WO2022097316A1 - 天井埋込型空気調和機の室内機 - Google Patents

天井埋込型空気調和機の室内機 Download PDF

Info

Publication number
WO2022097316A1
WO2022097316A1 PCT/JP2021/014976 JP2021014976W WO2022097316A1 WO 2022097316 A1 WO2022097316 A1 WO 2022097316A1 JP 2021014976 W JP2021014976 W JP 2021014976W WO 2022097316 A1 WO2022097316 A1 WO 2022097316A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
center
suction port
ceiling
air
Prior art date
Application number
PCT/JP2021/014976
Other languages
English (en)
French (fr)
Inventor
幸治 山口
哲央 山下
裕樹 宇賀神
尚史 池田
惇司 河野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180073754.8A priority Critical patent/CN116529535A/zh
Priority to JP2022560633A priority patent/JP7446477B2/ja
Publication of WO2022097316A1 publication Critical patent/WO2022097316A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers

Definitions

  • This disclosure relates to an indoor unit of a ceiling-embedded air conditioner, and particularly to the arrangement of a blower fan.
  • the indoor unit of the ceiling-embedded air conditioner is installed by being embedded in the ceiling, there is a demand for a small size that does not occupy the space in the ceiling while having high performance. In order to further improve the performance of the indoor unit, it is important to improve the heat exchange efficiency.
  • a housing having a suction port and an air outlet formed on the lower surface thereof, and a blower fan and a heat exchanger arranged in an air passage for passing air from the suction port formed in the housing to the air outlet are provided.
  • a ceiling-embedded air conditioner in which the suction port is divided into two (see, for example, Patent Document 1).
  • the heat exchange efficiency is improved by dividing the suction port into two so that air is efficiently supplied to the heat exchanger from the suction port. ing.
  • the present disclosure has been made to solve the above problems, and is to provide an indoor unit of a ceiling-embedded air conditioner capable of improving heat exchange efficiency without using a plurality of suction ports. I am aiming.
  • the indoor unit of the ceiling-embedded air conditioner has a suction port formed in the rear and an air outlet formed in the front when viewed from the front, and has a housing embedded in the ceiling and the suction port.
  • the blower fan that blows the air sucked into the inside of the housing from the air outlet to the outside of the housing, and the air sucked into the inside of the housing from the suction port by the blower fan and the refrigerant.
  • a heat exchanger for exchanging heat is provided, and the blower fan has a longer air passage distance from the center of the front end and the rear end of the heat exchanger to the center of the suction port. It is arranged so as to be close to the end portion of the air conditioner, and is arranged between the frontmost position of the front end portion and the rearmost position of the rear end portion in the front-rear direction. It is something that is.
  • the indoor unit of the ceiling-embedded air conditioner has a suction port formed in the rear and an air outlet formed in the front when viewed from the front, and has a housing embedded in the ceiling and the above.
  • a blower fan that blows air sucked into the inside of the housing from the suction port to the outside of the housing from the outlet, and air and a refrigerant sucked into the inside of the housing from the suction port by the blower fan.
  • the blower fan is provided with a plurality of heat exchangers that exchange heat between the heat exchangers, and the blower fan is more than the heat exchanger having a shorter air passage distance from the center thereof to the center of the suction port among the plurality of heat exchangers.
  • It is arranged so as to be close to the long heat exchanger, and is located at the frontmost position of the front end of the heat exchanger located at the frontmost position in the front-rear direction, and at the rearmost position. It is located between the rearmost position of the rear end of the heat exchanger.
  • the blower fan is the air passage distance from the center of the front end and the rear end of the heat exchanger to the center of the suction port. Is placed closer to the longer end and is placed between the frontmost position of the front end and the rearmost position of the rear end in the anteroposterior direction. There is.
  • the blower fan is arranged so as to be closer to the heat exchanger having a longer air passage distance from the center to the center of the suction port than the heat exchanger having a short air passage distance among the plurality of heat exchangers. Located between the frontmost position of the front end of the most anterior heat exchanger and the rearmost position of the rearmost end of the rearmost heat exchanger in the direction. ing.
  • the blower fan is arranged so as to be closer to the end of the front end and the rear end of the heat exchanger where the air passage distance from the center to the center of the suction port is longer.
  • the heat exchangers having a longer air passage distance from the center to the center of the suction port are arranged so as to be closer to the heat exchanger than the heat exchanger having a short air passage distance.
  • the blower fan is placed between the frontmost position of the front end and the rearmost position of the rear end in the front-rear direction, or the heat located most forward in the front-back direction. It is located between the most anterior position of the front end of the exchanger and the rearmost position of the rear end of the rearmost heat exchanger.
  • the range in which the blower fan can suck in air is widened, so that a large amount of blown air can be secured and the blown air efficiency is improved.
  • the heat exchange efficiency can be improved without having a plurality of suction ports.
  • FIG. 3 is a schematic cross-sectional view of the indoor unit of the ceiling-embedded air conditioner according to the first embodiment as viewed from the side. It is sectional drawing which explains the arrangement of the blower fan of the indoor unit of the ceiling-embedded air conditioner which concerns on Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a first modification of the first embodiment as viewed from the side. It is sectional drawing which explains the arrangement of the blower fan of the ceiling-embedded type air conditioner which concerns on 1st modification of Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a second modification of the first embodiment as viewed from the side.
  • FIG. 3 is a schematic cross-sectional view of the indoor unit of the ceiling-embedded air conditioner according to the second embodiment as viewed from the side.
  • FIG. 3 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a first modification of the second embodiment as viewed from the side.
  • FIG. 3 is a schematic cross-sectional view of an indoor unit of a ceiling-embedded air conditioner according to a second modification of the second embodiment as viewed from the side. It is a figure which looked at the heat exchanger of FIG. 8 in the direction of arrow X. It is a figure which looked at the heat exchanger of FIG. 8 in the direction of arrow Y.
  • FIG. 1 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment as viewed from the side.
  • the indoor unit 100 of the ceiling-embedded air conditioner is viewed from the front (viewed from the direction of arrow A in FIG. 1), and is “top”, “bottom”, and “right”. , “Left”, “front”, “rear”, etc. are used.
  • the indoor unit 100 of the ceiling-embedded air conditioner is embedded in the ceiling 200 and installed, and as shown in FIG. 1, has a box-shaped housing 1 embedded in the ceiling 200.
  • a suction port 5 for sucking indoor air is formed on the lower surface behind the housing 1, and an air outlet 8 for blowing conditioned air to the outside is formed on the lower surface in front of the housing 1.
  • the suction port 5 is provided with a flat plate-shaped suction grill 6 having an opening and serving as a design surface, and a filter 7 covering the opening of the suction grill 6. Therefore, the indoor air sucked from the suction port 5 passes through the opening of the suction grill 6 and the filter 7 and is taken into the inside of the housing 1.
  • the air outlet 8 is provided with an upper and lower vanes 9 that change the wind direction within a predetermined range in the vertical direction.
  • a blower fan 2 rotatably arranged to generate an air flow, a motor connected to the blower fan 2 and driven to rotate (not shown), and a state inclined with respect to a horizontal plane.
