WO2022085405A1 - 制御装置及び電動パワーステアリング装置 - Google Patents

制御装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2022085405A1
WO2022085405A1 PCT/JP2021/036644 JP2021036644W WO2022085405A1 WO 2022085405 A1 WO2022085405 A1 WO 2022085405A1 JP 2021036644 W JP2021036644 W JP 2021036644W WO 2022085405 A1 WO2022085405 A1 WO 2022085405A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
steering
angular velocity
correction value
gain
Prior art date
Application number
PCT/JP2021/036644
Other languages
English (en)
French (fr)
Inventor
徹也 北爪
翔也 丸山
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2022507423A priority Critical patent/JP7060183B1/ja
Priority to CN202180006722.6A priority patent/CN114761307B/zh
Priority to US17/783,355 priority patent/US11753069B2/en
Priority to EP21882546.1A priority patent/EP4052993B1/en
Publication of WO2022085405A1 publication Critical patent/WO2022085405A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0469End-of-stroke control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the present invention relates to a control device and an electric power steering device.
  • the rack axis of the steering mechanism reaches the stroke end and the steering angle can be further increased. It disappears.
  • the state in which the rack shaft reaches the stroke end in this way is referred to as "end contact”.
  • the maximum mechanical steering angle and the corresponding maximum steering angle of the steering wheel are described as "rack end”. If the end contact occurs at a high steering angular velocity, a large impact or tapping sound (abnormal noise) may be generated and the driver may feel uncomfortable.
  • Patent Document 1 a spring reaction force that increases with an increase in steering angle and a damping force that increases with an increase in steering angular velocity are calculated, and a steering reaction force is generated by the spring reaction force and the damping force.
  • An electric power steering device that suppresses an impact at the time of end contact is described. The electric power steering device calculates the damping force by multiplying the damping force gain by the steering angular velocity.
  • the damping force fluctuates according to the steering angular velocity.
  • the damping force fluctuates according to the steering angular velocity.
  • the steering reaction force becomes large, the steering angular velocity decreases.
  • the damping force decreases, the steering angular velocity increases, and the steering reaction force increases again. In this way, the steering angular velocity repeatedly increases and decreases, and the vibration occurs due to the repeated increase and decrease of the steering reaction force. If the vibration of the steering system becomes large, the steering feeling may be deteriorated.
  • the present invention has been made by paying attention to the above-mentioned problems, and an object of the present invention is to reduce the vibration generated in the steering system when the impact at the time of end contact is suppressed by the torque corresponding to the steering angular velocity.
  • the control device includes a current command value calculation unit that calculates a first current command value for generating steering auxiliary torque in the actuator based on at least steering torque, and a steering angle.
  • a correction value calculation unit that calculates a correction value that suppresses an increase in the absolute value of the steering angle by correcting the steering assist torque when the absolute value of is equal to or greater than the threshold value, and a first current command value corrected by the correction value.
  • a correction unit that calculates a current command value and a drive unit that drives an actuator based on the second current command value are provided. The correction value calculation unit calculates the correction value based on the first torque that changes non-linearly with respect to the steering angular velocity.
  • the electric power steering device includes the above-mentioned control device and an actuator controlled by the control device, and applies steering assist torque to the steering system of the vehicle by the actuator.
  • FIG. 1 is a configuration diagram showing an outline of an example of an electric power steering device according to an embodiment.
  • the steering shaft (steering shaft, steering wheel shaft) 2 of the steering wheel (steering handle) 1 passes through the reduction gears (worm gears) 3, universal joints 4a and 4b, pinion rack mechanism 5, tie rods 6a, 6b constituting the reduction mechanism. Further, it is connected to the steering wheels 8L and 8R via the hub units 7a and 7b.
  • the pinion rack mechanism 5 has a pinion 5a connected to a pinion shaft to which steering force is transmitted from a universal joint 4b, and a rack 5b that meshes with the pinion 5a, and the rotational motion transmitted to the pinion 5a is transmitted to the rack 5b. Converts to a straight motion in the vehicle width direction.
  • the steering shaft 2 is provided with a torque sensor 10 that detects the steering torque Th. Further, the steering shaft 2 is provided with a steering angle sensor 14 that detects the steering angle ⁇ h of the steering wheel 1.
  • a steering assist motor 20 that assists the steering force of the steering wheel 1 is connected to the steering shaft 2 via the reduction gear 3. Power is supplied from the battery 13 to the controller 30 that controls the electric power steering (EPS) device, and an ignition key signal is input via the ignition (IGN) key 11.
  • EPS electric power steering
  • IGN ignition
  • the means for applying the steering assist force is not limited to the motor, and various types of actuators can be used.
  • the controller 30 calculates the current command value of the assist control command based on the steering torque Th detected by the torque sensor 10, the vehicle speed Vh detected by the vehicle speed sensor 12, and the steering angle ⁇ h detected by the steering angle sensor 14. Is performed, and the current supplied to the steering auxiliary motor 20 is controlled by the voltage control command value Vref obtained by compensating the current command value.
  • the steering angle sensor 14 is not indispensable, and the steering angle is added by adding the twist angle of the torsion bar of the torque sensor 10 to the rotation angle obtained from the rotation angle sensor that detects the rotation angle of the rotation axis of the steering auxiliary motor 20.
  • ⁇ h may be calculated.
  • the steering angles of the steering wheels 8L and 8R may be used. For example, the steering angle may be detected by detecting the displacement amount of the rack 5b.
  • the controller 30 may include, for example, a computer including a processor and peripheral components such as a storage device.
  • the processor may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • the storage device may include any of a semiconductor storage device, a magnetic storage device, and an optical storage device.
  • the storage device may include a memory such as a register, a cache memory, a ROM (Read Only Memory) and a RAM (Random Access Memory) used as the main storage device.
  • the function of the controller 30 described below is realized, for example, by the processor of the controller 30 executing a computer program stored in the storage device.
  • the controller 30 may be formed by dedicated hardware for executing each information processing described below.
  • the controller 30 may include a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the controller 30 may have a programmable logic device (PLD: Programmable Logic Device) such as a field-programmable gate array (FPGA).
  • PLD Programmable Logic Device
  • FPGA field-programmable gate array
  • FIG. 2 is a block diagram showing an example of the functional configuration of the controller 30 of the embodiment.
  • the controller 30 includes a current command value calculation unit 31, subtractors 32 and 37, a proportional integration (PI: Proportional-Integral) control unit 33, a PWM (Pulse Width Modulation) control unit 34, and an inverter (INV) 35.
  • the correction value calculation unit 36 is provided.
  • the current command value calculation unit 31 calculates the first current command value Iref1, which is a control target value of the drive current of the steering assist motor 20, based on at least the steering torque Th.
  • the current command value calculation unit 31 may calculate the first current command value Iref1 based on the steering torque Th and the vehicle speed Vh.
  • the correction value calculation unit 36 corrects the first current command value Iref1 to suppress the increase of the absolute value
  • the correction value Ic for suppressing the impact and the tapping sound (abnormal sound) at the time of hitting the edge is calculated. See FIG.
  • the correction value calculation unit 36 controls to suppress an increase in the absolute value
  • the threshold value ⁇ t is set to an angle smaller than the maximum steering angle that is the physical rack end by a predetermined margin, and the threshold value ( ⁇ t) is set to an angle larger than the minimum steering angle by a predetermined margin.
  • the correction value calculation unit 36 does not execute the edge impact suppression control and sets the value of the correction value Ic to “0”. The details of the correction value calculation unit 36 will be described later.
  • the subtractor 37 corrects the first current command value Iref1 by subtracting the correction value Ic from the first current command value Iref1, and outputs the corrected first current command value Iref1 as the second current command value Iref2.
  • the subtractor 37 is an example of the "correction unit” described in the claims.
  • the second current command value Iref2 calculated by the subtractor 37 is input to the subtractor 32, a deviation (Iref2-Im) from the fed-back motor current value Im is calculated, and the deviation (Iref2-Im) is the steering operation. It is input to the PI control unit 33 for improving the characteristics of the above.
  • the voltage control command value Vref whose characteristics have been improved by the PI control unit 33 is input to the PWM control unit 34, and the steering assist motor 20 is PWM-driven via the inverter 35 as the drive unit.
  • the current value Im of the steering assist motor 20 is detected by the motor current detector 21 and fed back to the subtractor 32.
  • the inverter 35 uses a FET (Field Effect Transistor) as a drive element, and is composed of a bridge circuit of the FET.
  • the subtractor 32, the PI control unit 33, the PWM control unit 34, and the inverter 35 are examples of the "drive unit" described in the claims.
  • the correction value calculation unit 36 suppresses an increase in the absolute value
  • a steering reaction force torque for example, a viscous reaction force torque
  • vibration may occur in the steering system. That is, between such steering reaction torque and steering angular velocity ⁇ , when the steering reaction torque increases, the steering angular velocity ⁇ decreases, and when the steering angular velocity ⁇ decreases, the steering reaction torque decreases, and the steering reaction force decreases.
  • the steering angular velocity ⁇ increases, and the steering reaction torque increases again. Due to this interaction, the steering angular velocity ⁇ repeatedly increases and decreases, and the vibration occurs due to the repeated increase and decrease of the steering reaction force torque.
  • the correction value calculation unit 36 of the embodiment has an absolute value
  • the vibration in this speed range can be reduced by reducing the rate of change of the steering reaction force torque with respect to the steering angular velocity ⁇ . ..
  • the vibration generated in the steering system due to repeated increase and decrease of the steering reaction torque is simply referred to as "vibration to be suppressed".
  • FIG. 4 is a block diagram showing an example of the functional configuration of the correction value calculation unit 36 of the first embodiment.
  • the correction value calculation unit 36 includes a differentiator 40, a first torque setting unit 41, a steering angle gain setting unit 42, a multiplier 43, a second torque setting unit 44, and an adder 45.
  • the differentiator 40 differentiates the steering angle ⁇ h to calculate the steering angular velocity ⁇ .
  • the first torque setting unit 41 sets the steering reaction force torque, which increases non-linearly with respect to the increase in the steering angular velocity ⁇ , as the first torque T1 based on the steering angular velocity ⁇ .
  • FIG. 5 is an explanatory diagram of an example of the characteristics of the first torque T1 with respect to the steering angular velocity ⁇ .
  • the steering angle ⁇ h displaced clockwise from the neutral position of the steering mechanism is defined as “positive”, and the steering angle ⁇ h displaced counterclockwise from the neutral position.
  • the sign of is defined as "negative”.
  • the first torque T1 that increases non-linearly and monotonically with the increase in the steering angular velocity ⁇ is set.
  • the higher the steering angular velocity ⁇ the larger the positive first torque T1 is set.
  • the higher the steering angular velocity ⁇ the smaller the negative first torque T1 is set.
  • the rate of change of the first torque T1 in the speed range ⁇ 0 to ⁇ 1 and the speed range (- ⁇ 0) to (- ⁇ 1) is the first in the speed range ⁇ 1 to ⁇ 2 and the speed range (- ⁇ 1) to (- ⁇ 2). It may be larger than the rate of change of the torque T1.
  • the rate of change may be obtained by dividing the difference ⁇ T1 of the first torque between the two steering angular velocities that determine the speed range by the difference ⁇ between the two steering angular velocities that determine the speed range. Further, the speed range may be divided into a plurality of sections, and the rate of change may be obtained as the average value of the rate of change ( ⁇ T1 / ⁇ ) for each section.
  • the steering wheel 1 rotates so fast that it reaches the physical rack end quickly, and the time during which the vibration to be suppressed occurs can be ignored. Further, when the steering angular velocity ⁇ is high, it is preferable to increase the steering reaction force torque to suppress the impact at the time of end contact. Therefore, in the speed range higher than the speed ⁇ 2, the higher the steering angular velocity ⁇ , the larger the positive first torque T1 is set. In the speed range higher than the speed ⁇ 2, the rate of change may be larger than the rate of change of the first torque T1 in the speed range ⁇ 1 to ⁇ 2 and the speed range ( ⁇ 1) to ( ⁇ 2).
  • a smaller negative first torque T1 is set as the steering angular velocity ⁇ is higher.
  • the higher the steering angular velocity ⁇ the larger the absolute value of the first torque T1 is generated, so that it is possible to prevent end contact at a high steering angular velocity ⁇ .
