WO2022083728A1 - 一种普瑞巴林的中间体及其制备方法 - Google Patents

一种普瑞巴林的中间体及其制备方法 Download PDF

Info

Publication number
WO2022083728A1
WO2022083728A1 PCT/CN2021/125648 CN2021125648W WO2022083728A1 WO 2022083728 A1 WO2022083728 A1 WO 2022083728A1 CN 2021125648 W CN2021125648 W CN 2021125648W WO 2022083728 A1 WO2022083728 A1 WO 2022083728A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
organic solvent
compound represented
solution
iii
Prior art date
Application number
PCT/CN2021/125648
Other languages
English (en)
French (fr)
Inventor
李建其
王冠
何茶生
翟自然
周阳
杜新丽
Original Assignee
上海医药工业研究院
中国医药工业研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海医药工业研究院, 中国医药工业研究总院 filed Critical 上海医药工业研究院
Publication of WO2022083728A1 publication Critical patent/WO2022083728A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/22Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/50Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C205/51Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/08Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/24Oxygen atoms attached in position 2 with hydrocarbon radicals, substituted by oxygen atoms, attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/26Oxygen atoms attached in position 2 with hetero atoms or acyl radicals directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to an intermediate of pregabalin and a preparation method thereof.
  • pregabalin is (S)-3-aminomethyl-5-methylhexanoic acid, which is a gamma-aminobutyric acid (GABA) receptor antagonist developed by Pfizer. It acts on the pressure-dependent calcium channels in the nervous system and is clinically used for peripheral neuralgia or adjuvant treatment of partial seizures. Compared with gabapentin, pregabalin has the characteristics of low dose, fast onset, high bioavailability and great market potential.
  • GABA gamma-aminobutyric acid
  • pregabalin preparation methods of pregabalin are mainly divided into two categories: traditional chemical methods and enzymatic methods. Enzymatic methods generally require relatively high process conditions, so it is difficult to scale up production. At present, traditional chemical methods are generally used to prepare pregabalin. Chemical methods can be subdivided into the following three categories:
  • the first type is the chemical splitting method. Generally, the racemate of pregabalin is prepared first, and then the pregabalin is prepared by splitting with a resolving agent. At present, this method is also used in industry for production. The specific route is as follows:
  • the second type is the chiral source synthesis method, which uses a chiral compound as a starting material to directly introduce chirality to prepare pregabalin, such as the literature J.Org.Chem.2007,72,7390.
  • pregabalin such as the literature J.Org.Chem.2007,72,7390.
  • chiral epichlorohydrin 15 and diethyl malonate 16 as starting materials, after the preparation of key intermediate 19, through trimethylbromosilane ring-opening bromination, azide, ester hydrolysis, reduction
  • Pregabalin was obtained in overall yield: 57%, ee of azide: 99%.
  • the route and the synthesis method involve the preparation of the azide compound (21), and the used reagents, sodium azide and azide compound 21, are extremely unstable and are likely to cause explosion, so there are hidden dangers in operation and safety, and they are not suitable for production scale-up. .
  • the third type is asymmetric synthesis, which controls the chirality of the target product through a chiral catalyst or chiral auxiliary to obtain the target product.
  • the olefin intermediate 26 undergoes an addition reaction with nitromethane, and is catalyzed by a cinchonas catalyst 27 to generate an optically selective compound 28, which is then hydrolyzed and reduced to prepare pregabalin.
  • a cinnamonine-based catalyst 27 disclosed in this route has not been commercially available, and its preparation cost is high and the amount used is relatively large, and it is not economical to produce and prepare pregabalin.
  • Can.J.Chem.92:45-48(2014) reported a method for preparing pregabalin with Evans reagent IV-3 as chiral auxiliary and Et 2 AlCN as ammonia source.
  • the synthetic route is as follows:
  • the two preparation methods in the third type of asymmetric synthesis method both use the technical means of olefin addition, and both use a chiral catalyst or a chiral auxiliary to control the chirality of the target product, but there are still problems such as: use price Defects such as expensive catalysts, potassium cyanide and Et 2 AlCN highly toxic reagents.
  • pregabalin still have many defects, so it is urgent to develop a low-cost and large-scale production process for preparing pregabalin with cheap and easily available raw materials and reagents, suitable for scale-up production and quality control. .
  • the technical problem to be solved by the present invention is to provide a kind of intermediate of pregabalin and preparation thereof in order to overcome the defects of using potassium cyanide highly toxic reagent, explosive azide reagent and intermediate, expensive catalyst and the like in the prior art method.
  • the method has mild reaction conditions, low toxicity of raw materials, is simple and easy to obtain, simple to operate, easy to scale up production, and can also be used to prepare pregabalin.
  • the present invention solves the above technical problems through the following solutions.
  • the present invention provides a compound represented by formula (I);
  • R is C 1 -C 6 alkyl, phenyl, R a substituted phenyl, benzyl or R b substituted benzyl; the number of R a and R b is independently one or more, when the When the number of the R a is multiple, the R a is the same or different; when the number of the R b is multiple, the R b is the same or different;
  • R a and R b are independently C 1 -C 6 alkyl or C 1 -C 6 alkoxy.
  • R is preferably methyl, ethyl or isopropyl.
  • R a and R b are independently preferably methyl, ethyl, isopropyl, methoxy, ethoxy or isopropoxy.
  • the number of the R a is preferably one or two; when the number of the R a is two, the R a is the same or different.
  • the number of the R b is preferably 1 or 2; when the number of the R b is 2, the R b is the same or different.
  • the compound shown in the formula (I) includes but is not limited to any of the following compounds:
  • the present invention provides a kind of preparation method of the compound shown in the formula (I), which is any of the following methods:
  • the method (1) comprises the following steps: in an organic solvent, in the presence of a base, the compound shown in formula (III) is reacted with nitromethane, and the compound shown in formula (I) can be obtained through chiral resolution;
  • the method (2) comprises the following steps: in an organic solvent, in the presence of a base, the compound shown in formula (III) is reacted with nitromethane under the action of a catalyst shown in formula (II), and that is final product;
  • the base is K 2 CO 3 and/or Cs 2 CO 3 ;
  • R is a C 1 -C 6 alkyl group, a phenyl group, a phenyl group substituted by R a , a benzyl group or a benzyl group substituted by R b ;
  • R a and R b The number of R is one or more independently, when the number of the R is more than one, the R is the same or different ; when the number of the R is multiple , the R is the same or different;
  • R a and R b are independently C 1 -C 6 alkyl or C 1 -C 6 alkoxy;
  • R 2 is C 6 -C 14 aryl or benzyl; R 3 is hydroxyl or amino; X is halogen.
  • R is preferably methyl, ethyl or isopropyl.
  • the R a and R b are independently preferably methyl, ethyl, isopropyl, methoxy, ethoxy or isopropoxy.
  • the number of the R a is preferably 1 or 2; when the number of the R a is 2, the R a is the same or different .
  • the number of the R b is preferably 1 or 2; when the number of the R b is 2, the R b is the same or different. .
  • the solution formed by the compound represented by the formula (III), the nitromethane and the organic solvent is preferably added dropwise to the organic solvent suspension of the base.
  • the organic solvent may be conventional in the art, preferably one or more of dichloromethane, acetonitrile, toluene, THF, acetone, DMSO and methanol.
  • the molar ratio of the compound represented by the formula (III) and the nitromethane can be conventional in the art, preferably 1:(1-3), more preferably 1:(1.5 ⁇ 2.5), such as 1:2.
