実現するプログラム)が格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Mに記録されていたものであって、当該記憶媒体Mから制御部100にインストールされたものであってもよい。記憶媒体Hは、一時的なものであっても非一時的なものであってもよい。また、プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。
(現像処理の例1)
続いて、現像処理装置1における現像処理の一例について、図3~図5を用いて説明する。図3は、本例の現像処理中の各時点におけるウェハWの回転数を示す図である。図4及び図5は、排出工程で不活性ガスを供給する理由を説明する図である。なお、以下の説明において、処理容器10内に搬入されるウェハWの表面には予めレジスト膜が形成されているものとし、当該レジスト膜に対して、露光処理及びその後の加熱処理が予め行われているものとする。また、以下の現像処理は、制御部100の制御の下、行われる。
続いて、現像処理装置1における現像処理の一例について、図3~図5を用いて説明する。図3は、本例の現像処理中の各時点におけるウェハWの回転数を示す図である。図4及び図5は、排出工程で不活性ガスを供給する理由を説明する図である。なお、以下の説明において、処理容器10内に搬入されるウェハWの表面には予めレジスト膜が形成されているものとし、当該レジスト膜に対して、露光処理及びその後の加熱処理が予め行われているものとする。また、以下の現像処理は、制御部100の制御の下、行われる。
(ステップS1:現像工程)
まず、ウェハW上のレジスト膜が現像される。
具体的には、ウェハWが、処理容器10内に搬入され、保持回転部20のスピンチャック21上に載置され吸着される。次いで、図3に示すように、スピンチャック21に吸着されたウェハWを1000rpm~1500rpmの回転数で回転させると共に、当該ウェハWの中心に向けて現像液吐出ノズル51から現像液(具体的には酢酸ブチル)を吐出させ、ウェハWの表面を現像液の液膜で覆い、すなわち、ウェハWの表面全面を覆う現像液パドルを形成する。
現像液パドル形成後、現像液の供給が停止され、例えばウェハWを回転させずに予め定められた時間静止させる静止現像が行われる。これにより、ウェハW上のレジスト膜の現像が進行し、ウェハW上にレジストパターンが形成される。
まず、ウェハW上のレジスト膜が現像される。
具体的には、ウェハWが、処理容器10内に搬入され、保持回転部20のスピンチャック21上に載置され吸着される。次いで、図3に示すように、スピンチャック21に吸着されたウェハWを1000rpm~1500rpmの回転数で回転させると共に、当該ウェハWの中心に向けて現像液吐出ノズル51から現像液(具体的には酢酸ブチル)を吐出させ、ウェハWの表面を現像液の液膜で覆い、すなわち、ウェハWの表面全面を覆う現像液パドルを形成する。
現像液パドル形成後、現像液の供給が停止され、例えばウェハWを回転させずに予め定められた時間静止させる静止現像が行われる。これにより、ウェハW上のレジスト膜の現像が進行し、ウェハW上にレジストパターンが形成される。
(ステップS2:排出工程)
次いで、ウェハWの中心領域上の、欠陥の原因となる溶解生成物を含む現像液(具体的には酢酸ブチル)を径方向外側に押し出させ、上記中心領域から溶解生成物を排出させる。特に、この工程では、ウェハWを回転させ、それに加えて、ウェハWの中心に不活性ガスを供給させることで、ウェハWの中心領域から、溶解生成物を含む現像液を径方向外側に押し出させ、溶解生成物を排出させる。本工程でウェハWの中心に不活性ガスを供給させる理由は以下の通りである。
次いで、ウェハWの中心領域上の、欠陥の原因となる溶解生成物を含む現像液(具体的には酢酸ブチル)を径方向外側に押し出させ、上記中心領域から溶解生成物を排出させる。特に、この工程では、ウェハWを回転させ、それに加えて、ウェハWの中心に不活性ガスを供給させることで、ウェハWの中心領域から、溶解生成物を含む現像液を径方向外側に押し出させ、溶解生成物を排出させる。本工程でウェハWの中心に不活性ガスを供給させる理由は以下の通りである。
