WO2018092783A1 - 空気調和装置の室内ユニット - Google Patents

空気調和装置の室内ユニット Download PDF

Info

Publication number
WO2018092783A1
WO2018092783A1 PCT/JP2017/040989 JP2017040989W WO2018092783A1 WO 2018092783 A1 WO2018092783 A1 WO 2018092783A1 JP 2017040989 W JP2017040989 W JP 2017040989W WO 2018092783 A1 WO2018092783 A1 WO 2018092783A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan rotor
heat exchanger
indoor unit
casing
blower
Prior art date
Application number
PCT/JP2017/040989
Other languages
English (en)
French (fr)
Inventor
錦帆 劉
貴士 柏原
弘宣 寺岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP17871080.2A priority Critical patent/EP3527908B1/en
Priority to US16/345,924 priority patent/US11306924B2/en
Priority to CN201780071728.5A priority patent/CN109983282B/zh
Publication of WO2018092783A1 publication Critical patent/WO2018092783A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an indoor unit of an air conditioner equipped with a crossflow type blower, and particularly relates to measures for reducing ventilation resistance in a heat exchanger.
  • the indoor unit disclosed in Patent Document 1 includes a heat exchanger connected to a refrigerant circuit, a drain pan, a cross-flow blower, and a casing that accommodates these.
  • a cross-flow type blower is provided in a casing in which an air inlet and outlet are formed in a rear part and a front part, and has a fan rotor and a tongue that rotate around a central axis. An air flow from the rear inlet to the front outlet is formed in the casing by the rotation.
  • the heat exchanger is provided on the upstream side of the airflow crossflow type blower, and is configured to heat or cool the air passing therethrough.
  • the drain pan is provided below the heat exchanger so as to receive dew condensation water generated in the heat exchanger.
  • the said indoor unit does not arrange
  • the heat exchanger since the heat exchanger has such an inclined portion inclined downward, a heat exchanger having a relatively large heat transfer area is housed in a relatively small casing.
  • the indoor unit has a problem that the ventilation resistance at the lower end portion of the inclined portion in contact with the drain pan is remarkably increased because the inclination angle of the inclined portion with respect to the vertical plane is too large.
  • This invention is made
  • a first aspect of the present disclosure includes a casing (20) in which an air inflow port (21) is formed in a rear portion and an air outflow port (22) is formed in a front portion, and the casing (20).
  • a fan rotor (31) that is provided and rotates about a central axis (X) and below the fan rotor (31) and in front of the central axis (X) along the outer periphery of the fan rotor (31)
  • a tongue (36a) extending in the axial direction and defining a suction port (32a), and going from the rear inlet (21) to the front outlet (22) in the casing (20)
  • a cross-flow blower (30) that forms an air flow, and provided in the casing (20), provided upstream of the cross-flow blower (30) in the air flow, and forward in the front-rear direction.
  • An air conditioner indoor unit comprising a heat exchanger (40) for heating or cooling air, wherein the front end (44a) of the inclined portion (44) It is provided below the fan rotor (31) so as to be positioned between the foremost part (31a) of the fan rotor (31) and the central axis (X) in the front-rear direction. It is.
  • the heat exchanger (40) includes a front end (44a) of the inclined portion (44) below the fan rotor (31). In the longitudinal direction, it is provided so as to be positioned between the tongue (36a) and the central axis (X).
  • the air flowing into the casing (20) from the inflow port (21) is heated or cooled when passing through the heat exchanger (40), and the temperature is adjusted.
  • the air whose temperature has been adjusted is sucked into the cross-flow type blower (30) and blown out, and flows out of the casing (20) through the outlet (22).
  • the heat exchanger (40) includes an inclined portion (44) that is inclined so as to be positioned lower toward the front in the front-rear direction, and the inclined portion (44)
  • the front end (44a) is provided below the fan rotor (31) so as to be positioned between the foremost part (31a) of the fan rotor (31) and the central axis (X) in the front-rear direction.
  • the front end (44a) of the inclined portion (44) is located below the fan rotor (31) and between the tongue (36a) and the central axis (X) in the front-rear direction.
  • the heat exchanger (40) is arranged so as to be located in
  • the inclined portion (44) of the heat exchanger (40) is a conventional indoor unit in which the front end of the inclined portion is located in front of the fan rotor. It will be located behind the heat exchanger. Therefore, in the casing (20), the inclined portion (44) of the heat exchanger (40) can be provided in an inclined posture raised in the vertical direction relative to the inclined portion of the conventional heat exchanger.
  • the heat exchanger is configured such that the front end (44a) of the inclined portion (44) is positioned on the front side of the central axis (X) below the fan rotor (31). (40) is arranged. That is, the front end (44a) of the inclined portion (44) is provided at a position close to the tongue portion (36a) in the front-rear direction. Therefore, there is no possibility that the air flow that has passed through the heat exchanger (40) does not reach the frontmost part of the suction port (32a) of the crossflow blower (30), that is, the vicinity of the tongue (36a). Air is sucked in the entire suction port.
  • the heat exchanger (40) has at least one bent portion and is formed so as to surround the suction port (32a). It is characterized by being.
  • the heat exchanger (40) is formed in a bent shape so as to surround the suction port (32a). Therefore, the arrangement space is reduced as compared with the case where a linear heat exchanger that is not bent is used.
  • the heat exchanger (40) sets a closest approach distance (A) to the fan rotor (31). It arrange
  • the closest approach distance that is the distance between the heat exchanger (40) and the fan rotor (31) at the portion closest to the fan rotor (31) is A, and the fan rotor (31)
  • the heat exchanger (40) is arranged so that 0.125B ⁇ A ⁇ 0.188B.
  • the heat exchanger (40) provided on the upstream side of the cross-flow blower (30) in the casing (20) is lowered toward the front in the front-rear direction.
  • the front end (44a) of the inclined portion (44) is below the fan rotor (31) and is the frontmost portion of the fan rotor (31) in the front-rear direction.
  • the heat exchanger (40) was arranged so as to be located between (31a) and the central axis (X).
  • the front end (44a) of the inclined portion (44) is located below the fan rotor (31) and between the tongue (36a) and the central axis (X) in the front-rear direction.
  • the heat exchanger (40) It was decided to arrange the heat exchanger (40) to be located in According to such an arrangement, the inclined portion (44) of the heat exchanger (40) is rearward compared to the heat exchanger of the conventional indoor unit in which the front end of the inclined portion is located in front of the fan rotor. Therefore, the inclined portion (44) can be provided in an inclined posture that is raised in the vertical direction as compared with the conventional heat exchanger. Therefore, compared with the heat exchanger of the conventional indoor unit, the ventilation resistance in an inclination part (44) can be reduced and the energy consumption of a crossflow type air blower (30) can be reduced.
  • the front end (44a) of the inclined portion (44) is located below the fan rotor (31) and in the front-rear direction (36a )
  • the heat exchanger (40) was arranged so as to be located in the vicinity. With such an arrangement, even if the inclined portion (44) of the heat exchanger (40) is arranged at a position behind the conventional one, the air flow that has passed through the heat exchanger (40) is a cross-flow type blower ( There is no risk of reaching the frontmost portion of the suction port (32a) of 30), that is, the vicinity of the tongue (36a), and air is sucked in the entire suction port (32a).
  • the effective suction area at the suction port (32a) of the cross-flow blower (30) decreases as if the position of the inclined portion (44) of the heat exchanger (40) in the front-rear direction is excessively rearward. Therefore, the performance of the blower (30) is not deteriorated.
  • the ventilation resistance is reduced without causing the performance of the blower (30) to deteriorate. Can be reduced.
  • the heat exchanger (40) is formed in a bent shape and arranged so as to surround the suction port (32a).
  • the arrangement space is smaller than when a linear heat exchanger that is not bent is used. That is, the heat exchanger (40) having a relatively large heat transfer area can be compactly arranged in a small space around the suction port (32a).
  • FIG. 1 is a side sectional view showing the state where the indoor unit of the air harmony device concerning the embodiment of the present invention was installed.
  • FIG. 2 is a side sectional view of the indoor unit of the air-conditioning apparatus according to the embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view showing the fan rotor of the crossflow type blower according to the embodiment of the present invention.
  • FIG. 4 is an enlarged view of the vicinity of the cross-flow blower and heat exchanger of FIG.
