WO2020115973A1 - 車両用操向装置 - Google Patents

車両用操向装置 Download PDF

Info

Publication number
WO2020115973A1
WO2020115973A1 PCT/JP2019/034834 JP2019034834W WO2020115973A1 WO 2020115973 A1 WO2020115973 A1 WO 2020115973A1 JP 2019034834 W JP2019034834 W JP 2019034834W WO 2020115973 A1 WO2020115973 A1 WO 2020115973A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
unit
vehicle speed
angle
Prior art date
Application number
PCT/JP2019/034834
Other languages
English (en)
French (fr)
Inventor
堅吏 森
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP19893975.3A priority Critical patent/EP3892523A4/en
Priority to US17/294,154 priority patent/US20220009546A1/en
Priority to JP2020559727A priority patent/JPWO2020115973A1/ja
Publication of WO2020115973A1 publication Critical patent/WO2020115973A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the present invention relates to a steering device for a vehicle.
  • An electric power steering device which is one of the steering devices for vehicles, applies an assist force (steering assist force) to the steering system of the vehicle by the rotational force of the motor.
  • the EPS applies a driving force of a motor controlled by electric power supplied from an inverter to a steering shaft or a rack shaft as an assist force by a transmission mechanism including a reduction mechanism.
  • the first control signal generated based on the steering torque and the vehicle speed and the second control signal generated so as to reduce the deviation between the reference steering torque and the steering torque generated based on the steering angle are used as the behavior of the vehicle.
  • Patent Document 1 There is disclosed a configuration in which a motor is driven by switching according to (for example, Patent Document 1).
  • control may be performed using a predetermined alternative vehicle speed.
  • the alternative vehicle speed is a high speed such as 100 [km/h]
  • the assist force becomes excessive in the low speed range, which may give a feeling of strangeness to the driver's steering operation.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle steering system that can prevent an excessive steering torque from being generated in a low speed range.
  • a vehicle steering apparatus is a vehicle steering apparatus that assist-controls a steering system of a vehicle by drivingly controlling a motor that assists steering force.
  • the target steering torque is reduced according to the absolute value of the difference between the physical quantity generated by the turning motion of the vehicle and the estimated value of the physical quantity at the alternative vehicle speed.
  • a vehicle motion estimation unit that estimates the estimated value of the physical quantity according to the steering angle, and the target according to the absolute value of the difference between the physical quantity and the estimated value of the physical quantity.
  • a torque gain setting unit that sets a torque gain for the steering torque.
  • the target steering torque can be set by the torque gain according to the absolute value of the difference between the physical quantity and the estimated value of the physical quantity.
  • the torque gain setting unit is configured such that the vehicle speed is the alternative vehicle speed, and an absolute value of a difference between the physical quantity and an estimated value of the physical quantity is a predetermined threshold value or more. In addition, it is preferable to reduce the torque gain.
  • the vehicle speed when the vehicle speed is an alternative vehicle speed, it can be prevented from being set to a value far from the ideal target steering torque at the actual vehicle speed.
  • the torque gain setting unit when the vehicle speed is not the alternative vehicle speed, and when the absolute value of the difference between the physical quantity and the estimated value of the physical quantity is less than a predetermined threshold value.
  • the torque gain is set to 1
  • the vehicle speed is the alternative vehicle speed
  • the absolute value of the difference between the physical quantity and the estimated value of the physical quantity is equal to or more than the threshold value
  • the torque gain is set to 1 It is preferable to set the value to less than.
  • the vehicle speed is the alternative vehicle speed and the vehicle turns. It is possible to reduce the target steering torque when the physical quantity associated with the motion is far from the estimated value. As a result, when the vehicle speed is the alternative vehicle speed, it can be prevented from being set to a value far from the ideal target steering torque at the actual vehicle speed.
  • the torque gain setting unit when the vehicle speed is the alternative vehicle speed, and when the absolute value of the difference between the physical quantity and the estimated value of the physical quantity is equal to or more than the threshold value. It is preferable that the torque gain be gradually reduced to the set value.
  • the physical quantity is a yaw rate
  • the vehicle motion estimation unit estimates an estimated yaw rate according to the steering angle.
  • the physical quantity is lateral acceleration
  • the vehicle motion estimating unit estimates the estimated lateral acceleration according to the steering angle.
  • lateral acceleration can be controlled as a parameter as a physical quantity generated by the turning motion of the vehicle.
  • the physical quantity is a self-aligning torque
  • the vehicle motion estimating unit estimates the estimated self-aligning torque according to the steering angle.
  • FIG. 1 is a diagram showing a general configuration of an electric power steering device.
  • FIG. 2 is a schematic diagram showing a hardware configuration of a control unit that controls the electric power steering device.
  • FIG. 3 is a diagram showing an example of an internal block configuration of a control unit in an electric power steering device according to a comparative example.
  • FIG. 4 is a structural diagram showing an installation example of the steering angle sensor.
  • FIG. 5 is a diagram illustrating an example of an internal block configuration of the control unit according to the first embodiment.
  • FIG. 6 is an explanatory diagram of the steering direction.
  • FIG. 7 is a flowchart showing an operation example of the control unit according to the first embodiment.
  • FIG. 8 is a block diagram illustrating a configuration example of the target steering torque generation unit according to the first embodiment.
  • FIG. 9 is a diagram showing an example of characteristics of the basic map held by the basic map unit.
  • FIG. 10 is a diagram showing a characteristic example of the damper gain map held by the damper gain map unit.
  • FIG. 11 is a diagram illustrating a characteristic example of the hysteresis correction unit.
  • FIG. 12 is a block diagram illustrating a configuration example of the vehicle speed failure processing unit according to the first embodiment.
  • FIG. 13 is a diagram showing a characteristic example of an estimated yaw rate map held by the vehicle motion estimation unit of the first embodiment.
  • FIG. 14 is an explanatory diagram of a specific operation of the torque gain setting unit according to the first embodiment.
  • FIG. 15 is a flowchart showing an example of processing in the vehicle speed failure time processing unit of the first embodiment.
  • FIG. 16 is a diagram showing an example of action by the torque gain A G output from the vehicle speed failure processing unit.
  • FIG. 17 is a block diagram illustrating a configuration example of the twist angle control unit according to the first embodiment.
  • FIG. 18 is a diagram showing an example of an internal block configuration of the control unit according to the second embodiment.
  • FIG. 19 is a block diagram illustrating a configuration example of the target steering torque generation unit according to the second embodiment.
  • FIG. 20 is a block diagram showing a configuration example of the SAT information correction unit.
  • FIG. 21 is an image diagram showing a state of torque generated between the road surface and the steering wheel.
  • FIG. 22 is a diagram showing a characteristic example of the steering torque sensitive gain.
  • FIG. 23 is a diagram showing a characteristic example of the vehicle speed response gain.
  • FIG. 21 is an image diagram showing a state of torque generated between the road surface and the steering wheel.
  • FIG. 22 is a diagram showing a characteristic example of the steering torque sensitive gain.
  • FIG. 23 is
  • FIG. 24 is a diagram showing a characteristic example of the steering angle response gain.
  • FIG. 25 is a diagram illustrating an example of setting the upper limit value and the lower limit value of the torque signal in the limiting unit.
  • FIG. 26 is a block diagram showing a configuration example of the vehicle speed failure processing unit of the second embodiment.
  • FIG. 27 is a diagram showing a characteristic example of an estimated yaw rate map held by the vehicle motion estimation unit of the second embodiment.
  • FIG. 28 is an explanatory diagram of a specific operation of the torque gain setting unit according to the second embodiment.
  • FIG. 29 is a flowchart showing an example of processing in the vehicle speed failure time processing unit according to the second embodiment.
  • FIG. 30 is a block diagram illustrating a configuration example of the twist angle control unit according to the second embodiment.
  • FIG. 31 is a diagram showing a configuration example of the SBW system corresponding to the general configuration of the electric power steering device shown in FIG. 1.
  • FIG. 32 is a block diagram showing the configuration of the third embodiment.
  • FIG. 33 is a diagram illustrating a configuration example of the target turning angle generation unit.
  • FIG. 34 is a diagram illustrating a configuration example of the turning angle control unit.
  • FIG. 35 is a flowchart showing an operation example of the third embodiment.
  • FIG. 1 is a diagram showing a general configuration of an electric power steering device.
  • An electric power steering device which is one of steering devices for vehicles, includes a column shaft (steering shaft, handle shaft) 2 of a steering wheel 1, a deceleration mechanism 3, and a universal joint in order of transmission of a force applied by a steering operator.
  • the column shaft 2 having a torsion bar is provided with a torque sensor 10 for detecting a steering torque Ts of the steering wheel 1 and a steering angle sensor 14 for detecting a steering angle ⁇ h, and a motor for assisting the steering force of the steering wheel 1 is provided.
  • 20 is connected to the column shaft 2 via the reduction mechanism 3. Electric power is supplied from the battery 13 to the control unit (ECU) 30 that controls the electric power steering device, and an ignition key signal is input via the ignition key 11.
  • the control unit 30 calculates the current command value of the assist (steering assistance) command based on the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and compensates for the current command value.
  • the current supplied to the motor 20 is controlled by the applied voltage control command value Vref.
  • An in-vehicle network such as a CAN (Controller Area Network) 40 that exchanges various vehicle information is connected to the control unit 30. Further, the control unit 30 can also be connected to a non-CAN 41 other than the CAN 40 that exchanges communication, analog/digital signals, radio waves, and the like.
  • CAN Controller Area Network
  • the control unit 30 is mainly composed of a CPU (including MCU, MPU, etc.).
  • FIG. 2 is a schematic diagram showing a hardware configuration of a control unit that controls the electric power steering device.
  • a control computer 1100 that constitutes the control unit 30 includes a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, a RAM (Random Access Memory) 1003, an EEPROM (Electrically Erasable Programmable ROM) 1004, and an interface (I/F). ) 1005, A/D (Analog/Digital) converter 1006, PWM (Pulse Width Modulation) controller 1007, etc., and these are connected to the bus.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrical Erasable Programmable ROM
  • I/F interface
  • the CPU 1001 is a processing device that executes a computer program for controlling the electric power steering device (hereinafter referred to as a control program) to control the electric power steering device.
  • ROM 1002 stores a control program for controlling the electric power steering device. Further, the RAM 1003 is used as a work memory for operating the control program.
  • the EEPROM 1004 stores control data input/output by the control program. The control data is used on the control computer program expanded in the RAM 1003 after the control unit 30 is powered on, and is overwritten in the EEPROM 1004 at a predetermined timing.
  • the ROM 1002, the RAM 1003, the EEPROM 1004, and the like are storage devices that store information, and are storage devices (primary storage devices) that the CPU 1001 can directly access.
  • the A/D converter 1006 inputs signals such as the steering torque Ts, the detected current value Im of the motor 20 and the steering angle ⁇ h, and converts them into digital signals.
  • the interface 1005 is connected to the CAN 40.
  • the interface 1005 is for receiving a signal (vehicle speed pulse) of the vehicle speed V from the vehicle speed sensor 12.
  • the PWM controller 1007 outputs a PWM control signal for each UVW phase based on the current command value for the motor 20.
  • FIG. 3 is a diagram showing an example of an internal block configuration of a control unit in an electric power steering device according to a comparative example.
  • the steering torque Ts and the vehicle speed Vs are input to the current command value calculation unit 31.
  • the current command value calculation unit 31 refers to a lookup table (assist map or the like) stored in advance based on the steering torque Ts and the vehicle speed Vs, and the current command value Iref1 that is the control target value of the current supplied to the motor 20. Is calculated.
  • the compensation signal generator 34 generates a compensation signal CM.
  • the compensation signal generation unit 34 includes a convergence estimation unit 341, an inertia estimation unit 342, and a self-aligning torque (SAT: Self Aligning Torque) estimation unit 343.
  • the convergence estimation unit 341 estimates the yaw rate of the vehicle based on the angular velocity of the motor 20, and brakes the swinging motion of the steering wheel 1 to estimate a compensation value that improves the convergence of the yaw of the vehicle.
  • the inertia estimation unit 342 estimates the inertial force of the motor 20 based on the angular acceleration of the motor 20, and estimates a compensation value for compensating the inertial force of the motor 20 in order to improve the responsiveness.
  • the SAT estimation unit 343 estimates the self-aligning torque based on the steering torque Ts, the assist torque, the angular velocity and the angular acceleration of the motor 20, and estimates the compensation value for compensating the assist torque by using the self-aligning torque as a reaction force.
  • the compensation signal generation unit 34 may include an estimation unit that estimates another compensation value, in addition to the convergence convergence estimation unit 341, the inertia estimation estimation unit 342, and the SAT estimation unit 343.
  • the addition section 344 adds the compensation value of the inertia estimation section 342 and the compensation value of the SAT estimation section 343, and the addition value and the compensation value of the convergence point estimation section 341 are added in the addition section 345. It is the added value.
  • the compensation signal CM from the compensation signal generation unit 34 is added to the current command value Iref1, and by addition of the compensation signal CM, the current command value Iref1 is compensated for the characteristics of the steering system system, and the convergence and It is designed to improve inertia characteristics and the like. Then, the current command value Iref1 becomes the characteristic-compensated current command value Iref2 via the adding unit 32A, and the current command value Iref2 is input to the current limiting unit 33.
  • the current limiter 33 limits the maximum current of the current command value Iref2 and generates the current command value Irefm.
  • the current command value Irefm is input to the subtraction unit 32B, and the deviation I(Irefm-Im) from the current detection value Im fed back from the motor 20 side is calculated by the subtraction unit 32B.
  • the deviation I is input to the PI control unit 35 for improving the characteristic of the steering operation.
  • the voltage control command value Vref whose characteristics have been improved by the PI control unit 35 is input to the PWM control unit 36, and the motor 20 is PWM-driven via the inverter circuit 37 as the motor drive unit.
  • the current detection value Im of the motor 20 is detected by the current detector 38 and fed back to the subtractor 32B.
  • the inverter circuit 37 uses a field effect transistor (hereinafter, referred to as FET) as a drive element and is configured by a bridge circuit of FET.
  • FET field effect transistor
  • a torque sensor detects a steering torque applied by a driver's manual input as a torsion torque of a torsion bar, and mainly detects a motor current as an assist current corresponding to the torque.
  • the steering torque may be different depending on the steering angle due to the difference in the road surface state (for example, inclination). Steering torque may also be affected by variations in motor output characteristics over time.
  • FIG. 4 is a structural diagram showing an installation example of the rudder angle sensor.
  • the column shaft 2 is provided with a torsion bar 2A.
  • Road surface reaction force Rr and road surface information ⁇ act on the steered wheels 8L and 8R.
  • An upper angle sensor is provided on the handle side of the column shaft 2 with the torsion bar 2A interposed therebetween.
  • a lower angle sensor is provided on the steering wheel side of the column shaft 2 with the torsion bar 2A interposed therebetween.
  • the upper angle sensor detects the steering wheel angle ⁇ 1
  • the lower angle sensor detects the column angle ⁇ 2 .
  • the steering angle ⁇ h is detected by a steering angle sensor provided above the column shaft 2.
  • the torsion angle ⁇ of the torsion bar is expressed by the following equation (1) from the deviation between the handle angle ⁇ 1 and the column angle ⁇ 2 .
  • the torsion bar torque Tt is expressed by the following expression (2) using the torsion angle ⁇ of the torsion bar expressed by the expression (1).
  • Kt is the spring constant of the torsion bar 2A.
  • the torsion bar torque Tt can also be detected by using a torque sensor.
  • the torsion bar torque Tt is also treated as the steering torque Ts.
  • FIG. 5 is a diagram showing an example of an internal block configuration of the control unit according to the first embodiment.
  • the control unit 30 includes a target steering torque generation unit 200, a twist angle control unit 300, a steering direction determination unit 400, and a conversion unit 500 as internal block configurations.
  • steering of the driver's steering wheel is assist-controlled by the motor 20 of the EPS steering system/vehicle system 100.
  • the EPS steering system/vehicle system 100 includes an angle sensor, an angular velocity calculation unit, and the like in addition to the motor 20.
  • the target steering torque generation unit 200 generates the target steering torque Tref, which is the target value of the steering torque when the steering system of the vehicle is assist-controlled in the present disclosure.
  • the conversion unit 500 converts the target steering torque Tref into a target twist angle ⁇ ref.
  • the torsion angle control unit 300 generates a motor current command value Iref which is a control target value of the current supplied to the motor 20.
  • the twist angle control unit 300 calculates a motor current command value Iref such that the twist angle ⁇ becomes the target twist angle ⁇ ref.
  • the motor 20 is driven by the motor current command value Iref.
  • the steering direction determination unit 400 determines whether the steering direction is right turn or left turn based on the motor angular velocity ⁇ m output from the EPS steering system/vehicle system 100, and outputs the determination result as a steering state signal STs.
  • FIG. 6 is an explanatory diagram of the steering direction.
  • the steering state indicating whether the steering direction is right-turn or left-turn can be obtained from the relationship between the steering angle ⁇ h and the motor angular velocity ⁇ m as shown in FIG. That is, when the motor angular velocity ⁇ m has a positive value, it is determined to be “right cut”, and when the motor angular velocity ⁇ m has a negative value, it is determined to be “left cut”.
  • an angular velocity calculated by performing a velocity calculation on the steering angle ⁇ h, the steering wheel angle ⁇ 1 or the column angle ⁇ 2 may be used.
  • the conversion unit 500 converts the target steering torque Tref generated by the target steering torque generation unit 200 into the target twist angle ⁇ ref using the relationship of the above equation (2).
  • FIG. 7 is a flowchart showing an operation example of the control unit according to the first embodiment.
  • the steering direction determination unit 400 determines whether the steering direction is right-turn or left-turn based on the sign of the motor angular velocity ⁇ m output from the EPS steering system/vehicle system 100. It is output to the torque generator 200 (step S10).
  • the target steering torque generation unit 200 generates the target steering torque Tref based on the vehicle speed Vs, the vehicle speed determination signal Vfail, the steering state signal STs, the steering angle ⁇ h, and the actual yaw rate ⁇ re (step S20).
  • the conversion unit 500 converts the target steering torque Tref generated by the target steering torque generation unit 200 into a target twist angle ⁇ ref (step S20).
  • the target twist angle ⁇ ref is output to the twist angle control unit 300.
  • the twist angle control unit 300 calculates the motor current command value Iref based on the target twist angle ⁇ ref, the steering angle ⁇ h, the twist angle ⁇ , and the motor angular velocity ⁇ m (step S30).
  • step S40 current control is performed based on the motor current command value Iref output from the torsion angle control unit 300, and the motor 20 is driven (step S40).
  • FIG. 8 is a block diagram showing a configuration example of the target steering torque generation unit of the first embodiment.
  • the target steering torque generation unit 200 includes a basic map unit 210, a multiplication unit 211, a differentiation unit 220, a damper gain map unit 230, a hysteresis correction unit 240, a SAT information correction unit 250, a multiplication unit 260, and an addition.
  • the units 261, 262, 263 and the vehicle speed failure processing unit 280 are provided.
  • FIG. 9 is a diagram showing an example of characteristics of the basic map held by the basic map unit.
  • FIG. 10 is a diagram showing a characteristic example of the damper gain map held by the damper gain map unit.
  • the steering angle ⁇ h and the vehicle speed Vs are input to the basic map unit 210.
  • the basic map unit 210 outputs the torque signal Tref_a0 with the vehicle speed Vs as a parameter using the basic map shown in FIG. That is, the basic map section 210 outputs the torque signal Tref_a0 according to the vehicle speed Vs.
  • the torque signal Tref_a0 has a characteristic of increasing as the magnitude (absolute value)
  • the steering angle ⁇ h is input to the differentiator 220.
  • the differentiator 220 differentiates the steering angle ⁇ h to calculate the steering angular velocity ⁇ h, which is angular velocity information.
  • the differentiating unit 220 outputs the calculated steering angular velocity ⁇ h to the multiplying unit 260.
  • the vehicle speed Vs is input to the damper gain map unit 230.
  • the damper gain map unit 230 outputs a damper gain D G according to the vehicle speed Vs using the vehicle speed sensitive damper gain map shown in FIG. 10.
  • the damper gain D G has a characteristic that it gradually increases as the vehicle speed Vs increases.
  • the damper gain D G may be variable according to the steering angle ⁇ h.
  • the multiplying unit 260 multiplies the steering angular velocity ⁇ h output from the differentiating unit 220 by the damper gain D G output from the damper gain map unit 230, and outputs it as the torque signal Tref_b to the adding unit 262.
  • the steering direction determination unit 400 makes a determination as shown in FIG. 6, for example.
  • the steering angle ⁇ h, the vehicle speed Vs, and the steering state signal STs that is the determination result shown in FIG. 6 are input to the hysteresis correction unit 240.
  • the hysteresis correction unit 240 calculates the torque signal Tref_c using the following equations (3) and (4) based on the steering angle ⁇ h and the steering state signal STs.
  • x is a steering angle ⁇ h
  • y R Tref_c
  • the coefficient a is a value larger than 1
  • the coefficient c is a value larger than 0.
  • the coefficient Ahys indicates the output width of the hysteresis characteristic
  • the coefficient c is a coefficient indicating the roundness of the hysteresis characteristic.
  • the torque signal (fourth torque signal) Tref_c(y R ) is calculated using the above equation (3).
  • the torque signal (fourth torque signal) Tref_c(y L ) is calculated using the above equation (4). It should be noted that when switching from right-turn steering to left-turn steering, or when switching from left-turn steering to right-turn steering, the final coordinates (x 1 , y 1 ) of the previous values of the steering angle ⁇ h and the torque signal Tref_c. Based on the value of, the coefficient b or b′ shown in the following formula (5) or formula (6) is substituted into the formulas (3) and (4) after the steering is switched. Thereby, the continuity before and after the steering switching is maintained.