  • a plurality of heat exchangers 3a and 3b and heat exchangers 3a which are arranged and exchange heat between the indoor air sucked into the inside of the housing 1 from the suction port 5 by the blower fan 2 and the refrigerant to produce conditioned air.
  • a drain pan 4 that is arranged below 3b and collects drain water from the heat exchangers 3a and 3b is provided.
  • an air passage 20 is formed so that air flows from the suction port 5 through the heat exchangers 3a and 3b to the air outlet 8, and the blower fan 2 and the heat exchanger 3a are formed.
  • 3b is arranged on the air passage 20.
  • two heat exchangers 3a and 3b are provided in total, but the present invention is not limited to this, and three or more heat exchangers 3a and 3b may be provided.
  • the blower fan 2 connected to the motor rotates, sucks indoor air from the suction port 5, and the indoor air passes through the filter 7 and is sucked into the inside of the housing 1.
  • the indoor air sucked by the blower fan 2 is blown out toward the heat exchangers 3a and 3b, and when passing through the heat exchangers 3a and 3b, the heat is exchanged there and becomes air-conditioned air toward the room from the outlet 8. Is blown out.
  • the direction of the conditioned air blown out from the outlet 8 changes depending on the direction of the upper and lower vanes 9.
  • FIG. 2 is a schematic cross-sectional view illustrating the arrangement of the blower fan 2 of the indoor unit 100 of the ceiling-embedded air conditioner according to the first embodiment.
  • the arrow A1 indicates the air flow from the center of the suction port 5 to the center of the heat exchanger 3a
  • the arrow B1 indicates the flow from the center of the suction port 5 to the center of the heat exchanger 3b. It shows the flow of air.
  • the blower fan 2 has a plurality of heat exchangers 3a and 3b in which the distance of the air passage 20 from the center thereof to the center of the suction port 5 (hereinafter referred to as the air passage distance) is short. It is arranged so as to be closer to the heat exchanger 3b, which is longer than the exchanger 3a.
  • the blower fan 2 is used in a plurality of heat exchangers 3a and 3b, as compared with the heat exchanger 3a in which the air passage distance from the center to the center of the suction port 5 (the length of the arrow A1 in FIG. 2) is shorter.
  • the air passage distance from the center to the center of the suction port 5 (the length of the arrow B1 in FIG. 2) is arranged so as to be close to the long heat exchanger 3b. By doing so, the amount of air flowing into the entire heat exchanger is made uniform, and the heat exchange efficiency can be improved.
  • the fact that the blower fan 2 is arranged so as to be close to each other means that the suction port (not shown) of the blower fan 2 is arranged to be close to each other, and the same applies to the following. ..
  • the blower fan 2 has a frontmost position B2 of the front end 3b1 of the heat exchanger 3b located at the frontmost position in the front-rear direction and a rear end portion 3a1 of the heat exchanger 3a located at the rearmost position. It is located between the rearmost position A2 and the position A2.
  • the blower fan 2 is provided at the frontmost position B2 of the front end portion 3b1 of the heat exchanger 3b located at the frontmost position and the rear end of the heat exchanger 3a located at the rearmost position. It is arranged between the rearmost position A2 of the portion 3a1 and the rearmost position A2.
  • FIG. 3 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the first modification of the first embodiment as viewed from the side.
  • FIG. 4 is a schematic cross-sectional view illustrating the arrangement of the blower fan 2 of the indoor unit 100 of the ceiling-embedded air conditioner according to the first modification of the first embodiment.
  • the arrow A1 indicates the air flow from the center of the suction port 5 to the center of the rear end portion 31 of the heat exchanger 30, and the arrow B1 indicates the heat exchange from the center of the suction port 5. It shows the flow of air to the center of the front end 32 of the vessel 30.
  • the blower fan 2 is the end portion of the front end portion 32 and the rear end portion 31 of the heat exchanger 30, whichever has a longer air passage distance from the center thereof to the center of the suction port 5. It is arranged so as to be close to 32.
  • the air passage distance (length of arrow A1 in FIG. 4) from the center of the blower fan 2 to the center of the suction port 5 among the front end 32 and the rear end 31 of the heat exchanger 30 is set.
  • the air passage distance (the length of the arrow B1 in FIG. 4) from the center to the center of the suction port 5 is closer to the long end 32 than the short end 31.
  • blower fan 2 is arranged between the frontmost position B2 of the front end 32 of the heat exchanger 30 and the rearmost position A2 of the rear end 31 in the front-rear direction.
  • the blower fan 2 is arranged between the frontmost position B2 of the front end 32 of the heat exchanger 30 and the rearmost position A2 of the rear end 31 in the front-rear direction.
  • the range C in which the air blower fan 2 can suck air becomes wide, so that a large amount of air can be secured and the air blow efficiency is improved.
  • the heat exchange efficiency can be improved without having a plurality of suction ports 5.
  • FIG. 5 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the second modification of the first embodiment as viewed from the side.
  • a suction port 5 for sucking indoor air is formed inside the rear surface of the housing 1, and an external surface is formed on the front surface of the housing 1.
  • An outlet 8 for blowing out conditioned air is formed in the air outlet 8. Others are the same as those in the first embodiment.
  • the indoor unit 100 of the ceiling-embedded air conditioner has a suction port 5 formed in the rear and an air outlet 8 formed in the front when viewed from the front, and is embedded in the ceiling 200.
  • the air conditioner 1 and the air blower fan 2 that blows the air sucked into the inside of the case 1 from the suction port 5 to the outside of the case 1 from the air outlet 8, and the air blower fan 2 from the suction port 5 to the inside of the case 1. It is provided with a heat exchanger 30 that exchanges heat between the sucked air and the refrigerant.
  • the blower fan 2 is closer to the end portion 32 of the front end portion 32 and the rear end portion 31 of the heat exchanger 30 in which the air passage distance from the center to the center of the suction port 5 is longer. And, in the front-rear direction, it is arranged between the frontmost position B2 of the front end portion 32 and the rearmost position A2 of the rear end portion 31.
  • the indoor unit 100 of the ceiling-embedded air conditioner has a suction port 5 formed in the rear and an air outlet 8 formed in the front when viewed from the front, and is embedded in the ceiling 200.
  • the air conditioner 1 and the air blower fan 2 that blows the air sucked into the inside of the case 1 from the suction port 5 to the outside of the case 1 from the air outlet 8, and the air blower fan 2 from the suction port 5 to the inside of the case 1. It includes a plurality of heat exchangers 3a and 3b that exchange heat between the sucked air and the refrigerant.
  • the blower fan 2 is arranged so as to be closer to the heat exchanger 3b, which has a shorter air passage distance from the center to the center of the suction port 5 than the heat exchanger 3a, among the plurality of heat exchangers 3a and 3b. And, in the front-rear direction, the frontmost position B2 of the front end 3b1 of the heat exchanger 3b located at the front and the rear end 3a1 of the heat exchanger 3a located at the rearmost. It is arranged between the rearmost position A2 and the position A2.
  • the blower fan 2 is a suction port from the center of the front end 32 and the rear end 31 of the heat exchanger 30.
  • the air passage distance to the center of 5 is arranged so as to be closer to the longer end portion 32, and the frontmost position B2 and the rear end portion 31 of the front end portion 32 in the front-rear direction. It is located between the rearmost position A2 and the rearmost position A2.
  • the blower fan 2 is arranged so as to be closer to the heat exchanger 3b, which is longer than the heat exchanger 3a having a short air passage distance from the center to the center of the suction port 5, among the plurality of heat exchangers 3a and 3b.