現像液として用いられる酢酸ブチルは、体積抵抗率が高いため、絶縁材料から形成される供給管52を介して現像液吐出ノズル51に供給され現像液吐出ノズル51から吐出される際に帯電する。そのため、図4に示すように、現像液LはウェハW上に位置する状態において帯電している。また、現像液Lが吐出されているウェハWも同様に帯電する。そのため、ウェハW上の現像液LとウェハWとの間に静電気力による反発力Fが現像液に生じる。そうすると、この反発力Fが小さくなるよう、ウェハW上において膜状であった現像液は図5に示すように小さな球状の液粒になろうとする。
しかし、現像液Lが球状の液粒になると膜状には戻らず、また、ウェハWの中心領域上に位置する現像液Lの液粒は、ウェハWを回転させても、当該液粒に加わる遠心力が小さいためウェハW上に残ってしまう。そうすると、当該現像液Lの液粒が揮発したときに、当該現像液Lの液粒に含まれていた溶解生成物が、ウェハWの中心領域上に欠陥として残る。言い換えると、センターモードの原因となる。
そこで、本例では、ウェハWの中心に不活性ガスを供給させることで、ウェハWの中心領域の現像液が液膜の状態から液粒にならないように抑え込み、液膜の状態を保たせている。これが、ステップS2の排出工程でウェハWの中心に不活性ガスを供給させる理由の1つである。
そこで、本例では、ウェハWの中心に不活性ガスを供給させることで、ウェハWの中心領域の現像液が液膜の状態から液粒にならないように抑え込み、液膜の状態を保たせている。これが、ステップS2の排出工程でウェハWの中心に不活性ガスを供給させる理由の1つである。
また、ステップS2の排出工程でウェハWの中心に不活性ガスを供給させる他の理由は、不活性ガスの気流によって、ウェハWの中心領域上のより多くの現像液を径方向外側に押し出させることである。
すなわち、ステップS2の排出工程では、ウェハWの中心に不活性ガスを供給させることで、ウェハWの中心領域の現像液が液膜の状態から液粒にならないように抑え込み、ウェハWの中心領域の現像液の液膜を保つ。この状態で、ウェハWの中心へ吐出された不活性ガスが形成する気流とウェハWの回転による遠心力で、ウェハWの中心領域から、溶解生成物を含む現像液を径方向外側に押し出させ、溶解生成物を排出させる。
ステップS2の排出工程では、具体的には、スピンチャック21に吸着されたウェハWを、図3に示すように、後述のステップS3の乾燥工程よりも低い回転数(例えば500rpm~700rpm)で、回転させると共に、当該ウェハWの中心に向けてガス吐出ノズル61から不活性ガスを吐出させる。これにより、ウェハWの中心領域の現像液の液膜を保ちつつ、上記中心領域から、溶解生成物を含む現像液を径方向外側に押し出させ、溶解生成物を排出させることができ、ウェハWの中心領域上の溶解生成物の量を減少させることができる。
(ステップS3:乾燥工程)
ステップS2の排出工程後、ウェハWを回転させ乾燥させる。
具体的には、ガス吐出ノズル61からの不活性ガスの吐出を停止させると共に、ウェハWの回転数を上げ、所定の回転数で回転させ、ウェハW上の現像液を振り切ってウェハWを乾燥させる。上記所定の回転数とは、2000rpm~3000rpm、好ましくは、2000rpm~2500rpmである。また、ウェハWの回転数を上記所定の回転数まで上げるまでの回転加速度は例えば3000rpm/sである。上述のようなウェハWの回転数及び回転加速度でウェハWを回転させることにより、ウェハWから振り切られた現像液がカップ30に跳ね返され欠陥の原因となることを抑制しながら、ウェハWの中心領域の現像液をウェハW外に多く排出することができる。
その後、ウェハWは処理容器10から搬出される。
ステップS2の排出工程後、ウェハWを回転させ乾燥させる。
具体的には、ガス吐出ノズル61からの不活性ガスの吐出を停止させると共に、ウェハWの回転数を上げ、所定の回転数で回転させ、ウェハW上の現像液を振り切ってウェハWを乾燥させる。上記所定の回転数とは、2000rpm~3000rpm、好ましくは、2000rpm~2500rpmである。また、ウェハWの回転数を上記所定の回転数まで上げるまでの回転加速度は例えば3000rpm/sである。上述のようなウェハWの回転数及び回転加速度でウェハWを回転させることにより、ウェハWから振り切られた現像液がカップ30に跳ね返され欠陥の原因となることを抑制しながら、ウェハWの中心領域の現像液をウェハW外に多く排出することができる。
その後、ウェハWは処理容器10から搬出される。
