WO2022089487A1 - 一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用 - Google Patents

一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用 Download PDF

Info

Publication number
WO2022089487A1
WO2022089487A1 PCT/CN2021/126727 CN2021126727W WO2022089487A1 WO 2022089487 A1 WO2022089487 A1 WO 2022089487A1 CN 2021126727 W CN2021126727 W CN 2021126727W WO 2022089487 A1 WO2022089487 A1 WO 2022089487A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
content
solution
nitriles
Prior art date
Application number
PCT/CN2021/126727
Other languages
English (en)
French (fr)
Inventor
涂云宝
宗弘元
刘仲能
徐晓清
白雪
刘旭
付伟
王艳红
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/250,828 priority Critical patent/US20230390743A1/en
Priority to EP21885214.3A priority patent/EP4238651A4/en
Priority to JP2023525992A priority patent/JP2023547203A/ja
Publication of WO2022089487A1 publication Critical patent/WO2022089487A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the invention belongs to the field of diamine preparation, and in particular relates to a catalyst for preparing diamine by hydrogenating dibasic nitriles, a preparation method thereof, a method and application for preparing diamine by hydrogenating dibasic nitriles.
  • Meta-xylylenediamine can be used as a raw material for epoxy resin curing agent.
  • the curing agent made of m-xylylenediamine can be used as a modified epoxy resin curing agent because it contains aromatic hydrocarbon aliphatic amine, which is characterized by accelerated curing at room temperature, heat resistance, water resistance and chemical resistance Good, and wetting curability and surface gloss are good, widely used in coatings, adhesives and electronic products.
  • Meta-xylylenediamine is also used as a raw material for the synthesis of MX-nylon and its derivatives, especially MXD6 prepared with adipic acid.
  • This nylon is characterized by high strength and elasticity in a very high temperature range, and high deformation temperature. , The thermal expansion rate is low, equal to the alloy, suitable for precision molding, used for high temperature baking coating, the film made of high transparency, oxygen impermeable, suitable for food packaging, high fiber strength.
  • M-xylylenediamine can also be used as a raw material for polyurethane resin.
  • M-xylylene phenyl diisocyanate is obtained from this product, and polyurethane resin is further synthesized.
  • This resin is comparable to hexamethylene diisocyanate.
  • the yellowing resistance is better than the latter, it can be used for light-colored coatings, the coating film has high hardness and low toxicity, and can also be used for synthetic leather.
  • m-xylylenediamine is mostly produced by the catalytic hydrogenation process of isophthalonitrile.
  • CN200680036084.8 discloses a process flow for preparing MXDA (m-xylylenediamine) by a fixed-bed continuous hydrogenation method IPN (isophthalonitrile). At 170-200°C, melt IPN, and mix and dissolve with liquid ammonia and circulating material in liquid form (60°C). Under the condition of 60-130°C, under 150-200Bar, under the catalysis of fixed bed reactor and Mn-doped non-immobilized Co catalyst, the single-pass conversion rate is >99%, and the selectivity is >92%.
  • IPN isophthalonitrile
  • CN200680035201.9 introduced a product MXDA recycle material as IPN solvent, which is dissolved at 55-70°C.
  • the technical process provided in the CN201010150757.0 and CN201010150725.0 patents is mainly: adding modified Raney Ni catalyst in the stirring reaction kettle in advance, then isophthalonitrile and ternary mixed solvent (aromatic hydrocarbons, low-carbon alcohols, aliphatic halogenated Derivatives) and secondary amine inhibitors were injected with a high pressure pump. After dissolving, the reaction is carried out under the conditions of 40-120 ° C and 2-10 MPa, and the stirred tank is intermittently hydrogenated to produce MXDA.
  • the technical problem to be solved by the present invention is to provide a novel catalyst and method for preparing m-xylylenediamine with high selectivity in view of the problem of low selectivity for preparing m-xylylenediamine by hydrogenation of isophthalonitrile in the prior art .
  • a first aspect of the present invention provides a catalyst for producing diamine by hydrogenation of dibasic nitriles, which comprises the following components or reaction products thereof:
  • auxiliary agent includes one or more of Mg, Cu, Co, Zn, Zr, Mo and/or oxides thereof;
  • the relative content of ⁇ -NiO in the catalyst is less than 2.0 a.u.
  • the relative content of ⁇ -NiO of the catalyst is less than 1.5 a.u., preferably less than 0.2 a.u.
  • the auxiliary agent includes one or more of Cu, Co, Zr, Mo and/or oxides thereof.
  • the content of "relative content” in the present invention is not an absolute concept of content, but refers to the content of the species in the catalyst represented by the integral area of the peak in the same graph of the same coordinate system, so as to compare the integral area of the peak by comparing the content of the species in the catalyst. to compare the relative abundance of the species.
  • the same graph of the same coordinate system refers to the H 2 -TPR graph of the catalyst, where the abscissa is in degrees Celsius
  • the temperature of the ordinate is the signal value of the TCD (thermal conductivity detector) (which is a quantitative value, for example, expressed in the form of a percentage or a decimal).
  • TCD thermal conductivity detector
  • a.u. is the abbreviation of arbitrary unit arbitrary unit, here refers to relative value, dimensionless.
  • the content of the active component is 5-70wt%, preferably 10-60wt%, more preferably 15-50wt%;
  • the content of the auxiliary agent is 0.1-60wt%, preferably 1-50wt%, more preferably 5-45wt%;
  • the content of the carrier is 10-90wt%, preferably 15-80wt%, more preferably 20-70wt%.
  • the content of the active component is 10-60 parts, preferably 15-55 parts;
  • the content of the auxiliary agent is 0.1-120 parts, preferably 0.2-90 parts;
  • the content of the carrier is 0.1-45 parts, preferably 1-35 parts.
  • the carrier is selected from at least one of alumina, silica and molecular sieves, preferably alumina.
  • the carrier is a carrier treated at a high temperature of not lower than 500°C.
  • a second aspect of the present invention provides a method for preparing the catalyst as described in the first aspect of the present invention, comprising the following steps:
  • the carrier is treated at a temperature of not lower than 500 ° C, and then the auxiliary salt solution, the first precipitant solution, the carrier and the water are first contacted to obtain a modified carrier;
  • step 2) The nickel salt solution, the second precipitant solution, the modified carrier obtained in step 1) and water are subjected to second contact, and the catalyst is obtained by filtration and roasting.
  • step 1) the auxiliary salt solution and the first precipitant solution are simultaneously added to the water containing the carrier for the first contact.
  • step 2) the auxiliary salt solution and the second precipitant solution are simultaneously added to the water containing the modified carrier obtained in step 1) for the second contact.
  • the endpoint pH of the first contacted solution is controlled to be 6.0-10.0, for example, 6.0-8.0.
  • step 2) the endpoint pH of the second contacted solution is controlled to be 6.0-10.0, for example, 6.0-8.0.
  • the temperature of the first contact is 50-90°C, and in some embodiments, the temperature is 70°C.
  • the time of the first contact is 3-6 hours.
  • the temperature of the second contact is 50-90°C.
  • the time of the second contact is 3-6 hours.
  • the promoter salt is selected from the group consisting of Mg(NO 3 ) 2 , Cu(NO 3 ) 2 , Co(NO 3 ) 2 , Zn(NO 3 ) 2 , Zr(NO 3 ) 4 , One or more of (NH 4 ) 2 MoO 4 , preferably one selected from Cu(NO 3 ) 2 , Zr(NO 3 ) 4 , (NH 4 ) 2 MoO 4 and Co(NO 3 ) 2 or more.
  • the promoter salt may be a salt hydrate, such as Mg(NO 3 ) 2 .6H 2 O, Cu(NO 3 ) 2 .3H 2 O, Co(NO 3 ) 2 .
  • Mg(NO 3 ) 2 .6H 2 O Cu(NO 3 ) 2 .3H 2 O
  • Co(NO 3 ) 2 a salt hydrate
  • 6H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O, and Zr(NO 3 ) 4 ⁇ 5H 2 O is a salt hydrate, such as Mg(NO 3 ) 2 .6H 2 O, Cu(NO 3 ) 2 .3H 2 O, Co(NO 3 ) 2 .
  • the first precipitating agent is selected from one or more of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate and ammonia water, preferably sodium hydroxide and/or ammonia water.
  • the nickel salt is nickel sulfate and/or nickel nitrate, preferably nickel nitrate.
  • the second precipitating agent is selected from one or more of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate and ammonia water, preferably selected from sodium hydroxide, sodium carbonate and One or more of sodium bicarbonate.
  • the concentration of the auxiliary salt solution is 0.1-1.5 mol/L, preferably 0.3-1.2 mol/L.
  • the concentration of the first precipitant solution is 0.4-2.0 mol/L, preferably 0.6-1.6 mol/L.
  • the content of the carrier in water is 5-100 g/L, such as 20-80 g/L, or 5-20 g/L, such as 8-15 g/L.
  • the concentration of the nickel salt solution is 0.2-1.5 mol/L, preferably 0.5-1.2 mol/L.
  • the concentration of the second precipitant solution is 0.4-2.0 mol/L, preferably 0.6-1.5 mol/L.
  • the content of the modified carrier in water is 10-100 g/L, such as 20-85 g/L, or 10-30 g/L, such as 12-25 g/L.
  • step 2) the calcination is performed in an air atmosphere.
  • the calcination temperature is 300-600°C.
  • step 2) the nickel salt solution and the second precipitant solution are simultaneously added to the water containing the modified carrier under the condition of 50-90° C., mixed and controlled to control the end point of the mixed solution.
  • the pH is 6.0-10.0, such as 6.0-8.0, stirred for 3-6 hours, filtered, washed, dried, and calcined at 300-600° C. in an atmosphere containing oxygen (such as air atmosphere or pure oxygen) to obtain a catalyst.
