WO2022088607A1 - 线路板及其激光开窗方法 - Google Patents
线路板及其激光开窗方法 Download PDFInfo
- Publication number
- WO2022088607A1 WO2022088607A1 PCT/CN2021/084938 CN2021084938W WO2022088607A1 WO 2022088607 A1 WO2022088607 A1 WO 2022088607A1 CN 2021084938 W CN2021084938 W CN 2021084938W WO 2022088607 A1 WO2022088607 A1 WO 2022088607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coordinates
- circuit board
- target position
- laser
- window opening
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229910000679 solder Inorganic materials 0.000 claims abstract description 200
- 238000000608 laser ablation Methods 0.000 claims abstract description 44
- 238000007639 printing Methods 0.000 claims abstract description 44
- 238000010019 resist printing Methods 0.000 claims abstract description 20
- 230000000903 blocking effect Effects 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 8
- 239000000428 dust Substances 0.000 claims description 5
- 238000002679 ablation Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 123
- 239000000758 substrate Substances 0.000 description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 18
- 239000011889 copper foil Substances 0.000 description 15
- 238000007650 screen-printing Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000012797 qualification Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/282—Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0017—Etching of the substrate by chemical or physical means
- H05K3/0026—Etching of the substrate by chemical or physical means by laser ablation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/10—Using electric, magnetic and electromagnetic fields; Using laser light
- H05K2203/107—Using laser light
Definitions
- the invention relates to the technical field of circuit boards, in particular to a circuit board and a laser window opening method thereof.
- circuit boards With the gradual maturity of the manufacturing technology of printed circuit boards, the production of single-layer boards, multi-layer boards and flexible boards has become the mainstream form of circuit boards.
- the structural design and process flow of circuit boards basically form a complete
- a layer of photosensitive solder resist ink is pressed on the copper surface after the circuit is formed, which is used as a post-process image transfer, and at the same time, it protects the board surface in the post-process to prevent The circuit is oxidized and has the function of solder mask.
- Solder mask opening refers to the size of the part where the copper is exposed at the position to be soldered, that is, the size of the part that does not cover the ink
- the cover line refers to the size and amount of the circuit part covered by the solder mask oil. If the cover line distance is too small, it will cause exposed lines in the production process.
- exposure offset is one of the main defects of solder mask. Because of the complex human factors and other related process factors, it brings great hidden danger to the control of exposure offset problem in solder mask production. Due to the exposure offset, the pads and copper wires on the solder mask ink are exposed, which affects the stability of subsequent mounting, reduces the welding firmness, and more seriously brings short-circuit fatal defects to electrical functions. Moreover, the offset is abnormally poor. Most of the boards cannot be repaired, and will be directly washed and reworked for production or even scrapped, which seriously affects the accuracy and efficiency of production.
- the purpose of the present invention is to overcome the deficiencies in the prior art, and to provide a circuit board and a laser window opening method for improving the window opening precision of the circuit board.
- a method for laser window opening of a circuit board comprising: acquiring a solder resist printing image of a circuit board; acquiring target position coordinates according to the solder resist printing image; comparing the target position coordinates with preset coordinates to obtain Target position offset compensation amount; adjust the laser window opening coordinates of the laser ablation device according to the target position offset compensation amount, so that the window opening position of the circuit board coincides with the window opening position corresponding to the preset coordinates;
- the laser windowing coordinates are used to perform a laser ablation operation on the circuit board, so as to remove the solder resist ink corresponding to the preset coordinates on the circuit board.
- the acquiring the solder resist printing image of the circuit board includes: acquiring the printing barrier image of the circuit board, wherein the printing barrier image includes a printing area image and a barrier area image, so Solder resist ink is printed on the image of the printing area, and the coordinates of the laser window opening are located in the printing area; the image of the blocking point area is not covered with solder resist ink, and the coordinates of the target position are located in the blocking point area.
- the obtaining the target position coordinates according to the solder mask printing image includes: obtaining the aperture ring positioning coordinates according to the blocking point area image; and obtaining the target position coordinates according to the hole ring positioning coordinates.
- the comparing the target position coordinates with the preset coordinates to obtain the target position offset compensation amount includes: performing displacement difference processing between the target position coordinates and the first preset coordinates to obtain the target position displacement compensation amount; the adjusting the laser windowing coordinates of the laser ablation device according to the target position offset compensation amount includes: adjusting the laser windowing coordinates of the laser ablation device according to the target position displacement compensation amount The distance from the coordinates of the target site.
- the obtaining the target position coordinates according to the solder mask printing image includes: obtaining the first target position coordinates and the second target position coordinates according to the solder mask printing image; The coordinates are compared with the preset coordinates to obtain the target position offset compensation amount, which previously includes: obtaining the coordinate distance difference between the first target position coordinates and the second target position coordinates; detecting whether the coordinate distance difference is equal to the predetermined distance. Set the spacing; when the coordinate spacing difference is equal to the preset spacing, send a screen printing qualified signal to the monitoring system.
- the detecting whether the coordinate distance difference is equal to a preset distance further includes: when the coordinate distance difference is less than or greater than the preset distance, taking out the circuit board, and monitoring the The system sends a silkscreen warning signal.
- performing a laser ablation operation on the circuit board according to the laser window opening coordinates further includes: turning on a dust suction fan of the laser ablation device, so that the laser ablation operation is performed. Ablation gases are exhausted.
- the obtaining of the solder resist printing image of the circuit board further includes: pre-baking the circuit board to obtain a printed circuit board stably coated with the solder resist ink.
- a circuit board is obtained by using the circuit board laser window opening method described in any of the above embodiments.
- the present invention has at least the following advantages:
- the target position offset compensation amount reflects the target position coordinates and the preset coordinates.
- the target position offset compensation amount reflects the target position coordinates and the preset coordinates.
- FIG. 1 is a flowchart of a circuit board laser windowing method in one embodiment
- FIG. 2 is a schematic structural diagram of a circuit board in an embodiment
- FIG. 3 is a cross-sectional view of the circuit board shown in FIG. 2 along the A-A direction;
- FIG. 4 is an enlarged schematic view of the circuit board shown in FIG. 3 at A1.
- the circuit board laser window opening method includes acquiring a solder resist printing image of the circuit board; acquiring target coordinates according to the solder resist printing image; comparing the target coordinates with preset coordinates , obtain the target position offset compensation amount; adjust the laser window opening coordinates of the laser ablation device according to the target position offset compensation amount, so that the window opening position of the circuit board coincides with the window opening position corresponding to the preset coordinates; A laser ablation operation is performed on the circuit board according to the laser window opening coordinates, so as to remove the solder resist ink corresponding to the preset coordinates on the circuit board.
- the target position offset compensation amount reflects the target position coordinates and the preset coordinates.
- the target position offset compensation amount reflects the target position coordinates and the preset coordinates.
- FIG. 1 is a flowchart of a method for laser window opening of a circuit board according to an embodiment of the present invention.
- the circuit board laser window opening method includes part or all of the following steps.
- the solder resist printing image is a circuit board formed after the circuit board is screen-printed, wherein the printing material used in the silk-screen printing is solder resist ink, which is used to form a patterned layer on the circuit board.
- the solder mask layer is convenient to protect the circuit on the circuit board and the copper foil, avoids the circuit of the circuit board from being exposed to the external environment too much, and reduces the corrosion of the copper foil circuit of the circuit board.
- the target position coordinates are the coordinates corresponding to the stop points on the solder resist printing image, and the target position coordinates are located outside the solder resist ink on the circuit board, that is, the target position coordinates correspond to There is no solder resist ink on the position of the laser, which is convenient to distinguish the target position coordinates from other position coordinates, so as to facilitate the use of the target position coordinates as the positioning coordinates, which is convenient for subsequent adjustment of the position of the laser window opening to improve the laser window opening. precision.
- the preset coordinates are the target position coordinates on the standard circuit board, that is, the coordinates corresponding to the preset coordinates are the reference coordinates, which is convenient for adjusting the laser window opening coordinates. Comparing the target position coordinates with the preset coordinates is to compare the current target position coordinates on the circuit board with the target position coordinates on the standard circuit board, so as to obtain the target position offset compensation amount, which is convenient for determining the circuit. The deviation of the current target position coordinates on the board and the target position coordinates on the standard circuit board is convenient for subsequent adjustment of the laser window opening coordinates.
- the target position coordinates are shifted to the right relative to the preset coordinates, it is convenient to subsequently shift the laser windowing coordinates to the left by the same amount, so that the subsequent laser windowing coordinates always correspond to the preset coordinates
- the opening positions of the lasers are coincident to improve the precision of laser window opening.
- S400 Adjust the laser window opening coordinates of the laser ablation device according to the target position offset compensation amount, so that the window opening position of the circuit board coincides with the window opening position corresponding to the preset coordinates.
- the target position offset compensation amount is used to reflect the deviation between the current target position of the circuit board and the standard target position.
- S500 Perform a laser ablation operation on the circuit board according to the laser window opening coordinates, so as to remove the solder resist ink corresponding to the preset coordinates on the circuit board.
- the laser window opening coordinates are the coordinates corresponding to the final window opening position, that is, the window opening coordinates corrected according to the target position offset compensation amount, which is convenient for the laser ablation device to be aligned with the needs of the circuit board.
- the position of the opening window is convenient to accurately remove the solder mask ink that needs to be opened at the opening position, so as to realize the precise opening of the circuit board.
- the acquiring the solder resist printing image of the circuit board includes: acquiring the printing barrier image of the circuit board, wherein the printing barrier image includes a printing area image and a barrier area image, so Solder resist ink is printed on the image of the printing area, and the coordinates of the laser window opening are located in the printing area; the image of the blocking point area is not covered with solder resist ink, and the coordinates of the target position are located in the blocking point area.
- the printing blocking point image has a printing area and a blocking point area, and the printing area is a material penetration area corresponding to the screen printing plate, which is convenient for printing the solder resist ink on the circuit board.
- the blocking point area is the material blocking area corresponding to the screen printing screen, which blocks the solder mask ink on the screen printing screen, and cannot reach the circuit board through the screen printing screen, so as to form an area with the target position coordinates , so that it is convenient to distinguish the coordinates of the target position from the coordinates of other positions.