  • FIG. 11 is a diagram showing a characteristic example of the hysteresis correction unit.
  • An example of characteristics of the torque signal Tref_c whose hysteresis has been corrected when steering is performed at [deg] is shown.
  • the torque signal Tref_c output from the hysteresis correction unit 240 has hysteresis characteristics such as 0 origin ⁇ L1 (thin line) ⁇ L2 (broken line) ⁇ L3 (thick line).
  • the coefficient Ahys that represents the output width of the hysteresis characteristic and the coefficient c that represents the roundness may be variable depending on one or both of the vehicle speed Vs and the steering angle ⁇ h.
  • the steering angular velocity ⁇ h is obtained by a differential calculation with respect to the steering angle ⁇ h, but a low pass filter (LPF) process is appropriately performed to reduce the influence of noise in the high frequency range. Further, the differential calculation and the LPF processing may be performed using a high pass filter (HPF) and a gain. Further, the steering angular velocity ⁇ h may be calculated by performing differential calculation and LPF processing on the steering wheel angle ⁇ 1 detected by the upper angle sensor or the column angle ⁇ 2 detected by the lower angle sensor, instead of the steering angle ⁇ h. . Instead of the steering angular velocity ⁇ h, the motor angular velocity ⁇ m may be used as the angular velocity information, and in this case, the differentiating unit 220 is unnecessary.
  • LPF low pass filter
  • the steering angle ⁇ h, the vehicle speed determination signal Vfail, and the actual yaw rate ⁇ re detected by the yaw rate sensor 15 (see FIG. 1) provided in the host vehicle are displayed. Is entered.
  • the vehicle speed sensor 12 (see FIG. 1) outputs, for example, a pulse signal corresponding to the vehicle speed as a vehicle speed signal. If the vehicle speed sensor 12 fails and the vehicle speed signal (pulse signal corresponding to the vehicle speed) cannot be output normally, the control based on the vehicle speed Vs cannot be performed. Therefore, when the vehicle speed signal is not normally output, control using a predetermined alternative vehicle speed is performed.
  • the vehicle speed determination signal Vfail is a signal indicating whether or not the vehicle speed signal is normally output from the vehicle speed sensor 12. Further, when the vehicle speed signal is not normally output, a predetermined alternative vehicle speed is input to the vehicle speed failure processing unit 280 as the vehicle speed Vs. In other words, the vehicle speed determination signal Vfail is a signal indicating whether the vehicle speed Vs is the alternative vehicle speed. In the present embodiment, the alternative vehicle speed is set to 100 [km/h], for example.
  • the component that outputs the vehicle speed determination signal Vfail and the alternative vehicle speed may be configured by, for example, a circuit outside the control unit 30.
  • the present embodiment shows an example in which the actual yaw rate ⁇ re detected by the yaw rate sensor 15 is input as the physical quantity generated by the turning motion of the vehicle.
  • the actual yaw rate ⁇ re the actual lateral acceleration detected by the lateral acceleration sensor 16 (see FIG. 1) provided in the host vehicle may be input as the physical quantity generated by the turning motion of the vehicle.
  • FIG. 12 is a block diagram showing a configuration example of a vehicle speed failure processing unit according to the first embodiment.
  • the vehicle speed failure processing unit 280 of the first embodiment includes a vehicle motion estimation unit 281 and a torque gain setting unit 282.
  • the steering angle ⁇ h is input to the vehicle motion estimation unit 281.
  • the vehicle motion estimation unit 281 holds an estimated yaw rate map showing the relationship between the steering angle ⁇ h and the yaw rate ⁇ at an alternative speed (for example, 100 [km/h]).
  • FIG. 13 is a diagram showing a characteristic example of an estimated yaw rate map held by the vehicle motion estimation unit of the first embodiment.
  • a mathematical expression based on a vehicle model called Single-track Model may be used.
  • the vehicle motion estimation unit 281 outputs the estimated yaw rate ⁇ est according to the steering angle ⁇ h using the estimated yaw rate map shown in FIG. 13 (or a mathematical expression indicating the relationship between the steering angle ⁇ h and the yaw rate ⁇ at the alternative speed).
  • the estimated yaw rate ⁇ est, the vehicle speed determination signal Vfail, and the actual yaw rate ⁇ re output from the vehicle motion estimation section 281 are input to the torque gain setting section 282.
  • the torque gain setting unit 282 generates the torque gain A G based on the estimated yaw rate ⁇ est, the vehicle speed determination signal Vfail, and the actual yaw rate ⁇ re.
  • the torque gain setting unit 282 determines, based on the vehicle speed determination signal Vfail, whether or not the vehicle speed Vs is normally detected, that is, whether or not the vehicle speed Vs is an alternative vehicle speed.
  • the torque gain setting unit 282 generates a torque gain A G according to the absolute value
  • FIG. 14 is an explanatory diagram of a specific operation of the torque gain setting unit according to the first embodiment.
  • the solid line indicates the absolute value
  • the broken line indicates a value smaller than the absolute value
  • the torque gain setting unit 282 reduces the torque gain A G when the vehicle speed Vs is the alternative vehicle speed and the absolute value
  • FIG. 14 shows an example in which the absolute value
  • the torque gain A G of the first embodiment is expressed by the following equation (11).
  • the coefficient A is a real value of 1 or more.
  • the torque gain setting unit 282 sets the torque gain A G to less than 1 when the vehicle speed Vs is an alternative vehicle speed and
  • the coefficient A shown in the equation (11) is set to a value larger than 1.
  • the torque gain setting unit 282 sets the torque gain AG to 1 when the vehicle speed Vs is normally detected, that is, when the vehicle speed determination signal Vfail indicates that the vehicle speed Vs is normal. Set. Further, the torque gain setting unit 282 determines that the absolute value
  • FIG. 15 is a flowchart showing an example of processing in the vehicle speed failure processing unit of the first embodiment.
  • the torque gain setting unit 282 determines whether the vehicle speed Vs is an alternative vehicle speed based on the vehicle speed determination signal Vfail (step S101).
  • the vehicle motion estimation unit 281 When the vehicle speed Vs is the alternative vehicle speed (step S101; Yes), the vehicle motion estimation unit 281 outputs the estimated yaw rate ⁇ est corresponding to the steering angle ⁇ h using the estimated yaw rate map shown in FIG. 13 (step S102). ..
  • the torque gain setting unit 282 calculates the absolute value
  • the torque gain setting unit 282 determines whether or not the absolute value
  • step S105 When the absolute value
  • ⁇ B) (step S105; No), the torque gain setting unit 282 determines that the torque gain The coefficient A for A G 1/A is set to 1 (step S103), and the process is terminated.
  • step S105 When the absolute value
  • ⁇ B) (step S105; Yes), the torque gain setting unit 282 determines that the torque gain The coefficient A for A G 1/A is set to a predetermined value larger than 1 (step S106), and the process is terminated.
  • the multiplying unit 211 multiplies the torque signal Tref_a0 output from the basic map unit 210 by the torque gain A G output from the vehicle speed failure processing unit 280, and outputs the torque signal Tref_a as an adding unit. It outputs to 261.
  • FIG. 16 is a diagram showing an example of action by the torque gain A G output from the vehicle speed failure processing unit.
  • a predetermined alternative vehicle speed for example, 100 [km/h]
  • the value of the torque signal Tref_a0 output from the basic map unit 210 becomes a value corresponding to the alternative speed (here, 100 [km/h]).
  • the torque signal Tref_a0 output from the basic map unit 210 is output as the torque signal Tref_a.
  • the torque signals Tref_a, Tref_b, and Tref_c obtained as described above are added by the adders 261 and 262 and output as the target steering torque Tref.
  • the vehicle speed failure processing unit 280 of the first embodiment In a configuration in which the vehicle speed failure processing unit 280 of the first embodiment is not applied, for example, in a state where the vehicle speed sensor 12 fails and an alternative vehicle speed (for example, 100 [km/h]) is output as the vehicle speed Vs,
  • an alternative vehicle speed for example, 100 [km/h]
  • the target steering torque Tref becomes a large value according to the alternative vehicle speed.
  • the steering angle ⁇ h is controlled to be small by the assist control. Therefore, for example, when the driver operates the steering wheel 1 and stops in the state of turning left or right to turn right or left at an intersection, the driver needs to hold the steering wheel 1. That is, an abnormal behavior, which is so-called self-steering, different from the driver's intention occurs.
  • the abnormal behavior as described above can be prevented by applying the vehicle speed failure processing unit 280 of the first embodiment.
  • the vehicle speed sensor 12 fails, and in the state where the alternative vehicle speed (for example, 100 [km/h]) is output as the vehicle speed Vs, excessive steering that causes self-steering while the vehicle is stopped by the assist control. It is possible to prevent torque from being generated.
  • the alternative vehicle speed for example, 100 [km/h]
  • the position where the multiplication unit 211 is provided is not limited to the latter stage of the basic map unit 210 as shown in FIG. 8, and it may be provided, for example, after the addition units 261 and 262.
  • the torque gain setting unit 282 determines the torque gain A G.
  • the value may be gradually reduced from 1 in a stepwise manner, or the torque gain A G may be varied according to the absolute value
  • the yaw rate sensor 15 for detecting the actual yaw rate ⁇ re may be any mode that outputs a detection value when the steering angle ⁇ h changes by several [deg], and does not need to be particularly highly accurate. Therefore, the relatively inexpensive yaw rate sensor 15 can be used.
  • the detection value of the yaw rate sensor 15 be directly input to the control unit 30 without passing through the CAN 40. Accordingly, even when the alternative vehicle speed is input as the vehicle speed Vs due to the failure of the CAN 40, it is possible to prevent the abnormal behavior as described above.
  • the yaw rate sensor 15 has a self-diagnosis function. As a result, it is possible to notify the driver of the abnormality, for example, by providing a warning lamp without losing the assist function.
  • twist angle control unit 300 (see FIG. 5) of the first embodiment will be described with reference to FIG.
  • FIG. 17 is a block diagram showing a configuration example of the twist angle control unit of the first embodiment.
  • the twist angle control unit 300 calculates the motor current command value Iref based on the target twist angle ⁇ ref, the twist angle ⁇ , the steering angle ⁇ h, and the motor angular velocity ⁇ m.
  • the torsion angle control unit 300 includes a torsion angle feedback (FB) compensation unit 310, a speed control unit 330, a stabilization compensation unit 340, an output limiting unit 350, a steering angle disturbance compensation unit 360, a subtraction unit 361, an addition unit 363, and deceleration.
  • FB torsion angle feedback
  • the ratio section 370 is provided.
  • the target twist angle ⁇ ref output from the conversion unit 500 is added and input to the subtraction unit 361.
  • the twist angle ⁇ is subtracted and input to the subtraction unit 361.
  • the steering angle ⁇ h is input to the steering angle disturbance compensation unit 360.
  • the motor angular velocity ⁇ m is input to the stabilization compensator 340.
  • the twist angle FB compensation unit 310 multiplies the deviation ⁇ 0 between the target twist angle ⁇ ref and the twist angle ⁇ calculated by the subtraction unit 361 by a compensation value CFB (transfer function), and the twist angle ⁇ follows the target twist angle ⁇ ref. Then, the target column angular velocity ⁇ ref1 is output. The target column angular velocity ⁇ ref1 is added and output to the adder 363.
  • the compensation value CFB may be a simple gain Kpp or a commonly used compensation value such as a PI control compensation value.
  • the steering angle disturbance compensation unit 360 multiplies the steering angle ⁇ h by the compensation value Ch (transfer function) and outputs the target column angular velocity ⁇ ref2.
  • the target column angular velocity ⁇ ref2 is added and output to the adder 363.
  • the adding unit 363 adds the target column angular velocity ⁇ ref1 and the target column angular velocity ⁇ ref2, and outputs it as the target column angular velocity ⁇ ref to the velocity control unit 330.
  • the basic purpose of the steering angle disturbance compensator 360 is to reduce the influence of the steering angle ⁇ h as this disturbance.
  • the speed control unit 330 calculates the motor current command value Is such that the column angular speed ⁇ c follows the target column angular speed ⁇ ref by the IP control (proportional PI control).
  • the column angular velocity ⁇ c may be a value obtained by multiplying the motor angular velocity ⁇ m by the speed reduction ratio 1/N of the speed reduction ratio unit 370, which is a speed reduction mechanism, as shown in FIG.
  • the subtraction unit 333 calculates the difference ( ⁇ ref ⁇ c) between the target column angular velocity ⁇ ref and the column angular velocity ⁇ c.
  • the integration unit 331 integrates the difference ( ⁇ ref ⁇ c) between the target column angular velocity ⁇ ref and the column angular velocity ⁇ c, and adds and inputs the integration result to the subtraction unit 334.
  • the torsional angular velocity ⁇ t is also output to the proportional portion 332.
  • the proportional portion 332 performs proportional processing with the gain Kvp on the column angular velocity ⁇ c, and subtracts and inputs the proportional processing result to the subtractor 334.
  • the subtraction result of the subtraction unit 334 is output as the motor current command value Is.
  • the speed control unit 330 is not the IP control but the PI control, the P (proportional) control, the PID (proportional integral derivative) control, the PI-D control (differential preceding PID control), the model matching control, the model reference.
  • the motor current command value Is may be calculated by a generally used control method such as control.
  • the output limiter 350 has preset upper and lower limits for the motor current command value Is. The upper and lower limits of the motor current command value Is are limited and the motor current command value Iref is output.
  • the configuration of the twist angle control unit 300 in this embodiment is an example, and may have a mode different from the configuration shown in FIG.
  • the twist angle control unit 300 may not include the steering angle disturbance compensating unit 360, the adding unit 363, and the reduction ratio unit 370.
  • FIG. 18 is a diagram showing an example of an internal block configuration of the control unit according to the second embodiment.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and redundant description will be omitted.
  • the control unit (ECU) 30a according to the second embodiment differs from the first embodiment in the configurations of the target steering torque generation unit 200a and the twist angle control unit 300a.
  • the steering torque Ts and the motor angle ⁇ m are input to the target steering torque generation unit 200a.
  • the twist angle control unit 300a calculates a motor current command value Imc such that the twist angle ⁇ becomes the target twist angle ⁇ ref.
  • the motor 20 is driven by the motor current command value Imc.
  • FIG. 19 is a block diagram showing a configuration example of the target steering torque generation unit of the second embodiment.
  • the target steering torque generation unit 200a of the second embodiment includes a SAT information correction unit 250 and an addition unit 263 in addition to the configuration described in the first embodiment. Further, the target steering torque generation unit 200a differs from that of the first embodiment in the configuration of the vehicle speed failure processing unit 280a.
  • the steering angle ⁇ h, the vehicle speed Vs, the steering torque Ts, the motor angle ⁇ m, and the motor current command value Imc are input to the SAT information correction unit 250.
  • the SAT information correction unit 250 calculates a self-aligning torque (SAT) based on the steering torque Ts, the motor angle ⁇ m, and the motor current command value Imc, and further performs filter processing, gain multiplication, and restriction processing to obtain a torque signal ( First torque signal) Tref_d is calculated.
  • SAT self-aligning torque
  • FIG. 20 is a block diagram showing a configuration example of the SAT information correction unit.
  • the SAT information correction unit 250 includes a SAT calculation unit 251, a filter unit 252, a steering torque sensitive gain unit 253, a vehicle speed sensitive gain unit 254, a steering angle sensitive gain unit 255, and a limiting unit 256.
  • FIG. 21 is an image diagram showing a state of torque generated between the road surface and the steering wheel.
  • a steering torque Ts is generated by the driver steering the steering wheel, and the motor 20 generates an assist torque (motor torque) Tm in accordance with the steering torque Ts.
  • the wheels are steered and self-aligning torque T SAT is generated as a reaction force.
  • a torque that is a resistance to steering of the steering wheel is generated by the column shaft converted inertia (inertia acting on the column shaft by the motor 20 (the rotor thereof), the reduction mechanism, etc.) J and friction (static friction) Fr.
  • a physical torque (viscous torque) expressed as a damper term (damper coefficient D M ) is generated by the rotation speed of the motor 20. From the balance of these forces, the equation of motion shown in the following equation (12) is obtained.
  • ⁇ M is the column shaft-converted (converted into a value for the column shaft) motor angular velocity
  • ⁇ M is the column-axis converted motor angular acceleration
  • T SAT ⁇ Tm ⁇ Ts+J ⁇ M +Fr ⁇ sign( ⁇ M )+D M ⁇ M (13)
  • the motor angular velocity ⁇ M , the motor angular acceleration ⁇ M , the assist torque Tm, and the steering torque Ts are obtained by previously obtaining the column shaft converted inertia J, the static friction Fr, and the damper coefficient DM as constants.
  • the self-aligning torque T SAT can be calculated more.
  • the column shaft conversion inertia J may be a value converted into the column shaft simply by using a relational expression of the motor inertia and the reduction ratio.
  • the steering torque Ts, the motor angle ⁇ m, and the motor current command value Imc are input to the SAT calculation unit 251.
  • the SAT calculator 251 calculates the self-aligning torque T SAT using the above equation (13).
  • the SAT calculation unit 251 includes a conversion unit 251A, an angular velocity calculation unit 251B, an angular acceleration calculation unit 251C, a block 251D, a block 251E, a block 251F, a block 251G, and adders 251H, 251I, and 251J.
  • the motor current command value Imc is input to the conversion unit 251A.
  • the conversion unit 251A calculates the column shaft converted assist torque Tm by multiplying a predetermined gear ratio and a torque constant.
  • the motor angle ⁇ m is input to the angular velocity calculation unit 251B.
  • the angular velocity calculation unit 251B calculates the column shaft-converted motor angular velocity ⁇ M by differentiating and multiplying the gear ratio.
  • the motor angular velocity ⁇ M is input to the angular acceleration calculation unit 251C.
  • the angular acceleration calculation unit 251C differentiates the motor angular velocity ⁇ M to calculate the column shaft-converted motor angular acceleration ⁇ M.
  • the block 251D, the block 251E, the block 251F, the block 251G, and the adders 251H, 251I, 251J calculates the self-aligning torque T SAT with the configuration shown in FIG.
  • the motor angular velocity ⁇ M output from the angular velocity calculation unit 251B is input to the block 251D.
  • the block 251D functions as a sign function and outputs the sign of the input data.
  • the motor angular velocity ⁇ M output from the angular velocity calculation unit 251B is input to the block 251E.
  • the block 251E multiplies the input data by the damper coefficient D M and outputs the product.
  • the block 251F multiplies the input data from the block 251D by the static friction Fr and outputs the product.
  • the motor angular acceleration ⁇ M output from the angular acceleration calculator 251C is input to the block 251G.
  • the block 251G multiplies the input data by the column axis conversion inertia J and outputs the product.
  • the adder 251H adds the steering torque Ts and the assist torque Tm output from the conversion unit 251A.
  • the adder 251I subtracts the output of the block 251G from the output of the adder 251H.
  • the adder 251J adds the output of the block 251E and the output of the block 251F, and subtracts the output of the adder 251I.
  • the above equation (13) can be realized. That is, the self-aligning torque T SAT is calculated by the configuration of the SAT calculating unit 251 shown in FIG.
  • the column angle may be used as the angle information instead of the motor angle ⁇ m. In this case, column axis conversion is unnecessary. Further, instead of the motor angle ⁇ m, a signal obtained by converting the motor angular velocity ⁇ m from the EPS steering system/vehicle system 100 into a column axis may be input as the motor angular velocity ⁇ M , and the differentiation process for the motor angle ⁇ m may be omitted. Furthermore, the self-aligning torque T SAT may be calculated by a method other than the above, and a measured value may be used instead of the calculated value.
  • the filter unit 252 extracts the information to be transmitted from the self-aligning torque T SAT and steers the steering wheel.
  • the amount transmitted by the torque sensitive gain unit 253, the vehicle speed sensitive gain unit 254, and the steering angle sensitive gain unit 255 is adjusted, and further, the upper and lower limit values are adjusted by the limiting unit 256.
  • the self-aligning torque T SAT is input from the SAT calculating unit 251 to the filter unit 252.
  • the filter unit 252 performs a filtering process on the self-aligning torque T SAT using, for example, a bandpass filter, and outputs SAT information T ST 1.
  • the steering torque sensitive gain section 253 receives the SAT information T ST 1 and the steering torque Ts output from the filter section 252.
  • the steering torque sensitive gain unit 253 sets the steering torque sensitive gain.
  • FIG. 22 is a diagram showing a characteristic example of the steering torque sensitive gain.
  • the steering torque sensitive gain unit 253 sets the steering torque sensitive gain so that the sensitivity is high near the on-center where the vehicle is traveling straight ahead.
  • the steering torque sensitive gain unit 253 multiplies the SAT information T ST 1 by the steering torque sensitive gain set according to the steering torque Ts, and outputs the SAT information T ST 2.
  • the steering torque sensitive gain is fixed at 1.0 when the steering torque Ts is Ts1 (for example, 2 Nm) or less, and is smaller than 1.0 when the steering torque Ts is Ts2 (>Ts1) (for example, 4 Nm) or more.
  • Ts1 for example, 2 Nm
  • Ts2 for example, 4 Nm
  • An example in which the steering torque Ts is fixed and is set to decrease at a constant rate between Ts1 and Ts2 is shown.
  • the SAT information T ST 2 and the vehicle speed Vs output from the steering torque sensitive gain unit 253 are input to the vehicle speed sensitive gain unit 254.
  • the vehicle speed sensitive gain section 254 sets the vehicle speed sensitive gain.
  • FIG. 23 is a diagram showing a characteristic example of the vehicle speed response gain.
  • the vehicle speed sensitive gain unit 254 sets the vehicle speed sensitive gain so that the sensitivity during high speed traveling is high.
  • the vehicle speed sensitive gain unit 254 multiplies the SAT information T ST 2 by the vehicle speed sensitive gain set according to the vehicle speed Vs, and outputs the SAT information T ST 3.
  • the vehicle speed sensitive gain is fixed at 1.0 when the vehicle speed Vs is Vs2 (for example, 70 km/h) or more, and is smaller than 1.0 when the vehicle speed Vs is Vs1 ( ⁇ Vs2) (for example, 50 km/h) or less. Is fixed and the vehicle speed Vs is set to increase at a constant rate between Vs1 and Vs2.
  • the steering angle sensitive gain unit 255 receives the SAT information T ST 3 and the steering angle ⁇ h output from the vehicle speed sensitive gain unit 254.
  • the steering angle sensitive gain unit 255 sets the steering angle sensitive gain.
  • FIG. 24 is a diagram showing a characteristic example of the steering angle response gain.
  • the steering angle sensitive gain section 255 sets the steering angle sensitive gain so that the steering angle sensitive gain unit 255 starts to operate from a predetermined steering angle and the sensitivity becomes high when the steering angle is large.
  • the steering angle sensitive gain unit 255 multiplies the SAT information T ST 3 by the steering angle sensitive gain set according to the steering angle ⁇ h, and outputs the torque signal Tref_d0.
  • the steering angle sensitive gain is fixed at a predetermined gain value G ⁇ when the steering angle ⁇ h is ⁇ h1 (eg, 10 deg) or less, and fixed at 1.0 when the steering angle ⁇ h is ⁇ h2 (eg, 30 deg) or more.
  • G ⁇ may be set in the range of 0 ⁇ G ⁇ 1.
  • the torque signal Tref_d0 output from the steering angle sensitive gain unit 255 is input to the limiting unit 256.
  • the upper limit and the lower limit of the torque signal Tref_d0 are set in the limiter 256.