  • the blower fan 2 is set closer to the end 32 of the front end 32 and the rear end 31 of the heat exchanger 30 where the air passage distance from the center to the center of the suction port 5 is longer. Or arrange the heat exchangers 3a and 3b so as to be closer to the heat exchanger 3b, which has a shorter air passage distance from the center to the center of the suction port 5 than the heat exchanger 3a, which has a short air passage distance. ..
  • the blower fan 2 is arranged between the frontmost position B2 of the front end portion 32 and the rearmost position A2 of the rear end portion 31 in the front-rear direction, or most in the front-rear direction. Between the frontmost position B2 of the front end 3b1 of the front heat exchanger 3b and the rearmost position A2 of the rear end 3a1 of the rearmost heat exchanger 3a. Deploy.
  • the range C in which the air blower fan 2 can suck air becomes wide, so that a large amount of air can be secured and the air blow efficiency is improved.
  • the heat exchange efficiency can be improved without having a plurality of suction ports 5.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 6 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment as viewed from the side.
  • FIG. 7 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the first modification of the second embodiment as viewed from the side surface.
  • FIG. 8 is a schematic cross-sectional view of the indoor unit 100 of the ceiling-embedded air conditioner according to the second modification of the second embodiment as viewed from the side surface.
  • FIG. 9 is a view of the heat exchanger 3a of FIG. 8 as viewed in the direction of arrow X.
  • FIG. 10 is a view of the heat exchanger 3b of FIG. 8 viewed in the Y direction of the arrow.
  • the arrow A1 indicates the air flow from the center of the suction port 5 to the center of the heat exchanger 3a
  • the arrow B1 indicates the flow of air from the center of the suction port 5 to the heat exchanger 3b. It shows the flow of air to the center.
  • the plurality of heat exchangers 3a and 3b have heat transfer tubes 10a and 10b (not shown in FIGS. 9 and 10) and fins 40a and 40b, respectively.
  • the heat exchanger 3a having a short air passage distance from the center to the center of the suction port 5 and the heat exchanger 3b having a long air passage distance have different specifications. It's different.
  • the heat exchanger 3b having the longest air passage distance (the length of the arrow B1 in FIG. 6) from the center to the center of the suction port 5 is from the center.
  • the specification is such that the ventilation resistance is lower than that of the heat exchanger 3a, which has a short air passage distance to the center of the suction port 5 (the length of the arrow A1 in FIG. 6).
  • the number of rows of the heat transfer tubes 10a of the heat exchanger 3a is two, and the number of rows of the heat transfer tubes 10b of the heat exchanger 3b is one. That is, the number of rows of the heat transfer tubes 10b of the heat exchanger 3b is smaller than the number of rows of the heat transfer tubes 10a of the heat exchanger 3a.
  • the heat exchanger 3b having a long air passage distance from the center to the center of the suction port 5 has a lower ventilation resistance than the heat exchanger 3a having a short air passage distance from the center to the center of the suction port 5.
  • the step pitch Dpb of the heat transfer tube 10b of the heat exchanger 3b may be wider than the step pitch Dpa of the heat transfer tube 10a of the heat exchanger 3a.
  • the diameter T ⁇ b of the heat transfer tube 10b of the heat exchanger 3b may be smaller than the diameter T ⁇ a of the heat transfer tube 10a of the heat exchanger 3a.
  • the row pitch LPb of the heat transfer tube 10b of the heat exchanger 3b may be narrower than the row pitch LPa of the heat transfer tube 10a of the heat exchanger 3a.
  • the fin pitch FPb of the fins 40b of the heat exchanger 3b may be wider than the fin pitch FPa of the fins 40a of the heat exchanger 3a.
  • the slit 42b of the fin 40b of the heat exchanger 3b may be made coarser than the slit 42a of the fin 40a of the heat exchanger 3a. At this time, in the heat exchanger 3a, the slit 42a of the fin 40a is formed more finely than in the heat exchanger 3b.
  • the slits 42a and 42b are formed together with the raised portions 41a and 41b by cutting and raising the fins 40a and 40b in order to widen the area of the fins 40a and 40b. Further, the cut-up portion 41b of the fin 40b of the heat exchanger 3b is formed coarser than the cut-up portion 41a of the fin 40a of the heat exchanger 3a. The heat exchanger 3b is formed so that the cut-up portion 41b is longer in the air flow direction between the fins 40b (vertical direction in FIGS. 9 and 10) than the heat exchanger 3a. Further, the thickness LTb of the fins 40b of the heat exchanger 3b may be thinner than the thickness LTa of the fins 40a of the heat exchanger 3a.
  • the heat exchanger 3b having a long air passage distance from the center to the center of the suction port 5 has a lower ventilation resistance than the heat exchanger 3a having a short air passage distance from the center to the center of the suction port 5.
  • other configurations may be used.
  • the specifications differ between the portion on the end 31 side where the distance is short and the portion on the end 32 side where the distance is long. Specifically, of the front end 32 and the rear end 31 of the heat exchanger 30, the portion on the end 32 side where the air passage distance from the center to the center of the suction port 5 is long is from the center.
  • the specification is such that the ventilation resistance is lower than that of the portion on the end 31 side where the air passage distance to the center of the suction port 5 is short.
  • the heat exchanger 3b having a long air passage distance from the center to the center of the suction port 5 has a lower ventilation resistance than the heat exchanger 3a having a short air passage distance from the center to the center of the suction port 5. It is a specification. By doing so, the amount of air passing through the heat exchanger 3b, which is far from the suction port 5 and originally has a small amount of air passing through, can be increased, so that the amount of air flowing into the entire heat exchanger is made uniform and the heat exchange efficiency is improved. Can be made to.
  • the indoor unit 100 of the ceiling-embedded air conditioner according to the second embodiment has a plurality of heat exchangers 3a and 3b having fins 40a and 40b and heat transfer tubes 10a and 10b, and has a plurality of heat exchangers.
  • At least one of 3a and 3b has different specifications that affect the ventilation resistance from the other heat exchangers 3a and 3b, and has a shorter air passage distance from the center to the center of the suction port 5 than the heat exchanger 3a.
  • the longer heat exchanger 3b has a lower ventilation resistance.
  • At least one of the plurality of heat exchangers 3a and 3b has an influence on the ventilation resistance with the other heat exchangers 3a and 3b.
  • Some specifications are different, and the heat exchanger 3b, which has a longer air passage distance from the center to the center of the suction port 5, has a lower ventilation resistance than the heat exchanger 3a, which has a short air passage distance. Therefore, the amount of air passing through the heat exchanger 3b, which is far from the suction port 5 and originally has a small amount of air passing through, can be increased, so that the amount of air flowing into the entire heat exchanger can be made uniform and the heat exchange efficiency can be improved. can.
  • the ventilation resistance is affected by the portion on the front end portion 32 side and the portion on the rear end portion 31 side of the heat exchanger 30. Certain specifications are different, and the ventilation resistance is lower in the portion on the end portion 32 side where the air passage distance from the center to the center of the suction port 5 is shorter than the portion on the end portion 31 side.
  • the ventilation resistance is affected by the front end portion 32 side portion and the rear end portion 31 side portion of the heat exchanger 30. Certain specifications are different, and the ventilation resistance is lower in the portion on the end portion 32 side where the air passage distance from the center to the center of the suction port 5 is shorter than the portion on the end portion 31 side. Therefore, it is possible to increase the passing air volume of the portion on the front end portion 32 side of the heat exchanger 30 which is far from the suction port 5 and originally has a small passing air volume, so that the air volume flowing into the entire heat exchanger is made uniform. , The heat exchange efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