この乾燥工程では、現像液として用いられる酢酸ブチルの体積抵抗率が高いため、図4及び図5を用いて説明した理由と同様な理由で、振り切り乾燥後のウェハWの中心領域上に現像液が液粒として残る場合がある。ただし、ウェハWの中心領域上の現像液がその後に揮発したとしても、ステップS2の排出工程によって、ウェハWの中心領域上の、欠陥の原因となる溶解生成物が減少しているため、ウェハWの中心領域に多くの欠陥が発生することがない。
(現像処理の例1の変形例)
上述の現像処理の例1(以下、処理例1)では、ステップS2の排出工程において、ウェハWの中心に、ガス吐出ノズル61から不活性ガスを吐出させている。これに代えて、ウェハWの中心から所定の距離離れた位置(オフセットされた位置)に、ガス吐出ノズル61から不活性ガスを吐出させてもよい。これにより、ステップS2の排出工程において窒素ガスにより溶解生成物が排出されるウェハW上の領域を広げることができる。なお、オフセットされた位置のガス吐出ノズル61からウェハWの中心までの平面視における距離すなわちオフセット量は、ガス吐出ノズル61からの不活性ガスによりウェハWの中心上の現像液が径方向外側に押し出される位置であればよい。
上述の現像処理の例1(以下、処理例1)では、ステップS2の排出工程において、ウェハWの中心に、ガス吐出ノズル61から不活性ガスを吐出させている。これに代えて、ウェハWの中心から所定の距離離れた位置(オフセットされた位置)に、ガス吐出ノズル61から不活性ガスを吐出させてもよい。これにより、ステップS2の排出工程において窒素ガスにより溶解生成物が排出されるウェハW上の領域を広げることができる。なお、オフセットされた位置のガス吐出ノズル61からウェハWの中心までの平面視における距離すなわちオフセット量は、ガス吐出ノズル61からの不活性ガスによりウェハWの中心上の現像液が径方向外側に押し出される位置であればよい。
(現像処理の例2)
続いて、現像処理装置1における、現像処理を含む現像処理の他の例について、図6を用いて説明する。図6は、本例の現像処理中の各時点におけるウェハWの回転数を示す図である。
続いて、現像処理装置1における、現像処理を含む現像処理の他の例について、図6を用いて説明する。図6は、本例の現像処理中の各時点におけるウェハWの回転数を示す図である。
(ステップS11:現像工程)
まず、処理例1におけるステップS1の現像工程と同様、ウェハW上のレジスト膜が現像される。
まず、処理例1におけるステップS1の現像工程と同様、ウェハW上のレジスト膜が現像される。
(ステップS12:排出工程)
次いで、処理例1におけるステップS2の排出工程と同様、ウェハWを回転させると共にウェハWの中心に不活性ガスを供給させ、ウェハWの中心領域の現像液の液膜を保ちつつ、上記中心領域から、溶解生成物を含む現像液を径方向外側に押し出させ、溶解生成物を排出させる。ただし、本例の排出工程では、処理例1におけるステップS2の排出工程と異なり、ウェハWの中心領域に現像液も供給され、当該中心領域上の現像液の液量を増加させている。
次いで、処理例1におけるステップS2の排出工程と同様、ウェハWを回転させると共にウェハWの中心に不活性ガスを供給させ、ウェハWの中心領域の現像液の液膜を保ちつつ、上記中心領域から、溶解生成物を含む現像液を径方向外側に押し出させ、溶解生成物を排出させる。ただし、本例の排出工程では、処理例1におけるステップS2の排出工程と異なり、ウェハWの中心領域に現像液も供給され、当該中心領域上の現像液の液量を増加させている。
ステップS12の排出工程では、具体的には、まずスピンチャック21に吸着されたウェハWを、図6に示すように1000rpm~1500rpmの回転数で回転させると共に、当該ウェハWの中心から所定の距離離れた位置(オフセットされた位置)に、現像液吐出ノズル51から現像液を吐出させる。
その後、ウェハWの回転数を下げると共に、ウェハWに現像液と不活性ガスを同時に供給させる。具体的には、スピンチャック21に吸着されたウェハWを、500rpm~700rpmの回転数で回転させると共に、現像液吐出ノズル51からの現像液の吐出を維持させたまま、ウェハWの中心にガス吐出ノズル61から不活性ガスを吐出させる。