  • FIG. 25 is a diagram showing an example of setting the upper limit value and the lower limit value of the torque signal in the limiting section.
  • the limiting unit 256 sets an upper limit value and a lower limit value for the torque signal Tref_d0 in advance, and when the input torque signal Tref_d0 is the upper limit value or more, the upper limit value and the lower limit value or less, respectively.
  • the lower limit value otherwise, the torque signal Tref_d0 is output as the torque signal Tref_d.
  • the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may have a curved characteristic instead of the linear characteristic shown in FIGS. 22, 23, and 24.
  • the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be appropriately adjusted according to the steering feeling.
  • the limiting unit 256 may be deleted.
  • the steering torque sensitive gain portion 253, the vehicle speed sensitive gain portion 254, and the steering angle sensitive gain portion 255 can also be appropriately omitted.
  • the installation positions of the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be exchanged. Further, for example, the steering torque sensitive gain, the vehicle speed sensitive gain, and the steering angle sensitive gain may be obtained in parallel and multiplied by the SAT information T ST 1 in one component.
  • the configuration of the SAT information correction unit 250 in the present embodiment is an example, and may have a mode different from the configuration shown in FIG.
  • FIG. 26 is a block diagram showing a configuration example of a vehicle speed failure processing unit according to the second embodiment.
  • the vehicle speed failure processing unit 280a of the second embodiment includes a vehicle motion estimation unit 281a and a torque gain setting unit 282a.
  • the present embodiment shows an example in which the self-aligning torque T SAT calculated by the SAT calculating unit 251 is input as the physical quantity generated by the turning motion of the vehicle.
  • the steering angle ⁇ h is input to the vehicle motion estimation unit 281a.
  • the vehicle motion estimation unit 281a holds an estimated self-aligning torque map showing the relationship between the steering angle ⁇ h and the self-aligning torque T SAT at the alternative speed (for example, 100 [km/h]).
  • FIG. 27 is a diagram showing a characteristic example of an estimated self-aligning torque map held by the vehicle motion estimation unit of the second embodiment. Note that the relationship between the steering angle ⁇ h and the self-aligning torque T SAT is not the estimated self-aligning torque map shown in FIG. 27, but a mathematical expression indicating the relationship between the steering angle ⁇ h and the self-aligning torque T SAT at the alternative speed, for example. May be used.
  • the vehicle motion estimation unit 281a uses the estimated self-aligning torque map (or a mathematical expression indicating the relationship between the steering angle ⁇ h and the self-aligning torque T SAT at the alternative speed) to estimate the self-aligning according to the steering angle ⁇ h.
  • the torque Test is output.
  • the estimated self-aligning torque Test output from the vehicle motion estimating unit 281a, the vehicle speed determination signal Vfail, and the self-aligning torque T SAT are input to the torque gain setting unit 282a.
  • the torque gain setting unit 282 generates a torque gain A G based on the estimated self-aligning torque Test, the vehicle speed determination signal Vfail, and the self-aligning torque T SAT .
  • the torque gain setting unit 282a determines whether or not the vehicle speed Vs is normally detected, that is, whether or not the vehicle speed Vs is an alternative vehicle speed, based on the vehicle speed determination signal Vfail.
  • the torque gain setting unit 282a sets the torque gain A G according to the absolute value
  • the torque gain setting unit 282a holds a predetermined threshold value E for the absolute value
  • FIG. 28 is an explanatory diagram of a specific operation in the torque gain setting unit of the second embodiment.
  • the solid line indicates the absolute value
  • the broken line indicates a value smaller than the absolute value
  • the absolute value of the steering angle ⁇ h is
  • FIG. 28 shows an example in which the absolute value
  • the torque gain AG of the second embodiment is expressed by the following equation (14).
  • the coefficient D is a real value of 1 or more.
  • the torque gain setting unit 282a sets the torque gain A G to less than 1 when the vehicle speed Vs is an alternative vehicle speed and
  • the coefficient D shown in the equation (14) is set to a value larger than 1.
  • the torque gain setting unit 282a sets the torque gain A G to 1 when the vehicle speed Vs is normally detected. Further, the torque gain setting unit 282a determines that the absolute value
  • FIG. 29 is a diagram illustrating an example of processing performed by the vehicle speed failure processing unit according to the second embodiment.
  • the torque gain setting unit 282a determines whether the vehicle speed Vs is an alternative vehicle speed based on the vehicle speed determination signal Vfail (step S201).
  • the vehicle motion estimation unit 281a uses the estimated self-aligning torque map shown in FIG. 27 to calculate the estimated self-aligning torque Test according to the steering angle ⁇ h. Output (step S202).
  • the torque gain setting unit 282a calculates the absolute value
  • the torque gain setting unit 282a determines that the absolute value
  • step S205 If the absolute value of the difference between the estimated self-aligning torque Test and the self-aligning torque T SAT
  • ⁇ E) (step S205; No), the torque The gain setting unit 282a sets the coefficient D in the torque gain A G 1/D to 1 (step S203), and ends the process.
  • step S205 If the absolute value of the difference between the estimated self-aligning torque Test and the self-aligning torque T SAT
  • ⁇ E) (step S205; Yes), the torque The gain setting unit 282a sets the coefficient D in the torque gain A G 1/D to a predetermined value larger than 1 (step S206), and ends the process.
  • the multiplying unit 211 multiplies the torque signal Tref_a0 output from the basic map unit 210 by the torque gain A G output from the vehicle speed failure processing unit 280a, and outputs it as the torque signal Tref_a to the adding unit 261.
  • the torque signals Tref_a, Tref_b, Tref_c, and Tref_d obtained as described above are added by the adders 261, 262, 263 and output as the target steering torque Tref.
  • the vehicle speed failure processing unit 280a of the second embodiment the vehicle speed sensor 12 fails and an alternative vehicle speed (for example, 100 [km/h]) is output as the vehicle speed Vs. In this state, it is possible to prevent the generation of an excessive steering torque that would cause self-steering while the vehicle is stopped by the assist control.
  • vehicle speed failure processing unit 280a of the second embodiment may be replaced with the vehicle speed failure processing unit 280 of the first embodiment.
  • the physical quantity generated by the turning motion of the vehicle can be realized by applying the yaw rate or the lateral acceleration instead of the self-aligning torque.
  • twist angle control unit 300a according to the second embodiment will be described with reference to FIG.
  • FIG. 30 is a block diagram showing a configuration example of the twist angle control unit of the second embodiment.
  • the twist angle control unit 300a calculates a motor current command value Imc based on the target twist angle ⁇ ref, the twist angle ⁇ , and the motor angular velocity ⁇ m.
  • the torsion angle control unit 300a includes a torsion angle feedback (FB) compensation unit 310, a torsion angular velocity calculation unit 320, a velocity control unit 330, a stabilization compensation unit 340, an output limiting unit 350, a subtraction unit 361, and an addition unit 362. .
  • FB torsion angle feedback
  • the target twist angle ⁇ ref output from the conversion unit 500 is added and input to the subtraction unit 361.
  • the twist angle ⁇ is subtracted and input to the subtraction unit 361 and also input to the twist angular velocity calculation unit 320.
  • the motor angular velocity ⁇ m is input to the stabilization compensator 340.
  • the twist angle FB compensation unit 310 multiplies the deviation ⁇ 0 between the target twist angle ⁇ ref and the twist angle ⁇ calculated by the subtraction unit 361 by a compensation value CFB (transfer function), and the twist angle ⁇ follows the target twist angle ⁇ ref.
  • the target torsional angular velocity ⁇ ref is output.
  • the compensation value CFB may be a simple gain Kpp or a commonly used compensation value such as a PI control compensation value.
  • the target twist angular velocity ⁇ ref is input to the velocity control unit 330.
  • the twist angle FB compensator 310 and the speed controller 330 allow the twist angle ⁇ to follow the target twist angle ⁇ ref to realize a desired steering torque.
  • the twist angular velocity calculation unit 320 performs a differential calculation process on the twist angle ⁇ to calculate the twist angular velocity ⁇ t.
  • the twist angular velocity ⁇ t is output to the velocity control unit 330.
  • the torsional angular velocity calculation unit 320 may perform a pseudo differentiation using the HPF and the gain as the differential calculation. Further, the twisting angular velocity calculation unit 320 may calculate the twisting angular velocity ⁇ t from another means or other than the twisting angle ⁇ , and output it to the velocity control unit 330.
  • the speed control unit 330 calculates the motor current command value Imca1 by the IP control (proportional PI control) so that the torsional angular velocity ⁇ t follows the target torsional angular velocity ⁇ ref.
  • the subtraction unit 333 calculates the difference ( ⁇ ref ⁇ t) between the target twist angular velocity ⁇ ref and the twist angular velocity ⁇ t.
  • the integrating unit 331 integrates the difference ( ⁇ ref ⁇ t) between the target torsional angular velocity ⁇ ref and the torsional angular velocity ⁇ t, and adds and inputs the integration result to the subtracting unit 334.
  • the torsional angular velocity ⁇ t is also output to the proportional portion 332.
  • the proportional unit 332 performs a proportional process on the torsional angular velocity ⁇ t with the gain Kvp, and subtracts and inputs the result of the proportional process to the subtraction unit 334.
  • the subtraction result of the subtraction unit 334 is output as the motor current command value Imca1.
  • the speed control unit 330 is not the IP control but the PI control, the P (proportional) control, the PID (proportional integral derivative) control, the PI-D control (differential preceding PID control), the model matching control, the model reference.
  • the motor current command value Imca1 may be calculated by a generally used control method such as control.
  • the stabilization compensator 340 has a compensation value Cs (transfer function), and calculates the motor current command value Imca2 from the motor angular velocity ⁇ m. If the gains of the torsion angle FB compensator 310 and the speed controller 330 are increased in order to improve the followability and the disturbance characteristics, a controllable oscillation phenomenon in a high range will occur. As a countermeasure against this, a transfer function (Cs) necessary for stabilizing the motor angular velocity ⁇ m is set in the stabilization compensating unit 340. As a result, stabilization of the entire EPS control system can be realized.
  • Cs transfer function
  • the adding unit 362 adds the motor current command value Imca1 from the speed control unit 330 and the motor current command value Imca2 from the stabilization compensating unit 340, and outputs it as the motor current command value Imcb.
  • the output limiter 350 is preset with an upper limit value and a lower limit value for the motor current command value Imcb.
  • the output limiting unit 350 limits the upper and lower limits of the motor current command value Imcb and outputs the motor current command value Imc.
  • the configuration of the twist angle control unit 300a in the present embodiment is an example, and may have a mode different from the configuration shown in FIG.
  • the twist angle control unit 300a may not have the stabilization compensator 340.
  • the present disclosure is applied to a column-type EPS as one of vehicle steering devices, but the present disclosure is not limited to a column-type upstream type, but a rack-and-pinion-type downstream type. It is also applicable to EPS.
  • the feedback control based on the target twist angle can be applied to a steer-by-wire (SBW) reaction force device including at least a torsion bar (arbitrary spring constant) and a sensor for detecting a twist angle.
  • SBW steer-by-wire
  • An embodiment (Embodiment 3) when the present disclosure is applied to an SBW reaction force device including a torsion bar will be described.
  • FIG. 31 is a diagram showing a configuration example of the SBW system corresponding to the general configuration of the electric power steering device shown in FIG. 1.
  • the same components as those described in the first and second embodiments will be designated by the same reference numerals and detailed description thereof will be omitted.
  • the SBW system has no intermediate shaft mechanically coupled to the column shaft 2 by the universal joint 4a in FIG. 1, and transmits the operation of the handle 1 to the steering mechanism including steering wheels 8L and 8R by an electric signal.
  • the SBW system includes a reaction force device 60 and a drive device 70, and a control unit (ECU) 50 controls both devices.
  • the reaction force device 60 detects the steering angle ⁇ h by the steering angle sensor 14, and at the same time, transmits the motion state of the vehicle transmitted from the steered wheels 8L, 8R to the driver as reaction force torque.
  • the reaction torque is generated by the reaction force motor 61.
  • the SBW system to which the present disclosure is applied is a type having a torsion bar, and the torque sensor 10 detects the steering torque Ts. To do. Further, the angle sensor 74 detects the motor angle ⁇ m of the reaction force motor 61.
  • the drive device 70 drives the drive motor 71 in accordance with the steering of the steering wheel 1 by the driver, applies the drive force to the pinion rack mechanism 5 via the gear 72, and operates it via the tie rods 6a and 6b.
  • the steering wheels 8L and 8R are steered.
  • An angle sensor 73 is arranged in the vicinity of the pinion rack mechanism 5 and detects the turning angle ⁇ t of the steered wheels 8L, 8R.
  • the ECU 50 In order to coordinately control the reaction force device 60 and the drive device 70, the ECU 50, based on the vehicle speed Vs and the like from the vehicle speed sensor 12 in addition to the information such as the steering angle ⁇ h and the steering angle ⁇ t output from both devices, A voltage control command value Vref1 for driving and controlling the reaction force motor 61 and a voltage control command value Vref2 for driving and controlling the drive motor 71 are generated.
  • FIG. 32 is a block diagram showing the configuration of the third embodiment.
  • control for the twist angle ⁇ hereinafter, referred to as “twist angle control”
  • control for the steering angle ⁇ t hereinafter, referred to as “steering angle control”
  • the drive device is controlled by the steering angle control.
  • the drive device may be controlled by another control method.
  • the target steering torque generation unit 200b generates the target steering torque Tref based on the vehicle speed Vs, the vehicle speed determination signal Vfail, the steering angle ⁇ h, and the actual yaw rate ⁇ re.
  • the conversion unit 500 converts the target steering torque Tref generated by the target steering torque generation unit 200b into a target twist angle ⁇ ref.
  • the target twist angle ⁇ ref is output to the twist angle control unit 300.
  • the twist angle ⁇ follows the target twist angle ⁇ ref calculated via the target steering torque generation unit 200b and the conversion unit 500 by using the steering angle ⁇ h and the like by the configuration and operation similar to those of the second embodiment. Such control is performed.
  • the motor angle ⁇ m is detected by the angle sensor 74, and the motor angular velocity ⁇ m is calculated by differentiating the motor angle ⁇ m by the angular velocity calculator 951.
  • the turning angle ⁇ t is detected by the angle sensor 73.
  • the processing in the EPS steering system/vehicle system 100 is not described in detail, but the current control unit 130 includes the subtraction unit 32B, the PI control unit 35, and the PWM control unit illustrated in FIG. With the same configuration and operation as 36 and the inverter 37, based on the motor current command value Imc output from the torsion angle control unit 300a and the current value Imr of the reaction force motor 61 detected by the motor current detector 140, The force motor 61 is driven to control the current.
  • the target turning angle generation unit 910 In the turning angle control, the target turning angle generation unit 910 generates a target turning angle ⁇ tref based on the steering angle ⁇ h, and the target turning angle ⁇ tref is input to the turning angle control unit 920 together with the turning angle ⁇ t.
  • the steering angle control unit 920 calculates the motor current command value Imct so that the steering angle ⁇ t becomes the target steering angle ⁇ tref. Then, based on the motor current command value Imct and the current value Imd of the drive motor 71 detected by the motor current detector 940, the current control unit 930 has the same configuration and operation as the current control unit 130, and the drive motor. 71 is driven to control the current.
  • FIG. 33 is a diagram showing a configuration example of the target turning angle generation unit.
  • the target turning angle generation unit 910 includes a limiting unit 931, a rate limiting unit 932, and a correcting unit 933.
  • the limiter 931 limits the upper and lower limit values of the steering angle ⁇ h and outputs the steering angle ⁇ h1. Similar to the output limiting unit 350 in the torsion angle control unit 300a shown in FIG. 30, the upper limit value and the lower limit value for the steering angle ⁇ h are set in advance and limited.
  • the rate limiting unit 932 sets a limit value and limits the amount of change in the steering angle ⁇ h1 in order to avoid a sudden change in the steering angle, and outputs the steering angle ⁇ h2. For example, when the difference from the steering angle ⁇ h1 one sample before is set as the change amount, and the absolute value of the change amount is larger than a predetermined value (limit value), the steering angle is adjusted so that the absolute value of the change amount becomes the limit value. ⁇ h1 is added/subtracted and output as the steering angle ⁇ h2. When the steering angle ⁇ h1 is less than the limit value, the steering angle ⁇ h1 is output as the steering angle ⁇ h2. Note that instead of setting a limit value for the absolute value of the amount of change, it is also possible to set an upper limit value and a lower limit value for the amount of change to impose a limit. The rate may be limited.
  • the correction unit 933 corrects the steering angle ⁇ h2 and outputs the target turning angle ⁇ tref. For example, using a map defining the characteristics of the target turning angle ⁇ tref with respect to the magnitude
  • FIG. 34 is a diagram showing a configuration example of the turning angle control unit.
  • the steered angle control unit 920 has the same configuration as the configuration example of the twist angle control unit 300a shown in FIG. 30 except for the stabilization compensation unit 340 and the addition unit 362, and the target twist angle ⁇ ref and the twist
  • the target turning angle ⁇ tref and the turning angle ⁇ t are input instead of the angle ⁇ , and the turning angle feedback (FB) compensation unit 921, the turning angular velocity calculation unit 922, the speed control unit 923, the output limiting unit 926, and the subtraction unit 927.
  • the torsion angle FB compensation unit 310, the torsion angular velocity calculation unit 320, the velocity control unit 330, the output limiting unit 350, and the subtraction unit 361 perform the same operation.
  • FIG. 35 is a flowchart showing an operation example of the third embodiment.
  • the angle sensor 73 detects the steering angle ⁇ t
  • the angle sensor 74 detects the motor angle ⁇ m (step S110)
  • the steering angle ⁇ t is detected by the steering angle control unit 920
  • the motor angle ⁇ m is measured by the angular velocity. It is input to each of the calculation units 951.
  • the angular velocity calculation unit 951 differentiates the motor angle ⁇ m to calculate the motor angular velocity ⁇ m, and outputs it to the torsion angle control unit 300a (step S120).
  • step S130 to S160 the same operation as steps S10 to S40 shown in FIG. 7 is executed, the reaction force motor 61 is driven, and the current control is executed (steps S130 to S160).
  • the target turning angle generating unit 910 inputs the steering angle ⁇ h, and the steering angle ⁇ h is input to the limiting unit 931.
  • the limiting unit 931 limits the upper and lower limit values of the steering angle ⁇ h by the preset upper limit value and lower limit value (step S170), and outputs the steering angle ⁇ h1 to the rate limiting unit 932.
  • the rate limiting unit 932 limits the amount of change in the steering angle ⁇ h1 by a preset limit value (step S180), and outputs the steering angle ⁇ h2 to the correction unit 933.
  • the correction unit 933 corrects the steering angle ⁇ h2 to obtain the target turning angle ⁇ tref (step S190), and outputs it to the turning angle control unit 920.
  • the turning angle control unit 920 which has input the turning angle ⁇ t and the target turning angle ⁇ tref, calculates the deviation ⁇ t0 by subtracting the turning angle ⁇ t from the target turning angle ⁇ tref in the subtraction unit 927 (step S200). ).
  • the deviation ⁇ t0 is input to the steered angle FB compensator 921, and the steered angle FB compensator 921 compensates the deviation ⁇ t0 by multiplying the deviation ⁇ t0 by the compensation value (step S210), and the target steered angular velocity ⁇ tref is set to the speed. It is output to the control unit 923.
  • the steered angular velocity calculation unit 922 inputs the steered angle ⁇ t, calculates the steered angular velocity ⁇ tt by a differential calculation with respect to the steered angle ⁇ t (step S220), and outputs it to the speed control unit 923.
  • the speed control unit 923 calculates the motor current command value Imcta by the IP control similarly to the speed control unit 330 (step S230), and outputs it to the output limiting unit 926.
  • the output limiting unit 926 limits the upper and lower limit values of the motor current command value Imcta by the preset upper limit value and lower limit value (step S240), and outputs the motor current command value Imct (step S250).
  • the motor current command value Imct is input to the current control unit 930, and the current control unit 930 uses the motor current command value Imct and the current value Imd of the drive motor 71 detected by the motor current detector 940 to drive the motor. 71 is driven and a current control is implemented (step S260).
  • the speed control unit 923 in the turning angle control unit 920 does not use the IP control, but the PI control, the P control, the PID control, the PI-D, like the speed control unit 330 in the torsion angle control unit 300a. Control, etc. are feasible, and any control of P, I, and D may be used, and the follow-up control by the steering angle control unit 920 and the twist angle control unit 300a is generally used. It may be performed with a control structure.
  • the steered angle control unit 920 is used in a vehicle device as long as it has a control configuration in which the actual angle (here, the steered angle ⁇ t) follows the target angle (here, the target steered angle ⁇ tref).
  • the control configuration is not limited, and for example, a control configuration used in an industrial positioning device, an industrial robot, or the like may be applied.
  • one ECU 50 controls the reaction force device 60 and the drive device 70.
  • an ECU for the reaction force device 60 and an ECU for the drive device 70 are provided respectively. May be.
  • the ECUs exchange data with each other by communication.
  • the SBW system shown in FIG. 31 does not have a mechanical connection between the reaction device 60 and the drive device 70, but when an abnormality occurs in the system, the column shaft 2 and the steering mechanism are connected to a clutch or the like.
  • the present disclosure is also applicable to an SBW system that includes a mechanical torque transmission mechanism that mechanically couples with each other. In such an SBW system, when the system is normal, the clutch is turned off to release the mechanical torque transmission, and when the system is abnormal, the clutch is turned on to enable the mechanical torque transmission.
  • the torsion angle control units 300 and 300a in the above-described first to third embodiments directly calculate the motor current command value Imc and the assist current command value Iac, but before calculating them, the motor to be output first
  • the motor current command value and the assist current command value may be calculated after calculating the torque (target torque).
  • target torque the torque
  • the generally used relationship between the motor current and the motor torque is used.
  • the diagrams used above are conceptual diagrams for qualitatively explaining the present disclosure, and are not limited to these. Further, the above-described embodiment is an example of a preferred embodiment of the present disclosure, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present disclosure. Further, the mechanism is not limited to the torsion bar as long as the mechanism has an arbitrary spring constant between the handle and the motor or the reaction force motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

