WO2022096390A1 - Verfahren zur herstellung eines polyol-gemisches - Google Patents

Verfahren zur herstellung eines polyol-gemisches Download PDF

Info

Publication number
WO2022096390A1
WO2022096390A1 PCT/EP2021/080105 EP2021080105W WO2022096390A1 WO 2022096390 A1 WO2022096390 A1 WO 2022096390A1 EP 2021080105 W EP2021080105 W EP 2021080105W WO 2022096390 A1 WO2022096390 A1 WO 2022096390A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
carbonate
aromatic
mixture
acid
Prior art date
Application number
PCT/EP2021/080105
Other languages
English (en)
French (fr)
Inventor
Michael Schedler
Hartmut Nefzger
Michael Baecker
Peter Nordmann
Niklas Meine
Erik SLUYTS
Sarah MAEKER
Original Assignee
Covestro Deutschland Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland Ag filed Critical Covestro Deutschland Ag
Publication of WO2022096390A1 publication Critical patent/WO2022096390A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4879Polyethers containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2115/00Oligomerisation
    • C08G2115/02Oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons

Definitions

  • the present invention relates to a method for producing a polyol mixture comprising an aromatic polyether polyol and an aliphatic carbonate polyol by reacting an aromatic carbonate containing one or more aromatic carbonate group(s) with a polyol containing one or more hydroxyl group(s) and with a cyclic carbonate and/or with an alkylene oxide, preferably with a cyclic carbonate, in the presence of a catalyst, wherein the polyol is not a 1,2-glycol, wherein the molar ratio of the hydroxyl groups of the polyol to the aromatic carbonate groups of the aromatic carbonate is from 2.0 to 1 to 8 ,0 to 1.
  • the polyol mixture obtainable therefrom, as well as a process or the use of these polyol mixtures for the production of polyurethanes, is also a subject matter of the present invention.
  • hydroxyalkyl ethers of diphenols are prepared by reacting aromatic polycarbonates based on diphenols with alkylene diols such as propylene glycol or ethylene glycol and optionally cyclic alkylene carbonates such as 1,3-propylene carbonate in the presence of basic catalysts such as sodium hydroxide.
  • alkylene diols such as propylene glycol or ethylene glycol
  • optionally cyclic alkylene carbonates such as 1,3-propylene carbonate
  • the molar ratio of the alkylene diols is 5 to 10 moles, based on moles of aromatic carbonate units, with the solid hydroxyalkyl ether being removed from the mixture.
  • Polymer 41 (2000) 6749-6753 discloses a process for the chemical recycling of polycarbonate (PC) plastic waste, with PC pellets being converted into PC waste by reacting with cyclic ethylene carbonate and a tenfold stoichiometric excess of ethylene glycol in the presence of a sodium hydroxide catalyst a mixture of bisphenol A and mono- and primarily bis(hydroxyethyl) ethers of bisphenol A.
  • the product composition is primarily dependent on the selected ratio of polycarbonate, ethylene glycol and cyclic carbonate used, with the amount of substance of the ethylene glycol being varied primarily.
  • hydroxyl numbers for the polyol mixture used are essential for polyurethanes as reaction products of polyisocyanates and polyol(s). For example, hydroxyl numbers in the range from 100 mg(KOH)/g to 500 mg(KOH)/g are essential for the production of rigid polyurethane foams. At the same time, however, these hydroxyl groups should not be aromatic, since the resulting polyurethane bonds are thermally less stable and the decomposition temperature of such PU bonds is lower compared to PU bonds based on polyols with non-aromatic hydroxyl groups (see also Chattopadhyay, Progress in Polymer Science 34(200) 1068-1133).
  • the object of the present invention to provide a simplified and improved process for the production of liquid, single-phase polyol mixtures with an average hydroxyl number of 100 mg (KOH) / g to 500 mg (KOH) / g, with the Polyol mixture has no polyol component with phenolic hydroxyl groups and also contains no cyclic carbonates, which in a direct reaction to polyurethanes (PU), such as polyurethane foams and here specifically rigid polyurethane foams, the reactivity and the mechanical product properties such as the flame retardant properties of the resulting PU products negative influence or cause undesirable emissions from the PU products.
  • PU polyurethanes
  • PU polyurethane
  • This object was achieved according to the invention by a process for preparing a polyol mixture comprising an aromatic polyether polyol and an aliphatic carbonate polyol by reacting an aromatic carbonate containing one or more aromatic carbonate group (s) with a polyol containing at least two hydroxyl group (s) and with a cyclic carbonate and/or with an alkylene oxide, preferably with a cyclic carbonate, in the presence of a catalyst, wherein the polyol is not a 1,2-glycol, wherein the molar ratio of the hydroxyl groups of the polyol to the aromatic carbonate groups of the aromatic carbonate is from 2.0 to 1 to is 8.0 to 1.
  • a polyol mixture is a mixture of at least 2 different polyols, the first polyol being an aromatic polyether polyol and the second polyol being an aliphatic carbonate polyol.
  • an aromatic polyether polyol is a polyol which, in addition to at least two free hydroxyl groups, also has at least two ether groups and aromatic groups in the polyether polyol.
  • the hydroxyl groups can be obtained by addition and ring opening of the cyclic carbonate and/or the alkylene oxide onto the alcoholized form of the aromatic carbonate.
  • the alcoholized form of the aromatic carbonate results from the reaction of the aromatic carbonate with the polyol to form the aromatic alcohol and the aliphatic carbonate polyol (phenol mixture).
  • the aliphatic carbonate polyol can be obtained by reacting the aromatic carbonate with the polyol to form one or more aliphatic carbonate group(s) and at least two hydroxyl groups.
  • the aliphatic structure of the carbonate polyol is due to the use of aliphatic polyols, these polyols having a branched or unbranched cycloaliphatic structure (alicyclic) such as isosorbide, or a branched and/or unbranched acyclic aliphatic structure such as diethylene glycol.
  • the carbonate polyol can also contain ether and/or ester groups, preferably ether groups, where these ether groups can originate from the polyol (for example diethylene glycol) or be formed by ring opening of the cyclic carbonate and/or alkylene oxide used.
  • the ester groups result, for example, from the use of polyester polyols, polyether ester polyols and/or polyether ester carbonate polyols as the polyol.
  • 1,2-glycols are alcohols with at least two hydroxyl groups, in which the at least two hydroxyl groups are in the 1,2-position, such as ethylene glycol (1,2-ethanediol) or 1,2-propylene glycol (1, 2-propanediol)
  • the aromatic carbonate contains one or more aromatic carbonate group(s).
  • the aromatic carbonate contains an aromatic polycarbonate, where the aromatic polycarbonate contains two or more aromatic carbonate groups.
  • aromatic polycarbonates are compounds which can be obtained by a transesterification reaction of dihydroxyaryl compounds with diaryl carbonates to form aromatic polycarbonates with elimination of a monohydroxyaryl compound.
  • polycarbonates are both homopolycarbonates and copolycarbonates and/or polyester carbonates; the polycarbonates can be linear or branched in a known manner.
  • polycarbonates are also mixtures of different polycarbonates.
  • the aromatic polycarbonates according to the invention including the aromatic polyester carbonates, have average molecular weights Mw (determined by measuring the relative solution viscosity at 25° C. in CH2C12 and a concentration of 0.5 g per 100 ml CH2C12) of 20,000 g/mol to 32,000 g/mol, preferably from 23,000 g/mol to 31,000 g/mol, in particular from 24,000 g/mol to 31,000 g/mol.
  • a portion, up to 80 mol %, preferably from 20 mol % to 50 mol %, of the carbonate groups in the polycarbonates used according to the invention can be replaced by aromatic dicarboxylic acid ester groups.
  • aromatic polyester carbonates Such polycarbonates, which contain both acid residues of carbonic acid and acid residues of aromatic dicarboxylic acids built into the molecular chain, are referred to as aromatic polyester carbonates. In the context of the present invention, they are subsumed under the generic term of thermoplastic, aromatic polycarbonates.
  • aromatic polycarbonates are produced in a known manner from diphenols, carbonic acid derivatives, any chain terminators and any branching agents, with some of the carbonic acid derivatives being replaced by aromatic dicarboxylic acids or derivatives of the dicarboxylic acids to produce the polyester carbonates, depending on the replacing carbonate structural units with aromatic dicarboxylic acid ester structural units.
  • Dihydroxyaryl compounds suitable for the preparation of aromatic polycarbonates are those of the formula (I)
  • Z is an aromatic radical having 6 to 30 carbon atoms, which can contain one or more aromatic nuclei, can be substituted and can contain aliphatic or cycloaliphatic radicals or alkylaryls or heteroatoms as bridge members.
  • Z in formula (I) is preferably a radical of formula (II) in the
  • R 6 and R 7 are independently H, C 1 -C ix -alkyl, C 1 -C ix -alkoxy.
  • Halogen such as CI or Br or each optionally substituted aryl or aralkyl, preferably H or Ci to Cn alkyl, particularly preferably H or Ci to Cx alkyl and very particularly preferably H or methyl, and
  • X for a single bond, -SO2-, -CO-, -O-, -S-, Ci- to C ( , -alkylene.
  • X preferably represents a single bond, C - to C 5 -alkylene, C - to C 5 -alkylidene, C - to C - cycloalkylidene, -O-, -SO-, -CO-, -S-, -SO2- or for a residue of formula (Ila)
  • diphenols dihydroxyaryl compounds
  • dihydroxybenzenes dihydroxydiphenyls, bis(hydroxyphenyl)alkanes, bis(hydroxyphenyl)cycloalkanes, bis(hydroxyphenyl)aryls, bis(hydroxyphenyl) ethers, bis(hydroxyphenyl)- ketones, bis(hydroxyphenyl) sulfides, bis(hydroxyphenyl) sulfones, bis(hydroxyphenyl) sulfoxides, 1,1'-bis(hydroxyphenyl)diisopropylbenzenes and their nucleus-alkylated and nucleus-halogenated compounds.
  • Diphenols suitable for the production of the aromatic polycarbonates to be used according to the invention are, for example, hydroquinone, resorcinol, dihydroxydiphenyl, bis(hydroxyphenyl) alkanes, bis(hydroxyphenyl) cycloalkanes, bis(hydroxyphenyl) sulfides, bis(hydroxyphenyl) ethers, Bis(hydroxyphenyl) ketones, bis(hydroxyphenyl) sulfones, bis(hydroxyphenyl) sulfoxides, a,a'-bis(hydroxyphenyl)diisopropylbenzenes and their alkylated, nucleus-alkylated and nucleus-halogenated compounds.
  • Preferred diphenols are 4,4'-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)-1-phenylpropane, 1,1-bis(4-hydroxyphenyl)phenylethane, 2,2-bis(4-hydroxyphenyl).
  • diphenols are 4,4'-dihydroxydiphenyl, 1,1-bis(4-hydroxyphenyl)phenylethane, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A (BPA)), 2,2- Bis(3,5-dimethyl-4-hydroxyphenyl)-propane, 1,1-bis(4-hydroxyphenyl)cyclohexane and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (Bisphenol TMC (BPTMC)) and the dihydroxy compounds of the formulas (III), (IV) and (V) in which R' is each C 1 -C 4 -alkyl, aralkyl or aryl, preferably methyl or phenyl.
  • R' is each C 1 -C 4 -alkyl, aralkyl or aryl, preferably methyl or phenyl.
  • Branching agents or branching agent mixtures to be used are added to the synthesis in the same way.
  • Trisphenols, quaternary phenols or acid chlorides of tricarboxylic or tetracarboxylic acids are usually used, or else mixtures of the polyphenols or the acid chlorides.
  • Examples of some of the compounds having three or more than three phenolic hydroxyl groups that can be used as branching agents are phloroglucinol, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-2-heptene, 4,6-dimethyl-2, 4,6-tri-(4-hydroxyphenyl)heptane, 1,3,5-tris-(4-hydroxyphenyl)benzene, 1,1,1-tri-(4-hydroxyphenyl)ethane, tris-(4 -hydroxyphenyl)phenylmethane, 2,2-bis[4,4-bis(4-hydroxyphenyl)cyclohexyl]propane, 2,4-bis(4-hydroxyphenylisopropyl)phenol, tetra-(4 -hydroxyphenyl)-methane.
  • trifunctional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
  • Preferred branching agents are 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole and 1,1,1-tri(4-hydroxyphenyl)ethane.
  • the amount of any branching agents to be used is from 0.05 mol % to 2 mol %, again based on moles of diphenols used in each case, the branching agents being initially introduced with the diphenols.
  • aromatic dicarboxylic acids suitable for the preparation of the aromatic polyester carbonates are orthophthalic acid, terephthalic acid, isophthalic acid, tert-butylisophthalic acid, 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4-benzophenonedicarboxylic acid, 3,4'-benzophenonedicarboxylic acid, 4, 4'-Diphenyletherdicarboxylic acid, 4,4'-Diphenylsulfonedicarboxylic acid, 2,2-bis(4-carboxyphenyl)propane, trimethyl-3-phenylindane-4,5'-dicarboxylic acid.
  • aromatic dicarboxylic acids particular preference is given to using terephthalic acid and/or isophthalic acid.
  • dicarboxylic acids are the dicarboxylic acid dihalides and the dicarboxylic acid dialkyl esters, in particular the dicarboxylic acid dichlorides and the dicarboxylic acid dimethyl esters.
  • the replacement of the carbonate groups by the aromatic dicarboxylic acid ester groups is essentially stoichiometric and also quantitative, so that the molar ratio of the reactants is also reflected in the finished polyester carbonate.
  • the aromatic dicarboxylic acid ester groups can be incorporated either randomly or in blocks.
  • Diaryl carbonates which can be used to produce aromatic polycarbonates are di-C6-Cu aryl esters, preferably the diesters of phenol or substituted phenols, ie diphenyl carbonate or, for example, bissalicyl carbonate.
  • the diaryl carbonates are used in 1.01 to 1.30 mol, preferably in 1.02 to 1.15 mol, based on 1 mol of diphenol.
  • the at least two-phase reaction mixture which has reacted and which contains at most traces ( ⁇ 2 ppm) of aryl chloroformate is allowed to settle for phase separation.
  • the aqueous alkaline phase (reaction waste water) is separated off and the organic phase is extracted with dilute hydrochloric acid and water.
  • the combined water phases are sent to waste water treatment, where solvent and catalyst components are separated off by stripping or extraction and recycled.
  • any remaining organic impurities such as e.g. monophenol can be removed by treatment with activated carbon and the water phases can be fed to the chloralkali electrolysis.
  • reaction waste water is not combined with the washing phases, but after stripping or extraction to remove solvents and catalyst residues, it is adjusted to a specific pH of e.g. 6 to 8, e.g. by adding hydrochloric acid and after separating off the remaining organics Impurities such as e.g. monophenol fed to the chlor-alkali electrolysis by treatment with activated carbon.
  • washing phases can optionally be returned to the synthesis.
  • WO2009071211A1 discloses a process for producing diaryl carbonate and processing at least part of the resulting alkali metal chloride-containing solution in a downstream alkali metal chloride electrolysis.
  • the polycarbonate contains flame retardants, fillers and reinforcing materials (for example glass or carbon fibers, talc, mica, kaolin, CaCO 3 ).
  • flame retardants for example glass or carbon fibers, talc, mica, kaolin, CaCO 3 .
  • Heat stabilizers, antistatic agents, colorants, pigments, mold release agents, UV absorbers and/or IR absorbers are added in the customary amounts.
  • the amount of further additives is preferably up to 50% by weight, particularly preferably up to 40% by weight and very particularly preferably from 0.01 to 3% by weight, based on the polycarbonate.
  • Suitable additives are described, for example, in “Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999”, in “Plastics Additives Handbook, Hans Zweifel, Hanser, Kunststoff 2001”.
  • antioxidants or thermal stabilizers are alkylated monophenols, alkylthiomethylphenols, hydroquinones and alkylated hydroquinones, tocopherols, hydroxylated thiodiphenyl ethers, alkylidenebisphenols, O-, N- and S-benzyl compounds, hydroxybenzylated Malonates, aromatic hydroxybenzyl compounds, triazine compounds, acylaminophenols, esters of *-(3,5-di-tert-butyl-4-hydroxyphenyl) ⁇ propionic acid, esters of *-(5-tert-butyl-4-hydroxy-3- methylphenyl)propionic acid, esters of *-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid, esters of 3,5-di-tert-butyl-4-hydroxyphenylacetic acid, amides of *-(3,5-di-tert- butyl-4-hydroxyphenyl) -
  • organic phosphites such as triphenylphosphine, tritoluylphosphine or (2,4,6-tri-t-butylphenyl)-(2-butyl-2-ethylpropane-1,3-diyl)phosphite, phosphonates and phosphanes, mostly those in which the organic radicals consist wholly or partly of optionally substituted aromatic radicals.
  • IRGANOX® 1076 octadecyl-3,5-di(tert)-butyl-4-hydroxyhydrocinnamic acid ester, CAS No. 2082-79-3) and triphenylphosphine (TPP).
  • suitable mold release agents are the esters or partial esters of monohydric to hexahydric alcohols, in particular glycerol, pentaerythritol or Guerbet alcohols.
  • Examples of monohydric alcohols are stearyl alcohol, palmityl alcohol and Guerbet alcohols.
  • a dihydric alcohol is, for example, glycol; a trihydric alcohol is, for example, glycerol; tetrahydric alcohols are, for example, pentaerythritol and mesoerythritol; examples of pentahydric alcohols are arabitol, ribitol and xylitol; hexahydric alcohols are, for example, mannitol, glucitol (sorbitol) and dulcitol.
  • the esters are preferably the monoesters, diesters, triesters, tetraesters, pentaesters and hexaesters or mixtures thereof, in particular statistical mixtures, of saturated, aliphatic CIO to C36 monocarboxylic acids and optionally hydroxymonocarboxylic acids, preferably with saturated, aliphatic C14 to C32 monocarboxylic acids and optionally hydroxymonocarboxylic acids.
  • the commercially available fatty acid esters in particular of pentaerythritol and glycerol, can contain ⁇ 60% of different partial esters due to the production process.
  • saturated, aliphatic monocarboxylic acids having 10 to 36 carbon atoms are capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid and montanic acid.
  • Suitable IR absorbers are disclosed, for example, in EP 1 559 743 A1, EP 1 865 027 A1, DE 10022037 A1, DE 10006208 A1 and in Italian patent applications RM2010A000225, RM2010A000227 and RM2010A000228.
  • IR absorbers mentioned in the cited literature preference is given to those based on boride and tungstate, in particular cesium tungstate or zinc-doped cesium tungstate, as well as absorbers based on ITO and ATO, and combinations thereof.
  • Suitable UV absorbers from the class of the benzotriazoles are, for example, Tinuvin® 171 (2-[2-hydroxy-3-dodecyl-5-methylbenzyl)phenyl]-2H-benzotriazole (CAS No. 125304-04-3)), Tinuvin ® 234 (2-[2- Hydroxy-3,5-di(l,l-dimethylbenzyl)phenyl]-2H-benzotriazole (CAS No. 70321-86-7)), Tinuvin® 328 (2- 2 [hydroxy-3,5 -di -tert , amyl -phenyl] -2H-benzotriazole (CAS # 25973-55-1)).
  • Suitable UV absorbers from the oxalanilide class are, for example, Sanduvor® 3206 (N-(2-ethoxyphenyl)-ethanediamide (CAS No. 82493-14-9)) from Clariant or N-(2-ethoxyphenyl)-N'- (4-dodecylphenyl)oxamide (CAS No. 79102-63-9).
  • Suitable UV absorbers from the class of hydroxybenzophenones are, for example, Chimasorb® 81 (2-benzoyl-5-octyloxyphenol (CAS No. 1843-05-6)) from BASF SE, 2,4-dihydroxybenzophenone (CAS No. 131 -56-6), 2-Hydroxy-4-(n-octyloxy)benzophenone (CAS No. 1843-05-6), 2-hydroxy-4-dodecyloxybenzophenone (CAS No. 2985-59-3).
  • UV absorbers from the triazine class are 2-[2-hydroxy-4-[3-(2-ethylhexyl-1-oxy)-2-hydroxypropyloxy]phenyl]-4,6-bis(2,4- dimethylphenyl)-l,3,5-triazine (CAS No. 137658-79-8) also known as Tinuvin® 405 (BASF SE) and 2,4-diphenyl-6-[2-hydroxy-4-(hexyloxy) phenyl]-l,3,5-triazine (CAS No. 147315-50-2), available as Tinuvin® 1577 (BASF SE).
  • the compound 2-[2-hydroxy-4-[(octyloxycarbonyl)ethylideneoxy]phenyl]-4,6-di(4-phenyl)phenyl-1,3,5-triazine has the CAS no. 204848-45-3 and is available from BASF SE under the name Tinuvin® 479.
  • the compound 2-[2-hydroxy-4-[(2-ethylhexyl)oxy]phenyl]-4,6-di(4-phenyl)phenyl-1,3,5-triazine has the CAS no. 204583-39-1 and is available from BASF SE under the name CGX-UVA006 or Tinuvin® 1600.
  • UV absorbers are generally used in an amount of 0.01% to 5% by weight, preferably 0.01% to 2% by weight, particularly preferably 0.01% to 0.05% by weight, based on the composition as a whole .
  • the polycarbonate according to the invention can contain organic and inorganic fillers in the usual amounts.
  • organic and inorganic materials are suitable for this purpose. These can be, for example, particulate, flaky or fibrous in character. Examples include chalk, quartz powder, soot, titanium dioxide, silicates/aluminosilicates such as talc, wollastonite, mica/clay layer minerals, montmorillonite, especially in an organophilic form modified by ion exchange, kaolin, zeolites, vermiculite and aluminum oxide, silica, magnesium hydroxide and called aluminum hydroxide. Mixtures of different inorganic materials can also be used.
  • Preferred inorganic fillers are very finely divided (nanoscale) inorganic compounds made from one or more metals from main groups 1 to 5 and subgroups 1 to 8 of the periodic table, preferably from main groups 2 to 5, particularly preferably from groups 3 to 5 Main group, or subgroups 4 to 8, with the elements oxygen, sulfur, boron, phosphorus, carbon, nitrogen, hydrogen and/or silicon.
  • preferred compounds are carbon black, oxides, hydroxides, hydrous/basic oxides, sulfates, sulfites, sulfides, carbonates, carbides, nitrates, nitrites, nitrides, borates, silicates, phosphates and hydrides.
  • organic or inorganic pigments or organic dyes or the like can be used as colorants or pigments.
  • Colorants or pigments for the purposes of the present invention are sulfur-containing pigments such as cadmium red or cadmium yellow, iron cyanide-based pigments such as Prussian blue, oxide pigments such as titanium dioxide, zinc oxide, red iron oxide, black iron oxide, chromium oxide, titanium yellow, zinc-iron-based brown , titanium-cobalt-based green, cobalt blue, copper-chromium-based black and copper-iron-based black or chromium-based pigments such as chrome yellow, phthalocyanine-derived dyes such as copper-phthalocyanine blue or copper-phthalocyanine green, condensed polycyclic Dyes and pigments such as azo-based (e.g.,
  • nickel-azo yellow nickel-azo yellow
  • sulfur-indigo dyes perinone-based, perylene-based, quinacridone-derived, dioxazine-based, isoindolinone-based and quinophthalone-derived derivatives, anthraquinone- based heterocyclic systems.
  • cyanine derivatives quinoline derivatives, anthraquinone derivatives, phthalocyanine derivatives are preferred.
  • the polycarbonate according to the invention can contain glass fillers and/or glass fibers.
  • the glass fillers consist of a glass composition selected from the group of M, E, A, S, R, AR, ECR, D, Q or C glasses, with E, S or C glass are more preferred.
  • the glass composition can be used in the form of solid glass spheres, hollow glass spheres, glass beads, glass flakes, cullet and glass fibers, glass fibers being more preferred.
  • the glass fibers can be used in the form of continuous fibers (rovings), chopped glass fibers, ground glass fibers, glass fiber fabrics or mixtures of the aforementioned forms, with the chopped glass fibers and ground glass fibers being used with preference. Ground glass fibers are particularly preferably used.
  • the preferred fiber length of the chopped glass fibers before compounding is 0.5 to 10 mm, more preferably 1.0 to 8 mm, very particularly preferably 1.5 to 6 mm.
  • Cut glass fibers can be used with different cross sections. Round, elliptical, oval, 8-shaped and flat cross sections are preferably used, round, oval and flat cross sections being particularly preferred.
  • the diameter of round fibers is preferably 5 to 25 ⁇ m, more preferably 6 to 20 ⁇ m, particularly preferably 7 to 17 ⁇ m.
  • Preferred flat and oval glass fibers have a cross-sectional ratio of height to width of about 1.0:1.2 to 1.0:8.0, preferably 1.0:1.5 to 1.0:6.0, particularly preferred 1.0:2.0 to 1.0:4.0 on.
  • the flat and oval glass fibers also have an average fiber height of 4 ⁇ m to 17 ⁇ m, preferably 6 ⁇ m to 12 ⁇ m and particularly preferably 6 ⁇ m to 8 ⁇ m and an average fiber width of 12 ⁇ m to 30 ⁇ m, preferably 14 ⁇ m to 28 ⁇ m and more preferably 16 pm to 26 pm.
  • the glass fibers used are characterized in that the choice of fiber is not limited by the interaction characteristics of the fiber with the polycarbonate matrix.
  • a strong connection of the glass fiber to the polymer matrix can be seen on the low-temperature break surfaces in scanning electron micrographs, with the largest number of broken glass fibers being broken at the same level as the matrix and only a few glass fibers protruding from the matrix.
  • scanning electron micrographs show that the glass fibers in the low-temperature fracture protrude strongly from the matrix or have slipped out completely.
  • polycarbonate blends are used, with the polycarbonate PC containing other polymeric blend partners, such as ABS, MBS, ASA, PBT, PET or impact modifiers such as silicone rubber, so that multiphase systems such as PC / ABS, PC / MBS, PC /ASA, PC/PBT or PC/PET result.
  • polymeric blend partners such as ABS, MBS, ASA, PBT, PET or impact modifiers such as silicone rubber
  • either the aforementioned polycarbonates containing flame retardants, fillers, reinforcing materials, heat stabilizers, antistatic agents, colorants, pigments, mold release agents, UV absorbers and/or IR absorbers can be separated, in which the polycarbonate is converted into the liquid polyol mixture according to the invention and from the aforementioned filler, reinforcing material, heat stabilizer, antistatic agent, colorant, pigment, mold release agent, UV absorber and/or IR absorber or their derivatives different densities and/or states of aggregation, such as filler, reinforcing material or ABS, can be suitably separated from the polyol mixture and optionally reused.
  • the flame retardant, filler, reinforcing material, heat stabilizer, antistatic agent, colorant, pigment, mold release agent, UV absorber and/or IR absorber can remain in the polyol mixture and thus, for example, the mechanical and/or optical properties of the resulting polyurethanes affect, so that, for example, the flame retardancy of a polyurethane foam can be improved by using a flame retardant-containing polycarbonate for the production of the polyol mixture.
  • the aromatic carbonate contains a diaryl carbonate which is defined as described above.
  • the diaryl carbonate is diphenyl carbonate and/or. bissalicyl carbonate.
  • the proportion of diaryl carbonate is 10% by weight to 100% by weight, preferably 30% by weight to 60% by weight, based on the total amount of aromatic carbonate.
  • the polyol contains at least two hydroxyl group(s), these polyols having a branched or unbranched cycloaliphatic structure (alicyclics) or a branched and/or unbranched acyclic aliphatic structure.
  • Suitable polyols having at least two terminal hydroxyl groups are, for example, dihydric alcohols such as diethylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-butenediol, 1,4-butynediol, neopentyl glycol, 1,5-pentanediol, methylpentanediols (such as 3-methyl-1,5-pentanediol), 1,6-hexanediol; 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, bis(2-hydroxyethyl) terephthalate, bis(hydroxymethyl)cyclohexane (such as 1,4-bis(hydroxymethyl)cyclohexane), triethylene glycol, tetraethylene glycol, polyethylene glycols, dipropylene glycol, tripropy
  • Polyols can also be selected from the substance class of polyether polyols, in particular those with a molecular weight M n in the range from 50 to 4000 g/mol. Preference is given to polyether polyols which are built up from repeating ethylene oxide and propylene oxide units, preferably with a proportion of 35 to 100% propylene oxide units, particularly preferably with a proportion of 50 to 100% propylene oxide units. These can be random copolymers, gradient copolymers, alternating or block copolymers of ethylene oxide and propylene oxide.
  • suitable polyether polyols built up from repeating propylene oxide and/or ethylene oxide units are Desmophen®, Acclaim®, Arcol®, Baycoll®, Bayfill®, Bayflex®, Baygal®, PET® and polyether polyols from Covestro AG (e.g. Desmophen® 3600Z, Desmophen® 1900U, Acclaim® Polyol 2200, Acclaim® Polyol 40001, Arcol® Polyol 1004, Arcol® Polyol 1010, Arcol® Polyol 1030, Arcol® Polyol 1070, Baycoll® BD 1110, Bayfill® VPPU 0789, Baygal® K55, PET® 1004, Polyether® S180).
  • Covestro AG e.g. Desmophen® 3600Z, Desmophen® 1900U, Acclaim® Polyol 2200, Acclaim® Polyol 40001, Arcol® Polyol 1004, Arcol® Polyol 1010, Arcol® Polyol 1030, Arcol® Poly
  • suitable homopolyethylene oxides are, for example, the Pluriol® E brands from BASF SE
  • suitable homopolypropylene oxides are, for example, the Pluriol® P brands from BASF SE
  • suitable mixed copolymers of ethylene oxide and propylene oxide are, for example, Pluronic® PE or Pluriol® RPE -Brands of BASF SE.
  • the polyols according to the invention can also be selected from the substance class of polyester polyols, in particular those with a molecular weight M n in the range from 50 to 4500 g/mol. At least difunctional polyesters can be used as polyester polyols. Polyester polyols preferably consist of alternating acid and alcohol units.
  • Acid components which can be used are, for example, succinic acid, succinic anhydride, maleic acid, maleic anhydride, adipic acid, phthalic anhydride, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride or mixtures of the acids and/or anhydrides mentioned.
  • Alcohol components such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,4-bis(hydroxymethyl)cyclohexane, diethylene glycol, dipropylene glycol, trimethylolpropane, glycerol , Pentaerythritol or mixtures of the alcohols mentioned are used.
  • the resulting polyester polyols have terminal hydroxy and/or carboxy groups.
  • polycarbonate diols can be used as polyols, in particular those with a molecular weight M n in the range from 50 to 4500 g/mol, which are produced, for example, by reacting phosgene, dimethyl carbonate, diethyl carbonate or diphenyl carbonate and difunctional alcohols or polyester polyols or polyether polyols.
  • polycarbonates can be found, for example, in EP-A 1359177.
  • the Desmophen® C grades from Covestro AG can be used as polycarbonate dioie, such as Desmophen® C 1100 or Desmophen® C 2200.
  • polyether carbonate polyols eg cardy on® polyols from Covestro
  • polycarbonate polyols eg Converge® polyols from Novomer/Saudi Aramco, NEOSPOL polyols from Repsol etc.
  • polyether ester carbonate polyols can be used as polyols will.
  • polyether carbonate polyols, polycarbonate polyols and/or polyether ester carbonate polyols can be obtained by reacting alkylene oxides, preferably ethylene oxide, propylene oxide or mixtures thereof, optionally further comonomers with CO2 in the presence of a further H-functional starter compound and using catalysts.
  • These catalysts include double metal cyanide catalysts (DMC catalysts) and/or metal complex catalysts, for example based on the metals zinc and/or cobalt, such as zinc glutarate catalysts (described, for example, in MH Chisholm et al., Macromolecules 2002, 35, 6494) , so-called zinc diiminate catalysts (described, for example, in SD Allen, J. Am. Chem. Soc. 2002, 124, 14284) and so-called cobalt-salen catalysts (described, for example, in US Pat. No. 7,304,172 B2, US 2012/0165549 A1) and/or manganese-salen complexes.
  • DMC catalysts double metal cyanide catalysts
  • metal complex catalysts for example based on the metals zinc and/or cobalt, such as zinc glutarate catalysts (described, for example, in MH Chisholm et al., Macromolecules 2002, 35, 6494) , so-called
  • Chemical Communications 47 (2011) 141-163, for example, provides an overview of the known catalysts for the copolymerization of alkylene oxides and CO2.
  • the use of different catalyst systems, reaction conditions and/or reaction sequences results in the formation of random, alternating, block-like or gradient-like polyether carbonate polyols, polycarbonate polyols and/or polyether ester carbonate polyols.