  • the ratio of the molar ratio of the base to the compound represented by formula (III) may be conventional in the art, preferably 1.0-2.8, for example: 2.5 or 2.6.
  • the temperature of the reaction can be conventional in the art, preferably 10-40°C, more preferably 20-30°C.
  • the reaction time of the reaction is related to the selectivity of the base, and the reaction time is preferably 22h-36h.
  • the progress of the reaction can be monitored by conventional monitoring methods (such as TLC, HPLC or NMR) in the field, and generally the compound represented by the formula (III) disappears or no longer reacts. as the end point of the reaction.
  • conventional monitoring methods such as TLC, HPLC or NMR
  • the method further includes: quenching, separating and concentrating the reaction system in sequence.
  • water is preferably used for quenching, and the amount of the water is not limited as long as it does not affect the reaction.
  • the concentration can be conventional in the art, preferably under reduced pressure and vacuum.
  • the chiral resolution preferably adopts recrystallization.
  • the amount of the organic solvent is not limited, so as not to affect the reaction;
  • the ratio of the mass-to-volume ratio of the compound represented by formula (III) and the organic solvent may be conventional in the art, preferably 0.1 g/mL to 0.25 g/mL.
  • the ratio of the mass to volume ratio of the alkali to the organic solvent can be conventional in the field, preferably 0.1 g/mL ⁇ 0.4 g/mL, such as 0.3 g/mL.
  • the recrystallization comprises the following steps: placing a solution of the compound represented by the formula (I) in an organic solvent preferably at 50°C-80°C, preferably at 15°C-30°C, for example, at 25°C. Crystallization at °C-30°C is enough.
  • the organic solvent used in the recrystallization is preferably one or more of an alcohol solvent and a mixed solvent formed by an alcohol solvent and water, more preferably isopropanol.
  • secondary recrystallization is more preferably used for the chiral resolution.
  • the secondary recrystallization comprises the following steps: a solution of the organic solvent of the compound represented by the formula (I) at preferably 50°C-80°C is preferably placed at 15°C-25°C for analysis. Crystallization, filtration, and drying to obtain a solid, and then the solution of the solid in an organic solvent preferably at 50°C to 80°C is preferably placed at 25°C to 30°C for crystallization.
  • R 2 is preferably phenyl, anthracenyl or naphthyl.
  • X is preferably Cl or Br.
  • the organic solvent may be conventional in the art, preferably one or more of dichloromethane, acetonitrile, toluene, THF, acetone, DMSO and methanol.
  • the solution formed by the compound represented by the formula (III), the nitromethane, the catalyst represented by the formula (II) and an organic solvent is preferably added dropwise to the base. and the suspension in the organic solvent.
  • the molar ratio of the compound represented by the formula (III) and the nitromethane can be conventional in the art, preferably 1:(1-3), more preferably 1:(1.5 ⁇ 2.5), such as 1:2.
  • the molar ratio of the compound represented by formula (III) and the catalyst represented by formula (II) may be conventional in the art, preferably 1:(0.07-0.1).
  • the molar ratio of the base to the compound represented by formula (III) may be conventional in the art, preferably 1.0-2.8, for example: 2.5 or 2.6.
  • the temperature of the reaction may be conventional in the art, preferably 10-40°C, more preferably 20-30°C.
  • the reaction time of the reaction is related to the selectivity of the base, and the reaction time is preferably 22h-36h.
  • the progress of the reaction can be monitored by conventional monitoring methods in the art (for example, TLC, HPLC or NMR), and generally the compound shown in formula (III) disappears or no longer reacts. as the end point of the reaction.
  • conventional monitoring methods in the art for example, TLC, HPLC or NMR
  • post-processing is also included, and the post-processing comprises the following steps: quenching, separating, concentrating and purifying the reaction system in sequence.
  • the amount of the organic solvent may be different. It is limited so as not to affect the reaction; the ratio of the mass-volume ratio of the compound represented by formula (III) to the organic solvent can be conventional in the art, preferably 0.1 g/mL to 0.25 g/mL.
  • the ratio of the mass to volume ratio of the alkali to the organic solvent can be conventional in the field, preferably 0.1 g/mL ⁇ 0.4 g/mL, such as 0.3 g/mL.
  • water is preferably used for quenching in the quenching process, and the amount of the water is not limited as long as it does not affect the reaction.
  • the concentration in the post-processing method, may be conventional in the art, preferably under reduced pressure and vacuum.
  • the purification in the post-processing method, preferably adopts recrystallization or column chromatography.
  • the purification in the post-processing method, when R is a phenyl group or a phenyl group substituted by Ra, the purification preferably adopts recrystallization; when R is a C 1 -C 6 alkyl, benzyl or R b substituted benzyl, for example when R is isopropyl or benzyl, the purification is preferably by column chromatography.
  • the recrystallization comprises the following steps: placing a solution of the compound represented by the formula (I) in an organic solvent preferably at 50° C. to 80° C. 15°C-30°C, for example, 25°C-30°C for crystallization.
  • the organic solvent used in the recrystallization is preferably an alcohol solvent, and one or more of the mixed solvent formed by the alcohol solvent and water, more preferably is isopropanol.
  • the recrystallization adopts secondary recrystallization.
  • the secondary recrystallization comprises the following steps: adding a solution of the compound represented by formula (I) in an organic solvent preferably at 50°C to 80°C, preferably Place at 15°C-25°C for crystallization, filter, and dry to obtain a solid, and then the solution of the solid in an organic solvent preferably at 50°C-80°C is preferably placed at 25°C-30°C for crystallization.
  • the eluent of the column chromatography is preferably a mixed solution of petroleum ether and ethyl acetate.
  • the volume ratio of the petroleum ether and ethyl acetate is preferably (8-10):1.
  • the preparation method of the compound represented by the formula (I) may further comprise the following steps: in an organic solvent, in the presence of a catalyst and a base, combining the compound represented by the formula (IV) with the compound represented by the formula (V ) reacts the compound shown in the formula (III) to obtain the compound shown in the formula (III);
  • R is C 1 -C 6 alkyl, phenyl, R a substituted phenyl, benzyl or R b substituted benzyl; the number of R a and R b is independently one or more, when the When the number of the R a is multiple, the R a is the same or different; when the number of the R b is multiple, the R b is the same or different;
  • R a and R b are independently C 1 -C 6 alkyl or C 1 -C 6 alkoxy;
  • R 4 is hydroxy or halogen.
  • R 4 is preferably chlorine.
  • R is preferably methyl, ethyl or isopropyl.
  • the R a and R b are independently preferably methyl, ethyl, isopropyl, methoxy, ethoxy or isopropoxy.
  • the number of the R a is preferably one or two; when the number of the R a is two, the R a is the same or different.
  • the number of the R b is preferably 1 or 2; when the number of the R b is 2, the R b is the same or different.
  • the compound represented by the formula (V) is preferably added dropwise to the compound represented by the formula (IV), the catalyst, the base and the in organic solvents.
  • the compound represented by the formula (V) at 0-30°C is added dropwise to the compound represented by the formula (IV), the in the solution formed by the catalyst, the base and the organic solvent.
  • the compound represented by formula (V) at 0-10°C is more preferably added dropwise to the compound represented by formula (IV) at 0-5°C more preferably , in the solution formed by the catalyst, the base and the organic solvent.