- the coordinates of the target position are not covered with solder resist ink, and their color on the circuit board is white or gray, and the printing area is covered with solder ink.
- the color corresponding to each coordinate in the area is green. In this way, it is convenient for the image acquisition device to obtain the target position coordinates accurately by acquiring the gray value of the circuit board.
- the obtaining the target position coordinates according to the solder mask printing image includes: obtaining the aperture ring positioning coordinates according to the blocking point area image; and obtaining the target position coordinates according to the hole ring positioning coordinates.
- the positioning coordinates of the hole ring are used to determine the coordinates of the target position.
- the structure of the image of the stop point area is a rectangular structure, and the positioning coordinates of the hole ring are corresponding to the four corners of the rectangular structure. coordinates, and two intersecting diagonal lines are determined by the four positioning coordinates of the aperture ring, and the focus of the two diagonal lines is used as the target position coordinates.
- the target position coordinates can be determined according to the aperture ring positioning coordinates, so that the target position coordinates can be used as the comparison coordinates for adjusting the window opening coordinates.
- there are two target position coordinates and the two target position coordinates are two adjacent quarter dividing points on two diagonal lines.
- the comparing the target position coordinates with the preset coordinates to obtain the target position offset compensation amount includes: performing displacement difference processing between the target position coordinates and the first preset coordinates to obtain the target position displacement compensation amount; the adjusting the laser windowing coordinates of the laser ablation device according to the target position offset compensation amount includes: adjusting the laser windowing coordinates of the laser ablation device according to the target position displacement compensation amount The distance from the coordinates of the target site.
- the first preset coordinate is the corresponding coordinate in the absolute coordinate system, that is, the target position coordinate and the first preset coordinate are both the X-axis coordinate value and the Y-axis coordinate value.
- the target position coordinates and the first preset coordinates are subjected to displacement difference processing, so that the coordinates corresponding to the current target position of the circuit board are compared with the first standard coordinates, so as to facilitate the determination of the situation that the current target position of the circuit board deviates from the standard target position.
- the distance between the laser window opening coordinates of the laser ablation device and the target location coordinates is adjusted according to the target position displacement compensation amount, that is, the window opening position of the circuit board is moved on the absolute coordinate axis to adjust the circuit board.
- the distance between the window opening position and the current target position of the circuit board is convenient for the laser window opening coordinates to always coincide with the window opening position corresponding to the preset coordinates, and the precision of the laser window opening is improved.
- the comparing the target position coordinates with the preset coordinates to obtain the target position offset compensation amount includes: calculating a deflection angle difference between the target position coordinates and the second preset coordinates processing to obtain the target position deflection angle compensation amount; the adjusting the laser windowing coordinates of the laser ablation device according to the target position deflection angle compensation amount includes: adjusting the laser beam of the laser ablation device according to the target position deflection angle compensation amount The deflection angle between the window opening coordinates and the target position coordinates.
- the second preset coordinate is a corresponding coordinate in a relative polar coordinate system, that is, the target position coordinate and the second preset coordinate are both polar axis length values and polar axis angle values.
- the deflection angle difference processing is performed on the coordinates of the target position and the second preset coordinates, so that the polar coordinates corresponding to the current target position of the circuit board are compared with the second standard coordinates, so as to facilitate the determination of the current target position and the standard target position of the circuit board. deflection.
- the distance between the laser window opening coordinates of the laser ablation device and the target location coordinates is adjusted according to the target position displacement compensation amount, that is, the window opening position of the circuit board is moved on the relative polar coordinate axis to adjust the circuit board.
- the deflection angle between the window opening position of the board and the current target position of the circuit board is convenient for the laser window opening coordinates to always coincide with the window opening position corresponding to the preset coordinates, and the precision of the laser window opening is improved.
- the obtaining the target position coordinates according to the solder mask printing image includes: obtaining the first target position coordinates and the second target position coordinates according to the solder mask printing image; The coordinates are compared with the preset coordinates to obtain the target position offset compensation amount, which previously includes: obtaining the coordinate distance difference between the first target position coordinates and the second target position coordinates; detecting whether the coordinate distance difference is equal to the predetermined distance. Set the spacing; when the coordinate spacing difference is equal to the preset spacing, send a screen printing qualified signal to the monitoring system.
- the structure of the solder resist printing image is a rectangular ring
- the coordinates of the first target position are a quarter dividing point on a diagonal line of the solder resist printing image
- the coordinates of the second target position are the resistance
- a quarter dividing point on another diagonal line of the solder printing image, that is, the coordinates of the first target position and the coordinates of the second target position are respectively two adjacent quarters on the two diagonal lines
- the demarcation point is convenient for distinguishing the coordinates of the first target site and the coordinates of the second target site.
- the first target position coordinates and the second target position coordinates are used to jointly determine the target position coordinates, which improves the precise positioning of the target position coordinates.
- step S200 After obtaining the coordinate distance difference between the first target coordinate and the second target coordinate, it is convenient to determine whether the solder resist printing image is deformed, so as to determine whether to continue to perform the operation of obtaining the target coordinate. In this way, after it is determined that the coordinate distance difference is equal to the preset distance, a screen printing qualified signal is sent to the monitoring system, and step S200 is continued, so that after ensuring the accuracy of the solder mask printing image, the accuracy of the solder mask printing image is improved. The positioning accuracy of the target coordinates.
- the detecting whether the coordinate distance difference is equal to a preset distance further includes: when the coordinate distance difference is less than or greater than the preset distance, taking out the circuit board, and monitoring the The system sends a silkscreen warning signal.
- the coordinate distance difference is smaller than or larger than the preset distance, indicating that the printed solder resist printing image on the circuit board is a deformed image, that is, the circuit board manufactured through the silk screen printing process is unqualified, in order to avoid subsequent Influence on the accuracy of the window opening position, before obtaining the target position coordinates, a silk screen warning signal is sent to the monitoring system, which is convenient for the monitoring system to detect unqualified circuit boards in time and prevent them from entering the window opening process.
- performing a laser ablation operation on the circuit board according to the laser window opening coordinates further includes: turning on a dust suction fan of the laser ablation device, so that the laser ablation operation is performed. Ablation gases are exhausted.
- the laser ablation device performs laser ablation, it sputters the solder resist ink on the circuit board, so that the solder resist ink is bombarded, thereby forming extremely small particles. The existence of the environment will threaten the safety of the circuit board. Therefore, by turning on the dust suction fan of the laser ablation device, the dust mixed with the solder resist ink is discharged, and the safety of the laser window opening is improved.
- the obtaining of the solder resist printing image of the circuit board further includes: pre-baking the circuit board to obtain a printed circuit board stably coated with the solder resist ink.
- the pre-baking of the circuit board makes the solder resist ink on the circuit board tend to be stable, facilitates the stable setting of the solder resist ink, and protects the internal structure of the circuit board.
- step S500 In order to reduce the short-circuit probability of the inner and outer layers of the produced circuit board, that is, to reduce the scrapping probability of the circuit board, after step S500, the following steps are further included:
- the illuminance reflection time is obtained by the infrared transmitter receiver, that is, the output end of the infrared transmitter receiver is aligned with the laser window opening position of the circuit board, and the infrared light is emitted to the laser window opening position of the circuit board. According to the time when the reflected infrared light is received, it is determined whether the laser window opening position penetrates the circuit board.
- the laser window opening position When the laser window opening position does not penetrate the circuit board, the laser window opening position has a bottom on the circuit board, and the output end of the infrared transmitter and receiver emits infrared light and returns along the original path after encountering the bottom of the laser window opening position, that is, infrared emission
- the receiver receives the reflected infrared light; and when the laser window opening position penetrates the circuit board, the infrared emission receiver will not be able to receive the reflected infrared light, that is, the illumination reflection time is infinite at this time.
- the preset reflection time is on one side of the circuit board, and when the other side of the circuit board is used as the bottom of the laser window opening position, the infrared emission receiver receives the reflection time of the reflected infrared light.
- the reflection delay time is obtained by comparing the illumination reflection time with the preset reflection time, and the reflection delay time is used to determine the reflection time difference of the infrared light, which is convenient for determining whether the laser window opening position is penetrated.
- the reflection delay time is greater than 0, it indicates that the reflection time of the infrared light is greater than the preset reflection time, that is, it indicates that the bottom of the laser window opening position is outside the circuit board, that is, it indicates that the laser window opening position runs through the circuit plate.
- the circuit board is an unqualified multi-layer board and cannot be used as a normal circuit board.
- the monitoring system By sending a defective alarm signal to the monitoring system, it is convenient for the monitoring system to detect unqualified circuit boards in time, so as to facilitate timely rejection of unqualified products. , improve the pass rate of the circuit board.
- a tin-spraying operation needs to be performed, that is, a layer of solder paste is applied on the solder resist ink, so as to improve the solderability of the circuit board.
- a tin-spraying operation needs to be performed, that is, a layer of solder paste is applied on the solder resist ink, so as to improve the solderability of the circuit board.
- the laser ablation operation at least one of sputtering hole forming and mechanically controlled deep drilling is used to form the laser window position.
- the above-mentioned hole forming methods all need to remove part of the material of the circuit board.
- step S500 In order to find and clean up the residual waste in time, so as to improve the solderability of the circuit board, after step S500, the following steps are further included:
- the imaging image of the laser window opening position is an image of the side of the circuit board with the window opening
- the image acquisition device forms the imaging image of the laser window opening position by collecting the brightness of the circuit board.
- the positional imaging image includes the brightness value corresponding to each window opening, that is, the brightness of the reflected light at the side wall and the bottom of the laser window opening position.
- the brightness value is the value corresponding to the brightness in the laser window opening position, which is used to reflect the reflective performance of the sidewall and bottom of the laser window opening position.
- Specular reflection is not present in the window position, that is, the light is diffusely reflected in the laser window opening position, which reduces the number of rays that are finally reflected back to the image acquisition device, thereby reducing the reflected brightness obtained by the image acquisition device.