天井埋込型空気調和機の室内機は、正面視して後方に形成された吸込口および前方に形成された吹出口を有し、天井に埋め込まれる筐体と、吸込口から筐体の内部に吸い込んだ空気を吹出口から筐体の外部に吹き出す送風ファンと、送風ファンによって吸込口から筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器と、を備え、送風ファンは、熱交換器の前方の端部および後方の端部のうち、その中心から吸込口の中心までの風路距離が長い方の端部に近くなるように配置されており、かつ、前後方向において、前方の端部の最も前方となる位置と後方の端部の最も後方となる位置との間に配置されているものである。

Description

天井埋込型空気調和機の室内機
 本開示は、天井埋込型空気調和機の室内機に関し、特に送風ファンの配置に関するものである。
 天井埋込型空気調和機の室内機は、天井に埋め込まれて設置されるものであるため、高性能でありながら天井内のスペースを占有しない小型サイズのものが求められている。そして、上記室内機の性能をより向上させるためには、熱交換効率を向上させることが重要となる。
 従来、下面に吸込口および吹出口が形成された筐体と、筐体内に形成される吸込口から吹出口に空気を流通させる風路に配置された送風ファンおよび熱交換器と、を備え、吸込口が2つに分けられた天井埋込型空気調和機の室内機がある(例えば、特許文献1参照)。特許文献1に係る天井埋込型空気調和機の室内機では、熱交換器に吸込口から空気が効率的に供給されるように吸込口を2つに分けることで、熱交換効率を向上させている。
特開2018-165592号公報
 しかしながら、特許文献1に係る天井埋込型空気調和機の室内機のように、吸込口を複数形成した場合、吸込口に配置するフィルタの数あるいは面積が増え、構造が複雑化するという課題があった。
 本開示は、以上のような課題を解決するためになされたもので、吸込口を複数とせずに熱交換効率を向上させることができる天井埋込型空気調和機の室内機を提供することを目的としている。
 本開示に係る天井埋込型空気調和機の室内機は、正面視して後方に形成された吸込口および前方に形成された吹出口を有し、天井に埋め込まれる筐体と、前記吸込口から前記筐体の内部に吸い込んだ空気を前記吹出口から前記筐体の外部に吹き出す送風ファンと、前記送風ファンによって前記吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器と、を備え、前記送風ファンは、前記熱交換器の前方の端部および後方の端部のうち、その中心から前記吸込口の中心までの風路距離が長い方の前記端部に近くなるように配置されており、かつ、前後方向において、前方の前記端部の最も前方となる位置と後方の前記端部の最も後方となる位置との間に配置されているものである。
 また、本開示に係る天井埋込型空気調和機の室内機は、正面視して後方に形成された吸込口および前方に形成された吹出口を有し、天井に埋め込まれる筐体と、前記吸込口から前記筐体の内部に吸い込んだ空気を前記吹出口から前記筐体の外部に吹き出す送風ファンと、前記送風ファンによって前記吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う複数の熱交換器と、を備え、前記送風ファンは、複数の前記熱交換器のうち、その中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器に近くなるように配置されており、かつ、前後方向において、最も前方に位置する前記熱交換器の前方の端部の最も前方となる位置と、最も後方に位置する前記熱交換器の後方の端部の最も後方となる位置と、の間に配置されているものである。
 本開示に係る天井埋込型空気調和機の室内機によれば、送風ファンは、熱交換器の前方の端部および後方の端部のうち、その中心から吸込口の中心までの風路距離が長い方の端部に近くなるように配置されており、かつ、前後方向において、前方の端部の最も前方となる位置と後方の端部の最も後方となる位置との間に配置されている。あるいは、送風ファンは、複数の熱交換器のうち、その中心から吸込口の中心までの風路距離が短い熱交換器よりも長い熱交換器に近くなるように配置されており、かつ、前後方向において、最も前方に位置する熱交換器の前方の端部の最も前方となる位置と、最も後方に位置する熱交換器の後方の端部の最も後方となる位置と、の間に配置されている。
 ここで、送風ファンに近い方がより風速が速くなり、熱交換器の通過風量が増加する。そのため、送風ファンを、熱交換器の前方の端部および後方の端部のうち、その中心から吸込口の中心までの風路距離が長い方の端部に近くなるように配置する、あるいは、複数の熱交換器のうち、その中心から吸込口の中心までの風路距離が短い熱交換器よりも長い熱交換器に近くなるように配置する。そうすることで、吸込口から遠く元々通過風量が少ない方の熱交換器の端部、あるいは熱交換器の通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。さらに、送風ファンを、前後方向において、前方の端部の最も前方となる位置と後方の端部の最も後方となる位置との間に配置する、あるいは、前後方向において、最も前方に位置する熱交換器の前方の端部の最も前方となる位置と、最も後方に位置する熱交換器の後方の端部の最も後方となる位置と、の間に配置する。そうすることで、送風ファンが空気を吸い込むことができる範囲が広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口を複数とせずに熱交換効率を向上させることができる。
実施の形態1に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。 実施の形態1に係る天井埋込型空気調和機の室内機の送風ファンの配置を説明する断面模式図である。 実施の形態1の第1変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。 実施の形態1の第1変形例に係る天井埋込型空気調和機の送風ファンの配置を説明する断面模式図である。 実施の形態1の第2変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。 実施の形態2に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。 実施の形態2の第1変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。 実施の形態2の第2変形例に係る天井埋込型空気調和機の室内機を側面から見た断面模式図である。 図8の熱交換器を矢印X方向に見た図である。 図8の熱交換器を矢印Y方向に見た図である。
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。
 以下、実施の形態1に係る天井埋込型空気調和機の室内機100の構成について説明する。以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」、「前」、「後」など、を適宜用いるが、これらは説明のためのものであって、これらの用語は実施の形態を限定するものではない。また、実施の形態1では、天井埋込型空気調和機の室内機100を正面視した(図1の矢印Aの方向から矢視した)状態において、「上」、「下」、「右」、「左」、「前」、「後」などを使用する。
 天井埋込型空気調和機の室内機100は、天井200に埋め込まれて設置されるものであり、図1に示すように、天井200に埋め込まれる箱体形状の筐体1を備えている。筐体1の後方の下面には、内部に室内空気を吸い込む吸込口5が形成されており、筐体1の前方の下面には、外部に空調空気を吹き出す吹出口8が形成されている。吸込口5には、開口を有し意匠面となる平板状の吸込グリル6と、吸込グリル6の開口を覆うフィルタ7とが設けられている。そのため、吸込口5から吸い込まれた室内空気は、吸込グリル6の開口およびフィルタ7を通過して筐体1の内部に取り込まれる。吹出口8には、風向を上下方向の所定範囲で変更する上下ベーン9が設けられている。