車両の車速Vsが所定の代替車速であるとき、車両の旋回運動によって発生する物理量と、代替車速における物理量の推定値との差分の絶対値に応じて、目標操舵トルクTrefを小さくする。

Description

車両用操向装置
 本発明は、車両用操向装置に関する。
 車両用操向装置の1つである電動パワーステアリング装置(EPS)は、車両の操舵系にモータの回転力でアシスト力(操舵補助力)を付与するものである。EPSは、インバータから供給される電力で制御されるモータの駆動力を、減速機構を含む伝達機構により、ステアリングシャフト又はラック軸にアシスト力として付与する。例えば、操舵トルク及び車速に基づいて生成する第1制御信号と、操舵角に基づき生成する規範操舵トルクと操舵トルクとの偏差が小さくなるように生成された第2制御信号とを、車両の挙動に応じて切り替えて、モータを駆動する構成が開示されている(例えば、特許文献1)。
特開2004-131046号公報
 車速に基づき制御を行う構成において、車速信号が正常に出力されなくなった場合、所定の代替車速を用いて制御を行う場合がある。この代替車速が、例えば100[km/h]等の高速度である場合、低速域においてアシスト力が過大となり、運転者によるハンドル操作に違和感を与える場合がある。
 本発明は、上記の課題に鑑みてなされたものであって、低速域において過大な操舵トルクが発生することを防ぐことができる車両用操向装置を提供すること、を目的としている。
 上記の目的を達成するため、本発明の一態様に係る車両用操向装置は、操舵力を補助するモータを駆動制御することにより、車両の操舵系をアシスト制御する車両用操向装置であって、前記車両の車速が所定の代替車速であるとき、前記車両の旋回運動によって発生する物理量と、前記代替車速における前記物理量の推定値との差分の絶対値に応じて、目標操舵トルクを小さくする。
 上記構成によれば、低速域において過大な操舵トルクが発生することを防ぐことができる。
 車両用操向装置の望ましい態様として、操舵角に応じて、前記物理量の推定値を推定する車両運動推定部と、前記物理量と前記物理量の推定値との差分の絶対値に応じて、前記目標操舵トルクに対するトルクゲインを設定するトルクゲイン設定部と、を備えることが好ましい。
 これにより、操舵角に応じた代替車速における物理量の推定値を推定することができる。また、物理量と物理量の推定値との差分の絶対値に応じたトルクゲインによって目標操舵トルクを設定することができる。
 車両用操向装置の望ましい態様として、前記トルクゲイン設定部は、前記車速が前記代替車速であり、かつ、前記物理量と前記物理量の推定値との差分の絶対値が所定の閾値以上である場合に、前記トルクゲインを小さくすることが好ましい。
 これにより、車速が代替車速であるとき、実際の車速における理想的な目標操舵トルクとかけ離れた値に設定されることを防ぐことができる。
 車両用操向装置の望ましい態様として、前記トルクゲイン設定部は、前記車速が前記代替車速でない場合、及び、前記物理量と前記物理量の推定値との差分の絶対値が所定の閾値未満である場合に、前記トルクゲインを1に設定し、前記車速が前記代替車速であり、かつ、前記物理量と前記物理量の推定値との差分の絶対値が前記閾値以上である場合に、前記トルクゲインを1未満の値に設定することが好ましい。
 これにより、車速が代替車速でない場合、又は、車速が代替車速であっても車両の旋回運動に伴う物理量が推定値とかけ離れていない場合に対し、車速が代替車速であり、かつ、車両の旋回運動に伴う物理量が推定値とかけ離れている場合の目標操舵トルクを小さくすることができる。これにより、車速が代替車速であるとき、実際の車速における理想的な目標操舵トルクとかけ離れた値に設定されることを防ぐことができる。
 車両用操向装置の望ましい態様として、前記トルクゲイン設定部は、前記車速が前記代替車速であり、かつ、前記物理量と前記物理量の推定値との差分の絶対値が前記閾値以上である場合に、前記トルクゲインを前記設定した値まで徐々に小さくすることが好ましい。
 これにより、アシスト力が急変することによる違和感を抑制することができる。
 車両用操向装置の望ましい態様として、前記物理量はヨーレートであり、前記車両運動推定部は、前記操舵角に応じた推定ヨーレートを推定することが好ましい。
 これにより、車両の旋回運動によって発生する物理量として、ヨーレートをパラメータとした制御を行うことができる。
 車両用操向装置の望ましい態様として、前記物理量は横加速度であり、前記車両運動推定部は、前記操舵角に応じた推定横加速度を推定することが好ましい。
 これにより、車両の旋回運動によって発生する物理量として、横加速度をパラメータとした制御を行うことができる。
 車両用操向装置の望ましい態様として、前記物理量はセルフアライニングトルクであり、前記車両運動推定部は、前記操舵角に応じた推定セルフアライニングトルクを推定することが好ましい。
 これにより、車両の旋回運動によって発生する物理量として、セルフアライニングトルクをパラメータとした制御を行うことができる。
 本発明によれば、低速域において過大な操舵トルクが発生することを防ぐことができる車両用操向装置を提供することができる。
図1は、電動パワーステアリング装置の一般的な構成を示した図である。 図2は、電動パワーステアリング装置を制御するコントロールユニットのハードウェア構成を示す模式図である。 図3は、比較例に係る電動パワーステアリング装置におけるコントロールユニットの内部ブロック構成の一例を示す図である。 図4は、舵角センサの設置例を示す構造図である。 図5は、実施形態1に係るコントロールユニットの内部ブロック構成の一例を示す図である。 図6は、操舵方向の説明図である。 図7は、実施形態1に係るコントロールユニットの動作例を示すフローチャートである。 図8は、実施形態1の目標操舵トルク生成部の一構成例を示すブロック図である。 図9は、基本マップ部が保持する基本マップの特性例を示す図である。 図10は、ダンパゲインマップ部が保持するダンパゲインマップの特性例を示す図である。 図11は、ヒステリシス補正部の特性例を示す図である。 図12は、実施形態1の車速失陥時処理部の一構成例を示すブロック図である。 図13は、実施形態1の車両運動推定部が保持する推定ヨーレートマップの特性例を示す図である。 図14は、実施形態1のトルクゲイン設定部における具体的な動作の説明図である。 図15は、実施形態1の車速失陥時処理部における処理の一例を示すフローチャートである。 図16は、車速失陥時処理部から出力されるトルクゲインAによる作用例を示す図である。 図17は、実施形態1の捩れ角制御部の一構成例を示すブロック図である。 図18は、実施形態2に係るコントロールユニットの内部ブロック構成の一例を示す図である。 図19は、実施形態2の目標操舵トルク生成部の一構成例を示すブロック図である。 図20は、SAT情報補正部の一構成例を示すブロック図である。 図21は、路面からステアリングまでの間に発生するトルクの様子を示すイメージ図である。 図22は、操舵トルク感応ゲインの特性例を示す図である。 図23は、車速感応ゲインの特性例を示す図である。 図24は、舵角感応ゲインの特性例を示す図である。 図25は、制限部におけるトルク信号の上限値及び下限値の設定例を示す図である。 図26は、実施形態2の車速失陥時処理部の一構成例を示すブロック図である。 図27は、実施形態2の車両運動推定部が保持する推定ヨーレートマップの特性例を示す図である。 図28は、実施形態2のトルクゲイン設定部における具体的な動作の説明図である。 図29は、実施形態2の車速失陥時処理部における処理の一例を示すフローチャートである。 図30は、実施形態2の捩れ角制御部の一構成例を示すブロック図である。 図31は、SBWシステムの構成例を、図1に示される電動パワーステアリング装置の一般的な構成に対応させて示した図である。 図32は、実施形態3の構成を示すブロック図である。 図33は、目標転舵角生成部の構成例を示す図である。 図34は、転舵角制御部の構成例を示す図である。 図35は、実施形態3の動作例を示すフローチャートである。
 以下、発明を実施するための形態(以下、実施形態という)につき図面を参照しつつ詳細に説明する。なお、下記の実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
(実施形態1)
 図1は、電動パワーステアリング装置の一般的な構成を示した図である。車両用操向装置の1つである電動パワーステアリング装置(EPS)は、操舵者から与えられる力が伝達する順に、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2、減速機構3、ユニバーサルジョイント4a,4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、トーションバーを有するコラム軸2には、ハンドル1の操舵トルクTsを検出するトルクセンサ10及び操舵角θhを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速機構3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクTsと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによって、モータ20に供給する電流を制御する。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40等の車載ネットワークが接続されている。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 コントロールユニット30は、主としてCPU(MCU、MPU等も含む)で構成される。図2は、電動パワーステアリング装置を制御するコントロールユニットのハードウェア構成を示す模式図である。
 コントロールユニット30を構成する制御用コンピュータ1100は、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003、EEPROM(Electrically Erasable Programmable ROM)1004、インターフェース(I/F)1005、A/D(Analog/Digital)変換器1006、PWM(Pulse Width Modulation)コントローラ1007等を備え、これらがバスに接続されている。
 CPU1001は、電動パワーステアリング装置の制御用コンピュータプログラム(以下、制御プログラムという)を実行して、電動パワーステアリング装置を制御する処理装置である。
 ROM1002は、電動パワーステアリング装置を制御するための制御プログラムを格納する。また、RAM1003は、制御プログラムを動作させるためのワークメモリとして使用される。EEPROM1004には、制御プログラムが入出力する制御データ等が格納されている。制御データは、コントロールユニット30に電源が投入された後にRAM1003に展開された制御用コンピュータプログラム上で使用され、所定のタイミングでEEPROM1004に上書きされる。
 ROM1002、RAM1003、及びEEPROM1004等は情報を格納する記憶装置であって、CPU1001が直接アクセスできる記憶装置(一次記憶装置)である。
 A/D変換器1006は、操舵トルクTs、モータ20の電流検出値Im、及び操舵角θhの信号等を入力し、ディジタル信号に変換する。
 インターフェース1005は、CAN40に接続されている。インターフェース1005は、車速センサ12からの車速Vの信号(車速パルス)を受け付けるためのものである。
 PWMコントローラ1007は、モータ20に対する電流指令値に基づいてUVW各相のPWM制御信号を出力する。
 図3は、比較例に係る電動パワーステアリング装置におけるコントロールユニットの内部ブロック構成の一例を示す図である。操舵トルクTs及び車速Vsは、電流指令値演算部31に入力される。電流指令値演算部31は、操舵トルクTs及び車速Vsに基づき、予め記憶しているルックアップテーブル(アシストマップ等)を参照し、モータ20に供給する電流の制御目標値である電流指令値Iref1を演算する。
 補償信号生成部34は、補償信号CMを生成する。補償信号生成部34は、収れん性推定部341、慣性推定部342、セルフアライニングトルク(SAT:Self Aligning Torque)推定部343を備える。収れん性推定部341は、モータ20の角速度に基づいて車両のヨーレートを推定し、ハンドル1が振れ回る動作を制動することで、車両のヨーの収れん性を改善する補償値を推定する。慣性推定部342は、モータ20の角加速度に基づいて、モータ20の慣性力を推定し、応答性を高めるためにモータ20の慣性力を補償する補償値を推定する。SAT推定部343は、操舵トルクTs、アシストトルク、モータ20の角速度及び角加速度に基づいてセルフアライニングトルクを推定し、そのセルフアライニングトルクを反力としてアシストトルクを補償する補償値を推定する。補償信号生成部34は、収れん性推定部341、慣性推定部342、SAT推定部343に加え、他の補償値を推定する推定部を備えてもよい。補償信号CMは、加算部344において慣性推定部342の補償値と、SAT推定部343の補償値とが加算され、この加算値と収れん性推定部341の補償値とが加算部345において加算された加算値である。
 加算部32Aにおいて、補償信号生成部34からの補償信号CMが電流指令値Iref1に加算されており、補償信号CMの加算によって、電流指令値Iref1に操舵システム系の特性補償がされ、収れん性や慣性特性等を改善するようになっている。そして、電流指令値Iref1は加算部32Aを経て、特性補償された電流指令値Iref2となり、電流指令値Iref2が電流制限部33に入力されている。電流制限部33において、電流指令値Iref2の最大電流が制限され、電流指令値Irefmが生成される。電流指令値Irefmが減算部32Bに入力され、モータ20側からフィードバックされている電流検出値Imとの偏差I(Irefm-Im)が減算部32Bで演算される。偏差Iが操舵動作の特性改善のためのPI制御部35に入力される。そうすると、PI制御部35で特性改善された電圧制御指令値VrefがPWM制御部36に入力され、さらにモータ駆動部としてのインバータ回路37を介してモータ20がPWM駆動される。モータ20の電流検出値Imは、電流検出器38で検出され、減算部32Bにフィードバックされる。また、インバータ回路37は、駆動素子として電界効果トランジスタ(Field Effect Transistor:(以下、FETという。))が用いられ、FETのブリッジ回路で構成されている。
 従来の電動パワーステアリング装置でのアシスト制御では、運転者の手入力にて加えられた操舵トルクをトーションバーの捩れトルクとしてトルクセンサで検出し、主にそのトルクに応じたアシスト電流としてモータ電流を制御している。しかしながら、この方法で制御を行なう場合、路面の状態(例えば傾斜)の違いにより、操舵角によって異なる操舵トルクとなってしまうことがある。モータ出力特性の経年使用によるバラツキによっても、操舵トルクに影響を与えることがある。
 図4は、舵角センサの設置例を示す構造図である。
 コラム軸2には、トーションバー2Aが備えられている。操向車輪8L,8Rには、路面反力Rr及び路面情報μが作用する。トーションバー2Aを挟み、コラム軸2のハンドル側には、上側角度センサが設けられている。トーションバー2Aを挟み、コラム軸2の操向車輪側には、下側角度センサが設けられている。上側角度センサは、ハンドル角θを検出し、下側角度センサは、コラム角θを検出する。操舵角θhは、コラム軸2の上部に設けられた舵角センサで検出される。トーションバーの捩れ角Δθは、ハンドル角θ及びコラム角θの偏差から、下記(1)式で表される。また、トーションバートルクTtは、(1)式で表されるトーションバーの捩れ角Δθ用いて、下記(2)式で表される。なお、Ktは、トーションバー2Aのバネ定数である。
 Δθ=θ-θ・・・(1)
 Tt=-Kt×Δθ・・・(2)
 トーションバートルクTtは、トルクセンサを用いて検出することも可能である。本実施形態では、トーションバートルクTtを操舵トルクTsとしても扱うこととする。
 図5は、実施形態1に係るコントロールユニットの内部ブロック構成の一例を示す図である。
 コントロールユニット30は、内部ブロック構成として、目標操舵トルク生成部200、捩れ角制御部300、操舵方向判定部400、及び変換部500を備えている。
 本実施形態において、運転者のハンドル操舵は、EPS操舵系/車両系100のモータ20でアシスト制御される。EPS操舵系/車両系100は、モータ20の他に、角度センサ、角速度演算部等を含む。
 目標操舵トルク生成部200は、本開示において車両の操舵系をアシスト制御する際の操舵トルクの目標値である目標操舵トルクTrefを生成する。変換部500は、目標操舵トルクTrefを目標捩れ角Δθrefに変換する。捩れ角制御部300は、モータ20に供給する電流の制御目標値であるモータ電流指令値Irefを生成する。
 捩れ角制御部300は、捩れ角Δθが目標捩れ角Δθrefとなるようなモータ電流指令値Irefを演算する。モータ20は、モータ電流指令値Irefにより駆動される。
 操舵方向判定部400は、EPS操舵系/車両系100から出力されるモータ角速度ωmに基づき、操舵方向が右切りか左切りかを判定し、判定結果を操舵状態信号STsとして出力する。図6は、操舵方向の説明図である。
 操舵方向が右切りか左切りかを示す操舵状態は、例えば図6に示すような操舵角θh及びモータ角速度ωmの関係で求めることができる。すなわち、モータ角速度ωmが正の値の場合は「右切り」と判定し、負の値の場合は「左切り」と判定する。なお、モータ角速度ωmの代わりに、操舵角θh、ハンドル角θ又はコラム角θに対して速度演算を行って算出される角速度を用いても良い。
 変換部500は、上記(2)式の関係を用いて、目標操舵トルク生成部200で生成された目標操舵トルクTrefを目標捩れ角Δθrefに変換する。
 次に、実施形態1のコントロールユニットにおける基本的な動作例について説明する。図7は、実施形態1に係るコントロールユニットの動作例を示すフローチャートである。
 操舵方向判定部400は、EPS操舵系/車両系100から出力されるモータ角速度ωmの符号に基づき、操舵方向が右切りか左切りかを判定し、判定結果を操舵状態信号STsとして、目標操舵トルク生成部200に出力する(ステップS10)。
 目標操舵トルク生成部200は、車速Vs、車速判定信号Vfail、操舵状態信号STs、操舵角θh、及び実ヨーレートγreに基づき、目標操舵トルクTrefを生成する(ステップS20)。
 変換部500は、目標操舵トルク生成部200で生成された目標操舵トルクTrefを目標捩れ角Δθrefに変換する(ステップS20)。目標捩れ角Δθrefは、捩れ角制御部300に出力される。
 捩れ角制御部300は、目標捩れ角Δθref、操舵角θh、捩れ角Δθ、及びモータ角速度ωmに基づき、モータ電流指令値Irefを演算する(ステップS30)。
 そして、捩れ角制御部300から出力されたモータ電流指令値Irefに基づいて電流制御が実施され、モータ20が駆動される(ステップS40)。