  • the relationship between the steering angular velocity ⁇ and the first torque T1 can be set in advance in the first torque setting unit 41 as map data or a calculation formula, for example.
  • An example in which the value of the first torque T1 is set to "0" in the speed range (- ⁇ 0) to ⁇ 0, that is, an example in which a dead zone is provided has been described, but a dead zone may not be set.
  • the steering angle gain setting unit 42 sets the first gain G1 according to the steering angle ⁇ h.
  • the second torque setting unit 44 sets the steering reaction force torque corresponding to the steering angle ⁇ h as the second torque T2.
  • the adder 45 calculates an addition result (Rm1 + T2) of the first multiplication result Rm1 and the second torque T2.
  • the correction value calculation unit 36 calculates the current command value corresponding to the torque value of the addition result output from the adder 45 as the correction value Ic.
  • the value of the first gain G1 is set to "0" in the range where the absolute value
  • the relationship between the steering angle ⁇ h and the first gain G1 can be set in advance in the steering angle gain setting unit 42 as map data or an arithmetic expression, for example.
  • the value of the second torque T2 is set to “0”. Further, in the range where the steering angle ⁇ h is larger than the threshold value ⁇ t, the second torque T2 monotonically increases with respect to the increase in the steering angle ⁇ h. In the range where the steering angle ⁇ h is a negative value, the characteristic is in the range where the steering angle ⁇ h is a positive value and the characteristic is symmetrical with the origin. That is, when the steering angle ⁇ h is in the range of the threshold value ( ⁇ t) to 0, the value of the second torque T2 is set to “0”.
  • the second torque T2 is monotonically decreased with respect to the decrease in the steering angle ⁇ h.
  • the relationship between the steering angle ⁇ h and the second torque T2 can be set in advance in the second torque setting unit 44 as map data or a calculation formula, for example. Further, a threshold value ⁇ t2 larger than the threshold value ⁇ t is set, the value of the second torque T2 is set to “0” in the range where the steering angle ⁇ h is from the threshold value ( ⁇ t2) to the threshold value ⁇ t2, and the steering angle ⁇ h is from the threshold value ⁇ t2.
  • the second torque T2 monotonically increases with an increase in the steering angle ⁇ h, and in a range where the steering angle ⁇ h is smaller than the threshold value ( ⁇ t2), the second torque T2 with respect to a decrease in the steering angle ⁇ h. May decrease monotonically.
  • a dead zone can be provided.
  • the steering reaction force torque (G1 ⁇ T1) corresponding to the steering angular velocity ⁇ and the steering reaction force torque (T2) according to the steering angle ⁇ h can be increased.
  • FIG. 6 is a flowchart of an example of the control method of the steering assist motor according to the embodiment.
  • the steering angle sensor 14 detects the steering angle ⁇ h of the steering wheel 1.
  • the torque sensor 10 detects the steering torque Th applied to the steering shaft 2.
  • the current command value calculation unit 31 calculates the first current command value Iref1, which is the control target value of the drive current of the steering assist motor 20, based on at least the steering torque Th.
  • step S3 the differentiator 40 of the correction value calculation unit 36 differentiates the steering angle ⁇ h to calculate the steering angular velocity ⁇ .
  • step S4 the first torque setting unit 41 sets the first torque T1 that increases non-linearly with respect to the increase in the steering angular velocity ⁇ based on the steering angular velocity ⁇ .
  • step S5 the steering angle gain setting unit 42 sets the first gain G1 according to the steering angle ⁇ h.
  • the second torque setting unit 44 sets the steering reaction force torque corresponding to the steering angle ⁇ h as the second torque T2.
  • the subtractor 37 corrects the first current command value Iref1 by subtracting the correction value Ic from the first current command value Iref1, and sets the corrected first current command value Iref1 as the second current command value Iref2. Output.
  • step S9 the subtractor 32, the PI control unit 33, the PWM control unit 34, and the inverter 35 drive the steering assist motor 20 based on the second current command value Iref2. After that, the process ends.
  • the correction value calculation unit 36 sets the values of the first gain G1 and the second torque T2 in the range where the absolute value
  • the correction value calculation unit 36 of the first modification is set to "0" in the range where the absolute value
  • a control steering angle ⁇ r that increases accordingly and decreases as the steering angle ⁇ h decreases in the range where the steering angle ⁇ h is smaller than the threshold value ( ⁇ t) is calculated.
  • the control rudder angle ⁇ r may be calculated by, for example, the following equation.
  • the correction value calculation unit 36 of the first modification calculates the correction value Ic based on the control steering angle ⁇ r. As a result, the value of the correction value Ic is set to "0" in the range where the absolute value
  • FIG. 7A is a block diagram showing an example of the functional configuration of the correction value calculation unit 36 of the first modification of the first embodiment.
  • the correction value calculation unit 36 includes a control steering angle calculation unit 46.
  • the control steering angle calculation unit 46 calculates the control steering angle ⁇ r according to the steering angle ⁇ h.
  • the differentiator 40 differentiates the control steering angle ⁇ r to calculate the steering angular velocity ⁇ .
  • the steering angle gain setting unit 42 sets the first gain G1 according to the control steering angle ⁇ r. As shown in FIG. 7A, when the control steering angle ⁇ r is “0”, the value of the first gain G1 is set to “0”, and the absolute value
  • the second torque setting unit 44 sets the second torque T2 according to the control steering angle ⁇ r.
  • the value of the second torque T2 is set to “0”.
  • the second torque T2 monotonically increases with respect to the increase in the control steering angle ⁇ r.
  • the control rudder angle ⁇ r is a negative value, it has the characteristics in the range where the control rudder angle ⁇ r is a positive value and the characteristics which are symmetrical to the origin. That is, in the range where the control steering angle ⁇ r is smaller than “0”, the second torque T2 decreases monotonically with respect to the decrease in the control steering angle ⁇ r.
  • of the steering angle is in the range of the threshold value ⁇ t or less (that is, the edge).
  • the value of the correction value Ic can be set to "0" in the range where the impact suppression control is not performed).
  • the differentiator 40 may differentiate the steering angle ⁇ h to calculate the steering angular velocity ⁇ . Further, the second torque setting unit 44 may set the second torque T2 having a dead zone characteristic in the vicinity of the control steering angle ⁇ r of “0”.
  • the second torque setting unit 44 of the first modification sets the second torque T2 from the control steering angle ⁇ r based on the relationship between the control steering angle ⁇ r and the second torque T2 preset as map data or an arithmetic expression. bottom.
  • the second torque setting unit 44 of the second modification sets the second torque T2 based on the multiplication result of the coefficient (for example, the spring coefficient) that increases with the increase of the control steering angle ⁇ r and the control steering angle ⁇ r.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the second torque setting unit 44 of the second modification.
  • the second torque setting unit 44 includes a coefficient setting unit 47 and a multiplier 48.
  • the coefficient setting unit 47 sets a coefficient K0 that increases as the control steering angle ⁇ r increases.
  • the coefficient K0 may be, for example, a spring coefficient corresponding to the control steering angle ⁇ r.
  • the multiplier 48 calculates the multiplication result of the control steering angle ⁇ r and the coefficient K0 as the second torque T2.
  • FIG. 9 is a block diagram showing an example of the functional configuration of the correction value calculation unit 36 of the third modification of the first embodiment.
  • the correction value calculation unit 36 of the third modification includes a smoothing unit 49 that smoothes the steering angular velocity ⁇ calculated by the differentiator 40 and outputs the smoothed steering angular velocity ⁇ s.
  • the first torque setting unit 41 sets the first torque T1 based on the steering angular velocity ⁇ s.
  • the smoothing portion 49 may be a low-pass filter (LPF), a phase lag filter, a band-pass filter (BPF), a rate limiter, or the like. Further, for example, the smoothing portion 49 may be a hysteresis processing unit that suppresses a harmonic component by giving a hysteresis characteristic to the steering angular velocity ⁇ s.
  • LPF low-pass filter
  • BPF band-pass filter
  • the third modification may be combined with the first and second modifications.
  • the current command value calculation unit 31 calculates the first current command value Iref1 for generating the steering assist torque in the steering assist motor 20 based on at least the steering torque Th.
  • the correction value calculation unit 36 calculates a correction value Ic that suppresses an increase in the absolute value
  • the subtractor 37 calculates the second current command value Iref2 obtained by correcting the first current command value Iref1 with the correction value Ic.
  • the subtractor 32, the PI control unit 33, the PWM control unit 34, and the inverter 35 drive the steering assist motor 20 based on the second current command value Iref2.
  • the correction value calculation unit 36 calculates the correction value Ic based on the first torque T1 that changes non-linearly with respect to the steering angular velocity ⁇ .
  • of the steering angle is set according to the steering angular velocity ⁇ , and the change of the first torque T1 with respect to the steering angular velocity ⁇ in an arbitrary speed range of the steering angular velocity ⁇ .
  • the rate (dT1 / d ⁇ ) can be reduced.
  • the value of the first torque T1 is set to "0". The effect on the steering feeling can be suppressed.
  • the first torque T1 can be directly set according to the steering angular velocity ⁇ , for example, the magnitude of the steering reaction force torque generated is compared with the configuration in which the viscosity coefficient is multiplied by the steering angular velocity ⁇ to calculate the damping force. Will be easier to understand directly.
  • the correction value calculation unit changes the first torque T1 non-linearly with respect to the steering angular velocity ⁇ , so that the rate of change of the first torque T1 with respect to the steering angular velocity ⁇ within a predetermined range of the steering angular velocity ⁇ (dT1 / d ⁇ ). May be reduced.
  • the vibration to be suppressed can be reduced in the speed range of the steering angular velocity ⁇ where the vibration to be suppressed becomes large.
  • the first torque setting unit 41 may set the first torque T1 according to the steering angular velocity ⁇ according to the nonlinear relationship preset between the steering angular velocity ⁇ and the first torque T1. Thereby, the rate of change (dT1 / d ⁇ ) of the first torque T1 with respect to the steering angular velocity ⁇ can be reduced in an arbitrary speed range of the steering angular velocity ⁇ .
  • the steering angle gain setting unit 42 may set the first gain G1 according to the steering angle ⁇ h.
  • the correction value calculation unit 36 may calculate the correction value Ic based on the first multiplication result Rm1 of the first torque T1 and the first gain G1. Thereby, the value of the correction value Ic can be set to "0" in the range where the edge impact suppression control is not performed. Further, the steering reaction force applied according to the steering angular velocity ⁇ in the edge impact suppression control can be increased or decreased according to the steering angle ⁇ h.
  • the second torque setting unit 44 may set the second torque T2 according to the steering angle ⁇ h.
  • the correction value calculation unit 36 may calculate the correction value Ic based on the addition result of the first torque T1 and the second torque T2 or the addition result of the first multiplication result Rm1 and the second torque T2. As a result, an increase in the absolute value
  • FIG. 10 is a block diagram of an example of the functional configuration of the correction value calculation unit 36 of the second embodiment.
  • the steering reaction force acting on the steering system fluctuates according to the vehicle speed Vh. Therefore, in the speed range of the vehicle speed Vh where the steering reaction force is large, an increase in the absolute value
  • the correction value calculation unit 36 of the second embodiment includes a vehicle speed gain setting unit 50 and a multiplier 51.
  • the vehicle speed gain setting unit 50 sets the second gain G2 according to the vehicle speed.
  • the steering reaction force is relatively large when the vehicle is stopped and in the high-speed range, and relatively small in the low-speed range and medium-speed range. Therefore, the correction value Ic may be reduced in the stopped state and in the high speed range as compared with the low speed range and the medium speed range. Therefore, as shown in FIG. 10, the second gain G2 has a characteristic that it is relatively small in the stopped state and in the high speed range and relatively large in the low speed range and the medium speed range, and the characteristic line has an upwardly convex shape. May have.
  • the correction value calculation unit 36 calculates the current command value corresponding to the torque value of the second multiplication result output from the multiplier 51 as the correction value Ic.
  • the vehicle speed gain setting unit 50 may set the second gain G2 according to the vehicle speed Vh.
  • the correction value calculation unit 36 may calculate the correction value Ic based on the multiplication result of the first addition result Ra1 and the second gain G2. Thereby, the correction value Ic can be adjusted according to the vehicle speed Vh. Thereby, for example, it is possible to reduce the fluctuation of the steering reaction force torque when the edge impact suppression control is performed according to the vehicle speed Vh.
  • the actual steering reaction force acting on the steering system includes a viscous reaction force corresponding to the steering angular velocity ⁇ and a static reaction force corresponding to the steering angle ⁇ h, and each changes according to the vehicle speed Vh. Further, in the edge impact suppression control, an increase in the absolute value