  • Embodiment 1 of the Invention As shown in FIG. 1, the indoor unit (10) is installed in a lowered ceiling (1) in which the ceiling surface of the indoor space (S) is lowered by one step.
  • the indoor unit (10) includes a casing (20), a cross-flow blower (30), a heat exchanger (40), a drain pan (50), and an electrical component box (60).
  • the cross-flow blower (30), the heat exchanger (40), the drain pan (50), and the electrical component box (60) are installed in the casing (20).
  • the left side of FIG. 1 will be referred to as “front side”
  • the right side will be referred to as “rear side”
  • the front side in the paper front / back direction will be referred to as “left side”
  • the casing (20) is formed by a substantially rectangular parallelepiped box. Specifically, in FIG. 1, the casing (20) is configured as a thin box whose length in the left-right direction is longer than the length in the front-rear direction and whose height is lower than the length in the front-rear direction in plan view. ing.
  • an inflow port (21) is formed on the rear surface
  • an outflow port (22) is formed on the front surface.
  • the other end of the suction duct (2) whose one end opens in the indoor space (S) is connected to the inflow port (21).
  • the outlet (22) is formed in a duct shape and passes through the side surface (1a) of the falling ceiling (1) and opens in the indoor space (S).
  • the crossflow type blower (30) has a fan rotor (31), a housing (32), and a motor (not shown).
  • the cross flow type blower (30) is formed long in the left-right direction. When the operation starts, the cross-flow blower (30) forms an air flow from the rear inlet (21) to the front outlet (22) in the casing (20).
  • the fan rotor (31) has ten disk-shaped partition plates (33), a large number of blades (34), and two shaft portions (35). ing.
  • the ten partition plates (33) are provided at intervals so that the centers are aligned on the same straight line.
  • the straight line connecting the centers is the central axis (rotating axis) (X) of the fan rotor (31).
  • the two shaft portions (35) are formed so as to protrude outward from the center portions of the partition plates (33) at both ends provided at the ends of the ten partition plates (33).
  • One shaft portion (35) of the two shaft portions (35) is rotatably supported by a side wall portion (38) described later of the housing (32), and a motor (not shown) is mounted on the other shaft portion (35). It is connected.
  • a large number of blades (34) are spanned around the outer periphery of a pair of opposing partition plates (33) between 10 partition plates (33).
  • a large number of blades (34) are arranged at intervals in the circumferential direction.
  • Each blade (34) is curved so as to bulge to the opposite side of the rotational direction (the direction indicated by the arrow in FIG. 2) in the circumferential direction of the fan rotor (31), and the radial direction of the fan rotor (31).
  • the fan rotor (31) includes a pair of partition plates (33) facing each other and a plurality of blades (34) provided to connect the outer peripheral portions of each other. Nine reams are formed in the axial direction.
  • the housing (32) is formed in a bowl shape so that an air inlet (32a) and an air outlet (32b) are formed and the fan rotor (31) is accommodated therein. Is formed.
  • the housing (32) includes a lower wall portion (36) provided below the fan rotor (31), an upper wall portion (37) provided above the fan rotor (31), and a shaft of the fan rotor (31). And two side wall portions (38) provided at both ends in the direction.
  • the lower wall portion (36) is formed long in the axial direction of the fan rotor (31) below and on the front side of the fan rotor (31), and has a tongue portion (36a), a lower extension portion (36b), and a seal portion (36c). ).
  • the tongue (36a) opposes the lower portion and in front of the central axis (X) of the fan rotor (31), and extends in the axial direction of the fan rotor (31).
  • the last part (36d) of the tongue part (36a) forms a suction port (32a).
  • the lower extension (36b) is continuous with the upper end of the tongue (36a), extends obliquely downward from the upper end of the tongue (36a), and the front end defines the air outlet (32b).
  • the seal portion (36c) is inclined and extended so as to be located on the rear side as it goes downward from the vicinity of the tongue portion (36a) on the lower surface of the lower extension portion (36b).
  • the lower end of the seal portion (36c) is in contact with the upper surface of the drain pan (50), and the air that has passed through the heat exchanger (40) bypasses the cross-flow blower (30) and does not flow out of the casing (20). As described above, the gap between the cross-flow blower (30) and the drain pan (50) is sealed.
  • the upper wall portion (37) is formed above the fan rotor (31) in the axial direction of the fan rotor (31), and includes a scroll wall portion (37a), an upper extension portion (37b), and a seal portion (37c). have.
  • the scroll wall portion (37a) is a wall portion formed in a spiral shape except for the rear end portion, and the axial direction of the fan rotor (31) is higher than the central axis (X) of the fan rotor (31). It extends long and covers the outer peripheral surface of the fan rotor (31).
  • the scroll wall (37a) has a rear end that defines a suction port (32a) and extends forward from the suction port (32a) to a position directly above the upper end of the tongue (36a).
  • the upper extension (37b) is formed so as to be smoothly continuous with the front end of the scroll wall (37a).
  • the upper extension (37b) extends substantially parallel to the lower extension (36b) so as to face the lower extension (36b), and the front end defines the air outlet (32b).
  • the seal portion (37c) extends from the upper surface of the rear end portion of the scroll wall portion (37a) toward the top plate of the casing (20) while being bent in an S shape.
  • the seal part (37c) is partly in contact with the heat exchanger (40), and the air flowing into the casing (20) from the inlet (21) bypasses the heat exchanger (40) and crossflows.
  • the gap between the suction port (32a) and the heat exchanger (40) is sealed so as not to be sucked into the blower (30) of the mold.
  • the two side wall portions (38) are each formed of a flat plate, and block between the left and right end portions of the lower wall portion (36) and the upper wall portion (37) at both axial end portions of the fan rotor (31). It is provided as follows. Insertion holes for the shaft portion (35) of the fan rotor (31) are formed in the two side wall portions (38), and the shaft portion (35) is inserted therethrough.
  • the two side wall portions (38) form an air flow path from the suction port (32a) to the air outlet (32b) between the lower wall portion (36) and the upper wall portion (37).
  • the heat exchanger (40) is provided in the casing (20) on the rear side of the cross flow type blower (30), that is, on the upstream side of the air flow formed by the blower (30).
  • the heat exchanger (40) has two bent portions (40a, 40b) and is formed in a bent shape. Specifically, in the heat exchanger (40), three heat exchange parts (first to third heat exchange parts (41 to 43)) are formed by two bent parts (40a, 40b).
  • the first to third heat exchanging parts (41 to 43) are formed long in the left-right direction (the axial direction of the fan rotor (31)), like the cross-flow type blower (30).
  • the first to third heat exchanging sections (41 to 43) are arranged at different angles so as to surround the suction port (32a) of the crossflow type blower (30). Specific arrangement positions of the first to third heat exchange parts (41 to 43) will be described later.
  • the drain pan (50) is provided below the heat exchanger (40) in the casing (20) so as to receive dew condensation water generated on the surface of the heat exchanger (40).
  • the drain pan (50) is formed so that the length in the left-right direction and the length in the front-rear direction are longer than the respective lengths of the heat exchanger (40) in plan view, so that the dew condensation water received does not leak. Rises upward to form an outer peripheral wall.
  • the drain pan (50) is installed on the bottom plate of the casing (20). The condensed water received by the drain pan (50) is discharged to the outside through a drain hose (not shown).
  • the electrical component box (60) is provided on the bottom plate at the rear end in the front-rear direction where the inlet (21) and the outlet (22) in the casing (20) face each other.
  • the electrical component box (60) is arranged upstream of the heat exchanger (40) that generates condensed water and the drain pan (50) that receives the condensed water in the air flow formed in the casing (20).
  • the electrical component box (60) is disposed so as to be spaced from the outer peripheral wall of the drain pan (50), and is formed so that the height is lower than the height of the drain pan (50).
  • the heat exchanger (40) has two bent portions (40a, 40b), and the first to third heat exchange portions (41-43) are formed by the two bent portions (40a, 40b). Is formed. Specifically, a first heat exchanging portion (41) and a second heat exchanging portion (42) are formed with the first bent portion (40a) interposed therebetween, and the second heat is interposed with the second bent portion (40b) interposed therebetween. An exchange part (42) and a third heat exchange part (43) are formed.