 筐体1の内部には、回転自在に配置され、空気の流れを生じさせる送風ファン2と、送風ファン2に連結され回転駆動するモータ(図示せず)と、水平面に対して傾斜した状態で配置され、送風ファン2によって吸込口5から筐体1の内部に吸い込まれた室内空気と冷媒との間で熱交換させ、空調空気を作り出す複数の熱交換器3a、3bと、熱交換器3a、3bの下方に配置され、熱交換器3a、3bからのドレン水を回収するドレンパン4と、が設けられている。また、筐体1の内部には、吸込口5から熱交換器3a、3bを通過して吹出口8に空気が流れるように風路20が形成されており、送風ファン2および熱交換器3a、3bは風路20上に配置されている。なお、実施の形態1では、熱交換器3a、3bは全部で2つ設けられているが、それに限定されず、3つ以上設けられていてもよい。
 次に、実施の形態1に係る天井埋込型空気調和機の室内機100の動作について説明する。
 モータが回転駆動すると、モータに連結している送風ファン2が回転し、吸込口5から室内空気を吸い込み、室内空気はフィルタ7を通過して、筐体1の内部に吸い込まれる。送風ファン2によって吸い込まれた室内空気は熱交換器3a、3bに向けて吹き出され、熱交換器3a、3bを通過する際にそこで熱交換され、空調空気となって吹出口8から室内に向けて吹き出される。このとき、上下ベーン9の向きによって吹出口8から吹き出される空調空気の向きが変わる。
 次に、実施の形態1に係る送風ファン2の配置について説明する。
 図2は、実施の形態1に係る天井埋込型空気調和機の室内機100の送風ファン2の配置を説明する断面模式図である。なお、図2において、矢印A1は、吸込口5の中心から熱交換器3aの中心までの空気の流れを示しており、矢印B1は、吸込口5の中心から熱交換器3bの中心までの空気の流れを示している。
 図2に示すように、送風ファン2は、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路20の距離(以下、風路距離と称する)が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置されている。
 ここで、送風ファン2に近い方がより風速が速くなり、熱交換器3a、3bの通過風量が増加する。そのため、送風ファン2を、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離(図2の矢印A1の長さ)が短い熱交換器3aよりも、その中心から吸込口5の中心までの風路距離(図2の矢印B1の長さ)が長い熱交換器3bに近くなるように配置する。そうすることで、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。なお、上記の送風ファン2が近くなるように配置されているとは、送風ファン2の吸込口(図示せず)が近くになるように配置されていることであり、以下においても同様である。
 また、送風ファン2は、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2との間に配置されている。
 このように、送風ファン2を、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2との間に配置する。そうすることで、送風ファン2が空気を吸い込むことができる範囲Cが広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口5を複数とせずに熱交換効率を向上させることができる。
 図3は、実施の形態1の第1変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。
 実施の形態1の第1変形例では、図3に示すように、熱交換器30が複数ではなく1つのみ設けられている。その他に関しては、実施の形態1と同様である。
 次に、第1変形例に係る送風ファン2の配置について説明する。
 図4は、実施の形態1の第1変形例に係る天井埋込型空気調和機の室内機100の送風ファン2の配置を説明する断面模式図である。なお、図4において、矢印A1は、吸込口5の中心から熱交換器30の後方の端部31の中心までの空気の流れを示しており、矢印B1は、吸込口5の中心から熱交換器30の前方の端部32の中心までの空気の流れを示している。
 図4に示すように、送風ファン2は、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置されている。
 ここで、送風ファン2に近い方がより風速が速くなり、熱交換器30の通過風量が増加する。そのため、送風ファン2を、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離(図4の矢印A1の長さ)が短い端部31よりも、その中心から吸込口5の中心までの風路距離(図4の矢印B1の長さ)が長い端部32に近くなるように配置する。そうすることで、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。
 また、送風ファン2は、前後方向において、熱交換器30の前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置されている。
 このように、送風ファン2を、前後方向において熱交換器30の前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置する。そうすることで、送風ファン2が空気を吸い込むことができる範囲Cが広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口5を複数とせずに熱交換効率を向上させることができる。
 図5は、実施の形態1の第2変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。
 実施の形態1の第2変形例では、図5に示すように、筐体1の後面には、内部に室内空気を吸い込む吸込口5が形成されており、筐体1の前面には、外部に空調空気を吹き出す吹出口8が形成されている。その他に関しては、実施の形態1と同様である。
 以上、実施の形態1に係る天井埋込型空気調和機の室内機100は、正面視して後方に形成された吸込口5および前方に形成された吹出口8を有し、天井200に埋め込まれる筐体1と、吸込口5から筐体1の内部に吸い込んだ空気を吹出口8から筐体1の外部に吹き出す送風ファン2と、送風ファン2によって吸込口5から筐体1の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器30と、を備えている。そして、送風ファン2は、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置されており、かつ、前後方向において、前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置されているものである。
 または、実施の形態1に係る天井埋込型空気調和機の室内機100は、正面視して後方に形成された吸込口5および前方に形成された吹出口8を有し、天井200に埋め込まれる筐体1と、吸込口5から筐体1の内部に吸い込んだ空気を吹出口8から筐体1の外部に吹き出す送風ファン2と、送風ファン2によって吸込口5から筐体1の内部に吸い込まれた空気と冷媒との間で熱交換を行う複数の熱交換器3a、3bと、を備えている。そして、送風ファン2は、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置されており、かつ、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2と、の間に配置されているものである。
 実施の形態1に係る天井埋込型空気調和機の室内機100によれば、送風ファン2は、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置されており、かつ、前後方向において、前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置されている。あるいは、送風ファン2は、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置されており、かつ、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2と、の間に配置されている。