  • These polyether carbonate polyols, polycarbonate polyols and/or polyether ester carbonate polyols used as H-functional starter compounds can be prepared beforehand for this purpose in a separate reaction step.
  • the polyols according to the invention generally have an OH functionality (i.e. number of H atoms active for the polymerization per molecule) of from 2 to 8, preferably from 2 to 6 and particularly preferably from 2 to 4.
  • the H-functional starter substances are used either individually or as a mixture of at least two H-functional starter substances.
  • the polyol is one or more compounds and is selected from the group consisting of diethylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, polyethylene glycol, polypropylene glycol, trimethylolpropane and isosorbide.
  • cyclic carbonates are to be understood as meaning heterocyclic compounds, the carbonate being a cyclic ester of divalent carbonic acid and an at least difunctional alcohol (carbonic acid ester).
  • cyclic ethylene carbonate (1,3-dioxolan-2-one) or cyclic propylene carbonate (4-methyl-1,3-dioxolan-2-one) is produced, for example, by reacting carbon dioxide with ethylene oxide or propylene oxide.
  • a compilation of suitable cyclic carbonates is in the scientific review article by G. Rodicki in Prague. polym. May be. 29 (2000) pp. 259-342 summarized in Table 1, for example.
  • the cyclic carbonate has the following structure according to formula (VI): o oA
  • the cyclic carbonate is one or more compounds and is selected from the group consisting of 4-methyl-1,3-dioxolan-2-one (propylene carbonate), 1,3-dioxolan-2-one (ethylene carbonate), l,3-dioxan-2-one and 5,5-dimethyl-l,3-dioxan-2-one, preferably l,3-4-methyl-l,3-dioxolan-2-one (propylene carbonate ).
  • the at least one alkylene oxide has 2 to 24 carbon atoms.
  • the alkylene oxides having 2 to 24 carbon atoms are, for example, one or more compounds selected from the group consisting of ethylene oxide, propylene oxide, 1-butene oxide, 2,3-butene oxide, 2-methyl-1,2-propene oxide (isobutene oxide), 1-pentene oxide, 2,3-pentene oxide, 2-methyl-1,2-butene oxide, 3-methyl-1,2-butene oxide, 1-hexene oxide, 2,3-hexene oxide, 3,4-hexene oxide, 2-methyl- l,2-pentene oxide, 4-methyl-l,2-pentene oxide, 2-ethyl-1,2-butene oxide, 1-heptene oxide, 1-octene oxide, 1-nonene oxide, 1-decene oxide, 1-undecene oxide, 1-dodecene oxide, 4-Methyl-1,2-pentene oxide, butadiene monoxide
  • the alkylene oxide is propylene oxide and/or ethylene oxide, preferably propylene oxide.
  • Basic catalysts such as, for example, alkali metal hydrides, alkali metal carboxylates (for example from monofunctional carboxylic acids), alkali metal hydroxides, alkali metal alkoxides (for example from monofunctional alcohols) or amines are preferably used in the process according to the invention.
  • alkali metal hydrides alkali metal carboxylates (for example from monofunctional carboxylic acids), alkali metal hydroxides, alkali metal alkoxides (for example from monofunctional alcohols) or amines are preferably used in the process according to the invention.
  • An overview of amines suitable for the process according to the invention is given by M. lonescu et al. in "Advances in Urethanes Science and Technology", 1998, 14, pp. 151-218.
  • Alkali metal hydroxides such as sodium hydroxide, potassium hydroxide or cesium hydroxide
  • alkali metal alkoxides of monofunctional or polyfunctional alcohols imidazole or alkyl-substituted imidazole derivatives (such as N-methylimidazole) are particularly preferably used as basic catalysts in the process according to the invention.
  • Lithium hydroxide, potassium hydroxide and/or sodium hydroxide is very particularly preferably used in the process according to the invention.
  • the basic catalysts are used in amounts of 0.04 to 5.0% by weight, preferably 0.1 to 1.0% by weight, based on the aromatic carbonate containing one or more aromatic carbonate group(s).
  • the method comprises the following steps: i) reacting the aromatic carbonate with the polyol in the presence of the catalyst to form a phenol mixture; ii) reacting the phenol mixture obtained in step i) with a cyclic carbonate and/or with an alkylene oxide, preferably with a cyclic carbonate, to form the polyol mixture.
  • the method comprises the following steps:
  • the molar ratio of the hydroxyl groups of the polyol to the aromatic carbonate groups of the aromatic carbonate is from 2.0: 1 to 6.0: 1, particularly preferably from 2.2: 1 to 4.0: 1.
  • the molar ratio of the hydroxyl groups of the polyol to the cyclic carbonate is from 2.0:1 to 5.0:1, preferably from 2.0:1 to 4.0:1, particularly preferably from 2.0:1 to 3.0:1.
  • a further object of the present invention is a polyol mixture comprising an aromatic polyether polyol and an aliphatic carbonate polyol obtainable by the process according to the invention described above.
  • the polyol mixture has a viscosity of 100 mPas to 10,000 mPas at 25° C., the viscosity being determined using an MCR 51 rheometer from Anton Paar in accordance with DIN 53019.
  • the present invention also relates to a process for producing a polyurethane by reacting the polyol mixture according to the invention with a polyisocyanate.
  • the polyol mixtures can be used as starting components for the production of solid or foamed polyurethane materials such as, for example, coatings or rigid foams for insulation purposes, and of polyurethane elastomers.
  • the polyurethane materials and elastomers may also contain isocyanurate, allophanate, and biuret moieties.
  • the polyol mixtures according to the invention are optionally mixed with other isocyanate-active components and with organic polyisocyanates , optionally in the presence of blowing agents, in the presence of catalysts and optionally in the presence of other additives such as. B. cell stabilizers are reacted.
  • the polyol mixture according to the invention can optionally include polyether polyols, polyester polyols, polycarbonate polyols, polyether carbonate polyols, polyester carbonate polyols, polyether ester carbonate polyols and/or low molecular weight
  • Chain extenders and/or crosslinking agents with OH numbers or NH numbers of 6 to 1870 mg KOH/g are added.
  • Polyether polyols suitable for this purpose can be produced, for example, by anionic polymerization of alkylene oxides in the presence of alkali metal hydroxides or alkali metal alcoholates as catalysts and with the addition of at least one starter molecule which contains 2 to 8 Zerewitinoff-active hydrogen atoms, or by cationic polymerization of alkylene oxides in the presence of Lewis acids such as antimony pentachloride, Boron trifluoride etherate or tris(pentafluorophenyl)borane can be obtained.
  • Suitable catalysts are, of course, also those of the double metal cyanide complex type, so-called DMC catalysts, as described, for example, in US Pat. Nos.
  • polyether polyols are polymer-modified polyether polyols, preferably graft polyether polyols, in particular those based on styrene and/or acrylonitrile, which are obtained by in situ polymerization of acrylonitrile, styrene or preferably mixtures of styrene and acrylonitrile, for example in a weight ratio of 90:10 to 10:90, preferably 70:30 to 30:70, expediently prepared in the aforementioned polyether polyols, and polyether polyol dispersions which, as the disperse phase, usually in an amount of 1 to 50% by weight, preferably 2 to 25% by weight, inorganic fillers , polyureas, polyhydrazides, tert.
  • polymer-modified polyether polyols preferably graft polyether polyols, in particular those based on styrene and/or acrylonitrile, which are obtained by in situ polymerization of acrylonit
  • Suitable polyester polyols can be prepared, for example, from organic dicarboxylic acids having 2 to 12 carbon atoms and polyhydric alcohols, preferably diols, having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
  • suitable dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used both individually and as a mixture with one another. Instead of the free dicarboxylic acids, the corresponding dicarboxylic acid derivatives, such as. B. dicarboxylic acid mono and / or diesters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides can be used. Dicarboxylic acid mixtures of succinic, glutaric and adipic acid are preferably used in proportions of, for example, 20 to 35/40 to 60/20 to 36 parts by weight, and in particular adipic acid.
  • dihydric and polyhydric alcohols examples include ethanediol, diethylene glycol, 1,2 or 1,3 propanediol, dipropylene glycol, methyl 1,3-propanediol, 1,4 butanediol, 1,5 pentanediol, 3-methyl-1,5-pentanediol , 1,6 hexanediol, neopentyl glycol, 1,10 decanediol, 1,12-dodecanediol, glycerin, trimethylolpropane and pentaerythritol.
  • 1,2-ethanediol diethylene glycol, 1,4-butanediol, 1,6-hexanediol, glycerol, trimethylolpropane or mixtures of at least two of the polyhydric alcohols mentioned, in particular mixtures of ethanediol, 1,4-butanediol and 1, 6 hexanediol, glycerol and/or trimethylolpropane.
  • the organic, aromatic or aliphatic polycarboxylic acids and/or polycarboxylic acid derivatives and polyhydric alcohols can be used without a catalyst or in the presence of esterification catalysts, expediently in an atmosphere of inert gases such as nitrogen, helium or argon and also in the melt at temperatures from 150 to 300° C., preferably 180 to 230° C., optionally under reduced pressure, to the desired acid and OH numbers.
  • the acid number of such polyester polyols is advantageously less than 10, preferably less than 2.5 mg KOH/g.
  • the esterification mixture is at the above temperatures up to an acid number of 80 to 30 mg KOH / g, preferably 40 to 30 mg KOH / g, under normal pressure and then under a pressure of less than 500 mbar, preferably 1 to 150 mbar, polycondensed.
  • suitable esterification catalysts are iron, cadmium, cobalt, lead, zinc, antimony, magnesium, titanium and tin catalysts in the form of metals, metal oxides or metal salts.
  • the polycondensation of aromatic or aliphatic carboxylic acids with polyhydric alcohols can also be carried out in the liquid phase in the presence of diluents and/or entrainers such as benzene, toluene, xylene or chlorobenzene to azeotropically distill off the water of condensation.
  • diluents and/or entrainers such as benzene, toluene, xylene or chlorobenzene to azeotropically distill off the water of condensation.
  • the ratio of dicarboxylic acid (derivative) and polyhydric alcohol to be selected to obtain a desired OH number, functionality and viscosity and the alcohol functionality to be selected can be determined in a simple manner by a person skilled in the art.
  • Suitable polycarbonate polyols are those of the type known per se, for example by reacting diols such as 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, oligotetramethylene glycol and/or oligo-hexamethylene glycol with diaryl carbonates and/or dialkyl carbonates, e.g. B. diphenyl carbonate, dimethyl carbonate and a- a> -bischloroformates or phosgene can be prepared.
  • the likewise suitable polyether carbonate polyols are obtained by copolymerization of cyclic epoxides and carbon dioxide; such copolymerizations are preferably carried out under high pressure and catalyzed by DMC compounds.
  • Low molecular weight, difunctional chain extenders and/or low molecular weight, preferably trifunctional or tetrafunctional crosslinking agents can be added to the polyol mixture to be used according to the invention to modify the mechanical properties , in particular the hardness of the PU materials.
  • Suitable chain extenders such as alkanediols, dialkylene glycols and polyalkylene polyols and crosslinking agents, for example trihydric or tetrahydric alcohols and oligomeric polyalkylene polyols having a functionality of 3 to 4, usually have molecular weights ⁇ 800, preferably 18 to 400 and in particular 60 to 300 Da .
  • Alkanediols having 2 to 12 carbon atoms for example ethanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, are preferably used as chain extenders , 1,10-decanediol and in particular 1,4-butanediol and dialkylene glycols having 4 to 8 carbon atoms, e.g. B. diethylene glycol and dipropylene glycol and polyoxyalkylene glycols.
  • branched-chain and/or unsaturated alkanediols usually having not more than 12 carbon atoms, such as e.g. B. 1,2-propanediol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3 -propane _, diol, 2-butene-1,4-diol and 2-butyne-1,4-diol, diesters of terephthalic acid with glycols having 2 to 4 carbon atoms, such as terephthalic acid bis-ethylene glycol ester or terephthalic acid bis -l,4-butylene glycol esters and hydroxyalkylene ethers of hydroquinone or resorcinol, for example l,4-di-( ⁇ -hydroxyethyl)-hydroquinon
  • alkanolamines with 2 to 12 carbon atoms such as ethanolamine, 2-aminopropanol and 3-amino-2,2-dimethylpropanol
  • N-alkyldialkanolamines for example N-methyl- and N-ethyl-diethanolamine
  • (cyclo)aliphatic diamines with 2 up to 15 carbon atoms such as 1,2-ethylenediamine, 1,3-propylenediamine, 1,4-butylenediamine and 1,6-hexamethylenediamine, isophoronediamine, 1,4-cyclohexamethylenediamine and 4,4'-diaminodicyclohexylmethane, N-alkyl, N,N'dialkyl-substituted and aromatic diamines, which can also be substituted by alkyl groups on the aromatic radical, having 1 to 20, preferably 1 to 4, carbon atoms in the N-alkyl radical, such as N,N'diethyl, N,N'
  • butylbenzidine methylene-bis(4-amino-3-benzoic acid methyl ester), 2,4-chloro-4,4'-diamino-diphenylmethane, 2,4- and 2,6-toluenediamine can be used.
  • suitable crosslinking agents are glycerol, trimethylolpropane or pentaerythritol.
  • triphenylmethane-4,4',4"-triisocyanate polyphenyl-polymethylene-polyisocyanates, as obtained by aniline-formaldehyde condensation and subsequent phosgenation and, for example, in GB-A 874,430 and GB A 848,671, m- and p-isocyanatophenylsulfonyl isocyanates according to US-A 3,454,606, perchlorinated aryl polyisocyanates, as described in US-A 3,277,138, polyisocyanates containing carbodiimide groups, as described in US-A 3,152,162 and in DE-A 25 04 400, 25 37 685 and 25 52 350, norbomane diisocyanates according to US Pat 7,102,524, polyisocyanates containing isocyanurate groups, as described in US Pat.
  • Polyisocyanates containing urethane groups such as those described, for example, in BE-B 752 261 or in US A 3,394,164 and 3,644,457, polyisocyanates containing acylated urea groups according to DE-C 1,230,778, polyisocyanates containing biuret groups, as described in US Pat 889 050 are described, polyisocyanates produced by telomerization reactions, as described in US-A 3,654,106, polyisocyanates containing ester groups, as mentioned in GB-B 965,474 and 1,072,956, in US-A 3,567,763 and in DE-C 12 31 688, reaction products of the abovementioned Isocyanates with acetals according to DE-C 1 072 385 and polyisocyanates containing polymeric fatty acid esters according to US Pat. No. 3,455,883.
  • distillation residues containing isocyanate groups obtained in the industrial production of isocyanates optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use any mixtures of the aforementioned polyisocyanates.
  • polyisocyanates e.g. 2,4- and 2,6-tolylene diisocyanate and any mixtures of these isomers
  • polyphenylpolymethylene polyisocyanates such as are produced by aniline-formaldehyde condensation and subsequent phosgenation ( "Crude MDI”
  • polyisocyanates containing carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups (“modified polyisocyanates"), in particular those modified polyisocyanates which differ from 2,4- and/or 2,6-tolylene diisocyanate or from Derive 4,4'- and/or 2,4'-diphenylmethane diisocyanate.
  • Naphthylene-1,5-diisocyanate and mixtures of the polyisocyanates mentioned are also very suitable.
  • prepolymers containing isocyanate groups which are obtainable by reacting some or all of the polyol mixture to be used according to the invention and/or some or all of the polyol mixture to be used according to the invention, optionally to be admixed, with the isocyanate-reactive components described above at least one aromatic di- or polyisocyanate from the group TDI, MDI, DIBDI, NDI, DDI, preferably with 4,4'-MDI and/or 2,4-TDI and/or 1,5-NDI to form a urethane group, preferably urethane groups and polyaddition product having isocyanate groups.
  • Such polyaddition products have NCO contents of 0.05 to 40.0% by weight.
  • the prepolymers containing isocyanate groups are produced by reacting exclusively higher molecular weight polyhydroxyl compounds, ie the polyol mixture and/or polyetherpolyols, polyesterpolyols or polycarbonatepolyols to be used according to the invention, with the polyisocyanates, preferably 4,4'-MDI,2,4 -TDI and/or 1.5 NDI.
  • the prepolymers containing isocyanate groups can be prepared in the presence of catalysts. However, it is also possible to produce the Prc ⁇ polymcrc containing isocyanate groups in the absence of catalysts and to add these to the reaction mixture for producing the PU materials.
  • Water can be used as the blowing agent that can optionally be used for the purpose of producing the foam, which reacts in situ with the organic polyisocyanates or with the prepolymers containing isocyanate groups to form carbon dioxide and amino groups, which in turn react further with other isocyanate groups to form urea groups and act as chain extenders.
  • the If water is added to the polyurethane formulation this is usually used in amounts of from 0.001 to 6.0% by weight, based on the weight of the polyol mixture according to the invention used, any other isocyanate-reactive components, the catalysts and other additives.
  • gases or highly volatile inorganic or organic substances which evaporate under the influence of the exothermic polyaddition reaction and advantageously have a boiling point under normal pressure in the range from -40 to 120 ° C., preferably from 10 to 90 °C can be used as physical blowing agents.
  • organic blowing agents examples include acetone, ethyl acetate, methyl acetate, halogen-substituted alkanes such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, dichlorodifluoromethane, HFCs such as R 134a, R 245 fa and R 365mfc, as well as unsubstituted alkanes such as butane, n-pentane, isopentane, cyclopentane, hexane, heptane or diethyl ether can be used.
  • halogen-substituted alkanes such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, dichlorodiflu
  • Air, CO2 or N2O can be used as inorganic blowing agents.
  • a blowing effect can also be achieved by adding compounds which decompose at temperatures above room temperature with the elimination of gases, for example nitrogen and/or carbon dioxide, such as azo compounds, e.g. azodicarbonamide or azoisobutyric acid nitrile, or salts such as ammonium bicarbonate, ammonium carbamate or ammonium salts of organic carboxylic acids, e.g. the monoammonium salts of malonic acid, boric acid, formic acid or acetic acid.
  • azo compounds e.g. azodicarbonamide or azoisobutyric acid nitrile
  • salts such as ammonium bicarbonate, ammonium carbamate or ammonium salts of organic carboxylic acids, e.g. the monoammonium salts of malonic acid, boric acid, formic acid or acetic acid.
  • the gas loading with z. B. air, carbon dioxide, nitrogen and / or helium can either via the mixture of the inventive polyol mixture used with optionally other isocyanate-reactive components, the catalysts and other additives or via the polyisocyanates or both via the mixture of the inventive polyol mixture used with optionally further isocyanate-reactive components, the catalysts and other additives on the one hand and via the polyisocyanates on the other hand.
  • Amine catalysts which are familiar to those skilled in the art and have proven themselves for the production of polyurethane materials are, for example, B. tertiary amines such as triethylamine, tributylamine, N-methyl-morpholine, N-ethyl-morpho _, lin, N,N,N',N'-tetramethyl-ethylenediamine, pentamethyl-diethylene-triamine and higher homologues (DE-OS 26 24 527 and 26 24 528), 1,4-diazabicyclo-(2,2,2)octane, N-methyl-N'-dimethylaminoethylpiperazine, bis-(dimethylaminoalkyl)piperazine (DE-A 26 36 787), N,N-dimethylbenzylamine, N,N-dimethylcyclohexylamine, N,N-diethylbenzylamine, bis-(N,N-diethylaminoethyl
  • Mannich bases from secondary amines such as dimethylamine, and aldehydes, preferably formaldehyde, or ketones, such as acetone, methyl ethyl ketone or cyclohexanone, and phenols, such as phenol or alkyl-substituted phenols, can also be used as catalysts.
  • tertiary amines containing hydrogen atoms active towards isocyanate groups are triethanolamine, triisopropanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,N-dimethylethanolamine, their reaction products with alkylene oxides such as propylene oxide and/or ethylene oxide, and secondary-tertiary amines according to DE-A 27 32 292.
  • Silaamines with carbon-silicon bonds as described in US ⁇ -A 3,620,984, can also be used as catalysts, for example 2,2,4-trimethyl-2-silamorpholine and 1 ,3-Diethyl-aminomethyl-tetramethyl-disiloxane.
  • nitrogen-containing bases such as tetraalkylammonium hydroxides and hexahydrotriazines.
  • the reaction between NCO groups and Zerewitinoff-active hydrogen atoms is also greatly accelerated by lactams and azalactams, with an association initially being formed between the lactam and the compound with acidic hydrogen.
  • amines are used as catalysts for the catalysis of the polyurethane reaction, it must of course be noted that the polyol mixture produced according to the invention with amine catalysis may already contain catalytically active amines. However, by means of suitable series of experiments, it is easily possible for a person skilled in the art to determine the amounts of amine catalysts which may still need to be added.
  • organic metal compounds can be used as catalysts for this purpose, preferably organic tin compounds such as tin(II) salts of organic carboxylic acids, e.g. B. tin (II) acetate, tin (II) octoate, tin (II) ethyl hexoate and tin (II) taurate and the dialkyltin (IV) salts of mineral acids or organic carboxylic acids, e.g. B. dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dioctyltin diacetate and dibutyltin dichloride.
  • sulfur-containing compounds such as di-n-octyltin mercaptide (US Pat. No. 3,645,927) can also be used.
  • Catalysts which catalyze the trimerization of NCO groups in a special way, are used for the production of polyurethane materials with high proportions of so-called poly(isocyanurate) structures ("PIR foams").
  • PIR foams For the production of such materials, formulations with significant excesses of NCO groups over OH groups are usually used.
  • PIR foams are typically manufactured at indexes of 180 to 450, where the index is defined as the ratio of isocyanate groups to hydroxy groups multiplied by a factor of 100.
  • Catalysts which contribute to the formation of isocyanurate structures are metal salts such as potassium or sodium acetate, sodium octoate and amino compounds such as 1,3,5-tris(3-dimethylaminopropyl)hexahydrotriazine.
  • the catalysts or catalyst combinations are generally reactive in an amount between about 0.001 and 10% by weight, in particular 0.01 to 4% by weight, based on the total number of compounds with at least two gcgcnN'ibcr isocyanates Hydrogen atoms used.
  • additives can also be used if necessary. Mention may be made, for example, of surface-active additives, such as emulsifiers, foam stabilizers, cell regulators, flame retardants, nucleating agents, antioxidants, stabilizers, lubricants and mold release agents, dyes, dispersing aids and pigments.
  • surface-active additives such as emulsifiers, foam stabilizers, cell regulators, flame retardants, nucleating agents, antioxidants, stabilizers, lubricants and mold release agents, dyes, dispersing aids and pigments.
  • suitable emulsifiers are the sodium salts of castor oil sulfonates or salts of fatty acids with amines, such as diethylamine in oleate or diethanolamine in stearic acid.
  • Alkali metal or ammonium salts of sulfonic acids such as dodecylbenzenesulfonic acid or dinaphthylmethanedisulfonic acid or of fatty acids such as ricinoleic acid or of polymeric fatty acids can also be used as surface-active additives.
  • Polyethersiloxanes are particularly suitable as foam stabilizers. These compounds are generally built up in such a way that copolymers of ethylene oxide and propylene oxide are linked to a polydimethylsiloxane radical. Such foam stabilizers can be reactive toward isocyanates or unreactive toward isocyanates due to etherification of the terminal OH groups. You are e.g. e.g.
  • the dispersion of the filler, the cell structure and/or to stabilize it also suitable are oligomeric polyacrylates with polyoxyalkylene and fluoroalkane radicals as side groups.
  • the surface-active substances are usually used in amounts of 0.01 to 5 parts by weight, based on 100 parts by weight of the total amount of compounds having isocyanate-reactive hydrogen atoms.
  • Reaction retardants can also be added, for example acidic substances such as hydrochloric acid or organic acids and acid halides, as well as pigments or dyes and flame retardants known per se, for example tris(chloroethyl) phosphate, triethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate, and also stabilizers against aging and Weather influences, plasticizers and fungicidal and bactericidal substances.
  • acidic substances such as hydrochloric acid or organic acids and acid halides
  • pigments or dyes and flame retardants known per se for example tris(chloroethyl) phosphate, triethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate, and also stabilizers against aging and Weather influences, plasticizers and fungicidal and bactericidal substances.
  • surface-active additives and foam stabilizers that may also be used according to the invention, as well as cell regulators, reaction retarders, stabilizers, flame-retardant substances, plasticizers, dyes and fillers, as well as fungistatically and bacteriostatically active substances and details of the use and mode of action of these additives are given in R. Vieweg, A. Höchtlen ( Ed.): "Plastic Handbook", Volume VII, Carl-Hanser-Verlag, Kunststoff 1966, p.103-113 described.
  • the polyurethane is a polyurethane foam, preferably a PUR/PIR foam, the polyurethane foam, preferably the PUR/PIR foam, being obtainable by reacting the polyol mixture according to the invention with a polyisocyanate.
  • the ratio of the isocyanate groups in the polyisocyanates to the isocyanate-reactive hydrogens contained in the total amount of compounds having isocyanate-reactive hydrogen atoms can be varied widely. Ratios of 0.7:1 to 5:1 are common.
  • the PU materials can be produced by the processes described in the literature, e.g. the one-shot or the prepolymer process, using mixing devices known in principle to those skilled in the art.
  • the present invention also relates to the use of the polyol mixture according to the invention for the production of polyurethanes, preferably polyurethane foams, particularly preferably PUR/PIR foam.
  • polyurethanes preferably polyurethane foams, particularly preferably PUR/PIR foam.
  • Oligocarbonate side stream from polycarbonate production consisting of diphenyl carbonate (42%) and oligo(bisphenol A carbonate) (58%)
  • Sigma-Aldrich cPC cyclic propylene carbonate, purity 99.5%
  • Desmophen® L2830 Bifunctional polyether polyol with predominantly primary hydroxyl groups from Covestro GmbH AG with a hydroxyl number of 26-30 mg KOH/g and a viscosity at 25° C. of 790-930 mPa s
  • Levagard PP trischloroisopropyl phosphate
  • Desmorapid 1792 blowing agent from Covestro Deutschland AG; is used to manufacture rigid polyurethane foam products. Desmorapid® 1792 catalyzes the polyisocyanurate reaction.
  • Desmorapid DB N,N-dimethylbenzylamine, catalyst (Lanxess AG). n-pentane n-pentane from Julius Hoesch.
  • Desmodur® 44V70L Liquid mixture of diphenylmethane-4,4'-diisocyanate (MDI) with isomers and higher-functional homologues with an NCO content in the range from 30.5 to 32.0% by weight NCO and a viscosity in the range from 610 to 750 m Pa s at 25 °C from Covestro Deutschland AG.
  • MDI diphenylmethane-4,4'-diisocyanate
  • the viscosity was determined according to the invention using an MCR 51 rheometer from Anton Paar in accordance with DIN 53019 with a CP 50-1 measuring cone, diameter 50 mm, angle 1° at shear rates of 25, 100, 200 and 500 s- 1 .
  • the polyester polyols according to the invention and not according to the invention show viscosity values that are independent of the shear rate.
  • Hydroxyl number was determined according to DIN 53240-1 (method without catalyst, June 2013). Standard method using phthalic anhydride (PSA) to detect the aliphatic hydroxyl groups. When using acetic anhydride (ESA), aliphatic and aromatic hydroxyl groups are detected. Accordingly, if both values are the same within the measurement accuracy, it can be concluded that no aromatic hydroxyl groups are present.
  • Compression hardness rigid foam compressive stress at 10% compression according to DIN EN ISO 844
  • Example 1 Synthesis of a polyol mixture from OC, DEG and cPC
  • Viscosity 280 mPa*s at 25 °C
  • Viscosity 250 mPa*s at 25 °C
  • Example 3 Synthesis of polyol from OC, DEG/PEG-400 and cPC
  • Viscosity 490 mPa*s at 25 °C
  • Example 4 Synthesis of polyol from OC, DEG/PEG-400 and cPC
  • Viscosity 450 mPa*s at 25 °C
  • Viscosity 80 mPa*s at 25 °C
  • Viscosity 150 mPa*s at 25 °C
  • Example 7 Synthesis of polyol from OC and PEG-400 (comparative) 427 g of PEG-400 (1.07 mol) are placed in a 2L, 4-necked round bottom flask equipped with a thermometer, reflux condenser, mechanical stirrer and gas outlet with a gas gauge. 125 g OC and 1 g KOH are added to the diol and the mixture is heated to 180° C. over 20 minutes, so that a slight reflux is established. The mixture is stirred at this temperature for 3 hours and then cooled to room temperature. After cooling, the brown, homogeneous liquid is characterized as follows:
  • Viscosity 420 mPa*s at 25 °C
  • Example 8 One-step synthesis of polyol from OC , PEG-400 and cPC
  • Viscosity 250 mPa*s at 25 °C
  • the colorless liquid is characterized as follows:
  • Viscosity 3250 mPa*s at 25 °C
  • cyclic propylene carbonate cyclic propylene carbonate
  • cyclic ethylene carbonate cyclic ethylene carbonate
  • EG ethylene glycol
  • PG propylene glycol
  • BPA bisphenol A
  • Table 2 Compositions of selected polyol mixtures.
  • the suffix “compare” designates comparative experiments, example 4 is a polyol mixture according to the invention.
  • PUR/PIR rigid foams were produced from selected inventive and comparative polyol mixtures on a laboratory scale by adding flame retardants, foam stabilizers, catalyst, water and blowing agent in defined parts by weight (parts by weight) to the respective polyol.
  • the isocyanate-reactive composition (polyol side) thus obtained was mixed with the isocyanate (isocyanate side) in a defined ratio (index) and poured into a mold.
  • the mixture itself was produced with a stirrer at 4200 rpm and 23° C. raw material temperature.
  • Table 3 The exact formulations, including the results of the corresponding physical tests, are summarized in Table 3.
  • the polyol mixtures according to the invention lead to rigid foams having the necessary mechanical properties in terms of bulk density, open-cell structure, compressive strength and dimensional stability.
  • the comparative polyol according to Example 7 in which no cPC was used, no foam could be obtained since the aromatic hydroxyl groups greatly accelerate the reactivity.
  • the comparison polyols according to Examples 5 and 6 contain larger amounts of free cPC, which can escape from the rigid foam end product and lead to a higher level of fire.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Polyol-Gemisches umfassend ein aromatisches Polyetherpolyol und ein aliphatisches Carbonatpolyol durch Umsetzen eines aromatisches Carbonats enthaltend ein oder mehrere aromatische Carbonatgruppe(n) mit einem Polyol enthaltend ein oder mehrere Hydroxylgruppe(n) sowie mit einem cyclischen Carbonat und/oder mit einem Alkylenoxid bevorzugt mit einem cyclischen Carbonat in Gegenwart eines Katalysators, wobei das Polyol kein 1,2-Glycol ist, wobei das molare Verhältnis der Hydroxylgruppen des Polyols zu den aromatischen Carbonatgruppen des aromatischen Carbonats von 2,0 zu 1 bis 8,0 zu 1 beträgt. Das daraus erhältliche Polyol-Gemisch, sowie ein Verfahren oder die Verwendung dieser Polyol-Gemische zur Herstellung von Polyurethanen ist ebenfalls Gegenstand der vorliegenden Erfindung.