その後、ウェハWの回転数を下げると共に、ウェハWに現像液と不活性ガスを同時に供給させる。具体的には、スピンチャック21に吸着されたウェハWを、500rpm~700rpmの回転数で回転させると共に、現像液吐出ノズル51からの現像液の吐出を維持させたまま、ウェハWの中心にガス吐出ノズル61から不活性ガスを吐出させる。
(ステップS13:乾燥工程)
ステップS12の排出工程後、ウェハWを回転させ乾燥させる。
具体的には、現像液吐出ノズル51からの現像液の吐出及びガス吐出ノズル61からの不活性ガスの吐出を停止させると共に、ウェハWの回転数を上げ、2000rpm~3000rpmの回転数で回転させ、ウェハW上の現像液を振り切ってウェハWを乾燥させる。その後、ウェハWは処理容器10から搬出される。
ステップS12の排出工程後、ウェハWを回転させ乾燥させる。
具体的には、現像液吐出ノズル51からの現像液の吐出及びガス吐出ノズル61からの不活性ガスの吐出を停止させると共に、ウェハWの回転数を上げ、2000rpm~3000rpmの回転数で回転させ、ウェハW上の現像液を振り切ってウェハWを乾燥させる。その後、ウェハWは処理容器10から搬出される。
本例のように、排出工程でウェハWの中心領域に現像液も供給することにより、現像液の液膜を形成する液量が増加するため、排出工程で現像液の液膜を保つことが容易となる。したがって、排出工程における不活性ガスの供給条件の許容範囲を広げることができる。
また、排出工程でウェハWの中心領域に現像液も供給することで以下の効果もある。すなわち、排出工程で不活性ガスを供給することで、ウェハWの中心領域上の溶解生成物を排出することができるが、排出工程において、十分に溶解生成物が排出されていない状態で、ウェハWの中心領域上の現像液が乾燥(揮発)してしまうことがある。このような乾燥を、排出工程でウェハWの中心領域に現像液も供給することで防ぐことができる。
さらに、排出工程でウェハWの中心領域に現像液も供給することで、ウェハWの中心領域上の現像液中における溶解生成物の濃度を低下させることができる。したがって、ウェハWの中心領域に生じる、溶解生成物に起因した欠陥の数をさらに抑制することができる。
また、排出工程でウェハWの中心領域に現像液も供給することで以下の効果もある。すなわち、排出工程で不活性ガスを供給することで、ウェハWの中心領域上の溶解生成物を排出することができるが、排出工程において、十分に溶解生成物が排出されていない状態で、ウェハWの中心領域上の現像液が乾燥(揮発)してしまうことがある。このような乾燥を、排出工程でウェハWの中心領域に現像液も供給することで防ぐことができる。
さらに、排出工程でウェハWの中心領域に現像液も供給することで、ウェハWの中心領域上の現像液中における溶解生成物の濃度を低下させることができる。したがって、ウェハWの中心領域に生じる、溶解生成物に起因した欠陥の数をさらに抑制することができる。
(現像処理の例2の変形例)
上述の現像処理の例2(以下、処理例2)では、ステップS12の排出工程において、ウェハWの中心からオフセットされた位置に、現像液吐出ノズルから現像液を吐出させ、ウェハWの中心に、ガス吐出ノズル61から不活性ガスを吐出させている。これに代えて、ガス吐出ノズル61からの不活性ガスの吐出位置も、ウェハWの中心から所定の距離離れた位置(オフセットされた位置)としてもよい。
上述の現像処理の例2(以下、処理例2)では、ステップS12の排出工程において、ウェハWの中心からオフセットされた位置に、現像液吐出ノズルから現像液を吐出させ、ウェハWの中心に、ガス吐出ノズル61から不活性ガスを吐出させている。これに代えて、ガス吐出ノズル61からの不活性ガスの吐出位置も、ウェハWの中心から所定の距離離れた位置(オフセットされた位置)としてもよい。
図7は、ガス吐出ノズル61の吐出位置及び現像液吐出ノズル51の吐出位置の具体例を説明するための図である。
ステップS12の排出工程における現像液吐出ノズル51の吐出位置とガス吐出ノズル61の吐出位置とは、平面視において、ウェハWの中心WCを間に挟んで、互いに20mm~25mm離間している。言い換えると、ステップS12の排出工程における現像液吐出ノズル51の吐出位置とガス吐出ノズル61の吐出位置とは、平面視において、ウェハWの中心WCを間に挟んでおり、両ノズル間の距離L1(図7参照)は20mm~25mmである。この場合において、ステップS12の排出工程におけるガス吐出ノズル61の吐出位置は、例えば、ウェハWの中心から5~15mm離間した位置とされ、つまり、ステップS12の排出工程におけるガス吐出ノズル61の吐出位置とウェハWの中心WCとの間の平面視での距離L2(図7参照)は5~15mmとされる。これにより、同じ場合において、上記ガス吐出ノズル61の吐出位置をウェハWの中心としたときより、ステップS13の乾燥工程後のウェハWにおける欠陥数を65%以下にすることができることを、本発明者らは確認している。