  • the first torque T1 may be reduced in the speed range of the vehicle speed Vh where the viscous reaction force becomes large.
  • the second torque T2 may be reduced in the speed range of the vehicle speed Vh where the static reaction force becomes large. Therefore, the correction value calculation unit 36 of the third embodiment sets two gains independent of each other according to the vehicle speed, and these gains correspond to the first torque T1 corresponding to the steering angular velocity ⁇ and the steering angle ⁇ h.
  • the correction value Ic is adjusted by multiplying each of the second torques T2.
  • FIG. 11 is a block diagram of an example of the functional configuration of the correction value calculation unit 36 of the third embodiment.
  • the correction value calculation unit 36 of the third embodiment includes a vehicle speed gain setting unit 50 and multipliers 52 and 53.
  • the vehicle speed gain setting unit 50 sets a third gain G3 and a fourth gain G4 according to the vehicle speed Vh.
  • the multiplier 52 calculates the third multiplication result Rm3 of the first multiplication result Rm1 and the third gain G3, and the multiplier 53 calculates the fourth multiplication result Rm4 of the second torque T2 and the fourth gain G4. ..
  • the adder 45 calculates an addition result (Rm3 + Rm4) of the third multiplication result Rm3 and the fourth multiplication result Rm4.
  • the correction value calculation unit 36 calculates the current command value corresponding to the torque value of the addition result output from the adder 45 as the correction value Ic.
  • the third gain G3 is multiplied by the first torque T1 to adjust the steering reaction force torque applied according to the steering angular velocity ⁇ in the end contact impact suppression control.
  • the steering reaction force acting on the steering system includes a viscous reaction force corresponding to the steering angular velocity ⁇ , and the viscous reaction force changes according to the vehicle speed Vh.
  • FIG. 12A shows an example of the relationship between the viscous coefficient of the viscous reaction force of the steering system and the vehicle speed Vh.
  • the viscosity coefficient is small when the vehicle is stopped, and has a characteristic that it gradually decreases when the vehicle speed Vh becomes higher than the low speed region, and the characteristic line has an upward convex shape.
  • the steering reaction force torque applied according to the steering angular velocity ⁇ in the edge impact suppression control becomes relatively large in the speed range higher than the low speed range and when the vehicle is stopped, and is relatively large in the low speed range. It is preferable to adjust it so that it becomes smaller. Therefore, as shown in FIG. 12B, the third gain G3 has a characteristic that it becomes larger in the speed range higher than the low speed range and when the vehicle is stopped and becomes smaller in the low speed range, and the characteristic line is convex downward. May have the shape of.
  • the fourth gain G4 is multiplied by the second torque T2 to adjust the steering reaction force applied according to the steering angle ⁇ h in the end contact impact suppression control.
  • the steering reaction force acting on the steering system includes a static reaction force corresponding to the steering angle ⁇ h, and the static reaction force changes according to the vehicle speed Vh.
  • FIG. 12C shows an example of the relationship between the static reaction force and the vehicle speed Vh.
  • the static reaction force from the tire is large when the vehicle is stopped, and when the vehicle starts to move, the tire rotates and temporarily decreases. After that, it becomes large in the high speed range due to the influence of centrifugal force. Therefore, the characteristic line has a downwardly convex shape.
  • the steering reaction force torque applied according to the steering angle ⁇ h in the edge impact suppression control is small when the vehicle is stopped, temporarily increases as the vehicle speed Vh increases, and is relatively small in the high speed range. It is preferable to adjust so as to be. Therefore, as shown in FIG. 12 (d), the fourth gain G4 has a characteristic that it is small when the vehicle is stopped, temporarily increases as the vehicle speed Vh increases, and becomes relatively small in the high speed range, and the characteristic line is It may have an upwardly convex shape.
  • the vehicle speed gain setting unit 50 may set a third gain G3 and a fourth gain G4 according to the vehicle speed Vh.
  • the correction value calculation unit 36 sets the third multiplication result Rm3 (or the third multiplication result Rm3 of the first torque T1 and the third gain G3) of the first multiplication result Rm1 and the third gain G3 as the second torque T2.
  • the correction value Ic may be calculated based on the addition result added to the fourth multiplication result Rm4 with the fourth gain G4.
  • the steering reaction force torque applied according to the steering angular velocity ⁇ can be adjusted in the edge impact suppression control according to the steering reaction force acting on the steering system changing according to the vehicle speed Vh according to the steering angular velocity ⁇ .
  • the steering reaction force torque applied according to the steering angle ⁇ h can be adjusted in the end contact impact suppression control. For example, this can reduce the fluctuation of the steering reaction force torque when the edge impact suppression control is performed according to the vehicle speed Vh.
  • the correction value calculation unit 36 of the third embodiment multiplied the third gain G3 and the fourth gain G4 according to the vehicle speed by the first torque T1 and the second torque T2, respectively.
  • the correction value calculation unit 36 of the fourth embodiment sets the first gain G1 to be multiplied by the first torque T1 and the second torque T2 according to the vehicle speed Vh. As a result, the same effect as that of the third embodiment is obtained.
  • FIG. 13 is a block diagram of an example of the functional configuration of the correction value calculation unit of the fourth embodiment.
  • the steering angle gain setting unit 42 sets a first gain G1 that changes according to the vehicle speed Vh.
  • the first gain G1 of a plurality of characteristics corresponding to a plurality of vehicle speeds Vh is set in the steering angle gain setting unit 42, and the first gain G1 with respect to the desired vehicle speed Vh is obtained by interpolating these plurality of characteristics. You may set it.
  • the first torque setting unit 41 may set the first torque T1 that changes according to the vehicle speed Vh.
  • the second torque setting unit 44 sets the second torque T2 that changes according to the vehicle speed Vh. For example, a second torque T2 having a plurality of characteristics corresponding to a plurality of vehicle speeds Vh is set in the second torque setting unit 44, and the second torque T2 with respect to a desired vehicle speed Vh is obtained by interpolating these plurality of characteristics. You may set it.
  • the correction value calculation unit 36 may change at least one of the characteristics of the first gain G1 and the characteristics of the second torque T2 according to the vehicle speed. Further, the correction value calculation unit 36 may change at least one of the characteristics of the first torque T1 and the characteristics of the second torque T2 according to the vehicle speed.
  • the steering reaction force torque applied according to the steering angular velocity ⁇ in the edge impact suppression control according to the steering reaction force acting on the steering system changing according to the steering angular velocity ⁇ .
  • the steering reaction force torque applied according to the steering angle ⁇ h can be adjusted in the end contact impact suppression control. For example, this can reduce the fluctuation of the steering reaction force torque when the edge impact suppression control is performed according to the vehicle speed Vh.
  • the steering angle gain setting unit 42 of the embodiment described so far sets the value of the first gain G1 to “0” in the range where the absolute value
  • the second torque setting unit 44 sets the value of the second torque T2 to “0” in the range where the absolute value
  • the second torque setting unit 44 sets a threshold value ⁇ t2 larger than the threshold value ⁇ t, and sets the value of the second torque T2 to “0” when the steering angle ⁇ h is in the range of the threshold value ( ⁇ t2) to the threshold value ⁇ t2.
  • the second torque T2 is set to monotonically increase with respect to the increase in the steering angle ⁇ h in the range where the steering angle ⁇ h is larger than the threshold value ⁇ t2, and the steering is steered in the range where the steering angle ⁇ h is smaller than the threshold value ( ⁇ t2).
  • the second torque T2 may be set to monotonically decrease with respect to the decrease in the angle ⁇ h.
  • the steering angle gain setting unit 42 and the second torque setting unit 44 of the fifth embodiment set the first gain G1 and the second torque T2 using different threshold values with respect to the absolute value
  • FIG. 14 is a block diagram of an example of the functional configuration of the correction value calculation unit 36 of the fifth embodiment.
  • the second torque setting unit 44 sets a threshold value ⁇ t2 larger than the threshold value ⁇ t, and sets the value of the second torque T2 to “0” when the steering angle ⁇ h is in the range of the threshold value ( ⁇ t2) to the threshold value ⁇ t2.
  • the second torque T2 is set to monotonically increase with the increase in the steering angle ⁇ h, and in the range where the steering angle ⁇ h is smaller than the threshold value ( ⁇ t2), the steering angle is steered.
  • the second torque T2 may be set to monotonically decrease with respect to the decrease of ⁇ h.
  • the steering angle gain setting unit 42 sets a threshold value ⁇ t1 larger than the threshold value ⁇ t, and sets the value of the first gain G1 to “0” in the range where the absolute value
  • the first gain G1 is set to monotonically increase with respect to the increase in the absolute value
  • the threshold ⁇ t1 and the threshold ⁇ t2 may be different, and one may be equal to the threshold ⁇ t.
  • one reaction force can be preferentially output with respect to the steering angle. For example, by setting the threshold value ⁇ t1 to a steering angle smaller than the threshold value ⁇ t2, when the steering angle is directed toward the rack end, the multiplication result of the first torque T1 and the first gain G1 is output ahead of the second torque T2. can do. Since the reaction force is generated only when the steering speed is relatively high, it is possible to obtain the effect of suppressing the edge contact while suppressing the deterioration of the steering feeling. Further, for example, by setting the threshold value ⁇ t2 to a steering angle smaller than the threshold value ⁇ t1, the static reaction force can be generated in advance. Even when the steering speed is low, the driver can feel that he has reached the rack end.
  • the correction value calculation unit 36 of the first embodiment has a steering angle gain setting unit 42 that sets the first gain G1 according to the steering angle ⁇ h.
  • the multiplier 43 multiplies the first torque T1 by the first gain G1 from the steering angle gain setting unit 42, and outputs the first multiplication result Rm1.
  • the correction value calculation unit 36 of the sixth embodiment inputs the steering angle ⁇ h and the steering angular velocity ⁇ , and sets the first gain G1 to be multiplied by the first torque T1.
  • the rudder angle gain setting unit 42 is provided.
  • FIG. 15 is a block diagram of an example of the functional configuration of the correction value calculation unit of the sixth embodiment.
  • the steering angle gain setting unit 42 sets a first gain G1 that changes according to the steering angular velocity ⁇ . For example, the first gain G1 of a plurality of characteristics corresponding to the steering angles corresponding to the plurality of steering angular velocities ⁇ is set.
  • the first gain G1 for a desired steering angular velocity ⁇ may be set by interpolating a plurality of characteristics according to the steering angular velocity ⁇ .
  • the steering angle gain setting unit 42 sets a first gain G1 having a plurality of characteristics according to the steering angle, which corresponds to each of the plurality of steering angular velocity ranges. It may be determined which steering angular velocity range the steering angular velocity ⁇ is in, and one may be selected from a plurality of characteristics.
  • the first gain G1 may be set larger as the steering angular velocity ⁇ is higher.
  • the steering angle at which the first gain G1 becomes non-zero may be set closer to the rack end as the steering angular velocity ⁇ is lower.
  • the steering angle at which the first gain G1 becomes non-zero may be set to the side farther from the rack end as the steering angular velocity ⁇ increases.
  • the steering angle range (dead zone) in which the first gain G1 becomes "0" is changed according to the steering angular velocity ⁇ . For example, as shown in FIG.
  • the value of the first gain G1 when the steering angular velocity ⁇ is low, the value of the first gain G1 is set to “0” in the range where the absolute value
  • the steering angular velocity ⁇ is high, in the range where the absolute value
  • the steering angle gain setting unit 42 sets the first gain G1 to be multiplied by the first torque T1 according to the steering angle ⁇ h and the steering angular velocity ⁇ .
  • the steering reaction force torque applied according to the steering angular velocity ⁇ in the edge impact suppression control can be adjusted more finely.
  • the higher the steering angular velocity ⁇ the larger the steering reaction force torque can be adjusted, and the steering speed can be effectively reduced.
  • the steering angular velocity at which the first gain G1 becomes non-zero with the steering angular velocity ⁇ the higher the steering angular velocity ⁇ , the more the steering angle can be decelerated from the steering angle farther from the rack end.
  • the steering angle gain setting unit 42 of the sixth embodiment may be applied to any of the second to fifth embodiments. Since the first gain G1 to be multiplied by the first torque T1 can be changed according to the steering angular velocity ⁇ , the steering reaction force torque can be adjusted more finely.
  • correction value calculation unit 40 ... differential device, 41 ... first torque setting unit, 42 ... Rudder angle gain setting unit, 43, 48, 51, 52, 53 ... Multiplier, 44 ... Second torque setting unit, 45 ... Adder, 46 ... Control steering angle calculation unit, 47 ... Coefficient setting unit, 49 ... Smoothing Part, 50 ... Vehicle speed gain setting part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