Description

Verfahren zur Herstellung eines Polyol-Gemisches
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Polyol-Gemisches umfassend ein aromatisches Polyetherpolyol und ein aliphatisches Carbonatpolyol durch Umsetzen eines aromatisches Carbonats enthaltend ein oder mehrere aromatische Carbonatgruppe(n) mit einem Polyol enthaltend ein oder mehrere Hydroxylgruppe (n) sowie mit einem cyclischen Carbonat und/oder mit einem Alkylenoxid bevorzugt mit einem cyclischen Carbonat in Gegenwart eines Katalysators, wobei das Polyol kein 1,2-Glycol ist, wobei das molare Verhältnis der Hydroxylgruppen des Polyols zu den aromatischen Carbonatgruppen des aromatischen Carbonats von 2,0 zu 1 bis 8,0 zu 1, beträgt. Das daraus erhältliche Polyol-Gemisch, sowie ein Verfahren oder die Verwendung dieser Polyol-Gemische zur Herstellung von Polyurethanen ist ebenfalls Gegenstand der vorliegenden Erfindung.
In DE 42 02 740 Al wird ein Verfahren zur Herstellung von Hydroxyalkylethem von Diphenolen aus aromatischen Polycarbonaten offenbart, bei denen speziell Polycarbonatabfälle als aromatische Polycarbonate einsetzbar sind. Hierbei werden Hydroxyalkylether von Diphenolen hergestellt, in dem aromatische Polycarbonate auf Basis von Diphenolen mit Alkylendiolen wie beispielsweise Propylenglycol oder Ethylenglycol und optional cyclischen Alkylencarbonaten wie beispielsweise 1,3- Propylencarbonat in Gegenwart von basischen Katalysatoren wie Natriumhydroxid umsetzt. Das Stoffmengenverhältnis der Alkylendiole beträgt dabei 5 bis 10 Mol bezogen auf Mol aromatische Carbonateinheiten, wobei der feste Hydroxyalkylether aus der Mischung abgetrennt wird. In Oku et al. Polymer 41 (2000) 6749-6753 wird ein Verfahren zum chemischen Recycling von Polycarbonat (PC)- Kunststoffabfällen offenbart, wobei PC-Pellets als PC-Abfälle durch Umsetzung mit cyclischem Ethylencarbonat sowie einem zehnfachen stöchiometrischen Überschuss an Ethylenglycol in Gegenwart eines Natriumhydroxid-Katalysators zu einem Gemisch aus Bisphenol A sowie Mono- und vorrangig Bis(hydroxyethyl)ethem von Bisphenol A umgesetzt werden. Die Produktzusammensetzung ist dabei vorrangig abhängig vom gewählten Verhältnis aus eingesetztem Polycarbonat, Ethylenglycol und cyclischem Carbonat, wobei vorrangig der Stoffinengenanteil des Ethylenglycols variiert wird. Mit zunehmendem Anteil an Ethylenglycol steigt der Anteil an Bis(hydroxyethyl)ethem, wobei Bisphenol A mit den phenolischen OH-Gruppen nicht detektiert wird. Aufgrund des eingesetzten Überschusses an Ethylenglycol resultieren jedoch Produktgemische mit einer hohen Hydroxylzahl von >1000 mg (KOH)/g.
Für Polyurethane als Reaktionsprodukte von Polyisocyanaten und Polyol(en) sind definierte mittlere Hydroxylzahlen für das eingesetzte Polyol-Gemisch essentiell. So sind beispielsweise für die Herstellung von Polyurethanhartschaumstoffen Hydroxylzahlen im Bereich von 100 mg(KOH)/g bis 500 mg(KOH)/g wesentlich. Gleichzeitig sollten diese Hydroxylgruppen aber nicht aromatisch sein, da die daraus entstehenden Polyurethanbindungen thermisch weniger stabil sind und die Zersetzungstemperatur solcher PU-Bindungen niedriger im Vergleich zu PU-Bindungen basierend auf Polyolen mit nicht-aromatischen Hydroxylgruppen ist (siehe auch Chattopadhyay, Progress in Polymer Science 34(200) 1068-1133). Auch nichtumgesetzte oder als Nebenprodukte gebildete cyclische Carbonate oder niedermolekulare Alkohole, speziell Ethylenglycol, müssen vor der Weiterverarbeitung zu Polyurethanen quantitativ entfernt werden, da diese beispielsweise unerwünschte Emissionen in den Polyurethanschäumen verursachen können oder im Falle des Ethylenglykols die Hydroxylzahl unerwünscht erhöhen und den Einsatz höherer Mengen Isocyanat nötig machen.
Ausgehend vom Stand der Technik war es somit Aufgabe der vorliegenden Erfindung ein vereinfachtes und verbessertes Verfahren zur Herstellung von flüssigen, einphasigen Polyol-Gemischen mit einer mittleren Hydroxylzahl von 100 mg(KOH)/g bis 500 mg(KOH)/g bereitzustellen, wobei das Polyol- Gemisch keine Polyolkomponente mit phenolischen Hydroxylgruppen aufweist und auch keine cyclische Carbonate enthält, welche in einer direkten Umsetzung zu Polyurethanen (PU), wie beispielsweise Polyurethanschäumen und hierbei speziell Polyurethanhartschäumen die Reaktivität und die mechanischen Produkteigenschaften wie beispielsweise der Flammschutzeigenschaften der resultierenden PU-Produkte negativ beeinflussen oder unerwünschte Emissionen aus den PU-Produkten bedingen. Dabei soll auf eine zeit- und energieintensive Abtrennung von Polyolkomponenten mit phenolischen Hydroxylgruppen, cyclischen Carbonaten und/oder Polyolkomponenten mit zu hoher Hydroxylzahl wie beispielsweise Ethylenglycol vor der Umsetzung des Polyolgemisches zum Polyurethan (PU), wie beispielsweise Polyurethanschaum und hierbei speziell Polyurethanhartschaum verzichtet werden.
Diese Aufgabe wurde erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines Polyol- Gemisches umfassend ein aromatisches Polyetherpolyol und ein aliphatisches Carbonatpolyol durch Umsetzen eines aromatischen Carbonats enthaltend ein oder mehrere aromatische Carbonatgruppe (n) mit einem Polyol enthaltend mindestens zwei Hydroxylgruppe(n) sowie mit einem cyclischen Carbonat und/oder mit einem Alkylenoxid bevorzugt mit einem cyclischen Carbonat in Gegenwart eines Katalysators, wobei das Polyol kein 1,2-Glycol ist, wobei das molare Verhältnis der Hydroxylgruppen des Polyols zu den aromatischen Carbonatgruppen des aromatischen Carbonats von 2,0 zu 1 bis 8,0 zu 1 beträgt.
Erfindungsgemäß ist unter einem Polyolgemisch ein Gemisch aus mindestens 2 unterschiedlichen Polyolen zu verstehen, wobei das erste Polyol ein aromatisches Polyetherpolyol und das zweite Polyol ein aliphatisches Carbonatpolyol ist.
Unter einem aromatischen Polyetherpolyol ist erfindungsgemäß ein Polyol zu verstehen, welches neben mindestens zwei freien Hydroxylgruppen auch mindestens zwei Ethergruppen sowie aromatische Gruppen im Polyetherpolyol aufweist. Hierbei sind die Hydroxylgruppen durch Anlagerung und Ringöffhung des cyclischen Carbonats und/oder des Alkylenoxids an die alkoholisierte Form des aromatischen Carbonats erhältlich. Die alkoholisierte Form des aromatischen Carbonats resultiert durch Umsetzung des aromatischen Carbonats mit dem Polyol unter Bildung des aromatischen Alkohols sowie des aliphatischen Carbonatpolyols (Phenol-Gemisch). Das aliphatische Carbonatpolyol ist erhältlich durch Umsetzung des aromatischen Carbonats mit dem Polyol unter Bildung von ein oder mehrere(n) aliphatische Carbonatgruppe (n) und mindestens zwei Hydroxylgruppen. Die aliphatische Struktur des Carbonatpolyols ist bedingt durch die Verwendung von aliphatischen Polyolen, wobei diese Polyole eine verzweigte oder unverzweigte cycloaliphatische Struktur (Alicyclen), wie beispielsweise Isosorbid, oder eine verzweigte und/oder unverzweigte acyclische aliphatische Struktur, wie beispielsweise Diethylenglycol, aufweisen. Daneben kann das Carbonatpolyol auch Ether- und/oder Estergruppen bevorzugt Ethergruppen enthalten, wobei diese Ethergruppen aus dem Polyol stammen können (beispielsweise Diethylenglycol) oder durch Ringöffhung des eingesetzten cyclischen Carbonats und/oder Alkylenoxids gebildet werden. Die Estergruppen resultieren beispielsweise durch Verwendung von Polyesterpolyolen, Polyetheresterpolyolen und/oder Polyetherestercarbonatpolyolen als Polyol.
Unter 1,2-Glycolen sind erfindungsgemäß Alkohole mit mindestens zwei Hydroxylgruppen zu verstehen, bei den sich die mindestens zwei Hydroxylgruppen in 1,2-Position befinden wie beispielsweise Ethylenglycol (1,2-Ethandiol) oder auch 1,2-Propylenglykol (1,2-Propandiol) Erfindungsgemäß und gemäß der allgemeinen fachlichen Definition sind unter einem aromatischen Carbonat Verbindungen mit der Formel S1-O-C(=O)-O-S2, wobei S1 und/oder S2, bevorzugt S1 und S2, aromatische Substituenten enthält.
Erfindungsgemäß enthält das aromatische Carbonat eine oder mehrere aromatische Carbonatgruppe(n). Beispielhaft sei Diphenylcarbonat für ein erfindungsgemäßes aromatisches Carbonat mit einer aromatischen Carbonatgruppe und zwei aromatischen Substituenten, nämlich Phenyl-Substituenten (Sl=S2=Ph, Ph=Phenyl) genannt.
In einer Ausfiihrungsform des erfindungsgemäßen Verfahrens enthält das aromatische Carbonat ein aromatisches Polycarbonat, wobei das aromatische Polycarbonat zwei oder mehr aromatische Carbonatgruppen enthält.
Gemäß der allgemeinen fachlichen Definition sind unter aromatischen Polycarbonaten Verbindungen zu verstehen, die durch eine Umesterungsreaktion von Dihydroxyarylverbindungen mit Diarylcarbonaten unter Bildung von aromatischen Polycarbonaten unter Abspaltung einer Monohydroxyarylverbindung erhältlich sind.
Figure imgf000004_0001
Technisch sehr bedeutsam ist die Herstellung von hochmolekularem, aromatischem Polycarbonat aus 2,2-Bis(4-hydroxyphenyl)-propan (kurz auch Bisphenol A oder BPA genannt) und Diphenylcarbonat (kurz auch DPC genannt). Polycarbonate im Sinne der vorliegenden Erfindung sind sowohl Homopolycarbonate als auch Copolycarbonate und/oder Polyestercarbonate; die Polycarbonate können in bekannter Weise linear oder verzweigt sein. Polycarbonate im Sinne der vorliegenden Erfindung sind auch Mischungen von unterschiedlichen Polycarbonaten .
In einer Ausfiihrungsform des erfindungsgemäßen Verfahrens haben die erfindungsgemäßen aromatischen Polycarbonate einschließlich der aromatischen Polyestercarbonate mittlere Molekulargewichte Mw (ermittelt durch Messung der relativen Lösungsviskosität bei 25 °C in CH2C12 und einer Konzentration von 0,5 g pro 100 ml CH2C12) von 20.000 g/mol bis 32.000 g/mol, vorzugsweise von 23.000 g/mol bis 31.000 g/mol, insbesondere von 24.000 g/mol bis 31.000 g/mol.
Ein Teil, bis zu 80 Mol-%, vorzugsweise von 20 Mol-% bis zu 50 Mol-%, der Carbonat-Gruppen in den erfindungsgemäß eingesetzten Polycarbonaten können durch aromatische Dicarbonsäureester-Gruppen ersetzt sein. Derartige Polycarbonate, die sowohl Säurereste der Kohlensäure als auch Säurereste von aromatischen Dicarbonsäuren in die Molekülkette eingebaut enthalten, werden als aromatische Polyestercarbonate bezeichnet. Sie werden im Rahmen der vorliegenden Erfindung unter dem Oberbegriff der thermoplastischen, aromatischen Polycarbonate subsumiert.
Die Herstellung der aromatischen Polycarbonate erfolgt in bekannter Weise aus Diphenolen, Kohlensäurederivaten, gegebenenfalls Kettenabbrechern und gegebenenfalls Verzweigern, wobei zur Herstellung der Polyestercarbonate ein Teil der Kohlensäurederivate durch aromatische Dicarbonsäuren oder Derivate der Dicarbonsäuren ersetzt wird, und zwar je nach Maßgabe der in den aromatischen Polycarbonaten zu ersetzenden Carbonatstruktureinheiten durch aromatische Dicarbonsäuree sterstruktureinheiten .
Für die Herstellung von aromatischen Polycarbonaten geeignete Dihydroxyarylverbindungen sind solche der Formel (I)
HO-Z-OH (I), in welcher
Z ein aromatischer Rest mit 6 bis 30 C-Atomen ist, der einen oder mehrere aromatische Kerne enthalten kann, substituiert sein kann und aliphatische oder cycloaliphatische Reste bzw. Alkylaryle oder Heteroatome als Brückenglieder enthalten kann.
Bevorzugt steht Z in Formel (I) für einen Rest der Formel (II)
Figure imgf000005_0001
in der
R6 und R7 unabhängig voneinander fur H, Ci- bis C ix-Alkyl-, Ci- bis C ix-Alkoxy. Halogen wie CI oder Br oder für jeweils gegebenenfalls substituiertes Aryl- oder Aralkyl, bevorzugt für H oder Ci- bis Cn-Alkyl, besonders bevorzugt fur H oder Ci- bis Cx-Alkyl und ganz besonders bevorzugt fur H oder Methyl stehen, und
X für eine Einfachbindung, -SO2-, -CO-, -O-, -S-, Ci- bis C(, -Alkylen. C2- bis Cs-Alkyliden oder C5- bis Ce -Cycloalkyl iden, welches mit Ci- bis Ce-Alkyl, vorzugsweise Methyl oder Ethyl, substituiert sein kann, ferner für Ce- bis Ci2-Arylen, welches gegebenenfalls mit weiteren Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann, steht.
Bevorzugt steht X für eine Einfachbindung, C - bis C5-Alkylen, C - bis C5-Alkyliden, C - bis C - Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2- oder für einen Rest der Formel (Ila)
Figure imgf000006_0001
Beispiele für Diphenole (Dihydroxyarylverbindungen) sind: Dihydroxybenzole, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-aryle, Bis- (hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfide, Bis- (hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, 1,1’ -Bis-(hydroxyphenyl)- diisopropylbenzole sowie deren kemalkylierte und kemhalogenierte Verbindungen.
Für die Herstellung der erfmdungsgemäß zu verwendenden aromatischen Polycarbonate geeignete Diphenole sind beispielsweise Hydrochinon, Resorcin, Dihydroxydiphenyl, Bis-(hydroxyphenyl)- alkane, Bis(hydroxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, a,a'-Bis- (hydroxyphenyl)-diisopropylbenzole sowie deren alkylierte, kemalkylierte und kemhalogenierte Verbindungen.
Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-l-phenylpropan, 1,1- Bis-(4-hydroxyphenyl)-phenylethan, 2,2-Bis-(4-hydroxyphenyl)propan (Bisphenol A (BPA)), 2,4-Bis- (4-hydroxyphenyl)-2-methylbutan, l,3-Bis-[2-(4-hydroxyphenyl)-2-propyl]-benzol (Bisphenol M), 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis- (3,5-dimethyl-4-hydroxyphenyl)-propan, Bis-(3, 5 -dimethyl -4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5- dimethyl-4-hydroxyphenyl)-2-methylbutan, l,3-Bis-[2-(3,5-dimethyl-4-hydroxyphenyl)-2-propyl]- benzol, l,l-Bis-(4-hydroxyphenyl)-cyclohexan und l,l-Bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexan (Bisphenol TMC (BPTMC)), sowie die Diphenole der Formeln (III) bis (V)
Figure imgf000007_0001
in denen R‘ jeweils fur Ci-C4-Alkyl, Aralkyl oder Aryl, bevorzugt für Methyl oder Phenyl steht.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, l,l-Bis-(4-Hydroxyphenyl)- phenylethan, 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A (BPA)), 2,2-Bis(3,5-dimethyl-4- hydroxyphenylj-propan, 1, l-Bis-(4-hydroxyphenyl)-cyclohexan und 1, l-Bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexan (Bisphenol TMC (BPTMC)) und die Dihydroxyverbindungen der Formeln (III), (IV) und (V), in denen R‘ jeweils fur Ci-C4-Alkyl, Aralkyl oder Aryl, bevorzugt für Methyl oder Phenyl steht.
Diese und weitere geeignete Diphenole sind z.B. in US 2 999 835 A, US 3 148 172 A, US 2 991 273 A, US 3 271 367 A, US 4 982 014 A und US 2 999 846 A, in den deutschen Offenlegungsschriften DE 1 570 703 A, DE 2 063 050 A, DE 2 036 052 A, DE 2 211 956 A und DE 3 832 396 A, der französischen Patentschrift FR 1 561 518 Al, in der Monographie „H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, S. 28 ff; S.102 ff“, und in „D.G. Legrand, J.T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, S. 72ff.“ beschrieben.
Im Falle der Homopolycarbonate wird nur ein Diphenol eingesetzt, im Falle von Copolycarbonaten werden zwei oder mehr Diphenole eingesetzt. Die verwendeten Diphenole, wie auch alle anderen der Synthese zugesetzten Chemikalien und Hilfsstoffe, können mit den aus ihrer eigenen Synthese, Handhabung und Lagerung stammenden Verunreinigungen kontaminiert sein. Es ist jedoch wünschenswert, mit möglichst reinen Rohstoffen zu arbeiten.
In der gleichen Weise werden eventuell zu verwendende Verzweiger oder Verzweigermischungen der Synthese zugesetzt. Üblicherweise werden Trisphenole, Quarterphenole oder Säurechloride von Trioder Tetracarbonsäuren verwendet oder auch Gemische der Polyphenole oder der Säurechloride. Einige der als Verzweiger verwendbaren Verbindungen mit drei oder mehr als drei phenolischen Hydroxylgruppen sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten- 2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, l,3,5-Tris-(4-hydroxyphenyl)-benzol, 1,1,1-Tri- (4-hydroxyphenyl)-ethan, Tris-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)- cyclohexyl] -propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4-hydroxyphenyl)-methan.
Einige der sonstigen trifunktionellen Verbindungen sind 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
Bevorzugte Verzweiger sind 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol und 1,1,1- Tri-(4-hydroxyphenyl)-ethan.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt 0,05 Mol-% bis 2 Mol-%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen, wobei die Verzweiger mit den Diphenolen vorgelegt werden.
Alle diese Maßnahmen zur Herstellung der aromatische Polycarbonate sind dem Fachmann geläufig.
Für die Herstellung der aromatischen Polyestercarbonate geeignete aromatische Dicarbonsäuren sind beispielsweise Orthophthalsäure, Terephthalsäure, Isophthalsäure, tert-Butylisophthalsäure, 3,3'- Diphenyldicarbonsäure, 4,4'-Diphenyldicarbonsäure, 4,4-Benzophenondicarbonsäure, 3,4'- Benzophenondicarbonsäure, 4,4'-Diphenyletherdicarbonsäure, 4,4'-Diphenylsulfondicarbonsäure, 2,2- Bis-(4-carboxyphenyl)-propan, Trimethyl-3-phenylindan-4,5'-dicarbonsäure.
Von den aromatischen Dicarbonsäuren werden besonders bevorzugt die Terephthalsäure und/oder Isophthalsäure eingesetzt.
Derivate der Dicarbonsäuren sind die Dicarbonsäuredihalogenide und die Dicarbonsäuredialkylester, insbesondere die Dicarbonsäuredichloride und die Dicarbonsäuredimethylester.
Der Ersatz der Carbonatgruppen durch die aromatischen Dicarbonsäureestergruppen erfolgt im Wesentlichen stöchiometrisch und auch quantitativ, so dass das molare Verhältnis der Reaktionspartner sich auch im fertigen Polyestercarbonat wiederfmdet. Der Einbau der aromatischen Dicarbonsäureestergruppen kann sowohl statistisch als auch blockweise erfolgen.
Diarylcarbonate, die zur Herstellung von aromatischen Polycarbonaten eingesetzt werden können, sind Di-Cö-Cu-Arylester, vorzugsweise die Diester von Phenol oder substituierten Phenolen, also Diphenylcarbonat oder z.B. Bissalicylcarbonat. Bezogen auf 1 Mol Diphenol werden die Diarylcarbonate in 1,01 bis 1,30 Mol, bevorzugt in 1,02 bis 1,15 Mol eingesetzt.
Figure imgf000009_0001
Das ausreagierte, höchstens noch Spuren an (< 2 ppm) Chlorkohlensäurearylestem enthaltende mindestens zweiphasige Reaktionsgemisch lässt man zur Phasentrennung absitzen. Die wässrige alkalische Phase (Reaktionsabwasser) wird abgetrennt und die organische Phase mit verdünnter Salzsäure und Wasser extrahiert. Die vereinigten Wasserphasen werden der Abwasseraufarbeitung zugeführt, wo Lösungsmittel- und Katalysatoranteile durch Strippen oder Extraktion abgetrennt und rückgeführt werden. Anschließend können nach der Einstellung eines bestimmten pH-Wertes von z.B. 6 bis 8, z.B. durch Salzsäurezugabe, die gegebenenfalls noch verbleibenden organischen Verunreinigungen wie z.B. Monophenol durch Behandlung mit Aktivkohle entfernt und die Wasserphasen der Chloralkalielektrolyse zugeführt werden.
In einer anderen Variante der Aufarbeitung wird das Reaktionsabwasser nicht mit den Waschphasen vereinigt, aber nach Strippen oder Extraktion zur Abtrennung von Lösungsmitteln und Katalysatorresten, auf einem bestimmten pH-Wert von z.B. 6 bis 8, z.B. durch Salzsäurezugabe eingestellt und nach Abtrennung der noch verbleibenden organischen Verunreinigungen wie z.B. Monophenol durch Behandlung mit Aktivkohle der Chloralkalielektrolyse zugeführt.
Die Waschphasen können nach Entfernung der Lösungsmittel- und Katalysatoranteile durch Strippen oder Extraktion gegebenenfalls wieder der Synthese zugeführt werden.
Ein Verfahren zur Herstellung von Diarylcarbonat und Verarbeitung mindestens eines Teils der dabei anfallenden Alkalichlorid-haltigen Lösung in einer nachgeschalteten Alkalichlorid-Elektrolyse offenbart beispielsweise die W02009071211A1.
In einer Ausführungsform des erfindungsgemäßen Verfahrens enthält das Polycarbonat Flammschutzmittel, Füll- und Verstärkungsstoffe (beispielsweise Glas- oder Karbonfasem, Talk, Glimmer, Kaolin, CaCO ). Thermostabilisatoren, Antistatika, Farbmittel, Pigmente, Entformungsmittel, UV-Absorber und/oder IR-Absorber in den üblichen Mengen zugesetzt werden.
Die Menge an weiteren Additiven beträgt bevorzugt bis zu 50 Gew.-%, besonders bevorzugt bis zu 40 Gew.-% und ganz besonders bevorzugt 0,01 bis 3 Gew.-%, bezogen auf das Polycarbonat.
Geeignete Additive sind beispielsweise beschrieben in „Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999“, im „Plastics Additives Handbook, Hans Zweifel, Hanser, München 2001“.
Geeignete Antioxidantien bzw. Thermostabilisatoren sind beispielsweise alkylierte Monophenole, Alkylthiomethylphenole, Hydrochinone und alkylierte Hydrochinone, Tocopherole, hydroxylierte Thiodiphenylether, Alkylidenbisphenole, O-, N- und S-Benzylverbindungen, hydroxybenzylierte Malonate, aromatische Hydroxybenzylverbindungen, Triazinverbindungen, Acylaminophenole, Ester von *-(3,5-Di-tert-butyl-4-hydroxyphenyl)^propion-säure, Ester von *-(5-tert-Butyl-4-hydroxy-3- methylphenyl)propionsäure, Ester von *-(3,5-Dicyclohexyl-4-hydroxyphenyl)propionsäure, Ester von 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure, Amide von *-(3,5-Di-tert-butyl-4-hydroxyphenyl)- propionsäure, geeignete Thiosynergisten, sekundäre Antioxidantien, Phosphite und Phosphonite, Benzofuranone und Indolinone.
Bevorzugt sind organische Phosphite wie Triphenylphosphin, Tritoluylphosphin oder (2,4,6-Tri-t- butylphenyl)-(2-butyl-2-ethyl-propan-l,3-diyl)-phosphit, Phosphonate und Phosphane, meist solche, bei denen die organischen Reste völlig oder teilweise aus gegebenenfalls substituierten aromatischen Resten bestehen.