ステップS12の排出工程における現像液吐出ノズル51の吐出位置とガス吐出ノズル61の吐出位置とは、平面視において、ウェハWの中心WCを間に挟んで、互いに20mm~25mm離間している。言い換えると、ステップS12の排出工程における現像液吐出ノズル51の吐出位置とガス吐出ノズル61の吐出位置とは、平面視において、ウェハWの中心WCを間に挟んでおり、両ノズル間の距離L1(図7参照)は20mm~25mmである。この場合において、ステップS12の排出工程におけるガス吐出ノズル61の吐出位置は、例えば、ウェハWの中心から5~15mm離間した位置とされ、つまり、ステップS12の排出工程におけるガス吐出ノズル61の吐出位置とウェハWの中心WCとの間の平面視での距離L2(図7参照)は5~15mmとされる。これにより、同じ場合において、上記ガス吐出ノズル61の吐出位置をウェハWの中心としたときより、ステップS13の乾燥工程後のウェハWにおける欠陥数を65%以下にすることができることを、本発明者らは確認している。
なお、上述のように互いに20mm~25mm離間している場合において、上記ガス吐出ノズル61の吐出位置を、ウェハWの中心から5mm以上とすることにより、欠陥数を減らすことができる理由は、ウェハWのより広範囲の溶解生成物を排出することができる、からと考えられる。
また、上述のように互いに20mm~25mm離間している場合において、上記ガス吐出ノズル61の吐出位置を、ウェハWの中心から15mm以下とする理由は以下の通りである。すなわち、15mmより大きくすると、現像液吐出ノズル51の吐出位置がウェハWの中心に近くなり、ガス吐出ノズル61からの不活性ガスによりウェハWの中心上の現像液を径方向外側に押し出すことが、現像液吐出ノズル51からの現像液により阻害され難しくなるから、である。
また、上述のように互いに20mm~25mm離間している場合において、上記ガス吐出ノズル61の吐出位置を、ウェハWの中心から15mm以下とする理由は以下の通りである。すなわち、15mmより大きくすると、現像液吐出ノズル51の吐出位置がウェハWの中心に近くなり、ガス吐出ノズル61からの不活性ガスによりウェハWの中心上の現像液を径方向外側に押し出すことが、現像液吐出ノズル51からの現像液により阻害され難しくなるから、である。
また、処理例2のステップS12の排出工程において、現像液の供給期間と不活性ガスの供給期間が重複しているが、現像液の供給開始タイミングと不活性ガスの供給開始タイミングが異なっている。これに代えて、現像液の供給開始タイミングと不活性ガスの供給開始タイミングとを同じにしてもよい。また、処理例2のステップS12の排出工程において、不活性ガスの供給開始タイミングが現像液の供給開始タイミングより遅かったが、早くてもよい。
以上のように、本実施形態では、現像工程と、乾燥工程との間に、ウェハWを回転させると共にウェハWの中心領域に不活性ガスを供給し、上記中心領域の現像液の液膜を保ちつつ、上記中心領域から、溶解生成物を排出する排出工程が設けられている。したがって、現像処理後のウェハの中心付近に欠陥が多く生じるのを防ぐことができ、すなわち、センターモードの発生を抑制することができる。
なお、センターモードの発生を抑制する方法として、現像液を長時間供給する方法が考えられるが、この方法に比べて、本実施形態にかかる現像方法は、低コストでセンターモードの発生を抑制することができる。
なお、センターモードの発生を抑制する方法として、現像液を長時間供給する方法が考えられるが、この方法に比べて、本実施形態にかかる現像方法は、低コストでセンターモードの発生を抑制することができる。
また、本実施形態では、排出工程における不活性ガス供給時のウェハWの回転数が、乾燥工程におけるウェハWの回転数より低くなっている。したがって、排出工程における不活性ガス供給時に、ウェハWの中心領域から十分に溶解生成物が排出されていない状態で、ウェハWの中心領域が乾燥してしまうことを抑制することができる。