操舵角速度に応じたトルクにより端当て時の衝撃を抑制する際に、操舵系に発生する振動を低減する。制御装置は、操舵補助トルクをアクチュエータに発生させる第1電流指令値を演算する電流指令値演算部(31)と、操舵角の絶対値が閾値以上の場合に操舵補助トルクを補正することにより操舵角の絶対値の増加を抑制する補正値を演算する補正値演算部(36)と、第1電流指令値を補正値で補正した第2電流指令値を演算する補正部(37)と、第2電流指令値に基づいてアクチュエータを駆動する駆動部(32~35)と、を備える。補正値演算部(36)は、操舵角速度に対して非線形に変化する第1トルクに基づいて補正値を演算する。

Description

制御装置及び電動パワーステアリング装置
 本発明は、制御装置及び電動パワーステアリング装置に関する。
 車両の転舵機構において、操向車輪の転舵角が増加して機械的な最大転舵角に至ると、転舵機構のラック軸がストローク端に達してそれ以上は転舵角を増加できなくなる。このようにラック軸がストローク端に達した状態となることを「端当て」と記載する。また、機械的な最大転舵角や、それに対応するステアリングホイールの最大操舵角を「ラックエンド」と記載する。高い操舵角速度で端当てが起こると、大きな衝撃や打音(異音)が発生して運転者が不快に感じるおそれがある。
 下記特許文献1には、操舵角の増大に伴って増大するばね反力と操舵角速度の増大に伴って増大する減衰力を算出し、ばね反力と減衰力により操舵反力を発生させることにより、端当て時の衝撃を抑制する電動パワーステアリング装置が記載されている。電動パワーステアリング装置は、減衰力ゲインを操舵角速度に乗算することにより減衰力を算出している。
特許第6313703号明細書
 操舵角速度にゲインを乗算して減衰力を算出すると、操舵角速度に応じて減衰力が変動する。これに伴う操舵反力の変動によって操舵系に振動が発生する虞がある。
 すなわち、操舵反力が大きくなると操舵角速度が低下する。操舵角速度が低下すると減衰力が小さくなり操舵角速度が増加して再び操舵反力が大きくなる。このように操舵角速度が増減を繰り返し、これに伴う操舵反力の増減の反復により振動が発生する。操舵系の振動が大きくなると操舵フィーリングの低下を招くおそれがある。
 本発明は、上記課題に着目してなされたものであり、操舵角速度に応じたトルクにより端当て時の衝撃を抑制する際に、操舵系に発生する振動を低減することを目的とする。
 上記目的を達成するために、本発明の一態様による制御装置は、少なくとも操舵トルクに基づいて、操舵補助トルクをアクチュエータに発生させる第1電流指令値を演算する電流指令値演算部と、操舵角の絶対値が閾値以上の場合に操舵補助トルクを補正することにより操舵角の絶対値の増加を抑制する補正値を演算する補正値演算部と、第1電流指令値を補正値で補正した第2電流指令値を演算する補正部と、第2電流指令値に基づいてアクチュエータを駆動する駆動部と、を備える。補正値演算部は、操舵角速度に対して非線形に変化する第1トルクに基づいて補正値を演算する。
 本発明の他の一態様による電動パワーステアリング装置は、上記の制御装置と、制御装置によって制御されるアクチュエータと、を備え、アクチュエータによって車両の操舵系に操舵補助トルクを付与する。
 本発明によれば、操舵角速度に応じたトルクにより端当て時の衝撃を抑制する際に、操舵系に発生する振動を低減できる。
実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。 図1に示すコントローラの機能構成の一例を示すブロック図である。 端当衝撃抑制制御を実施する操舵角の範囲の一例の説明図である。 第1実施形態の補正値演算部の機能構成の一例を示すブロック図である。 第1トルクの特性の一例の説明図である。 実施形態の操舵補助モータの制御方法の一例のフローチャートである。 (a)は第1実施形態の第1変形例の補正値演算部の機能構成の一例を示すブロック図であり、(b)は制御舵角の一例の説明図である。 第1実施形態の第2変形例の第2トルク設定部の機能構成の一例を示すブロック図である。 第1実施形態の第3変形例の補正値演算部の機能構成の一例を示すブロック図である。 第2実施形態の補正値演算部の機能構成の一例を示すブロック図である。 第3実施形態の補正値演算部の機能構成の一例を示すブロック図である。 (a)は操舵系の粘性反力の粘性係数と車速との関係の説明図であり、(b)は第3ゲインの特性の一例の説明図であり、(c)は静的反力と車速との関係の説明図であり、(d)は第4ゲインの特性の一例の説明図である。 第4実施形態の補正値演算部の機能構成の一例を示すブロック図である。 第5実施形態の補正値演算部の機能構成の一例を示すブロック図である。 第6実施形態の補正値演算部の機能構成の一例を示すブロック図である。
 本発明の実施形態を、図面を参照しながら詳細に説明する。
 なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 (第1実施形態)
 (構成)
 図1は、実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。ステアリングホイール(操向ハンドル)1の操舵軸(ステアリングシャフト、ハンドル軸)2は減速機構を構成する減速ギア(ウォームギア)3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a、6bを経て、更にハブユニット7a、7bを介して操向車輪8L、8Rに連結されている。
 ピニオンラック機構5は、ユニバーサルジョイント4bから操舵力が伝達されるピニオンシャフトに連結されたピニオン5aと、このピニオン5aに噛合するラック5bとを有し、ピニオン5aに伝達された回転運動をラック5bで車幅方向の直進運動に変換する。
 操舵軸2には操舵トルクThを検出するトルクセンサ10が設けられている。また、操舵軸2には、ステアリングホイール1の操舵角θhを検出する操舵角センサ14が設けられている。
 また、ステアリングホイール1の操舵力を補助する操舵補助モータ20が減速ギア3を介して操舵軸2に連結されている。電動パワーステアリング(EPS:Electric Power Steering)装置を制御するコントローラ30には、バッテリ13から電力が供給されるとともに、イグニション(IGN)キー11を経てイグニションキー信号が入力される。
 なお、操舵補助力を付与する手段は、モータに限られず、様々な種類のアクチュエータを利用可能である。
 コントローラ30は、トルクセンサ10で検出された操舵トルクThと、車速センサ12で検出された車速Vhと、操舵角センサ14で検出された操舵角θhに基づいてアシスト制御指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによって操舵補助モータ20に供給する電流を制御する。
 なお、操舵角センサ14は必須のものではなく、操舵補助モータ20の回転軸の回転角度を検出する回転角センサから得られる回転角度に、トルクセンサ10のトーションバーの捩れ角を加えて操舵角θhを算出してもよい。
 また、操舵角θhに代えて、操向車輪8L、8Rの転舵角を用いてもよい。例えばラック5bの変位量を検出することにより転舵角を検出してもよい。
 コントローラ30は、例えば、プロセッサと、記憶装置等の周辺部品とを含むコンピュータを備えてよい。プロセッサは、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
 記憶装置は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
 以下に説明するコントローラ30の機能は、例えばコントローラ30のプロセッサが、記憶装置に格納されたコンピュータプログラムを実行することにより実現される。
 なお、コントローラ30を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、コントローラ30は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えばコントローラ30はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 図2は、実施形態のコントローラ30の機能構成の一例を示すブロック図である。コントローラ30は、電流指令値演算部31と、減算器32及び37と、比例積分(PI:Proportional-Integral)制御部33と、PWM(Pulse Width Modulation)制御部34と、インバータ(INV)35と、補正値演算部36を備える。
 電流指令値演算部31は、少なくとも操舵トルクThに基づいて、操舵補助モータ20の駆動電流の制御目標値である第1電流指令値Iref1を演算する。電流指令値演算部31は、操舵トルクThと車速Vhに基づいて第1電流指令値Iref1を演算してもよい。
 補正値演算部36は、操舵角θhの絶対値|θh|が閾値θtより大きい場合に、第1電流指令値Iref1を補正して操舵角の絶対値|θh|の増加を抑制することにより、端当て時の衝撃や打音(異音)を抑制するための補正値Icを演算する。
 図3を参照する。補正値演算部36は、操舵角θhが閾値θtより大きいか、又は閾値(-θt)未満である場合に、操舵角の絶対値|θh|の増加を抑制する制御(以下、「端当衝撃抑制制御」と表記することがある)を実施する。
 閾値θtは、物理的ラックエンドとなる最大操舵角よりも所定マージンだけ小さな角度に設定され、閾値(-θt)は、最小操舵角よりも所定マージンだけ大きな角度に設定される。
 補正値演算部36は、操舵角θhが閾値θt以下かつ閾値(-θt)以上の場合には、端当衝撃抑制制御を実行せず、補正値Icの値を「0」に設定する。
 補正値演算部36の詳細については後述する。
 図2を参照する。減算器37は、第1電流指令値Iref1から補正値Icを減算することにより第1電流指令値Iref1を補正し、補正後の第1電流指令値Iref1を第2電流指令値Iref2として出力する。減算器37は、特許請求の範囲に記載の「補正部」の一例である。
 減算器37が演算した第2電流指令値Iref2は減算器32に入力され、フィードバックされているモータ電流値Imとの偏差(Iref2-Im)が演算され、その偏差(Iref2-Im)が操舵動作の特性改善のためのPI制御部33に入力される。
 PI制御部33で特性改善された電圧制御指令値VrefがPWM制御部34に入力され、更に駆動部としてのインバータ35を介して操舵補助モータ20がPWM駆動される。操舵補助モータ20の電流値Imはモータ電流検出器21で検出され、減算器32にフィードバックされる。
 インバータ35は、駆動素子としてFET(Field Effect Transistor)が用いられ、FETのブリッジ回路で構成されている。
 減算器32と、PI制御部33と、PWM制御部34と、インバータ35は、特許請求の範囲に記載の「駆動部」の一例である。
 次に、補正値演算部36の詳細について説明する。補正値演算部36は、端当衝撃抑制制御の際に操舵反力トルクによって操舵角の絶対値|θh|の増加を抑制する。