Ganz besonders geeignete Additive sind IRGANOX® 1076 (Octadecyl-3,5-di(tert)-butyl-4- hydroxyhydrozimtsäureester, CAS No. 2082-79-3) sowie Triphenylphosphin (TPP).
Geeignete Entformungsmittel sind beispielsweise die Ester oder Teilester von ein- bis sechswertigen Alkoholen, insbesondere des Glycerins, des Pentaerythrits oder von Guerbet-Alkoholen.
Einwertige Alkohole sind beispielsweise Stearylalkohol, Palmitylalkohol und Guerbet- Alkohole. Ein zweiwertiger Alkohol ist beispielsweise Glycol; ein dreiwertiger Alkohol ist beispielsweise Glycerin; vierwertige Alkohole sind beispielsweise Pentaerythrit und Mesoerythrit; funfwertige Alkohole sind beispielsweise Arabit, Ribit und Xylit; sechswertige Alkohole sind beispielsweise Mannit, Glucit (Sorbit) und Dulcit.
Die Ester sind bevorzugt die Monoester, Diester, Triester, Tetraester, Pentaester und Hexaester oder deren Mischungen, insbesondere statistische Mischungen, aus gesättigten, aliphatischen CIO- bis C36- Monocarbonsäuren und gegebenenfalls Hydroxymonocarbonsäuren, vorzugsweise mit gesättigten, aliphatischen C14- bis C32-Monocarbonsäuren und gegebenenfalls Hydroxymonocarbonsäuren.
Die kommerziell erhältlichen Fettsäureester, insbesondere des Pentaerythrits und des Glycerins, können herstellungsbedingt < 60% unterschiedlicher Teilester enthalten.
Gesättigte, aliphatische Monocarbonsäuren mit 10 bis 36 C-Atomen sind beispielsweise Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Hydroxystearinsäure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure und Montansäuren.
Geeignete IR-Absorber sind beispielsweise in EP 1 559 743 Al, EP 1 865 027 Al, DE 10022037 Al, DE 10006208 Al sowie in den italienischen Patentanmeldungen RM2010A000225, RM2010A000227 sowie RM2010A000228 offenbart. Von den in der zitierten Literatur genannten IR- Absorbern sind solche auf Borid- und Wolframatbasis, insbesondere Cäsiumwolframat oder Zink-dotiertes Cäsiumwolframat, sowie auf ITO und ATO basierende Absorber sowie Kombinationen daraus bevorzugt.
Geeignete UV-Absorber aus der Klasse der Benzotriazole sind z.B. Tinuvin® 171 (2-[2-Hydroxy-3- dodecyl-5-methylbenzyl)phenyl]-2H-benztriazol (CAS-Nr. 125304-04-3)), Tinuvin® 234 (2-[2- Hydroxy-3, 5-di(l,l-dimethylbenzyl)phenyl]-2H-benztriazol (CAS-Nr. 70321-86-7)), Tinuvin® 328 (2- 2 [Hydroxy-3 ,5 -di -tert, amyl -phenyl] -2H-benztriazol (CAS-Nr. 25973-55-1)).
Geeignete UV-Absorber aus der Klasse der Oxalanilide sind z.B. Sanduvor® 3206 (N-(2- Ethoxyphenyl)-ethandiamid (CAS-Nr. 82493-14-9)) von Clariant oder N-(2-Ethoxyphenyl)-N'-(4- dodecylphenyl)oxamid (CAS-Nr. 79102-63-9).
Geeignete UV-Absorber aus der Klasse der Hydroxybenzophenone sind z.B. Chimasorb® 81 (2- Benzoyl-5-octyloxyphenol (CAS-Nr. 1843-05-6)) der Firma BASF SE, 2,4-Dihydroxybenzophenon (CAS-Nr. 131-56-6), 2-Hydroxy-4-(n-octyloxy)benzophenon (CAS-Nr. 1843-05-6), 2-Hydroxy-4- dodecyloxybenzophenon (CAS-Nr. 2985-59-3).
Geeignete UV-Absorber aus der Klasse der Triazine sind beispielsweise 2-[2-Hydroxy-4-[3-(2- ethylhexyl-l-oxy)-2-hydroxypropyloxy]phenyl]-4,6-bis(2,4-dimethylphenyl)-l,3,5-triazin (CAS-Nr. 137658-79-8) auch bekannt als Tinuvin® 405 (BASF SE) und 2,4-Diphenyl-6-[2-hydroxy-4- (hexyloxy)phenyl]-l,3,5-triazin (CAS-Nr. 147315-50-2), erhältlich als Tinuvin® 1577 (BASF SE).
Die Verbindung 2-[2-Hydroxy-4-[(octyloxycarbonyl)ethylidenoxy]phenyl]-4,6-di(4-phenyl)phenyl- 1,3,5-triazin hat die CAS-Nr. 204848-45-3 und ist erhältlich von BASF SE unter dem Namen Tinuvin® 479.
Die Verbindung 2-[2-Hydroxy-4-[(2-ethylhexyl)oxy]phenyl]-4,6-di(4-phenyl)phenyl-l,3,5-triazin hat die CAS-Nr. 204583-39-1 und ist erhältlich von BASF SE unter dem Namen CGX-UVA006 bzw. Tinuvin® 1600.
UV Absorber werden im Allgemeinen in einer Menge von 0,01 bis 5 Gew.-%, bevorzugt 0,01 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,05 Gew.-%, bezogen auf die Gesamtzusammensetzung, eingesetzt.
Das erfindungsgemäße Polycarbonat kann organische und anorganische Füllstoffe in üblichen Mengen enthalten. In Frage kommen hierfür prinzipiell alle feinvermahlenen organischen und anorganischen Materialien. Diese können z.B. partikel-, schuppenförmigen oder faserförmigen Charakter haben. Beispielhaft seien an dieser Stelle Kreide, Quarzpulver, Russ, Titandioxid, Silikate/Aluminosilikate wie z.B. Talk, Wollastonit, Glimmer/Tonschichtmineralien, Montmorillonit, insbesondere auch in einer durch lonenaustausch modifizierten, organophilen Form, Kaolin, Zeolithe, Vermiculit sowie Aluminiumoxid, Silica, Magnesiumhydroxid und Aluminiumhydroxid genannt. Es können auch Mischungen verschiedener anorganischer Materialien zum Einsatz kommen.
Bevorzugte anorganische Füllstoffe sind feinstteilige (nanoskalige) anorganische Verbindungen aus einem oder mehreren Metallen der 1. bis 5. Hauptgruppe und 1. bis 8. Nebengruppe des Periodensystems, bevorzugt aus der 2. bis 5. Hauptgruppe, besonders bevorzugt auf der 3. bis 5. Hauptgruppe, bzw. auf der 4. bis 8. Nebengruppe, mit den Elementen Sauerstoff, Schwefel, Bor, Phosphor, Kohlenstoff, Stickstoff, Wasserstoff und/oder Silizium. Bevorzugte Verbindungen sind beispielsweise Russ, Oxide, Hydroxide, wasserhaltige/basische Oxide, Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate, Silikate, Phosphate und Hydride.
Als Farbmittel oder Pigmente können beispielsweise organische oder anorganische Pigmente oder organische Farbstoffe oder dergleichen eingesetzt werden.
Farbmittel oder Pigmente im Sinne der vorliegenden Erfindung sind Schwefel-haltige Pigmente wie Cadmiumrot oder Cadmiumgelb, Eisencyanid-basierte Pigmente wie Berliner Blau, Oxid-Pigmente wie Titandioxid, Zinkoxid, rotes Eisenoxid, schwarzes Eisenoxid, Chromoxid, Titangelb, Zink-Eisen- basiertes Braun, Titan-Cobalt-basiertes Grün, Cobaltblau, Kupfer-Chrom-basiertes Schwarz und Kupfer-Eisen-basiertes Schwarz oder Chrom-basierte Pigmente wie Chromgelb, Phthalocyanin- abgeleitete Farbstoffe wie Kupfer-Phthalocyanin-Blau oder Kupfer-Phthalocyanin-Grün, kondensierte polycyclische Farbstoffe und Pigmente wie Azo-basierende (z. B. Nickel-Azogelb), Schwefel-Indigo- Farbstoffe, Perinon-basierte, Perylen-basierte, Chinacridon-abgeleitete, Dioxazin-basierte, Isoindolinon-basierte und Chinophthalon-abgeleitete Derivate, Anthrachinon-basierte, heterocyclische Systeme.
Konkrete Beispiele für Handelsprodukte sind z. B. MACROLEX® Blau RR, MACROLEX® Violett 3R, MACROLEX® Violett B (Lanxess AG, Deutschland), Sumiplast® Violett RR, Sumiplast® Violett B, Sumiplast® Blau OR, (Sumitomo Chemical Co., Ltd.), Diaresin® Violett D, Diaresin® Blau G, Diaresin® Blau N (Mitsubishi Chemical Corporation), Heliogen® Blau oder Heliogen® Grün (BASF AG, Deutschland).
Von diesen sind Cyaninderivate, Chinolinderivate, Anthrachinonderivate, Phthalocyaninderivate bevorzugt.
Das erfindungsgemäße Polycarbonat kann Glasfüllstoffe und/oder Glasfasern enthalten.
Die Glasfüllstoffe bestehen aus einer Glaszusammensetzung, ausgewählt aus der Gruppe der M-, E-, A-, S-, R-, AR-, ECR-, D-, Q- oder C-Gläser, wobei E-, S- oder C-Glas weiter bevorzugt sind.
Die Glaszusammensetzung kann in Form von Glasmassivkugeln, Glashohlkugeln, Glasperlen, Glasflakes, Glasbruch sowie Glasfasern eingesetzt werden, wobei die Glasfasern weiter bevorzugt sind.
Die Glasfasern können in Form von Endlosfasem (rovings), Schnittglasfasem, gemahlenen Glasfasern, Glasfasergeweben oder Mischungen der vorgenannten Formen eingesetzt werden, wobei die Schnittglasfasem sowie die gemahlenen Glasfasern bevorzugt eingesetzt werden. Besonders bevorzugt werden gemahlene Glasfasern eingesetzt.
Die bevorzugte Faserlänge der Schnittglasfasem beträgt vor der Compoundierung 0,5 bis 10 mm, weiter bevorzugt 1,0 bis 8 mm, ganz besonders bevorzugt 1,5 bis 6 mm.
Schnittglasfasem können mit unterschiedlichen Querschnitten eingesetzt werden. Bevorzugt werden runde, elliptische, ovale, 8-förmige und flache Querschnitte eingesetzt, wobei die runden, ovalen sowie flachen Querschnitte besonders bevorzugt sind.
Der Durchmesser von Rundfasem beträgt bevorzugt 5 bis 25 pm, weiter bevorzugt 6 bis 20 pm, besonders bevorzugt 7 bis 17 pm.
Bevorzugte Flach- und Ovalglasfasem weisen ein Querschnittverhältnis aus Höhe zu Breite von ca. 1,0: 1,2 bis 1, 0:8,0, bevorzugt 1,0: 1,5 bis 1, 0:6,0, besonders bevorzugt 1, 0:2,0 bis 1, 0:4,0 auf.
Die Flach- und Ovalglasfasem weisen weiterhin eine durchschnittliche Faserhöhe von 4 pm bis 17 pm, bevorzugt von 6 pm bis 12 pm und besonders bevorzugt 6 pm bis 8 pm sowie eine durchschnittliche Faserbreite von 12 pm bis 30 pm, bevorzugt 14 pm bis 28 pm und besonders bevorzugt 16 pm bis 26 pm auf.
Die verwendeten Glasfasern zeichnen sich dadurch aus, dass die Auswahl der Faser nicht durch die Wechselwirkungscharakteristik der Faser mit der Polycarbonatmatrix beschränkt ist.
Eine starke Anbindung der Glasfaser an die Polymermatrix ist an den Tieftemperaturbmchoberflächen bei rasterelektronenmikroskopischen Aufnahmen zu erkennen, wobei die größte Anzahl der gebrochenen Glasfasern auf derselben Höhe wie die Matrix gebrochen sind und nur vereinzelt Glasfasern aus der Matrix herausstehen. Rasterelektronenmikroskopische Aufnahmen zeigen für den umgekehrten Fall der nicht-anbindenden Charakteristik, dass die Glasfasern im Tieftemperaturbruch aus der Matrix stark herausstehen oder vollständig herausgeglitten sind.
In einer weiteren Ausführungsform werden Polycarbonat-Blends verwendet, wobei das Polycarbonat PC weitere polymere Blendpartner enthält, wie beispielsweise ABS, MBS, ASA, PBT, PET oder Schlagzähmodifikatoren wie beispielsweise Silikonkautschuke, so dass mehrphasige Systeme wie PC/ABS, PC/MBS, PC/ASA, PC/PBT oder PC/PET resultieren.
Mithilfe des erfmdungsgemäßen Verfahrens lassen sich entweder die vorgenannten Flammschutzmittel- , Füllstoff-, Verstärkungsstoff-, Thermostabilisator-, Antistatika-, Farbmittel-, Pigment-, Entformungsmittel-, UV-Absorber- und/oder IR- Absorber haltigen-Polycarbonate, auftrennen, in dem das das Polycarbonat in das erfmdungsgemäße flüssige Polyol-Gemisch überführt wird und vom vorgenannten Füllstoff, Verstärkungsstoff, Thermostabilisator, Antistatika, Farbmittel, Pigment, Entformungsmittel, UV-Absorber und/oder IR-Absorber oder deren Folgeprodukte durch unterschiedliche Dichten und/oder Aggregatzustände, wie beispielweise Füllstoff, Verstärkungsstoff oder ABS, in geeigneter Weise aus dem Polyol-Gemisch abgetrennt und gegebenenfalls wiederverwendet werden kann.
In einer alternativen Ausführungsform kann auch der Flammschutzmittel, Füllstoff, Verstärkungsstoff, Thermostabilisator, Antistatika, Farbmittel, Pigment, Entformungsmittel, UV-Absorber und/oder IR- Absorber in dem Polyol-Gemisch verbleiben und so beispielsweise die mechanischen und oder optischen Eigenschaften der resultierenden Polyurethane beeinflussen, so dass beispielsweise die Flammschutzbeständigkeit eines Polyurethanschaums durch Verwendung eines Flammschutzmittelhaltigen Polycarbonats für die Herstellung des Polyol-Gemischs verbessert werden kann.
In einer Ausführungsform des erfmdungsgemäßen Verfahrens enthält das aromatische Carbonat ein Diarylcarbonat, welches wie oben beschrieben definiert ist.
In einer bevorzugten Ausführungsform ist das Diarylcarbonat Diphenylcarbonat und/oder. Bissalicylcarbonat.
In einer Ausführungsform beträgt der Anteil des Diarylcarbonat bevorzugt Diphenylcarbonat 10 Gew.- % bis 100 Gew. -% bevorzugt 30 Gew.-% bis 60 Gew.-% bezogen auf die Gesamtmenge am aromatischen Carbonat.
Erfindungsgemäß enthält das Polyol mindestens zwei Hydroxylgruppe(n), wobei diese Polyole eine verzweigte oder unverzweigte cycloaliphatische Struktur (Alicyclen) oder eine verzweigte und/oder eine unverzweigte acyclische aliphatische Struktur aufweisen.
Geeignete Polyole mit mindestens zwei terminalen Hydroxylgruppen sind beispielweise zweiwertige Alkohole wie beispielweise Diethylenglykol, Dipropylenglykol, 1,3-Propandiol, 1,4-Butandiol, 1,4- Butendiol, 1,4-Butindiol, Neopentylglykol, 1,5-Pentantandiol, Methylpentandiole (wie beispielweise 3- Methyl-l,5-pentandiol), 1,6-Hexandiol; 1,8-Octandiol, 1,10-Decandiol, 1,12-Dodecandiol, Bis(2- hydroxyethyl) terephthalat, Bis-(hydroxymethyl)-cyclohexane (wie beispielweise 1,4-Bis- (hydroxymethyl)cyclohexan), Triethylenglykol, Tetraethylenglykol, Polyethylenglykole, Dipropylenglykol, Tripropylenglykol, Polypropylenglykole, Dibutylenglykol und Polybutylenglykole); dreiwertige Alkohole (wie beispielweise Trimethylolpropan, , Trishydroxyethylisocyanurat, Rizinusöl); vierwertige Alkohole (wie beispielsweise Pentaerythrit); Polyalkohole (wie beispielweise hydroxyfimktionalisierte Fette und Öle, insbesondere Rizinusöl).
Polyole können auch aus der Substanzklasse der Polyetherpolyole ausgewählt sein, insbesondere solchen mit einem Molekulargewicht Mn im Bereich von 50 bis 4000 g/mol. Bevorzugt sind Polyetherpolyole, die aus sich wiederholenden Ethylenoxid- und Propylenoxideinheiten aufgebaut sind, bevorzugt mit einem Anteil von 35 bis 100% Propylenoxideinheiten, besonders bevorzugt mit einem Anteil von 50 bis 100% Propylenoxideinheiten. Hierbei kann es sich um statistische Copolymere, Gradienten-Copolymere, alternierende oder Blockcopolymere aus Ethylenoxid und Propylenoxid handeln. Geeignete Polyetherpolyole, aufgebaut aus sich wiederholenden Propylenoxid- und/oder Ethylenoxideinheiten sind beispielsweise die Desmophen®-, Acclaim®-, Arcol®-, Baycoll®-, Bayfill®-, Bayflex®- Baygal®-, PET®- und Polyether-Polyole der Covestro AG (wie z. B. Desmophen® 3600Z, Desmophen® 1900U, Acclaim® Polyol 2200, Acclaim® Polyol 40001, Arcol® Polyol 1004, Arcol® Polyol 1010, Arcol® Polyol 1030, Arcol® Polyol 1070, Baycoll® BD 1110, Bayfill® VPPU 0789, Baygal® K55, PET® 1004, Polyether® S180). Weitere geeignete homo- Polyethylenoxide sind beispielsweise die Pluriol® E-Marken der BASF SE, geeignete homo- Polypropylenoxide sind beispielsweise die Pluriol® P-Marken der BASF SE, geeignete gemischte Copolymere aus Ethylenoxid und Propylenoxid sind beispielsweise die Pluronic® PE oder Pluriol® RPE-Marken der BASF SE.
Die erfindungsgemäßen Polyole können auch aus der Substanzklasse der Polyesterpolyole ausgewählt sein, insbesondere solchen mit einem Molekulargewicht Mn im Bereich von 50 bis 4500 g/mol. Als Polyesterpolyole können mindestens difunktionelle Polyester eingesetzt werden. Bevorzugt bestehen Polyesterpolyole aus alternierenden Säure- und Alkoholeinheiten. Als Säurekomponenten können z.B. Bemsteinsäure, Bemsteinsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Adipinsäure, Phthalsäureanhydrid, Phthalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophtalsäure, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid oder Gemische aus den genannten Säuren und/oder Anhydride eingesetzt werden. Als Alkoholkomponenten werden wie beispielsweise 1,3-Propandiol, 1,4-Butandiol, 1,5-Pentandiol, Neopentylglykol, 1,6-Hexandiol, 1,4-Bis- (hydroxymethyl)-cyclohexan, Diethylenglykol, Dipropylenglykol, Trimethylolpropan, Glycerin, Pentaerythrit oder Gemische aus den genannten Alkoholen verwendet. Die resultierenden Polyesterpolyole weisen hierbei terminale Hydroxy und/oder Carboxygruppen auf.
Des Weiteren können als Polyole Polycarbonatdioie eingesetzt werden, insbesondere solche mit einem Molekulargewicht Mn im Bereich von 50 bis 4500 g/mol, die beispielsweise durch Umsetzung von Phosgen, Dimethylcarbonat, Diethylcarbonat oder Diphenylcarbonat und difunktionellen Alkoholen oder Polyesterpolyolen oder Polyetherpolyolen hergestellt werden. Beispiele zu Polycarbonaten finden sich z.B. in der EP-A 1359177. Beispielsweise können als Polycarbonatdioie die Desmophen® C-Typen der Covestro AG verwendet werden, wie z.B. Desmophen® C 1100 oder Desmophen® C 2200.
In einer weiteren Ausfuhrungsform der Erfindung können Polyethercarbonatpolyole (z.B. cardy on® Polyole der Fa. Covestro), Polycarbonatpolyole (z.B. Converge® Polyole der Fa. Novomer / Saudi Aramco, NEOSPOL Polyole der Fa. Repsol etc.) und/oder Polyetherestercarbonatpolyole als Polyole eingesetzt werden. Insbesondere können Polyethercarbonatpolyole, Polycarbonatpolyole und/oder Polyetherestercarbonatpolyole durch Umsetzung von Alkylenoxiden, bevorzugt Ethylenoxid, Propylenoxid oder deren Mischungen, optional weiteren Co-Monomeren mit CO2 in Gegenwart einer weiteren H-fimktionellen Starterverbindung und unter Verwendung von Katalysatoren erhalten werden. Diese Katalysatoren umfassen Doppelmetallcyanid-Katalysatoren (DMC-Katalysatoren) und/oder Metallkomplexkatalysatoren beispielsweise auf Basis der Metalle Zink und/oder Cobalt, wie beispielsweise Zink-Glutarat-Katalysatoren (beschrieben z.B. in M. H. Chisholm et al., Macromolecules 2002, 35, 6494), sogenannte Zink-Diiminat-Katalysatoren (beschrieben z.B. in S. D. Allen, J. Am. Chem. Soc. 2002, 124, 14284) und sogenannte Cobalt-Salen-Katalysatoren (beschrieben z.B. in US 7,304,172 B2, US 2012/0165549 Al) und/oder Mangan-Salen Komplexe. Eine Übersicht über die bekannten Katalysatoren für die Copolymerisation von Alkylenoxiden und CO2 gibt zum Beispiel Chemical Communications 47 (2011) 141-163. Durch die Verwendung unterschiedlicher Katalysatorsysteme, Reaktionsbedingungen und/oder Reaktionssequenzen erfolgt hierbei die Bildung von statistischen, alternierenden, blockartigen oder gradientenartigen Polyethercarbonatpolyole, Polycarbonatpoylole und/oder Polyetherestercarbonatpolyole. Diese als H-funktionelle Starterverbindungen eingesetzten Polyethercarbonatpolyole, Polycarbonatpoylole und/oder Polyetherestercarbonatpolyole können hierzu in einem separaten Reaktionsschritt zuvor hergestellt werden.
Die erfindungsgemäßen Polyole weisen im Allgemeinen eine OH-Funktionalität (d.h. Anzahl an für die Polymerisation aktiven H-Atomen pro Molekül) von 2 bis 8, bevorzugt von 2 bis 6 und besonders bevorzugt von 2 bis 4 auf. Die H-fimktionellen Startersubstanzen werden entweder einzeln oder als Gemisch aus mindestens zwei H-fimktionellen Startersubstanzen eingesetzt.
In einer Ausführungsform des erfindungsgemäßen Verfahrens ist das Polyol eine oder mehrere Verbindung(en) und wird ausgewählt aus der Gruppe bestehend aus Diethylenglycol, Dipropylenglycol, 1,3-Propandiol, 1,4-Butandiol, Polyethylenglycol, Polypropylenglycol, Trimethylolpropan und Isosorbid.
Unter cyclischen Carbonaten sind gemäß des technisch-allgemeingültigen Verständnis in der organischen Chemie heterocyclische Verbindungen zu verstehen, wobei das Carbonat ein cyclischer Ester der zweiwertigen Kohlensäure und eines mindestens difunktionellen Alkohols ist (Kohlensäureester). Technisch wird cyclisches Ethylencarbonat (l,3-Dioxolan-2-on) oder cyclisches Propylencarbonat (4-Methyl-l,3-dioxolan-2-on) beispielsweise durch Umsetzung von Kohlenstoffdioxid mit Ethylenoxid oder Propylenoxid hergestellt. Eine Zusammenstellung geeigneter cyclischer Carbonate ist in dem wissenschaftlichen Review-Artikel von G. Rodicki in Prag. Polym. Sei. 29 (2000) S. 259-342 beispielsweise in Tabelle 1 zusammengefasst.
In einer Ausführungsform des erfindungsgemäßen Verfahrens weist das cyclische Carbonat folgende Struktur gemäß Formel (VI) auf: o oA
I I
X1,R.X2
Bn (Vi) wobei
XI und/oder X2 eine CH2 -Gruppe B eine direkte Bindung zwischen XI und X2, substituiertes Alkyl, unsubstituiertes Alkyl, substituiertes O-Alkyl, oder unsubstituiertes O-Alkyl und n=0, für eine direkte Bindung zwischen XI und X2, sowie eine natürliche Zahl >0 für substituiertes Alkyl, unsubstituiertes Alkyl, substituiertes O-Alkyl, oder unsubstituiertes O-Alkyl ist.
Bevorzugt sind XI und X2 in Formel (VI) eine CH2 -Gruppe und B eine direkte Bindung zwischen XI und X2 und n=0, so dass cyclisches Ethylencarbonat als cyclisches Carbonat resultiert.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das cyclische Carbonat eine oder mehrere Verbindungen und wird ausgewählt aus der Gruppe bestehend aus 4- Methyl-l,3-dioxolan-2-on (Propylencarbonat), l,3-Dioxolan-2-on (Ethylencarbonat), l,3-Dioxan-2-on und 5,5-Dimethyl-l,3-dioxan-2-on , bevorzugt l,3-4-Methyl-l,3-dioxolan-2-on (Propylencarbonat).
Für das erfindungsgemäße Verfahren weist das mindestens eine Alkylenoxid 2 bis 24 Kohlenstoffatome auf. Bei den Alkylenoxiden mit 2 bis 24 Kohlenstoffatomen handelt es sich beispielsweise um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Ethylenoxid, Propylenoxid, 1- Butenoxid, 2,3 -Butenoxid, 2-Methyl-l,2-propenoxid (Isobutenoxid), 1-Pentenoxid, 2,3-Pentenoxid, 2- Methyl-l,2-butenoxid, 3 -Methyl- 1,2-butenoxid, 1 -Hexenoxid, 2,3 -Hexenoxid, 3,4-Hexenoxid, 2- Methyl-l,2-pentenoxid, 4-Methyl-l,2-pentenoxid, 2 -Ethyl- 1,2-butenoxid, 1-Heptenoxid, 1-Octenoxid, 1 -Nonenoxid, 1-Decenoxid, 1-Undecenoxid, 1-Dodecenoxid, 4-Methyl-l,2-pentenoxid, Butadienmonoxid, Isoprenmonoxid, Cyclopentenoxid, Cyclohexenoxid, Cycloheptenoxid, Cyclooctenoxid, Styroloxid, Methylstyroloxid, Pinenoxid, ein- oder mehrfach epoxidierte Fette als Mono-, Di- und Triglyceride, epoxidierte Fettsäuren, Cl-C24-Ester von epoxidierten Fettsäuren, Epichlorhydrin, Glycidol, und Derivate des Glycidols wie beispielsweise Methylglycidylether, Ethylglycidylether, 2-Ethylhexylglycidylether, Allylglycidylether, Glycidylmethacrylat sowie epoxidfunktionelle Alkyloxysilane wie beispielsweise 3Glycidyloxypropyltrimethoxysilan, 3- Glycidyloxypropyltriethoxy silan, 3 -Glycidyloxypropyltripropoxy silan, 3 -
Glycidyloxypropylmethyldimethoxysilan, 3 -Glycidyloxypropyl-ethyldiethoxysilan, 3 -Glycidyloxy- propyltriisopropoxysilan.
In einer Ausführungsform des erfindungsgemäßen Verfahrens ist das Alkylenoxid Propylenoxid und/oder Ethylenoxid bevorzugt Propylenoxid.