 ここで、送風ファン2に近い方がより風速が速くなり、熱交換器30、3a、3bの通過風量が増加する。そのため、送風ファン2を、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い方の端部32に近くなるように配置する、あるいは、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bに近くなるように配置する。そうすることで、吸込口5から遠く元々通過風量が少ない方の熱交換器30の端部32、あるいは熱交換器3bの通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。さらに、送風ファン2を、前後方向において、前方の端部32の最も前方となる位置B2と後方の端部31の最も後方となる位置A2との間に配置する、あるいは、前後方向において、最も前方に位置する熱交換器3bの前方の端部3b1の最も前方となる位置B2と、最も後方に位置する熱交換器3aの後方の端部3a1の最も後方となる位置A2と、の間に配置する。そうすることで、送風ファン2が空気を吸い込むことができる範囲Cが広くなるため、多くの送風量を確保することができ、送風効率が改善される。その結果、吸込口5を複数とせずに熱交換効率を向上させることができる。
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図6は、実施の形態2に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。図7は、実施の形態2の第1変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。図8は、実施の形態2の第2変形例に係る天井埋込型空気調和機の室内機100を側面から見た断面模式図である。図9は、図8の熱交換器3aを矢印X方向に見た図である。図10は、図8の熱交換器3bを矢印Y方向に見た図である。なお、図6~図8において、矢印A1は、吸込口5の中心から熱交換器3aの中心までの空気の流れを示しており、矢印B1は、吸込口5の中心から熱交換器3bの中心までの空気の流れを示している。
 図8~図10に示すように、複数の熱交換器3a、3bは、それぞれ伝熱管10a、10b(図9および図10では図示省略)とフィン40a、40bとを有している。また、図6に示すように、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離が短い熱交換器3aと長い熱交換器3bとで、仕様が異なっている。具体的には、複数の熱交換器3a、3bのうち、その中心から吸込口5の中心までの風路距離(図6の矢印B1の長さ)が長い熱交換器3bが、その中心から吸込口5の中心までの風路距離(図6の矢印A1の長さ)が短い熱交換器3aよりも通風抵抗が低くなる仕様となっている。そして、熱交換器3aの伝熱管10aの列数が2列に対して熱交換器3bの伝熱管10bの列数が1列となっている。つまり、熱交換器3aの伝熱管10aの列数よりも熱交換器3bの伝熱管10bの列数の方が少なくなっている。
 なお、中心から吸込口5の中心までの風路距離が長い熱交換器3bは、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも通風抵抗が低い仕様として、図7に示すように、熱交換器3aの伝熱管10aの段ピッチDpaよりも熱交換器3bの伝熱管10bの段ピッチDpbを広くした構成としてもよい。また、図8に示すように、熱交換器3aの伝熱管10aの直径Tφaよりも熱交換器3bの伝熱管10bの直径Tφbを小さくした構成としてもよい。また、熱交換器3aの伝熱管10aの列ピッチLPaよりも熱交換器3bの伝熱管10bの列ピッチLPbを狭くした構成としてもよい。また、図9および図10に示すように、熱交換器3aのフィン40aのフィンピッチFPaよりも熱交換器3bのフィン40bのフィンピッチFPbを広くした構成としてもよい。また、熱交換器3aのフィン40aのスリット42aよりも熱交換器3bのフィン40bのスリット42bを粗くした構成としてもよい。このとき、熱交換器3aの方が熱交換器3bよりもフィン40aのスリット42aが細かく形成されている。なお、スリット42a、42bは、フィン40a、40bの面積を広くするためにフィン40a、40bを切り起すことで、切り起こし部41a、41bとともに形成される。また、熱交換器3aのフィン40aの切り起こし部41aよりも熱交換器3bのフィン40bの切り起こし部41bの方が粗く形成されている。そして、熱交換器3bの方が、熱交換器3aよりも、フィン40b間の空気流れ方向(図9および図10の上下方向)において、切り起こし部41bが長くなるように形成されている。また、熱交換器3aのフィン40aの厚みLTaよりも熱交換器3bのフィン40bの厚みLTbを薄くした構成としてもよい。また、中心から吸込口5の中心までの風路距離が長い熱交換器3bが、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも通風抵抗が低くなる仕様であれば、その他の構成でもよい。
 なお、熱交換器30が複数ではなく1つのみ設けられている場合、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が短い端部31側の部分と長い端部32側の部分とで、仕様が異なっている。具体的には、熱交換器30の前方の端部32および後方の端部31のうち、その中心から吸込口5の中心までの風路距離が長い端部32側の部分が、その中心から吸込口5の中心までの風路距離が短い端部31側の部分よりも通風抵抗が低くなる仕様となっている。
 以上のように、中心から吸込口5の中心までの風路距離が長い熱交換器3bが、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも通風抵抗が低くなる仕様とする。そうすることで、吸込口5から遠く元々通過風量が少ない方の熱交換器3bの通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。
 以上、実施の形態2に係る天井埋込型空気調和機の室内機100は、複数の熱交換器3a、3bはフィン40a、40bと伝熱管10a、10bとを有し、複数の熱交換器3a、3bのうち少なくとも一つは、他の熱交換器3a、3bと通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bの方が、通風抵抗が低いものである。
 実施の形態2に係る天井埋込型空気調和機の室内機100によれば、複数の熱交換器3a、3bのうち少なくとも一つは、他の熱交換器3a、3bと通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い熱交換器3aよりも長い熱交換器3bの方が、通風抵抗が低い。そのため、吸込口5から遠く元々通過風量が少ない方の熱交換器3bの通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。
 また、実施の形態2に係る天井埋込型空気調和機の室内機100は、熱交換器30の前方の端部32側の部分と後方の端部31側の部分とで通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い端部31側の部分よりも長い端部32側の部分の方が、通風抵抗が低いものである。
 実施の形態2に係る天井埋込型空気調和機の室内機100によれば、熱交換器30の前方の端部32側の部分と後方の端部31側の部分とで通風抵抗に影響がある仕様が異なっており、中心から吸込口5の中心までの風路距離が短い端部31側の部分よりも長い端部32側の部分の方が、通風抵抗が低い。そのため、吸込口5から遠く元々通過風量が少ない方の熱交換器30の前方の端部32側の部分の通過風量を増加させることができるので、熱交換器全体に流入する風量が均一化され、熱交換効率を向上させることができる。
 1 筐体、2 送風ファン、3a 熱交換器、3a1 端部、3b 熱交換器、3b1 端部、4 ドレンパン、5 吸込口、6 吸込グリル、7 フィルタ、8 吹出口、9 上下ベーン、10a 伝熱管、10b 伝熱管、20 風路、30 熱交換器、31 端部、32 端部、40a フィン、40b フィン、41a 切り起こし部、41b 切り起こし部、42a スリット、42b スリット、100 室内機、200 天井。