 ここで例えば、ステアリングホイール1の操舵角速度ωに比例する操舵反力トルク(例えば、粘性反力トルク)を用いると操舵系に振動が発生する虞がある。
 すなわち、このような操舵反力トルクと操舵角速度ωとの間には、操舵反力トルクが大きくなると操舵角速度ωが低下し、操舵角速度ωが低下すると操舵反力トルクが小さくなり、操舵反力トルクが小さくなると操舵角速度ωが増加して、再び操舵反力トルクが増加するという相互作用がある。この相互作用によって操舵角速度ωが増減を繰り返し、これに伴う操舵反力トルクの増減の反復により振動が発生する。
 そこで、実施形態の補正値演算部36は、操舵角速度ωに比例するトルクに代えて、操舵角速度ωの増加に対して非線形に増加する操舵反力トルクによって、操舵角の絶対値|θh|の増加を抑制する。
 このような操舵反力トルクは、操舵角速度ωに対して非線形に変化するため、操舵角速度ωの任意の速度範囲において、操舵角速度ωに対する操舵反力トルクの変化率(傾き)を低減できる。
 操舵角速度ωに対する操舵反力トルクの変化率(傾き)を低減すると、操舵角速度ωが増減しても操舵反力トルクが増減しにくくなるため、操舵角速度ωと操舵反力トルクとの間の相互作用が小さくなる。この結果、操舵角速度ωと操舵反力トルクの増減の反復により生じる上記の振動が低減される。
 このため、上記の振動の大きさが問題となる操舵角速度ωの速度範囲において、操舵角速度ωに対する操舵反力トルクの変化率を低減することにより、この速度範囲における上記振動を低減することができる。
 以下、操舵反力トルクの増減の反復により操舵系に生じる上記振動を、単に「抑制対象振動」と表記する。
 図4は、第1実施形態の補正値演算部36の機能構成の一例を示すブロック図である。補正値演算部36は、微分器40と、第1トルク設定部41と、舵角ゲイン設定部42と、乗算器43と、第2トルク設定部44と、加算器45を備える。
 微分器40は、操舵角θhを微分して、操舵角速度ωを算出する。
 第1トルク設定部41は、操舵角速度ωに基づいて、操舵角速度ωの増加に対して非線形に増加する操舵反力トルクを第1トルクT1として設定する。
 図5は、操舵角速度ωに対する第1トルクT1の特性の一例の説明図である。なお、操舵角θhとその操舵角速度ωの正負について、操舵機構の中立位置より時計回り方向に変位した操舵角θhを「正」と定義し、中立位置より反時計回り方向に変位した操舵角θhの符号を「負」と定義する。
 速度範囲(-ω0)~ω0では、操舵角速度ωが低いために端当て時の衝撃に問題がない(例えば、異音が小さい、転舵機構へのダメージがない)。このような速度範囲(-ω0)~ω0では、第1トルクT1の値は「0」に設定される。
 これにより、端当て時の衝撃に問題がない速度範囲において操舵角速度ωに応じた操舵反力トルクを発生させず、操舵フィーリングへの影響を抑制できる。
 速度ω0より大きい速度範囲と、速度(-ω0)より小さい速度範囲では、操舵角速度ωの増加に対して非線形に単調増加する第1トルクT1が設定される。
 速度範囲ω0~ω1では、操舵角速度ωが高いほどより大きな正の第1トルクT1が設定される。また、負の範囲の速度範囲(-ω0)~(-ω1)では、操舵角速度ωが高いほどより小さな負の第1トルクT1が設定される。これにより、操舵角速度ωが高いほど、絶対値の大きな第1トルクT1が発生するので、高い操舵角速度ωで端当てが起きるのを抑制できる。
 速度範囲ω0~ω1よりも操舵角速度ωが高い速度範囲ω1~ω2と、速度範囲(-ω0)~(-ω1)よりも操舵角速度ωが高い速度範囲(-ω1)~(-ω2)では、抑制対象振動が大きくなって、その大きさが問題となる。
 このため、これらの速度範囲ω1~ω2及び速度範囲(-ω1)~(-ω2)では、それ以外の速度範囲(すなわち、速度範囲ω0~ω1及び速度範囲(-ω0)~(-ω1)と、速度ω2より高い速度範囲と、速度(-ω2)より高い速度範囲)に比べて、操舵角速度ωに対する第1トルクT1の変化率(dT1/dω)を低減する。
 これにより、操舵角速度ωが増減しても第1トルクT1が増減しにくくなるため、第1トルクT1と操舵角速度ωとの間の相互作用が小さくなる。この結果、これらの速度範囲ω1~ω2及び速度範囲(-ω1)~(-ω2)における抑制対象振動を低減できる。
 速度範囲ω0~ω1及び速度範囲(-ω0)~(-ω1)では、第1トルクT1が大きくなければ振動を大きくするようなパワーを持たない。このため、速度範囲ω0~ω1及び速度範囲(-ω0)~(-ω1)における第1トルクT1の変化率は、速度範囲ω1~ω2及び速度範囲(-ω1)~(-ω2)における第1トルクT1の変化率よりも大きくしてもよい。
 変化率の算出においては、速度範囲を定める二つの操舵角速度における第1トルクの差ΔT1を速度範囲を定める二つの操舵角速度の差Δωで除算して変化率を求めてもよい。また、速度範囲を複数の区間に分け、区間ごとの変化率(ΔT1/Δω)の平均値として変化率を求めてもよい。
 速度ω2や速度(-ω2)より高い速度範囲では、ステアリングホイール1が速く回転するために物理的ラックエンドに早く到達し、抑制対象振動が発生する時間を無視できる。また、操舵角速度ωが高い場合には、操舵反力トルクをより大きくして端当て時の衝撃を抑制することが好ましい。
 したがって、速度ω2より高い速度範囲では、操舵角速度ωが高いほどより大きな正の第1トルクT1が設定される。速度ω2より高い速度範囲では、速度範囲ω1~ω2及び速度範囲(-ω1)~(-ω2)における第1トルクT1の変化率よりも大きな変化率としてよい。
 また、速度(-ω2)より高い速度範囲では、操舵角速度ωが高いほどより小さな負の第1トルクT1が設定される。これにより、操舵角速度ωが高いほど、絶対値の大きな第1トルクT1が発生するので、高い操舵角速度ωでの端当てを防止できる。
 操舵角速度ωと第1トルクT1との関係は、例えばマップデータや演算式として予め第1トルク設定部41に設定しておくことができる。
 速度範囲(-ω0)~ω0で第1トルクT1の値が「0」に設定される例、つまり不感帯を持つ例を説明したが、不感帯を持たない設定してもよい。これは、図5において速度ω0(-ω0)を「0」とした特性である。また、速度ω2や速度(-ω2)より高い速度範囲での変化率が度範囲ω1~ω2及び速度範囲(-ω1)~(-ω2)における変化率よりも大きい例を説明したが、速度範囲ω1~ω2及び速度範囲(-ω1)~(-ω2)で設定した変化率を保持するようにしてもよい。
 図4を参照する。舵角ゲイン設定部42は、操舵角θhに応じた第1ゲインG1を設定する。乗算器43は、第1トルクT1と第1ゲインG1との第1乗算結果Rm1=G1×T1を演算する。
 第2トルク設定部44は、操舵角θhに応じた操舵反力トルクを第2トルクT2として設定する。加算器45は、第1乗算結果Rm1と第2トルクT2との加算結果(Rm1+T2)を演算する。補正値演算部36は、加算器45から出力される加算結果のトルク値に対応する電流指令値を、補正値Icとして演算する。
 図4に示すように、操舵角の絶対値|θh|が閾値θt以下の範囲では、第1ゲインG1の値は「0」に設定される。また、絶対値|θh|が閾値θtよりも大きな範囲では、絶対値|θh|の増加に対して第1ゲインG1は単調増加する。
 操舵角θhと第1ゲインG1との関係は、例えばマップデータや演算式として予め舵角ゲイン設定部42に設定しておくことができる。
 また、操舵角θhが0~閾値θtの範囲では、第2トルクT2の値は「0」に設定される。また、操舵角θhが閾値θtよりも大きな範囲では、操舵角θhの増加に対して第2トルクT2が単調増加する。
 操舵角θhが負値となる範囲では、操舵角θhが正値となるの範囲の特性と原点対称となる特性を有する。すなわち、操舵角θhが閾値(-θt)~0の範囲では、第2トルクT2の値は「0」に設定される。また、操舵角θhが閾値(-θt)よりも小さな範囲には、操舵角θhの減少に対して第2トルクT2が単調減少する。
 操舵角θhと第2トルクT2との関係は、例えばマップデータや演算式として予め第2トルク設定部44に設定しておくことができる。
 また、閾値θtよりも大きい閾値θt2を設定し、操舵角θhが閾値(-θt2)~閾値θt2の範囲では、第2トルクT2の値を「0」に設定し、操舵角θhが閾値θt2よりも大きな範囲では、操舵角θhの増加に対して第2トルクT2が単調増加し、操舵角θhが閾値(-θt2)よりも小さな範囲には、操舵角θhの減少に対して第2トルクT2が単調減少するようにしてもよい。
 このような構成により、操舵角の絶対値|θh|が閾値θt以下の範囲(すなわち、端当衝撃抑制制御を行わない範囲)では、補正値Ic=G1×T1+T2の値を「0」に設定できる。すなわち不感帯を設けることができる。
 また、操舵角の絶対値|θh|が増加するほど、操舵角速度ωに応じた操舵反力トルク(G1×T1)と、操舵角θhに応じた操舵反力トルク(T2)を増大させることができる。
 (動作)
 図6は、実施形態の操舵補助モータの制御方法の一例のフローチャートである。
 ステップS1において操舵角センサ14は、ステアリングホイール1の操舵角θhを検出する。トルクセンサ10は、操舵軸2に加えられた操舵トルクThを検出する。
 ステップS2において電流指令値演算部31は、少なくとも操舵トルクThに基づいて、操舵補助モータ20の駆動電流の制御目標値である第1電流指令値Iref1を演算する。
 ステップS3において補正値演算部36の微分器40は、操舵角θhを微分して、操舵角速度ωを算出する。
 ステップS4において第1トルク設定部41は、操舵角速度ωに基づいて、操舵角速度ωの増加に対して非線形に増加する第1トルクT1を設定する。
 ステップS5において舵角ゲイン設定部42は、操舵角θhに応じた第1ゲインG1を設定する。
 ステップS6において第2トルク設定部44は、操舵角θhに応じた操舵反力トルクを第2トルクT2として設定する。
 ステップS7において乗算器43及び加算器45は、補正値Ic=G1×T1+T2を演算する。
 ステップS8において減算器37は、第1電流指令値Iref1から補正値Icを減算することにより第1電流指令値Iref1を補正し、補正後の第1電流指令値Iref1を第2電流指令値Iref2として出力する。
 ステップS9において減算器32と、PI制御部33と、PWM制御部34と、インバータ35は、第2電流指令値Iref2に基づいて操舵補助モータ20を駆動する。その後に処理は終了する。
 以下、第1実施形態の変形例について説明する。下記の各変形例は、以下に説明する第2実施形態~第6実施形態にも適用できる。
 (第1変形例)
 上記説明において補正値演算部36は、操舵角の絶対値|θh|が閾値θt以下の範囲(すなわち端当衝撃抑制制御を行わない範囲)において、第1ゲインG1と第2トルクT2の値を「0」に設定することで補正値Icの値を「0」に設定した。
 第1変形例の補正値演算部36は、操舵角の絶対値|θh|が閾値θt以下の範囲で「0」に設定され、操舵角θhが閾値θtより大きい範囲では操舵角θhの増大に応じて増大し、操舵角θhが閾値(-θt)より小さい範囲では操舵角θhの減少に応じて減少する制御舵角θrを演算する。
 図7の(b)を参照する。制御舵角θrは、例えば次式により演算されてよい。
 |θh|≦θtのとき、θr=0