Im erfindungsgemäßen Verfahren werden bevorzugt basische Katalysatoren wie beispielsweise Alkalimetallhydride, Alkalimetallcarboxylate (beispielsweise von monofunktionellen Carbonsäuren), Alkalimetallhydroxide, Alkalimetallalkoxide (beispielsweise von monofunktionellen Alkoholen) oder Amine eingesetzt. Eine Übersicht über für das erfmdungsgemäße Verfahren geeignete Amine ist von M. lonescu et al. in „Advances in Urethanes Science and Technology“, 1998, 14, S. 151-218 gegeben worden. Beispielsweise können N,N-Dimethylbenzylamin, Dimethylaminopropanol, N- Methyldiethanolamin, Trimethylamin, Triethylamin, N,N-Dimethylcyclohexy lamin, N- Methylpyrrolidin, N,N,N’,N’-Tetramethylethylendiamin, Diazabicyclo[2,2,2]octan, 1,4- Dimethylpiperazin, N-Methylmorpholin, unsubstituiertes Imidazol und/oder alkylsubstituierte Imidazolderivate eingesetzt werden. Besonders bevorzugt werden im erfindungsgemäßen Verfahren als basische Katalysatoren Alkalimetallhydroxide (wie beispielsweise Natriumhydroxid, Kaliumhydroxid oder Cäsiumhydroxid), Alkalimetallalkoholate mono- oder mehrfimktioneller Alkohole, Imidazol oder alkylsubstituierte Imidazolderivate (wie beispielsweise N-Methylimidazol) eingesetzt. Ganz besonders bevorzugt wird im erfindungsgemäßen Verfahren Lithiumhydroxid, Kaliumhydroxid und/oder Natriumhydroxid eingesetzt.
Die basischen Katalysatoren werden in Mengen von 0,04 bis 5,0 Gew.-%, bevorzugt 0,1 bis 1,0 Gew.- % bezogen auf das aromatische Carbonat enthaltend ein oder mehrere aromatische Carbonatgruppe (n) eingesetzt.
In einer Ausfuhrungsform des erfindungsgemäßen Verfahrens umfasst das Verfahren folgende Schritte: i) Umsetzen des aromatischen Carbonats mit dem Polyol in Gegenwart des Katalysators unter Bildung eines Phenol Gemisches; ii) Umsetzen des in Schritt i) erhaltenen Phenol-Gemisches mit einem cyclischen Carbonat und/oder mit einem Alkylenoxid bevorzugt mit einem cyclischen Carbonat unter Bildung des Polyol-Gemisches.
In einer alternativen Ausfuhrungsform des erfindungsgemäßen Verfahrens umfasst das Verfahren folgende Schritte:
(a) Vermischen des aromatischen Carbonats, des Polyols mit dem cyclischen Carbonat und/oder mit dem Alkylenoxid bevorzugt mit dem cyclischen Carbonat in Gegenwart des Katalysators unter Bildung einer Mischung (a);
(b) Umsetzen der Mischung (a) zu dem Polyol-Gemisch.
In einer Ausfuhrungsform des erfindungsgemäßen Verfahrens beträgt das molare Verhältnis der Hydroxylgruppen des Polyols zu den aromatischen Carbonatgruppen des aromatischen Carbonats von von 2,0: 1 bis 6,0: 1 besonders bevorzugt von 2,2: 1 bis 4,0: 1.
In einer Ausfuhrungsform des erfindungsgemäßen Verfahrens beträgt das molare Verhältnis der Hydroxylgruppen des Polyols zum cyclischen Carbonat von 2,0: 1 bis 5,0: 1 bevorzugt von 2,0: 1 bis 4,0: 1 besonders bevorzugt 2,0: 1 bis 3,0: 1.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Polyol-Gemisch umfassend ein aromatisches Polyetherpolyol und ein aliphatisches Carbonatpolyol erhältlich nach dem oben beschriebenen erfindungsgemäßen Verfahren.
In einer Ausführungsform weist das Polyol-Gemisch eine Viskosität von 100 mPas bis 10000 mPas bei 25 °C auf, wobei die Viskosität mittels Rheometer MCR 51 der Firma Anton Paar entsprechend DIN 53019ermittelt wurde . Darüber hinaus ist auch ein Verfahren zur Herstellung eines Polyurethans durch Umsetzen des erfindungsgemäßen Polyol-Gemisches mit einem Polyisocyanat Gegenstand der vorliegenden Erfindung.
Die Polyolgemische können als Ausgangskomponenten für die Herstellung von massiven oder geschäumten Polyurethanwerkstoffen wie beispielsweise von Beschichtungen oder Hartschaumstoffen zu Isolierzwecken sowie von Polyurethanelastomeren eingesetzt werden. Die Polyurethanwerkstoffe und -elastomere können auch Isocyanurat-, Allophanat- und Biuretstruktureinheiten enthalten.
Zur Herstellung der geschäumten oder massiven Polyurethanwerkstoffe werden die erfmdungsgemäßen Polyolgemische gegebenenfalls mit weiteren isocyanatTeaktiven Kompo_,nenten gemischt und mit organischen Polyisocyanaten, gegebenenfalls in Gegenwart von Treibmitteln, in Gegenwart von Katalysatoren und gegebenenfalls in Gegenwart anderer Zusatzstoffe wie z. B. Zellstabilisatoren zur Reaktion gebracht.
Als weitere isocyanatreaktive Komponenten können dem erfmdungsgemäßen Polyol-Gemisch gegebenenfalls Polyetherpolyole, Polyesterpolyole, Poly-carbonatpolyole, Polyethercarbonatpolyole, Polyestercarbonatpolyole, Polyetherestercarbonatpolyole und/oder niedermolekulare
Kettenverlängerungs- und/oder Vemetzungsmittel mit OH-Zahlen bzw. NH-Zahlen von 6 bis 1870 mg KOH/g beigemischt werden.
Hierfür geeignete Polyetherpolyole können beispielsweise durch anionische Polymerisation von Alkylenoxiden in Gegenwart von Alkalihydroxiden oder Alkalialkoholaten als Katalysatoren und unter Zusatz mindestens eines Startermoleküls, das 2 bis 8 zerewitinoff-aktive Wasserstoffatome gebunden enthält, oder durch kationische Polymerisation von Alkylenoxiden in Gegenwart von Lewis Säuren wie Antimonpentachlorid, Bortrifluorid Etherat oder Tris(pentafluorophenyl)boran erhalten werden. Geeignete Katalysatoren sind natürlich auch solche vom Doppelmetallcyanidkomplextyp, sog. DMC- Katalysatoren, wie sie beispielsweise in US-A 3 404 109, US-A 3 829 505, US-A 3 941 849, US-A 5 158 922, US-A 5 470 813, EP-A 700 949, EP-A 743 093, EP A 761 708, WO 97/40086, WO 98/16310 und WO 00/47649 beschrieben sind. Geeignete Alkylenoxide sowie einige geeignete Starterverbindungen sind in vorangegangenen Abschnitten bereits beschrieben worden. Ergänzend zu erwähnen sind Tetrahydrofuran als lewis-sauer polymerisierbarer cyclischer Ether und Wasser als Startermolekül. Die Polyetherpolyole, vorzugsweise Polyoxypropylen polyoxyethylenpolyole, besitzen vorzugsweise zahlenmittlere Molmassen von 200 bis 8000 Da. Als Polyetherpolyole eignen sich ferner polymermodifizierte Polyetherpolyole, vorzugsweise Pfropfpolyetherpolyole, insbesondere solche auf Styrol- und/oder Acrylnitrilbasis, die durch in situ Polymerisation von Acrylnitril, Styrol oder vorzugsweise Mischungen aus Styrol und Acrylnitril, z.B. im Gewichtsverhältnis 90: 10 bis 10:90, vorzugsweise 70:30 bis 30:70, zweckmäßigerweise in den vorgenannten Polyetherpolyolen hergestellt werden, sowie Polyetherpolyol-Dispersionen, die als disperse Phase, üblicherweise in einer Menge von 1 bis 50 Gew.-%, vorzugsweise 2 bis 25 Gew.-%, anorganische Füllstoffe, Polyhamstoffe, Polyhydrazide, tert. -Aminogruppen gebunden enthaltende Polyurethane und/oder Melamin enthalten. Geeignete Polyesterpolyole können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen und mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: Bemsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Dodecandicarbonsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch untereinander verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z. B. Dicarbonsäure mono und/oder Diester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride eingesetzt werden. Vorzugsweise verwendet werden Dicarbonsäuregemische aus Bernstein, Glutar und Adipinsäure in Mengenverhältnissen von beispielsweise 20 bis 35 / 40 bis 60 / 20 bis 36 Gew. Teilen und insbesondere Adipinsäure. Beispiele für zwei und mehrwertige Alkohole sind Ethandiol, Diethylenglykol, 1,2 bzw. 1,3 Propandiol, Dipropylenglykol, Methyl-1,3-Propandiol, 1,4 Butandiol, 1,5 Pentandiol, 3-Methyl-l,5- pentandiol, 1,6 Hexandiol, Neopentylglykol, 1,10 Decandiol, 1,12-Dodecandiol, Glycerin, Trimethylolpropan und Pentaerythrit. Vorzugsweise verwendet werden 1,2-Ethan_,diol, Diethylenglykol, 1,4 Butandiol, 1,6 Hexandiol, Glycerin, Trimethylolpropan oder Mischungen aus mindestens zwei der genannten mehrwertigen Alkohole, insbesondere Mischungen aus Ethandiol, 1,4- Butandiol und 1,6 Hexandiol, Glycerin und/oder Trimethylolpropan. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen z.B. s-Caprolacton oder Hydroxycarbonsäuren, z. B. Hydroxy capronsäure und Hydroxyessigsäure.
Zur Herstellung der Polyesterpolyole können die organischen, aromatischen oder aliphatischen Polycarbonsäuren und/oder Polycarbonsäurederivate und mehrwertigen Alkohole katalysatorfrei oder in Gegenwart von Veresterungskatalysatoren, zweckmäßigerweise in einer Atmosphäre aus Inertgasen, wie z.B. Stickstoff, Helium oder Argon und auch in der Schmelze bei Temperaturen von 150 bis 300 °C, vorzugsweise 180 bis 230 °C gegebenenfalls unter vermindertem Druck bis zu den gewünschten Säure- und OH-Zahlen, polykondensiert werden. Die Säurezahl solcher Polyesterpolyole ist vorteilhafterweise kleiner als 10, vorzugsweise kleiner als 2,5 mg KOH / g.
Nach einem bevorzugten Herstellverfahren wird das Veresterungsgemisch bei den oben genannten Temperaturen bis zu einer Säurezahl von 80 bis 30 mg KOH / g, vorzugsweise 40 bis 30 mg KOH / g, unter Normaldruck und anschließend unter einem Druck von kleiner als 500 mbar, vorzugsweise 1 bis 150 mbar, polykondensiert. Als Veresterungskatalysatoren kommen beispielsweise Eisen, Cadmium, Kobalt, Blei, Zink, Antimon, Magnesium, Titan und Zinnkatalysatoren in Form von Metallen, Metalloxiden oder Metallsalzen in Betracht. Die Polykondensation von aromatischen oder aliphatischen Carbonsäuren mit mehrwertigen Alkoholen kann jedoch auch in flüssiger Phase in Gegenwart von Verdünnungs- und/oder Schleppmitteln, wie z.B. Benzol, Toluol, Xylol oder Chlorbenzol, zur azeotropen Abdestillation des Kondensationswassers durchgeführt werden. Das zum Erhalt einer gewünschten OH-Zahl, Funktionalität und Viskosität zu wählende Verhältnis von Dicarbonsäure (derivat) und mehrwertigem Alkohol und die zu wählende Alkoholfunktionalität kann vom Fachmann in einfacher Weise ermittelt werden.
Geeignete Polycarbonatpolyole sind solche der an sich bekannten Art, die beispielsweise durch Umsetzung von Diolen, wie 1,2-Pro^pan_,diol, 1,4-Butandiol, 1,6-Hexandiol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, oligo-Tetramethylenglykol und/oder oligo-Hexamethylenglykol mit Diarylcarbonaten und/oder Dialkylcarbonaten, z. B. Diphenylcarbonat, Dimethylcarbonat sowie a- a>-Bischloroformiaten oder Phosgen hergestellt werden können. Die ebenfalls geeigneten Polyethercarbonatpolyole werden durch Copolymerisation cyclischer Epoxide und Kohlendioxid erhalten, vorzugsweise werden solche Copoly-merisationen unter hohem Druck durchgeführt und durch DMC-Verbindungen katalysiert.
Niedermolekulare difunktionelle Kettenverlängerungsmittel und/oder niedermolekulare, vorzugsweise tri- oder tetrafunktionelle Vemetzungsmittel können dem erfmdungsgemäß einzusetzenden Polyol- Gemisch zur Modifizierung der mechanischen Eigenschaften, ins_,be_,sondere der Härte der PUR- Werkstoffe beigemischt werden. Geeignete Kettenverlängerungsmittel wie Alkandiole, Dialkylenglykole und Polyalkylenpolyole und Vemetzungsmittel, z.B. 3- oder 4-wertige Alkohole und oligomere Polyalkylen-polyole mit einer Funktionalität von 3 bis 4, besitzen üblicherweise Molekulargewichte < 800, vorzugsweise von 18 bis 400 und insbesondere von 60 bis 300 Da. Als Kettenverlängerungsmittel vorzugsweise verwen-det werden Alkandiole mit 2 bis 12 Kohlenstoffatomen, z.B. Ethandiol, 1,3-Propandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,7 Heptandiol, 1,8 Octandiol, 1,9-Nonandiol, 1,10-Decandiol und insbesondere 1,4-Butandiol und Dialkylenglykole mit 4 bis 8 Kohlenstoffatomen, z. B. Diethylengykol und Dipropylengykol sowie Polyoxyalkylenglykole. Geeignet sind auch verzweigtkettige und/oder ungesättigte Alkandiole mit üblicherweise nicht mehr als 12 Kohlenstoffatomen, wie z. B. 1,2 Propandiol, 2-Methyl-l,3-Propandiol, 3-Methyl-l,5-pentandiol, 2,2-Dimethyl-l,3-propandiol, 2-Butyl-2-ethyl-l,3-propan_,diol, 2-Buten-l,4-diol und 2-Butin-l,4-diol, Diester der Terephthalsäure mit Glykolen mit 2 bis 4 Kohlenstoffatomen, wie z.B. Terephthalsäure-bis- ethylen-glykolester oder Terephthalsäure-bis-l,4-butylenglykolester und Hydroxyalkylenether des Hydrochinons oder Resorcins, z.B. l,4-Di-(ß-hydroxyethyl)-hydrochinon oder l,3-(ß-Hydroxyethyl)- resorcin. Auch können Alkanolamine mit 2 bis 12 Kohlenstoffatomen wie Ethanolamin, 2- Aminopropanol und 3-Amino-2,2-dimethylpropanol, N-Alkyldialkanolamine, z.B. N-Methyl- und N- Ethyl-diethanolamin, (cyclo)alipha-tische Diamine mit 2 bis 15 Kohlenstoffatomen, wie 1,2- Ethylendiamin, 1,3-Propylen-diamin, 1,4 Butylendiamin und 1,6-Hexamethylendiamin, Isophorondiamin, 1,4-Cyclohexamethylendiamin und 4,4'-Diaminodicyclohexylmethan, N-Alkyl-, N,N' dialkylsubstituierte und aromatische Diamine, die auch am aromatischen Rest durch Alkylgruppen substituiert sein können, mit 1 bis 20, vorzugsweise 1 bis 4 Kohlenstoffatomen im N-Alkylrest, wie N,N' Diethyl , N,N' Disec. pentyl-, N,N'-Di sec. hexyl , N,N' Di-sec. decyl und N,N' Dicyclohexyl , p bzw. m Phenylendiamin, N,N' Dimethyl , N,N' Diethyl , N,N' Diisopropyl , N,N' Di sec.butyl , N,N' Di- cyclohexyl -4, 4' diamino diphenylmethan, N,N' Di sec. butylbenzidin, Methylen-bis(4-amino-3- benzoesäuremethylester), 2,4-Chlor-4,4'-diamino-diphenylmethan, 2,4- und 2,6-Toluylendiamin verwendet werden. Geeignete Vemetzungsmittel sind beispielsweise Glycerin, Trimethylolpropan oder Pentaerythrit.
Verwendbar sind auch Gemische unterschiedlicher Kettenverlängerungs- und Vei~,net-zungs_,mittel untereinander sowie Gemische aus Kettenverlängerungs- und Vemetzungs-mitteln.
Geeignete organische Polyisocyanate sind cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise solche der Formel Q(NCO)n in der n = 2-4, vorzugsweise 2, und Q einen aliphatischen Kohlenwasserstoffrest mit 2-18, vorzugsweise 6-10 C- Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4-15, vorzugsweise 5-10 C-Atomen, einen aromatischen Kohlenwasserstoffrest mit 6-15, vorzugsweise 6-13 C-Atomen, odereinen aralipliatischen Kohlenwasserstoffrest mit 8-15, vorzugsweise 8-13 C-Atomen, bedeuten. Geeignet sind z.B. Ethylendiisocyanat, 1,4-Tetramethylendiiso-cyanat, 1,6-Hexamethylendiisocyanat (HDI), 1,12- Dodecandiisocyanat, Cyclobutan-l,3-diisocyanat, Cyclohexan- 1,3- und -1,4-diisocyanat sowie beliebige Gemische dieser Isomeren, 1 Isocyanato-3,3,5-tri-methyl-5-isocyanatomethylcyclohexan (DE-B 1 202 785, US-A 3 401 190), 2,4- und 2,6-Hexahydrotoluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Hexahydro-1,3- und -1,4-phenylen-diisocyanat, Perhydro-2,4 - und -4,4'- diphenylmethandiisocyanat, 1,3- und 1,4-Phenylendiisocyanat (DE A 196 27 907), 1,4- Duroldiisocyanat (DDI), 4,4'-Stilbendiisocyanat (DE-A 196 28 145), 3,3'-Dimethyl-4,4'- biphenylendiisocyanat (DIBDI) (DE-A 195 09 819) 2,4- und 2,6-Toluylendiisocyanat (TDI) sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'-diisocyanat und/oder Diphenylmethan-4,4'- diisocyanat (MDI) oder Naphthylen- 1,5 -diisocyanat (NDI).
Ferner kommen beispielsweise erfmdungsgemäß in Frage: Triphenylmethan-4,4',4"-tri-iso_,cyanat, Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten und z.B. in GB-A 874 430 und GB A 848 671 beschrieben werden, m- und p-Isocyanatophenylsulfonylisocyanate gemäß US-A 3 454 606, perchlorierte Arylpolyisocyanate, wie sie in US-A 3 277 138 beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in US-A 3 152 162 sowie in DE-A 25 04 400, 25 37 685 und 25 52 350 beschrieben werden, Norbomandiisocyanate gemäß US-A 3 492 301, Allophanatgruppen aufweisende Polyisocyanate, wie sie in GB A 994 890, der BE-B 761 626 und NL-A 7 102 524 beschrieben werden, Isocyanuratgruppen aufweisende Polyisocyanate, wie sie in US-A 3 001 9731, in DE-C 10 22 789, 12 22 067 und 1 027 394 sowie in DE-A 1 929 034 und 2 004 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in der BE-B 752 261 oder in US A 3 394 164 und 3 644 457 beschrieben werden, acylierte Hamstoffgruppen aufweisende Polyisocyanate gemäß DE-C 1 230 778, Biuretgruppen aufweisende Polyisocyanate, wie sie in US-A 3 124 605, 3 201 372 und 3 124 605 sowie in GB-B 889 050 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie in US-A 3 654 106 beschrieben werden, Estergruppen aufweisende Polyisocyanate, wie sie in GB-B 965 474 und 1 072 956, in US-A 3 567 763 und in DE-C 12 31 688 genannt werden, Umsetzungsprodukte der obengenannten Isocyanate mit Acetalen gemäß DE-C 1 072 385 und polymere Fettsäureester enthaltende Polyisocyanate gemäß US-A 3 455 883.
Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden, Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
Bevorzugt eingesetzt werden die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6- Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), Polyphenylpolymethylen- polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("Roh-MDI") und Carbodiimidgruppen, Urethangrupppen, Allophanatgruppen, Isocyanuratgruppen, Hamstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate ("modifizierte Polyisocyanate"), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4- und/oder 2,6- Toluylendiisocyanat bzw. vom 4,4'- und/oder 2,4'-Diphenylmethandiisocyanat ableiten. Gut geeignet sind auch Naphthylen-l,5-diisocyanat und Gemische der genannten Polyisocyanate.
Es können auch Isocyanatgruppen aufweisende Prepolymere verwendet werden, die erhältlich sind durch Umsetzung einer Teil- oder der Gesamtmenge des erfindungsgemäß einzusetzenden Polyol- Gemisches und/oder einer Teil- oder der Gesamtmenge des erfindungsgemäß einzusetzenden Polyol- Gemisches ggf. beizumischenden, oben beschriebenen isocyanatreaktiven Komponenten mit mindestens einem aromatischen Di- oder Polyisocyanat aus der Gruppe TDI, MDI, DIBDI, NDI, DDI, vorzugsweise mit 4,4'-MDI und/oder 2,4-TDI und/oder 1,5-NDI zu einem Urethangruppen, vorzugsweise Urethangruppen und Iso^cyanatgruppcn aufweisenden Polyadditionsprodukt. Solche Polyadditionsprodukte weisen NCO-Gehalte von 0,05 bis 40,0 Gew.-% auf. Nach einer bevorzugt angewandten Ausfiihrungsform werden die Isocyanatgruppen enthaltenden Prepolymere hergestellt durch Umsetzung von ausschließlich höhermolekularen Poly-hydroxylverbindungen, also dem erfindungsgemäß einzusetzenden Polyol-Gemisch und/oder Polyetherpolyolen, Polyesterpolyolen oder Polycarbonatpolyolen mit den Polyisocyanaten, vorzugsweise 4,4'-MDI, 2,4-TDI und/oder 1,5 NDI.
Die Isocyanatgruppen aufweisenden Prepolymere können in Gegenwart von Katalysatoren hergestellt werden. Es ist jedoch auch möglich, die Isocyanatgruppen aufweisenden Prc^polymcrc in Abwesenheit von Katalysatoren herzustellen und diese der Reaktionsmischung zur Herstellung der PUR-Werkstoffe zuzufugen.
Als zum Zwecke der Schaumstoffherstellung gegebenenfalls einzusetzendes Treibmittel kann Wasser verwendet werden, das mit den organischen Polyisocyanaten oder mit den Isocyanatgruppen aufweisenden Prepolymeren in situ unter Bildung von Kohlendioxid und Aminogruppen reagiert, die ihrerseits mit weiteren Isocyanatgruppen zu Hamstoffgruppen weiterreagieren und hierbei als Kettenverlängerungsmittel wirken. Wird, um die gewünschte Dichte einzustellen, der Polyurethanformulierung Wasser zugegeben, wird dieses üblicherweise in Mengen von 0,001 bis 6,0 Gew.-%, bezogen auf das Gewicht des eingesetzten erfindungsgemäßen Polyol-Gemisches, gegebenenfalls weiterer isocyanatreaktiver Komponenten, der Katalysatoren und weiterer Zusatzstoffe verwendet.
Als Treibmittel können anstelle von Wasser oder vorzugsweise in Kombination mit Wasser auch Gase oder leicht flüchtige anorganische oder organische Substanzen, die unter dem Einfluß der exothermen Polyadditionsreaktion verdampfen und vorteilhafterweise einen Siedepunkt unter Normaldruck im Bereich von -40 bis 120 °C, vorzugsweise von 10 bis 90 °C besitzen, als physikalische Treibmittel eingesetzt werden. Als organische Treibmittel können z.B. Aceton, Ethylacetat, Methylacetat, halogensubstituierte Alkane wie Methylenchlorid, Chloroform, Ethylidenchlorid, Vinylidenchlorid, Monofluortrichlormethan, Chlordifluormethan, Dichlordifluormethan, HFKWs wie R 134a, R 245 fa und R 365mfc, ferner unsubstituierte Alkane wie Butan, n-Pentan, Isopentan, Cyclopentan, Hexan, Heptan oder Diethylether verwendet werden. Als anorganische Treibmittel kommen z.B. Luft, CO2 oder N2O in Frage. Eine Treibwirkung kann auch erzielt werden durch Zusatz von Verbindungen, die sich bei Temperaturen oberhalb Raumtemperatur unter Abspaltung von Gasen, beispielsweise von Stickstoff und/oder Kohlendioxid, zersetzen wie Azoverbindungen, z.B. Azodicarbonamid oder Azoisobuttersäurenitril, oder Salzen wie Ammoniumbicarbonat, Ammoniumcarbamat oder Ammoniumsalzen organischer Carbonsäuren, z.B. der Monoammoniumsalze der Malonsäure, Borsäure, Ameisensäure oder Essigsäure. Weitere Beispiele für Treibmittel, Einzelheiten über die Verwendung von Treibmitteln und Kriterien für die Treibmittelwahl sind in R. Vieweg, A. Höchtlen (Hrsg.): „KunststoffHandbuch“, Band VII, Carl-Hanser-Verlag, München 1966, S. 108f, 453ff und 507- 510 sowie in D. Randall, S. Lee (Hrsg.): „The Polyurethanes Book“, John Wiley & Sons, Ltd., London 2002, S. 127 - 136, S 232 - 233 und S. 261 beschrieben.