  • R 4 when R 4 is a hydroxyl group, it preferably further includes the following step: in an organic solvent, the compound represented by formula (V) is reacted with an acylating reagent to prepare 5 After -methyl-2-hexenoyl halide, directly react with the compound represented by the formula (IV) without post-treatment to obtain the compound represented by the formula (III).
  • the organic solvent is preferably a halogenated hydrocarbon solvent, such as dichloromethane.
  • the acylating reagent is preferably oxalyl chloride, thionyl chloride.
  • the temperature of the reaction can be conventional in the art, preferably 10-40°C, more preferably 20-30°C.
  • the reaction time may be conventional in the art, preferably 4-12 h.
  • the organic solvent may be conventional in the art, preferably one of dichloromethane, acetonitrile, toluene, tetrahydrofuran, acetone, DMSO and methanol one or more.
  • the base can be conventional in the art, preferably pyridine, sodium carbonate or triethylamine.
  • the catalyst may be conventional in the art, preferably DMAP (4-dimethylaminopyridine).
  • the molar ratio of the compound represented by the formula (V) and the compound represented by the formula (IV) can be conventional in the art, preferably It is (1-1.5):1, More preferably, it is (1.0-1.3):1.
  • the molar ratio of the compound represented by formula (IV) and the catalyst DMAP may be conventional in the art, preferably 1:(0.01 to 0.2), more preferably 1:(0.01 to 0.1).
  • the molar ratio of the compound of the formula (IV) and the base can be conventional in the art, preferably 1:(1-5), for example 1:2.4, 1:2.8 or 1:4.7.
  • the reaction progress of the reaction can be monitored by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally as shown in the formula
  • TLC time since a reaction has a high degree of reaction
  • HPLC high degree of liquid phase
  • NMR magnetic resonance
  • the compound represented by (IV) disappears or no longer reacts, it is regarded as the end point of the reaction.
  • the reaction further includes post-treatment, and the post-treatment includes the following steps: filtering, concentrating and purifying the reaction system in sequence.
  • the purification in the preparation method of the compound represented by formula (III), in certain embodiments, in the post-processing method, can be conventional in the art, preferably by recrystallization or column chromatography.
  • the organic solvent used in the recrystallization is preferably ethyl acetate, petroleum ether, n-heptane and n-hexane one or more of alkanes.
  • the eluent of the column chromatography can be conventional in the art, preferably petroleum ether and ethyl acetate mixed solution of esters.
  • the volume ratio of the petroleum ether and ethyl acetate can be conventional in the art, preferably (10-15):1.
  • the present invention provides a method for preparing a compound represented by formula 1, which comprises reacting the compound represented by formula (I) in the presence of a base and an oxidant in an organic solvent;
  • R is C 1 -C 6 alkyl, phenyl, R a substituted phenyl, benzyl or R b substituted benzyl; the number of R a and R b is independently one or more, when the When the number of the R a is multiple, the R a is the same or different; when the number of the R b is multiple, the R b is the same or different;
  • R a and R b are independently C 1 -C 6 alkyl or C 1 -C 6 alkoxy.
  • R is preferably methyl, ethyl or isopropyl.
  • the R a and R b are independently preferably methyl, ethyl, isopropyl, methoxy, ethoxy or isopropoxy.
  • the number of the R a is preferably one or two; when the number of the R a is two, the R a is the same or different.
  • the number of the R b is preferably 1 or 2; when the number of the R b is 2, the R b is the same or different.
  • the organic solvent solution of the compound represented by formula (I) is preferably added dropwise to the solution formed by the base, the oxidant and the organic solvent.
  • the solution of the organic solvent of the compound represented by the formula (I) preferably at ⁇ 10°C is added dropwise to the base, the oxidant and the in organic solvents.
  • the organic solvent may be conventional in the art, preferably an ether solvent, such as tetrahydrofuran.
  • the base can be conventional in the art, preferably lithium hydroxide.
  • the oxidant may be conventional in the art, preferably hydrogen peroxide.
  • the ratio of the mass volume ratio of the compound represented by formula (I) to the organic solvent may be conventional in the art, preferably 0.1 g/ mL to 0.5 g/mL, more preferably 0.2 g/mL.
  • the molar ratio of the compound represented by formula (I) and the base may be conventional in the art, preferably 1:(1-1.5) , more preferably 1:(1.1-1.3), for example: 1:1.2.
  • the molar ratio of the compound represented by formula (I) and the oxidant may be conventional in the art, preferably 1:(1-4) , such as 1:3, 1:3.3, 1:3.6, or 1:3.8.
  • the reaction time of the reaction may be conventional in the art, preferably 4-12 h, more preferably 6 h.
  • the progress of the reaction can be monitored using conventional monitoring methods in the art (eg, TLC, HPLC or NMR), generally when the compound of formula (IV) disappears or no longer reacts as the end point of the reaction.
  • conventional monitoring methods in the art eg, TLC, HPLC or NMR
  • the reaction further includes post-treatment, and the post-treatment includes the following steps: adding a reducing agent to the reaction system, and sequentially performing extraction and concentration.
  • the reducing agent in the preparation method of the compound shown in Formula 1, in certain embodiments, in the post-treatment method, may be conventional in the art, preferably sodium sulfite or sodium thiosulfate, more preferably sodium sulfite.
  • the molar ratio of the compound represented by formula (I) and the reducing agent can be conventional in the art, Preferably it is 1:(1-4), More preferably, it is 1:(3-4), for example: 1:3.3, 1:3.6 or 1:3.8.
  • the aqueous phase obtained by the extraction is preferably neutralized by adding acid.
  • the acid can be conventional in the art, preferably an inorganic acid, such as dilute hydrochloric acid.
  • the pH value of the aqueous phase after neutralization with acid is preferably 4-5.
  • the invention provides a kind of preparation method of pregabalin, and its reaction scheme can be as follows:
  • the present invention also provides a compound represented by formula (III), which is any of the following compounds:
  • the C 1 -C 6 alkyl groups all refer to unsubstituted C 1 -C 6 alkyl groups.
  • the C 6 -C 14 aryl groups all refer to unsubstituted C 6 -C 14 aryl groups.
  • the C 1 -C 6 alkoxy groups all refer to unsubstituted C 1 -C 6 alkoxy groups.
  • phenyl refers to unsubstituted phenyl, unsubstituted benzyl, unsubstituted anthracenyl and Unsubstituted naphthyl.
  • methyl refers to unsubstituted Methyl, unsubstituted ethyl, unsubstituted isopropyl, unsubstituted methoxy, unsubstituted ethoxy and unsubstituted isopropoxy.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progressive effects of the present invention are: the method has mild reaction conditions, readily available raw materials and low toxicity, simple reaction operation and easy to scale up production.
  • the compound of formula (I) and its preparation method can also be used to prepare pregabalin.
  • Figure 1 is the X-single crystal diffraction (XPRD) pattern of compound I-3.
  • XPRD X-single crystal diffraction
  • the absolute optical configuration of compound I-3 is confirmed by X-single crystal diffraction pattern, and its chemical name is (R)-3-((S )-5-methyl-3-(nitromethyl)hexanoyl)-4-phenyloxazolidin-2-one.
  • the solution was passed into hydrogen under normal pressure, filtered after 10 h, concentrated, and recrystallized by taking 150 g of isopropanol-water (mass ratio 1:1) to obtain 32.56 g of white solid, yield 86%, ee: 99.91%.