- the brightness feedback amount obtained by comparing the brightness value with the preset brightness, wherein the preset brightness is the brightness corresponding to the laser window opening position when there is no residue, and the brightness feedback amount reflects the laser window opening position The difference between the current brightness and the brightness when there is no residue is convenient to determine whether there is residue in the laser window opening position.
- the size of the brightness feedback determines the cleaning parameters of the plasma cleaning machine, that is, the brightness feedback is proportional to the cleaning time and times of the circuit board of the plasma cleaning machine, that is, the brightness feedback increases, and the plasma cleaning
- the cleaning time and times of the machine to the circuit board are increased, which is convenient to remove the residue in the laser window position, improves the cleanliness in the laser window position, and thus increases the volume of the solder paste layer in the laser window position. , thereby improving the electrical conductivity of the circuit board.
- the preset brightness can also be determined according to the shape of the laser window opening position on the circuit board. With different shapes and structures, the brightness value of the window opening when there is no residue is still different, that is, the brightness value is different from the brightness value. Before the preset brightness is compared, the shape of the window corresponding to the preset brightness used is the same as the shape of the currently detected window, so as to ensure that when comparing the brightness of different shapes, the comparison standard is adjusted accordingly to improve the accuracy. The cleanliness of residues in open windows.
- the image acquisition device includes a CCD (Charge Coupled Device, charge coupled device) camera or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) camera.
- CCD Charge Coupled Device, charge coupled device
- CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
- the present application also provides a circuit board, which is obtained by using the method for manufacturing a multilayer circuit board described in any of the above embodiments.
- the target position coordinates remaining after the printing process are obtained and used as a comparison variable for determining the window opening coordinates.
- the target position offset compensation amount reflects the target position.
- the deviation between the position coordinates and the preset coordinates, in this way, after the target position coordinates are deviated, the position of the window to be opened is correspondingly changed according to the target position deviation compensation amount, so that the laser window opening coordinates always correspond to the preset coordinates.
- the window opening positions of the laser beams are overlapped, which improves the precision of laser window opening, facilitates the removal of the solder resist ink at the specified window opening position, and obtains circuit boards with higher window opening accuracy, thereby improving the qualification rate of circuit boards.
- FIG. 2 is a schematic structural diagram of a circuit board according to an embodiment of the present invention.
- the circuit board 10 includes a solder resist layer 100 and a target bump 300 . Please refer to FIG. 3 together.
- the circuit board 10 further includes a substrate 200 .
- the substrate 200 has a printing area 210 and a target area 220 .
- the target area 220 is disposed adjacent to the printing area 210 .
- the printing area 210 is covered with the solder resist layer 100 .
- the solder resist layer 100 is provided with an opening window 110 .
- the opening 110 is used to expose part of the copper foil on the substrate 200 .
- the target protrusion 300 is disposed in the target area 220 .
- the target protrusions 300 are connected to the substrate 200 , and the distance by which the target protrusions 300 protrude from the substrate 200 is less than or equal to the distance by which the solder resist layer 100 protrudes from the substrate 200 .
- the target protrusion 300 corresponds to the opening window 110 , and the target protrusion 300 is used for coordinate positioning of the opening window 110 .
- the target area 220 is formed on the substrate 200 , and the target protrusion 300 for locating the coordinates of the opening window 110 is arranged in the target area 220 , and the opening window 110 is opened in the area covered with the solder resist.
- the position of the split window 110 is determined, which is convenient for the laser ablation device to perform a windowing operation on the solder resist layer 100 on the substrate 200 to expose the The copper foil in the window 110 is opened, so that the use of film and developing solution is omitted when the circuit board is produced, and the production cost of the circuit board is reduced.
- the solder resist layer 100 is provided with an auxiliary opening hole 120 , and the auxiliary opening hole 120 is disposed adjacent to the opening opening 110 .
- the auxiliary window opening 120 is used to assist the coordinate positioning of the opening window 110 , and the position of the auxiliary opening opening 120 is close to the opening opening 110 , so that the auxiliary opening opening 120
- the coordinates of 110 are similar to the coordinates of the opening window 110, that is, the difference between the X-axis coordinate value of the auxiliary window opening 120 and the X-axis coordinate value of the opening window 110 decreases, and the coordinate value of the auxiliary window opening 120
- the difference between the Y-axis coordinate value and the Y-axis coordinate value of the window 110 decreases.
- the coordinates of the auxiliary window opening 120 facilitate the further positioning of the coordinates of the opening window 110, which further improves the accuracy of the opening window 110. positioning accuracy.
- the auxiliary opening hole 120 includes a first opening hole 122 and a second opening hole 124 , the first opening hole 122 and the second opening hole 124 124 are arranged adjacent to each other, and the first window opening 122 and the second window opening 124 are arranged around the opening window 110 .
- the first window opening 122 is disposed close to the opening window 110
- the second opening opening 124 is also disposed close to the opening window 110 , so that the opening window 110 is closed by the first opening window 110 .
- the fenestration hole 122 and the second fenestration hole 124 are enclosed, so that the fenestration 110 is located between the first fenestration hole 122 and the second fenestration hole 124, so that the The positions of the first opening 122 and the second opening 124 determine the position of the opening 110 .
- the first opening hole 122 is located at the corner of the opening window 110 .
- the first opening hole 122 is located at the corner of the opening window 110 , which indicates that the first opening hole 122 is located at a specific position on the substrate 200 , so that the first opening hole 122 is located at a specific position on the substrate 200 .
- the coordinates of the window hole 122 are special, which facilitates positioning the position of the window opening 110 by determining the position of the first window opening hole 122 , and improves the positioning accuracy of the window opening 110 .
- the target area 220 has an annular structure, and the target area 220 and a part of the solder resist layer 100 are arranged around each other.
- the target area 220 having a ring structure is located on the substrate 200 , the solder resist layer 100 on the substrate 200 is disposed adjacent to the target area 220 , and the target area 220 and the Parts of the solder resist layer 100 are arranged in a surrounding area, so that the solder resist layer 100 is adjacent to the inner side and the outer side of the target area 220 , so that the target area 220 annularly surrounds part of the solder resist layer 100, it is convenient to quickly determine the position coordinates of the target site area 220, so as to facilitate the rapid determination of the coordinates of the target site protrusion 300.
- the target protrusions 300 are disposed adjacent to the solder resist layer 100 .
- the target protrusion 300 is used as a bridge for determining the opening window 110 , that is, the coordinates of the opening window 110 can be obtained by determining the coordinates of the target protrusion 300 .
- the target protrusions 300 are disposed adjacent to the solder resist layer 100 , so that the distance between the target protrusions 300 and the solder resist layer 100 is reduced, and the solder resist layer 100 has green reflective properties , it is very easy to be recognized by the image acquisition device, and the target protrusion 300 is close to the solder resist layer 100 , which is convenient to determine the position of the target protrusion 300 by changing the gray value of the substrate 200 , so that The coordinates of the target protrusions 300 are more easily identified, which improves the acquisition speed of the coordinates of the target protrusions 300 .
- a groove is formed on the side of the solder resist layer close to the target area, and at least a part of the target protrusion is located in the groove.
- the setting of the grooves causes the side shape of the solder resist layer to be greatly deformed. It is convenient to quickly determine the target bulge, which further improves the acquisition speed of the coordinates of the target bulge.
- the projection of the target protrusion on the substrate is located in the groove, and the diameter of the groove is larger than the diameter of the target protrusion, so that the target protrusion is completely It is accommodated in the groove, so that the deformation of the edge of the solder resist layer close to the target protrusion is further increased, which further facilitates the rapid determination of the position of the target protrusion.
- the target protrusion is provided with a positioning hole, and the positioning hole is used for coordinate positioning of the target protrusion.
- the formation of the positioning holes causes the gray scale on the target protrusion to change, and through the gray scale comparison, it is convenient to quickly determine the coordinates of the target protrusion, which in turn facilitates rapid determination.
- the position of the open window is provided with a positioning hole, and the positioning hole is used for coordinate positioning of the target protrusion.
- solder resist ink is in a liquid state in physical state.
- the solder resist layer 100 is formed on the rolled layer on the circuit board, the copper foil circuit layer of the circuit board is provided with solder resist holes, and the solder resist layer 100 is injected into the solder resist holes.
- the traditional solder mask holes are all straight holes.
- the layer 100 is heated and softened and converted into a gel, so that after the welding gun is detached, part of the solder mask layer 100 flows out from the solder mask hole, so that the solder mask layer 100 is separated from the copper foil circuit layer, thereby making the solder mask layer 100
- the connection stability on the substrate 200 is reduced, resulting in reduced solderability of the circuit board, resulting in the soldering points of the electronic components on the circuit board falling into the solder resist holes and unable to connect with the copper foil circuit layer, that is, causing virtual soldering , thereby increasing the probability of scrapping the circuit board.
- the circuit board 10 It also includes a rolling layer 400 and a copper foil circuit layer 500.
- the copper foil circuit layer 500 is connected to the substrate 200 through the rolling layer 400.
- the copper foil circuit layer 500 is provided with solder resist holes 510.
- the solder resist layer 100 is located in the solder resist hole 510 , the copper foil circuit layer 500 is further provided with a reverse chamfered groove 520 communicating with the solder resist hole 510 , and the copper foil circuit layer 500 has a chamfer support
- the chamfered support surface 530 is located in the reverse chamfered groove 520, and the chamfered support surface 530 is located outside the extending direction of the opening of the solder resist hole 510.
- the chamfered support surface 530 and The solder resist layer 100 is in contact with each other.
- a portion of the solder resist layer 100 is located in the reverse chamfered groove 520 , that is, a portion of the solder resist layer 100 extends into the reverse chamfered groove 520 , and the solder resist layer 100 extends into the reverse chamfered groove 520 .
- the layer 100 is pressed against the chamfered support surface 530 , and the chamfered support surface 530 provides a force for the solder resist layer 100 toward the rolling layer 400 .
- the solder resist layer 100 is stably clamped in the reverse chamfered groove 520, so that the solder resist layer 100 Stable clamping in the solder resist hole 510 improves the connection stability between the solder resist layer 100 and the substrate 200 .
- the number of the reverse chamfering grooves 520 is two, the two reverse chamfering grooves 520 are disposed opposite to each other, and the openings of the two reverse chamfering grooves 520 are disposed opposite to each other .