Die zweckmäßig einzusetzende Menge an festen Treibmitteln, niedrigsiedenden Flüssigkeiten oder Gasen, die jeweils einzeln oder in Form von Mischungen, z. B. als Flüssigkeits- oder Gasmischungen oder als Gas-Flüssigkeitsmischungen eingesetzt werden können, hängt ab von der angestrebten PUR- Werkstoffdichte und der eingesetzten Wassermenge. Die erforderlichen Mengen können experimentell leicht ermittelt werden. Zufriedenstellende Ergebnisse liefern üblicherweise Feststoffmengen von 0,5 bis 35 Gew. -Teilen, vorzugsweise 2 bis 15 Gew. -Teilen, Flüssigkeitsmengen von 1 bis 30 Gew. -Teilen, vorzugsweise von 3 bis 18 Gew. -Teilen und/oder Gasmengen von 0,01 bis 80 Gew. -Teilen, vorzugsweise von 10 bis 35 Gew. -Teilen, jeweils bezogen auf das Gewicht an Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen und das Gewicht der eingesetzten Polyisocyanate. Die Gasbeladung mit z. B. Luft, Kohlendioxid, Stickstoff und/oder Helium kann entweder über das Gemisch des eingesetzten erfmdungsgemäßen Polyol-Gemisches mit gegebenenfalls weiteren isocyanatreaktiven Komponenten, den Katalysatoren und weiteren Zusatzstoffen oder über die Polyisocyanate bzw. sowohl über das Gemisch des eingesetzten erfmdungsgemäßen Polyol-Gemisches mit gegebenenfalls weiteren isocyanatreaktiven Komponenten, den Katalysatoren und weiteren Zusatzstoffen einerseits und über die Polyisocyanate andererseits erfolgen.
In Abwesenheit von Feuchtigkeit und physikalisch oder chemisch wirkenden Treibmitteln können auch kompakte PUR-Werkstoffe, z. B. PUR-Elastomere, PUR-Gießelastomere oder Beschichtungen hergestellt werden.
Dem Fachmann geläufige und für die Polyurethanwerkstoffherstellung bewährte Aminkatalysatoren sind z. B. tertiäre Amine wie Triethylamin, Tributylamin, N-Methyl-morpholin, N-Ethyl-morpho_,lin, N,N,N',N'-Tetramethyl-ethylendiamin, Pentamethyl-diethylen-triamin und höhere Homologe (DE-OS 26 24 527 und 26 24 528), l,4-Diaza-bicyclo-(2,2,2)-octan, N-Methyl-N'-dimethylaminoethyl- piperazin, Bis-(dimethylaminoalkyl)-piperazine (DE-A 26 36 787), N,N-Dimethylbenzylamin, N,N- Dimethylcyclohexylamin, N,N-Diethylbenzy lamin, Bis-(N,N-diethylaminoethyl)adipat, N,N,N',N'- Tetramethyl-l,3-butandiamin, N,N-Dimethyl-ß-phenyl-ethyl-amin, Bis-(dimethylaminopropyl)- hamstoff, 1,2-Dimethylimidazol, 2 -Methylimidazol, monocyclische und bicyclische Amidine (DE-A 17 20 633), Bis-(dialkylamino)-alkylether (US-A 3 330 782, DE-B 10 30 558, DE-A 18 04 361 und 26 18 280) sowie Amidgruppen (vorzugsweise Formamidgruppen) aufweisende tertiäre Amine gemäß DE-A 25 23 633 und 27 32 292). Als Katalysatoren kommen auch an sich bekannte Mannichbasen aus sekundären Aminen, wie Dimethylamin, und Aldehyden, vorzugsweise Formaldehyd, oder Ketonen wie Aceton, Methylethylketon oder Cy-clohexanon und Phenolen, wie Phenol oder alkylsubstituierten Phenolen, in Frage. Gegenüber Isocyanatgruppen aktive Wasserstoffatome aufweisende tertiäre Amine als Katalysator sind z.B. Triethanolamin, Triisopropanolamin, N-Methyl-diethanolamin, N-Ethyl- diethanolamin, N,N-Dimethyl-ethanolamin, deren Umsetzungsprodukte mit Alkylenoxiden wie Propylenoxid und/oder Ethylenoxid sowie sekundär-tertiäre Amine gemäß DE-A 27 32 292. Als Katalysatoren können ferner Silaamine mit Kohlenstoff-Silizium-Bindungen, wie sie in US^-A 3 620 984 beschrieben sind, eingesetzt werden, z.B. 2,2,4-Trimethyl-2-silamorpholin und 1,3-Diethyl- aminomethyl-tetramethyl-disiloxan. Weiterhin kommen auch stickstoffhaltige Basen wie Tetraalkylammoniumhydroxide, ferner Hexahydrotriazine in Betracht. Die Reaktion zwischen NCO- Gruppen und zerewitinoff-aktiven Wasserstoffatomen wird auch durch Lactame und Azalactame stark beschleunigt, wobei sich zunächst ein Assoziat zwischen dem Lactam und der Verbindung mit acidem Wasserstoff ausbildet.
Werden für die Katalyse der Polyurethanreaktion Amine als Katalysatoren eingesetzt, so ist natürlich zu beachten, dass erfmdungsgemäß unter Amin-Katalyse hergestellte Polyol-Gemisch bereits gegebenenfalls katalytisch aktive Amine enthalten. Durch geeignete Versuchsreihen ist es dem Fachmann jedoch leicht möglich, die Mengen gegebenenfalls noch zuzusetzender Aminkatalysatoren zu ermitteln.
Des Weiteren können als Katalysatoren für diesen Zweck übliche organische Metallver-bindungen eingesetzt werden, vorzugsweise organische Zinnverbindungen wie Zinn-(II)-Salze von organischen Carbonsäuren, z. B. Zinn-(II)-acetat, Zinn-(II)-octoat, Zinn-(II)-ethylhexoat und Zinn-(II)-Taurat und die Dialkylzinn-(IV)-salze von Mineralsäuren oder organischen Carbonsäuren, z. B. Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinnmaleat, Dioctylzinndiacetat und Dibutylzinndichlorid. Daneben können auch schwefelhaltige Verbindungen wie Di-n-octyl-zinn- mercaptid (US A 3 645 927) Verwendung finden.
Katalysatoren, welche die Trimerisierung von NCO-Gruppen in besonderer Weise katalysieren, werden zur Herstellung von Polyurethanwerkstoffen mit hohen Anteilen an so genannten Poly(isocyanurat)strukturen („PIR-Schaumstoffe“) eingesetzt. Üblicherweise kommen für die Herstellung solcher Materialien Rezepturen mit signifikanten Überschüssen von NCO-Gruppen gegenüber OH-Gruppen zur Anwendung. PIR-Schaumstoffe werden üblicherweise bei Kennzahlen von 180 bis 450 hergestellt, wobei die Kennzahl als das mit dem Faktor 100 multiplizierte Verhältnis von Isocyanatgruppen zu Hydroxygruppen definiert ist. Katalysatoren, die zur Ausprägung von Isocyanuratstrukturen beitragen, sind Metallsalze wie beispielsweise Kalium-oder Natriumacetat, Natriumoctoat und Aminoverbindungen wie l,3,5-Tris(3-dimethylaminopropyl)hexahydrotriazin.
Die Katalysatoren bzw. Katalysatorkombinationen werden in der Regel in einer Menge zwischen etwa 0,001 und 10 Gew.-%, insbesondere 0,01 bis 4 Gew.-%, bezogen auf die Gcsammicngc an Verbindungen mit mindestens zwei gcgcnN'ibcr Isocyanaten reaktions_,fähigen Wasserstoffatomen, eingesetzt.
Bei der Herstellung der kompakten oder geschäumten PUR-Werkstoffe können gegebenenfalls Zusatzstoffe mitverwendet werden. Genannt seien beispielsweise ober-flächenaktive Zusatzstoffe, wie Emulgatoren, Schaumstabilisatoren, Zellregler, Flammschutzmittel, Keimbildungsmittel, Oxidationsverzögerer, Stabilisatoren, Gleit- und Ent-formungsmittel, Farbstoffe, Dispergierhilfen und Pigmente. Als Emulgatoren kommen z.B. die Natriumsalze von Ricinusölsulfonaten oder Salze von Fettsäuren mit Aminen wie ölsaures Diethylamin oder stearinsaures Diethanolamin in Frage. Auch Alkali- oder Ammoniumsalze von Sulfonsäuren wie etwa von Dodecylbenzolsulfonsäure oder Dinaphthylmethandisulfonsäure oder von Fettsäuren wie Ricinolsäure oder von polymeren Fettsäuren können als oberflächenaktive Zusatzstoffe mitverwendet werden. Als Schaumstabilisatoren kommen vor allem Polyethersiloxane in Frage. Diese Verbindungen sind im Allgemeinen so aufgebaut, dass Copolymerisate aus Ethylenoxid und Propylenoxid mit einem Polydimethylsiloxanrest verbunden sind. Derartige Schaumstabilisatoren können gegenüber Isocyanaten reaktiv sein oder durch Veretherung der endständigen OH-Gruppen gegenüber Isocyanaten unreaktiv sein. Sie sind z. B. in US-A 2 834 748, 2 917 480 und 3 629 308 beschrieben. Allgemeine Strukturen solcher Schaumstabilisatoren sind in G. Oertel (Hrsg.): „Kunststoff-Handbuch“, Band VII, Carl-Hanser-Verlag, München, Wien 1993, S. 113 - 115 wiedergegeben. Von besonderem Interesse sind vielfach über Allophanatgruppen verzweigte Polysiloxan-Polyoxyalkylen-Copolymere gemäß DE-A 25 58 523. Geeignet sind auch andere Organopolysiloxane, oxyethylierte Alkylphenole, oxyethylierte Fettalkohole und Paraffinöle, und Zellregler wie Paraffine, Fettalkohole und Dimethylpolysiloxane. Zur Verbesserung der Emulgierwirkung, der Dispergierung des Füllstoffs, der Zellstruktur und/oder zu deren Stabilisierung eignen sich ferner oligomere Polyacrylate mit Polyoxyalkylen- und Fluoralkanresten als Seitengruppen. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew. -Teilen, bezogen auf 100 Gew. -Teile der Gesamtmenge an Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen angewandt. Zugesetzt werden können auch Reaktionsverzögerer z.B. sauer reagierende Stoffe wie Salzsäure, oder organische Säuren und Säurehalogenide, sowie Pigmente oder Farbstoffe und an sich bekannte Flammschutzmittel, z.B. Tris-(chlorethyl)phosphat, Triethylphosphat, Trikresylphosphat oder Ammoniumphosphat und polyphosphat, ferner Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher und fungizid und bakterizid wirkende Substanzen. Weitere Beispiele von gegebenenfalls erfmdungsgemäß mitzuverwendenden oberflächenaktiven Zusatzstoffen und Schaumstabilisatoren sowie Zellreglem, Reaktionsverzögerem, Stabilisatoren, flammhemmenden Substanzen, Weichmachern, Farbstoffen und Füllstoffen sowie fungistatisch und bakteriostatisch wirksamen Substanzen sowie Einzelheiten über Verwendungs- und Wirkungsweise dieser Zusatzmittel sind in R. Vieweg, A. Höchtlen (Hrsg.): „Kunststoff-Handbuch“, Band VII, Carl-Hanser-Verlag, München 1966, S.103-113 beschrieben.
In einer erfmdungsgemäßen Ausführungsform ist das Polyurethan ein Polyurethan-Schaum bevorzugt ein PUR/PIR-Schaum, wobei der Polyurethan-Schaum bevorzugt der PUR/PIR-Schaum durch Umsetzen des erfmdungsgemäßen Polyol-Gemisches mit einem Polyisocyanat erhältlich ist.
Zur Herstellung der PUR/PIR-Werkstoffe kann das Mengenverhältnis der Isocyanatgruppen in den Polyisocyanaten zu den gegenüber den Isocyanaten reaktiven Wasserstoffen enthalten in der Gesamtmenge an Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen stark variiert werden. Üblich sind Verhältnisse von 0,7: 1 bis 5: 1.
Die PUR-Werkstoffe können nach den in der Literatur beschriebenen Verfahren, z.B. dem one-shot- oder dem Prepolymer-Verfahren, mit Hilfe von dem Fachmann im Prinzip bekannten Mischvorrichtungen hergestellt werden.
Ebenfalls ist die Verwendung des erfmdungsgemäßen Polyol-Gemisches zur Herstellung von Polyurethanen, bevorzugt Polyurethan-Schäumen, besonders bevorzugt PUR/PIR-Schaums Gegenstand der vorliegenden Erfindung. Beispiele
Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden. Folgende Analysenmethoden kamen zum Einsatz:
Verwendete Rohstoffe:
PC: Polycarbonat Makrolon FS2000der Firma Covestro AG
OC: Oligocarbonat Nebenstrom aus der Polycarbontherstellung, bestehend aus Diphenylcarbonat (42%) und Oligo(Bisphenol-A-carbonat) (58%)
EG: Ethylenglycol, Reinheit >99 %, Ineos
DEG: Diethylenglycol, Reinheit >99,5 %, Ineos
PEG-400: Polyethylenglycol mit Mn = 400 g/mol, Sigma-Aldrich cPC: cyclisches Propylencarbonat, Reinheit 99,5 %, Acros Organics
KOH: Kaliumhydroxid, Reinheit 85 %, Merck
Desmophen® L2830: Bifunktionelles Polyetherpolyol mit überwiegend primären Hydroxylgruppen der Fa. Covestro Deutschland AG mit einer Hydroxylzahl von 26 - 30 mg KOH/g und einer Viskosität bei 25 °C von 790 - 930 mPa s
Levagard PP: Trischlorisopropylphosphat; Flammschutzmittel der Fa. Lanxess
B8443: Tegostab B8443, Stabilisator der Fa. Evonik
Desmorapid 1792: Treibmittel der Fa. Covestro Deutschland AG; wird zur Herstellung von Polyurethan-hartschaumprodukten verwendet wird. Desmorapid® 1792 katalysiert die Polyisocyanurat-Reaktion.
Desmorapid DB: N,N-Dimethylbenzy lamin, Katalysator (Lanxess AG). n-Pentan n-Pentan der Firma Julius Hoesch.
Desmodur® 44V70L: Flüssiges Gemisch von Diphenylmethan-4,4‘-diisocyanat (MDI) mit Isomeren und höherfiinktionellen Homologen mit einem NCO-Gehalt von im Bereich von 30,5 bis 32,0 Gew.-% NCO und einer Viskosität im Bereich von 610 bis 750 m Pa s bei 25 °C der Fa. Covestro Deutschland AG.
Verwendete Methoden
Die Viskosität wurde erfindungsgemäß mit einem Rheometer MCR 51 der Firma Anton Paar entsprechend DIN 53019 mit einem Messkegel CP 50-1, Durchmesser 50 mm, Winkel 1° bei Scherraten von 25, 100, 200 und 500 s 1 bestimmt. Die erfindungsgemäßen und nicht erfindungsgemäßen Polyesterpolyole zeigen von der Scherrate unabhängige Viskositätswerte. Hydroxylzahl wurde gemäß DIN 53240-1 (Verfahren ohne Katalysator, Juni 2013) ermittelt. Standardmethode mit Phthalsäureanhydrid (PSA) zur Erfassung der aliphatischen Hydroxylgruppen. Bei Verwendung von Essigsäureanhydrid (ESA) werden aliphatische und aromatische Hydroxylgruppen erfasst. Wenn demnach beide Werte im Rahmen der Messgenauigkeit gleich sind, kann gefolgert werden, dass keine aromatischen Hydroxylgruppen vorhanden sind.
Rohdichte: gemäß DIN EN ISO 845 (Oktober 2009) ermittelt.
Brandeigenschaften: für Hartschäume gemäß DIN 4102-1 (Mai 1998) bestimmt.
Stauchhärte Hartschaum: Druckspannung bei 10 % Stauchung gemäß DIN EN ISO 844
(November 2014) bestimmt.
Offenzelligkeit: gemäß DIN EN ISO 4590 (Dezember 2016, Verfahren 1) mit AccuPyc
1330 bestimmt
Dimensionsstabillität: gemäß DIN ISO 2796 (Januar 1986) bestimmt
Polyol-Gemisch Synthesen
Beispiel 1: Synthese eines Polyol-Gemisches aus OC, DEG und cPC
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 472 g DEG (4.45 mol) vorgelegt. Hierzu werden 500 g OC und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 4 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 454 g cPC (4.45 mol) versetzt. Die Mischung wird erneut auf 180 °C erhitzt, wobei ab 155 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 6 h sind ca. 100 L Gas entstanden (ca. 4.5 mol) und die Reaktion ist beendet. Nach Abkühlen wird die farblose, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 393 mg KOH/g
Hydroxylzahl (ESA): 391 mg KOH/g
Viskosität: 280 mPa*s bei 25 °C
Beispiel 2: Synthese von Polyol aus OC, PEG-400 und cPC
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 855 g PEG-400 (2.23 mol) vorgelegt. Hierzu werden 250 g OC und 1 g KOH gegeben und die Mischung wird über 30 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 4.5 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 227 g cPC (2.22 mol) versetzt. Die Mischung wird erneut auf 180 °C erhitzt, wobei ab 160 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 3 h sind ca. 50 L Gas entstanden (ca. 2.2 mol) und die Reaktion ist beendet. Nach Abkühlen wird die farblose, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 205 mg KOH/g
Hydroxylzahl (ESA): 197 mg KOH/g
Viskosität: 250 mPa*s bei 25 °C
Beispiel 3: Synthese von Polyol aus OC, DEG/PEG-400 und cPC
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 220 g PEG-400 (0.573 mol) und 80 g Diethylenglykol (0.755 mol) vorgelegt. Zu den Diolen werden 250 g OC und 1 g KOH gegeben und die Mischung wird über 10 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 4 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 224 g cPC (2.19 mol) vesetzt. Die Mischung wird erneut auf 180 °C erhitzt, wobei ab 100 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 4 h sind ca. 50 L Gas entstanden (ca. 2.2 mol) und die Reaktion ist beendet. Nach Abkühlen wird die farblose, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 232 mg KOH/g
Hydroxylzahl (ESA): 230 mg KOH/g
Viskosität: 490 mPa*s bei 25 °C
Beispiel 4: Synthese von Polyol aus OC, DEG/PEG-400 und cPC
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 299 g PEG-400 (0.779 mol) und 41 g Diethylenglykol (0.387 mol) vorgelegt. Zu den Diolen werden 250 g OC und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 3 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 224 g cPC (2.194 mol) vesetzt. Die Mischung wird erneut auf 180 °C erhitzt, wobei ab 150 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 3 h sind ca. 50 L Gas entstanden (ca. 2.2 mol) und die Reaktion ist beendet. Nach Abkühlen wird die farblose, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 188 mg KOH/g Hydroxylzahl (ESA): 188 mg KOH/g
Viskosität: 450 mPa*s bei 25 °C
Beispiel 5: Synthese von Polyol aus OC, EG und cPC (vergleichend)
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 138 g Ethylenglycol (2.23 mol) vorgelegt. Zum Diol werden 250 g OC und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 3 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 227 g cPC (2.22 mol) versetzt. Die Mischung wird erneut auf 180 °C erhitzt, wobei ab 150 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 3 h sind ca. 50 L Gas entstanden (ca. 2.2 mol) und die Reaktion ist beendet. Nach Abkühlen wird die gelbe, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 535 mg KOH/g
Hydroxylzahl (ESA): 529 mg KOH/g
Viskosität: 80 mPa*s bei 25 °C
Beispiel 6: Synthese von Polyol aus OC, EG und cPC (vergleichend)
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 69 g Ethylenglycol (1.11 mol) vorgelegt. Zum Diol werden 250 g SPC fuel und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 3 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 227 g cPC (2.22 mol) vesetzt. Die Mischung wird erneut auf 180 °C erhitzt, wobei ab 150 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 3 h sind ca. 50 L Gas entstanden (ca. 2.2 mol) und die Reaktion ist beendet. Nach Abkühlen wird die gelbe, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 339 mg KOH/g
Hydroxylzahl (ESA): 333 mg KOH/g
Viskosität: 150 mPa*s bei 25 °C
Beispiel 7: Synthese von Polyol aus OC und PEG-400 (vergleichend) In einem 2L-4-Hals-Rundkolben, ausgestatet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 427 g PEG-400 (1 .07 mol) vorgelegt. Zum Diol werden 125 g OC und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 3 h bei dieser Temperatur gerührt und dann auf Raumtemperatur abgekühlt. Nach Abkühlen wird die braune, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 137 mg KOH/g
Hydroxylzahl (ESA): 234 mg KOH/g
Viskosität: 420 mPa*s bei 25 °C
Beispiel 8: Einschrittige Synthese von Polyol aus OC , PEG-400 und cPC
In einem 2L-4-Hals-Rundkolben, ausgestatet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 427 g PEG-400 (1 .07 mol) vorgelegt. Zum Diol werden 125 g OC, 110 g cPC (1.08 mol) und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, wobei ab 150 °C eine zügige Gasentwicklung einsetzt. Nach 3 h sind ca. 25 L Gas (ca. 1.1 mol) entstanden und die Reaktion ist beendet. Nach Abkühlen wird die gelbe, homogene Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 210 mg KOH/g
Hydroxylzahl (ESA): 211 mg KOH/g
Viskosität: 250 mPa*s bei 25 °C
Beispiel 9: Synthese von Polyol aus PC, PEG-400 und cPC
In einem 2L-4-Hals-Rundkolben, ausgestatet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 800 g PEG 400 (2.00 mol) vorgelegt. Dazu werden 254 g Polycarbonat und 1 g KOH gegeben und die Mischung wird über 40 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 3.5 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 204 g cPC (2.00 mol) versetzt. Die Mischung wird auf 170 °C erhitzt, wobei ab 150 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 3 h sind ca. 45 L Gas entstanden (ca. 2.0 mol) und die Reaktion ist beendet. Nach Abkühlen wird die farblose Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 200 mg KOH/g Hydroxylzahl (ESA): 199 mg KOH/g
Viskosität: 680 mPa*s bei 25 °C Beispiel 10: Synthese von Polyol aus PC, PEG-400, Diethylenglykol und cPC
In einem 2L-4-Hals-Rundkolben, ausgestattet mit Thermometer, Rückflusskühler, mechanischem Rührwerk und Gasauslass mit Gasuhr werden 250 g PEG-400 (0.65 mol) und 66 g Diethylenglykol (0.62 mol) vorgelegt. Dazu werden 254 g Polycarbonat und 1 g KOH gegeben und die Mischung wird über 20 Minuten auf 180 °C erhitzt, sodass sich ein leichter Rückfluss einstellt. Die Mischung wird 4 h bei dieser Temperatur gerührt, auf Raumtemperatur abgekühlt und mit 204 g cPC (2.00 mol) versetzt.
Die Mischung wird auf 170 °C erhitzt, wobei ab 160 °C Sumpftemperatur eine zügige Gasentwicklung einsetzt. Nach 2 h sind ca. 45 L Gas entstanden (ca. 2.0 mol) und die Reaktion ist beendet. Nach Abkühlen wird die farblose Flüssigkeit folgendermaßen charakterisiert:
Hydroxylzahl (PSA): 225 mg KOH/g Hydroxylzahl (ESA): 219 mg KOH/g
Viskosität: 3250 mPa*s bei 25 °C
Tabelle 1: Herstellung und Eigenschaften der Polyol-Gemische: Der Zusatz „Vgl.“ bezeichnet Vergleichsversuche, bei den übrigen handelt sich um erfindungsgemäße Polyol-Gemische.
Figure imgf000034_0001
Bei ausgewählten Beispielen wurden per 1H-NMR und Gaschromatographie (GC/FID) mit internem Standard die Gehalte an cyclischem Propylencarbonat(cPC), cyclischem Ethylencarbonat (cEC), Ethylenglycol (EG), Propylenglycol (PG), Phenol und Bisphenol A (BPA) quantifiziert.
Tabelle 2 Zusammensetzungen ausgewählter Polyol-Gemische. Der Zusatz „Vgl.“ bezeichnet Vergleichsversuche, bei Beispiel 4 handelt es sich um ein erfindungsgemäßes Polyol-Gemisch.
Figure imgf000034_0002
3. PUR/PIR-Hartschäume
Es wurden PUR/PIR-Hartschäume von ausgewählten erfindungsgemäßen und vergleichenden Polyol- Gemischen im Labormaßstab hergestellt, indem man dem jeweiligen Polyol Flammschutzmittel, Schaumstabilisator, Katalysator, Wasser und Treibmittel in definierten Gewichtsteilen (Gew. -Tie.) zusetzte. Die so erhaltene Isocyanat-reaktive Zusammensetzung (Polyolseite) wurde mit dem Isocyanat (Isocyanatseite) in einem definierten Verhältnis (Index) vermischt und in eine Form ausgegossen. Die Mischung selbst wurde mit einem Rührer bei 4200 U/min und 23 °C Rohstofftemperatur hergestellt. Die genauen Rezepturen inklusive der Ergebnisse entsprechender physikalischer Untersuchungen sind in Tabelle 3 zusammengefasst.
Die erfindungsgemäßen Polyol-Gemische fuhren dabei zu Hartschäumen mit den notwendigen mechanischen Eigenschaften bezüglich Rohdichte, Offenzelligkeit, Druckfestigkeit und Dimensionsstabilität. Beim Einsatz des Vergleichspolyols gemäß Beispiel 7, bei dem kein cPC zum Einsatz kam, konnte kein Schaum erhalten werden, da die aromatischen Hydroxylgruppen die Reaktivität stark beschleunigen. Die Vergleichspolyole gemäß der Beispiele 5 und 6 enthalten größere Mengen freies cPC, was aus dem Hartschaumendprodukt entweichen kann und zu einer höheren Brandhöhe führt.
Tabelle 3: Herstellung von PUR/PIR-Schäumen im Labormaßstab und deren Eigenschaften. Der Zusatz „Vgl.“ bezeichnet Vergleichsversuche, bei den übrigen handelt sich um erfindungsgemäße Polyol-Gemische.
Figure imgf000036_0001
Figure imgf000037_0001