 図8は、実施形態1の目標操舵トルク生成部の一構成例を示すブロック図である。図8に示すように、目標操舵トルク生成部200は、基本マップ部210、乗算部211、微分部220、ダンパゲインマップ部230、ヒステリシス補正部240、SAT情報補正部250、乗算部260、加算部261,262,263、及び車速失陥時処理部280を備える。図9は、基本マップ部が保持する基本マップの特性例を示す図である。図10は、ダンパゲインマップ部が保持するダンパゲインマップの特性例を示す図である。
 基本マップ部210には、操舵角θh及び車速Vsが入力される。基本マップ部210は、図9に示す基本マップを用いて、車速Vsをパラメータとするトルク信号Tref_a0を出力する。すなわち、基本マップ部210は、車速Vsに応じたトルク信号Tref_a0を出力する。
 図9に示すように、トルク信号Tref_a0は、操舵角θhの大きさ(絶対値)|θh|の増加に伴い増加する特性を有する。また、トルク信号Tref_aは、車速Vsの増加に伴い増加する特性を有する。なお、図9では操舵角θhの大きさ|θh|でマップを構成しているが、正負の操舵角θhに応じてマップを構成しても良く、この場合、操舵角θhが正の場合と負の場合とで変化の態様を変えても良い。
 微分部220には、操舵角θhが入力される。微分部220は、操舵角θhを微分して、角速度情報である舵角速度ωhを算出する。微分部220は、算出した舵角速度ωhを乗算部260に出力する。
 ダンパゲインマップ部230には、車速Vsが入力される。ダンパゲインマップ部230は、図10に示す車速感応型のダンパゲインマップを用いて、車速Vsに応じたダンパゲインDを出力する。
 図10に示すように、ダンパゲインDは、車速Vsが高くなるに従い徐々に大きくなる特性を有する。ダンパゲインDは、操舵角θhに応じて可変する態様としても良い。
 乗算部260は、微分部220から出力される舵角速度ωhに対して、ダンパゲインマップ部230から出力されるダンパゲインDを乗算し、トルク信号Tref_bとして加算部262に出力する。
 操舵方向判定部400は、例えば図6に示すような判定を行う。ヒステリシス補正部240には、操舵角θh、車速Vs、及び、図6に示す判定結果である操舵状態信号STsが入力される。ヒステリシス補正部240は、操舵角θh及び操舵状態信号STsに基づき、下記(3)式及び(4)式を用いてトルク信号Tref_cを演算する。なお、下記(3)式及び(4)式において、xは操舵角θh、y=Tref_c及びy=Tref_cはトルク信号(第4トルク信号)Tref_cとする。また、係数aは1よりも大きい値であり、係数cは0よりも大きい値である。係数Ahysは、ヒステリシス特性の出力幅を示し、係数cは、ヒステリシス特性の丸みを表す係数である。
 y=Ahys{1-a-c(x-b)}・・・(3)
 y=-Ahys{1-ac(x-b’)}・・・(4)
 右切り操舵の際には、上記(3)式を用いて、トルク信号(第4トルク信号)Tref_c(y)を算出する。左切り操舵の際には、上記(4)式を用いて、トルク信号(第4トルク信号)Tref_c(y)を算出する。なお、右切り操舵から左切り操舵へ切り替える際、又は、左切り操舵から右切り操舵へ切り替える際には、操舵角θh及びトルク信号Tref_cの前回値であるの最終座標(x,y)の値に基づき、操舵切り替え後の上記(3)式及び(4)式に対し、下記(5)式又は(6)式に示す係数b又はb’を代入する。これにより、操舵切り替え前後の連続性が保たれる。
 b=x+(1/c)log{1-(y/Ahys)}・・・(5)
 b’=x-(1/c)log{1-(y/Ahys)}・・・(6)
 上記(5)式及び(6)式は、上記(3)式及び(4)式において、xにxを代入し、y及びyにyを代入することにより導出することができる。
 係数aとして、例えば、ネイピア数eを用いた場合、上記(3)式、(4)式、(5)式、(6)式は、それぞれ下記(7)式、(8)式、(9)式、(10)式で表せる。
 y=Ahys[1-exp{-c(x-b)}]・・・(7)
 y=-Ahys[{1-exp{c(x-b’)}]・・・(8)
 b=x+(1/c)log{1-(y/Ahys)}・・・(9)
 b’=x-(1/c)log{1-(y/Ahys)}・・・(10)
 図11は、ヒステリシス補正部の特性例を示す図である。図11に示す例では、上記(9)式及び(10)式において、Ahys=1[Nm]、c=0.3と設定し、0[deg]から開始し、+50[deg]、-50[deg]の操舵をした場合の、ヒステリシス補正されたトルク信号Tref_cの特性例を示している。図11に示すように、ヒステリシス補正部240から出力されるトルク信号Tref_cは、0の原点→L1(細線)→L2(破線)→L3(太線)のようなヒステリシス特性を有している。
 なお、ヒステリシス特性の出力幅を表す係数であるAhys及び丸みを表す係数であるcを、車速Vs及び操舵角θhの一方又は双方に応じて可変としても良い。
 また、舵角速度ωhは、操舵角θhに対する微分演算により求めているが、高域のノイズの影響を低減するために適度にローパスフィルタ(LPF)処理を実施している。また、ハイパスフィルタ(HPF)とゲインにより、微分演算とLPFの処理を実施しても良い。更に、舵角速度ωhは、操舵角θhではなく、上側角度センサが検出するハンドル角θ1又は下側角度センサが検出するコラム角θ2に対して微分演算とLPFの処理を行って算出しても良い。舵角速度ωhの代わりにモータ角速度ωmを角速度情報として使用しても良く、この場合、微分部220は不要となる。
 図12に示すように、車速失陥時処理部280には、操舵角θh、車速判定信号Vfail、及び、自車両に設けられたヨーレートセンサ15(図1参照)によって検出される実ヨーレートγreが入力される。
 車速センサ12(図1参照)は、例えば車速に応じたパルス信号を車速信号として出力する。車速センサ12が失陥し、車速信号(車速に応じたパルス信号)が正常に出力されなくなると、車速Vsに基づく制御ができなくなる。このため、車速信号が正常に出力されなくなった場合には、所定の代替車速を用いた制御が行われる。
 車速判定信号Vfailは、車速センサ12から車速信号が正常に出力されているか否かを示す信号である。また、車速信号が正常に出力されていない場合、車速失陥時処理部280には、所定の代替車速が車速Vsとして入力される。換言すれば、車速判定信号Vfailは、車速Vsが代替車速であるか否かを示す信号である。本実施形態において、代替車速は、例えば100[km/h]に設定される。なお、車速判定信号Vfail及び代替車速を出力する構成部は、例えば、コントロールユニット30の外部にある回路で構成されていても良い。
 本実施形態では、車両の旋回運動によって発生する物理量として、ヨーレートセンサ15によって検出される実ヨーレートγreが入力される例を示している。実ヨーレートγreに代えて、車両の旋回運動によって発生する物理量として、自車両に設けられた横加速度センサ16(図1参照)によって検出される実横加速度が入力される態様であっても良い。
 図12は、実施形態1の車速失陥時処理部の一構成例を示すブロック図である。実施形態1の車速失陥時処理部280は、車両運動推定部281と、トルクゲイン設定部282と、を含む。
 車両運動推定部281には、操舵角θhが入力される。車両運動推定部281は、代替速度(例えば、100[km/h])における操舵角θhとヨーレートγとの関係を示す推定ヨーレートマップを保持している。図13は、実施形態1の車両運動推定部が保持する推定ヨーレートマップの特性例を示す図である。なお、操舵角θhとヨーレートγとの関係は、例えばSingle-track Modelと呼ばれる車両モデルに基づいた数式を用いても良い。
 車両運動推定部281は、図13に示す推定ヨーレートマップ(又は、代替速度における操舵角θhとヨーレートγとの関係を示す数式)を用いて、操舵角θhに応じた推定ヨーレートγestを出力する。
 トルクゲイン設定部282には、車両運動推定部281から出力された推定ヨーレートγest、車速判定信号Vfail、及び実ヨーレートγreが入力される。トルクゲイン設定部282は、推定ヨーレートγest、車速判定信号Vfail、及び実ヨーレートγreに基づき、トルクゲインAを生成する。
 具体的に、トルクゲイン設定部282は、車速判定信号Vfailに基づき、車速Vsが正常に検出されたか否か、すなわち、車速Vsが代替車速であるか否かを判定する。トルクゲイン設定部282は、車速Vsが代替車速である場合に、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|に応じたトルクゲインAを生成する。本実施形態において、トルクゲイン設定部282は、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|に対する所定の閾値Bを保持しているものとする。
 図14は、実施形態1のトルクゲイン設定部における具体的な動作の説明図である。図14に示す例において、実線は、推定ヨーレートγestの絶対値|γest|を示している。また、図14に示す例において、破線は、推定ヨーレートγestの絶対値|γest|に対し、所定の閾値Bだけ小さい値を示している。
 トルクゲイン設定部282は、車速Vsが代替車速であり、かつ、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が閾値B以上であるとき、トルクゲインAを小さくする。
 図14に示す例では、操舵角θhの絶対値が|θh1|であり、実ヨーレートγreの絶対値が|γre1|である点Exを示している。図14では、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が閾値B以上(|γest-γre|≧B)となる例を示している。
 実施形態1のトルクゲインAは、下記(11)式で表される。下記(11)式において、係数Aは、1以上の実数値である。
 A=1/A・・・(11)
 トルクゲイン設定部282は、車速Vsが代替車速であり、かつ、|γest-γre|≧Bを満たす場合には、トルクゲインAを1未満に設定する。換言すれば、上記(11)式に示す係数Aを1よりも大きい値に設定する。
 なお、トルクゲイン設定部282は、車速Vsが正常に検出されている場合、すなわち、車速判定信号Vfailが、車速Vsが正常であることを示している場合には、トルクゲインAを1に設定する。また、トルクゲイン設定部282は、車速Vsが代替車速であるときの推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が閾値B未満(|γest-γre|<B)である場合にも、トルクゲインAを1に設定する。換言すれば、上記(11)式に示す係数Aを1に設定する。
 図15は、実施形態1の車速失陥時処理部における処理の一例を示すフローチャートである。
 トルクゲイン設定部282は、車速判定信号Vfailに基づき、車速Vsが代替車速であるか否かを判定する(ステップS101)。
 車速Vsが代替車速でない場合(ステップS101;No)すなわち、車速Vsが正常に検出されている場合、トルクゲイン設定部282は、トルクゲインA=1/Aにおける係数Aを1に設定し(ステップS103)、処理を終了する。
 車速Vsが代替車速である場合(ステップS101;Yes)、車両運動推定部281は、例えば図13に示す推定ヨーレートマップを用いて、操舵角θhに応じた推定ヨーレートγestを出力する(ステップS102)。
 トルクゲイン設定部282は、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|を算出する(ステップS104)。
 続いて、トルクゲイン設定部282は、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が所定の閾値B以上(|γest-γre|≧B)であるか否かを判定する(ステップS105)。
 推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が閾値B未満(|γest-γre|<B)である場合(ステップS105;No)、トルクゲイン設定部282は、トルクゲインA=1/Aにおける係数Aを1に設定し(ステップS103)、処理を終了する。
 推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が閾値B以上(|γest-γre|≧B)である場合(ステップS105;Yes)、トルクゲイン設定部282は、トルクゲインA=1/Aにおける係数Aを1よりも大きい所定値に設定し(ステップS106)、処理を終了する。
 図8に戻り、乗算部211は、基本マップ部210から出力されるトルク信号Tref_a0に対して、車速失陥時処理部280から出力されるトルクゲインAを乗算し、トルク信号Tref_aとして加算部261に出力する。
 図16は、車速失陥時処理部から出力されるトルクゲインAによる作用例を示す図である。車速Vsが代替車速である場合、基本マップ部210には、車速Vsとして所定の代替車速(例えば、100[km/h])が入力される。このとき、基本マップ部210から出力されるトルク信号Tref_a0の値は、代替速度(ここでは、100[km/h])に応じた値となる。
 実施形態1の車速失陥時処理部280を適用しない構成では、基本マップ部210から出力されるトルク信号Tref_a0がトルク信号Tref_aとして出力される。
 上述のように求められたトルク信号Tref_a、Tref_b、及びTref_cは、加算部261,262で加算され、目標操舵トルクTrefとして出力される。
 実施形態1の車速失陥時処理部280を適用しない構成において、例えば、車速センサ12が失陥し、代替車速(例えば、100[km/h])が車速Vsとして出力されている状態で、運転者が車両の停車前にハンドル1を大きく操作し、例えば操舵角θhが100[deg]となった状態で停車した場合、目標操舵トルクTrefが代替車速に応じた大きな値となる。この状態で運転者がハンドル1から手を離すと、アシスト制御によって操舵角θhが小さくなるように制御される。このため、例えば、交差点で右折あるいは左折するために、運転者がハンドル1を操作して右切りあるいは左切りの状態で停車した場合、運転者がハンドル1を保持しておく必要がある。すなわち、所謂セルフステアと呼ばれる、運転者の意図とは異なる異常挙動が生じることとなる。
 実施形態1の車速失陥時処理部280を適用することで、上述したような異常挙動を防止することができる。図16に示す例では、トルクゲイン設定部282から出力されるトルクゲインAを0.04(換言すれば、トルクゲインA=1/Aにおける係数Aを25)とした例を示している。つまり、基本マップ部210から出力されるトルク信号Tref_a0の値Cに対し、乗算部211においてトルクゲインA(=0.04)を乗算したトルク信号Tref_aの値は、トルク信号Tref_a0の値の1/25、すなわちC/25となる。これにより、車速センサ12が失陥し、代替車速(例えば、100[km/h])が車速Vsとして出力されている状態で、アシスト制御によって停車中にセルフステアが発生するような過大な操舵トルクが発生することを防ぐことができる。
 なお、乗算部211を設ける位置は、図8に示すような基本マップ部210の後段に限るものではなく、例えば、加算部261,262の後段に設けることも可能である。
 また、トルクゲイン設定部282は、車速Vsが代替車速であり、かつ、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|が閾値B以上であるとき、トルクゲインAの値を1から段階的に徐々に小さくする態様であっても良いし、推定ヨーレートγestと実ヨーレートγreとの差分の絶対値|γest-γre|の大きさに応じてトルクゲインAを可変する態様であっても良い。これにより、アシスト力が急変することによる違和感を抑制することができる。
 また、実ヨーレートγreを検出するヨーレートセンサ15は、例えば操舵角θhが数[deg]変化したときに検出値を出力する態様であれば良く、特段に高精度である必要はない。このため、比較的安価なヨーレートセンサ15を用いることができる。
 また、ヨーレートセンサ15の検出値は、CAN40を介さず直接コントロールユニット30に入力される態様であることが望ましい。これにより、CAN40が失陥したことにより車速Vsとして代替車速が入力された場合でも、上述したような異常挙動を防止することができる。
 また、ヨーレートセンサ15は、自己診断機能を有する構成であることが望ましい。これにより、アシスト機能が失陥することなく、例えば、ワーニングランプを設けて運転者に異常を通知することができる。
 以下、実施形態1の捩れ角制御部300(図5参照)について、図17を参照して説明する。
 図17は、実施形態1の捩れ角制御部の一構成例を示すブロック図である。捩れ角制御部300は、目標捩れ角Δθref、捩れ角Δθ、操舵角θh及びモータ角速度ωmに基づいてモータ電流指令値Irefを演算する。捩れ角制御部300は、捩れ角フィードバック(FB)補償部310、速度制御部330、安定化補償部340、出力制限部350、舵角外乱補償部360、減算部361、加算部363、及び減速比部370を備えている。
 変換部500から出力される目標捩れ角Δθrefは、減算部361に加算入力される。捩れ角Δθは、減算部361に減算入力される。操舵角θhは、舵角外乱補償部360に入力される。モータ角速度ωmは、安定化補償部340に入力される。
 捩れ角FB補償部310は、減算部361で算出される目標捩れ角Δθrefと捩れ角Δθの偏差Δθ0に対して補償値CFB(伝達関数)を乗算し、目標捩れ角Δθrefに捩れ角Δθが追従するような目標コラム角速度ωref1を出力する。目標コラム角速度ωref1は、加算部363に加算出力される。補償値CFBは、単純なゲインKppでも、PI制御の補償値など一般的に用いられている補償値でも良い。
 舵角外乱補償部360は、操舵角θhに対して補償値Ch(伝達関数)を乗算し、目標コラム角速度ωref2を出力する。目標コラム角速度ωref2は、加算部363に加算出力される。
 加算部363は、目標コラム角速度ωref1と目標コラム角速度ωref2とを加算し、目標コラム角速度ωrefとして速度制御部330に出力する。これにより、運転者から入力される操舵角θhの変化による、トーションバー捩れ角Δθへの影響を抑制し、急操舵に対する目標捩れ角Δθrefへの捩れ角Δθの追従性を向上することができる。
 運転者の操舵により操舵角θhが変化すると、操舵角θhの変化が外乱として捩れ角Δθに影響してしまい、目標捩れ角Δθrefに対してずれが発生する。特に、急な操舵に対しては、操舵角θhの変化による目標捩れ角Δθrefに対するずれが顕著に出てしまう。舵角外乱補償部360の基本的な目的は、この外乱としての操舵角θhの影響を低減させることである。
 速度制御部330は、I-P制御(比例先行型PI制御)により、目標コラム角速度ωrefにコラム角速度ωcが追従するようなモータ電流指令値Isを算出する。コラム角速度ωcは、図17のように、モータ角速度ωmに減速機構である減速比部370の減速比1/Nを乗算した値としても良い。