  • the first heat exchanging part (41) and the second heat exchanging part (42) are arranged on a vertical plane parallel to the central axis (X) of the fan rotor (31) so as to be positioned downward as it goes forward in the front-rear direction. It is comprised by the inclination part (44) inclined with respect to. Conversely, the third heat exchanging portion (43) is inclined so as to be positioned upward as it goes forward in the front-rear direction.
  • the inclined part (44) composed of the first heat exchange part (41) and the second heat exchange part (42) has a front end (44a) below the fan rotor (31), and the fan rotor (31) in the front-rear direction. Located so that the rear end (44b) is located at the same height as the central axis (X) behind the fan rotor (31), between the foremost part (31a) and the central axis (X) Has been. More specifically, the front end (44a) of the inclined portion (44) is, in the front-rear direction, a vertical surface Z3 that contacts the foremost portion (31a) of the fan rotor (31) and a vertical surface Z3 that passes through the central axis (X). It is positioned between.
  • the front end (44a) of the inclined portion (44) has a vertical plane Z2 in contact with the rearmost portion (36d) of the tongue portion (36a) and the central axis (X) in the front-rear direction. In particular, in this embodiment, it is located immediately behind the rear end of the tongue (36a).
  • the first heat exchange part (41) and the second heat exchange part (42) constituting the inclined part (44) are parallel to the central axis (X) of the fan rotor (31) by the first bent part (40a).
  • the tilt angle with respect to the vertical plane (hereinafter simply referred to as “vertical tilt angle”) is different.
  • the rear side second heat exchanging part (42) is arranged so that the vertical inclination angle is smaller than that of the front side first heat exchanging part (41).
  • the first heat exchanging portion (41) is provided in an inclined posture such that the vertical inclination angle is 70 ° and the second heat exchanging portion (42) is 50 °.
  • the third heat exchanging part (43) is provided in an inclined posture different from the inclined part (44) by the second bent part (40b).
  • the third heat exchange part (43) is inclined in the direction opposite to the inclined part (44) with respect to a vertical plane parallel to the central axis (X) of the fan rotor (31), and the vertical inclination thereof The angle of inclination is 50 ° (when the vertical inclination angle on the second heat exchanging portion (42) side is positive, ⁇ 50 °).
  • the 3rd heat exchange part (43) is formed symmetrically with the 2nd heat exchange part (42) with respect to the horizontal surface.
  • the second heat exchange part (42) and the third heat exchange part (43) are provided in the same position in the front-rear direction and in the front-end position.
  • the 2nd bending part (40b) between a 2nd heat exchange part (42) and a 3rd heat exchange part (43) is as high as the central axis (X) of a fan rotor (31). It is in the position.
  • the heat exchanger (40) is configured so that the first to third heat exchange parts (41 to 43) surround the suction port (32a) of the crossflow type blower (30) at different vertical inclination angles. Is provided.
  • the heat exchanger (40) is provided so that the first heat exchanging part (41) is closest to the fan rotor (31), and the first heat exchanging part (41) is connected to the fan rotor (31).
  • the approach distance is A
  • the outer diameter of the fan rotor (31) is B, it is provided at a position where 0.125 ⁇ A / B ⁇ 0.188 (0.125B ⁇ A ⁇ 0.188B). Yes.
  • the closest distance A is set to 15 mm.
  • the front end (44a) of the inclined portion (44) is below the fan rotor (31) and is positioned between the central axis (X) and the tongue portion (36a) in the front-rear direction.
  • a heat exchanger (40) is provided to do this.
  • the front end (44a) of the inclined portion (44) is further further than the foremost portion (31a) of the fan rotor (31).
  • the inclined portion (44) is positioned at the rear.
  • the inclined portion (44) can be provided in a posture that is raised in the vertical direction as compared with the conventional one. Moreover, by providing in the attitude
  • the temperature-adjusted air is sucked into the blower (30), flows through the air flow path formed in the housing (32), and is blown out from the outlet (32b).
  • the air blown out from the blower (30) is supplied from the outlet (22) to the indoor space (S).
  • the temperature of the indoor air in the indoor space (S) is adjusted by this air.
  • the inclined portion (44) of the heat exchanger (40) is positioned rearward in the front-rear direction compared to the conventional indoor unit, the inclined portion (44) is more than conventional. It can be provided in a vertically raised position. And since the inclined part (44) is provided in such a raised posture, the ventilation in the lower end part (lower end part of the first heat exchange part (41)) of the inclined part (44) compared to the conventional indoor unit. Resistance becomes smaller.
  • the inclined portion (44) is positioned rearward in the front-rear direction as compared with the heat exchanger of the conventional indoor unit.
  • the front end (44a) is positioned near the tongue (36a). Therefore, there is no possibility that the air flow that has passed through the heat exchanger (40) will not reach the frontmost part (near the tongue (36a)) of the suction port (32a) of the cross-flow blower (30). Air is sucked in the whole of (32a).
  • the heat exchanger (40) provided on the upstream side of the crossflow blower (30) in the casing (20) is positioned downward as it goes forward in the front-rear direction.
  • the front end (44a) of the inclined portion (44) is below the fan rotor (31) and is the frontmost portion (31a) of the fan rotor (31) in the front-rear direction.
  • the central axis (X) the heat exchanger (40) is arranged.
  • the front end (44a) of the inclined portion (44) is positioned below the fan rotor (31) and between the tongue (36a) and the central axis (X) in the front-rear direction.
  • the heat exchanger (40) It was decided to arrange the heat exchanger (40). According to such an arrangement, the inclined portion (44) of the heat exchanger (40) is rearward compared to the heat exchanger of the conventional indoor unit in which the front end of the inclined portion is located in front of the fan rotor. Therefore, the inclined portion (44) can be provided in an inclined posture that is raised in the vertical direction as compared with the conventional heat exchanger. Therefore, compared with the heat exchanger of the conventional indoor unit, the ventilation resistance in an inclination part (44) can be reduced and the energy consumption of a crossflow type air blower (30) can be reduced.
  • the heat exchanger (40) is such that the front end (44a) of the inclined portion (44) is positioned below the fan rotor (31) and in the vicinity of the tongue (36a) in the front-rear direction. ).
  • the air flow that has passed through the heat exchanger (40) is a cross-flow type blower ( There is no risk of reaching the frontmost portion of the suction port (32a) of 30), that is, the vicinity of the tongue (36a), and air is sucked in the entire suction port (32a).
  • the effective suction area at the suction port (32a) of the cross-flow blower (30) decreases as if the position of the inclined portion (44) of the heat exchanger (40) in the front-rear direction is excessively rearward. Therefore, the performance of the blower (30) is not deteriorated.
  • the indoor unit of the air conditioner including the cross-flow type blower (30) it is possible to reduce the ventilation resistance without degrading the performance of the blower (30).
  • the heat exchanger (40) is formed in a bent shape having two bent portions (40a, 40b), and is arranged so as to surround the suction port (32a).
  • arrangement space becomes small. That is, according to the indoor unit of the present embodiment, the heat exchanger (40) having a relatively large heat transfer area can be compactly arranged in a small space around the suction port (32a).
  • the indoor unit (10) was comprised so that the inflow port (21) and the outflow port (22) might be provided with the casing (20) formed in two side surfaces
  • the positions of the inlet (21) and the outlet (22) in the casing (20) are not limited to those described above.
  • the inflow port (21) may be formed on the rear side of the lower surface of the casing (20), and the outflow port (22) may be formed on the front side of the lower surface.
  • the heat exchanger (40) has two bent portions (40a, 40b), and the three bent portions (40a, 40b) provide three heat exchange portions (first to third heats).
  • the exchange parts (41 to 43) were formed in a bent shape connected at different angles.
  • the heat exchanger (40) may have a linear shape instead of a bent shape.
  • the whole is an inclined part (44), and its front end (44a) is between the frontmost part (31a) of the fan rotor (31) and the central axis (X) in the front-rear direction.
  • the heat exchanger (40) may have one bent portion, or may have three or more bent portions.
  • the present invention relates to an indoor unit of an air conditioner equipped with a cross-flow type blower, and is particularly useful for measures for reducing ventilation resistance in a heat exchanger.