  • a third aspect of the present invention provides a method for hydrogenating dibasic nitriles to produce diamine, comprising in the presence of the catalyst described in the first aspect of the present invention or the catalyst prepared by the method described in the second aspect of the present invention , the dibasic nitriles are reacted with hydrogen to form dibasic amines.
  • the temperature of the reaction is 50-120°C, preferably 60-80°C.
  • the pressure of the reaction is 4.0-15.0 MPa, for example, 4.0-12.0 MPa, or 6.0-10.0 MPa.
  • the liquid phase volume space velocity of the reaction is 1-12 hours -1 , preferably 2-10 hours -1 .
  • the molar ratio of hydrogen to dibasic nitrile in the reaction is 3:1-70:1, preferably 5:1-20:1.
  • the isophthalonitrile is dissolved in liquid ammonia.
  • the mass fraction of isophthalonitrile is 10%.
  • the mass fraction of the liquid ammonia is 90%.
  • the fourth aspect of the present invention provides a catalyst according to the first aspect of the present invention or a catalyst prepared by the method according to the second aspect of the present invention or the method according to the third aspect of the present invention in the hydrogenation of dibasic nitriles
  • the present invention provides the following technical solutions:
  • a catalyst comprising:
  • an active component comprising oxides of Ni
  • the auxiliary agent includes one or more of oxides of Mg, Cu, Co, Zn, Zr, and Mo, more preferably, the auxiliary agent includes Cu, Co, Zr , and one or more of Mo oxides;
  • the relative content of ⁇ -NiO in the catalyst is less than 2.0 a.u., for example, less than or equal to 1.5 a.u., and further, for example, less than or equal to 0.2 a.u.
  • a catalyst in a fully oxidized state comprising:
  • an active component comprising oxides of Ni
  • the auxiliary agent includes one or more of oxides of Mg, Cu, Co, Zn, Zr, and Mo, more preferably, the auxiliary agent includes Cu, Co, Zr , and one or more of Mo oxides;
  • the content of ⁇ -NiO in the catalyst is less than 55wt%, less than 50wt%, less than 40wt%, less than 30wt%, less than 20wt%, less than 10wt%, eg less than 5wt%.
  • the fully oxidized state as used herein refers to a catalyst prepared by calcining the catalyst in an atmosphere containing oxygen (such as air atmosphere or pure oxygen) at a certain calcination temperature (such as 300-600 °C) for a sufficient time (such as 4 hours, 8 hours, 12 hours, 24 hours, 48 hours, 96 hours, 1 week, 2 weeks, 4 weeks or longer), the fully oxidized state can also be achieved by other means, not limited to the above-mentioned roasting means.
  • oxygen such as air atmosphere or pure oxygen
  • a certain calcination temperature such as 300-600 °C
  • a sufficient time such as 4 hours, 8 hours, 12 hours, 24 hours, 48 hours, 96 hours, 1 week, 2 weeks, 4 weeks or longer
  • a catalyst comprising:
  • active components which are Ni and/or oxides thereof;
  • auxiliary agent includes one or more of Mg, Cu, Co, Zn, Zr, Mo and/or oxides thereof, more preferably, the auxiliary agent includes Cu, Co , one or more of Zr, Mo and/or oxides thereof;
  • the content of ⁇ -NiO in the catalyst is less than 55wt%, less than 50wt%, less than 40wt%, less than 30wt%, less than 20wt%, less than 10wt%, for example less than 5wt% .
  • a catalyst comprising:
  • active components which are Ni and/or oxides thereof;
  • auxiliary agent includes one or more of Mg, Cu, Co, Zn, Zr, Mo and/or oxides thereof, more preferably, the auxiliary agent includes Cu, Co , one or more of Zr, Mo and/or oxides thereof;
  • the relative content of ⁇ -NiO in the catalyst is less than 2.0 a.u., eg, less than or equal to 1.5 a.u., further eg, less than or equal to 0.2 a.u.
  • the content of the active component is 10-60 parts by weight, such as 15-55 parts by weight;
  • the content of the auxiliary agent is 0.1-120 parts by weight, such as 0.2-90 parts by weight;
  • the content of the carrier is 0.1-45 parts by weight, such as 1-35 parts by weight;
  • the content of the active component is 5-70wt%, preferably 10-60wt%, more preferably 15-50wt%;
  • the content of the auxiliary agent is 0.1-60wt%, preferably 1-50wt%, more preferably 5-45wt%;
  • the content of the carrier is 10-90wt%, preferably 15-80wt%, more preferably 20-70wt%;
  • the content of the active component is 30-35wt%;
  • the content of the auxiliary agent is 15-50wt%
  • the content of the carrier is 15-60wt%
  • the adjuvant is Co, Mo or Zr, more preferably the adjuvant is Co.
  • the carrier is selected from at least one of alumina, silica and molecular sieves, such as alumina; preferably, the carrier is Carriers treated at temperatures below 500°C.
  • the carrier comprises alumina, wherein the ratios of ⁇ , ⁇ , ⁇ , ⁇ , ⁇ -alumina are based on the weight of alumina, respectively. is 0.1-99%, 0.1-99%, 0.1-99%, 0.1-99%, such as 10-95%, 1-70%, 2-90%, 5-90%, 3 -80%.
  • the catalyst is a catalyst for hydrogenating dibasic nitriles to produce diamines.
  • the relative content of ⁇ -NiO in the catalyst is greater than 0.0001 a.u., for example, greater than 0.001 a.u., further for example, greater than 0.01 a.u.; or in the catalyst
  • the content of ⁇ -NiO is more than 0.0001 wt %, for example, more than 0.001 wt %, and further, for example, more than 0.01 wt %.
  • a preparation method of the catalyst as described in any one of the preceding technical solutions is characterized in that, comprises the following steps:
  • step 1) second contact with nickel salt solution, second precipitant solution, step 1) gained modified carrier and water, filter, roast to obtain catalyst,
  • step (1) the auxiliary salt solution and the first precipitating agent solution are simultaneously added to the water containing the carrier to carry out the first contact, and/or in step 2), the nickel salt solution and the second precipitating agent solution are simultaneously added
  • the second contact is carried out in water containing the modified support obtained in step 1).
  • step 1) the carrier used is treated at a temperature not lower than 500°C, preferably, the carrier used is higher than 500°C. °C temperature treated.
  • the temperature of the first contact and/or the second contact is 50-90°C, and/or the time of the first contact and/or the second contact is 3-6 hours.
  • auxiliary salt is selected from Mg(NO 3 ) 2 , Cu(NO 3 ) 2 , Co(NO 3 ) 2 , Zn (NO 3 ) 2 , Zr(NO 3 ) 4 , (NH 4 ) 2 MoO 4 , Mg(NO 3 ) 2 ⁇ 6H 2 O, Cu(NO 3 ) 2 ⁇ 3H 2 O, Co(NO 3 ) 2 ⁇ One or more of 6H 2 O, Zn(NO 3 ) 2 .6H 2 O and Zr(NO 3 ) 4 .5H 2 O, for example, selected from Cu(NO 3 ) 2 , Zr(NO 3 ) 4 , One or more of (NH 4 ) 2 MoO 4 and Co(NO 3 ) 2 ;
  • the first precipitating agent is selected from one or more of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate and ammonia, preferably, the first precipitating agent is carbon-free, More preferably, the first precipitant is sodium hydroxide and/or ammonia;
  • nickel salt is nickel sulfate and/or nickel nitrate, such as nickel nitrate;
  • the second precipitating agent is selected from one or more of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate and ammonia, preferably, the second precipitating agent is carbon-containing, more Preferably, the second precipitant is sodium carbonate and/or sodium bicarbonate.
  • step 1) the concentration of the auxiliary salt solution is 0.1-1.5mol/L, such as 0.3-1.2mol/L; And/or the concentration of the first precipitant solution is 0.4-2.0mol/L, such as 0.6-1.6mol/L; and/or the content of the carrier in water is 5-100g/L, such as 20-80g/L L, or 5-20g/L, such as 8-15g/L.
  • step 2 the concentration of the nickel salt solution is 0.2-1.5mol/L, such as 0.5-1.2mol/L; and /or the concentration of the second precipitant solution is 0.4-2.0 mol/L, such as 0.6-1.5 mol/L, and/or the content of the carrier in water is 10-100 g/L, such as 20-85 g/L , or 10-30g/L, such as 12-25g/L.
  • a method for producing diamine by hydrogenation of dibasic nitriles comprising in the presence of the catalyst as described in any one of technical solutions 1-9 or the catalyst according to any one of technical solutions 10-15
  • the dibasic nitrile is reacted with hydrogen to form a diamine, for example, the molar ratio of the hydrogen to the dibasic nitrile is 3:1-70:1, such as 5:1-20:1.
  • the temperature of the reaction is 50-120°C, such as 60-80°C; and/or the pressure of the reaction is 4.0-15.0 MPa, such as 4.0-12.0 MPa, further such as 6.0-10.0 MPa; and/or the The liquid phase volume space velocity of the reaction is 1-12 hours -1 , for example 2-10 hours -1 .
  • diamine and dibasic nitrile wherein the dibasic nitrile can be aliphatic C 4 -C 24 dibasic nitriles, such as adiponitrile, pimelic nitrile, suberonitrile, azelonitrile a Carbodinitrile, or aromatic C6 - C18 dibasic nitriles, such as phthalonitrile, isophthalonitrile, or terephthalonitrile;
  • the diamine may be an aliphatic C4 - C24 diamine, such as hexamethylenediamine, heptanediamine, octanediamine, nonanediamine, decanediamine, undecanediamine, dodecanediamine, ten Tricarbodiamine, tetradecanediamine, pentacarbodiamine, hexadecanediamine, heptadecadiamine, or octadecadiamine, or an aromatic C6 - C18 diamine, such as ortho phenylenediamine, m-phenylenediamine, or p-phenylenediamine
  • a catalyst according to any one of technical solutions 1-9 or a catalyst prepared according to any one of technical solutions 10-15 or the method as described in technical solution 16 in the hydrogenation of dibasic nitriles The production of diamines, especially aliphatic C 4 -C 24 dibasic nitriles (such as adiponitrile, pimeliconitrile, suberonitrile, azelonitrile, sebaconitrile, undecanedinitrile, dodecanedinitrile, Tridecane dinitrile, tetradecane dinitrile, pentadecane dinitrile, hexadecane dinitrile, heptadeca dinitrile, or octadecane dinitrile) or aromatic C 6 -C 18 dibasic nitriles (such as phthalonitrile, isophthalonitrile, or terephthalonitrile) hydrogenation to aliphatic C 4 -C 24 diamines (such as hexamethylene diamine,