さらに、本実施形態では、排出工程における不活性ガス供給時のウェハWの回転数が、現像液をウェハWの表面全体に広げる期間(例えば、ステップS1、S11の現像工程における現像液パドルの形成時やステップS12における排出工程の現像液の吐出開始から不活性ガスの吐出を開始するまでの期間)におけるウェハWの回転数より低くなっている。したがって、排出工程における不活性ガス供給時に、ウェハWの中心領域から十分に溶解生成物が排出されていない状態で、ウェハWの中心領域が乾燥してしまうことをより確実に抑制することができる。
(現像処理の例1及び例2に共通の変形例)
以上の例における乾燥工程では、乾燥後のウェハWの中心領域上に現像液が液粒として残るものとしていた。これに代えて、乾燥後のウェハWの中心領域上の液膜が保たれた状態となる回転数でウェハWを回転させ、ウェハWの中心領域上の現像液を液膜の状態のまま遠心力により振り切って乾燥させ、乾燥後のウェハWの中心領域上に現像液の液粒が残らないようにしてもよい。
以上の例における乾燥工程では、乾燥後のウェハWの中心領域上に現像液が液粒として残るものとしていた。これに代えて、乾燥後のウェハWの中心領域上の液膜が保たれた状態となる回転数でウェハWを回転させ、ウェハWの中心領域上の現像液を液膜の状態のまま遠心力により振り切って乾燥させ、乾燥後のウェハWの中心領域上に現像液の液粒が残らないようにしてもよい。
以上の例では、現像液として酢酸ブチルというネガ型現像液を用いていたが、本開示にかかる技術は、体積抵抗率が3.4×1011Ω・cm以上の、他のネガ型の現像液を用いる場合にも適用することができる。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
1 現像処理装置
20 保持回転部
50 現像液供給部
60 ガス供給部
100 制御部
L 現像液
W ウェハ
20 保持回転部
50 現像液供給部
60 ガス供給部
100 制御部
L 現像液
W ウェハ
Claims (17)
- 基板に対して現像処理を行う現像処理装置であって、
基板を保持して回転させる保持回転部と、
前記保持回転部により保持されている基板に対して現像液を供給する現像液供給部と、
前記保持回転部により保持されている基板に対して不活性ガスを供給するガス供給部と、
制御部と、を備え、
前記制御部は、
現像液で、基板上のレジスト膜を現像する工程と、
前記現像する工程後、基板を回転させ乾燥させる工程と、
前記現像する工程後、前記乾燥させる工程前に、基板を回転させると共に当該基板の中心領域に不活性ガスを供給し、前記中心領域の現像液の液膜を保ちつつ、前記中心領域から、溶解生成物を排出する工程と、が実行されるように、前記保持回転部と、前記現像液供給部と、前記ガス供給部とを制御する、現像処理装置。 - 前記制御部は、前記排出する工程における基板の回転数が、前記乾燥させる工程における基板の回転数より低くなるように、前記保持回転部を制御する、請求項1に記載の現像処理装置。
- 前記制御部は、前記排出する工程において、前記中心領域に現像液が供給されるよう、前記現像液供給部を制御する、請求項1または2に記載の現像処理装置。
- 前記ガス供給部は、下方に向けて不活性ガスを吐出するガス吐出ノズルを有し、
前記ガス吐出ノズルと前記保持回転部とを相対的に移動させる移動機構をさらに備え、
前記制御部は、前記排出する工程において、前記ガス吐出ノズルが、基板の中心から離れた位置に不活性ガスを吐出するよう、前記移動機構を制御する、請求項1~3のいずれか1項に記載の現像処理装置。 - 前記現像液供給部は、下方に向けて現像液を吐出する液吐出ノズルを有し、
前記液吐出ノズルと前記保持回転部とを相対的に移動させる移動機構をさらに備え、
前記制御部は、前記排出する工程において、前記液吐出ノズルが、基板の中心から離れた位置に現像液を吐出するよう、前記移動機構を制御する、請求項3に記載の現像処理装置。 - 前記ガス供給部は、下方に向けて不活性ガスを吐出するガス吐出ノズルを有し、
前記移動機構は、前記ガス吐出ノズルと前記保持回転部とを相対的に移動させ、