Abstract

本发明公开了一种普瑞巴林的中间体及其制备方法。本发明提供了一种如式(I)所示化合物及其制备方法,所述如式(I)所示化合物的制备方法为如下任一方法:方法(1)包括如下步骤:有机溶剂中,在碱存在下,将如式(III)所示化合物和硝基甲烷反应,经手性拆分即可得到所述如式(I)所示化合物;方法(2)包括如下步骤:有机溶剂中,在碱存在下,如式(III)所示化合物在如式(II)所示催化剂作用下与硝基甲烷反应即可。该方法反应条件温和、原料毒性低且简单易得、操作简单、易于放大生产,可用于合成普瑞巴林。

Description

一种普瑞巴林的中间体及其制备方法
本申请要求申请日为2020/10/23的中国专利申请2020111468097的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种普瑞巴林的中间体及其制备方法。
背景技术
普瑞巴林(pregabalin)化学名称为(S)-3-氨甲基-5-甲基己酸,是辉瑞公司研发的一种γ-氨基丁酸(GABA)受体拮抗剂,主要通过调节中枢神经系统中的压力依赖性钙通道而起作用,临床上用于外周神经痛或辅助治疗部分性癫痫发作,2004年获得欧盟批准并在英国首次上市,2005年经美国FDA批准上市。相比于加巴喷丁,普瑞巴林具有剂量低,起效快,生物利用度高等特点,市场潜力大。
普瑞巴林的制备方法主要分为两大类:传统化学法和酶法,酶法一般对工艺条件要求比较高,因此难以进行生产放大,目前一般都采用传统化学法制备普瑞巴林,而传统化学法又可细分以下三类:
第一类为化学拆分法,一般先制备普瑞巴林消旋体,然后经拆分剂拆分制备普瑞巴林,目前工业上亦采用该法进行生产,具体路线如下:
Figure PCTCN2021125648-appb-000001
该路线总收率低(25-29%),且丢弃产生的另一个异构体(R)-3-氨甲基-5-甲基己酸,造成原料的大量浪费。此外,路线中使用氰化钾(KCN),属于剧毒试剂,存在很大安全隐患。
第二类是手性源合成法,以手性化合物为起始原料直接引入手性以制备普瑞巴林, 如文献J.Org.Chem.2007,72,7390。例如:以手性环氧氯丙烷15和丙二酸二乙酯16为起始原料,经制备关键中间体19,经三甲基溴硅烷开环溴代,叠氮化,酯基水解,还原得到普瑞巴林,总产率:57%,叠氮化物的ee:99%。
Figure PCTCN2021125648-appb-000002
该路线及合成方法中涉及叠氮化合物(21)的制备,所采用的试剂叠氮化钠及叠氮化合物21极不稳定,易造成爆炸,因此存在操作及安全上的隐患,不适合生产放大。
第三类是不对称合成法,通过手性催化剂或手性助剂控制目标产物的手性来获得目标产物。
Org Process Res Dev 2015,19(9):1274中报道了通过金鸡碱手性催化剂来制备普瑞巴林,合成路线如下:
Figure PCTCN2021125648-appb-000003
路线中烯烃中间体26与硝基甲烷进行加成反应,经金鸡碱类催化剂27催化,生成光学选择性化合物28,再经水解、还原制备普瑞巴林。但该路线中公开的金鸡碱类催化剂27未见无商业化供应,且其制备成本高昂、用量相对较多,用于生产制备普瑞巴林缺乏经济性。
Can.J.Chem.92:45–48(2014)报道了以Evans试剂IV-3为手性助剂、以Et 2AlCN作为氨源制备普瑞巴林的方法。合成路线如下:
Figure PCTCN2021125648-appb-000004
该路线存在两方面的重要缺陷:其一,试剂Et 2AlCN价格昂贵,且为剧毒试剂,极大限制了其应用。其二,路线中关键中间体33为油状物,纯化过程无法避免使用柱层析,且其光学纯度仅为74%。因此,该方法不具有生产制备普瑞巴林的实用价值。
第三类不对称合成法中的两种制备方法,均采用了烯烃加成的技术手段,均采用了手性催化剂或手性助剂进行目标产物的手性控制,但仍存在诸如:使用价格昂贵的催化剂、氰化钾及Et 2AlCN剧毒试剂等缺陷。
综上,目前已公开的普瑞巴林制备方法仍存在诸多缺陷,因此亟待开发一种原料及试剂廉价易得、适合放大生产和质量控制、具有低成本、规模化的生产工艺以制备普瑞巴林。
发明内容
本发明所要解决的技术问题是为了克服现有技术使用氰化钾剧毒试剂、易爆的叠氮试剂及中间体、价格昂贵的催化剂等缺陷,提供一种普瑞巴林的中间体及其制备方法。该方法反应条件温和、原料毒性低且简单易得、操作简单、易于放大生产,还可用于制备普瑞巴林。
本发明通过下述方案解决上述技术问题。
本发明提供了一种如式(I)所示化合物;
Figure PCTCN2021125648-appb-000005
其中,R为C 1-C 6烷基、苯基、R a取代的苯基、苄基或R b取代的苄基;R a和R b的个数独立地为一个或多个,当所述R a的个数为多个时,所述R a相同或不同;当所述R b的个数为多个时,所述R b相同或不同;
R a和R b独立地为C 1-C 6烷基或C 1-C 6烷氧基。
R优选为甲基、乙基或异丙基。
所述R a和R b独立地优选为甲基、乙基、异丙基、甲氧基、乙氧基或异丙氧基。
所述R a的个数优选为1个或2个;当所述R a的个数为2个时,所述R a相同或不同。
所述R b的个数优选为1个或2个;当所述R b的个数为2个时,所述R b相同或不同。
较佳地,所述如式(I)所示的化合物,包括但不限于下述任一化合物:
Figure PCTCN2021125648-appb-000006
本发明提供了一种所述如式(I)所示化合物的制备方法,其为如下任一方法:
方法(1)包括如下步骤:有机溶剂中,在碱存在下,将如式(III)所示化合物和硝基甲烷反应,经手性拆分即可得到所述如式(I)所示化合物;
Figure PCTCN2021125648-appb-000007
方法(2)包括如下步骤:有机溶剂中,在碱存在下,如式(III)所示化合物在如式(II)所示催化剂作用下与硝基甲烷反应,即可;
Figure PCTCN2021125648-appb-000008
所述方法(1)和所述方法(2)中,所述的碱为K 2CO 3和/或Cs 2CO 3
所述方法(1)和所述方法(2)中,R为C 1-C 6烷基、苯基、R a取代的苯基、苄基或R b取代的苄基;R a和R b的个数独立地为一个或多个,当所述R a的个数为多个时,所述R a相同或不同;当所述R b的个数为多个时,所述R b相同或不同;
所述方法(1)和所述方法(2)中,R a和R b独立地为C 1-C 6烷基或C 1-C 6烷氧基;
所述方法(2)中,R 2为C 6-C 14芳基或苄基;R 3为羟基或氨基;X为卤素。
所述方法(1)和所述方法(2)中,R优选为甲基、乙基或异丙基。
所述方法(1)和所述方法(2)中,所述R a和R b独立地优选为甲基、乙基、异丙基、甲氧基、乙氧基或异丙氧基。
所述方法(1)和所述方法(2)中,所述R a的个数优选为1个或2个;当所述R a的个数为2个时,所述R a相同或不同。
所述方法(1)和所述方法(2)中,所述R b的个数优选为1个或2个;当所述R b的个数为2个时,所述R b相同或不同。
所述方法(1)中,所述如式(III)所示化合物、所述硝基甲烷与有机溶剂形成的溶液 较佳地滴加至所述碱的所述有机溶剂悬浊液中。
所述方法(1)中,所述有机溶剂可为本领域常规,优选为二氯甲烷、乙腈、甲苯、THF、丙酮、DMSO和甲醇中的一种或多种。
所述方法(1)中,所述如式(III)所示化合物和所述硝基甲烷的摩尔比可为本领域常规,优选为1:(1~3),更优选为1:(1.5~2.5),例如1:2。
所述方法(1)中,所述碱和所述如式(III)所示化合物的摩尔比的比值可为本领域常规,优选为1.0~2.8,例如:2.5或2.6。
所述方法(1)中,所述反应的温度可为本领域常规,优选为10~40℃,更优选为20-30℃。
所述方法(1)中,所述反应的反应时间与所述碱的选择性有关,所述反应时间优选为22h~36h。