  • NiO For supported nickel-based catalysts, there are usually three NiO existing forms: free amorphous ⁇ -NiO, ⁇ 1-NiO with weak interaction with the support, and ⁇ 2-NiO with strong interaction with the support. Too much free amorphous ⁇ -NiO in the catalyst will lead to more excessive hydrogenation side reactions to generate hydrogenolysis by-products such as 3-methylbenzylamine and m-xylene.
  • the content of ⁇ -NiO refers to the weight percent or relative content of ⁇ -NiO relative to the total amount of nickel species in the catalyst, calculated as NiO, when the catalyst is converted to a fully oxidized state.
  • the invention provides a catalyst for preparing diamine by hydrogenation of dibasic nitriles, especially meta-xylylenediamine by hydrogenation of isophthalonitrile; method.
  • the catalyst and method of the present invention greatly reduces the generation of excessive hydrogenation by-products, and improves the total selectivity of the target product.
  • FIG. 1 is the H 2 -TPR diagram of the catalysts prepared in Examples 1, 2 and Comparative Example 1.
  • FIG. 1 is the H 2 -TPR diagram of the catalysts prepared in Examples 1, 2 and Comparative Example 1.
  • ⁇ -NiO (300-400°C): belongs to the surface-free amorphous NiO species; (2) ⁇ 1-NiO (400-500°C): belongs to the NiO species with weak interaction with the carrier; (3) ) ⁇ 2-NiO (500-600°C): belongs to the NiO species that strongly interacts with the carrier.
  • n-the amount of substance the unit is mol; IPN-isophthalonitrile; MXDA-m-xylylenediamine; 1-raw material; 2-product.
  • Test method for the relative amount of different types of NiO the area integration of the H 2 -TPR curve (the ordinate is %TCD, the abscissa is the temperature), and the relative amount of different types of NiO is calculated based on the hydrogen consumption of the sample, the unit is au (arbitrary unit), in fact, the size of the peak area, which represents the relative amount of different types of NiO, and is used for the relative comparison of NiO between different samples.
  • the isophthalonitrile used is of industrial grade, dissolved in liquid ammonia, the mass fraction of isophthalonitrile is 10%, and the mass fraction of liquid ammonia is 90%; the volume fraction of hydrogen used is 99.9% %.
  • composition of the catalyst was determined by X-ray fluorescence method (see “Petrochemical Analysis Method (RIPP Experimental Method)", edited by Yang Cuiding et al., Science Press, published in 1990).
  • modified carrier The auxiliary salt Co(NO 3 ) 2 was prepared into solution I with a concentration of 0.8 mol/L, and sodium hydroxide was prepared into solution II with a concentration of 1.0 mol/L, and the precursor of the aluminum hydroxide carrier was prepared (Pseudo-boehmite) was pretreated at 500°C and then placed in 1L of water. Under the condition of 70°C, solution I and solution II were co-precipitated, and the pH of the end point was controlled at 7.0, and stirred and aged for 3-6 hours.
  • Modified alumina carrier Modified alumina carrier
  • Nickel nitrate was made into solution III with a concentration of 0.8 mol/L
  • sodium carbonate was made into solution IV with a concentration of 1.2 mol/L
  • 50 g of the obtained modified alumina carrier was placed in 1 L of water, at 70 ° C.
  • solution III and solution IV were co-precipitated
  • the pH of the end point was controlled to be 7.5
  • the catalyst was stirred and aged for 4 hours, filtered, washed, dried, and calcined at 500 °C for 6 hours in an air atmosphere to obtain the catalyst.
  • CoO was 0.75 g
  • the active component was 5.25 g in terms of nickel oxide
  • the alumina carrier was 9.0 g.
  • the H 2 -TPR diagram is shown in Figure 1, and the results are shown in Table 1.
  • the catalyst component contains CoO (0.75 g), and the loading amount of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500° C. for 24 hours to obtain a reduced catalyst.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 1, the difference is that the content of Co in the catalyst is different: the CoO in the catalyst is 2.25 g.
  • the H 2 -TPR diagram is shown in Figure 1, and the results are shown in Table 1.
  • the method is the same as in Example 1, and the reaction results are shown in Table 1.
  • the conversion rate of IPN was 99.9%, and the selectivity of MXDA was 98.3%.
  • the 3-methylbenzylamine content was 0.13%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 1, the difference is that the content of Co in the catalyst is different: the CoO in the catalyst is 0.5 g.
  • the results of the relative content of ⁇ -NiO are shown in Table 1.
  • Example 2 The method is the same as in Example 1, and the reaction results are shown in Table 1. IPN conversion was 99.9% and MXDA selectivity was 96.4%. The 3-methylbenzylamine content was 0.42%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 1, the difference is that the content of Co in the catalyst is different: the CoO in the catalyst is 4.5 g.
  • the results of the relative content of ⁇ -NiO are shown in Table 1.
  • the method is the same as in Example 1, and the reaction results are shown in Table 1.
  • the conversion rate of IPN was 99.9%, and the selectivity of MXDA was 98.4%.
  • the 3-methylbenzylamine content was 0.11%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 1, the difference is that the content of Co in the catalyst is different: the CoO in the catalyst is 7.5 g.
  • the results of the relative content of ⁇ -NiO are shown in Table 1.
  • Example 2 The method is the same as in Example 1, and the reaction results are shown in Table 1. IPN conversion was 99.9% and MXDA selectivity was 98.5%. The 3-methylbenzylamine content was 0.09%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 2, the difference is that the auxiliary salt is different: Zr(NO 3 ) 4 .
  • the results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.
  • the catalyst is 15 g, the loading amount of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500° C. for 24 hours to obtain a reduced catalyst.
  • Example 2 The method is the same as in Example 1, and the reaction results are shown in Table 1. IPN conversion was 99.9% and MXDA selectivity was 98.0%. The 3-methylbenzylamine content was 0.17%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 2, the difference is that the auxiliary salt is different: it is Mg(NO 3 ) 2 .
  • the results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.
  • the catalyst is 15 g, the loading amount of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500° C. for 24 hours to obtain a reduced catalyst.
  • the method is the same as in Example 1, and the reaction results are shown in Table 1.
  • the conversion rate of IPN was 99.9%, and the selectivity of MXDA was 97.8%.
  • the 3-methylbenzylamine content was 0.23%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 2, the difference is that the auxiliary salt is different: it is Cu(NO 3 ) 2 .
  • the results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.
  • the catalyst is 15 g, the loading amount of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500° C. for 24 hours to obtain a reduced catalyst.
  • Example 2 The method is the same as in Example 1, and the reaction results are shown in Table 1. IPN conversion was 99.7% and MXDA selectivity was 96.9%. The 3-methylbenzylamine content was 0.36%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 2, the difference is that the auxiliary salt is different: it is Zn(NO 3 ) 2 .
  • the results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.
  • the catalyst is 15 g, the loading amount of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500° C. for 24 hours to obtain a reduced catalyst.
  • the method is the same as in Example 1, and the reaction results are shown in Table 1.
  • the conversion rate of IPN was 99.8%, and the selectivity of MXDA was 96.4%.
  • the 3-methylbenzylamine content was 0.41%.
  • the catalyst of this example is prepared by the preparation method of the catalyst in Example 2, the difference is that the auxiliary salt is different: it is (NH 4 ) 2 MoO 4 .
  • the results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.
  • the catalyst is 15 g, the loading amount of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500° C. for 24 hours to obtain a reduced catalyst.
  • the method is the same as in Example 1, and the reaction results are shown in Table 1.
  • the conversion rate of IPN was 99.9%, and the selectivity of MXDA was 98.1%.
  • the 3-methylbenzylamine content was 0.19%.
  • auxiliary salt Co(NO 3 ) 2 solution, nickel nitrate solution III and precipitant solution in Example 1 were added together into the water containing the aluminum hydroxide carrier treated at a high temperature of 500 ° C, and the pH of the end point of the solution was controlled to be 7.0.
  • Nickel salt, auxiliary salt and precipitant are precipitated together on the support alumina.
  • Table 1 The results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.
  • Example 1 The same as in Example 1, the only difference is that the catalyst salt Co(NO 3 ) 2 solution is not added in the preparation process of the catalyst.
  • the H 2 -TPR diagram is shown in Figure 1, and the results are shown in Table 1.
  • the catalyst components do not contain CoO, and the loading volume of the catalyst is 15 mL, and pure hydrogen is used for reduction at 500 ° C for 24 h.
  • Example 1 The same as Example 1, the difference is only that the alumina carrier is not treated at a high temperature of 500°C.
  • the results of the relative content of ⁇ -NiO in the catalyst are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种用于二元腈加氢制二元胺的催化剂,其包括以下组分或其反应产物:a)活性组分,所述活性组分包括Ni和/或其氧化物;b)助剂,所述助剂包括Mg、Cu、Co、Zn、Zr、Mo和/或其氧化物中的一种或多种;c)载体,其中,所述催化剂中α-NiO的相对含量小于2.0a.u.。本发明还公开了一种用于二元腈加氢制二元胺的方法。本发明的催化剂及方法极大降低了过度加氢副产物的生成,提高了目标产物的总选择性。