- the portion of the solder resist layer 100 extending into the reverse chamfered groove 520 is increased, so that the clamping area between the solder resist layer 100 and the copper foil circuit layer 500 is increased, and the The solder layer 100 and the copper foil circuit layer 500 improve the connection stability between the solder resist layer 100 and the substrate 200 .
- the supporting force provided by the chamfered support surfaces 530 in the two oppositely disposed opposite chamfered grooves 520 is symmetrical, so that the force of the solder mask layer 100 is stable, and the solder mask layer 100 is further improved.
- the connection stability between the substrates 200 is improved.
- solder mask layer 100 is covered with a solder paste layer that is convenient for soldering. Since the solder mask layer 100 is partially in contact with the solder paste layer, the adhesive force between the solder mask layer 100 and the solder paste layer is limited. The size is adjusted by the contact area between the two, that is, the adhesive force between the solder mask layer 100 and the solder paste layer is proportional to the contact area between the two, that is, the solder mask layer 100 and the tin The larger the contact area between the paste layers, the greater the adhesive force between the solder resist layer 100 and the solder paste layer, so that the connection between the two is more stable.
- the diameter of the solder resist hole 510 away from the substrate 200 is larger than the diameter of the solder resist hole 510 close to the substrate 200 .
- the solder resist layer 100 is embedded in the solder resist hole 510 , and the solder resist layer 100 is stably clamped in the solder resist hole 510 , wherein the solder paste layer covers the solder resist layer 100 .
- the soldering hole 510 is formed so that the solder paste layer is in contact with the plane of the soldering resist layer 100 away from the bottom of the soldering resisting hole 510 .
- the diameter of the solder resist hole 510 When the diameter of the solder resist hole 510 is adjusted, that is, the diameter of the solder resist hole 510 away from the substrate 200 is larger than the diameter of the solder resist hole 510 close to the substrate 200 , so that the solder paste layer and the The contact area between the solder resist layers 100 is increased, so that the adhesive force between the solder resist layer 100 and the solder paste layer is increased, and the connection stability between the solder paste layer and the solder mask layer 100 is improved, The probability of separation between the solder resist layer 100 and the solder paste layer is reduced.
- the diameter of the solder resist hole 510 increases gradually along the opening direction thereof, so that the contact area between the solder paste layer and the solder resist layer 100 increases.
- the circuit board 10 further includes a positioning protrusion 600 , and the positioning protrusion 600 is provided with In the solder resist hole 510 , the positioning protrusion 600 is connected to the rolling layer 400 , and the positioning protrusion 600 is used for engaging with the positioning groove on the solder resist layer 100 .
- the positioning protrusions 600 are located in the solder resist holes 510 , for example, the positioning protrusions 600 are connected to the side walls of the solder resist holes 510 ; in another example, the positioning protrusions 600 The positioning protrusions 600 are protruded from the bottom of the solder resist hole 510 ; for another example, the sidewall of the solder resist hole 510 and the bottom of the solder resist hole 510 are respectively protruded with the positioning protrusions 600 .
- the positioning protrusions 600 correspond to the positioning grooves on the solder resist layer 100 , so that the solder resist layer 100 is easily clamped to the positioning protrusions 600 in the solder resist holes 510 , so that the solder resist layer 100 Stable connection with the positioning protrusions 600 , so that the solder resist layer 100 is stably disposed in the solder resist hole 510 , thereby making the connection between the solder resist layer 100 and the substrate 200 stable improve.
- the circuit board 10 further includes a heat dissipation layer 700 , the heat dissipation layer 700 is disposed in the solder resist hole 510 , and the heat dissipation layer 700 is respectively connected to the extension layer. 400 and the solder resist layer 100 are connected, and a part of the heat dissipation layer 700 is used to extend into the external environment.
- the solder resist layer 100 absorbs the heat of the welding torch, the heat will gradually accumulate in the solder resist hole 510, and the heat dissipation layer 700 protrudes into the external environment, so The heat dissipation layer 700 guides the heat on the solder resist layer 100 to the external environment, so that the heat on the solder resist layer 100 is dissipated to the external environment through the heat dissipation layer 700, reducing the amount of heat in the solder resist hole 510. temperature, which improves the heat dissipation effect of the circuit board.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