所述方法(1)中,所述反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以所述如式(III)所示化合物消失或不再反应时作为反应终点。
所述方法(1)中,在反应结束后、手性拆分前还进一步包括:将反应体系依次进行淬灭、分液、浓缩。
所述方法(1)中,所述淬灭过程中优选使用水进行淬灭,所述水的用量可不做限定,以不影响反应即可。
所述方法(1)中,所述浓缩可为本领域常规,优选在减压真空下进行。
所述方法(1)中,所述手性拆分优选采用重结晶。
所述方法(1)中,所述如式(III)所示化合物、所述硝基甲烷与有机溶剂形成的溶液中,所述有机溶剂的用量可不做限定,以不影响反应即可;所述如式(III)所示化合物和所述有机溶剂的质量体积比的比值可为本领域常规,优选为0.1g/mL~0.25g/mL。
所述方法(1)中,所述碱和所述有机溶剂的悬浊液中,所述碱和所述有机溶剂的质量体积比的比值可为本领域常规,优选为0.1g/mL~0.4g/mL,例如0.3g/mL。
所述方法(1)中,所述重结晶包括如下步骤:将优选50℃-80℃如式(I)所示化合物的有机溶剂的溶液,较佳地置于15℃-30℃,例如25℃-30℃析晶,即可。
所述方法(1)中,所述重结晶使用的有机溶剂优选为醇类溶剂,以及醇类溶剂和水形成的混合溶剂中的一种或多种,更优选为异丙醇。
所述方法(1)中,所述手性拆分更优选采用二次重结晶。
所述方法(1)中,所述二次重结晶包括如下步骤:将优选50℃-80℃如式(I)所示化合物的有机溶剂的溶液,较佳地置于15℃-25℃析晶,过滤,干燥得固体,再将优选50℃- 80℃所述固体的有机溶剂的溶液,较佳地置于25℃-30℃析晶,即可。
所述方法(2)中,R 2优选为苯基、蒽基或萘基。
所述方法(2)中,X优选为Cl或Br。
所述方法(2)中,所述有机溶剂可为本领域常规,优选为二氯甲烷、乙腈、甲苯、THF、丙酮、DMSO和甲醇中的一种或多种。
所述方法(2)中,所述如式(III)所示化合物、所述硝基甲烷、所述如式(II)所示催化剂与有机溶剂形成的溶液较佳地滴加至所述碱和所述有机溶剂的悬浊液中。
所述方法(2)中,所述如式(III)所示化合物和所述硝基甲烷的摩尔比可为本领域常规,优选为1:(1~3),更优选为1:(1.5~2.5),例如1:2。
所述方法(2)中,所述如式(III)所示化合物和所述如式(II)所示催化剂的摩尔比可为本领域常规,优选为1:(0.07~0.1)。
所述方法(2)中,所述碱和所述如式(III)所示化合物的摩尔比的比值可为本领域常规,优选为1.0~2.8,例如:2.5或2.6。
所述方法(2)中,所述反应的温度可为本领域常规,优选为10~40℃,更优选为20~30℃。
所述方法(2)中,所述反应的反应时间与所述碱的选择性有关,所述反应时间优选为22h~36h。
所述方法(2)中,所述反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以所述如式(III)所示化合物消失或不再反应时作为反应终点。
所述方法(2)中,还包括后处理,所述后处理包括如下步骤:将反应体系依次进行淬灭、分液、浓缩和纯化。
所述方法(2)中,所述如式(III)所示化合物、所述硝基甲烷、所述如式(II)所示催化剂与有机溶剂形成的溶液中,所述有机溶剂的用量可不做限定,以不影响反应即可;所述如式(III)所示化合物和所述有机溶剂的质量体积比的比值可为本领域常规,优选为0.1g/mL~0.25g/mL。
所述方法(2)中,所述碱和所述有机溶剂的悬浊液中,所述碱和所述有机溶剂的质量体积比的比值可为本领域常规,优选为0.1g/mL~0.4g/mL,例如0.3g/mL。
所述方法(2)中,在所述后处理方法中,所述淬灭过程中优选使用水进行淬灭,所述水的用量可不做限定,以不影响反应即可。
所述方法(2)中,在所述后处理方法中,所述浓缩可为本领域常规,优选在减压真空下进行。
所述方法(2)中,在所述后处理方法中,所述纯化优选采用重结晶或柱层析。
所述方法(2)中,在所述后处理方法中,当R为苯基或R a取代的苯基时,所述纯化优选采用重结晶;当R为C 1-C 6烷基、苄基或R b取代的苄基,例如R为异丙基或苄基时,所述纯化优选采用柱层析。
所述方法(2)中,在所述后处理方法中,所述重结晶包括如下步骤:将优选50℃-80℃如式(I)所示化合物的有机溶剂的溶液,较佳地置于15℃-30℃,例如25℃-30℃析晶,即可。
所述方法(2)中,在所述后处理方法中,所述重结晶使用的有机溶剂优选为醇类溶剂,以及醇类溶剂和水形成的混合溶剂中的一种或多种,更优选为异丙醇。
所述方法(2)中,在所述后处理方法中,较佳地,所述重结晶采用二次重结晶。
所述方法(2)中,在所述后处理方法中,所述二次重结晶包括如下步骤:将优选50℃-80℃如式(I)所示化合物的有机溶剂的溶液,较佳地置于15℃-25℃析晶,过滤,干燥得固体,再将优选50℃-80℃所述固体的有机溶剂的溶液,较佳地置于25℃-30℃析晶,即可。
所述方法(2)中,在所述后处理方法中,所述柱层析的洗脱剂优选为石油醚和乙酸乙酯的混合溶液。所述石油醚和乙酸乙酯的体积比优选为(8~10):1。
本发明中,所述如式(I)所示化合物的制备方法还可包括以下步骤:在有机溶剂中,在催化剂和碱存在条件下,将如式(IV)所示化合物与如式(V)所示化合物进行反应,得到如式(III)所示化合物,即可;
Figure PCTCN2021125648-appb-000009
其中,R为C 1-C 6烷基、苯基、R a取代的苯基、苄基或R b取代的苄基;R a和R b的个数独立地为一个或多个,当所述R a的个数为多个时,所述R a相同或不同;当所述R b的个数为多个时,所述R b相同或不同;
R a和R b独立地为C 1-C 6烷基或C 1-C 6烷氧基;
R 4为羟基或卤素。较佳地,R 4优选为氯。
在如式(III)所示化合物制备方法中,R优选为甲基、乙基或异丙基。
在如式(III)所示化合物制备方法中,所述R a和R b独立地优选为甲基、乙基、异丙基、甲氧基、乙氧基或异丙氧基。
在如式(III)所示化合物制备方法中,所述R a的个数优选为1个或2个;当所述R a的个数为2个时,所述R a相同或不同。
在如式(III)所示化合物制备方法中,所述R b的个数优选为1个或2个;当所述R b的个数为2个时,所述R b相同或不同。
在如式(III)所示化合物制备方法中,所述如式(V)所示化合物较佳地滴加至所述如式(IV)所示化合物、所述催化剂、所述碱与所述有机溶剂形成的溶液中。
在如式(III)所示化合物制备方法中,优选0-30℃的所述如式(V)所示化合物滴加至优选0~10℃的所述如式(IV)所示化合物、所述催化剂、所述碱与所述有机溶剂形成的溶液中。
在如式(III)所示化合物制备方法中,更优选0-10℃的所述如式(V)所示化合物滴加至更优选0~5℃的所述如式(IV)所示化合物、所述催化剂、所述碱与所述有机溶剂形成的溶液中。
在如式(III)所示化合物制备方法中,当R 4为羟基时,优选还包括如下步骤:在有机溶剂中,将所述如式(V)所示化合物和酰化试剂反应制备得到5-甲基-2-己烯酰卤后,不经后处理,直接与所述如式(IV)所示化合物反应,得到如式(III)所示化合物,即可。
在5-甲基-2-己烯酰卤制备方法中,在某些实施方案中,所述有机溶剂优选为卤代烃类溶剂,例如:二氯甲烷。
在5-甲基-2-己烯酰卤制备方法中,在某些实施方案中,所述酰化试剂优选为草酰氯、氯化亚砜。
在5-甲基-2-己烯酰卤制备方法中,在某些实施方案中,所述反应的温度可为本领域常规,优选为10~40℃,更优选为20-30℃。
在5-甲基-2-己烯酰卤制备方法中,在某些实施方案中,所述反应的时间可为本领域常规,优选为4~12h。