Description

一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用 技术领域
本发明属于二元胺制备领域,具体涉及一种用于二元腈加氢制二元胺的催化剂及其制备方法、一种二元腈加氢制二元胺的方法及应用。
背景技术
间苯二甲胺可以用作环氧树脂固化剂原料。用间苯二甲胺制成的固化剂因含有芳烃脂肪族胺,可用作改性型环氧树脂固化剂,其特点是使常温固化速度加快,耐热性、耐水性及耐药剂性良好,且润湿固化性及表面光泽性良好,被广泛用于涂料、粘合剂及电子级产品。
间苯二甲胺也用作合成MX-尼龙及其衍生物的原料,尤其是和己二酸共同制备的MXD6,这种尼龙的特点是在很高的温度范围内强度及弹性高,变形温度高,热膨胀率低,与合金相等,适合精密成型,用于高温烘烤涂装,制成的薄膜的透明度高,氧气不能透过,适用于食品包装,制成的纤维强度高。
间苯二甲胺还可用作聚氨酯树脂原料,由本品制得间苯二亚甲基苯基二异氰酸酯,进一步合成聚氨酯树脂,此种树脂堪与六亚甲基二异氰酸脂匹敌,且耐黄性优于后者,可用于浅色涂料,涂膜硬度高,毒性低,也可用于合成革。
目前,间苯二甲胺多采用间苯二甲腈催化加氢工艺生产。
CN200680036084.8公开了一种固定床连续氢化法IPN(间苯二甲腈)制MXDA(间苯二甲胺)的工艺流程。170-200℃下,将IPN熔融,以液态形式与液氨和循环料混合溶解(60℃)。60-130℃情况下,150-200Bar下,在固定床反应器和Mn掺杂非固载Co催化剂催化下,单程转化率>99%,选择性>92%。
CN200680035201.9介绍了一种用产物MXDA循环料作为IPN溶剂,在55-70℃下溶解。CN201010150757.0和CN201010150725.0专利中提供的工艺流程主要是:在搅拌反应釜中预先加入改性Raney Ni催化剂,然后间苯二腈和三元混合溶剂(芳烃、低碳醇、脂肪族卤代衍生物)及仲胺抑制剂用高压泵打入。溶解后,反应在40-120℃、2-10MPa条件下,搅拌釜间歇氢化制MXDA。
但是,现有技术中仍存在催化剂用量较大、产品选择性不理想,高压釜间歇操作等问题。因此,有必要开发高活性、高选择性的新型 催化剂并实现连续化工业生产。
发明内容
本发明所要解决的技术问题是针对现有技术中间苯二甲腈加氢制间苯二甲胺选择性较低的问题,提供一种新的高选择性制备间苯二甲胺的催化剂及方法。
为此,本发明第一方面提供了一种用于二元腈加氢制二元胺的催化剂,其包括以下组分或其反应产物:
a)活性组分,所述活性组分包括Ni和/或其氧化物;
b)助剂,所述助剂包括Mg、Cu、Co、Zn、Zr、Mo和/或其氧化物中的一种或多种;
c)载体;
其中,所述催化剂中α-NiO的相对含量小于2.0a.u.。
根据本发明的一些实施方式,所述催化剂的α-NiO相对含量小于1.5a.u.,优选小于0.2a.u.。
根据本发明的一些实施方式,所述助剂包括Cu、Co、Zr、Mo和/或其氧化物中的一种或多种。
本发明中“相对含量”的含量不是含量的绝对概念,而是指通过在相同坐标体系的同一张图中,以峰的积分面积大小代表该物种在催化剂中的含量多少,从而通过比较峰的积分面积来比较该物种的相对含量。具体来说,对于本发明中所述的α-NiO相对含量(使用a.u.作为单位),所述相同坐标体系的同一张图是指催化剂的H 2-TPR图,其中横坐标是以摄氏度为单位的温度,纵坐标是TCD(thermal conductivity detector)的信号值(其是一个数量值,例如以百分数或小数的形式表示)。对于本发明中所述的α-NiO相对含量,在进行H 2-TPR的测量时,使用的是完全氧化态的催化剂,并且催化剂的数量是50毫克。
本发明中a.u.是任意单位arbitrary unit的缩写,这里是指相对值,无量纲。
根据本发明的一些实施方式,以催化剂的总重为100wt%计,
所述活性组分的含量为5-70wt%,优选10-60wt%,更优选15-50wt%;
所述助剂的含量为0.1-60wt%,优选1-50wt%,更优选5-45wt%;
所述载体的含量为10-90wt%,优选15-80wt%,更优选20-70wt%。
根据本发明的另一些实施方式,以重量份计,
所述活性组分的含量为10-60份,优选15-55份;
所述助剂的含量为0.1-120份,优选0.2-90份;
所述载体的含量为0.1-45份,优选1-35份。
根据本发明的一些实施方式,所述载体选自氧化铝、氧化硅和分子筛中的至少一种,优选为氧化铝。
根据本发明的一些实施方式,所述载体为经不低于500℃的高温处理过的载体。
本发明第二方面提供了一种如本发明第一方面所述的催化剂的制备方法,其包括以下步骤:
1)将载体经不低于500℃的温度处理,然后将助剂盐溶液、第一沉淀剂溶液、载体和水进行第一接触,得到改性载体;
2)将镍盐溶液、第二沉淀剂溶液、步骤1)所得改性载体和水进行第二接触,过滤、焙烧得到催化剂。
根据本发明的一些实施方式,步骤1)中,将助剂盐溶液和第一沉淀剂溶液同时加入到含有载体的水中进行第一接触。
根据本发明的一些实施方式,步骤2)中,将助剂盐溶液和第二沉淀剂溶液同时加入到含有步骤1)所得改性载体的水中进行第二接触。
根据本发明的一些实施方式,步骤1)中,控制第一接触的溶液的终点pH为6.0-10.0,例如6.0-8.0。
根据本发明的一些实施方式,步骤2)中,控制第二接触的溶液的终点pH为6.0-10.0,例如6.0-8.0。
根据本发明的一些实施方式,所述第一接触的温度为50-90℃,在一些实施例中,所述温度为70℃。
根据本发明的一些实施方式,所述第一接触的时间为3-6小时。
根据本发明的一些实施方式,所述第二接触的温度为50-90℃。
根据本发明的一些实施方式,所述第二接触的时间为3-6小时。
根据本发明的一些实施方式,所述助剂盐选自Mg(NO 3) 2、Cu(NO 3) 2、Co(NO 3) 2、Zn(NO 3) 2、Zr(NO 3) 4、(NH 4) 2MoO 4中的一种或多种,优选选自Cu(NO 3) 2、Zr(NO 3) 4、(NH 4) 2MoO 4和Co(NO 3) 2中的一种或多种。
根据本发明的一些实施方式,所述助剂盐可以是盐的水合物,例如Mg(NO 3) 2·6H 2O、Cu(NO 3) 2·3H 2O、Co(NO 3) 2·6H 2O、Zn(NO 3) 2·6H 2O和Zr(NO 3) 4·5H 2O中的一种或多种。
根据本发明的一些实施方式,所述第一沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和氨水中的一种或多种,优选为氢氧化钠 和/或氨水。
根据本发明的一些实施方式,所述镍盐为硫酸镍和/或硝酸镍,优选为硝酸镍。
根据本发明的一些实施方式,所述第二沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和氨水中的一种或多种,优选选自氢氧化钠、碳酸钠和碳酸氢钠中的一种或多种。
根据本发明的一些实施方式,步骤1)中,所述助剂盐溶液的浓度为0.1-1.5mol/L,优选0.3-1.2mol/L。
根据本发明的一些实施方式,步骤1)中,所述第一沉淀剂溶液的浓度为0.4-2.0mol/L,优选0.6-1.6mol/L。
根据本发明的一些实施方式,步骤1)中,所述载体在水中的含量为5-100g/L,例如20-80g/L,或5-20g/L,如8-15g/L。
根据本发明的一些实施方式,步骤2)中,所述镍盐溶液的浓度为0.2-1.5mol/L,优选0.5-1.2mol/L。
根据本发明的一些实施方式,步骤2)中,所述第二沉淀剂溶液的浓度为0.4-2.0mol/L,优选0.6-1.5mol/L。
根据本发明的一些实施方式,步骤2)中,所述改性载体在水中的含量为10-100g/L,例如20-85g/L,或10-30g/L,如12-25g/L。
根据本发明的一些实施方式,步骤2)中,所述焙烧在空气气氛中进行。
根据本发明的一些实施方式,步骤2)中,所述焙烧温度为300-600℃。
根据本发明的一些实施方式,步骤2)中,所述镍盐溶液和所述第二沉淀剂溶液在50-90℃条件下,同时加入含有改性载体的水中,混合并控制混合溶液终点的pH为6.0-10.0,例如6.0-8.0,搅拌3-6小时,过滤、洗涤、干燥,在含有氧气的气氛(例如空气气氛或纯氧)中,300-600℃下焙烧,得到催化剂。
本发明第三方面提供了一种二元腈加氢制二元胺的方法,其包括在如本发明第一方面所述的催化剂或根据本发明第二方面所述的方法制备的催化剂存在下,将二元腈与氢气接触反应生成二元胺。
根据本发明的一些实施方式,所述反应的温度为50-120℃,优选为60-80℃。
根据本发明的一些实施方式,所述反应的压力为4.0-15.0MPa,例 如,4.0-12.0MPa,或6.0-10.0MPa。
根据本发明的一些实施方式,所述反应的液相体积空速为1-12小时 -1,优选为2-10小时 -1
根据本发明的一些实施方式,所述反应的氢气与二元腈的摩尔比为3:1-70:1,优选为5:1-20:1。
根据本发明的一些是实施方式,所述间苯二甲腈溶解在液氨中。在一些实施例中,间苯二甲腈的质量分数为10%。在一些实施例中,所述液氨的质量分数为90%。
本发明第四方面提供了一种如本发明第一方面所述的催化剂或如本发明第二方面所述的方法制备的催化剂或如本发明第三方面所述的方法在二元腈加氢制二元胺特别是间苯二元腈加氢制间苯二元胺中的应用。
一般而言,本发明提供了下述技术方案:
1.一种催化剂,其包括:
a)活性组分,所述活性组分包括Ni的氧化物;
b)助剂,优选地,所述助剂包括Mg、Cu、Co、Zn、Zr、和Mo的氧化物中的一种或多种,更优选地,所述助剂包括Cu、Co、Zr、和Mo的氧化物中的一种或多种;