一种线路板及其激光开窗方法。上述方法包括获取线路板的阻焊印刷图像(S100);根据阻焊印刷图像获取靶位坐标(S200);将靶位坐标与预设坐标进行比对,得到靶位偏位补偿量(S300);根据靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,以使线路板的开窗位置与预设坐标对应的开窗位置重合(S400);根据激光开窗坐标对线路板进行激光烧蚀操作(S500)。通过获取印刷过程后残留下的靶位坐标,将其作为确定开窗坐标的比较变量,在靶位坐标与预设坐标比对之后,靶位偏位补偿量反应出靶位坐标与预设坐标之间的偏差情况,这样,在靶位坐标发生偏位之后,对应地根据靶位偏位补偿量改变即将开窗的位置,使得激光开窗坐标始终与预设坐标对应的开窗位置重合,提高了激光开窗的精度。
Description
本发明涉及线路板技术领域,特别是涉及一种线路板及其激光开窗方法。
随着印制电路板的制造技术的逐渐成熟,单层板、多层板以及柔性板的制作,已然成为电路板的主流形式,其中,对于电路板的结构设计以及工艺流程,基本形成一个完整的体系,对于印制电路板的阻焊印刷工艺,是在线路形成后的铜面上压覆一层感光阻焊油墨,作为后工序影像转移使用,同时在后制程中起保护板面,防止线路氧化以及具有阻焊的作用。阻焊开窗是指需要焊接的位置露出铜的部位的大小,即不盖油墨部分的大小,盖线指阻焊油盖住线路部分的大小及多少。盖线距离过小在生产过程中就会造成露线。
然而,每种型号的线路板生产均需要对应的曝光菲林,且曝光参数需根据不同的板子做相应调整,曝光机的人员把控不到位、菲林褶皱、菲林黑点等都会影响到最终阻焊效果。其中曝光偏位是阻焊主要不良之一,因其人为因素和其它相关制程因素复杂,给阻焊生产曝光偏位问题控制带来很大的隐患。由于曝光偏位而导致防焊油墨上的焊盘以及铜线裸露,影响后续贴装稳定性,使得焊接牢固性降低,更为严重给电性功能带来短路致命缺陷,而且,偏位异常不良板大多无法修理,会直接退洗返工生产甚至报废,严重影响生产的精度和效率。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种提高线路板的开窗精度的线路板及其激光开窗方法。
本发明的目的是通过以下技术方案来实现的:
一种线路板激光开窗方法,所述方法包括:获取线路板的阻焊印刷图像;根据所述阻焊印刷图像获取靶位坐标;将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量;根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,以使线路板的开窗位置与所述预设坐标对应的开窗位置重合;根据所述激光开窗坐标对线路板进行激光烧蚀操作,以将所述线路板上与所述预设坐标对应的阻焊油墨去除。
在其中一个实施例中,所述获取线路板的阻焊印刷图像,包括:获取所述线路板的印刷挡点图像,其中,所述印刷挡点图像包括印刷区图像以及挡点区图像,所述印刷区图像上印刷有阻焊油墨,且所述激光开窗坐标位于印刷区内;所述挡点区图像上未覆盖有阻焊油墨,且所述靶位坐标位于挡点区内。
在其中一个实施例中,所述根据所述阻焊印刷图像获取靶位坐标,包括:根据所述挡点区图像获取孔环定位坐标;根据所述孔环定位坐标获取所述靶位坐标。
在其中一个实施例中,所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,包括:将所述靶位坐标与第一预设坐标进行位移求差处理,得到靶位位移补偿量;所述根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,包括:根据所述靶位位移补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的间距。
在其中一个实施例中,所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,包括:将所述靶位坐标与第二预设坐标进行偏转角求差处理,得到靶位偏转角补偿量;所述根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,包括:根据所述靶位偏转角补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的偏转角度。
在其中一个实施例中,所述根据所述阻焊印刷图像获取靶位坐标,包括:根据所述阻焊印刷图像获取第一靶位坐标以及第二靶位坐标;所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,之前包括:获取所述第一靶位坐标与所述第二靶位坐标的坐标间距差;检测所述坐标间距差是否等于预设 间距;当所述坐标间距差等于所述预设间距时,向监测系统发送丝印合格信号。
在其中一个实施例中,所述检测所述坐标间距差是否等于预设间距,之后还包括:当所述坐标间距差小于或者大于所述预设间距时,取出所述线路板,并向监测系统发送丝印预警信号。
在其中一个实施例中,所述根据所述激光开窗坐标对线路板进行激光烧蚀操作,之后还包括:开启所述激光烧蚀装置的吸尘风机,以使激光烧蚀操作后形成的烧蚀气体排出。
在其中一个实施例中,所述获取线路板的阻焊印刷图像,之前还包括:对所述线路板进行预烘烤操作,以得到阻焊油墨稳定涂覆的印制线路板。
一种线路板,采用上述任一实施例所述的线路板激光开窗方法获得。
与现有技术相比,本发明至少具有以下优点:
通过获取印刷过程后残留下的靶位坐标,将其作为确定开窗坐标的比较变量,在靶位坐标与预设坐标比对之后,靶位偏位补偿量反应出靶位坐标与预设坐标之间的偏差情况,这样,在靶位坐标发生偏位之后,对应地根据靶位偏位补偿量改变即将开窗的位置,使得激光开窗坐标始终与预设坐标对应的开窗位置重合,提高了激光开窗的精度,便于将指定开窗位置的阻焊油墨去除,获取开窗精度较高的线路板,从而提高了线路板的合格率。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为一实施例中线路板激光开窗方法的流程图;
图2为一实施例中线路板的结构示意图;
图3为图2所示的线路板沿A-A方向的剖视图;
图4为图3所示的线路板在A1处的放大示意图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明涉及一种线路板激光开窗方法。在其中一个实施例中,所述线路板激光开窗方法包括获取线路板的阻焊印刷图像;根据所述阻焊印刷图像获取靶位坐标;将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量;根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,以使线路板的开窗位置与所述预设坐标对应的开窗位置重合;根据所述激光开窗坐标对线路板进行激光烧蚀操作,以将所述线路板上与所述预设坐标对应的阻焊油墨去除。通过获取印刷过程后残留下的靶位坐标,将其作为确定开窗坐标的比较变量,在靶位坐标与预设坐标比对之后,靶位偏位补偿量反应出靶位坐标与预设坐标之间的偏差情况,这样,在靶位坐标发生偏位之后,对应地根据靶位偏位补偿量改变即将开窗的位置,使得激光开窗坐标始终与预设坐标对应的开窗位置重合,提高了激光开窗的精度,便于将指定开窗位置的阻焊油墨去除,获取开窗精度较高的线路板,从而提高了线路板的合格率。
请参阅图1,其为本发明一实施例的线路板激光开窗方法的流程图。所述线路板激光开窗方法包括以下步骤的部分或全部。
S100:获取线路板的阻焊印刷图像。
在本实施例中,所述阻焊印刷图像为线路板通过丝印之后形成的线路板,其中,丝印所使用的印刷材料为阻焊油墨,用于在所述线路板上形成一层有图案的阻焊层,便于保护线路板上的线路以及铜箔,避免了线路板的线路过多地暴露在外部环境中,降低了线路板的铜箔线路受到腐蚀。
S200:根据所述阻焊印刷图像获取靶位坐标。
在本实施例中,所述靶位坐标是所述阻焊印刷图像上的挡点对应的坐标,而且,所述靶位坐标位于线路板上的阻焊油墨外,即所述靶位坐标对应的位置上没有阻焊油墨,便于将所述靶位坐标与其他位置坐标进行区别,从而便于将所述靶位坐标作为定位坐标,进而便于后续调整激光开窗的位置,以提高激光开窗的精度。
S300:将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量。
在本实施例中,所述预设坐标为标准线路板上的靶位坐标,即所述预设坐标对应的坐标是基准坐标,便于对激光开窗坐标进行调整。将所述靶位坐标与预设坐标进行比对,即为将线路板上的当前靶位坐标与标准线路板上的靶位坐标进行比对,从而获取靶位偏位补偿量,便于确定线路板上的当前靶位坐标与标准线路板上的靶位坐标的偏差情况,从而便于后续对应调整激光开窗坐标。例如,当所述靶位坐标相对于预设坐标向右偏移时,便于后续将所述激光开窗坐标向左偏移相同的量,从而便于后续将激光开窗坐标始终与预设坐标对应的开窗位置重合,提高激光开窗的精度。
S400:根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,以使线路板的开窗位置与所述预设坐标对应的开窗位置重合。
在本实施例中,所述靶位偏位补偿量用于体现线路板的当前靶位与标准靶位之间的偏差情况,这样,在调整激光烧蚀装置的激光开窗坐标时,可以快速确定最终需要开窗的位置,使得线路板的开窗位置与所述预设坐标对应的开窗 位置重合,即使得修正后的线路板的开窗位置与标准开窗位置相同,提高了开窗精度。
S500:根据所述激光开窗坐标对线路板进行激光烧蚀操作,以将所述线路板上与所述预设坐标对应的阻焊油墨去除。
在本实施例中,所述激光开窗坐标为最终的开窗位置对应的坐标,即根据所述靶位偏位补偿量修正之后的开窗坐标,便于激光烧蚀装置对准线路板上需要开窗的位置,从而便于准确将需要开窗位置的阻焊油墨去除,实现对线路板的精准开窗。
在其中一个实施例中,所述获取线路板的阻焊印刷图像,包括:获取所述线路板的印刷挡点图像,其中,所述印刷挡点图像包括印刷区图像以及挡点区图像,所述印刷区图像上印刷有阻焊油墨,且所述激光开窗坐标位于印刷区内;所述挡点区图像上未覆盖有阻焊油墨,且所述靶位坐标位于挡点区内。在本实施例中,所述印刷挡点图像具有印刷区和挡点区,所述印刷区为丝印网版对应的物料透过区,便于将阻焊油墨印刷在线路板上,而且,根据所需要的形状,对应调整丝印网版的结构,以适用于不同的线路板。而所述挡点区为丝印网版对应的物料阻隔区,将阻焊油墨阻隔在丝印网版上,无法透过丝印网版而到达线路板上,以便于形成具有所述靶位坐标的区域,从而便于将靶位坐标与其他位置的坐标区分,例如,所述靶位坐标没有阻焊油墨覆盖,其在线路板上的颜色为白色或者灰色,而印刷区由于覆盖有焊油墨覆盖,印刷区内的各坐标对应的颜色为绿色。这样,便于图像采集装置通过对线路板的灰度值的获取即可准确得到靶位坐标。
在其中一个实施例中,所述根据所述阻焊印刷图像获取靶位坐标,包括:根据所述挡点区图像获取孔环定位坐标;根据所述孔环定位坐标获取所述靶位坐标。在本实施例中,所述孔环定位坐标用于确定所述靶位坐标,例如,所述挡点区图像的结构为矩形结构,所述孔环定位坐标为矩形结构的四个角对应的坐标,而通过四个所述孔环定位坐标确定两条相交的对角线,两条对角线的焦点作为所述靶位坐标。这样,根据所述孔环定位坐标可以确定所述靶位坐标, 便于将所述靶位坐标作为调整开窗坐标的比对坐标。在另一实施例中,所述靶位坐标为两个,两个靶位坐标为两条对角线上相邻两个四分之一分界点。
在其中一个实施例中,所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,包括:将所述靶位坐标与第一预设坐标进行位移求差处理,得到靶位位移补偿量;所述根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,包括:根据所述靶位位移补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的间距。在本实施例中,所述第一预设坐标为绝对坐标系中对应的坐标,即所述靶位坐标以及所述第一预设坐标均为X轴坐标值以及Y轴坐标值,通过对所述靶位坐标与第一预设坐标进行位移求差处理,使得线路板的当前靶位对应的坐标与第一标准坐标进行比较,便于确定线路板的当前靶位偏离标准靶位的情况。其中,根据所述靶位位移补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的间距,即为将线路板的开窗位置在绝对坐标轴上进行移动,以调整线路板的开窗位置与线路板的当前靶位之间的间距,便于将激光开窗坐标始终与预设坐标对应的开窗位置重合,提高激光开窗的精度。