Abstract

本発明の目的は、クロスフロー型の送風機を備えた空気調和装置の室内ユニットにおいて、送風機の性能低下を招くことなく通風抵抗を低減することにある。 ケーシング(20)と、その内部に設けられてファンロータ(31)とその下方で該ファンロータ(31)の中心軸(X)よりも前側において外周に沿って軸方向に延びて吸込口(32a)を区画する舌部(36a)とを有し、ケーシング(20)内に後方から前方へ向かう空気流れを形成するクロスフロー型の送風機(30)と、空気流れの送風機(30)の上流側に設けられた前下がりの傾斜部(44)を有する熱交換器(40)とを備えた空気調和装置の室内ユニット(10)において、傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において該ファンロータ(31)の最前部(31a)と中心軸(X)との間に位置するように熱交換器(40)を設ける。

Description

空気調和装置の室内ユニット
  本発明は、クロスフロー型の送風機を備えた空気調和装置の室内ユニットに関し、特に、熱交換器における通風抵抗の低減対策に係るものである。
  従来、複数の羽根を有して中心軸回りに回転する円筒状のファンロータと、空気の吸込口と吹出口とが形成されて上記ファンロータが収納されたハウジングとを有するクロスフロー型の送風機を備えた空気調和装置の室内ユニットが知られている(例えば、下記の特許文献1を参照)。
  特許文献1に開示された室内ユニットは、冷媒回路に接続された熱交換器と、ドレンパンと、クロスフロー型の送風機と、これらを収容するケーシングとを備えている。クロスフロー型の送風機は、空気の流入口と流出口とが後部と前部とに形成されたケーシング内に設けられ、中心軸周りに回転するファンロータと舌部とを有し、ファンロータの回転によってケーシング内に後方の流入口から前方の流出口へ向かう空気流れを形成するように構成されている。熱交換器は、この空気流れのクロスフロー型送風機よりも上流側に設けられ、通過する空気を加熱又は冷却するように構成されている。ドレンパンは、熱交換器において生じた結露水を受け止めるように熱交換器の下方に設けられている。
  ところで、上記室内ユニットでは、ケーシング内において後方から前方へ流れる空気流れに対し、熱交換器をこの空気流れに垂直な姿勢(鉛直方向に立てた姿勢)で配置するのではなく、前後方向において前側に向かうほど下方に位置するように傾斜させた傾斜部を有している。上記室内ユニットでは、熱交換器がこのような前下がりに傾斜した傾斜部を有することにより、比較的伝熱面積の大きな熱交換器を比較的小型のケーシング内に収めている。
特開2008-275231号公報
  しかしながら、上記室内ユニットでは、傾斜部の鉛直面に対する傾斜角度が大きすぎるため、ドレンパンに当接する傾斜部の下端部における通風抵抗が著しく大きくなるという問題があった。
  この問題に対し、熱交換器の傾斜部の傾斜角度を小さくすることが考えられるが、傾斜部がファンロータに接触しないように傾斜部の傾斜角度を小さくするためには、傾斜部の位置を後方にずらす必要があった。
  しかしながら、傾斜部の位置を後方にずらして傾斜部の傾斜角度を小さくすると、通風抵抗は低減できるものの、熱交換器を通過した空気流れが吸込口の最も前側の部分(舌部付近)まで届かなくなるおそれがあった。その結果、クロスフロー型の送風機の吸込口における有効吸込面積が減少して送風機の性能が低下するという問題があった。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、クロスフロー型の送風機を備えた空気調和装置の室内ユニットにおいて、送風機の性能低下を招くことなく通風抵抗を低減することにある。
  本開示の第1の態様は、空気の流入口(21)が後部に形成されると共に空気の流出口(22)が前部に形成されたケーシング(20)と、上記ケーシング(20)内に設けられ、中心軸(X)回りに回転するファンロータ(31)と該ファンロータ(31)の下方であって上記中心軸(X)よりも前側において該ファンロータ(31)の外周に沿って軸方向に延びて吸込口(32a)を区画する舌部(36a)とを有し、上記ケーシング(20)内に、後方の上記流入口(21)から前方の上記流出口(22)へ向かう空気流れを形成するクロスフロー型の送風機(30)と、上記ケーシング(20)内に設けられ、上記空気流れの上記クロスフロー型の送風機(30)の上流側に設けられ、前後方向において前方に向かうほど下方に位置するように傾斜した傾斜部(44)を有し、通過する空気を加熱又は冷却する熱交換器(40)とを備えた空気調和装置の室内ユニットであって、上記熱交換器(40)は、上記傾斜部(44)の前端(44a)が、上記ファンロータ(31)の下方であって前後方向において該ファンロータ(31)の最前部(31a)と上記中心軸(X)との間に位置するように設けられていることを特徴とするものである。
  本開示の第2の態様は、本開示の第1の態様において、上記熱交換器(40)は、上記傾斜部(44)の前端(44a)が、上記ファンロータ(31)の下方であって前後方向において上記舌部(36a)と上記中心軸(X)との間に位置するように設けられている。
  本開示の第1及び第2の態様では、クロスフロー型の送風機(30)を運転させると、ケーシング(20)内において後方の流入口(21)から前方の流出口(22)へ向かう空気流れが形成される。流入口(21)からケーシング(20)内に流入した空気は、熱交換器(40)を通過する際に加熱又は冷却されて温度が調節される。温度が調節された空気は、クロスフロー型の送風機(30)に吸い込まれて吹き出され、流出口(22)からケーシング(20)の外部に流出する。
  本開示の第1及び第2の態様では、熱交換器(40)は、前後方向において前方に向かうほど下方に位置するように傾斜した傾斜部(44)を有し、該傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向においてファンロータ(31)の最前部(31a)と中心軸(X)との間に位置するように設けられている。特に、本開示の第2の態様では、傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において舌部(36a)と中心軸(X)との間に位置するように熱交換器(40)が配置されている。このように、本開示の第1及び第2の態様では、熱交換器(40)の傾斜部(44)が、ファンロータよりも前方に傾斜部の前端が位置していた従来の室内ユニットの熱交換器に比べて後方に位置することとなる。そのため、ケーシング(20)内において、熱交換器(40)の傾斜部(44)を、従来の熱交換器の傾斜部よりも鉛直方向に起こした傾斜姿勢で設けることができる。
  また、本開示の第1及び第2の態様では、傾斜部(44)の前端(44a)が、ファンロータ(31)の下方において中心軸(X)よりも前側に位置するように熱交換器(40)が配置されている。つまり、傾斜部(44)の前端(44a)が、前後方向において舌部(36a)に近い位置に設けられている。そのため、熱交換器(40)を通過した空気流れがクロスフロー型の送風機(30)の吸込口(32a)の最も前側の部分まで、即ち、舌部(36a)付近まで届かなくなるおそれがなく、吸込口の全体において空気が吸い込まれることとなる。
  本開示の第3の態様は、本開示の第1又は第2の態様において、上記熱交換器(40)は、屈曲部を少なくとも1つ有し、上記吸込口(32a)を取り囲むように形成されていることを特徴とするものである。
  本開示の第3の態様では、熱交換器(40)が屈曲形状に形成されて吸込口(32a)を取り囲むように設けられている。そのため、屈曲形状でない直線形状の熱交換器を用いた場合に比べて、配置スペースが小さくなる。
  本開示の第4の態様は、本開示の第1乃至第3のいずれか1つの態様において、上記熱交換器(40)は、上記ファンロータ(31)との最接近距離(A)を該ファンロータ(31)の外径(B)で除した値が、0.125以上0.188以下となるように配置されていることを特徴とするものである。
  本開示の第4の態様では、熱交換器(40)がファンロータ(31)に最も接近する部分におけるファンロータ(31)との距離である最接近距離をAとし、ファンロータ(31)の外径をBとすると、0.125B≦A≦0.188Bとなるように、熱交換器(40)が配置されている。
  本開示の第1及び第2の態様によれば、ケーシング(20)内においてクロスフロー型の送風機(30)の上流側に設けられる熱交換器(40)に、前後方向において前方に向かうほど下方に位置するように傾斜した傾斜部(44)を設け、該傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において該ファンロータ(31)の最前部(31a)と中心軸(X)との間に位置するように熱交換器(40)を配置することとした。特に、本開示の第2の態様では、傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において舌部(36a)と中心軸(X)との間に位置するように熱交換器(40)を配置することとした。このような配置によれば、熱交換器(40)の傾斜部(44)が、ファンロータよりも前方に傾斜部の前端が位置していた従来の室内ユニットの熱交換器に比べて後方に位置することとなるため、傾斜部(44)を従来の熱交換器よりも鉛直方向に起こした傾斜姿勢で設けることができる。そのため、従来の室内ユニットの熱交換器に比べて傾斜部(44)における通風抵抗を低減することができ、クロスフロー型の送風機(30)の消費エネルギーを低減することができる。
  また、上述のように、本開示の第1及び第2の態様によれば、傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において舌部(36a)付近に位置するように熱交換器(40)を配置することとした。このような配置により、熱交換器(40)の傾斜部(44)を従来よりも後方の位置に配置することとしても、熱交換器(40)を通過した空気流れがクロスフロー型の送風機(30)の吸込口(32a)の最も前側の部分まで、即ち、舌部(36a)付近まで届かなくなるおそれがなく、吸込口(32a)の全体において空気が吸い込まれることとなる。つまり、熱交換器(40)の傾斜部(44)の前後方向の位置を後方にし過ぎた場合のように、クロスフロー型の送風機(30)の吸込口(32a)における有効吸込面積が減少して送風機(30)の性能が低下することがない。以上により、本開示の第1及び第2の態様によれば、クロスフロー型の送風機(30)を備えた空気調和装置の室内ユニットにおいて、送風機(30)の性能低下を招くことなく通風抵抗を低減することができる。