 減算部333は、目標コラム角速度ωrefとコラム角速度ωcとの差分(ωref-ωc)を算出する。積分部331は、目標コラム角速度ωrefとコラム角速度ωcとの差分(ωref-ωc)を積分し、積分結果を減算部334に加算入力する。
 捩れ角速度ωtは、比例部332にも出力される。比例部332は、コラム角速度ωcに対してゲインKvpによる比例処理を行い、比例処理結果を減算部334に減算入力する。減算部334での減算結果は、モータ電流指令値Isとして出力される。なお、速度制御部330は、I-P制御ではなく、PI制御、P(比例)制御、PID(比例積分微分)制御、PI-D制御(微分先行型PID制御)、モデルマッチング制御、モデル規範制御等の一般的に用いられている制御方法でモータ電流指令値Isを算出しても良い。
 出力制限部350は、モータ電流指令値Isに対する上限値及び下限値が予め設定されている。モータ電流指令値Isの上下限値を制限して、モータ電流指令値Irefを出力する。
 なお、本実施形態における捩れ角制御部300の構成は一例であり、図17に示す構成とは異なる態様であっても良い。例えば、捩れ角制御部300は、舵角外乱補償部360及び加算部363や、減速比部370を具備しない構成であっても良い。
(実施形態2)
 図18は、実施形態2に係るコントロールユニットの内部ブロック構成の一例を示す図である。なお、上述した実施形態1で説明した構成と同じ構成部には同一の符号を付して重複する説明は省略する。実施形態2に係るコントロールユニット(ECU)30aは、目標操舵トルク生成部200a及び捩れ角制御部300aの構成が実施形態1とは異なる。
 目標操舵トルク生成部200aには、操舵角θh、車速Vs、車速判定信号Vfailに加え、操舵トルクTs及びモータ角θmが入力される。
 捩れ角制御部300aは、捩れ角Δθが目標捩れ角Δθrefとなるようなモータ電流指令値Imcを演算する。モータ20は、モータ電流指令値Imcにより駆動される。
 図19は、実施形態2の目標操舵トルク生成部の一構成例を示すブロック図である。図19に示すように、実施形態2の目標操舵トルク生成部200aは、実施形態1において説明した構成に加え、SAT情報補正部250及び加算部263を備える。また、目標操舵トルク生成部200aは、車速失陥時処理部280aの構成が実施形態1とは異なる。
 SAT情報補正部250には、操舵角θh、車速Vs、操舵トルクTs、モータ角θm及びモータ電流指令値Imcが入力される。SAT情報補正部250は、操舵トルクTs、モータ角θm及びモータ電流指令値Imcに基づいてセルフアライニングトルク(SAT)を算出し、更にフィルタ処理、ゲイン乗算及び制限処理を施して、トルク信号(第1トルク信号)Tref_dを演算する。
 図20は、SAT情報補正部の一構成例を示すブロック図である。SAT情報補正部250は、SAT算出部251、フィルタ部252、操舵トルク感応ゲイン部253、車速感応ゲイン部254、舵角感応ゲイン部255、及び制限部256を備える。
 ここで、路面からステアリングまでの間に発生するトルクの様子について、図21を参照して説明する。図21は、路面からステアリングまでの間に発生するトルクの様子を示すイメージ図である。
 運転者がハンドルを操舵することによって操舵トルクTsが発生し、その操舵トルクTsに従ってモータ20がアシストトルク(モータトルク)Tmを発生する。その結果、車輪が転舵され、反力としてセルフアライニングトルクTSATが発生する。その際、コラム軸換算慣性(モータ20(のロータ)、減速機構等によりコラム軸に作用する慣性)J及び摩擦(静摩擦)Frによってハンドル操舵の抵抗となるトルクが生じる。更に、モータ20の回転速度により、ダンパ項(ダンパ係数D)として表現される物理的なトルク(粘性トルク)が発生する。これらの力の釣り合いから、下記(12)式に示す運動方程式が得られる。
 J×α+Fr×sign(ω)+D×ω=Tm+Ts+TSAT・・・(12)
 上記(12)式において、ωはコラム軸換算(コラム軸に対する値に変換)されたモータ角速度であり、αはコラム軸換算されたモータ角加速度である。そして、上記(12)式をTSATについて解くと、下記(13)式が得られる。
 TSAT=-Tm-Ts+J×α+Fr×sign(ω)+D×ω・・・(13)
 上記(13)式からわかるように、コラム軸換算慣性J、静摩擦Fr及びダンパ係数DMを定数として予め求めておくことで、モータ角速度ω、モータ角加速度α、アシストトルクTm及び操舵トルクTsよりセルフアライニングトルクTSATを算出することができる。なお、コラム軸換算慣性Jは、簡易的にモータ慣性と減速比の関係式を用いてコラム軸に換算した値でも良い。
 SAT算出部251には、操舵トルクTs、モータ角θm、及びモータ電流指令値Imcが入力される。SAT算出部251は、上記(13)式を用いて、セルフアライニングトルクTSATを算出する。SAT算出部251は、換算部251A、角速度演算部251B、角加速度演算部251C、ブロック251D、ブロック251E、ブロック251F、ブロック251G、及び加算器251H,251I,251Jを備える。
 換算部251Aには、モータ電流指令値Imcが入力される。換算部251Aは、予め定められたギア比及びトルク定数を乗算することにより、コラム軸換算されたアシストトルクTmを算出する。
 角速度演算部251Bには、モータ角θmが入力される。角速度演算部251Bは、微分処理及びギア比の乗算により、コラム軸換算されたモータ角速度ωが算出される。
 角加速度演算部251Cには、モータ角速度ωが入力される。角加速度演算部251Cは、モータ角速度ωを微分し、コラム軸換算されたモータ角加速度αを算出する。
 そして、入力された操舵トルクTs並びに算出された上記アシストトルクTm、モータ角速度ω及びモータ角加速度αを用いて、ブロック251D、ブロック251E、ブロック251F、ブロック251G、及び加算器251H,251I,251Jにより、数8に基づいて、図21に示されるような構成によりセルフアライニングトルクTSATが算出される。
 ブロック251Dには、角速度演算部251Bから出力されたモータ角速度ωが入力される。ブロック251Dは、符号関数として機能し、入力データの符号を出力する。
 ブロック251Eには、角速度演算部251Bから出力されたモータ角速度ωが入力される。ブロック251Eは、入力データにダンパ係数Dを乗算して出力する。
 ブロック251Fは、ブロック251Dからの入力データに静摩擦Frを乗算して出力する。
 ブロック251Gには、角加速度演算部251Cから出力されたモータ角加速度αが入力される。ブロック251Gは、入力データにコラム軸換算慣性Jを乗算して出力する。
 加算器251Hは、操舵トルクTsと換算部251Aから出力されるアシストトルクTmとを加算する。
 加算器251Iは、加算器251Hの出力からブロック251Gの出力を減算する。
 加算器251Jは、ブロック251Eの出力とブロック251Fの出力とを加算し、加算器251Iの出力を減算する。
 上記構成により、上記(13)式を実現することができる。すなわち、図21に示すSAT算出部251の構成により、セルフアライニングトルクTSATが算出される。
 なお、コラム角が直接検出可能な場合は、モータ角θmの代わりにコラム角を角度情報として使用しても良い。この場合、コラム軸換算は不要となる。また、モータ角θmではなく、EPS操舵系/車両系100からのモータ角速度ωmをコラム軸換算した信号をモータ角速度ωとして入力し、モータ角θmに対する微分処理を省略しても良い。更に、セルフアライニングトルクTSATは、上記以外の方法で算出しても良く、算出値ではなく、測定値を使用しても良い。
 SAT算出部251にて算出されたセルフアライニングトルクTSATを活用し運転者に操舵感として適切に伝えるために、フィルタ部252により、伝えたい情報をセルフアライニングトルクTSATから抽出し、操舵トルク感応ゲイン部253、車速感応ゲイン部254及び舵角感応ゲイン部255により伝える量を調整し、更に、制限部256により上下限値を調整する。
 フィルタ部252には、SAT算出部251からセルフアライニングトルクTSATが入力される。フィルタ部252は、例えばバンドバスフィルタにより、セルフアライニングトルクTSATに対してフィルタ処理を行い、SAT情報TST1を出力する。
 操舵トルク感応ゲイン部253には、フィルタ部252から出力されるSAT情報TST1及び操舵トルクTsが入力される。操舵トルク感応ゲイン部253は、操舵トルク感応ゲインを設定する。
 図22は、操舵トルク感応ゲインの特性例を示す図である。図22に示されるように、操舵トルク感応ゲイン部253は、直進走行状態であるオンセンタ近辺で感度が高くなるように、操舵トルク感応ゲインを設定する。操舵トルク感応ゲイン部253は、操舵トルクTsに応じて設定される操舵トルク感応ゲインをSAT情報TST1に乗算し、SAT情報TST2を出力する。
 図22において、操舵トルク感応ゲインは、操舵トルクTsがTs1(例えば2Nm)以下では1.0で固定とし、操舵トルクTsがTs2(>Ts1)(例えば4Nm)以上では1.0より小さい値で固定とし、操舵トルクTsがTs1とTs2の間では一定の割合で減少するように設定した例を示している。
 車速感応ゲイン部254には、操舵トルク感応ゲイン部253から出力されるSAT情報TST2及び車速Vsが入力される。車速感応ゲイン部254は、車速感応ゲインを設定する。
 図23は、車速感応ゲインの特性例を示す図である。図23に示されるように、車速感応ゲイン部254は、高速走行時の感度が高くなるように、車速感応ゲインを設定する。車速感応ゲイン部254は、車速Vsに応じて設定される車速感応ゲインをSAT情報TST2に乗算し、SAT情報TST3を出力する。
 図23において、車速感応ゲインは、車速VsがVs2(例えば70km/h)以上では1.0で固定とし、車速VsがVs1(<Vs2)(例えば50km/h)以下では1.0より小さい値で固定とし、車速VsがVs1とVs2の間では一定の割合で増加するように設定した例を示している。
 舵角感応ゲイン部255には、車速感応ゲイン部254から出力されるSAT情報TST3及び操舵角θhが入力される。舵角感応ゲイン部255は、舵角感応ゲインを設定する。
 図24は、舵角感応ゲインの特性例を示す図である。図24に示されるように、舵角感応ゲイン部255は、所定の操舵角から作用し始め、操舵角が大きい時の感度が高くなるように、舵角感応ゲインを設定する。舵角感応ゲイン部255は、操舵角θhに応じて設定される舵角感応ゲインをSAT情報TST3に乗算し、トルク信号Tref_d0を出力する。
 図24において、舵角感応ゲインは、操舵角θhがθh1(例えば10deg)以下では所定のゲイン値Gαで、操舵角θhがθh2(例えば30deg)以上では1.0で固定とし、操舵角θhがθh1とθh2の間では一定の割合で増加するように設定した例を示している。操舵角θhが大きいときの感度を高くしたい場合は、Gαを0≦Gα<1の範囲に設定すれば良い。操舵角θhが小さいときの感度を高くしたい場合は、図示していないが、Gαを1<Gαの範囲に設定すれば良い。操舵角θhによる感度を変えたくない場合は、Gα=1として設定すれば良い。
 制限部256には、舵角感応ゲイン部255から出力されるトルク信号Tref_d0が入力される。制限部256は、トルク信号Tref_d0の上限値及び下限値が設定されている。
 図25は、制限部におけるトルク信号の上限値及び下限値の設定例を示す図である。図25に示されるように、制限部256は、トルク信号Tref_d0に対する上限値及び下限値が予め設定され、入力するトルク信号Tref_d0が、上限値以上の場合は上限値を、下限値以下の場合は下限値を、それ以外の場合はトルク信号Tref_d0を、トルク信号Tref_dとして出力する。
 なお、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインは、図22、図23、及び図24に示されるような直線的な特性ではなく、曲線的な特性でも良い。また、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインは、操舵フィーリングに応じて設定を適宜調整しても良い。また、トルク信号の大きさが増大するおそれがない場合や他の手段で抑制する場合等では、制限部256を削除しても良い。操舵トルク感応ゲイン部253、車速感応ゲイン部254、及び舵角感応ゲイン部255についても、適宜、省略可能である。また、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインの設置位置を入れ替えても良い。また、例えば、操舵トルク感応ゲイン、車速感応ゲイン、及び舵角感応ゲインを並列に求め、1つの構成部でSAT情報TST1に乗算する態様であっても良い。
 すなわち、本実施形態におけるSAT情報補正部250の構成は一例であり、図20に示す構成とは異なる態様であっても良い。
 図26は、実施形態2の車速失陥時処理部の一構成例を示すブロック図である。実施形態2の車速失陥時処理部280aは、車両運動推定部281aと、トルクゲイン設定部282aと、を含む。
 本実施形態では、車両の旋回運動によって発生する物理量として、上述したSAT算出部251によって算出されたセルフアライニングトルクTSATが入力される例を示している。
 車両運動推定部281aには、操舵角θhが入力される。車両運動推定部281aは、代替速度(例えば、100[km/h])における操舵角θhとセルフアライニングトルクTSATとの関係を示す推定セルフアライニングトルクマップを保持している。図27は、実施形態2の車両運動推定部が保持する推定セルフアライニングトルクマップの特性例を示す図である。なお、操舵角θhとセルフアライニングトルクTSATとの関係は、図27に示す推定セルフアライニングトルクマップではなく、例えば代替速度における操舵角θhとセルフアライニングトルクTSATとの関係を示す数式を用いても良い。
 車両運動推定部281aは、推定セルフアライニングトルクマップ(又は、代替速度における操舵角θhとセルフアライニングトルクTSATとの関係を示す数式)を用いて、操舵角θhに応じた推定セルフアライニングトルクTestを出力する。
 トルクゲイン設定部282aには、車両運動推定部281aから出力された推定セルフアライニングトルクTest、車速判定信号Vfail、及びセルフアライニングトルクTSATが入力される。トルクゲイン設定部282は、推定セルフアライニングトルクTest、車速判定信号Vfail、及びセルフアライニングトルクTSATに基づき、トルクゲインAを生成する。
 具体的に、トルクゲイン設定部282aは、車速判定信号Vfailに基づき、車速Vsが正常に検出されたか否か、すなわち、車速Vsが代替車速であるか否かを判定する。トルクゲイン設定部282aは、車速Vsが代替車速である場合に、推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|に応じたトルクゲインAを生成する。本実施形態において、トルクゲイン設定部282aは、推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|に対する所定の閾値Eを保持しているものとする。
 図28は、実施形態2のトルクゲイン設定部における具体的な動作の説明図である。図28に示す例において、実線は、推定セルフアライニングトルクTestの絶対値|Test|を示している。また、図28に示す例において、破線は、推定セルフアライニングトルクTestの絶対値|Test|に対し、所定の閾値Eだけ小さい値を示している。
 トルクゲイン設定部282aは、車速Vsが代替車速であり、かつ、推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|が閾値E以上であるとき、トルクゲインAを小さくする。
 図28に示す例では、操舵角θhの絶対値が|θh1|であり、セルフアライニングトルクTSATの絶対値が|TSAT1|である例を示している。図28では、推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|が閾値E以上(|γest-γre|≧E)となる例を示している。
 実施形態2のトルクゲインAは、下記(14)式で表される。下記(14)式において、係数Dは、1以上の実数値である。
 A=1/D・・・(14)
 トルクゲイン設定部282aは、車速Vsが代替車速であり、かつ、|Test-TSAT|≧Eを満たす場合には、トルクゲインAを1未満に設定する。換言すれば、上記(14)式に示す係数Dを1よりも大きい値に設定する。
 なお、トルクゲイン設定部282aは、車速Vsが正常に検出されている場合には、トルクゲインAを1に設定する。また、トルクゲイン設定部282aは、車速Vsが代替車速であるときの推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|が閾値E未満(|Test-TSAT|<E)である場合にも、トルクゲインAを1に設定する。換言すれば、上記(14)式に示す係数Dを1に設定する。
 図29は、実施形態2の車速失陥時処理部における処理の一例を示す図である。
 トルクゲイン設定部282aは、車速判定信号Vfailに基づき、車速Vsが代替車速であるか否かを判定する(ステップS201)。
 車速Vsが代替車速でない場合(ステップS201;No)すなわち、車速Vsが正常に検出されている場合、トルクゲイン設定部282aは、トルクゲインA=1/Dにおける係数Dを1に設定し(ステップS203)、処理を終了する。
 車速Vsが代替車速である場合(ステップS202;Yes)、車両運動推定部281aは、例えば図27に示す推定セルフアライニングトルクマップを用いて、操舵角θhに応じた推定セルフアライニングトルクTestを出力する(ステップS202)。
 トルクゲイン設定部282aは、推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|を算出する(ステップS204)。
 続いて、トルクゲイン設定部282aは、推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|が所定の閾値E以上(|Test-TSAT|≧E)であるか否かを判定する(ステップS205)。
 推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|が閾値E未満(|Test-TSAT|<E)である場合(ステップS205;No)、トルクゲイン設定部282aは、トルクゲインA=1/Dにおける係数Dを1に設定し(ステップS203)、処理を終了する。
 推定セルフアライニングトルクTestとセルフアライニングトルクTSATとの差分の絶対値|Test-TSAT|が閾値E以上(|Test-TSAT|≧E)である場合(ステップS205;Yes)、トルクゲイン設定部282aは、トルクゲインA=1/Dにおける係数Dを1よりも大きい所定値に設定し(ステップS206)、処理を終了する。