在其中一个实施例中,所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,包括:将所述靶位坐标与第二预设坐标进行偏转角求差处理,得到靶位偏转角补偿量;所述根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,包括:根据所述靶位偏转角补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的偏转角度。在本实施例中,所述第二预设坐标为相对极坐标系中对应的坐标,即所述靶位坐标以及所述第二预设坐标均为极轴长度值以及极轴角度值,通过对所述靶位坐标与第二预设坐标进行偏转角求差处理,使得线路板的当前靶位对应的极坐标与第二标准坐标进行比较,便于确定线路板的当前靶位与标准靶位的偏转情况。其中,根据所述靶位位移补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的间距,即为将线路板的开窗位置在相对极坐标轴上进行移动,以调整线路板的开窗位置与线路板的当前靶位之间的偏转角,便于将激光开窗坐标始终与预设坐标对应的开窗位置重合,提高激光开窗的精度。
在其中一个实施例中,所述根据所述阻焊印刷图像获取靶位坐标,包括:根据所述阻焊印刷图像获取第一靶位坐标以及第二靶位坐标;所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,之前包括:获取所述第一靶位坐标与所述第二靶位坐标的坐标间距差;检测所述坐标间距差是否等于预设间距;当所述坐标间距差等于所述预设间距时,向监测系统发送丝印合格信号。在本实施例中,所述阻焊印刷图像的结构为矩形环状,第一靶位坐标为阻焊印刷图像的一个对角线上的四分之一分界点,第二靶位坐标为阻焊印刷图像的另一个对角线上的四分之一分界点,即所述第一靶位坐标以及所述第二靶位坐标分别为两条对角线上相邻两个四分之一分界点,便于将所述第一靶位坐标以及所述第二靶位坐标区分。所述第一靶位坐标以及所述第二靶位坐标用于共同确定所述靶位坐标,提高了对所述靶位坐标的精准定位。而在获取所述第一靶位坐标与所述第二靶位坐标的坐标间距差之后,便于确定所述阻焊印刷图像是否发生变形,从而便于确定后续是否继续执行获取靶位坐标的操作。这样,在确定了所述坐标间距差等于所述预设间距后,向监测系统发送丝印合格信号,并继续执行步骤S200,使得在确保所述阻焊印刷图像的准确性后,提高对所述靶位坐标的定位准确度。
在其中一个实施例中,所述检测所述坐标间距差是否等于预设间距,之后还包括:当所述坐标间距差小于或者大于所述预设间距时,取出所述线路板,并向监测系统发送丝印预警信号。在本实施例中,所述坐标间距差小于或者大于所述预设间距,表明了线路板上的印刷的阻焊印刷图像为变形图像,即经过丝印工序制造的线路板不合格,为了避免后续对开窗位置精度的影响,在获取靶位坐标之前,向监测系统发送丝印预警信号,便于监测系统及时发现不合格的线路板,避免其进入开窗工序。
在其中一个实施例中,所述根据所述激光开窗坐标对线路板进行激光烧蚀操作,之后还包括:开启所述激光烧蚀装置的吸尘风机,以使激光烧蚀操作后形成的烧蚀气体排出。在本实施例中,所述激光烧蚀装置在进行激光烧蚀时,其是对线路板上的阻焊油墨进行溅射,使得阻焊油墨被轰击,从而形成有粒径 极小的颗粒,存在环境中会对线路板的安全性造成威胁,因此,通过开启所述激光烧蚀装置的吸尘风机,将混有阻焊油墨的粉尘排出,提高了激光开窗的安全性。
在其中一个实施例中,所述获取线路板的阻焊印刷图像,之前还包括:对所述线路板进行预烘烤操作,以得到阻焊油墨稳定涂覆的印制线路板。在本实施例中,对线路板的预烘烤,使得线路板上的阻焊油墨趋于稳定,便于阻焊油墨的稳定设置,保护了线路板的内部结构。
可以理解的,在激光烧蚀操作之后,在所述线路板上形成用于焊接的焊接点,即将铜箔露出,然而,激光烧蚀装置发生的激光能量较大,在未对其输出功率进行调整的情况下,当线路板的厚度较薄时,例如,单层线路板或者柔性线路板,当激光烧蚀的能量过大时,直接将线路板击穿,导致线路板的内外层线路直接短路,而且,此时线路板也将无法使用,导致线路板的合格率降低,甚至导致线路板的报废。
为了降低生产出来的线路板的内外层线路的短路几率,即降低线路板报废几率,在步骤S500之后,还包括以下步骤:
获取所述线路板的激光开窗坐标对应的照度反射时间;
将所述照度反射时间与预设反射时间进行比对,得到反射延迟时间;
检测所述反射延迟时间是否大于0;
当所述反射延迟时间大于0时,向监控系统发送次品警报信号。
在本实施例中,所述照度反射时间是通过红外发射接收器获取的,即红外发射接收器的输出端对准线路板的激光开窗位置,向线路板的激光开窗位置发射红外光线,根据接收到反射的红外光线的时间,确定激光开窗位置是否贯穿线路板。当激光开窗位置没有贯穿线路板时,激光开窗位置在线路板上具有底部,红外发射接收器的输出端发射红外光线在遇到激光开窗位置的底部后沿原路返回,即红外发射接收器接收到反射的红外光线;而当激光开窗位置贯穿线路板时,红外发射接收器将无法接收到反射的红外光线,即此时照度反射时间为无穷大。其中,所述预设反射时间是在线路板的一侧,而线路板的另一侧作 为激光开窗位置的底部时,红外发射接收器接收到反射红外光线的反射时间。这样,通过所述照度反射时间与预设反射时间的比对,得到所述反射延迟时间,而所述反射延迟时间即为确定红外光线的反射时间差,便于确定激光开窗位置是否被贯穿。当所述反射延迟时间大于0时,表明了红外光线的反射时间大于所述预设反射时间,即表明了激光开窗位置的底部在线路板的外部,也即表明了激光开窗位置贯穿线路板。此时的线路板即为不合格的多层板,无法作为正常的线路板使用,通过向监控系统发送次品警报信号,便于监控系统及时发现不合格的线路板,从而便于及时剔除不合格产品,提高了线路板的合格率。
进一步地,在涂覆完成阻焊油墨后,需要进行喷锡操作,即在阻焊油墨上再涂覆一层锡膏层,以便于提高线路板的可焊性。在进行激光烧蚀操作时,使用溅射成孔和机械控深钻锣中至少一种方式形成激光开窗位置。然而,上述成孔方式均需要将线路板的部分材料削除,在削除的过程中,难免会残留部分废料,残留的废料将影响后续覆盖在阻焊油墨上的锡膏层的体积,使得锡膏层在激光开窗位置内的体积减少,降低了锡膏层的厚度,而锡膏层的厚度直接影响其可焊性,容易导致所述线路板的可焊性降低。
为了便于及时发现并清理残留的废料,以提高所述线路板的可焊性,在步骤S500之后,还包括以下步骤:
获取所述线路板的开窗成像图像;
根据所述开窗成像图像获取开窗的亮度值;
将所述亮度值与预设亮度进行比较,得到亮度反馈量;
根据所述亮度反馈量调整等离子清洁机对所述线路板的清洁时间以及次数。
在本实施例中,激光开窗位置成像图像为线路板上开设有开窗一侧面的图像,图像采集装置通过对线路板的亮度采集,形成了激光开窗位置成像图像,其中,激光开窗位置成像图像包括每一个开窗对应的亮度值,即激光开窗位置的侧壁以及底部的反射光线的亮度。所述亮度值是激光开窗位置内的亮度所对应的数值,用于反应出激光开窗位置的侧壁以及底部的反光性能,而当激光开窗位置内残留有废料时,光线在激光开窗位置内不在是呈镜面反射,即光线在 激光开窗位置内呈漫反射,使得最终反射回到图像采集装置的光线数减少,从而使得图像采集装置获取的反射亮度降低。这样,根据所述亮度值与预设亮度比较得到的亮度反馈量,其中,所述预设亮度为激光开窗位置内没有残留物时对应的亮度,所述亮度反馈量体现出激光开窗位置的当前亮度与没有残留物时的亮度的差别,便于确定激光开窗位置内是否有残留物。所述亮度反馈量的大小决定了等离子清洁机的清洁参数,即所述亮度反馈量与等离子清洁机的对线路板的清洁时间以及次数呈正比,也即所述亮度反馈量增大,等离子清洁机的对线路板的清洁时间以及次数增大,便于将激光开窗位置内的残留物清除,提高了激光开窗位置内的清洁度,从而提高了锡膏层在激光开窗位置内的体积,进而提高了所述线路板的导电性。
此外,所述预设亮度还可以根据激光开窗位置在线路板上的形状决定,不同的形状结构,开窗在没有的残留物时的亮度值还是有不同的,即在所述亮度值与预设亮度进行比较之前,使用的预设亮度对应的开窗的形状与当前被检测的开窗的形状相同,确保不同形状的开在进行亮度比较时,比对的标准对应调整,以提高对开窗内的残留物的清洁度。
上述各实施例中,图像采集装置包括CCD(Charge Coupled Device,电荷耦合器件)相机或者CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)相机。
本申请还提供一种线路板,其采用上述任一实施例中所述的多层线路板的制作方法获得。在本实施例中,通过获取印刷过程后残留下的靶位坐标,将其作为确定开窗坐标的比较变量,在靶位坐标与预设坐标比对之后,靶位偏位补偿量反应出靶位坐标与预设坐标之间的偏差情况,这样,在靶位坐标发生偏位之后,对应地根据靶位偏位补偿量改变即将开窗的位置,使得激光开窗坐标始终与预设坐标对应的开窗位置重合,提高了激光开窗的精度,便于将指定开窗位置的阻焊油墨去除,获取开窗精度较高的线路板,从而提高了线路板的合格率。
请参阅图2,其为本发明一实施例的线路板的结构示意图。
一实施例的线路板10包括阻焊层100以及靶位凸起300,请一并参阅图3,所述线路板10还包括基板200。所述基板200具有印刷区210以及靶位区220。所述靶位区220与所述印刷区210相邻设置。所述印刷区210覆盖有所述阻焊层100。所述阻焊层100开设有开窗口110。所述开窗口110用于裸露所述基板200上的部分铜箔。所述靶位凸起300设置于所述靶位区220内。所述靶位凸起300与所述基板200连接,且所述靶位凸起300凸出于所述基板200的距离小于或等于所述阻焊层100凸出于所述基板200的距离。其中,所述靶位凸起300与所述开窗口110相对应,所述靶位凸起300用于对所述开窗口110进行坐标定位。
在本实施例中,通过在基板200上形成靶位区220,靶位区220内设置用于对开窗口110的坐标进行定位的靶位凸起300,而开窗口110开设于覆盖有阻焊层100的印刷区210内,在通过对靶位凸起300的确定之后,实现对开窗口110的位置确定,便于激光烧蚀装置对基板200上的阻焊层100进行开窗操作,以裸露出开窗口110内的铜箔,使得在制作线路板时省去了使用菲林以及显影液,降低了线路板的生产成本。
在其中一个实施例中,请参阅图2,所述阻焊层100开设有辅助开窗孔120,所述辅助开窗孔120邻近所述开窗口110设置。在本实施例中,所述辅助开窗孔120用于辅助对所述开窗口110的坐标定位,所述辅助开窗孔120的位置靠近所述开窗口110,使得所述辅助开窗孔120的坐标与所述开窗口110的坐标相近,即所述辅助开窗孔120的X轴坐标值与所述开窗口110的X轴坐标值的差值减小,所述辅助开窗孔120的Y轴坐标值与所述开窗口110的Y轴坐标值的差值减小。这样,在对所述靶位凸起300的坐标进行定位后,所述辅助开窗孔120的坐标便于对所述开窗口110的坐标进行进一步地定位,进一步提高了对所述开窗口110的定位精度。
在其中一个实施例中,请参阅图2,所述辅助开窗孔120包括第一开窗孔122以及第二开窗孔124,所述第一开窗孔122与所述第二开窗孔124相邻设置,且所述第一开窗孔122以及所述第二开窗孔124围绕所述开窗口110设置。在 本实施例中,所述第一开窗孔122靠近所述开窗口110设置,所述第二开窗孔124也靠近所述开窗口110设置,使得所述开窗口110被所述第一开窗孔122以及所述第二开窗孔124围住,从而使得所述开窗口110位于所述第一开窗孔122以及所述第二开窗孔124之间,便于通过对所述第一开窗孔122以及所述第二开窗孔124的定位确定所述开窗口110的位置。
在其中一个实施例中,请参阅图2,所述第一开窗孔122位于所述开窗口110的拐角处。在本实施例中,所述第一开窗孔122位于所述开窗口110的拐角处,表明了所述第一开窗孔122位于所述基板200上的特定位置,使得所述第一开窗孔122的坐标具有特殊性,便于通过确定所述第一开窗孔122的位置定位所述开窗口110的位置,提高了所述开窗口110的定位精度。