在如式(III)所示化合物制备方法中,当R 4为卤素时,所述如式(V)所示化合物即为5-甲基-2-己烯酰卤,直接与所述如式(IV)所示化合物反应,得到如式(III)所示化合物,即可。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述有机溶剂可为本领域常规,优选为二氯甲烷、乙腈、甲苯、四氢呋喃、丙酮、DMSO和甲醇中的一种或多种。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述碱可为本领域常规,优选为吡啶、碳酸钠或三乙胺。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述催化剂可为本领域常规,优选为DMAP(4-二甲氨基吡啶)。
在如式(III)所示化合物制备方法中,某些实施方案中,所述如式(V)所示化合物和所述如式(IV)所示化合物的摩尔比可为本领域常规,优选为(1~1.5):1,更优选为(1.0~1.3):1。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述如式(IV)所示化合物和所述催化剂DMAP的摩尔比可为本领域常规,优选为1:(0.01~0.2),更优选为1:(0.01~0.1)。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述的式(IV)化合物和碱的摩尔比可为本领域常规,优选为1:(1~5),例如1:2.4、1:2.8或1:4.7。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述反应的反应进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以如式(IV)所示的化合物消失或不再反应时作为反应终点。
在如式(III)所示化合物制备方法中,在某些实施方案中,所述反应还包括后处理,所述后处理包括如下步骤:将反应体系依次进行过滤、浓缩、纯化,即可。
在如式(III)所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,所述纯化可为本领域常规,优选采用重结晶或柱层析。
在如式(III)所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,所述重结晶使用的有机溶剂优选为乙酸乙酯、石油醚、正庚烷和正己烷中的一种或多种。
在如式(III)所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,所述柱层析的洗脱剂可为本领域常规,优选为石油醚和乙酸乙酯的混合溶液。所述石油醚和乙酸乙酯的体积比可为本领域常规,优选为(10~15):1。
本发明提供了一种如式1所示化合物的制备方法,在有机溶剂中,将所述如式(I)所示化合物在碱和氧化剂存在条件下反应,即可;
Figure PCTCN2021125648-appb-000010
其中,R为C 1-C 6烷基、苯基、R a取代的苯基、苄基或R b取代的苄基;R a和R b的个数独立地为一个或多个,当所述R a的个数为多个时,所述R a相同或不同;当所述R b的个数为多个时,所述R b相同或不同;
R a和R b独立地为C 1-C 6烷基或C 1-C 6烷氧基。
在如式1所示化合物制备方法中,R优选为甲基、乙基或异丙基。
在如式1所示化合物制备方法中,所述R a和R b独立地优选为甲基、乙基、异丙基、甲氧基、乙氧基或异丙氧基。
在如式1所示化合物制备方法中,所述R a的个数优选为1个或2个;当所述R a的 个数为2个时,所述R a相同或不同。
在如式1所示化合物制备方法中,所述R b的个数优选为1个或2个;当所述R b的个数为2个时,所述R b相同或不同。
在如式1所示化合物制备方法中,所述如式(I)所示化合物的有机溶剂的溶液较佳地滴加至所述碱、所述氧化剂与所述有机溶剂形成的溶液中。
在如式1所示化合物制备方法中,优选<10℃的所述如式(I)所示化合物的有机溶剂的溶液滴加至优选0~5℃的所述碱、所述氧化剂与所述有机溶剂形成的溶液中。
在如式1所示化合物制备方法中,在某些实施例中,所述有机溶剂可为本领域常规,优选为醚类溶剂,例如四氢呋喃。
在如式1所示化合物制备方法中,在某些实施例中,所述碱可为本领域常规,优选为氢氧化锂。
在如式1所示化合物制备方法中,在某些实施例中,所述氧化剂可为本领域常规,优选为双氧水。
在如式1所示化合物制备方法中,在某些实施例中,所述如式(I)所示化合物与所述有机溶剂的质量体积比的比值可为本领域常规,优选为0.1g/mL~0.5g/mL,更优选为0.2g/mL。
在如式1所示化合物制备方法中,在某些实施例中,所述如式(I)所示化合物和所述碱的摩尔比可为本领域常规,优选为1:(1~1.5),更优选为1:(1.1~1.3),例如:1:1.2。
在如式1所示化合物制备方法中,在某些实施例中,所述如式(I)所示化合物和所述氧化剂的摩尔比可为本领域常规,优选为1:(1~4),例如1:3、1:3.3、1:3.6或1:3.8。
在如式1所示化合物制备方法中,在某些实施例中,所述反应的反应时间可为本领域常规,优选为4~12h,更优选为6h。
在某些实施方案中,所述反应的反应进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行监测,一般以如式(IV)所示的化合物消失或不再反应时作为反应终点。
在如式1所示化合物制备方法中,在某些实施方案中,所述反应还包括后处理,所述后处理包括如下步骤:将还原剂加入反应体系中,并依次进行萃取、浓缩。
在如式1所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,所述还原剂可为本领域常规,优选为亚硫酸钠或硫代硫酸钠,更优选为亚硫酸钠。
在如式1所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,所述如式(I)所示化合物和所述还原剂的摩尔比可为本领域常规,优选为1:(1~4),更优选为 1:(3~4),例如:1:3.3、1:3.6或1:3.8。
在如式1所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,将所述萃取得到的水相优选进行加酸中和。所述酸可为本领域常规,优选为无机酸,例如:稀盐酸。
在如式1所示化合物制备方法中,在某些实施方案中,在所述后处理方法中,所述水相经酸中和后的pH值优选为4~5。
本发明提供了一种普瑞巴林的制备方法,其反应路线可如下所示:
Figure PCTCN2021125648-appb-000011
本发明还提供了一种如式(III)所示化合物,其为下列任一化合物:
Figure PCTCN2021125648-appb-000012
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
除非另有说明,本发明中,所述C 1-C 6烷基均指未取代的C 1-C 6烷基。
除非另有说明,本发明中,所述C 6-C 14芳基均指未取代的C 6-C 14芳基。
除非另有说明,本发明中,所述C 1-C 6烷氧基均指未取代的C 1-C 6烷氧基。
除非另有说明,本发明中,所用的术语“苯基”、“苄基”、“蒽基”和“萘基”指未取代的苯基、未取代的苄基、未取代的蒽基和未取代的萘基。
除非另有说明,本发明中,所用的术语“甲基”、“乙基”、“异丙基”、“甲氧基”、“乙氧基”和“异丙氧基”指未取代的甲基、未取代的乙基、未取代的异丙基、未取代的甲氧基、未取代的乙氧基和未取代的异丙氧基。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:该方法反应条件温和、原料易得且毒性低、反应操作简单、易于放大生产。式(I)所述化合物及其制备方法还可用于制备普瑞巴林。