c)载体;
其中,所述催化剂中α-NiO的相对含量小于2.0a.u.,例如小于或等于1.5a.u.,进一步例如小于或等于0.2a.u.。
2.一种催化剂,所述催化剂处于完全氧化态,其包括:
a)活性组分,所述活性组分包括Ni的氧化物;
b)助剂,优选地,所述助剂包括Mg、Cu、Co、Zn、Zr、和Mo的氧化物中的一种或多种,更优选地,所述助剂包括Cu、Co、Zr、和Mo的氧化物中的一种或多种;
c)载体;
其中,所述催化剂中α-NiO的含量小于55wt%,小于50wt%,小于40wt%,小于30wt%,小于20wt%,小于10wt%,例如小于5wt%。
本文中所述的完全氧化态是指一种通过将催化剂在含有氧气的气氛(例如空气气氛或纯氧)中在一定焙烧温度(例如300-600℃)焙烧足够长时间(例如4小时、8小时、12小时、24小时、48小时、96小时、1 周、2周、4周或更长时间)后的状态,所述完全氧化态还可以通过其他方式达到,不局限于上述焙烧方式。
3.一种催化剂,其包括:
a)活性组分,所述活性组分是Ni和/或其氧化物;
b)助剂,优选地,所述助剂包括Mg、Cu、Co、Zn、Zr、Mo和/或其氧化物中的一种或多种,更优选地,所述助剂包括Cu、Co、Zr、Mo和/或其氧化物中的一种或多种;
c)载体;
其中,当所述催化剂处于其完全氧化态时,所述催化剂中α-NiO的含量小于55wt%,小于50wt%,小于40wt%,小于30wt%,小于20wt%,小于10wt%,例如小于5wt%。
4.一种催化剂,其包括:
a)活性组分,所述活性组分是Ni和/或其氧化物;
b)助剂,优选地,所述助剂包括Mg、Cu、Co、Zn、Zr、Mo和/或其氧化物中的一种或多种,更优选地,所述助剂包括Cu、Co、Zr、Mo和/或其氧化物中的一种或多种;
c)载体;
其中,当所述催化剂处于其完全氧化态时,所述催化剂中α-NiO的相对含量小于2.0a.u.,例如小于或等于1.5a.u.,进一步例如小于或等于0.2a.u.。
5.根据前述技术方案中任一项所述的催化剂,其特征在于,以重量份计,
所述活性组分的含量为10-60重量份,例如15-55重量份;
所述助剂的含量为0.1-120重量份,例如0.2-90重量份;
所述载体的含量为0.1-45重量份,例如1-35重量份;
或者
以催化剂的总重为100wt%计,
所述活性组分的含量为5-70wt%,优选10-60wt%,更优选15-50wt%;
所述助剂的含量为0.1-60wt%,优选1-50wt%,更优选5-45wt%;
所述载体的含量为10-90wt%,优选15-80wt%,更优选20-70wt%;
或者
以催化剂的总重为100wt%计,
所述活性组分的含量为30-35wt%;
所述助剂的含量为15-50wt%;
所述载体的含量为15-60wt%;
优选地,助剂是Co,Mo或Zr,更优选地助剂是Co。
6.根据前述技术方案中任一项所述的催化剂,其特征在于,所述载体选自氧化铝、氧化硅和分子筛中的至少一种,例如氧化铝;优选地,所述载体为经不低于500℃的温度处理过的载体。
7.根据前述技术方案中任一项所述的催化剂,其特征在于,所述载体包括氧化铝,其中以氧化铝的重量为基准,α,β,γ,δ,θ-氧化铝的比例分别是0.1-99%、0.1-99%、0.1-99%、0.1-99%、0.1-99%,例如分别是10-95%、1-70%、2-90%、5-90%、3-80%。
8.根据前述技术方案中任一项所述的催化剂,其特征在于,所述催化剂是一种用于二元腈加氢制二元胺的催化剂。
9.根据前述技术方案中任一项所述的催化剂,其特征在于,所述催化剂中α-NiO的相对含量为大于0.0001a.u.,例如大于0.001a.u.,进一步例如大于0.01a.u.;或者所述催化剂中α-NiO的含量为大于0.0001wt%,例如大于0.001wt%,进一步例如大于0.01wt%。
10.一种如前述技术方案中任一项所述的催化剂的制备方法,其特征在于,包括以下步骤:
1)将助剂盐溶液、第一沉淀剂溶液、载体和水进行第一接触,得到改性载体;
2)将镍盐溶液、第二沉淀剂溶液、步骤1)所得改性载体和水进行第二接触,过滤、焙烧得到催化剂,
例如,步骤(1)中,助剂盐溶液和第一沉淀剂溶液同时加入含有载体的水中,进行第一接触,和/或步骤2)中,将镍盐溶液和第二沉淀剂溶液同时加入含有步骤1)所得改性载体的水中,进行第二接触。
11.根据技术方案10所述的方法,其特征在于,在步骤1)中,所使用的载体是经不低于500℃的温度处理过的,优选地,所使用的载体是经高于500℃的温度处理过的。
12.根据技术方案10-11中任一项所述的方法,其特征在于,控制第一接触的溶液和第二接触的溶液的终点pH为6.0-10.0,例如6.0-8.0,
例如,所述第一接触和/或第二接触的温度为50-90℃,和/或所述第一接触和/或第二接触的时间为3-6小时。
13.根据技术方案10-12中任一项所述的方法,其特征在于,所述助剂盐选自Mg(NO 3) 2、Cu(NO 3) 2、Co(NO 3) 2、Zn(NO 3) 2、Zr(NO 3) 4、(NH 4) 2MoO 4、Mg(NO 3) 2·6H 2O、Cu(NO 3) 2·3H 2O、Co(NO 3) 2·6H 2O、Zn(NO 3) 2·6H 2O和Zr(NO 3) 4·5H 2O中的一种或多种,例如选自Cu(NO 3) 2、Zr(NO 3) 4、(NH 4) 2MoO 4和Co(NO 3) 2中的一种或多种;
和/或所述第一沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和氨水中的一种或多种,优选地,所述第一沉淀剂是不含碳的,更优选地,所述第一沉淀剂是氢氧化钠和/或氨水;
和/或所述镍盐为硫酸镍和/或硝酸镍,例如硝酸镍;
和/或所述第二沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和氨水中的一种或多种,优选地,所述第二沉淀剂是含碳的,更优选地,所述第二沉淀剂是碳酸钠和/或碳酸氢钠。
14.根据技术方案10-13中任一项所述的方法,其特征在于,步骤1)中,所述助剂盐溶液的浓度为0.1-1.5mol/L,例如0.3-1.2mol/L;和/或所述第一沉淀剂溶液的浓度为0.4-2.0mol/L,例如0.6-1.6mol/L;和/或所述载体在水中的含量为5-100g/L,例如20-80g/L,或5-20g/L,如8-15g/L。
15.根据技术方案10-14中任一项所述的方法,其特征在于,步骤2)中,所述镍盐溶液的浓度为0.2-1.5mol/L,例如0.5-1.2mol/L;和/或所述第二沉淀剂溶液的浓度为0.4-2.0mol/L,例如0.6-1.5mol/L,和/或所述载体在水中的含量为10-100g/L,例如20-85g/L,或10-30g/L,如12-25g/L。
16.一种二元腈加氢制二元胺的方法,其包括在如技术方案1-9中任一项所述的催化剂或根据技术方案10-15中任一项所述的催化剂的存在下,将二元腈与氢气反应接触反应生成二元胺,例如所述氢气与二元腈的摩尔比为3:1-70:1,例如5:1-20:1。
例如,所述反应的温度为50-120℃,例如60-80℃;和/或所述反应的压力为4.0-15.0MPa,例如4.0-12.0MPa,进一步例如6.0-10.0MPa;和/或所述反应的液相体积空速为1-12小时 -1,例如2-10小时 -1
在本发明中,不对二元胺和二元腈作特别限制,其中二元腈可以是脂肪族C 4-C 24二元腈,如己二腈、庚二腈、辛二腈、壬二腈、癸二腈、十一碳二腈、十二碳二腈、十三碳二腈、十四碳二腈、十五碳二腈、十六碳二腈、十七碳二腈、或十八碳二腈,或芳香族C 6-C 18二元腈,如邻苯二元腈、间苯二元腈、或对苯二元腈;
二元胺可以是脂肪族C 4-C 24二元胺,如己二胺、庚二胺、辛二胺、壬二胺、癸二胺、十一碳二胺、十二碳二胺、十三碳二胺、十四碳二胺、十五碳二胺、十六碳二胺、十七碳二胺、或十八碳二胺,或芳香族C 6-C 18二元胺,如邻苯二元胺、间苯二元胺、或对苯二元胺
17.一种如技术方案1-9中任一项所述的催化剂或根据技术方案10-15中任一项所述方法制备的催化剂或如技术方案16所述的方法在二元腈加氢制二元胺特别是脂肪族C 4-C 24二元腈(如己二腈、庚二腈、辛二腈、壬二腈、癸二腈、十一碳二腈、十二碳二腈、十三碳二腈、十四碳二腈、十五碳二腈、十六碳二腈、十七碳二腈、或十八碳二腈)或芳香族C 6-C 18二元腈(如邻苯二元腈、间苯二元腈、或对苯二元腈)加氢制脂肪族C 4-C 24二元胺(如己二胺、庚二胺、辛二胺、壬二胺、癸二胺、十一碳二胺、十二碳二胺、十三碳二胺、十四碳二胺、十五碳二胺、十六碳二胺、十七碳二胺、或十八碳二胺)或芳香族C 6-C 18二元胺(如邻苯二元胺、间苯二元胺、或对苯二元胺)中的应用。
对于负载型镍基催化剂,其通常有三种NiO存在形式:游离的无定型α-NiO、与载体弱相互作用的β1-NiO、与载体强相互作用的β2-NiO。催化剂中游离的无定型α-NiO过多,会导致较多的过度加氢副反应生成3-甲基苯甲胺、间二甲苯等氢解副产物。
在本文中,α-NiO的含量是指,当将催化剂转化为完全氧化态时,相对于催化剂中的以NiO计的镍物种的总量的α-NiO的重量百分含量或相对含量。
本发明针对不同NiO类型镍基催化剂对目标产物选择性的影响,提供了一种用于二元腈加氢制备二元胺特别是间苯二甲腈加氢制备间苯二甲胺的催化剂和方法。本发明的催化剂及方法极大降低了过度加氢副产物的生成,提高了目标产物的总选择性。
附图说明
图1为实施例1、2和对比例1所制备的催化剂的H 2-TPR图。