 θh>θtのとき、θr=θh-θt
 θh<(-θt)のとき、θr=θh+θt
 第1変形例の補正値演算部36は、制御舵角θrに基づいて補正値Icを演算する。これにより、操舵角の絶対値|θh|が閾値θt以下の範囲(すなわち端当衝撃抑制制御を行わない範囲)において補正値Icの値が「0」に設定される。
 図7の(a)は、第1実施形態の第1変形例の補正値演算部36の機能構成の一例を示すブロック図である。
 補正値演算部36は、制御舵角演算部46を備える。制御舵角演算部46は、操舵角θhに応じて制御舵角θrを演算する。微分器40は、制御舵角θrを微分して、操舵角速度ωを算出する。
 また、舵角ゲイン設定部42は、制御舵角θrに応じて第1ゲインG1を設定する。図7の(a)に示すように、制御舵角θrが「0」の場合に第1ゲインG1の値は「0」に設定され、制御舵角θrの絶対値|θr|が「0」よりも大きな範囲では、絶対値|θr|の増加に対して第1ゲインG1は単調増加する。
 第2トルク設定部44は、制御舵角θrに応じて第2トルクT2を設定する。制御舵角θrが「0」の場合に第2トルクT2の値は「0」に設定される。制御舵角θrが「0」よりも大きな範囲では、制御舵角θrの増加に対して第2トルクT2は単調増加する。
 制御舵角θrが負値となる範囲では、制御舵角θrが正値となるの範囲の特性と原点対称となる特性を有する。すなわち、制御舵角θrが「0」よりも小さな範囲では、制御舵角θrの減少に対して第2トルクT2は単調減少する。
 制御舵角θrが「0」の場合に第1ゲインG1と第2トルクT2の値を「0」に設定することにより、操舵角の絶対値|θh|が閾値θt以下の範囲(すなわち端当衝撃抑制制御を行わない範囲)において補正値Icの値を「0」に設定できる。
 なお、操舵角の絶対値|θh|が閾値θt以下の範囲では、制御舵角θrが「0」に固定されているために操舵角速度ωも「0」となり、第1トルクT1の値も「0」となる。
 このため、第1ゲインG1を省略しても補正値Ic=G1×T1+T2の値を「0」に設定できる。
 したがって、舵角ゲイン設定部42を省略してもよい。この場合、加算器45は、第1トルクT1と第2トルクT2との加算結果(T1+T2)を補正値Icとして演算してよい。
 微分器40が制御舵角θrを微分して、操舵角速度ωを算出する例を説明したが、微分器40は操舵角θhを微分して、操舵角速度ωを算出してもよい。
 また、第2トルク設定部44は、制御舵角θrが「0」付近に不感帯特性を有する第2トルクT2を設定してもよい。
 (第2変形例)
 第1変形例の第2トルク設定部44は、マップデータや演算式として予め設定された制御舵角θrと第2トルクT2との関係に基づいて、制御舵角θrから第2トルクT2を設定した。
 第2変形例の第2トルク設定部44は、制御舵角θrの増加に応じて増加する係数(例えばばね係数)と制御舵角θrとの乗算結果に基づいて第2トルクT2を設定する。
 図8は、第2変形例の第2トルク設定部44の機能構成の一例を示すブロック図である。第2トルク設定部44は、係数設定部47と乗算器48を備える。
 係数設定部47は、制御舵角θrの増加に応じて増加する係数K0を設定する。係数K0は例えば制御舵角θrに応じたばね係数であってよい。
 乗算器48は、制御舵角θrと係数K0の乗算結果を第2トルクT2として算出する。
 (第3変形例)
 図9は、第1実施形態の第3変形例の補正値演算部36の機能構成の一例を示すブロック図である。
 第3変形例の補正値演算部36は、微分器40が演算した操舵角速度ωを平滑化し、平滑化された操舵角速度ωsを出力する平滑部49を備える。第1トルク設定部41は、操舵角速度ωsに基づいて第1トルクT1を設定する。
 操舵角速度ωを平滑化することにより、操舵角速度ωに含まれるノイズを除去することができる。
 例えば平滑部49は、ローパスフィルタ(LPF)、位相遅れフィルタ、バンドパスフィルタ(BPF)、レートリミッタなどであってよい。
 また例えば平滑部49は、操舵角速度ωsにヒステリシス特性を持たせることにより、高調波成分を抑制するヒステリシス処理部であってもよい。
 なお、第3変形例は、第1及び第2変形例と組み合わせてもよい。
 (第1実施形態の効果)
 (1)電流指令値演算部31は、少なくとも操舵トルクThに基づいて、操舵補助トルクを操舵補助モータ20に発生させる第1電流指令値Iref1を演算する。補正値演算部36は、操舵角の絶対値|θh|が閾値θt以上の場合に操舵補助トルクを補正することにより操舵角の絶対値|θh|の増加を抑制する補正値Icを演算する。減算器37は、第1電流指令値Iref1を補正値Icで補正した第2電流指令値Iref2を演算する。
 減算器32と、PI制御部33と、PWM制御部34と、インバータ35は、第2電流指令値Iref2に基づいて操舵補助モータ20を駆動する。補正値演算部36は、操舵角速度ωに対して非線形に変化する第1トルクT1に基づいて補正値Icを演算する。
 これにより、操舵角の絶対値|θh|の増加を抑制する第1トルクT1を、操舵角速度ωに応じて設定し、操舵角速度ωの任意の速度範囲において操舵角速度ωに対する第1トルクT1の変化率(dT1/dω)を低減できる。
 変化率(dT1/dω)を低減すると、操舵角速度ωが増減しても第1トルクT1が増減しにくくなる。このため、第1トルクT1と操舵角速度ωとの間の相互作用が小さくなる。
 この結果、操舵角速度ωと第1トルクT1の増減の反復により生じる抑制対象振動を、任意の速度範囲において低減できる。このため、抑制対象振動が大きくなる操舵角速度ωの速度範囲において抑制対象振動を低減することができる。
 また、それ以外の速度範囲においては、操舵角速度ωが高いほど第1トルクT1を大きくすることによって高い操舵角速度で端当てが起こるのを抑制できる。
 また、端当て時の衝撃に問題がない(例えば、異音が小さい、転舵機構へのダメージがない)操舵角速度の速度範囲では、第1トルクT1の値を「0」に設定して、操舵フィーリングへの影響を抑制できる。
 また、操舵角速度ωに応じて第1トルクT1を直接設定できるので、例えば、粘性係数を操舵角速度ωに乗算して減衰力を演算する構成と比較して、発生させる操舵反力トルクの大きさを直接理解しやすくなる。
 (2)補正値演算部は、操舵角速度ωに対して第1トルクT1を非線形に変化させることにより、操舵角速度ωの所定範囲において操舵角速度ωに対する第1トルクT1の変化率(dT1/dω)を低減してよい。
 これにより、抑制対象振動が大きくなる操舵角速度ωの速度範囲において抑制対象振動を低減することができる。
 (3)第1トルク設定部41は、操舵角速度ωと第1トルクT1との間で予め設定した非線形関係に従って、操舵角速度ωに応じて第1トルクT1を設定してよい。
 これにより、操舵角速度ωの任意の速度範囲において、操舵角速度ωに対する第1トルクT1の変化率(dT1/dω)を低減できる。
 (4)舵角ゲイン設定部42は、操舵角θhに応じた第1ゲインG1を設定してよい。補正値演算部36は、第1トルクT1と第1ゲインG1との第1乗算結果Rm1に基づいて補正値Icを演算してよい。
 これにより、端当衝撃抑制制御を行わない範囲において補正値Icの値を「0」に設定できる。また、端当衝撃抑制制御において操舵角速度ωに応じて加えられる操舵反力を、操舵角θhに応じて増減できる。
 (5)第2トルク設定部44は、操舵角θhに応じた第2トルクT2を設定してよい。補正値演算部36は、第1トルクT1と第2トルクT2との加算結果、又は第1乗算結果Rm1と第2トルクT2との加算結果に基づいて、補正値Icを演算してよい。
 これにより、ばね反力のような操舵角θhに応じた第2トルクT2によって、操舵角の絶対値|θh|の増加を抑制できる。
 (第2実施形態)
 図10は、第2実施形態の補正値演算部36の機能構成の一例のブロック図である。
 操舵系に働く操舵反力は、車速Vhに応じて変動する。このため、操舵反力が大きな車速Vhの速度範囲では、端当衝撃抑制制御において加える操舵反力トルクを低減しても、操舵角の絶対値|θh|の増加を抑制できる。
 このため、第2実施形態の補正値演算部36は、車速に応じたゲインにより補正値Icを増減する。
 第2実施形態の補正値演算部36は、車速ゲイン設定部50と、乗算器51を備える。
 車速ゲイン設定部50は、車速に応じた第2ゲインG2を設定する。操舵反力は、停車時と高速域において比較的大きく、低速域、中速域では比較的小さい。したがって、停車時と高速域では、低速域や中速域に比べて補正値Icを低減してもよい。
 このため、図10に示すように、第2ゲインG2は、停車時と高速域において比較的小さく、低速域と中速域では比較的大きくなる特性を持ち、特性線は上に凸の形状を有してよい。
 乗算器51は、加算器45から出力される第1乗算結果Rm1と第2トルクT2との第1加算結果Ra1=Rm1+T2と、第2ゲインG2との第2乗算結果(G2×Ra1)を演算する。補正値演算部36は、乗算器51から出力される第2乗算結果のトルク値に対応する電流指令値を、補正値Icとして演算する。
 (第2実施形態の効果)
 車速ゲイン設定部50は、車速Vhに応じた第2ゲインG2を設定してよい。補正値演算部36は、第1加算結果Ra1と第2ゲインG2との乗算結果に基づいて、補正値Icを演算してよい。
 これにより、車速Vhに応じて補正値Icを調整できる。これにより、例えば端当衝撃抑制制御が行われているときの操舵反力トルクが、車速Vhに応じて変動するのを軽減できる。
 (第3実施形態)
 操舵系に働く実操舵反力は、操舵角速度ωに応じた粘性反力と、操舵角θhに応じた静的反力とを含み、それぞれ車速Vhに応じて変化する。
 また、端当衝撃抑制制御では操舵角速度ωに応じた第1トルクT1と、操舵角θhに応じた第2トルクT2によって、操舵角の絶対値|θh|の増加を抑制する。
 このため、粘性反力が大きくなる車速Vhの速度範囲では、第1トルクT1を低減してもよい。また、静的反力が大きくなる車速Vhの速度範囲では、第2トルクT2を低減してもよい。
 このため、第3実施形態の補正値演算部36は、互いに独立した2つのゲインを車速に応じて設定し、これらのゲインを操舵角速度ωに応じた第1トルクT1と操舵角θhに応じた第2トルクT2にそれぞれ乗算して、補正値Icを調整する。
 図11は、第3実施形態の補正値演算部36の機能構成の一例のブロック図である。第3実施形態の補正値演算部36は、車速ゲイン設定部50と、乗算器52及び53を備える。
 車速ゲイン設定部50は、車速Vhに応じた第3ゲインG3と第4ゲインG4とを設定する。乗算器52は、第1乗算結果Rm1と第3ゲインG3との第3乗算結果Rm3を演算し、乗算器53は、第2トルクT2と第4ゲインG4との第4乗算結果Rm4を演算する。
 加算器45は、第3乗算結果Rm3と第4乗算結果Rm4との加算結果(Rm3+Rm4)を演算する。補正値演算部36は、加算器45から出力される加算結果のトルク値に対応する電流指令値を、補正値Icとして演算する。
 このように、第3ゲインG3は第1トルクT1に乗算され、端当衝撃抑制制御において操舵角速度ωに応じて加えられる操舵反力トルクを調整する。
 上記の通り、操舵系に働く操舵反力は、操舵角速度ωに応じた粘性反力を含み、粘性反力は車速Vhに応じて変化する。