  また、本開示の第3の態様によれば、熱交換器(40)を屈曲形状に形成し、吸込口(32a)を取り囲むように配置することとした。屈曲形状でない直線形状の熱交換器を用いた場合に比べて、配置スペースが小さくなる。つまり、比較的大きな伝熱面積を有する熱交換器(40)を、吸込口(32a)周りの小さなスペースにコンパクトに配置することができる。
図1は、本発明の実施形態に係る空気調和装置の室内ユニットが設置された状態を示す側面断面図である。 図2は、本発明の実施形態に係る空気調和装置の室内ユニットの側面断面図である。 図3は、本発明の実施形態に係るクロスフロー型の送風機のファンロータを拡大して示す斜視図である。 図4は、図2のクロスフロー型の送風機及び熱交換器付近の拡大図である。
  以下、本発明の実施形態に係る空気調和装置の室内ユニットについて図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  《発明の実施形態1》
  図1に示すように、室内ユニット(10)は、室内空間(S)の天井面が一段下がった下がり天井(1)内に設置されている。室内ユニット(10)は、ケーシング(20)と、クロスフロー型の送風機(30)と、熱交換器(40)と、ドレンパン(50)と、電装品箱(60)とを備えている。クロスフロー型の送風機(30)と熱交換器(40)とドレンパン(50)と電装品箱(60)とは、ケーシング(20)内に設置されている。なお、以下では、説明の便宜上、図1の左側を「前側」、右側を「後側」、紙面表裏方向において手前側を「左側」、紙面表裏方向において奥側を「右側」として説明する。
  ケーシング(20)は、略直方体形状の箱体によって形成されている。具体的には、図1において、ケーシング(20)は、平面視において、左右方向の長さが前後方向の長さよりも長く、前後方向の長さよりも高さが低い薄型の箱体に構成されている。ケーシング(20)には、後面に流入口(21)が形成され、前面に流出口(22)が形成されている。流入口(21)には、一端が室内空間(S)において開口する吸込ダクト(2)の他端が接続されている。流出口(22)は、ダクト状に形成され、下がり天井(1)の側面(1a)を貫通して室内空間(S)において開口している。
  クロスフロー型の送風機(30)は、ファンロータ(31)とハウジング(32)とモータ(図示省略)とを有している。クロスフロー型の送風機(30)は、左右方向に長く形成されている。クロスフロー型の送風機(30)は、運転が開始されると、ケーシング(20)内において、後方の流入口(21)から前方の流出口(22)に向かう空気流れを形成する。
  図2及び図3に示すように、ファンロータ(31)は、10枚の円板形状の仕切板(33)と、多数の羽根(34)と、2つの軸部(35)とを有している。10枚の仕切板(33)は、中心が同一直線上に並ぶように間隔を空けて設けられている。なお、中心を結ぶこの直線は、ファンロータ(31)の中心軸(回転軸)(X)となる。2つの軸部(35)は、10枚の仕切板(33)のうち端に設けられた両端の仕切板(33)の中心部から外側へ突出するように形成されている。2つの軸部(35)の一方の軸部(35)は、ハウジング(32)の後述する側壁部(38)に回転自在に支持され、他方の軸部(35)には、図示しないモータが連結されている。
  多数の羽根(34)は、10枚の仕切板(33)の各間に、対向する一対の仕切板(33)の外周部に架け渡されている。多数の羽根(34)は、周方向に間隔を空けて配置されている。また、各羽根(34)は、ファンロータ(31)の周方向において回転方向(図2の矢印で示す方向)の逆側へ膨出するように湾曲すると共に、ファンロータ(31)の径方向において内側の部分ほど、周方向において回転方向と逆側に位置するように径方向に対して傾斜した姿勢で配列されている。
  このような構成により、本実施形態では、ファンロータ(31)は、互いに対向する一対の仕切板(33)とその互いの外周部を連結するように設けられた複数の羽根(34)とによって形成される連が、軸方向に9つ繋がるように形成されている。
  図2及び図4に示すように、ハウジング(32)は、空気の吸込口(32a)と吹出口(32b)とが形成され、内部にファンロータ(31)が収容されるように筺状に形成されている。ハウジング(32)は、ファンロータ(31)の下側に設けられる下壁部(36)と、ファンロータ(31)の上側に設けられる上壁部(37)と、ファンロータ(31)の軸方向の両端部に設けられる2つの側壁部(38)とを有している。
  下壁部(36)は、ファンロータ(31)の下方且つ前側において、ファンロータ(31)の軸方向に長く形成され、舌部(36a)と下側延長部(36b)とシール部(36c)とを有している。舌部(36a)は、ファンロータ(31)の中心軸(X)よりも下方且つ前側の部分に近接して対向し、ファンロータ(31)の軸方向に長く延びている。舌部(36a)の最後部(36d)は、吸込口(32a)を形成している。下側延長部(36b)は、舌部(36a)の上端に連続し、該舌部(36a)の上端から斜め下方に延び、前端が吹出口(32b)を区画している。シール部(36c)は、下側延長部(36b)の下面の舌部(36a)の近傍から下方に向かうほど後側に位置するように傾斜して延びている。シール部(36c)は、下端がドレンパン(50)の上面に当接して、熱交換器(40)を通過した空気がクロスフロー型の送風機(30)を迂回してケーシング(20)から流出しないように、クロスフロー型の送風機(30)とドレンパン(50)との隙間をシールしている。
  上壁部(37)は、ファンロータ(31)の上方において、ファンロータ(31)の軸方向に長く形成され、スクロール壁部(37a)と上側延長部(37b)とシール部(37c)とを有している。スクロール壁部(37a)は、後端部を除く部分が渦巻き形状に形成された壁部であり、ファンロータ(31)の中心軸(X)よりも上方において、ファンロータ(31)の軸方向に長く延び、ファンロータ(31)の外周面を覆っている。スクロール壁部(37a)は、後端が吸込口(32a)を区画し、該吸込口(32a)から前方へ舌部(36a)の上端部の真上の位置まで延びている。上側延長部(37b)は、スクロール壁部(37a)の前端に滑らかに連続するように形成されている。上側延長部(37b)は、下側延長部(36b)に対向するように該下側延長部(36b)に略平行に延び、前端が吹出口(32b)を区画している。シール部(37c)は、スクロール壁部(37a)の後端部の上面からS字状に折れ曲がりながらケーシング(20)の天板に向かって延びている。シール部(37c)は、一部が熱交換器(40)に当接して、流入口(21)からケーシング(20)内に流入した空気が、熱交換器(40)を迂回してクロスフロー型の送風機(30)に吸い込まれないように吸込口(32a)と熱交換器(40)との隙間をシールしている。
  2つの側壁部(38)は、それぞれ平板によって形成され、ファンロータ(31)の軸方向の両端部において、下壁部(36)及び上壁部(37)の左右の端部の間を塞ぐように設けられている。2つの側壁部(38)には、ファンロータ(31)の軸部(35)の挿通孔が形成され、軸部(35)が挿通されている。2つの側壁部(38)は、下壁部(36)と上壁部(37)との間に、吸込口(32a)から吹出口(32b)へ向かう空気流路を形成している。
  熱交換器(40)は、ケーシング(20)内において、クロスフロー型の送風機(30)の後側、即ち、該送風機(30)によって形成される空気流れの上流側に設けられている。熱交換器(40)は、2つの屈曲部(40a,40b)を有し、屈曲形状に形成されている。具体的には、熱交換器(40)には、2つの屈曲部(40a,40b)によって3つの熱交換部(第1~第3熱交換部(41~43))が形成されている。第1~第3熱交換部(41~43)は、クロスフロー型の送風機(30)と同様に、左右方向(ファンロータ(31)の軸方向)に長く形成されている。また、第1~第3熱交換部(41~43)は、クロスフロー型の送風機(30)の吸込口(32a)を取り囲むようにそれぞれ異なる角度で配置されている。第1~第3熱交換部(41~43)の具体的な配置位置については、後述する。
  ドレンパン(50)は、ケーシング(20)内において、熱交換器(40)の表面で発生した結露水を受け止めるように、熱交換器(40)の下方に設けられている。ドレンパン(50)は、平面視において、左右方向の長さも前後方向の長さも熱交換器(40)の各長さよりも長くなるように形成され、受け止めた結露水が漏れないように、外周部が上方に立ち上がり、外周壁を構成している。ドレンパン(50)は、ケーシング(20)の底板上に設置されている。ドレンパン(50)で受け止められた結露水は、図示しないドレンホースを介して屋外へ排出される。
  電装品箱(60)は、ケーシング(20)内の流入口(21)と流出口(22)とが対向する前後方向において後側の端部の底板上に設けられている。つまり、電装品箱(60)は、ケーシング(20)内に形成される上記空気流れにおいて、結露水を発生する熱交換器(40)及び結露水を受け止めるドレンパン(50)よりも上流側に配置されている。電装品箱(60)は、ドレンパン(50)の外周壁と間隔を空けて配置され、高さがドレンパン(50)の高さよりも低くなるように形成されている。
  〈熱交換器の詳細な配置位置〉
  上述したように、熱交換器(40)は、2つの屈曲部(40a,40b)を有し、2つの屈曲部(40a,40b)によって第1~第3熱交換部(41~43)が形成されている。具体的には、第1屈曲部(40a)を挟んで第1熱交換部(41)と第2熱交換部(42)とが形成され、第2屈曲部(40b)を挟んで第2熱交換部(42)と第3熱交換部(43)とが形成されている。第1熱交換部(41)と第2熱交換部(42)とは、前後方向において前方に向かうほど下方に位置するようにファンロータ(31)の中心軸(X)に平行な鉛直面に対して傾斜した傾斜部(44)に構成されている。逆に、第3熱交換部(43)は、前後方向において前方に向かうほど上方に位置するように傾斜している。