Claims

1. Verfahren zur Herstellung eines Polyol-Gemisches umfassend ein aromatisches Polyetherpolyol und ein aliphatisches Carbonatpolyol durch Umsetzen eines aromatischen Carbonats enthaltend ein oder mehrere aromatische Carbonatgruppe (n) mit einem Polyol enthaltend mindestens zwei Hydroxylgruppe (n) sowie mit einem cyclischen Carbonat und/oder mit einem Alkylenoxid bevorzugt mit einem cyclischen Carbonat in Gegenwart eines Katalysators, wobei das Polyol kein 1,2-Glycol ist, wobei das molare Verhältnis der Hydroxylgruppen des Polyols zu den aromatischen Carbonatgruppen des aromatischen Carbonats von 2,0 zu 1 bis 8,0 zu 1 beträgt.
2. Verfahrens gemäß Anspruch 1 umfassend folgende Schritte: i) Umsetzen des aromatischen Carbonats mit dem Polyol in Gegenwart des Katalysators unter Bildung eines Phenol Gemisches; ii) Umsetzen des in Schritt i) erhaltenen Phenol Gemisches mit einem cyclischen Carbonat und/oder mit einem Alkylenoxid bevorzugt mit einem cyclischen Carbonat unter Bildung des Polyol-Gemisches.
3. Verfahrens gemäß Anspruch 1 umfassend folgende Schritte:
(a) Vermischen des aromatischen Carbonats, des Polyols mit dem cyclischen Carbonat und/oder mit dem Alkylenoxid bevorzugt mit dem cyclischen Carbonat in Gegenwart des Katalysators unter Bildung einer Mischung (a);
(b) Umsetzen der Mischung (a) zu dem Polyol-Gemisch.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei das molare Verhältnis der Hydroxylgruppen des Polyols zu den aromatischen Carbonatgruppen des aromatischen Carbonats von 2,0: 1 bis 6,0: 1 bevorzugt von 2,2: 1 bis 4,0: 1 beträgt.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei das molare Verhältnis der Hydroxylgruppen des Polyols zum cyclischen Carbonat von 2,0: 1 bis 5,0: 1 bevorzugt von 2,0: 1 bis 4,0: 1 besonders bevorzugt 2,0: 1 bis 3,0: 1 beträgt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei das aromatische Carbonat ein Polycarbonat enthält.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei das aromatische Carbonat ein Diarylcarbonat enthält.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, wobei das Polyol eine oder mehrere Verbindung(en) ist und ausgewählt wird aus der Gruppe bestehend aus Diethylenglycol, Dipropylenglycol, 1,3-Propandiol, 1,4-Butandiol, Polyethylenglycol, Polypropylenglycol, Trimethylolpropan und Isosorbid.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei der Katalysator ein basischer Katalysator ist.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei der basische Katalysator Lithiumhydroxid, Kaliumhydroxid und/oder Natriumhydroxid ist.
11. Polyol-Gemisch umfassend ein aromatisches Polyetherpolyol und ein aliphatisches Carbonatpolyol erhältlich nach einem der Ansprüche 1 bis 10.
12. Polyol-Gemisch gemäß Anspruch 11 mit einer Viskosität von 100 m-Pas bis 10000 mPas bei 25 °C auf, wobei die Viskosität mittels Rheometer MCR 51 der Firma Anton Paar entsprechend DIN 53019 ermittelt wird.
13. Verfahren zur Herstellung eines Polyurethans durch Umsetzen des Polyol-Gemisches gemäß Anspruch 11 oder 12 mit einem Polyisocyanat.
14. Verfahren zur Herstellung eines Polyurethan-Schaums bevorzugt eines PUR/PIR-Schaums durch Umsetzen des Polyol-Gemisches gemäß Anspruch 11 oder 12 mit einem Polyisocyanat.
15. Verwendung des Polyol-Gemisches gemäß Anspruch 11 oder 12 zur Herstellung von Polyurethanen, bevorzugt Polyurethan-Schäumen, besonders bevorzugt PUR/PIR-Schaums.
PCT/EP2021/080105 2020-11-06 2021-10-29 Verfahren zur herstellung eines polyol-gemisches WO2022096390A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP20206138.8 2020-11-06
EP20206138 2020-11-06
EP21198803 2021-09-24
EP21198803.5 2021-09-24

Publications (1)

Publication Number Publication Date
WO2022096390A1 true WO2022096390A1 (de) 2022-05-12