 乗算部211は、基本マップ部210から出力されるトルク信号Tref_a0に対して、車速失陥時処理部280aから出力されるトルクゲインAを乗算し、トルク信号Tref_aとして加算部261に出力する。
 上述のように求められたトルク信号Tref_a、Tref_b、Tref_c及びTref_dは、加算部261、262、263で加算され、目標操舵トルクTrefとして出力される。
 上述したように、車両の旋回運動によって発生する物理量として、実施形態1において説明したヨーレートに代えて、セルフアライニングトルクを適用した構成であっても、実施形態1と同様の効果が得られる。具体的には、実施形態2の車速失陥時処理部280aを適用することで、車速センサ12が失陥し、代替車速(例えば、100[km/h])が車速Vsとして出力されている状態で、アシスト制御によって停車中にセルフステアが発生するような過大な操舵トルクが発生することを防ぐことができる。
 なお、実施形態2の車速失陥時処理部280aに代えて、実施形態1の車速失陥時処理部280を具備した構成であっても良い。この場合には、車両の旋回運動によって発生する物理量として、セルフアライニングトルクに代えて、ヨーレートや横加速度を適用することで実現できる。
 以下、実施形態2の捩れ角制御部300aについて、図30を参照して説明する。
 図30は、実施形態2の捩れ角制御部の一構成例を示すブロック図である。捩れ角制御部300aは、目標捩れ角Δθref、捩れ角Δθ及びモータ角速度ωmに基づいてモータ電流指令値Imcを演算する。捩れ角制御部300aは、捩れ角フィードバック(FB)補償部310、捩れ角速度演算部320、速度制御部330、安定化補償部340、出力制限部350、減算部361及び加算部362を備えている。
 変換部500から出力される目標捩れ角Δθrefは、減算部361に加算入力される。捩れ角Δθは、減算部361に減算入力されると共に、捩れ角速度演算部320に入力される。モータ角速度ωmは、安定化補償部340に入力される。
 捩れ角FB補償部310は、減算部361で算出される目標捩れ角Δθrefと捩れ角Δθの偏差Δθ0に対して補償値CFB(伝達関数)を乗算し、目標捩れ角Δθrefに捩れ角Δθが追従するような目標捩れ角速度ωrefを出力する。補償値CFBは、単純なゲインKppでも、PI制御の補償値など一般的に用いられている補償値でも良い。
 目標捩れ角速度ωrefは、速度制御部330に入力される。捩れ角FB補償部310及び速度制御部330により、目標捩れ角Δθrefに捩れ角Δθを追従させ、所望の操舵トルクを実現することが可能となる。
 捩れ角速度演算部320は、捩れ角Δθに対して微分演算処理を行い、捩れ角速度ωtを算出する。捩れ角速度ωtは、速度制御部330に出力される。捩れ角速度演算部320は、微分演算として、HPFとゲインによる擬似微分を行なっても良い。また、捩れ角速度演算部320は、捩れ角速度ωtを別の手段や捩れ角Δθ以外から算出し、速度制御部330に出力するようにしても良い。
 速度制御部330は、I-P制御(比例先行型PI制御)により、目標捩れ角速度ωrefに捩れ角速度ωtが追従するようなモータ電流指令値Imca1を算出する。
 減算部333は、目標捩れ角速度ωrefと捩れ角速度ωtとの差分(ωref-ωt)を算出する。積分部331は、目標捩れ角速度ωrefと捩れ角速度ωtとの差分(ωref-ωt)を積分し、積分結果を減算部334に加算入力する。
 捩れ角速度ωtは、比例部332にも出力される。比例部332は、捩れ角速度ωtに対してゲインKvpによる比例処理を行い、比例処理結果を減算部334に減算入力する。減算部334での減算結果は、モータ電流指令値Imca1として出力される。なお、速度制御部330は、I-P制御ではなく、PI制御、P(比例)制御、PID(比例積分微分)制御、PI-D制御(微分先行型PID制御)、モデルマッチング制御、モデル規範制御等の一般的に用いられている制御方法でモータ電流指令値Imca1を算出しても良い。
 安定化補償部340は、補償値Cs(伝達関数)を有しており、モータ角速度ωmからモータ電流指令値Imca2を算出する。追従性及び外乱特性を向上させるために、捩れ角FB補償部310及び速度制御部330のゲインを上げると、高域の制御的な発振現象が発生してしまう。この対策として、モータ角速度ωmに対し、安定化するために必要な伝達関数(Cs)を安定化補償部340に設定する。これにより、EPS制御システム全体の安定化を実現することができる。
 加算部362は、速度制御部330からのモータ電流指令値Imca1と安定化補償部340からのモータ電流指令値Imca2とを加算し、モータ電流指令値Imcbとして出力する。
 出力制限部350は、モータ電流指令値Imcbに対する上限値及び下限値が予め設定されている。出力制限部350は、モータ電流指令値Imcbの上下限値を制限して、モータ電流指令値Imcを出力する。
 なお、本実施形態における捩れ角制御部300aの構成は一例であり、図30に示す構成とは異なる態様であっても良い。例えば、捩れ角制御部300aは、安定化補償部340を具備しない構成であっても良い。
(実施形態3)
 実施形態1,2では、車両用操向装置の1つとして、本開示をコラム型EPSに適用しているが、本開示はコラム型等の上流型に限られず、ラック&ピニオン等の下流型EPSにも適用可能である。更に、目標捩れ角に基づくフィードバック制御を行うということでは、トーションバー(バネ定数任意)及び捩れ角検出用のセンサを少なくとも備えるステアバイワイヤ(SBW)反力装置等にも適用可能である。本開示を、トーションバーを備えたSBW反力装置に適用した場合の実施形態(実施形態3)について説明する。
 まずは、SBW反力装置を含むSBWシステム全体について説明する。図31は、SBWシステムの構成例を、図1に示される電動パワーステアリング装置の一般的な構成に対応させて示した図である。なお、上述した実施形態1,2で説明した構成と同一構成には同一符号を付し、詳細な説明は省略する。
 SBWシステムは、図1におけるユニバーサルジョイント4aにてコラム軸2と機械的に結合されるインターミディエイトシャフトがなく、ハンドル1の操作を電気信号によって操向車輪8L,8R等からなる転舵機構に伝えるシステムである。図31に示されるように、SBWシステムは反力装置60及び駆動装置70を備え、コントロールユニット(ECU)50が両装置の制御を行う。反力装置60は、舵角センサ14にて操舵角θhの検出を行うと同時に、操向車輪8L,8Rから伝わる車両の運動状態を反力トルクとして運転者に伝達する。反力トルクは、反力用モータ61により生成される。なお、SBWシステムの中には反力装置内にトーションバーを有さないタイプもあるが、本開示を適用するSBWシステムはトーションバーを有するタイプであり、トルクセンサ10にて操舵トルクTsを検出する。また、角度センサ74が、反力用モータ61のモータ角θmを検出する。駆動装置70は、運転者によるハンドル1の操舵に合わせて、駆動用モータ71を駆動し、その駆動力を、ギア72を介してピニオンラック機構5に付与し、タイロッド6a,6bを経て、操向車輪8L,8Rを転舵する。ピニオンラック機構5の近傍には角度センサ73が配置されており、操向車輪8L,8Rの転舵角θtを検出する。ECU50は、反力装置60及び駆動装置70を協調制御するために、両装置から出力される操舵角θhや転舵角θt等の情報に加え、車速センサ12からの車速Vs等を基に、反力用モータ61を駆動制御する電圧制御指令値Vref1及び駆動用モータ71を駆動制御する電圧制御指令値Vref2を生成する。
 このようなSBWシステムに本開示を適用した実施形態3の構成について説明する。
 図32は、実施形態3の構成を示すブロック図である。実施形態3は、捩れ角Δθに対する制御(以下、「捩れ角制御」とする)と、転舵角θtに対する制御(以下、「転舵角制御」とする)を行い、反力装置を捩れ角制御で制御し、駆動装置を転舵角制御で制御する。なお、駆動装置は他の制御方法で制御しても良い。
 目標操舵トルク生成部200bは、車速Vs、車速判定信号Vfail、操舵角θh、及び実ヨーレートγreに基づき、目標操舵トルクTrefを生成する。変換部500は、目標操舵トルク生成部200bで生成された目標操舵トルクTrefを目標捩れ角Δθrefに変換する。目標捩れ角Δθrefは、捩れ角制御部300に出力される。捩れ角制御では、実施形態2と同様の構成及び動作により、捩れ角Δθが、操舵角θh等を用いて目標操舵トルク生成部200b及び変換部500を経て算出される目標捩れ角Δθrefに追従するような制御を行う。モータ角θmは角度センサ74で検出され、モータ角速度ωmは、角速度演算部951にてモータ角θmを微分することにより算出される。転舵角θtは角度センサ73で検出される。また、実施形態1ではEPS操舵系/車両系100内の処理として詳細な説明は行われていないが、電流制御部130は、図3に示される減算部32B、PI制御部35、PWM制御部36及びインバータ37と同様の構成及び動作により、捩れ角制御部300aから出力されるモータ電流指令値Imc及びモータ電流検出器140で検出される反力用モータ61の電流値Imrに基づいて、反力用モータ61を駆動して、電流制御を行う。
 転舵角制御では、目標転舵角生成部910にて操舵角θhに基づいて目標転舵角θtrefが生成され、目標転舵角θtrefは転舵角θtと共に転舵角制御部920に入力され、転舵角制御部920にて、転舵角θtが目標転舵角θtrefとなるようなモータ電流指令値Imctが演算される。そして、モータ電流指令値Imct及びモータ電流検出器940で検出される駆動用モータ71の電流値Imdに基づいて、電流制御部930が、電流制御部130と同様の構成及び動作により、駆動用モータ71を駆動して、電流制御を行う。
 図33は、目標転舵角生成部の構成例示す図である。目標転舵角生成部910は、制限部931、レート制限部932及び補正部933を備える。
 制限部931は、操舵角θhの上下限値を制限して、操舵角θh1を出力する。図30に示す捩れ角制御部300a内の出力制限部350と同様に、操舵角θhに対する上限値及び下限値を予め設定して制限をかける。
 レート制限部932は、操舵角の急変を回避するために、操舵角θh1の変化量に対して制限値を設定して制限をかけ、操舵角θh2を出力する。例えば、1サンプル前の操舵角θh1からの差分を変化量とし、その変化量の絶対値が所定の値(制限値)より大きい場合、変化量の絶対値が制限値となるように、操舵角θh1を加減算し、操舵角θh2として出力し、制限値以下の場合は、操舵角θh1をそのまま操舵角θh2として出力する。なお、変化量の絶対値に対して制限値を設定するのではなく、変化量に対して上限値及び下限値を設定して制限をかけるようにしても良く、変化量ではなく変化率や差分率に対して制限をかけるようにしても良い。
 補正部933は、操舵角θh2を補正して、目標転舵角θtrefを出力する。例えば、目標操舵トルク生成部200b内の基本マップ部210のように、操舵角θh2の大きさ|θh2|に対する目標転舵角θtrefの特性を定義したマップを用いて、操舵角θh2より目標転舵角θtrefを求める。或いは、単純に、操舵角θh2に所定のゲインを乗算することにより、目標転舵角θtrefを求めるようにしても良い。
 図34は、転舵角制御部の構成例を示す図である。転舵角制御部920は、図30に示される捩れ角制御部300aの構成例において安定化補償部340及び加算部362を除いた構成と同様の構成をしており、目標捩れ角Δθref及び捩れ角Δθの代わりに目標転舵角θtref及び転舵角θtを入力し、転舵角フィードバック(FB)補償部921、転舵角速度演算部922、速度制御部923、出力制限部926及び減算部927が、それぞれ捩れ角FB補償部310、捩れ角速度演算部320、速度制御部330、出力制限部350及び減算部361と同様の構成で同様の動作を行う。
 このような構成において、実施形態3の動作例を、図35のフローチャートを参照して説明する。図35は、実施形態3の動作例を示すフローチャートである。
 動作を開始すると、角度センサ73は転舵角θtを検出し、角度センサ74はモータ角θmを検出し(ステップS110)、転舵角θtは転舵角制御部920に、モータ角θmは角速度演算部951にそれぞれ入力される。
 角速度演算部951は、モータ角θmを微分してモータ角速度ωmを算出し、捩れ角制御部300aに出力する(ステップS120)。
 その後、目標操舵トルク生成部200bにおいて、図7に示されるステップS10~S40と同様の動作を実行し、反力用モータ61を駆動し、電流制御を実施する(ステップS130~S160)。
 一方、転舵角制御においては、目標転舵角生成部910が操舵角θhを入力し、操舵角θhは制限部931に入力される。制限部931は、予め設定された上限値及び下限値により操舵角θhの上下限値を制限し(ステップS170)、操舵角θh1としてレート制限部932に出力する。レート制限部932は、予め設定された制限値により操舵角θh1の変化量に対して制限をかけ(ステップS180)、操舵角θh2として補正部933に出力する。補正部933は、操舵角θh2を補正して目標転舵角θtrefを求め(ステップS190)、転舵角制御部920に出力する。
 転舵角θt及び目標転舵角θtrefを入力した転舵角制御部920は、減算部927にて目標転舵角θtrefから転舵角θtを減算することにより、偏差Δθt0を算出する(ステップS200)。偏差Δθt0は転舵角FB補償部921に入力され、転舵角FB補償部921は、偏差Δθt0に補償値を乗算することにより偏差Δθt0を補償し(ステップS210)、目標転舵角速度ωtrefを速度制御部923に出力する。転舵角速度演算部922は転舵角θtを入力し、転舵角θtに対する微分演算により転舵角速度ωttを算出し(ステップS220)、速度制御部923に出力する。速度制御部923は、速度制御部330と同様にI-P制御によりモータ電流指令値Imctaを算出し(ステップS230)、出力制限部926に出力する。出力制限部926は、予め設定された上限値及び下限値によりモータ電流指令値Imctaの上下限値を制限し(ステップS240)、モータ電流指令値Imctとして出力する(ステップS250)。
 モータ電流指令値Imctは電流制御部930に入力され、電流制御部930は、モータ電流指令値Imct及びモータ電流検出器940で検出された駆動用モータ71の電流値Imdに基づいて、駆動用モータ71を駆動し、電流制御を実施する(ステップS260)。
 なお、図35におけるデータ入力及び演算等の順番は適宜変更可能である。また、転舵角制御部920内の速度制御部923は、捩れ角制御部300a内の速度制御部330と同様に、I-P制御ではなく、PI制御、P制御、PID制御、PI-D制御等、実現可能で、P、I及びDのいずれかの制御を用いていれば良く、更に、転舵角制御部920及び捩れ角制御部300aでの追従制御は、一般的に用いられている制御構造で行っても良い。転舵角制御部920については、目標角度(ここでは目標転舵角θtref)に対して実角度(ここでは転舵角θt)が追従する制御構成であれば、車両用装置に用いられている制御構成に限定されず、例えば、産業用位置決め装置や産業用ロボット等に用いられている制御構成を適用しても良い。
 実施形態3では、図31に示されるように、1つのECU50で反力装置60及び駆動装置70の制御を行っているが、反力装置60用のECUと駆動装置70用のECUをそれぞれ設けても良い。この場合、ECU同士は通信によりデータの送受信を行うことになる。また、図31に示されるSBWシステムは反力装置60と駆動装置70の間には機械的な結合を持たないが、システムに異常が発生した場合に、コラム軸2と転舵機構をクラッチ等で機械的に結合する機械的トルク伝達機構を備えるSBWシステムにも、本開示は適用可能である。このようなSBWシステムでは、システム正常時はクラッチをオフにして機械的トルク伝達を開放状態とし、システム異常時はクラッチをオンにして機械的トルク伝達を可能状態とする。
 上述の実施形態1から3での捩れ角制御部300,300aは、直接的にモータ電流指令値Imc及びアシスト電流指令値Iacを演算しているが、それらを演算する前に、先ず出力したいモータトルク(目標トルク)を演算してから、モータ電流指令値及びアシスト電流指令値を演算するようにしても良い。この場合、モータトルクからモータ電流指令値及びアシスト電流指令値を求めるには、一般的に用いられている、モータ電流とモータトルクの関係を使用する。
 なお、上述で使用した図は、本開示に関して定性的な説明を行うための概念図であり、これらに限定されるものではない。また、上述の実施形態は本開示の好適な実施の一例ではあるが、これに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々変形実施可能である。また、ハンドルと、モータ又は反力モータの間に任意のバネ定数を有する機構であれば、トーションバーに限定しなくても良い。
 1 ハンドル
 2 コラム軸
 2A トーションバー
 3 減速機構
 4a,4b ユニバーサルジョイント
 5 ピニオンラック機構
 6a,6b タイロッド
 7a,7b ハブユニット
 8L,8R 操向車輪
 10 トルクセンサ
 11 イグニションキー
 12 車速センサ
 13 バッテリ
 14 舵角センサ
 15 ヨーレートセンサ
 16 横加速度センサ
 20 モータ
 30,50 コントロールユニット(ECU)
 60 反力装置
 61 反力用モータ
 70 駆動装置
 71 駆動用モータ
 72 ギア
 73 角度センサ
 100 EPS操舵系/車両系
 130 電流制御部
 140 モータ電流検出器
 200,200a 目標操舵トルク生成部
 210 基本マップ部
 211 乗算部
 220 微分部
 230 ダンパゲインマップ部
 240 ヒステリシス補正部
 250 SAT情報補正部
 251 SAT算出部
 251A 換算部
 251B 角速度演算部
 251C 角加速度演算部
 251D,251E,251F ブロック
 251H,251I,251J 加算器
 252 フィルタ部
 253 操舵トルク感応ゲイン部
 254 車速感応ゲイン部
 255 舵角感応ゲイン部
 256 制限部
 260 乗算部
 261,262,263 加算部
 280,280a 車速失陥時処理部
 281,281a 車両運動推定部
 282,282a トルクゲイン設定部
 300,300a 捩れ角制御部
 310 捩れ角フィードバック(FB)補償部
 320 捩れ角速度演算部
 330 速度制御部
 331 積分部
 332 比例部
 333,334 減算部
 340 安定化補償部
 350 出力制限部
 360 舵角外乱補償部
 361 減算部
 362,363 加算部
 370 減速比部
 400 操舵方向判定部
 500 変換部
 910 目標転舵角生成部
 920 転舵角制御部
 921 転舵角フィードバック(FB)補償部
 922 転舵角速度演算部
 923 速度制御部
 926 出力制限部
 927 減算部
 930 電流制御部
 931 制限部
 933 補正部
 932 レート制限部
 940 モータ電流検出器
 1001 CPU
 1005 インターフェース
 1006 A/D変換器
 1007 PWMコントローラ
 1100 制御用コンピュータ(MCU)