  第1熱交換部(41)及び第2熱交換部(42)からなる傾斜部(44)は、前端(44a)がファンロータ(31)の下方であって前後方向において該ファンロータ(31)の最前部(31a)と中心軸(X)との間に位置し、後端(44b)がファンロータ(31)の後方において中心軸(X)と同程度の高さに位置するように配置されている。より具体的には、傾斜部(44)の前端(44a)は、前後方向において、ファンロータ(31)の最前部(31a)に接する鉛直面Z1と中心軸(X)を通る鉛直面Z3との間に位置づけられている。より具体的には、本実施形態では、傾斜部(44)の前端(44a)は、前後方向において、舌部(36a)の最後部(36d)に接する鉛直面Z2と中心軸(X)を通る鉛直面Z3との間に位置づけられており、特に、本実施形態では、舌部(36a)の後端のすぐ後方に位置している。
  傾斜部(44)を構成する第1熱交換部(41)及び第2熱交換部(42)は、第1屈曲部(40a)により、ファンロータ(31)の中心軸(X)に平行な鉛直面に対する傾斜角度(以下、単に「鉛直傾斜角度」と言う)が異なっている。具体的には、後側の第2熱交換部(42)の方が、前側の第1熱交換部(41)よりも鉛直傾斜角度が小さくなるように配置されている。本実施形態では、第1熱交換部(41)の鉛直傾斜角度が70°となり、第2熱交換部(42)の鉛直傾斜角度が50°となるような傾斜姿勢で設けられている。
  第3熱交換部(43)は、第2屈曲部(40b)により、傾斜部(44)とは異なる傾斜姿勢で設けられている。本実施形態では、第3熱交換部(43)は、ファンロータ(31)の中心軸(X)に平行な鉛直面に対して傾斜部(44)とは逆方向に傾斜させ、その鉛直傾斜角度が50°(第2熱交換部(42)側の鉛直傾斜角度を正とすると、-50°)となるような傾斜姿勢で設けられている。また、本実施形態では、第3熱交換部(43)は、水平面に対して第2熱交換部(42)と対称に形成されている。そのため、第2熱交換部(42)と第3熱交換部(43)とは、前後方向において前端の位置と後端の位置が同じ位置に設けられている。また、本実施形態では、第2熱交換部(42)と第3熱交換部(43)の間の第2屈曲部(40b)が、ファンロータ(31)の中心軸(X)と同じ高さ位置に位置している。
  このように、熱交換器(40)は、第1~第3熱交換部(41~43)がそれぞれ異なる鉛直傾斜角度でクロスフロー型の送風機(30)の吸込口(32a)を取り囲むように設けられている。また、熱交換器(40)は、第1熱交換部(41)がファンロータ(31)に最も近接するように設けられ、第1熱交換部(41)のファンロータ(31)との最接近距離をAとし、ファンロータ(31)の外径をBとすると、0.125≦A/B≦0.188(0.125B≦A≦0.188B)となるような位置に設けられている。
  なお、本実施形態では、ファンロータ(31)の外径Bが80~120mmである場合を想定し、最接近距離Aを15mmに設定している。
  《従来の室内ユニットとの相違点》
  上述のように、本実施形態では、傾斜部(44)の前端(44a)がファンロータ(31)の下方であって前後方向において中心軸(X)と舌部(36a)との間に位置するように熱交換器(40)を設けている。本実施形態では、ケーシング(20)内において熱交換器(40)をこのように位置付けることにより、傾斜部(44)の前端(44a)がファンロータ(31)の最前部(31a)よりもさらに前方に位置付けられていた従来の室内ユニットの熱交換器に比べて、傾斜部(44)が後方に位置付けられることとなる。そのため、傾斜部(44)を従来のものよりも鉛直方向に起こした姿勢で設けることができる。また、そのように起こした姿勢で設けることにより、従来の室内ユニットに比べて傾斜部(44)の下端部(第1熱交換部(41)の下端部)における通風抵抗が小さくなる。
  -運転動作-
  空気調和装置の室内ユニット(10)では、クロスフロー型の送風機(30)を起動すると、ファンロータ(31)が回転し、ハウジング(32)内にファンロータ(31)を貫く空気流れが形成される(図2の白抜き矢印を参照)。このようにして、ケーシング(20)内の空気が吸込口(32a)から吸い込まれ、ファンロータ(31)を貫いて吹出口(32b)から吹き出される。このようなクロスフロー型の送風機(30)の動作により、ケーシング(20)内に流入口(21)から流出口(22)に向かう空気流れが形成される。これにより、室内空間(S)の室内空気が吸込ダクト(2)を介してケーシング(20)内に流入する。流入口(21)からケーシング(20)内に流入した空気は、熱交換器(40)を通過する際に、冷媒と熱交換し、温度が調節(加熱又は冷却)される。温調後の空気は、送風機(30)に吸い込まれて、ハウジング(32)内に形成された空気流路を流れて吹出口(32b)から吹き出される。送風機(30)から吹き出された空気は、流出口(22)から室内空間(S)に供給される。この空気によって室内空間(S)の室内空気の温度が調節される。
  〈熱交換器を通過する空気の流れ〉
  本実施形態では、上述のように、熱交換器(40)の傾斜部(44)を、従来の室内ユニットに比べて前後方向において後方に位置付けているため、傾斜部(44)を従来よりも鉛直方向に起こした姿勢で設けることができる。そして、そのような起こした姿勢で傾斜部(44)を設けているため、従来の室内ユニットに比べて傾斜部(44)の下端部(第1熱交換部(41)の下端部)における通風抵抗が小さくなる。
  また、本実施形態では、上述のように、従来の室内ユニットの熱交換器に比べて、傾斜部(44)を前後方向において後方に位置付けるものの、後方に設けすぎず、傾斜部(44)の前端(44a)を舌部(36a)近くに位置付けている。そのため、熱交換器(40)を通過した空気流れがクロスフロー型の送風機(30)の吸込口(32a)の最も前側の部分(舌部(36a)付近)まで届かなくなるおそれがなく、吸込口(32a)の全体において空気が吸い込まれることとなる。
  -実施形態1の効果-
  以上のように、本実施形態によれば、ケーシング(20)内においてクロスフロー型の送風機(30)の上流側に設けられる熱交換器(40)に、前後方向において前方に向かうほど下方に位置するように傾斜した傾斜部(44)を設け、該傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において該ファンロータ(31)の最前部(31a)と中心軸(X)との間に位置するように熱交換器(40)を配置することとした。また、特に、本実施形態では、傾斜部(44)の前端(44a)を、ファンロータ(31)の下方であって前後方向において舌部(36a)と中心軸(X)との間に位置するように熱交換器(40)を配置することとした。このような配置によれば、熱交換器(40)の傾斜部(44)が、ファンロータよりも前方に傾斜部の前端が位置していた従来の室内ユニットの熱交換器に比べて後方に位置することとなるため、傾斜部(44)を従来の熱交換器よりも鉛直方向に起こした傾斜姿勢で設けることができる。そのため、従来の室内ユニットの熱交換器に比べて傾斜部(44)における通風抵抗を低減することができ、クロスフロー型の送風機(30)の消費エネルギーを低減することができる。
  また、本実施形態によれば、傾斜部(44)の前端(44a)が、ファンロータ(31)の下方であって前後方向において舌部(36a)付近に位置するように熱交換器(40)を配置することとした。このような配置により、熱交換器(40)の傾斜部(44)を従来よりも後方の位置に配置することとしても、熱交換器(40)を通過した空気流れがクロスフロー型の送風機(30)の吸込口(32a)の最も前側の部分まで、即ち、舌部(36a)付近まで届かなくなるおそれがなく、吸込口(32a)の全体において空気が吸い込まれることとなる。つまり、熱交換器(40)の傾斜部(44)の前後方向の位置を後方にし過ぎた場合のように、クロスフロー型の送風機(30)の吸込口(32a)における有効吸込面積が減少して送風機(30)の性能が低下することがない。以上により、本実施形態によれば、クロスフロー型の送風機(30)を備えた空気調和装置の室内ユニットにおいて、送風機(30)の性能低下を招くことなく通風抵抗を低減することができる。
  また、本実施形態によれば、熱交換器(40)を2つの屈曲部(40a,40b)を有する屈曲形状に形成し、吸込口(32a)を取り囲むように配置することとした。これにより、屈曲形状でない直線形状の熱交換器を用いた場合に比べて、配置スペースが小さくなる。つまり、本実施形態の室内ユニットによれば、比較的大きな伝熱面積を有する熱交換器(40)を、吸込口(32a)周りの小さなスペースにコンパクトに配置することができる。
  《その他の実施形態》
  上記実施形態では、天井内に設置される室内ユニットとして、本発明に係るクロスフロー型の送風機を備えた室内ユニットの一例として、天井内に設置される室内ユニットについて説明したが、本発明に係る室内ユニットは天井内に設置されるものに限られない。室内空間に設置されるものであってもよい。
  また、上記実施形態では、室内ユニット(10)は、流入口(21)と流出口(22)とが対向する2つの側面に形成されたケーシング(20)を備えるように構成されていたが、ケーシング(20)における流入口(21)と流出口(22)の位置は、上述のものに限られない。例えば、ケーシング(20)の下面後側に流入口(21)が形成され、下面前側に流出口(22)が形成されていてもよい。
  また、上記実施形態では、熱交換器(40)は、2つの屈曲部(40a,40b)を有し、2つの屈曲部(40a,40b)によって3つの熱交換部(第1~第3熱交換部(41~43))が異なる角度で連結された屈曲形状に形成されていた。しかしながら、熱交換器(40)は、屈曲形状でなく、直線形状のものであってもよい。そのような熱交換器(40)の場合、全体が傾斜部(44)となり、その前端(44a)が前後方向においてファンロータ(31)の最前部(31a)と中心軸(X)との間に位置するように配置することによって、上記実施形態と同様の効果を奏することができる。また、熱交換器(40)は、屈曲部を1つ有するものであってもよく、屈曲部を3つ以上有するものであってもよい。
  以上説明したように、本発明は、クロスフロー型の送風機を備えた空気調和装置の室内ユニットに関し、特に、熱交換器における通風抵抗の低減対策について有用である。
     10   室内ユニット
     20   ケーシング
     21   流入口
     22   流出口
     30   送風機
     31   ファンロータ
     31a  最前部
     32a  吸込口
     36a  舌部
     40   熱交換器
     40a  第1屈曲部
     40b  第2屈曲部
     44   傾斜部
     44a  前端
     X    中心軸