在其中一个实施例中,请参阅图2,所述靶位区220具有环形结构,所述靶位区220与所述阻焊层100的部分环绕设置。在本实施例中,具有环形结构的靶位区220位于所述基板200上,所述基板200上的阻焊层100邻近所述靶位区220设置,而所述靶位区220与所述阻焊层100的部分环绕设置,使得所述阻焊层100与所述靶位区220的内侧边以及外侧边均相邻,从而使得所述靶位区220环形包围着部分阻焊层100,便于快速确定所述靶位区220的位置坐标,从而便于快速确定所述靶位凸起300的坐标。
在其中一个实施例中,请参阅图2,所述靶位凸起300邻近所述阻焊层100设置。在本实施例中,所述靶位凸起300作为确定所述开窗口110的桥梁,即通过确定所述靶位凸起300的坐标即可获取所述开窗口110的坐标。将所述靶位凸起300邻近所述阻焊层100设置,使得所述靶位凸起300与所述阻焊层100之间的间距减小,而所述阻焊层100具有绿色反光特性,极容易被图像采集装置识别,所述靶位凸起300靠近所述阻焊层100,便于通过对所述基板200上的灰度值的变化确定所述靶位凸起300的位置,使得所述靶位凸起300的坐标更容易被识别,提高了对所述靶位凸起300的坐标的获取速度。
在其中一个实施例中,所述阻焊层靠近所述靶位区的侧边开设有凹槽,所述靶位凸起的至少部分位于所述凹槽内。在本实施例中,所述凹槽的设置,使 得所述阻焊层的侧边形状发生较大变形,通过对阻焊层的边缘的图像比对,即对所述凹槽的比对,便于快速确定所述靶位凸起,进一步提高了对所述靶位凸起的坐标的获取速度。在其他实施例中,所述靶位凸起在所述基板上的投影位于所述凹槽内,所述凹槽的口径大于所述靶位凸起的直径,使得所述靶位凸起完全收容于所述凹槽内,这样,所述阻焊层靠近所述靶位凸起的边缘的形变进一步增大,进一步便于快速确定所述靶位凸起的位置。
在其中一个实施例中,所述靶位凸起开设有定位孔,所述定位孔用于对所述靶位凸起进行坐标定位。在本实施例中,所述定位孔的形成,使得所述靶位凸起上的灰度发生变化,通过灰度的比对,便于快速确定所述靶位凸起的坐标,进而便于快速确定所述开窗口的位置。
可以理解的,阻焊层100在固定成型之前时阻焊油墨,其物理状态为液态。在进行激光开窗前,阻焊层100形成于线路板上的延压层上,线路板的铜箔线路层开设阻焊孔,阻焊层100注入所述阻焊孔内。然而,传统的阻焊孔均为直形孔,当焊枪进行焊接时,焊枪端部的温度较高,容易对阻焊孔内的阻焊层100进行加热,从而使得阻焊孔内的阻焊层100受热而软化,转换为胶状,使得在焊枪脱离后,阻焊层100的部分从阻焊孔内流出,从而使得阻焊层100从铜箔线路层上脱离,进而使得阻焊层100在所述基板200上的连接稳定性降低,导致线路板的可焊性降低,造成线路板上的电子元件的焊接点落入阻焊孔内而无法与铜箔线路层连接,即造成虚焊,从而提高线路板的报废几率。
为了提高所述阻焊层100与所述基板200之间的连接稳定性,即降低阻焊层100从阻焊孔内脱离的几率,请一并参阅图3和图4,所述线路板10还包括延压层400以及铜箔线路层500,所述铜箔线路层500通过所述延压层400与所述基板200连接,所述铜箔线路层500开设有阻焊孔510,所述阻焊层100位于所述阻焊孔510内,所述铜箔线路层500还开设有与所述阻焊孔510连通的反向倒角槽520,所述铜箔线路层500具有倒角支撑面530,所述倒角支撑面530位于所述反向倒角槽520内,且所述倒角支撑面530位于所述阻焊孔510的开口延伸方向外,所述倒角支撑面530与所述阻焊层100抵接。在本实施例中, 所述阻焊层100的部分位于所述反向倒角槽520内,即所述阻焊层100的部分伸入所述反向倒角槽520内,所述阻焊层100抵持于所述倒角支撑面530,所述倒角支撑面530为所述阻焊层100提供一个朝向所述延压层400的作用力,所述阻焊层100在所述反向倒角槽520的底部以及所述倒角支撑面530的共同夹持下,使得所述阻焊层100稳定卡设于所述反向倒角槽520内,从而使得所述阻焊层100稳定卡设于所述阻焊孔510内,提高了所述阻焊层100与所述基板200之间的连接稳定性。在其中一个实施例中,所述反向倒角槽520的数量为两个,两个所述反向倒角槽520相对设置,且两个所述反向倒角槽520的开口朝向相向设置。这样,所述阻焊层100伸入所述反向倒角槽520的部分增多,使得所述阻焊层100与所述铜箔线路层500之间的卡接面积增大,提高所述阻焊层100与所述铜箔线路层500,从而提高所述阻焊层100与所述基板200之间的连接稳定性。而且,两个相对设置的所述反向倒角槽520内的倒角支撑面530提供的支撑力对称,使得所述阻焊层100的受力稳定,进一步提高所述阻焊层100与所述基板200之间的连接稳定性。
进一步地,所述阻焊层100上覆盖有便于焊接的锡膏层,由于所述阻焊层100与锡膏层部分接触,所述阻焊层100与锡膏层之间的粘合力的大小通过两者之间的接触面积进行调整,即所述阻焊层100与锡膏层之间的粘合力与两者之间的接触面积呈正比,也即所述阻焊层100与锡膏层之间的接触面积越大,所述阻焊层100与锡膏层之间的粘合力越大,使得两者之间的连接更加稳定。为了提高所述阻焊层100与锡膏层之间的连接稳定性,请参阅图,所述阻焊孔510远离所述基板200的口径大于所述阻焊孔510靠近所述基板200的口径。在本实施例中,所述阻焊孔510内嵌置有所述阻焊层100,所述阻焊层100稳定卡设于所述阻焊孔510内,其中,锡膏层遮盖所述阻焊孔510,使得锡膏层与所述阻焊层100远离所述阻焊孔510的底部的平面抵接。在所述阻焊孔510的孔径调整的情况下,即所述阻焊孔510远离所述基板200的口径大于所述阻焊孔510靠近所述基板200的口径,使得锡膏层与所述阻焊层100之间的接触面积增大,从而使得所述阻焊层100与锡膏层之间的粘合力,提高了锡膏层与所述阻 焊层100之间的连接稳定性,降低了所述阻焊层100与锡膏层的脱离几率。在其他实施例中,所述阻焊孔510的口径在沿其开口方向上逐渐增大,使得锡膏层与所述阻焊层100之间的接触面积增大。
更进一步地,为了进一步地提高所述阻焊层100在所述阻焊孔510内的稳定性,请参阅图4,所述线路板10还包括定位凸起600,所述定位凸起600设置于所述阻焊孔510内,所述定位凸起600与所述延压层400连接,所述定位凸起600用于与所述阻焊层100上的定位槽卡接。在本实施例中,所述定位凸起600位于所述阻焊孔510内,例如,所述定位凸起600与所述阻焊孔510的侧壁连接;又如,所述定位凸起600凸设于所述阻焊孔510的底部;又如,所述阻焊孔510的侧壁以及所述阻焊孔510的底部分别凸设有所述定位凸起600。所述定位凸起600与所述阻焊层100上的定位槽对应,便于将所述阻焊层100卡接于所述阻焊孔510内的定位凸起600,使得所述阻焊层100与所述定位凸起600稳定连接,从而使得所述阻焊层100设置于所述阻焊孔510内的稳定性,进而使得所述阻焊层100与所述基板200之间的连接稳定性提高。
在其中一个实施例中,请参阅图4,所述线路板10还包括散热层700,所述散热层700设置于所述阻焊孔510内,所述散热层700分别与所述延压层400以及所述阻焊层100连接,所述散热层700的部分用于伸出至外部环境中。在本实施例中,在焊接时,所述阻焊层100吸收焊枪的热量,热量将逐渐聚集于所述阻焊孔510内,而所述散热层700的部分伸出至外部环境中,所述散热层700将所述阻焊层100上的热量导向外部环境中,使得所述阻焊层100上的热量通过所述散热层700散失至外部环境中,降低了所述阻焊孔510内的温度,提高了所述线路板的散热效果。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要 求为准。
Claims (10)
- 一种线路板激光开窗方法,其特征在于,包括:获取线路板的阻焊印刷图像;根据所述阻焊印刷图像获取靶位坐标;将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量;根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,以使线路板的开窗位置与所述预设坐标对应的开窗位置重合;根据所述激光开窗坐标对线路板进行激光烧蚀操作,以将所述线路板上与所述预设坐标对应的阻焊油墨去除。
- 根据权利要求1所述的线路板激光开窗方法,其特征在于,所述获取线路板的阻焊印刷图像,包括:获取所述线路板的印刷挡点图像,其中,所述印刷挡点图像包括印刷区图像以及挡点区图像,所述印刷区图像上印刷有阻焊油墨,且所述激光开窗坐标位于印刷区内;所述挡点区图像上未覆盖有阻焊油墨,且所述靶位坐标位于挡点区内。
- 根据权利要求2所述的线路板激光开窗方法,其特征在于,所述根据所述阻焊印刷图像获取靶位坐标,包括:根据所述挡点区图像获取孔环定位坐标;根据所述孔环定位坐标获取所述靶位坐标。
- 根据权利要求1所述的线路板激光开窗方法,其特征在于,所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,包括:将所述靶位坐标与第一预设坐标进行位移求差处理,得到靶位位移补偿量;所述根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,包括:根据所述靶位位移补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的间距。
- 根据权利要求1所述的线路板激光开窗方法,其特征在于,所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,包括:将所述靶位坐标与第二预设坐标进行偏转角求差处理,得到靶位偏转角补偿量;所述根据所述靶位偏位补偿量调整激光烧蚀装置的激光开窗坐标,包括:根据所述靶位偏转角补偿量调整激光烧蚀装置的激光开窗坐标与所述靶位坐标的偏转角度。
- 根据权利要求1所述的线路板激光开窗方法,其特征在于,所述根据所述阻焊印刷图像获取靶位坐标,包括:根据所述阻焊印刷图像获取第一靶位坐标以及第二靶位坐标;所述将所述靶位坐标与预设坐标进行比对,得到靶位偏位补偿量,之前包括:获取所述第一靶位坐标与所述第二靶位坐标的坐标间距差;检测所述坐标间距差是否等于预设间距;当所述坐标间距差等于所述预设间距时,向监测系统发送丝印合格信号。
- 根据权利要求6所述的线路板激光开窗方法,其特征在于,所述检测所述坐标间距差是否等于预设间距,之后还包括:当所述坐标间距差小于或者大于所述预设间距时,取出所述线路板,并向监测系统发送丝印预警信号。
- 根据权利要求1所述的线路板激光开窗方法,其特征在于,所述根据所述激光开窗坐标对线路板进行激光烧蚀操作,之后还包括:开启所述激光烧蚀装置的吸尘风机,以使激光烧蚀操作后形成的烧蚀气体排出。
- 根据权利要求1所述的线路板激光开窗方法,其特征在于,所述获取线路板的阻焊印刷图像,之前还包括:对所述线路板进行预烘烤操作,以得到阻焊油墨稳定涂覆的印制线路板。
- 一种线路板,其特征在于,采用如权利要求1至9中任一项所述的线路板激光开窗方法获得。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011166202.5A CN112291944B (zh) | 2020-10-27 | 2020-10-27 | 线路板及其激光开窗方法 |
CN202011166202.5 | 2020-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022088607A1 true WO2022088607A1 (zh) | 2022-05-05 |
Family
ID=74372241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/084938 WO2022088607A1 (zh) | 2020-10-27 | 2021-04-01 | 线路板及其激光开窗方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112291944B (zh) |