其中,(1)α-NiO(300-400℃):归属为表面游离的无定型NiO物 种;(2)β1-NiO(400-500℃):归属为载体弱相互作用的NiO物种;(3)β2-NiO(500-600℃):归属为与载体强相互作用的NiO物种。
具体实施方式
为使本发明更加容易理解,下面将结合实施例和附图来详细说明本发明,这些实施例仅用于说明本发明,而不应被视作限定本发明的范围。实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购或使用常规方法获得的产品。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明所使用的概念中,间苯二甲腈加氢制备间苯二甲胺的转化率和选择性计算公式如下:
Figure PCTCN2021126727-appb-000001
Figure PCTCN2021126727-appb-000002
式中:n-物质的量,单位为mol;IPN-间苯二甲腈;MXDA-间苯二甲胺;1-原料;2-产物。
测试方法:
1、不同类型NiO相对量的测试方法:H 2-TPR曲线进行面积积分(纵坐标为%TCD,横坐标为温度),以样品的耗氢量来计算不同类型NiO的相对量,单位为a.u.(任意单位),实际上峰面积大小,代表不同类型NiO相对量的大小,用于不同样品之间NiO的相对比较。
以下实施例中,采用的间苯二甲腈为工业级,溶解在液氨中,间苯二甲腈质量分数为10%,液氨质量分数为90%;使用的氢气,其体积分数为99.9%。
催化剂的组成通过X射线荧光法测定(参见《石油化工分析方法(RIPP实验方法)》,杨翠定等编,科学出版社,1990年出版)。
实施例1
(1)催化剂的制备
改性载体制备:将助剂盐Co(NO 3) 2配成浓度为0.8mol/L的溶液Ⅰ,将氢氧化钠配成浓度为1.0mol/L溶液Ⅱ,将氢氧化铝载体的前体(拟薄水铝石)经500℃高温预处理后置于1L水中,在70℃条件下,将溶液Ⅰ与溶液Ⅱ并流沉淀,控制终点的pH在7.0,搅拌老化3-6小时,得改性后的氧化铝载体;
催化剂制备:将硝酸镍配成浓度为0.8mol/L的溶液Ⅲ,将碳酸钠配成浓度为1.2mol/L溶液Ⅳ,将所得改性后的氧化铝载体50g置于1L水中,在70℃条件下,溶液Ⅲ与溶液Ⅳ并流沉淀,控制终点的pH为7.5,搅拌老化4小时,过滤、洗涤、干燥,空气气氛中,500℃下焙烧6小时即得催化剂。所得催化剂中,CoO为0.75g,活性组分以氧化镍计为5.25g,氧化铝载体为9.0g。H 2-TPR图如图1,结果见表1。
(2)催化剂还原
取所得催化剂15g,催化剂组分中含CoO(0.75g),催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(3)间苯二甲腈加氢制间苯二甲胺
以间苯二甲腈液氨溶液(间苯二甲腈质量分数为10%,液氨质量分数为90%)3000mL和纯氢气(氢气体积分数为99.9%)为原料,还原催化剂的用量15g,在反应温度为80℃,反应压力为8.0MPa,氢气/间苯二甲腈摩尔比为5:1,液相空速为10h -1的条件下进行加氢试验,反应结果见表1。IPN转化率99.9%,MXDA选择性97.1%。3-甲基苯甲胺含量为0.32%(液相色谱测得)。
实施例2
本实施例的催化剂采用实施例1中催化剂的制备方法进行制备,区别在于:催化剂中Co的含量不同:催化剂中CoO为2.25g。H 2-TPR图如图1,结果见表1。
(1)催化剂还原:
催化剂15g,催化剂中含2.25g的CoO,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性98.3%。3-甲基苯甲胺含量为0.13%。
实施例3
本实施例的催化剂采用实施例1中催化剂的制备方法进行制备,区别在于:催化剂中Co的含量不同:催化剂中CoO为0.5g。α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂中含0.5g的CoO,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性96.4%。3-甲基苯甲胺含量为0.42%。
实施例4
本实施例的催化剂采用实施例1中催化剂的制备方法进行制备,区别在于:催化剂中Co的含量不同:催化剂中CoO为4.5g。α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂中含4.5g的CoO,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性98.4%。3-甲基苯甲胺含量为0.11%。
实施例5
本实施例的催化剂采用实施例1中催化剂的制备方法进行制备,区别在于:催化剂中Co的含量不同:催化剂中CoO为7.5g。α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂中含7.5g的CoO,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性98.5%。3-甲基苯甲胺含量为0.09%。
实施例6
本实施例的催化剂采用实施例2中催化剂的制备方法进行制备,区别在于:助剂盐不同:为Zr(NO 3) 4。催化剂中α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性98.0%。3-甲基苯甲胺含量为0.17%。
实施例7
本实施例的催化剂采用实施例2中催化剂的制备方法进行制备,区别在于:助剂盐不同:为Mg(NO 3) 2。催化剂中α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性97.8%。3-甲基苯甲胺含量为0.23%。
实施例8
本实施例的催化剂采用实施例2中催化剂的制备方法进行制备,区别在于:助剂盐不同:为Cu(NO 3) 2。催化剂中α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.7%,MXDA选择性96.9%。3-甲基苯甲胺含量为0.36%。
实施例9
本实施例的催化剂采用实施例2中催化剂的制备方法进行制备,区别在于:助剂盐不同:为Zn(NO 3) 2。催化剂中α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.8%,MXDA选择性96.4%。3-甲基苯甲胺含量为0.41%。
实施例10
本实施例的催化剂采用实施例2中催化剂的制备方法进行制备,区别在于:助剂盐不同:为(NH 4) 2MoO 4。催化剂中α-NiO相对含量结果见表1。
(1)催化剂还原:
催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(2)催化剂催化加氢
方法同实施例1,反应结果见表1。IPN转化率99.9%,MXDA选择性98.1%。3-甲基苯甲胺含量为0.19%。
实施例11
催化剂的制备
将实施例1中的助剂盐Co(NO 3) 2溶液、硝酸镍溶液Ⅲ和沉淀剂溶液共同加入含有经500℃高温处理的氢氧化铝载体的水中,控制溶液终点的pH为7.0,将镍盐、助剂盐、沉淀剂一起沉淀于载体氧化铝上。催化剂中α-NiO相对含量结果见表1。
(2)催化剂还原
取所得催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(3)间苯二甲腈加氢制间苯二甲胺
以间苯二甲腈液氨溶液(间苯二甲腈质量分数为10%,液氨质量分数为90%)3000mL和纯氢气(氢气体积分数为99.9%)为原料,催化剂的用量15g,在反应温度为80℃,反应压力为8.0MPa,氢气/间苯二甲腈摩尔比为5:1,液相空速为10h -1的条件下进行加氢试验,反应结果见表1。IPN转化率99.9%,MXDA选择性95.2%。3-甲基苯甲胺含量为0.49%。
对比例1
(1)催化剂的制备
同实施例1,不同之处仅在于,催化剂的制备过程中不加入助剂盐Co(NO 3) 2溶液。H 2-TPR图如图1,结果见表1。
(2)催化剂还原
取所得催化剂15g,催化剂组分中不含CoO,催化剂的装填量15mL,采用纯氢气,在500℃下还原24h。
(3)间苯二甲腈加氢制间苯二甲胺
以间苯二甲腈液氨溶液(间苯二甲腈质量分数为10%,液氨质量分数为90%)3000mL和纯氢气(氢气体积分数为99.9%)为原料,还原催化剂的用量为15g,在反应温度为80℃,反应压力为8.0MPa,氢气/间苯二甲腈摩尔比为5:1,液相空速为10h -1的条件下进行加氢试验,反应结果见表1。IPN转化率99.9%,MXDA选择性95.6%。3-甲基苯甲胺含量为0.58%。
对比例2
(1)催化剂的制备
同实施例1,不同之处仅在于,氧化铝载体不经500℃高温处理。催化剂中α-NiO相对含量结果见表1。
(2)催化剂还原
取所得催化剂15g,催化剂的装填量15mL,采用纯氢气,在500℃下还原24小时,得还原催化剂。
(3)间苯二甲腈加氢制间苯二甲胺
以间苯二甲腈液氨溶液(间苯二甲腈质量分数为10%,液氨质量分数为90%)3000mL和纯氢气(氢气体积分数为99.9%)为原料,催化剂的用量15g,在反应温度为80℃,反应压力为8.0MPa,氢气/间苯二甲腈摩尔比为5:1,液相空速为10h -1的条件下进行加氢试验,反应结果见表1。IPN转化率99.8%,MXDA选择性94.9%。3-甲基苯甲胺含量为0.45%。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。
Figure PCTCN2021126727-appb-000003