 図12の(a)は、操舵系の粘性反力の粘性係数と車速Vhとの関係の一例を示す。粘性係数は、停車時には小さく、また車速Vhが低速域よりも高くなると徐々に減少する特性を持ち、特性線は上に凸の形状を有する。
 したがって、第3ゲインG3は、端当衝撃抑制制御において操舵角速度ωに応じて加えられる操舵反力トルクが、低速域よりも高い速度範囲と停車時とで比較的大きくなり、低速域では比較的小さくなるように調整するのが好ましい。このため、図12の(b)に示すように、第3ゲインG3は、低速域よりも高い速度範囲と停車時とで大きくなり、低速域では小さくなる特性を持ち、特性線は下に凸の形状を有してよい。
 また、第4ゲインG4は第2トルクT2に乗算され、端当衝撃抑制制御において操舵角θhに応じて加えられる操舵反力を調整する。
 上記の通り、操舵系に働く操舵反力は、操舵角θhに応じた静的反力を含み、静的反力は車速Vhに応じて変化する。
 図12の(c)は、静的反力と車速Vhとの関係の一例を示す。タイヤからの静的反力は、停車時に大きく、車両が動き出すとタイヤが回転するために一時的に減少する。その後、高速域では遠心力の影響で大きくなる。したがって、特性線は下に凸の形状を有する。
 したがって、第4ゲインG4は、端当衝撃抑制制御において操舵角θhに応じて加えられる操舵反力トルクが、停車時には小さく、車速Vhの上昇に伴い一時的に増加し、高速域では比較的小さくなるように調整するのが好ましい。このため、図12の(d)に示すように、第4ゲインG4は、停車時には小さく、車速Vhの上昇に伴い一時的に増加し、高速域では比較的小さくなる特性を持ち、特性線は上に凸の形状を有してよい。
 (第3実施形態の効果)
 車速ゲイン設定部50は、車速Vhに応じた第3ゲインG3及び第4ゲインG4を設定してよい。
 補正値演算部36は、第1乗算結果Rm1と第3ゲインG3との第3乗算結果Rm3(または第1トルクT1と第3ゲインG3との第3乗算結果Rm3)を、第2トルクT2と第4ゲインG4との第4乗算結果Rm4に加えた加算結果に基づいて、補正値Icを演算してよい。
 これにより、操舵角速度ωに応じて操舵系に働く操舵反力が車速Vhにより変化するのに応じて、端当衝撃抑制制御において操舵角速度ωに応じて加える操舵反力トルクを調整できる。また、操舵角θhに応じて操舵系に働く操舵反力が車速Vhにより変化するのに応じて、端当衝撃抑制制御において操舵角θhに応じて加える操舵反力トルクを調整できる。例えばこれにより、端当衝撃抑制制御が行われているときの操舵反力トルクが、車速Vhに応じて変動するのを軽減できる。
 (第4実施形態)
 第3実施形態の補正値演算部36は、車速に応じた第3ゲインG3と第4ゲインG4を、それぞれ第1トルクT1と第2トルクT2にそれぞれ乗算した。これに代えて、第4実施形態の補正値演算部36は、第1トルクT1に乗じる第1ゲインG1と、第2トルクT2とを車速Vhに応じて設定する。これにより、第3実施形態と同様の効果を奏する。
 図13は、第4実施形態の補正値演算部の機能構成の一例のブロック図である。
 舵角ゲイン設定部42は、車速Vhに応じて変化する第1ゲインG1を設定する。例えば、複数の車速Vhにそれぞれ対応する複数の特性の第1ゲインG1を舵角ゲイン設定部42に設定し、これらの複数の特性を補間することにより、所望の車速Vhに対する第1ゲインG1を設定してよい。第1トルク設定部41が、車速Vhに応じて変化する第1トルクT1を設定してもよい。
 また、第2トルク設定部44は、車速Vhに応じて変化する第2トルクT2を設定する。例えば、複数の車速Vhにそれぞれ対応する複数の特性の第2トルクT2を第2トルク設定部44に設定し、これらの複数の特性を補間することにより、所望の車速Vhに対する第2トルクT2を設定してよい。
 (第4実施形態の効果)
 補正値演算部36は、第1ゲインG1の特性及び第2トルクT2の特性の少なくとも一方を、車速に応じて変更してよい。また、補正値演算部36は、第1トルクT1の特性及び第2トルクT2の特性の少なくとも一方を、車速に応じて変更してよい。
 これにより、操舵角速度ωに応じて操舵系に働く操舵反力が車速Vhにより変化するのに応じて、端当衝撃抑制制御において操舵角速度ωに応じて加える操舵反力トルクを調整できる。また、操舵角θhに応じて操舵系に働く操舵反力が車速Vhにより変化するのに応じて、端当衝撃抑制制御において操舵角θhに応じて加える操舵反力トルクを調整できる。例えばこれにより、端当衝撃抑制制御が行われているときの操舵反力トルクが、車速Vhに応じて変動するのを軽減できる。
 (第5実施形態)
 これまで説明した実施形態の舵角ゲイン設定部42は、操舵角の絶対値|θh|が閾値θt以下の範囲では、第1ゲインG1の値を「0」に設定し、絶対値|θh|が閾値θtよりも大きな範囲では、絶対値|θh|の増加に対して第1ゲインG1を単調増加するように設定する。また、第2トルク設定部44は、操舵角θhの絶対値|θh|が閾値θt以下の範囲では、第2トルクT2の値を「0」に設定し、操舵角θhの絶対値|θh|が閾値θtよりも大きな範囲では、絶対値|θh|の増加に対して第2トルクT2を単調増加するように設定する。
 また、第2トルク設定部44は、閾値θtよりも大きい閾値θt2を設定し、操舵角θhが閾値(-θt2)~閾値θt2の範囲では、第2トルクT2の値を「0」に設定し、操舵角θhが閾値θt2よりも大きな範囲では、操舵角θhの増加に対して第2トルクT2を単調増加するように設定し、操舵角θhが閾値(-θt2)よりも小さな範囲では、操舵角θhの減少に対して第2トルクT2を単調減少するように設定してもよい。
 第5実施形態の舵角ゲイン設定部42及び第2トルク設定部44は、操舵角の絶対値|θh|に対して、異なる閾値を用いて第1ゲインG1及び第2トルクT2を設定する。図14は、第5実施形態の補正値演算部36の機能構成の一例のブロック図である。
 第2トルク設定部44は、閾値θtよりも大きい閾値θt2を設定し、操舵角θhが閾値(-θt2)~閾値θt2の範囲では、第2トルクT2の値を「0」に設定する。操舵角θhが閾値θt2よりも大きな範囲では、操舵角θhの増加に対して第2トルクT2を単調増加するように設定し、操舵角θhが閾値(-θt2)よりも小さな範囲では、操舵角θhの減少に対して第2トルクT2を単調減少するように設定してよい。
 また、舵角ゲイン設定部42は、閾値θtよりも大きい閾値θt1を設定し、操舵角の絶対値|θh|が閾値θt1以下の範囲では、第1ゲインG1の値を「0」に設定し、絶対値|θh|が閾値θt1よりも大きな範囲では、絶対値|θh|の増加に対して第1ゲインG1を単調増加するように設定する。
 閾値θt1と閾値θt2は異なってよく、一方が閾値θtと等しくなってよい。
 閾値θt1と閾値θt2を異なるように設定することで、操舵角に対し一方の反力を優先して出力することができる。例えば、閾値θt1を閾値θt2より小さい舵角に設定することで、操舵角がラックエンド方向に向かうとき、第1トルクT1と第1ゲインG1との乗算結果を第2トルクT2より先行して出力することができる。操舵速度が比較的大きいときのみ反力が生成されるようになるため、操舵フィーリング低下を抑制しながら端当抑制効果を得ることができる。また、例えば、閾値θt2を閾値θt1より小さい舵角に設定することで、静的反力をより先行して発生させることができる。操舵速度が小さいときでも、運転者はラックエンドに到達していることを感じることができる。
 (第6実施形態)
 第1実施形態の補正値演算部36は、操舵角θhに応じた第1ゲインG1を設定する舵角ゲイン設定部42を有している。乗算器43は、舵角ゲイン設定部42からの第1ゲインG1を第1トルクT1に乗算し、第1乗算結果Rm1を出力する。第1実施形態の舵角ゲイン設定部42に替えて、第6実施形態の補正値演算部36は、操舵角θh及び操舵角速度ωを入力し、第1トルクT1に乗じる第1ゲインG1を設定する舵角ゲイン設定部42を有する。
 図15は、第6実施形態の補正値演算部の機能構成の一例のブロック図である。
 舵角ゲイン設定部42は、操舵角速度ωに応じて変化する第1ゲインG1を設定する。例えば、複数の操舵角速度ωにそれぞれ対応する、操舵角に応じた複数の特性の第1ゲインG1を設定する。複数の特性を操舵角速度ωに応じて補間することにより、所望の操舵角速度ωに対する第1ゲインG1を設定してよい。あるいは、舵角ゲイン設定部42は、複数の操舵角速度範囲にそれぞれ対応する、操舵角に応じた複数の特性の第1ゲインG1を設定する。操舵角速度ωがどの操舵角速度範囲にあるかを判定し、複数の特性から一つを選択してよい。
 また、第1ゲインG1を、操舵角速度ωが高いほど大きく設定してよい。あるいは、第1ゲインG1が非零となる舵角角を、操舵角速度ωが低いほどラックエンドに近い側に設定してよい。言い換えれば、第1ゲインG1が非零となる舵角角を、操舵角速度ωが高いほどラックエンドから遠い側に設定してよい。第1ゲインG1が「0」となる操舵角範囲(不感帯)を操舵角速度ωに応じて変更する。
 例えば、図15に示すように、操舵角速度ωが低いときは、操舵角の絶対値|θh|が閾値θtより大きい閾値θt1以下の範囲では、第1ゲインG1の値を「0」に設定し、絶対値|θh|が閾値θt1よりも大きな範囲では、絶対値|θh|の増加に対して第1ゲインG1を単調増加するように設定してよい。操舵角速度ωが高いときは、操舵角の絶対値|θh|が閾値θt以下の範囲では、第1ゲインG1の値を「0」に設定し、絶対値|θh|が閾値θtよりも大きな範囲では、絶対値|θh|の増加に対して第1ゲインG1を単調増加するように設定してよい。
 (第6実施形態の効果)
 舵角ゲイン設定部42は、操舵角θh及び操舵角速度ωに応じて、第1トルクT1に乗じる第1ゲインG1を設定する。
 これにより、端当衝撃抑制制御において操舵角速度ωに応じて加える操舵反力トルクをより細やかに調整できる。また、舵角角速度ωが高いほど、操舵反力トルクを大きくなるように調整でき、効果的に操舵速度を減速できる。また、第1ゲインG1が非零となる舵角角を操舵角速度ωで調整することで、操舵角速度ωが高いほどラックエンドに遠い操舵角から減速することができる。
 (変形例)
 第6実施形態の舵角ゲイン設定部42を第2実施形態から第5実施形態のいずれかに適用してよい。第1トルクT1に乗じる第1ゲインG1を操舵角速度ωに応じて変更できるため、より細やかに操舵反力トルクを調整できる。
 1…ステアリングホイール、2…操舵軸、3…減速ギア、4a、4b…ユニバーサルジョイント、5…ピニオンラック機構、5a…ピニオン、5b…ラック、6a、6b…タイロッド、7a、7b…ハブユニット、8L、8R…操向車輪、10…トルクセンサ、11…キー、12…車速センサ、13…バッテリ、14…操舵角センサ、20…操舵補助モータ、21…モータ電流検出器、30…コントローラ、31…電流指令値演算部、32、37…減算器、33…PI制御部、34…PWM制御部、35…インバータ、36…補正値演算部、40…微分器、41…第1トルク設定部、42…舵角ゲイン設定部、43、48、51、52、53…乗算器、44…第2トルク設定部、45…加算器、46…制御舵角演算部、47…係数設定部、49…平滑部、50…車速ゲイン設定部