Claims (8)

  1.  正面視して後方に形成された吸込口および前方に形成された吹出口を有し、天井に埋め込まれる筐体と、
     前記吸込口から前記筐体の内部に吸い込んだ空気を前記吹出口から前記筐体の外部に吹き出す送風ファンと、
     前記送風ファンによって前記吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器と、を備え、
     前記送風ファンは、
     前記熱交換器の前方の端部および後方の端部のうち、その中心から前記吸込口の中心までの風路距離が長い方の前記端部に近くなるように配置されており、かつ、前後方向において、前方の前記端部の最も前方となる位置と後方の前記端部の最も後方となる位置との間に配置されている
     天井埋込型空気調和機の室内機。
  2.  正面視して後方に形成された吸込口および前方に形成された吹出口を有し、天井に埋め込まれる筐体と、
     前記吸込口から前記筐体の内部に吸い込んだ空気を前記吹出口から前記筐体の外部に吹き出す送風ファンと、
     前記送風ファンによって前記吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う複数の熱交換器と、を備え、
     前記送風ファンは、
     複数の前記熱交換器のうち、その中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器に近くなるように配置されており、かつ、前後方向において、最も前方に位置する前記熱交換器の前方の端部の最も前方となる位置と、最も後方に位置する前記熱交換器の後方の端部の最も後方となる位置と、の間に配置されている
     天井埋込型空気調和機の室内機。
  3.  前記熱交換器の前方の前記端部側の部分と後方の前記端部側の部分とで通風抵抗に影響がある仕様が異なっており、
     中心から前記吸込口の中心までの風路距離が短い前記端部側の部分よりも長い前記端部側の部分の方が、通風抵抗が低い
     請求項1に記載の天井埋込型空気調和機の室内機。
  4.  複数の前記熱交換器はフィンと伝熱管とを有し、
     複数の前記熱交換器のうち少なくとも一つは、他の前記熱交換器と通風抵抗に影響がある仕様が異なっており、
     中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器の方が、通風抵抗が低い
     請求項2に記載の天井埋込型空気調和機の室内機。
  5.  中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器の方が、フィンピッチが広い
     請求項4に記載の天井埋込型空気調和機の室内機。
  6.  複数の前記熱交換器のそれぞれの前記フィンに切り起こし部が設けられており、
     中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器の方が前記フィン間の空気流れ方向に前記切り起こし部が長い
     請求項4または5に記載の天井埋込型空気調和機の室内機。
  7.  中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器の方が、前記伝熱管の直径が小さい
     請求項4~6のいずれか一項に記載の天井埋込型空気調和機の室内機。
  8.  中心から前記吸込口の中心までの風路距離が短い前記熱交換器よりも長い前記熱交換器の方が、前記伝熱管の列数が少ない
     請求項4~7のいずれか一項に記載の天井埋込型空気調和機の室内機。
PCT/JP2021/014976 2020-11-05 2021-04-09 天井埋込型空気調和機の室内機 WO2022097316A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180073754.8A CN116529535A (zh) 2020-11-05 2021-04-09 顶棚埋入型空调机的室内机
JP2022560633A JP7446477B2 (ja) 2020-11-05 2021-04-09 天井埋込型空気調和機の室内機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/041329 WO2022097223A1 (ja) 2020-11-05 2020-11-05 天井埋込型空気調和機の室内機
JPPCT/JP2020/041329 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097316A1 true WO2022097316A1 (ja) 2022-05-12