前記制御部は、前記排出する工程において、前記ガス吐出ノズルが、基板の中心から離れた位置に不活性ガスを吐出するよう、前記移動機構を制御する、請求項5に記載の現像処理装置。 - 平面視において、前記排出する工程における前記ガス吐出ノズルの吐出位置と前記液吐出ノズルの吐出位置とは、基板の中心を間に挟んで互いに20~25mm離間しており、
平面視において、前記排出する工程における前記ガス吐出ノズルの吐出位置は、基板の中心から5~15mm離間している、請求項6に記載の現像処理装置。 - 前記現像液供給部は、体積抵抗率が3.4×1011Ω・cm以上のネガ型の現像液を供給する、請求項1~7のいずれか1項に記載の現像処理装置。
- 基板に対して現像処理を行う現像処理方法であって、
現像液で基板上のレジスト膜を現像する工程と、
前記現像する工程後、基板を回転させ乾燥させる工程と、
前記現像する工程後、前記乾燥させる工程前に、基板を回転させると共に当該基板の中心領域に不活性ガスを供給し、前記中心領域の現像液の液膜を保ちつつ、前記中心領域から、溶解生成物を排出する工程と、を含む、現像処理方法。 - 前記排出する工程における基板の回転数は、前記乾燥させる工程における基板の回転数より低い、請求項9に記載の現像処理方法。
- 前記排出する工程は、前記中心領域に現像液を供給する、請求項9または10に記載の現像処理方法。
- 前記排出する工程において、下方に向けて不活性ガスを吐出するガス吐出ノズルは、基板の中心から離れた位置に不活性ガスを吐出する、請求項9~11のいずれか1項に記載の現像処理方法。
- 前記排出する工程において、下方に向けて現像液を吐出する液吐出ノズルは、基板の中心から離れた位置に現像液を吐出する、請求項11に記載の現像処理方法。
- 前記排出する工程において、下方に向けて不活性ガスを吐出するガス吐出ノズルは、基板の中心から離れた位置に不活性ガスを吐出する、請求項13に記載の現像処理方法。
- 平面視において、前記排出する工程における前記ガス吐出ノズルの吐出位置と前記液吐出ノズルの吐出位置とは、基板の中心を間に挟んで互いに20~25mm離間しており、
平面視において、前記排出する工程における前記ガス吐出ノズルの吐出位置は、基板の中心から5~15mm離間している、請求項14に記載の現像処理方法。 - 現像液は、体積抵抗率が3.4×1011Ω・cm以上のネガ型の現像液である、請求項9~15のいずれか1項に記載の現像処理方法。
- 請求項9~15のいずれか1項に記載の現像処理方法を現像処理装置によって実行させるように、当該現像処理装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022561835A JPWO2022102458A1 (ja) | 2020-11-13 | 2021-11-01 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020189273 | 2020-11-13 | ||
JP2020-189273 | 2020-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022102458A1 true WO2022102458A1 (ja) | 2022-05-19 |
Family
ID=81602238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040266 WO2022102458A1 (ja) | 2020-11-13 | 2021-11-01 | 現像処理装置及び現像処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022102458A1 (ja) |
WO (1) | WO2022102458A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057088A (ja) * | 2000-08-09 | 2002-02-22 | Tokyo Electron Ltd | 基板処理装置および現像処理装置 |
JP2012191168A (ja) * | 2011-02-24 | 2012-10-04 | Tokyo Electron Ltd | 有機溶剤を含有する現像液を用いた現像処理方法及び現像処理装置 |