附图说明
图1为化合物I-3的X-单晶衍射(XPRD)图谱,通过X-单晶衍射图谱确证了化合物I-3的绝对光学构型,其化学名称为(R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苯基恶唑烷-2-酮。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1 5-甲基-2-己烯酸(V-1)的制备
Figure PCTCN2021125648-appb-000013
于500mL三颈瓶中,依次加入吡啶(98.8g,1.24mol)异戊醛(92.71g,1.07mol)充分搅拌均匀,升温至60-70℃,分批次加入丙二酸(100g,0.96mol),升温至90℃搅拌4h,降温至0-5℃,加入5%稀盐酸洗涤至pH=2-4,分液,收集有机相,减压浓缩至恒重得油状物110.46g,收率90%,纯度99.05%(HPLC)。
1H NMR(400MHz,CDCl 3):δ7.07(dt,J=15.3,7.5Hz,1H),5.82(dt,J=15.5,1.5Hz,1H),2.13(ddd,J=7.4,6.7,1.5Hz,2H),1.78(dq,J=13.4,6.7Hz,1H),0.94(d,J=6.7Hz,6H)。CDCl 3溶剂中活泼氢不出峰(参考文献陈文华,祁秀秀,尤海烽.(±)-3-氨甲基-5-甲基己酸的合成[J].中国医药工业杂志,2019(7):746-748.)
ESI-MS(m/z)=127.17[M-H] -
实施例2 (R)-4-异丙基-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-1)的制备
Figure PCTCN2021125648-appb-000014
步骤一 5-甲基-2-己烯酰氯(V-2)的制备
Figure PCTCN2021125648-appb-000015
于250mL圆底烧瓶中,加入5-甲基-2-己烯酸(50g,0.4mol)、二氯甲烷50mL搅拌溶解,滴加草酰氯(75.21g,0.6mol)二氯甲烷(30mL)溶液,室温搅拌反应6h,减压浓缩得黄色油状物,直接用于下一步反应。
步骤二 (R)-4-异丙基-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-1)的制备
Figure PCTCN2021125648-appb-000016
于500mL三颈瓶中,依次将(R)-4-异丙基-2-噁唑烷酮IV-1(5g,0.038mol)、DMAP(0.46g,0.0038mol)、三乙胺(9.4g,0.09mol)加至20mL二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液,浓缩至恒重,柱层析(石油醚:乙酸乙酯:15:1)得化合物III-1,淡黄色油状物5g,收率56%,纯度99.1%(HPLC)。
1H NMR(400MHz,CDCl 3)δ7.29–7.23(m,1H),7.18–7.09(m,1H),4.49(ddd,J=8.3,4.0,3.2Hz,1H),4.28(dd,J=9.1,8.2Hz,1H),4.22(dd,J=9.1,3.1Hz,1H),2.42(pd,J=7.0,4.0Hz,1H),2.18(td,J=7.1,1.2Hz,2H),1.79(dq,J=13.4,6.7Hz,1H),0.98–0.86(m,12H)。
ESI-MS(m/z)=240.20[M+H] +
实施例3 (R)-4-苄基-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-2)的制备
Figure PCTCN2021125648-appb-000017
于500mL三颈瓶中,依次将(R)-4-苄基-2-噁唑烷酮IV-2(30g,0.17mol)、DMAP(2.1g,0.017mol)、三乙胺(41g,0.4mol)加至50mL二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液浓缩至恒重,以80mL正己烷重结晶,得化合物III-2,干燥得淡黄色固体34g,收率71%,纯度98.87%(HPLC)。
1H NMR(400MHz,CDCl 3)δ7.37–7.27(m,3H),7.25–7.16(m,4H),4.78–4.69(m,1H),4.26–4.15(m,2H),3.35(dd,J=13.4,3.3Hz,1H),2.80(dd,J=13.4,9.6Hz,1H),2.21(dd,J=7.1,5.9Hz,2H),1.82(dq,J=13.4,6.7Hz,1H),0.96(dd,J=6.7,2.1Hz,6H)。
ESI-MS(m/z)=288.08[M+H] +
实施例4 (R)-4-苯基-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-3)的制备
Figure PCTCN2021125648-appb-000018
于500mL三颈瓶中,依次将(R)-4-苯基-2-噁唑烷酮IV-3(30g,0.17mol)、DMAP(2.24g,0.017mol)、三乙胺(41g,0.4mol)加至50mL的二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液,浓缩至恒重,以80mL正己烷重结晶,得化合物III-3,干燥得淡黄色固体38.7g,收率80%,纯度99.54%(HPLC)。
1H NMR(400MHz,CDCl 3):δ7.42–7.27(m,5H),7.23(t,J=1.4Hz,1H),7.08(dt,J=15.1,7.4Hz,1H),5.49(dd,J=8.7,3.9Hz,1H),4.70(t,J=8.8Hz,1H),4.28(dd,J=8.9,3.8Hz, 1H),2.15(td,J=7.1,1.4Hz,2H),1.77(dq,J=13.4,6.7Hz,1H),0.91(d,J=6.7Hz,6H)。
ESI-MS(m/z)=274.20[M+H] +
实施例5 (R)-4-(2,6-二甲基苯基)-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-4)的制备
Figure PCTCN2021125648-appb-000019
于500mL三颈瓶中,依次将(R)-4-(2,6-二甲基苯基)-2-噁唑烷酮IV-4(1g,5mmol)、DMAP(0.06g,0.5mmol)、三乙胺(1.9g,14mmol)加至10mL二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液,浓缩至恒重,柱层析(石油醚:乙酸乙酯:10:1)得化合物III-4,干燥得淡黄色固体1.1g,收率69%,纯度97.6%(HPLC)。
1H NMR(400MHz,CDCl 3)δ7.12(dd,J=8.6,6.9Hz,1H),7.07–7.02(m,2H),6.58(dtd,J=15.4,6.8,1.8Hz,1H),6.43(dt,J=15.6,0.9Hz,1H),5.63(dd,J=4.3,2.5Hz,1H),4.42(dd,J=12.4,2.5Hz,1H),4.33(dd,J=12.5,4.4Hz,1H),2.27(d,J=0.5Hz,6H),2.09–1.94(m,2H),1.75(dqd,J=13.9,6.9,1.8Hz,1H),0.92(d,J=6.8Hz,3H),0.87(d,J=6.9Hz,3H)。
ESI-MS(m/z)=302.17[M+H] +
实施例6 (R)-4-(3,5-二甲基苯基)-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-5)的制备