Claims (8)

  1.  操舵力を補助するモータを駆動制御することにより、車両の操舵系をアシスト制御する車両用操向装置であって、
     前記車両の車速が所定の代替車速であるとき、前記車両の旋回運動によって発生する物理量と、前記代替車速における前記物理量の推定値との差分の絶対値に応じて、目標操舵トルクを小さくする
     車両用操向装置。
  2.  操舵角に応じて、前記物理量の推定値を推定する車両運動推定部と、
     前記物理量と前記物理量の推定値との差分の絶対値に応じて、前記目標操舵トルクに対するトルクゲインを設定するトルクゲイン設定部と、
     を備える
     請求項1に記載の車両用操向装置。
  3.  前記トルクゲイン設定部は、
     前記車速が前記代替車速であり、かつ、前記物理量と前記物理量の推定値との差分の絶対値が所定の閾値以上である場合に、前記トルクゲインを小さくする
     請求項2に記載の車両用操向装置。
  4.  前記トルクゲイン設定部は、
     前記車速が前記代替車速でない場合、及び、前記物理量と前記物理量の推定値との差分の絶対値が所定の閾値未満である場合に、前記トルクゲインを1に設定し、
     前記車速が前記代替車速であり、かつ、前記物理量と前記物理量の推定値との差分の絶対値が前記閾値以上である場合に、前記トルクゲインを1未満の値に設定する
     請求項2に記載の車両用操向装置。
  5.  前記トルクゲイン設定部は、
     前記車速が前記代替車速であり、かつ、前記物理量と前記物理量の推定値との差分の絶対値が前記閾値以上である場合に、前記トルクゲインを前記設定した値まで徐々に小さくする
     請求項4に記載の車両用操向装置。
  6.  前記物理量はヨーレートであり、
     前記車両運動推定部は、
     前記操舵角に応じた推定ヨーレートを推定する
     請求項2から5の何れか一項に記載の車両用操向装置。
  7.  前記物理量は横加速度であり、
     前記車両運動推定部は、
     前記操舵角に応じた推定横加速度を推定する
     請求項2から5の何れか一項に記載の車両用操向装置。
  8.  前記物理量はセルフアライニングトルクであり、
     前記車両運動推定部は、
     前記操舵角に応じた推定セルフアライニングトルクを推定する
     請求項2から5の何れか一項に記載の車両用操向装置。
PCT/JP2019/034834 2018-12-04 2019-09-04 車両用操向装置 WO2020115973A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19893975.3A EP3892523A4 (en) 2018-12-04 2019-09-04 VEHICLE STEERING DEVICE
US17/294,154 US20220009546A1 (en) 2018-12-04 2019-09-04 Vehicle steering device
JP2020559727A JPWO2020115973A1 (ja) 2018-12-04 2019-09-04 車両用操向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-227347 2018-12-04
JP2018227347 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020115973A1 true WO2020115973A1 (ja) 2020-06-11

Family

ID=70974188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034834 WO2020115973A1 (ja) 2018-12-04 2019-09-04 車両用操向装置

Country Status (4)

Country Link
US (1) US20220009546A1 (ja)
EP (1) EP3892523A4 (ja)
JP (1) JPWO2020115973A1 (ja)
WO (1) WO2020115973A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485393A (zh) * 2021-06-22 2021-10-08 北京三快在线科技有限公司 飞行设备的控制方法、装置、存储介质及飞行设备
US20220009546A1 (en) * 2018-12-04 2022-01-13 Nsk Ltd. Vehicle steering device
DE102023132116A1 (de) 2022-12-06 2024-06-06 Isuzu Motors Limited Gierratensteuerungsvorrichtung, gierratensteuerungsverfahren und programm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019206980B4 (de) * 2019-05-14 2023-06-22 Volkswagen Aktiengesellschaft Verfahren und Lenkungssteuergerät zum Ermitteln einer Stellgröße für das Einstellen eines Servolenkmoments bei einem Fahrzeuglenksystem
JP7169957B2 (ja) * 2019-10-03 2022-11-11 日立Astemo株式会社 操舵制御装置
JP7538083B2 (ja) * 2021-04-15 2024-08-21 トヨタ自動車株式会社 操舵装置及び操舵方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080967A (ja) * 1983-10-13 1985-05-08 Nissan Motor Co Ltd パワ−ステアリング装置
JPS62187655A (ja) * 1986-02-12 1987-08-17 Honda Motor Co Ltd 車両の前後輪操舵装置
JPH0699835A (ja) * 1992-09-18 1994-04-12 Daihatsu Motor Co Ltd 車速感応型パワーステアリングの制御装置
JP2001233228A (ja) * 2000-02-21 2001-08-28 Honda Motor Co Ltd 電動パワーステアリング装置
JP2002037102A (ja) * 2000-07-27 2002-02-06 Daihatsu Motor Co Ltd 電動式パワーステアリング装置
JP2004131046A (ja) 2002-08-09 2004-04-30 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2011148336A (ja) * 2010-01-19 2011-08-04 Nsk Ltd 電動パワーステアリング装置
JP2013209060A (ja) * 2012-03-30 2013-10-10 Honda Motor Co Ltd 電動パワーステアリング装置
WO2018147371A1 (ja) * 2017-02-09 2018-08-16 日本精工株式会社 電動パワーステアリング装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716981A (en) * 1986-02-12 1988-01-05 Honda Giken Kogyo Kabushiki Kaisha Apparatus for steering front and rear wheels of a motor vehicle
US6448728B2 (en) * 2000-03-31 2002-09-10 Honda Giken Kabushiki Kaisha Electric power steering apparatus
JP3525872B2 (ja) * 2000-08-01 2004-05-10 トヨタ自動車株式会社 車輌用自動操舵装置
JP3868848B2 (ja) * 2002-05-23 2007-01-17 三菱電機株式会社 車両状態検出装置
JP4205442B2 (ja) * 2003-01-16 2009-01-07 本田技研工業株式会社 操舵装置
JP4193113B2 (ja) * 2003-02-27 2008-12-10 株式会社ジェイテクト 電動パワーステアリング装置
JP4353058B2 (ja) * 2004-10-12 2009-10-28 トヨタ自動車株式会社 電動式パワーステアリング装置用制御装置
JP2007168756A (ja) * 2005-12-26 2007-07-05 Showa Corp 電動パワーステアリング装置
EP1995150A3 (en) * 2007-05-25 2009-05-06 NSK Ltd. Electric power steering apparatus
WO2011048702A1 (ja) * 2009-10-21 2011-04-28 トヨタ自動車株式会社 車両の電動パワーステアリング装置
MX352528B (es) * 2012-10-01 2017-11-29 Nissan Motor Dispositivo de control de estabilidad.
RU2627262C2 (ru) * 2013-06-28 2017-08-04 Ниссан Мотор Ко., Лтд. Устройство управления рулением
DE102016216796B4 (de) * 2015-09-08 2023-10-26 Toyota Jidosha Kabushiki Kaisha Lenkreaktionskraftsteuervorrichtung für fahrzeug
WO2019082271A1 (ja) * 2017-10-24 2019-05-02 日本精工株式会社 電動パワーステアリング装置
WO2019087865A1 (ja) * 2017-11-02 2019-05-09 株式会社ジェイテクト 操舵制御装置
CN108454698B (zh) * 2018-04-11 2019-06-28 安徽江淮汽车集团股份有限公司 基于电动助力的应急转向控制方法及系统
KR102532338B1 (ko) * 2018-06-21 2023-05-16 현대자동차주식회사 차량용 조향 제어방법
CN109204451A (zh) * 2018-09-11 2019-01-15 长安大学 一种双电机电动助力转向系统及其助力转向方法
CN109204450B (zh) * 2018-09-11 2021-04-20 长安大学 基于电磁离合器的双电机电动助力转向系统及转向方法
CN111196311B (zh) * 2018-11-16 2021-05-14 宝沃汽车(中国)有限公司 车辆转向控制方法、装置、控制器及车辆
US20220009546A1 (en) * 2018-12-04 2022-01-13 Nsk Ltd. Vehicle steering device
CN111196312B (zh) * 2020-01-21 2022-06-07 重庆长安汽车股份有限公司 一种电动汽车转向控制方法、装置、汽车及控制器
DE102020211657A1 (de) * 2020-09-17 2022-03-17 Ford Global Technologies, Llc Lenksystem und Verfahren zum Betreiben eines Lenksystems
JP2023163933A (ja) * 2022-04-28 2023-11-10 トヨタ自動車株式会社 車両用操舵支援装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080967A (ja) * 1983-10-13 1985-05-08 Nissan Motor Co Ltd パワ−ステアリング装置
JPS62187655A (ja) * 1986-02-12 1987-08-17 Honda Motor Co Ltd 車両の前後輪操舵装置
JPH0699835A (ja) * 1992-09-18 1994-04-12 Daihatsu Motor Co Ltd 車速感応型パワーステアリングの制御装置
JP2001233228A (ja) * 2000-02-21 2001-08-28 Honda Motor Co Ltd 電動パワーステアリング装置
JP2002037102A (ja) * 2000-07-27 2002-02-06 Daihatsu Motor Co Ltd 電動式パワーステアリング装置
JP2004131046A (ja) 2002-08-09 2004-04-30 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2011148336A (ja) * 2010-01-19 2011-08-04 Nsk Ltd 電動パワーステアリング装置
JP2013209060A (ja) * 2012-03-30 2013-10-10 Honda Motor Co Ltd 電動パワーステアリング装置
WO2018147371A1 (ja) * 2017-02-09 2018-08-16 日本精工株式会社 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892523A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009546A1 (en) * 2018-12-04 2022-01-13 Nsk Ltd. Vehicle steering device
CN113485393A (zh) * 2021-06-22 2021-10-08 北京三快在线科技有限公司 飞行设备的控制方法、装置、存储介质及飞行设备
CN113485393B (zh) * 2021-06-22 2022-06-14 北京三快在线科技有限公司 飞行设备的控制方法、装置、存储介质及飞行设备
DE102023132116A1 (de) 2022-12-06 2024-06-06 Isuzu Motors Limited Gierratensteuerungsvorrichtung, gierratensteuerungsverfahren und programm

Also Published As

Publication number Publication date
EP3892523A4 (en) 2022-10-12
US20220009546A1 (en) 2022-01-13
EP3892523A1 (en) 2021-10-13
JPWO2020115973A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
US10300942B2 (en) Electric power steering apparatus
WO2020115973A1 (ja) 車両用操向装置
WO2020241591A1 (ja) 車両用操向装置
JP7211438B2 (ja) 車両用操向装置
WO2020012689A1 (ja) 車両用操向装置
JP6702513B2 (ja) 車両用操向装置
WO2020100411A1 (ja) 車両用操向装置
JP7199643B2 (ja) 車両用操向装置
WO2019167661A1 (ja) 車両用操向装置
JP7347493B2 (ja) 車両用操向装置
JP7222309B2 (ja) 車両用操向装置
WO2020213285A1 (ja) 車両用操向装置
JP7437603B2 (ja) 車両用操向装置
JP6628017B1 (ja) 車両用操向装置
JP2021147018A (ja) 車両用操向装置
JP7268488B2 (ja) 車両用操向装置
WO2020183838A1 (ja) 車両用操向装置
US12097912B2 (en) Control apparatus of steering system for vehicles
JP2021160638A (ja) 車両用操向装置
JP2021123288A (ja) 車両用操向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893975

Country of ref document: EP

Effective date: 20210705