Family

ID=81457014

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/041329 WO2022097223A1 (ja) 2020-11-05 2020-11-05 天井埋込型空気調和機の室内機
PCT/JP2021/014976 WO2022097316A1 (ja) 2020-11-05 2021-04-09 天井埋込型空気調和機の室内機

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041329 WO2022097223A1 (ja) 2020-11-05 2020-11-05 天井埋込型空気調和機の室内機

Country Status (3)

Country Link
JP (1) JP7446477B2 (ja)
CN (1) CN116529535A (ja)
WO (2) WO2022097223A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190477A (ja) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JPH08327083A (ja) * 1995-06-06 1996-12-10 Mitsubishi Heavy Ind Ltd 天井吊り下げ型空気調和機
JP2000337652A (ja) * 1999-05-27 2000-12-08 Matsushita Electric Ind Co Ltd 空気調和機
JP2001304605A (ja) * 2000-04-21 2001-10-31 Hitachi Ltd 空気調和機
JP2005337571A (ja) * 2004-05-26 2005-12-08 Daikin Ind Ltd 高所設置型空気調和機
JP2006003001A (ja) * 2004-06-17 2006-01-05 Rinnai Corp 空気温度調整機
JP2008275230A (ja) * 2007-04-27 2008-11-13 Daikin Ind Ltd 空気調和装置
JP2018059506A (ja) * 2016-09-30 2018-04-12 ダイキン工業株式会社 クロスフロー型の送風機及びそれを備えた空気調和装置の室内ユニット
WO2018092783A1 (ja) * 2016-11-21 2018-05-24 ダイキン工業株式会社 空気調和装置の室内ユニット
JP2018165592A (ja) * 2017-03-28 2018-10-25 株式会社富士通ゼネラル 天井埋込型空気調和機の室内機
JP2019143907A (ja) * 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 空気調和機の室内機
JP2020060362A (ja) * 2019-03-08 2020-04-16 日立ジョンソンコントロールズ空調株式会社 空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275231A (ja) * 2007-04-27 2008-11-13 Daikin Ind Ltd 空気調和装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190477A (ja) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JPH08327083A (ja) * 1995-06-06 1996-12-10 Mitsubishi Heavy Ind Ltd 天井吊り下げ型空気調和機
JP2000337652A (ja) * 1999-05-27 2000-12-08 Matsushita Electric Ind Co Ltd 空気調和機
JP2001304605A (ja) * 2000-04-21 2001-10-31 Hitachi Ltd 空気調和機
JP2005337571A (ja) * 2004-05-26 2005-12-08 Daikin Ind Ltd 高所設置型空気調和機
JP2006003001A (ja) * 2004-06-17 2006-01-05 Rinnai Corp 空気温度調整機
JP2008275230A (ja) * 2007-04-27 2008-11-13 Daikin Ind Ltd 空気調和装置
JP2018059506A (ja) * 2016-09-30 2018-04-12 ダイキン工業株式会社 クロスフロー型の送風機及びそれを備えた空気調和装置の室内ユニット
WO2018092783A1 (ja) * 2016-11-21 2018-05-24 ダイキン工業株式会社 空気調和装置の室内ユニット
JP2018165592A (ja) * 2017-03-28 2018-10-25 株式会社富士通ゼネラル 天井埋込型空気調和機の室内機
JP2019143907A (ja) * 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 空気調和機の室内機
JP2020060362A (ja) * 2019-03-08 2020-04-16 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
JP7446477B2 (ja) 2024-03-08
CN116529535A (zh) 2023-08-01
JPWO2022097316A1 (ja) 2022-05-12
WO2022097223A1 (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
KR102445160B1 (ko) 공기 조화기 및 그 제어 방법
JP5837235B2 (ja) 空気調和機の室外ユニット
JP2014016084A (ja) 空気調和機の室外ユニット
KR20140028192A (ko) 공기조화기의 실내기
JPWO2019016982A1 (ja) 空気調和機
WO2017068725A1 (ja) 空気調和機の室内機
JP6400378B2 (ja) 空気調和機
JP6370399B2 (ja) 空気調和装置の室内機
US20190331351A1 (en) Indoor unit for air conditioning device
WO2022097316A1 (ja) 天井埋込型空気調和機の室内機
JP2006071162A (ja) 空気調和機
JP6624851B2 (ja) 空気調和機およびその室内機
JP2005024225A (ja) 空気調和機
JP4794498B2 (ja) 冷凍空調装置
JP5591355B2 (ja) 送風装置並びに空気調和機の室外機
JP4922817B2 (ja) 空気調和機
JP2013148248A (ja) 空気調和機
JP3820182B2 (ja) 空調装置のルーバー及び空調装置の気流制御構造、並びに空調装置
WO2017145253A1 (ja) 空気調和装置
JP2014134359A (ja) 冷凍空調装置
JP2018004090A (ja) 空気調和機の室内機
WO2021044466A1 (ja) 室外機
JP2010019500A (ja) フィン付き熱交換器
JP2008138939A (ja) 空調ユニット、および空気調和装置の室外ユニット
JP7392111B2 (ja) 空気調和機の室内ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560633

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180073754.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888870

Country of ref document: EP

Kind code of ref document: A1