Family

ID=78483312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/080105 WO2022096390A1 (de) 2020-11-06 2021-10-29 Verfahren zur herstellung eines polyol-gemisches

Country Status (1)

Country Link
WO (1) WO2022096390A1 (de)

Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1022789B (de) 1956-09-29 1958-01-16 Bayer Ag Verfahren zur Herstellung von Schaumstoffen aus Polyoxy- und/oder Polycarboxylverbindungen und Polyisocyanaten
DE1027394B (de) 1956-10-22 1958-04-03 Bayer Ag Verfahren zur Herstellung von Schaumstoffen
US2834748A (en) 1954-03-22 1958-05-13 Union Carbide Corp Siloxane-oxyalkylene block copolymers
DE1030558B (de) 1956-07-21 1958-05-22 Bayer Ag Verfahren zur Herstellung von Urethangruppen enthaltenden Schaumstoffen
US2917480A (en) 1954-06-10 1959-12-15 Union Carbide Corp Siloxane oxyalkylene block copolymers
DE1072385B (de) 1958-06-20 1959-12-31 Farbenfabriken Bayer Aktiengesellschaft Leverkusen Bayerwerk Verfahren zur Herstellung von harzartigen, gegebenenfalls noch löslichen, beim Erwärmen Isocyanatgruppen freisetzenden Polyadditionsprodukten
GB848671A (en) 1956-11-16 1960-09-21 Ici Ltd Improvements in or relating to the manufacture of polymeric materials
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
GB874430A (en) 1958-08-15 1961-08-10 Ici Ltd Improvements in or relating to the manufacture of polymeric materials
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3019731A (en) 1960-02-19 1962-02-06 Advanced Oil Tools Inc Jet perforator for well casings
GB889050A (en) 1959-06-12 1962-02-07 Ici Ltd Process for the manufacture of polyurethanes
US3124605A (en) 1963-12-05 1964-03-10 Biuret polyisocyanates
GB965474A (en) 1960-12-05 1964-07-29 Merck & Co Inc Esters of di-isocyanate carboxylic acids
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US3152162A (en) 1959-07-29 1964-10-06 Bayer Ag Polyisocyanate-carbodiimide adducts and process for the production thereof
GB994890A (en) 1961-12-18 1965-06-10 Ici Ltd New organic polyisocyanates and their manufacture
DE1202785B (de) 1964-07-21 1965-10-14 Scholven Chemie Ag Verfahren zur Herstellung von 1-Isocyanato-3-(isocyanatomethyl)-3, 5, 5-trimethylcyclohexan
DE1222067B (de) 1964-11-07 1966-08-04 Bayer Ag Verfahren zur Herstellung von einheitlichen organischen Polyisocyanaten
US3271367A (en) 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US3277138A (en) 1966-10-04 Method for the chlorination of aromatic isocyanates
DE1230778B (de) 1965-05-24 1966-12-22 Bayer Ag Verfahren zur Herstellung von acylierten Harnstoffpolyisocyanaten
DE1231688B (de) 1965-04-17 1967-01-05 Bayer Ag Verfahren zur Herstellung von Isocyanatocarbonsaeureestern polyfunktioneller Hydroxyverbindungen
US3330782A (en) 1963-11-12 1967-07-11 Union Carbide Corp Beta-(n, n-dimethylamino)alkyl ethers as catalysts for isocyanate reactions
US3394164A (en) 1965-10-24 1968-07-23 Upjohn Co Stabilized methylenebis-(phenyl isocyanate) compositions
US3404109A (en) 1963-02-14 1968-10-01 Gen Tire & Rubber Co Production of polyether diols using water as a telogen
FR1561518A (de) 1967-03-10 1969-03-28
US3454606A (en) 1963-11-14 1969-07-08 Union Carbide Corp Isocyanatophenylsulfonyl isocyanates
US3455883A (en) 1963-01-09 1969-07-15 Gen Mills Inc Polyisocyanates and derivatives
US3492301A (en) 1965-11-01 1970-01-27 Armstrong Cork Co 2,4,6-trisubstituted sulfonylhydrazido-s-triazines
DE1570703A1 (de) 1964-10-07 1970-02-12 Gen Electric Hydrolytisch stabile Polycarbonate sowie Verfahren zu deren Herstellung
DE1804361A1 (de) 1968-10-22 1970-05-14 Bayer Ag Aminoaether als Aktivatoren zur Herstellung von Polyurethanen
BE752261A (fr) 1969-06-20 1970-12-01 Bayer Ag Procede pour la preparation de matieres plastiques presentant des groupes urethane eventuellement cellulaires, resistantes a l'inflammation
DE1929034A1 (de) 1969-06-07 1970-12-10 Bayer Ag Verfahren zur Herstellung von flammfeste Urethangruppen aufweisenden Schaumstoffen
DE2004048A1 (de) 1968-03-13 1970-12-10 Bayer Ag Polyurethanschaeume
US3567763A (en) 1966-01-06 1971-03-02 Rohm & Haas Ester polyisocyanates
BE761626A (fr) 1970-01-17 1971-06-16 Bayer Ag Procede de preparation polyurethanes matieres cellulaires anti-inflammables a base d'isocyanates
DE1720633A1 (de) 1967-03-15 1971-07-01 Bayer Ag Verfahren zur Herstellung von Polyurethanen
NL7102524A (de) 1970-02-27 1971-08-31
US3620984A (en) 1967-06-27 1971-11-16 Bayer Ag Polyurethane catalysts
US3629308A (en) 1966-07-25 1971-12-21 Union Carbide Corp Siloxane-oxyalkylene block copolymers
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
US3644457A (en) 1967-03-08 1972-02-22 Bayer Ag Preparation of stable liquid diphenylmethane diisocyanates
US3645927A (en) 1968-05-15 1972-02-29 Bayer Ag Polyurethane catalyst
US3654106A (en) 1967-11-09 1972-04-04 Bayer Ag Isocyanate-containing telomers and a process for the production thereof
DE2063050A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2127503A1 (de) * 1971-06-03 1972-12-28 Bayer Verfahren zur Herstellung von Schaumstoffen
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
US3941849A (en) 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
DE2504400A1 (de) 1975-02-01 1976-08-05 Bayer Ag Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate
DE2523633A1 (de) 1975-05-28 1976-12-16 Bayer Ag Nicht einbaubare, geruchlose katalysatoren fuer die polyurethansynthese
DE2552350A1 (de) 1975-11-21 1977-05-26 Bayer Ag Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate
DE2558523A1 (de) 1975-12-24 1977-07-07 Bayer Ag Verfahren zur herstellung neuer polysiloxan-polyoxyalkylen-copolymerer
DE2618280A1 (de) 1976-04-27 1977-11-17 Bayer Ag Neue katalysatoren fuer die herstellung von polyurethanschaumstoffen
DE2624528A1 (de) 1976-06-01 1977-12-22 Bayer Ag Verfahren zur herstellung von polyurethanschaumstoffen
DE2624527A1 (de) 1976-06-01 1977-12-22 Bayer Ag Verfahren zur herstellung von polyurethanen
DE2636787A1 (de) 1976-08-16 1978-02-23 Bayer Ag Verfahren zur herstellung von polyurethanen
DE2732292A1 (de) 1977-07-16 1979-02-01 Bayer Ag Verfahren zur herstellung von polyurethankunststoffen
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US4982014A (en) 1988-08-12 1991-01-01 Bayer Aktiengesellschaft Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
DE4202740A1 (de) 1992-01-31 1993-08-05 Bayer Ag Herstellung von ethern von diphenolen
DE19509819A1 (de) 1994-03-17 1995-09-21 Polyurethane Kasei Kk Mikrozellulares Polyurethanelastomer und Verfahren zu dessen Herstellung
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
EP0700949A2 (de) 1994-09-08 1996-03-13 ARCO Chemical Technology, L.P. Hochwirksame Doppelmetallcyanidkatalysatoren
EP0743093A1 (de) 1995-05-15 1996-11-20 ARCO Chemical Technology, L.P. Hochwirksamer Katalysator aus ein Doppellmetallcyanidkomplex
EP0761708A2 (de) 1995-08-22 1997-03-12 ARCO Chemical Technology, L.P. Doppelmetallcyanidkatalysatorzusammensetzung enthaltend Polyetherpolyole
WO1997040086A1 (en) 1996-04-19 1997-10-30 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
DE19627907A1 (de) 1996-07-11 1998-01-15 Basf Ag Verfahren zur Herstellung von kompakten oder zelligen Polyurethan-Elastomeren und hierfür geeignete Isocyanatprepolymere
DE19628145A1 (de) 1996-07-12 1998-01-15 Basf Ag Verfahren zur Herstellung von zelligen Polyurethan-Elastomeren
WO1998016310A1 (en) 1996-10-16 1998-04-23 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
WO2000047649A1 (de) 1999-02-11 2000-08-17 Bayer Aktiengesellschaft Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
DE10006208A1 (de) 2000-02-11 2001-08-16 Bayer Ag IR-absorbierende Zusammensetzungen
DE10022037A1 (de) 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
EP1359177A1 (de) 2002-04-29 2003-11-05 Bayer Aktiengesellschaft Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten
EP1559743A1 (de) 2004-01-28 2005-08-03 General Electric Company Infrarot-Strahlung absorbierende Artikel und Methode zu deren Herstellung
US7304172B2 (en) 2004-10-08 2007-12-04 Cornell Research Foundation, Inc. Polycarbonates made using highly selective catalysts
EP1865027A1 (de) 2005-03-28 2007-12-12 Mitsubishi Engineering-Plastics Corporation Polycarbonatharzzusammensetzung und formprodukt zum schutz gegen heisse strahlung
WO2009071211A1 (de) 2007-12-06 2009-06-11 Bayer Materialscience Ag Verfahren zur herstellung von diarylcarbonat
ITRM20100225A1 (it) 2010-05-10 2011-11-10 Bayer Materialscience Ag Composizione di polimeri con caratteristiche di assorbimento del calore e migliorate caratteristiche di colore.
ITRM20100227A1 (it) 2010-05-10 2011-11-10 Bayer Materialscience Ag Composizione polimerica con caratteristiche di assorbimento di calore ad alta stabilità.
US20120165549A1 (en) 2008-07-30 2012-06-28 Sk Energy Co., Ltd. Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst

Patent Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277138A (en) 1966-10-04 Method for the chlorination of aromatic isocyanates
US2834748A (en) 1954-03-22 1958-05-13 Union Carbide Corp Siloxane-oxyalkylene block copolymers
US2917480A (en) 1954-06-10 1959-12-15 Union Carbide Corp Siloxane oxyalkylene block copolymers
US3271367A (en) 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
DE1030558B (de) 1956-07-21 1958-05-22 Bayer Ag Verfahren zur Herstellung von Urethangruppen enthaltenden Schaumstoffen
DE1022789B (de) 1956-09-29 1958-01-16 Bayer Ag Verfahren zur Herstellung von Schaumstoffen aus Polyoxy- und/oder Polycarboxylverbindungen und Polyisocyanaten
DE1027394B (de) 1956-10-22 1958-04-03 Bayer Ag Verfahren zur Herstellung von Schaumstoffen
GB848671A (en) 1956-11-16 1960-09-21 Ici Ltd Improvements in or relating to the manufacture of polymeric materials
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
DE1072385B (de) 1958-06-20 1959-12-31 Farbenfabriken Bayer Aktiengesellschaft Leverkusen Bayerwerk Verfahren zur Herstellung von harzartigen, gegebenenfalls noch löslichen, beim Erwärmen Isocyanatgruppen freisetzenden Polyadditionsprodukten
GB874430A (en) 1958-08-15 1961-08-10 Ici Ltd Improvements in or relating to the manufacture of polymeric materials
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
GB889050A (en) 1959-06-12 1962-02-07 Ici Ltd Process for the manufacture of polyurethanes
US3152162A (en) 1959-07-29 1964-10-06 Bayer Ag Polyisocyanate-carbodiimide adducts and process for the production thereof
US3019731A (en) 1960-02-19 1962-02-06 Advanced Oil Tools Inc Jet perforator for well casings
GB965474A (en) 1960-12-05 1964-07-29 Merck & Co Inc Esters of di-isocyanate carboxylic acids
GB1072956A (en) 1960-12-05 1967-06-21 Merck & Co Inc Esters of diisocyanato carboxylic acids and reaction products thereof
GB994890A (en) 1961-12-18 1965-06-10 Ici Ltd New organic polyisocyanates and their manufacture
US3455883A (en) 1963-01-09 1969-07-15 Gen Mills Inc Polyisocyanates and derivatives
US3404109A (en) 1963-02-14 1968-10-01 Gen Tire & Rubber Co Production of polyether diols using water as a telogen
US3330782A (en) 1963-11-12 1967-07-11 Union Carbide Corp Beta-(n, n-dimethylamino)alkyl ethers as catalysts for isocyanate reactions
US3454606A (en) 1963-11-14 1969-07-08 Union Carbide Corp Isocyanatophenylsulfonyl isocyanates
US3201372A (en) 1963-12-05 1965-08-17 Bayer Ag Biuret polyisocyanate based polyurethanes
US3124605A (en) 1963-12-05 1964-03-10 Biuret polyisocyanates
DE1202785B (de) 1964-07-21 1965-10-14 Scholven Chemie Ag Verfahren zur Herstellung von 1-Isocyanato-3-(isocyanatomethyl)-3, 5, 5-trimethylcyclohexan
US3401190A (en) 1964-07-21 1968-09-10 Scholven Chemie Ag Gelsenkirch 3-(isocyanatomethyl)-3, 5, 5-tri-lower-alkyl cyclohexyl isocyanates
DE1570703A1 (de) 1964-10-07 1970-02-12 Gen Electric Hydrolytisch stabile Polycarbonate sowie Verfahren zu deren Herstellung
DE1222067B (de) 1964-11-07 1966-08-04 Bayer Ag Verfahren zur Herstellung von einheitlichen organischen Polyisocyanaten
DE1231688B (de) 1965-04-17 1967-01-05 Bayer Ag Verfahren zur Herstellung von Isocyanatocarbonsaeureestern polyfunktioneller Hydroxyverbindungen
DE1230778B (de) 1965-05-24 1966-12-22 Bayer Ag Verfahren zur Herstellung von acylierten Harnstoffpolyisocyanaten
US3394164A (en) 1965-10-24 1968-07-23 Upjohn Co Stabilized methylenebis-(phenyl isocyanate) compositions
US3492301A (en) 1965-11-01 1970-01-27 Armstrong Cork Co 2,4,6-trisubstituted sulfonylhydrazido-s-triazines
US3567763A (en) 1966-01-06 1971-03-02 Rohm & Haas Ester polyisocyanates
US3629308A (en) 1966-07-25 1971-12-21 Union Carbide Corp Siloxane-oxyalkylene block copolymers
US3644457A (en) 1967-03-08 1972-02-22 Bayer Ag Preparation of stable liquid diphenylmethane diisocyanates
FR1561518A (de) 1967-03-10 1969-03-28
DE1720633A1 (de) 1967-03-15 1971-07-01 Bayer Ag Verfahren zur Herstellung von Polyurethanen
US3620984A (en) 1967-06-27 1971-11-16 Bayer Ag Polyurethane catalysts
US3654106A (en) 1967-11-09 1972-04-04 Bayer Ag Isocyanate-containing telomers and a process for the production thereof
DE2004048A1 (de) 1968-03-13 1970-12-10 Bayer Ag Polyurethanschaeume
US3645927A (en) 1968-05-15 1972-02-29 Bayer Ag Polyurethane catalyst
DE1804361A1 (de) 1968-10-22 1970-05-14 Bayer Ag Aminoaether als Aktivatoren zur Herstellung von Polyurethanen
DE1929034A1 (de) 1969-06-07 1970-12-10 Bayer Ag Verfahren zur Herstellung von flammfeste Urethangruppen aufweisenden Schaumstoffen
BE752261A (fr) 1969-06-20 1970-12-01 Bayer Ag Procede pour la preparation de matieres plastiques presentant des groupes urethane eventuellement cellulaires, resistantes a l'inflammation
BE761626A (fr) 1970-01-17 1971-06-16 Bayer Ag Procede de preparation polyurethanes matieres cellulaires anti-inflammables a base d'isocyanates
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
NL7102524A (de) 1970-02-27 1971-08-31
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2127503A1 (de) * 1971-06-03 1972-12-28 Bayer Verfahren zur Herstellung von Schaumstoffen
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
US3941849A (en) 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
DE2504400A1 (de) 1975-02-01 1976-08-05 Bayer Ag Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate
DE2523633A1 (de) 1975-05-28 1976-12-16 Bayer Ag Nicht einbaubare, geruchlose katalysatoren fuer die polyurethansynthese
DE2552350A1 (de) 1975-11-21 1977-05-26 Bayer Ag Lagerstabile, carbodiimidgruppen enthaltende polyisocyanate
DE2558523A1 (de) 1975-12-24 1977-07-07 Bayer Ag Verfahren zur herstellung neuer polysiloxan-polyoxyalkylen-copolymerer
DE2618280A1 (de) 1976-04-27 1977-11-17 Bayer Ag Neue katalysatoren fuer die herstellung von polyurethanschaumstoffen
DE2624528A1 (de) 1976-06-01 1977-12-22 Bayer Ag Verfahren zur herstellung von polyurethanschaumstoffen
DE2624527A1 (de) 1976-06-01 1977-12-22 Bayer Ag Verfahren zur herstellung von polyurethanen
DE2636787A1 (de) 1976-08-16 1978-02-23 Bayer Ag Verfahren zur herstellung von polyurethanen
DE2732292A1 (de) 1977-07-16 1979-02-01 Bayer Ag Verfahren zur herstellung von polyurethankunststoffen
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US4982014A (en) 1988-08-12 1991-01-01 Bayer Aktiengesellschaft Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates
DE4202740A1 (de) 1992-01-31 1993-08-05 Bayer Ag Herstellung von ethern von diphenolen
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
DE19509819A1 (de) 1994-03-17 1995-09-21 Polyurethane Kasei Kk Mikrozellulares Polyurethanelastomer und Verfahren zu dessen Herstellung
EP0700949A2 (de) 1994-09-08 1996-03-13 ARCO Chemical Technology, L.P. Hochwirksame Doppelmetallcyanidkatalysatoren
EP0743093A1 (de) 1995-05-15 1996-11-20 ARCO Chemical Technology, L.P. Hochwirksamer Katalysator aus ein Doppellmetallcyanidkomplex
EP0761708A2 (de) 1995-08-22 1997-03-12 ARCO Chemical Technology, L.P. Doppelmetallcyanidkatalysatorzusammensetzung enthaltend Polyetherpolyole
WO1997040086A1 (en) 1996-04-19 1997-10-30 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
DE19627907A1 (de) 1996-07-11 1998-01-15 Basf Ag Verfahren zur Herstellung von kompakten oder zelligen Polyurethan-Elastomeren und hierfür geeignete Isocyanatprepolymere
DE19628145A1 (de) 1996-07-12 1998-01-15 Basf Ag Verfahren zur Herstellung von zelligen Polyurethan-Elastomeren
WO1998016310A1 (en) 1996-10-16 1998-04-23 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
WO2000047649A1 (de) 1999-02-11 2000-08-17 Bayer Aktiengesellschaft Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
DE10006208A1 (de) 2000-02-11 2001-08-16 Bayer Ag IR-absorbierende Zusammensetzungen
DE10022037A1 (de) 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
EP1359177A1 (de) 2002-04-29 2003-11-05 Bayer Aktiengesellschaft Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten
EP1559743A1 (de) 2004-01-28 2005-08-03 General Electric Company Infrarot-Strahlung absorbierende Artikel und Methode zu deren Herstellung
US7304172B2 (en) 2004-10-08 2007-12-04 Cornell Research Foundation, Inc. Polycarbonates made using highly selective catalysts
EP1865027A1 (de) 2005-03-28 2007-12-12 Mitsubishi Engineering-Plastics Corporation Polycarbonatharzzusammensetzung und formprodukt zum schutz gegen heisse strahlung
WO2009071211A1 (de) 2007-12-06 2009-06-11 Bayer Materialscience Ag Verfahren zur herstellung von diarylcarbonat
US20120165549A1 (en) 2008-07-30 2012-06-28 Sk Energy Co., Ltd. Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst
ITRM20100225A1 (it) 2010-05-10 2011-11-10 Bayer Materialscience Ag Composizione di polimeri con caratteristiche di assorbimento del calore e migliorate caratteristiche di colore.
ITRM20100227A1 (it) 2010-05-10 2011-11-10 Bayer Materialscience Ag Composizione polimerica con caratteristiche di assorbimento di calore ad alta stabilità.

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
CAS, no. 2082-79-3
CHATTOPADHYAY, PROGRESS IN POLYMER SCIENCE, vol. 34, no. 200, pages 1068 - 1133
CHEMICAL COMMUNICATIONS, vol. 47, 2011, pages 141 - 163
D. RANDALLS. LEE: "The Polyurethanes Book", 2002, JOHN WILEY & SONS, LTD., pages: 127 - 136,232-233,261
G. OERTEL: "Kunststoff-Handbuch", vol. VII, 1993, CARL-HANSER-VERLAG, pages: 113 - 115
G. RODICKI, PROG. POLYM. SCI., vol. 29, 2000, pages 259 - 342
H. SCHNELL: "Chemistry and Physics of Polycarbonates", 1964, INTERSCIENCE PUBLISHERS, pages: 28
HANS ZWEIFEL: "Plastics Additives Handbook", 2001, HANSER
JOHN MURPHY: "Additives for Plastics Handbook", 1999, ELSEVIER
M. H. CHISHOLM ET AL., MACROMOLECULES, vol. 35, 2002, pages 6494
M. IONESCU ET AL., ADVANCES IN URETHANES SCIENCE AND TECHNOLOGY, vol. 14, 1998, pages 151 - 218
OKU A ET AL: "Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 41, no. 18, August 2000 (2000-08-01), pages 6749 - 6753, XP004203534, ISSN: 0032-3861, DOI: 10.1016/S0032-3861(00)00014-8 *
OKU ET AL., POLYMER, vol. 41, 2000, pages 6749 - 6753
R. VIEWEGA. HÖCHTLEN: "Kunststoff-Handbuch", vol. VII, 1966, CARL-HANSER-VERLAG, pages: 103 - 113
S. D. ALLEN, J. AM. CHEM. SOC., vol. 124, 2002, pages 14284
W. SIEFKEN, JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 562, pages 75 - 136

Similar Documents

Publication Publication Date Title
EP3387035B1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3262099B1 (de) Viskoelastische polyurethanweichschaumstoffe basierend auf polyethercarbonatpolyolen
EP3433298A1 (de) Flammgeschützte etherweichschaumstoffe
WO2015162125A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2001005883A1 (de) Kompakte und/oder zellige polyurethanelastomere mit nanoskaligen füllstoffen
WO2017085201A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3262090A1 (de) Verwendung von polyethercarbonatpolyolen zur erzeugung farbstabiler polyurethanschaumstoffe
EP3774981A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3178858A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
WO2016174125A1 (de) Mischungen von polyethercarbonatpolyolen und polyetherpolyolen zur herstellung von polyurethanweichschaumstoffen
EP3762442B1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3762441B1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3630859B1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3250620B1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP1509559A1 (de) Polymermodifikatoren enthaltende polyvisocyanate und polyurethane sowie ihre verwendung
EP3533815A1 (de) Polyurethanweichschaumstoffe auf basis von polyoxymethylen-polyoxyalkylen-blockcopolymeren
WO2022096390A1 (de) Verfahren zur herstellung eines polyol-gemisches
WO2019180156A1 (de) Verfahren zur herstellung von polyurethanweichschaumstoffen mit hoher rohdichte
EP1345975B1 (de) Polyurethanelastomere mit verbesserter hydrolysestabilität
EP3543268A1 (de) Verfahren zur herstellung von polyurethanweichschaumstoffen
WO2021204590A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP4219576A1 (de) Herstellung von aliphatischen polyurethan-polyisocyanuratschaumstoffen (pur-pir) unter verwendung eines katalysatorgemischs aus salzen organischer carbonsäuren und 1,1,3,3-tetraalkylguanidinen
WO2022258503A1 (de) Einsatz von bismut-katalysatoren zur verringerung von cyclischem propylencarbonat bei der herstellung von weichschaumstoffen basierend auf polyethercarbonatpolyolen
WO2023275031A1 (de) Herstellung von pu-schaumstoffen unter einsatz von recycling-polyolen
EP3854830A1 (de) Polyurethanformulierungen mit verbesserten fliesseigenschaften und daraus hergestellte polyurethanformteile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21801550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21801550

Country of ref document: EP

Kind code of ref document: A1