Claims (4)

  1.   空気の流入口(21)が後部に形成されると共に空気の流出口(22)が前部に形成されたケーシング(20)と、
      上記ケーシング(20)内に設けられ、中心軸(X)回りに回転するファンロータ(31)と該ファンロータ(31)の下方であって上記中心軸(X)よりも前側において該ファンロータ(31)の外周に沿って軸方向に延びて吸込口(32a)を区画する舌部(36a)とを有し、上記ケーシング(20)内に、後方の上記流入口(21)から前方の上記流出口(22)へ向かう空気流れを形成するクロスフロー型の送風機(30)と、
      上記ケーシング(20)内に設けられ、上記空気流れの上記クロスフロー型の送風機(30)の上流側に設けられ、前後方向において前方に向かうほど下方に位置するように傾斜した傾斜部(44)を有し、通過する空気を加熱又は冷却する熱交換器(40)とを備えた空気調和装置の室内ユニットであって、
      上記熱交換器(40)は、上記傾斜部(44)の前端(44a)が、上記ファンロータ(31)の下方であって前後方向において該ファンロータ(31)の最前部(31a)と上記中心軸(X)との間に位置するように設けられている
    ことを特徴とする空気調和装置の室内ユニット。
  2.   請求項1において、
      上記熱交換器(40)は、上記傾斜部(44)の前端(44a)が、上記ファンロータ(31)の下方であって前後方向において上記舌部(36a)と上記中心軸(X)との間に位置するように設けられている
    ことを特徴とする空気調和装置の室内ユニット。
  3.   請求項1又は2において、
      上記熱交換器(40)は、屈曲部を少なくとも1つ有し、上記吸込口(32a)を取り囲むように形成されている
    ことを特徴とする空気調和装置の室内ユニット。
  4.   請求項1乃至3のいずれか1つにおいて、
      上記熱交換器(40)は、上記ファンロータ(31)との最接近距離(A)を該ファンロータ(31)の外径(B)で除した値が、0.125以上0.188以下となるように配置されている
    ことを特徴とする空気調和装置の室内ユニット。
PCT/JP2017/040989 2016-11-21 2017-11-14 空気調和装置の室内ユニット WO2018092783A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17871080.2A EP3527908B1 (en) 2016-11-21 2017-11-14 Indoor unit for air conditioning device
US16/345,924 US11306924B2 (en) 2016-11-21 2017-11-14 Indoor unit for air conditioning device
CN201780071728.5A CN109983282B (zh) 2016-11-21 2017-11-14 空调装置的室内机组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-226307 2016-11-21
JP2016226307A JP6369522B2 (ja) 2016-11-21 2016-11-21 空気調和装置の室内ユニット