WO (1) | WO2022088607A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116543050A (zh) * | 2023-05-26 | 2023-08-04 | 深圳铭创智能装备有限公司 | 一种透明曲面基板定位方法、计算机设备和存储介质 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112291944B (zh) * | 2020-10-27 | 2022-02-18 | 惠州市特创电子科技股份有限公司 | 线路板及其激光开窗方法 |
CN114799492A (zh) * | 2022-03-21 | 2022-07-29 | 武汉华工激光工程有限责任公司 | 一种高效高精度Mini LED面板开窗方法及系统 |
CN115923350A (zh) * | 2022-11-30 | 2023-04-07 | 湖北金禄科技有限公司 | 线路板及其阻焊油墨印刷制作方法 |
CN117893529B (zh) * | 2024-03-14 | 2024-07-09 | 江苏富翰医疗产业发展有限公司 | 一种眼底智能拍摄方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000216525A (ja) * | 1999-01-25 | 2000-08-04 | Nec Toyama Ltd | ソルダーレジスト形成方法 |
JP2006303074A (ja) * | 2005-04-19 | 2006-11-02 | Nec Toppan Circuit Solutions Inc | プリント配線板の製造装置並びに製造方法 |
CN101502917A (zh) * | 2009-01-22 | 2009-08-12 | 华中科技大学 | 一种挠性印刷电路板的紫外激光切割的定位与变形校正方法 |
CN103200784A (zh) * | 2013-04-24 | 2013-07-10 | 梅州市志浩电子科技有限公司 | 印刷电路板阻焊开窗方法 |
CN103249252A (zh) * | 2013-05-13 | 2013-08-14 | 无锡江南计算技术研究所 | 一种阻焊油墨曝光精度控制方法 |
CN208079493U (zh) * | 2018-04-23 | 2018-11-09 | 广州兴森快捷电路科技有限公司 | 具有对位结构的印制电路板 |
CN109413881A (zh) * | 2018-11-22 | 2019-03-01 | 奥士康科技股份有限公司 | 一种碳油线路板与防焊开窗的制作方法 |
CN110213912A (zh) * | 2019-06-26 | 2019-09-06 | 江门市众阳电路科技有限公司 | Hdi多层板镭射盲孔对位方法 |
CN110913601A (zh) * | 2019-11-18 | 2020-03-24 | 大连崇达电路有限公司 | 一种阻焊平移菲林的制作方法 |
CN112291944A (zh) * | 2020-10-27 | 2021-01-29 | 惠州市特创电子科技有限公司 | 线路板及其激光开窗方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4444428B2 (ja) * | 2000-01-28 | 2010-03-31 | 東京エレクトロン株式会社 | エッチング深さの検出方法並びにエッチングモニター装置及びエッチング装置 |
JP2002176240A (ja) * | 2000-12-07 | 2002-06-21 | Shibuya Kogyo Co Ltd | ビアホール加工方法及びその装置 |
JP4637417B2 (ja) * | 2001-09-14 | 2011-02-23 | 富士機械製造株式会社 | 基準マーク部検索用標準線設定方法および基準マーク部検索方法 |
KR100834113B1 (ko) * | 2006-11-10 | 2008-06-02 | 아주하이텍(주) | 자동 광학 검사 시스템 |
JP5148334B2 (ja) * | 2007-03-22 | 2013-02-20 | 日本特殊陶業株式会社 | 多層配線基板の製造方法 |
JP5069991B2 (ja) * | 2007-09-27 | 2012-11-07 | 京セラSlcテクノロジー株式会社 | 配線基板およびその製造方法 |
CN102573303B (zh) * | 2010-12-31 | 2015-10-07 | 北大方正集团有限公司 | 电路板成型方法及电路板 |
CN102378494B (zh) * | 2011-10-31 | 2014-03-26 | 深南电路有限公司 | 一种电路板阻焊加工方法 |
CN202799406U (zh) * | 2012-07-18 | 2013-03-13 | 大连太平洋电子有限公司 | 一种多定位系统的印制线路板 |
CN103179796B (zh) * | 2013-03-05 | 2016-12-28 | 泰和电路科技(惠州)有限公司 | 线路板制造方法及使用该方法制造的线路板 |
JP6313932B2 (ja) * | 2013-05-29 | 2018-04-18 | 富士通株式会社 | 回路基板用の修復部材、回路基板の製造方法、及び回路基板用の修復部材の製造方法 |
CN203708641U (zh) * | 2013-12-24 | 2014-07-09 | 广州兴森快捷电路科技有限公司 | 高孔位精度要求的线路板及其实现装置 |
CN106793583A (zh) * | 2016-11-25 | 2017-05-31 | 深圳崇达多层线路板有限公司 | 一种pcb板局部电厚金与非局部电金接线的制作方法 |
CN110856353A (zh) * | 2019-11-27 | 2020-02-28 | 江油星联电子科技有限公司 | 一种铝基板的制作方法 |
-
2020
- 2020-10-27 CN CN202011166202.5A patent/CN112291944B/zh active Active
-
2021
- 2021-04-01 WO PCT/CN2021/084938 patent/WO2022088607A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000216525A (ja) * | 1999-01-25 | 2000-08-04 | Nec Toyama Ltd | ソルダーレジスト形成方法 |
JP2006303074A (ja) * | 2005-04-19 | 2006-11-02 | Nec Toppan Circuit Solutions Inc | プリント配線板の製造装置並びに製造方法 |
CN101502917A (zh) * | 2009-01-22 | 2009-08-12 | 华中科技大学 | 一种挠性印刷电路板的紫外激光切割的定位与变形校正方法 |
CN103200784A (zh) * | 2013-04-24 | 2013-07-10 | 梅州市志浩电子科技有限公司 | 印刷电路板阻焊开窗方法 |
CN103249252A (zh) * | 2013-05-13 | 2013-08-14 | 无锡江南计算技术研究所 | 一种阻焊油墨曝光精度控制方法 |
CN208079493U (zh) * | 2018-04-23 | 2018-11-09 | 广州兴森快捷电路科技有限公司 | 具有对位结构的印制电路板 |
CN109413881A (zh) * | 2018-11-22 | 2019-03-01 | 奥士康科技股份有限公司 | 一种碳油线路板与防焊开窗的制作方法 |
CN110213912A (zh) * | 2019-06-26 | 2019-09-06 | 江门市众阳电路科技有限公司 | Hdi多层板镭射盲孔对位方法 |
CN110913601A (zh) * | 2019-11-18 | 2020-03-24 | 大连崇达电路有限公司 | 一种阻焊平移菲林的制作方法 |
CN112291944A (zh) * | 2020-10-27 | 2021-01-29 | 惠州市特创电子科技有限公司 | 线路板及其激光开窗方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116543050A (zh) * | 2023-05-26 | 2023-08-04 | 深圳铭创智能装备有限公司 | 一种透明曲面基板定位方法、计算机设备和存储介质 |
CN116543050B (zh) * | 2023-05-26 | 2024-03-26 | 深圳铭创智能装备有限公司 | 一种透明曲面基板定位方法、计算机设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112291944B (zh) | 2022-02-18 |
CN112291944A (zh) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022088607A1 (zh) | 线路板及其激光开窗方法 | |
CN112165765B (zh) | 线路板以及电子通讯装置 | |
JP4651886B2 (ja) | 電子機器及び電子機器の製造方法 | |
JP2008221299A (ja) | レーザ加工装置 | |
CN106793474A (zh) | 一种印刷电路板及其加工方法 | |
US7522262B2 (en) | Method for determining position of reference point | |
CN114308709A (zh) | 一种电芯极片叠片对位检测方法 | |
KR101474969B1 (ko) | 기판 처리 장치, 투광 부재 및 뷰포트를 갖는 챔버 | |
US7304728B2 (en) | Test device and method for laser alignment calibration | |
JP2005118815A (ja) | レーザ加工方法およびレーザ加工装置 | |
CN107580420A (zh) | 一种pcb的对位方法及pcb | |
JPH08247736A (ja) | 実装基板検査装置 | |
KR100911365B1 (ko) | 영상 처리를 이용한 레이저 트리밍 장치 및 그 방법 | |
JPH0627034A (ja) | パターン検出方法とその装置 | |
JP3314406B2 (ja) | クリーム半田の高さ測定方法 | |
US8399264B2 (en) | Alignment inspection | |
JP2005172640A (ja) | 実装検査装置および実装検査方法 | |
JPH07236989A (ja) | レーザ加工装置 | |
JP3920710B2 (ja) | レーザ加工方法 | |
JP4901077B2 (ja) | 加工上の基準点の位置決定方法およびレーザ加工機 | |
JPS6337479A (ja) | パタ−ン認識装置 | |
JPH0221372A (ja) | はんだ付検査装置 | |
KR20120009567A (ko) | 씨씨디를 이용한 레이저 스캐너 보정장치 및 그 보정방법 | |
KR102517935B1 (ko) | 투명패널이 광학적으로 수평 정렬을 유지하여 개재된 pcb를 밀착시킴으로써 양면 노광이 가능한 pcb 노광장치 | |
CN112188743B (zh) | 多层电路板及其铆钉钻除方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21884351 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21884351 Country of ref document: EP Kind code of ref document: A1 |