Claims (14)

  1. 一种催化剂,其包括:
    a)活性组分,所述活性组分包括Ni的氧化物;
    b)助剂,优选地,所述助剂包括Mg、Cu、Co、Zn、Zr、和Mo的氧化物中的一种或多种,更优选地,所述助剂包括Cu、Co、Zr、和Mo的氧化物中的一种或多种;
    c)载体;
    其中,所述催化剂中α-NiO的相对含量小于2.0a.u.,例如小于1.5a.u.,进一步例如小于0.2a.u.。
  2. 根据权利要求1所述的催化剂,其特征在于,以重量份计,
    所述活性组分的含量为10-60份,例如15-55份;
    所述助剂的含量为0.1-120份,例如0.2-90份;
    所述载体的含量为0.1-45份,例如1-35份。
  3. 根据权利要求1所述的催化剂,其特征在于,所述载体选自氧化铝、氧化硅和分子筛中的至少一种,例如氧化铝;
    优选地,所述载体为经不低于500℃的温度处理过的载体。
  4. 根据权利要求1所述的催化剂,其特征在于,所述载体包括氧化铝,其中以氧化铝的重量为基准,α,β,γ,δ,θ-氧化铝的比例分别是0.1-99%、0.1-99%、0.1-99%、0.1-99%、0.1-99%,优选分别是10-95%、1-70%、2-90%、5-90%、3-80%。
  5. 根据权利要求1所述的催化剂,其特征在于,所述催化剂是一种用于二元腈加氢制二元胺的催化剂。
  6. 根据权利要求1所述的催化剂,其特征在于,所述催化剂中α-NiO的相对含量为大于0.0001a.u.,例如大于0.001a.u.,进一步例如大于0.01a.u.;或者所述催化剂中α-NiO的含量为大于0.0001wt%,例如大于0.001wt%,进一步例如大于0.01wt%。
  7. 一种如前述权利要求中任一项所述的催化剂的制备方法,其特征在于,包括以下步骤:
    1)将助剂盐溶液、第一沉淀剂溶液、载体和水进行第一接触,得到改性载体;
    2)将镍盐溶液、第二沉淀剂溶液、步骤1)所得改性载体和水进行第二接触,过滤、焙烧得到催化剂,
    例如,步骤(1)中,助剂盐溶液和第一沉淀剂溶液同时加入含有载体的水中,进行第一接触,和/或步骤2)中,将镍盐溶液和第二沉淀剂溶液同时加入含有步骤1)所得改性载体的水中,进行第二接触。
  8. 根据权利要求7所述的方法,其特征在于,在步骤1)中,所使用的载体是经不低于500℃的温度处理过的,优选地,所使用的载体是经高于500℃的温度处理过的。
  9. 根据权利要求7所述的方法,其特征在于,控制第一接触的溶液和第二接触的溶液的终点pH为6.0-10.0,例如6.0-8.0,
    例如,所述第一接触和/或第二接触的温度为50-90℃,和/或所述第一接触和/或第二接触的时间为3-6小时。
  10. 根据权利要求7所述的方法,其特征在于,所述助剂盐选自Mg(NO 3) 2、Cu(NO 3) 2、Co(NO 3) 2、Zn(NO 3) 2、Zr(NO 3) 4、(NH 4) 2MoO 4、Mg(NO 3) 2·6H 2O、Cu(NO 3) 2·3H 2O、Co(NO 3) 2·6H 2O、Zn(NO 3) 2·6H 2O和Zr(NO 3) 4·5H 2O中的一种或多种,例如选自Cu(NO 3) 2、Zr(NO 3) 4、(NH 4) 2MoO 4和Co(NO 3) 2中的一种或多种;
    和/或所述第一沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和氨水中的一种或多种,优选地,所述第一沉淀剂是不含碳的,更优选地,所述第一沉淀剂是氢氧化钠和/或氨水;
    和/或所述镍盐为硫酸镍和/或硝酸镍,例如硝酸镍;
    和/或所述第二沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和氨水中的一种或多种,优选地,所述第二沉淀剂是含碳的,更优选地,所述第二沉淀剂是碳酸钠和/或碳酸氢钠。
  11. 根据权利要求7所述的方法,其特征在于,步骤1)中,所述助剂盐溶液的浓度为0.1-1.5mol/L,例如0.3-1.2mol/L;和/或所述第一沉淀剂溶液的浓度为0.4-2.0mol/L,例如0.6-1.6mol/L;和/或所述载体在水中的含量为5-100g/L,例如20-80g/L,或5-20g/L,如8-15g/L。
  12. 根据权利要求7所述的方法,其特征在于,步骤2)中,所述镍盐溶液的浓度为0.2-1.5mol/L,例如0.5-1.2mol/L;和/或所述第二沉淀剂溶液的浓度为0.4-2.0mol/L,例如0.6-1.5mol/L,和/或所述 载体在水中的含量为10-100g/L,例如20-85g/L,或10-30g/L,如12-25g/L。
  13. 一种二元腈加氢制二元胺的方法,其包括在如权利要求1-6中任一项所述的催化剂或根据权利要求7-12中任一项所述的催化剂的存在下,将二元腈与氢气反应接触反应生成二元胺,例如所述氢气与二元腈的摩尔比为3:1-70:1,例如5:1-20:1。
    例如,所述反应的温度为50-120℃,例如60-80℃;和/或所述反应的压力为4.0-15.0MPa,例如4.0-12.0MPa,进一步例如6.0-10.0MPa;和/或所述反应的液相体积空速为1-12小时 -1,例如2-10小时 -1
  14. 一种如权利要求1-6中任一项所述的催化剂或根据权利要求7-12中任一项所述方法制备的催化剂或如权利要求13所述的方法在二元腈加氢制二元胺特别是脂肪族C 4-C 24二元腈(如己二腈、庚二腈、辛二腈、壬二腈、癸二腈、十一碳二腈、十二碳二腈、十三碳二腈、十四碳二腈、十五碳二腈、十六碳二腈、十七碳二腈、或十八碳二腈)或芳香族C 6-C 18二元腈(如邻苯二元腈、间苯二元腈、或对苯二元腈)加氢制脂肪族C 4-C 24二元胺(如己二胺、庚二胺、辛二胺、壬二胺、癸二胺、十一碳二胺、十二碳二胺、十三碳二胺、十四碳二胺、十五碳二胺、十六碳二胺、十七碳二胺、或十八碳二胺)或芳香族C 6-C 18二元胺(如邻苯二元胺、间苯二元胺、或对苯二元胺)中的应用。
PCT/CN2021/126727 2020-10-27 2021-10-27 一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用 WO2022089487A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/250,828 US20230390743A1 (en) 2020-10-27 2021-10-27 Catalyst for producing dibasic amine by hydrogenation of dibasic nitrile, a process for preparing the same and use thereof
EP21885214.3A EP4238651A4 (en) 2020-10-27 2021-10-27 CATALYST FOR THE PREPARATION OF DIAMINE BY HYDROGENATION OF DINITRILE, ITS PREPARATION METHOD AND ITS APPLICATION
JP2023525992A JP2023547203A (ja) 2020-10-27 2021-10-27 ジニトリルの水素化によりジアミンを製造するための触媒、その製造方法、およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011164914.3 2020-10-27
CN202011164914.3A CN114471572B (zh) 2020-10-27 2020-10-27 一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022089487A1 true WO2022089487A1 (zh) 2022-05-05