Publications (1)

Publication Number Publication Date
WO2018092783A1 true WO2018092783A1 (ja) 2018-05-24

Family

ID=62145606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040989 WO2018092783A1 (ja) 2016-11-21 2017-11-14 空気調和装置の室内ユニット

Country Status (5)

Country Link
US (1) US11306924B2 (ja)
EP (1) EP3527908B1 (ja)
JP (1) JP6369522B2 (ja)
CN (1) CN109983282B (ja)
WO (1) WO2018092783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097316A1 (ja) * 2020-11-05 2022-05-12 三菱電機株式会社 天井埋込型空気調和機の室内機

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396879B2 (en) * 2016-09-30 2022-07-26 Daikin Industries, Ltd. Cross-flow blower and indoor unit of air-conditioning device equipped with same
CN110748966B (zh) * 2019-10-18 2021-09-21 青岛海尔空调器有限总公司 换热组件及空调室内机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327140A (ja) * 1995-06-01 1996-12-13 Mitsubishi Heavy Ind Ltd 天井吊り下げ型空気調和機
JP2003262353A (ja) * 2002-03-05 2003-09-19 Mitsubishi Heavy Ind Ltd 空気調和装置の室内ユニット及び空気調和装置の運転制御方法
JP2008122056A (ja) * 2006-11-15 2008-05-29 Samsung Electronics Co Ltd 天井型空気調和機
JP2008275231A (ja) 2007-04-27 2008-11-13 Daikin Ind Ltd 空気調和装置
WO2013150568A1 (ja) * 2012-04-06 2013-10-10 三菱電機株式会社 床置き型空気調和機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189424A (ja) * 1985-10-18 1986-05-07 Hitachi Ltd 空気調和機の室内ユニツトの構造
US5669229A (en) * 1995-05-30 1997-09-23 Mitsubishi Jukogyo Kabushiki Kaisha Ceiling-mounted type air conditioner
US5944481A (en) * 1997-11-10 1999-08-31 Carrier Corporation Transverse fan with flow stabilizer
JP4147560B2 (ja) * 2005-03-30 2008-09-10 三菱電機株式会社 空気調和機
JP4799170B2 (ja) * 2005-12-22 2011-10-26 シャープ株式会社 空気調和機の室内機
KR101608981B1 (ko) * 2007-10-22 2016-04-04 엘지전자 주식회사 공기 조화기
KR101485609B1 (ko) * 2008-11-26 2015-01-22 엘지전자 주식회사 공기 조화기의 실내기
JP5365675B2 (ja) * 2011-09-30 2013-12-11 ダイキン工業株式会社 空調室内機
CN103089661B (zh) * 2011-11-04 2015-04-01 上海交通大学 横流风扇
JP6195197B2 (ja) * 2011-12-19 2017-09-13 パナソニックIpマネジメント株式会社 フィン付き熱交換器
JP5749210B2 (ja) * 2012-04-16 2015-07-15 ダイキン工業株式会社 空気調和機
WO2013160959A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 熱交換器、その製造方法及び冷凍サイクル装置
JP5403131B1 (ja) * 2012-09-28 2014-01-29 ダイキン工業株式会社 空気調和機
TWM484072U (zh) * 2014-03-28 2014-08-11 Jin Yih Shyang Entpr Co Ltd 模組化橫流扇及空調裝置
JP2016080326A (ja) * 2014-10-22 2016-05-16 株式会社東芝 空気調和機の室内機
JP6616076B2 (ja) * 2015-02-09 2019-12-04 シャープ株式会社 空気調和機
CN105485778B (zh) * 2016-01-26 2018-09-11 广东美的制冷设备有限公司 一种空调室内机
KR102414268B1 (ko) * 2016-07-22 2022-06-29 엘지전자 주식회사 공기조화기
KR20180044165A (ko) * 2016-10-21 2018-05-02 삼성전자주식회사 공기 조화기
CN110366663B (zh) * 2017-03-03 2021-06-29 三菱电机株式会社 空调机的室内机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327140A (ja) * 1995-06-01 1996-12-13 Mitsubishi Heavy Ind Ltd 天井吊り下げ型空気調和機
JP2003262353A (ja) * 2002-03-05 2003-09-19 Mitsubishi Heavy Ind Ltd 空気調和装置の室内ユニット及び空気調和装置の運転制御方法
JP2008122056A (ja) * 2006-11-15 2008-05-29 Samsung Electronics Co Ltd 天井型空気調和機
JP2008275231A (ja) 2007-04-27 2008-11-13 Daikin Ind Ltd 空気調和装置
WO2013150568A1 (ja) * 2012-04-06 2013-10-10 三菱電機株式会社 床置き型空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527908A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097316A1 (ja) * 2020-11-05 2022-05-12 三菱電機株式会社 天井埋込型空気調和機の室内機
WO2022097223A1 (ja) * 2020-11-05 2022-05-12 三菱電機株式会社 天井埋込型空気調和機の室内機

Also Published As

Publication number Publication date
EP3527908A4 (en) 2020-05-27
EP3527908B1 (en) 2022-08-03
EP3527908A1 (en) 2019-08-21
CN109983282B (zh) 2022-02-08
US20190331351A1 (en) 2019-10-31
US11306924B2 (en) 2022-04-19
CN109983282A (zh) 2019-07-05
JP2018084348A (ja) 2018-05-31
JP6369522B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP4906555B2 (ja) シロッコファン及び空気調和装置
US7604043B2 (en) Air conditioner
WO2018092783A1 (ja) 空気調和装置の室内ユニット
JP2015081692A (ja) 空気調和機の室内機
WO2018062540A1 (ja) クロスフロー型の送風機及びそれを備えた空気調和装置の室内ユニット
KR20160111209A (ko) 공기조화기의 실외기
JP2006336909A (ja) 凝縮器及びこれを用いた空気調和機用室内ユニット
JP6370399B2 (ja) 空気調和装置の室内機
JP6400378B2 (ja) 空気調和機
WO2006035927A1 (ja) 空気調和機の壁掛け型室内ユニット
JP4013963B2 (ja) 空気調和装置
JP2019196866A (ja) 空気調和機の室内機
KR20090069400A (ko) 공기 조화기의 실외기 및 그의 그릴
JP2018084154A (ja) クロスフロー型の送風機及びそれを備えた空気調和装置の室内ユニット
JP2005195199A (ja) 空気調和機
EP1052457B1 (en) Indoor unit for air conditioner
JPH0882427A (ja) 空気調和機用室内ユニット
JP4075945B2 (ja) 空気調和機
JP5997115B2 (ja) 空気調和機
JP3956811B2 (ja) 空調ユニット
JP2018179384A (ja) 空気調和機の室内機
EP3064776B1 (en) Cross-flow fan and air conditioner
JP7191554B2 (ja) 空調用室内ユニット
JP6923845B2 (ja) ダクト型空気調和機
WO2023223383A1 (ja) クロスフローファン、送風装置及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871080

Country of ref document: EP

Effective date: 20190514