JP2018041928A (ja) * | 2016-09-09 | 2018-03-15 | 東京エレクトロン株式会社 | 処理液供給装置及び処理液供給装置の運用方法並びに記憶媒体 |
-
2021
- 2021-11-01 JP JP2022561835A patent/JPWO2022102458A1/ja active Pending
- 2021-11-01 WO PCT/JP2021/040266 patent/WO2022102458A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057088A (ja) * | 2000-08-09 | 2002-02-22 | Tokyo Electron Ltd | 基板処理装置および現像処理装置 |
JP2012191168A (ja) * | 2011-02-24 | 2012-10-04 | Tokyo Electron Ltd | 有機溶剤を含有する現像液を用いた現像処理方法及び現像処理装置 |
JP2018041928A (ja) * | 2016-09-09 | 2018-03-15 | 東京エレクトロン株式会社 | 処理液供給装置及び処理液供給装置の運用方法並びに記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022102458A1 (ja) | 2022-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3752149B2 (ja) | 塗布処理装置 | |
TWI603377B (zh) | 塗布處理方法、電腦記錄媒體及塗布處理裝置 | |
JP5681560B2 (ja) | 基板乾燥方法及び基板処理装置 | |
JP4805769B2 (ja) | 塗布処理方法 | |
TW201701082A (zh) | 塗布處理方法、電腦記錄媒體及塗布處理裝置 | |
TWI762550B (zh) | 基板清洗方法、基板清洗系統及記錄媒體 | |
JP2003037053A (ja) | 塗布型成膜方法、塗布型成膜装置及び半導体装置の製造方法 | |
US20180133748A1 (en) | Application method | |
JP7232737B2 (ja) | 基板処理装置 | |
WO2022102458A1 (ja) | 現像処理装置及び現像処理方法 | |
TWI648767B (zh) | 基板處理方法及基板處理裝置 | |
KR101300892B1 (ko) | 기판의 처리 방법 및 컴퓨터 독취 가능한 기억 매체 | |
JP2004319990A (ja) | 基板処理方法及び基板処理装置 | |
JP5937028B2 (ja) | 現像処理方法、現像処理装置及び現像処理用記録媒体 | |
JP7437154B2 (ja) | 基板処理装置、および、基板処理方法 | |
JP3740377B2 (ja) | 液供給装置 | |
JP2003077808A (ja) | 基板処理装置及び基板処理方法 | |
JP2001110714A (ja) | 薬液塗布装置および薬液塗布方法 | |
JP2891951B2 (ja) | フォトレジスト現像装置 | |
JP2004079842A (ja) | 基板処理装置および基板処理方法 | |
JP7240944B2 (ja) | 基板処理方法及び基板処理装置 | |
JP2021132103A (ja) | 基板処理方法及び基板処理装置 | |
JPH11162816A (ja) | スピン式レジスト塗布装置およびウェーハ処理方法 | |
JP7051334B2 (ja) | 基板処理装置および基板処理方法 | |
JP2000153209A (ja) | 被処理体の液処理装置及び液処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21891705 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022561835 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21891705 Country of ref document: EP Kind code of ref document: A1 |