Family

ID=81381526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126727 WO2022089487A1 (zh) 2020-10-27 2021-10-27 一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用

Country Status (5)

Country Link
US (1) US20230390743A1 (zh)
EP (1) EP4238651A4 (zh)
JP (1) JP2023547203A (zh)
CN (1) CN114471572B (zh)
WO (1) WO2022089487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894253A (zh) * 2022-11-10 2023-04-04 山东阳谷华泰化工股份有限公司 一种己二腈催化加氢合成己二胺的生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340848A2 (en) * 1988-05-06 1989-11-08 Unilever N.V. Process for the hydrogenation of higher nitriles to amines
US20030120115A1 (en) * 2001-10-23 2003-06-26 Andreas Ansmann Supported cobalt catalysts for nitrile hydrogenations
CN101670289A (zh) * 2009-10-09 2010-03-17 飞翔化工(张家港)有限公司 一种担载型镍催化剂的制备方法
EP3061743A1 (de) * 2015-02-25 2016-08-31 Basf Se Verfahren zur Herstellung von primären Aminen unter Verwendung eines Nickel-Festbettkatalysators
CN106807395A (zh) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 一种用于合成己二胺的催化剂
CN107805203A (zh) * 2017-11-15 2018-03-16 上海应用技术大学 一种己二胺的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029160B (zh) * 2010-11-17 2013-08-21 南京大学 一种用于制备间苯二甲胺的催化剂及其制备方法
CN102688763B (zh) * 2011-03-22 2014-10-22 中国科学院大连化学物理研究所 一种在临氨条件下间苯二甲腈加氢制备间苯二甲胺的催化剂
CN102690205A (zh) * 2011-03-22 2012-09-26 中国科学院大连化学物理研究所 一种制备间苯二甲胺的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340848A2 (en) * 1988-05-06 1989-11-08 Unilever N.V. Process for the hydrogenation of higher nitriles to amines
US20030120115A1 (en) * 2001-10-23 2003-06-26 Andreas Ansmann Supported cobalt catalysts for nitrile hydrogenations
CN101670289A (zh) * 2009-10-09 2010-03-17 飞翔化工(张家港)有限公司 一种担载型镍催化剂的制备方法
EP3061743A1 (de) * 2015-02-25 2016-08-31 Basf Se Verfahren zur Herstellung von primären Aminen unter Verwendung eines Nickel-Festbettkatalysators
CN106807395A (zh) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 一种用于合成己二胺的催化剂
CN107805203A (zh) * 2017-11-15 2018-03-16 上海应用技术大学 一种己二胺的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Petrochemical Analysis Method (RIPP Test Method", 1990, SCIENCE PRESS
See also references of EP4238651A4

Also Published As

Publication number Publication date
EP4238651A1 (en) 2023-09-06
US20230390743A1 (en) 2023-12-07
JP2023547203A (ja) 2023-11-09
CN114471572A (zh) 2022-05-13
EP4238651A4 (en) 2024-05-29
CN114471572B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US3255248A (en) Catalytic hydrogenation of organic nitrogenous carbon compounds to amines
CA2446989C (en) A process for the manufacture of diethylenetriamine and higher polyethylenepolyamines
WO2022089487A1 (zh) 一种用于二元腈加氢制二元胺的催化剂、其制备方法和应用
CN112898558B (zh) 一种聚醚多元醇临氢胺化制备聚醚胺的方法
JP4732686B2 (ja) イソホロンジアミン(ipda、3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミン)の製造方法
CN109985628A (zh) 水滑石复合过渡金属催化剂用于醛类或酮类化合物临氢氨解反应中的用途
JP2010520247A (ja) トリメチルヘキサメチレンジアミンの製造方法
JPH10511697A (ja) 触媒として使用可能な金属化合物
WO1998011058A1 (de) Für die herstellung von aliphatischen alpha, omega-aminonitrilen durch partielle hydrierung von aliphatischen dinitrilen geeignete katalysatoren
US10035755B2 (en) Method for producing halogen-N,N-dimethylbenzylamines
CN1321973C (zh) 高选择性生产二(氨甲基)取代的芳族化合物的方法
CN113398932B (zh) 一种二元腈加氢制二元胺的制备方法
CN114471582B (zh) 一种用于二元腈加氢制二元胺的催化剂及方法和应用
CN113402396A (zh) 间苯二甲胺并联产1,3-二胺甲基环己烷的生产方法
CN113398933B (zh) 一种用于二元腈加氢制二元胺的催化剂及其制备方法和应用
JP2000026377A (ja) 環状脂肪族アミンの製造法
JPH10130210A (ja) ジアミンの製造方法
CN111925341B (zh) 一种哌嗪的制备方法
CN100506376C (zh) 硝基苯气相加氢制苯胺的流化床催化剂
CN114436865B (zh) 一种4-氨基环己醇的制备方法
JP2005506187A (ja) 触媒として適当な組成物
CN114797880A (zh) 一种复合金属氧化物催化剂及其制备方法和应用
JP4388522B2 (ja) イミダゾール類を溶媒として用いたキシリレンジアミンの製造方法
CN116899573A (zh) 一种加氢催化剂及其制备方法和应用
CN117531522A (zh) 一种超临界临氨氢化反应催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525992

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007891

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885214

Country of ref document: EP

Effective date: 20230530

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023007891

Country of ref document: BR

Free format text: FAVOR EFETUAR, EM ATE 60 (SESSENTA) DIAS, O PAGAMENTO DE GRU CODIGO DE SERVICO 260 PARA A REGULARIZACAO DO PEDIDO, CONFORME ART 2O 1O DA RESOLUCAO 189/2017 E NOTA DE ESCLARECIMENTO PUBLICADA NA RPI 2421 DE 30/05/2017, UMA VEZ QUE A PETICAO NO 870230041789 DE 18/05/2023 APRESENTA DOCUMENTOS REFERENTES A DOIS SERVICOS DIVERSOS (COMPLEMENTACAO E MODIFICACAO NO PEDIDO) TENDO SIDO PAGA SOMENTE UMA RETRIBUICAO. DEVERA SER PAGA MAIS 1 (UMA) GRU CODIGO DE SERVICO 260 E A GRU CODIGO DE SERVICO 207 REFERENTE A RESPOSTA DESTA EXIGENCIA.

ENP Entry into the national phase

Ref document number: 112023007891

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230426