Claims (17)

  1.  少なくとも操舵トルクに基づいて、操舵補助トルクをアクチュエータに発生させる第1電流指令値を演算する電流指令値演算部と、
     操舵角の絶対値が閾値以上の場合に前記操舵補助トルクを補正することにより前記操舵角の絶対値の増加を抑制する補正値を演算する補正値演算部と、
     前記第1電流指令値を前記補正値で補正した第2電流指令値を演算する補正部と、
     前記第2電流指令値に基づいて前記アクチュエータを駆動する駆動部と、を備え、
     前記補正値演算部は、操舵角速度に対して非線形に変化する第1トルクに基づいて前記補正値を演算する、
     ことを特徴とする制御装置。
  2.  前記補正値演算部は、前記操舵角速度に対して前記第1トルクを非線形に変化させることにより、前記操舵角速度の所定範囲において前記操舵角速度に対する前記第1トルクの変化率を低減することを特徴とする請求項1に記載の制御装置。
  3.  前記第1トルクは、第1操舵角速度より遅い範囲で零であり、第1操舵角速度において零から非零に変化し、
     前記第1操舵角速度よりも高い第2操舵角速度と前記第1操舵角速度との間における前記操舵角速度に対する前記第1トルクの変化率は、前記第2操舵角速度より高速である第3操舵角速度と前記第2操舵角速度との間における前記操舵角速度に対する前記第1トルクの変化率よりも大きい、
     ことを特徴とする請求項2に記載の制御装置。
  4.  前記第3操舵角速度以上の範囲における前記操舵角速度に対する前記第1トルクの変化率は、前記第3操舵角速度と前記第2操舵角速度との間における前記操舵角速度に対する前記第1トルクの変化率よりも大きいことを特徴とする請求項3に記載の制御装置。
  5.  前記補正値演算部は、前記操舵角速度と前記第1トルクとの間で予め設定した非線形関係に従って、前記操舵角速度に応じて前記第1トルクを設定する第1トルク設定部を備えることを特徴とする請求項1~4のいずれか一項に記載の制御装置。
  6.  前記補正値演算部は、
     前記操舵角に応じた第1ゲインを設定する舵角ゲイン設定部を備え、
     前記第1トルクと前記第1ゲインとの第1乗算結果に基づいて前記補正値を演算することを特徴とする請求項1~5のいずれか一項に記載の制御装置。
  7.  前記補正値演算部は、
     前記操舵角に応じた第2トルクを設定する第2トルク設定部を備え、
     前記第1トルクと前記第2トルクとの第1加算結果に基づいて前記補正値を演算することを特徴とする請求項1~5のいずれか一項に記載の制御装置。
  8.  前記補正値演算部は、
     前記操舵角に応じた第2トルクを設定する第2トルク設定部を備え、
     前記第1乗算結果と前記第2トルクとの第1加算結果に基づいて前記補正値を演算することを特徴とする請求項6に記載の制御装置。
  9.  前記補正値演算部は、
     前記第1ゲインの特性を前記操舵角速度に応じて変更することを特徴とする請求項6又は8に記載の制御装置。
  10.  前記補正値演算部は、
     車速に応じた第2ゲインを設定する車速ゲイン設定部を備え、
     前記第1加算結果と前記第2ゲインとの第2乗算結果に基づいて前記補正値を演算することを特徴とする請求項7又は8に記載の制御装置。
  11.  前記補正値演算部は、
     車速に応じた第3ゲイン及び第4ゲインを設定する車速ゲイン設定部を備え、
     前記第1トルクと前記第3ゲインとの第3乗算結果を、前記第2トルクと前記第4ゲインとの第4乗算結果に加えた第2加算結果に基づいて、前記補正値を演算することを特徴とする請求項7に記載の制御装置。
  12.  前記補正値演算部は、
     車速に応じた第3ゲイン及び第4ゲインを設定する車速ゲイン設定部を備え、
     前記第1乗算結果と前記第3ゲインとの第3乗算結果を、前記第2トルクと前記第4ゲインとの第4乗算結果に加えた第2加算結果に基づいて、前記補正値を演算することを特徴とする請求項8に記載の制御装置。
  13.  前記補正値演算部は、前記第1ゲインの特性及び前記第2トルクの特性の少なくとも一方を、車速に応じて変更することを特徴とする請求項8に記載の制御装置。
  14.  前記補正値演算部は、前記第1トルクの特性及び前記第2トルクの特性の少なくとも一方を、車速に応じて変更することを特徴とする請求項8に記載の制御装置。
  15.  前記補正値演算部は、前記第1ゲインの特性を車速に応じて変更することを特徴とする請求項9に記載の制御装置。
  16.  前記補正値演算部は、前記操舵角の絶対値が第1閾値以下である場合に前記第1ゲインを0に設定し、前記操舵角の絶対値が前記第1閾値と異なる第2閾値以下である場合に前記第2トルクを0に設定することを特徴とする請求項8に記載の制御装置。
  17.  請求項1~16のいずれか一項に記載の制御装置と、
     前記制御装置によって制御されるアクチュエータと、
     を備え、前記アクチュエータによって車両の操舵系に操舵補助トルクを付与することを特徴とする電動パワーステアリング装置。
PCT/JP2021/036644 2020-10-21 2021-10-04 制御装置及び電動パワーステアリング装置 WO2022085405A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022507423A JP7060183B1 (ja) 2020-10-21 2021-10-04 制御装置及び電動パワーステアリング装置
CN202180006722.6A CN114761307B (zh) 2020-10-21 2021-10-04 控制装置以及电动助力转向装置
US17/783,355 US11753069B2 (en) 2020-10-21 2021-10-04 Control device and electric power steering device
EP21882546.1A EP4052993B1 (en) 2020-10-21 2021-10-04 Control device and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020176775 2020-10-21
JP2020-176775 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022085405A1 true WO2022085405A1 (ja) 2022-04-28

Family

ID=81289606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036644 WO2022085405A1 (ja) 2020-10-21 2021-10-04 制御装置及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US11753069B2 (ja)
EP (1) EP4052993B1 (ja)
JP (1) JP7060183B1 (ja)
CN (1) CN114761307B (ja)
WO (1) WO2022085405A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237397A (ja) * 2012-05-16 2013-11-28 Nissan Motor Co Ltd 車両の操舵制御装置及び操舵制御方法
JP2014133533A (ja) * 2013-01-11 2014-07-24 Nissan Motor Co Ltd 操舵制御装置
JP2019199172A (ja) * 2018-05-16 2019-11-21 株式会社ジェイテクト 操舵制御装置
JP2020006831A (ja) * 2018-07-09 2020-01-16 株式会社ジェイテクト 操舵制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60135188D1 (de) * 2000-06-29 2008-09-18 Trw Ltd Verbesserungen in Verbindung mit elektrischen Servolenksystemen
JP5233083B2 (ja) * 2006-05-26 2013-07-10 日本精工株式会社 電動パワーステアリング装置
JP2008049914A (ja) * 2006-08-25 2008-03-06 Nsk Ltd 電動パワーステアリング装置の制御装置
JP4969188B2 (ja) * 2006-09-14 2012-07-04 オムロンオートモーティブエレクトロニクス株式会社 電動パワーステアリング制御装置
JP5735895B2 (ja) * 2011-10-04 2015-06-17 株式会社ジェイテクト 操舵支援装置
CN105189254B (zh) * 2013-04-23 2017-08-15 日本精工株式会社 电动助力转向装置
US9796411B2 (en) * 2014-04-16 2017-10-24 Nsk Ltd. Electric power steering apparatus
JP6313703B2 (ja) 2014-12-12 2018-04-18 日立オートモティブシステムズ株式会社 電動パワーステアリング装置
DE102016216796B4 (de) * 2015-09-08 2023-10-26 Toyota Jidosha Kabushiki Kaisha Lenkreaktionskraftsteuervorrichtung für fahrzeug
US10494018B2 (en) 2016-09-16 2019-12-03 Jtekt Corporation Steering device
JP6961934B2 (ja) * 2016-09-16 2021-11-05 株式会社ジェイテクト 操舵装置
JP6760569B2 (ja) * 2016-09-16 2020-09-23 日立オートモティブシステムズ株式会社 車両制御装置、車両制御方法および電動パワーステアリング装置
JP6642522B2 (ja) * 2017-06-06 2020-02-05 トヨタ自動車株式会社 車線変更支援装置
EP3501945A4 (en) * 2017-08-02 2019-10-09 NSK Ltd. ELECTRIC POWER STEERING DEVICE
JP7153244B2 (ja) 2018-04-06 2022-10-14 日本精工株式会社 車両用操向装置
JP7087688B2 (ja) * 2018-06-01 2022-06-21 株式会社ジェイテクト 操舵制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237397A (ja) * 2012-05-16 2013-11-28 Nissan Motor Co Ltd 車両の操舵制御装置及び操舵制御方法
JP2014133533A (ja) * 2013-01-11 2014-07-24 Nissan Motor Co Ltd 操舵制御装置
JP2019199172A (ja) * 2018-05-16 2019-11-21 株式会社ジェイテクト 操舵制御装置
JP2020006831A (ja) * 2018-07-09 2020-01-16 株式会社ジェイテクト 操舵制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4052993A4 *

Also Published As

Publication number Publication date
EP4052993A4 (en) 2023-01-18
JP7060183B1 (ja) 2022-04-26
CN114761307B (zh) 2024-01-05
EP4052993A1 (en) 2022-09-07
CN114761307A (zh) 2022-07-15
EP4052993B1 (en) 2023-09-13
US11753069B2 (en) 2023-09-12
US20230016560A1 (en) 2023-01-19
JPWO2022085405A1 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
JP6504322B2 (ja) 電動パワーステアリング装置
JP6531876B2 (ja) 電動パワーステアリング装置
JP5512924B2 (ja) 電動パワーステアリング装置
US10099721B2 (en) Electric power steering apparatus
JP7211438B2 (ja) 車両用操向装置
JP6702513B2 (ja) 車両用操向装置
JP6881702B1 (ja) 転舵制御装置
JP4398486B2 (ja) 車両用操舵制御装置
WO2020100411A1 (ja) 車両用操向装置
WO2020115973A1 (ja) 車両用操向装置
JPWO2020158350A1 (ja) 車両の操舵に用いられるアクチュエータ制御装置
JP6881701B1 (ja) 転舵制御装置
JP7060183B1 (ja) 制御装置及び電動パワーステアリング装置
CN113195339B (zh) 转向控制装置
JP7153239B2 (ja) 車両用操向装置
JP6677362B1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP6628017B1 (ja) 車両用操向装置
JP2020185819A (ja) 車両用操向装置
JP7444175B2 (ja) 車両用操向装置
WO2021106437A1 (ja) 転舵制御装置
JP7159795B2 (ja) 電動パワーステアリング装置
WO2020183838A1 (ja) 車両用操向装置
WO2020079899A1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JPWO2020095479A1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP2020075547A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022507423

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021882546

Country of ref document: EP

Effective date: 20220530

NENP Non-entry into the national phase

Ref country code: DE