Figure PCTCN2021125648-appb-000020
于500mL三颈瓶中,依次将(R)-4-(3,5-二甲基苯基)-2-噁唑烷酮IV-5(1g,5mmol)、DMAP(0.06g,0.5mmol)、三乙胺(1.9g,14mmol)加至10mL二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液, 浓缩至恒重,柱层析(石油醚:乙酸乙酯:15:1)得化合物III-5,干燥得淡黄色固体0.9g,收率57%,纯度98.3%(HPLC)。
1H NMR(500MHz,CDCl 3)δ7.02(d,J=2.0Hz,2H),6.84–6.82(m,1H),6.58(dtd,J=15.4,6.8,1.8Hz,1H),6.43(dt,J=15.6,0.9Hz,1H),5.36(dt,J=4.3,1.7Hz,1H),4.52(dd,J=12.5,2.6Hz,1H),4.38(dd,J=12.4,4.5Hz,1H),2.20(s,6H),2.07–1.96(m,2H),1.75(dtd,J=13.9,6.9,1.8Hz,1H),0.92(d,J=6.8Hz,3H),0.87(d,J=6.9Hz,3H)。
ESI-MS(m/z)=302.17[M+H] +
实施例7 (R)-4-(2,6-二甲氧基苯基)-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-6)的制备
Figure PCTCN2021125648-appb-000021
于50mL三颈瓶中,依次将(R)-4-(2,6-二甲氧基苯基)-2-噁唑烷酮IV-6(1g,3mmol)、DMAP(0.04g,0.3mmol)、三乙胺(1.9g,14mmol)加至10mL二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液,浓缩至恒重,柱层析(石油醚:乙酸乙酯:15:1)得化合物III-6,干燥得淡黄色固体0.85g,收率56%,纯度97.9%(HPLC)。
1H NMR(500MHz,CDCl 3)δ7.15(t,J=8.4Hz,1H),6.66(d,J=8.4Hz,2H),6.58(dtd,J=15.4,6.8,1.8Hz,1H),6.43(dt,J=15.6,0.9Hz,1H),5.69(dd,J=4.7,3.0Hz,1H),4.47–4.38(m,2H),3.84(s,6H),2.07–1.96(m,2H),1.75(dtd,J=13.8,6.9,1.8Hz,1H),0.92(d,J=6.8Hz,3H),0.87(d,J=6.9Hz,3H)。
ESI-MS(m/z)=334.18[M+H] +
实施例8 (R)-4-(3,5-二甲氧基苯基)-3-(5-甲基己基-2-烯基)噁唑烷-2-酮(III-7)的制备
Figure PCTCN2021125648-appb-000022
于50mL三颈瓶中,依次将(R)-4-(3,5-二甲氧基苯基)-2-噁唑烷酮IV-7(1g,3mmol)、DMAP(0.04g,0.3mmol)、三乙胺(1.9g,14mmol)加至10mL二氯甲烷溶液中,控制内温0-5℃,再滴加上述制备的酰氯V-2,控温0-10℃搅拌反应5h,过滤,收集滤液,浓缩至恒重,柱层析(石油醚:乙酸乙酯:15:1)得化合物III-7,干燥得淡黄色固体1g,收率66%,纯度96.3%(HPLC)。
1H NMR(500MHz,CDCl 3)δ6.61(dd,J=2.2,0.7Hz,2H),6.60–6.54(m,1H),6.47–6.41(m,2H),5.39(ddd,J=4.3,2.6,0.9Hz,1H),4.48(dd,J=12.4,2.6Hz,1H),4.38(dd,J=12.5,4.4Hz,1H),3.80(s,6H),2.08–1.96(m,2H),1.75(dtd,J=13.8,7.0,1.8Hz,1H),0.92(d,J=6.8Hz,3H),0.87(d,J=6.9Hz,3H)。
ESI-MS(m/z)=334.12[M+H] +
实施例9 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-异丙基恶唑烷-2-酮(I-1)的制备
Figure PCTCN2021125648-appb-000023
于250mL圆底烧瓶中,加入甲苯20mL和碳酸钾(7.22g,52.3mmol)搅拌得悬浊溶液;将化合物III-1(5g,20.89mmol)、N-苄基氯化辛克宁II-1(0.87g,2.0mmol)、硝基甲烷(2.55g,41.79mmol)溶于20mL甲苯中,将化合物III-1溶液滴加至碳酸钾的甲苯悬浊溶液中,室温搅拌反应36h,于反应液中加入80mL水,分液,有机相浓缩至干,经柱层析(石油醚:乙酸乙酯:8:1)处理得淡黄色油状物I-1,2.5g,收率40%,纯度97.61%(HPLC),de值:6%。
1H NMR(400MHz,CDCl 3)δ4.51–4.48(m,1H),4.48–4.41(m,2H),4.30(td,J=8.7,3.6Hz,1H),4.23(ddd,J=9.2,3.0,1.8Hz,1H),3.16–2.98(m,2H),2.81(qd,J=10.9,8.8,3.5Hz,1H),2.42–2.32(m,1H),1.67(dqd,J=13.5,6.8,2.1Hz,1H),1.31(dtd,J=7.4,4.7,2.4Hz,2H),0.97–0.86(m,12H)。
MS(m/z)=301.20[M+H] +
实施例10 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苄基恶唑烷-2-酮(I-2)的制备
Figure PCTCN2021125648-appb-000024
于250mL圆底烧瓶中,加入甲苯40mL和碳酸钾(12.02g,0.09mol)搅拌得悬浊溶液;将化合物III-2(10g,0.035mol)、N-苄基氯化辛克宁II-1(1.46g,0.0035mol)、硝基甲烷(4.25g,0.07mol)溶于40mL甲苯中,将化合物III-2溶液滴加至碳酸钾的甲苯悬浊溶液中,室温搅拌反应36h,于反应液中加入80mL水,分液,有机相浓缩至干,经柱层析(石油醚:乙酸乙酯:10:1)处理得到淡黄色油状物I-2,10.5g,收率87%,纯度97.61%(HPLC),de值:71%。
1H NMR(400MHz,CDCl 3)δ7.43–7.13(m,5H),4.69(ddd,J=9.5,7.3,3.7Hz,1H),4.50(t,J=4.8Hz,2H),4.27–4.14(m,2H),3.29(dt,J=13.4,4.2Hz,1H),3.15–2.99(m,2H),2.89–2.74(m,2H),1.69(ddd,J=17.1,8.5,4.9Hz,1H),1.40–1.23(m,2H),1.00–0.88(m,6H)。
ESI-MS(m/z)=349.17[M+H] +
实施例11 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苯基恶唑烷-2-酮(I-3)的制备
Figure PCTCN2021125648-appb-000025
于250mL圆底烧瓶中,加入甲苯40mL和碳酸钾(12.02g,90mmol)搅拌得悬浊 溶液;将化合物III-3(10g,35mmol)、N-苄基氯化辛克宁II-1(1.1g,2.45mmol,0.07eq)、硝基甲烷(4.25g,70mmol)溶于40mL甲苯中,将化合物III-3悬浊液滴加至碳酸钾的甲苯悬浊液中,室温搅拌反应36h,于反应液中加入80mL水,分液,有机相浓缩至干7.1g,de值:10%。50~80℃条件下经异丙醇(70g,1.16mol)加热至溶解,控制在15~25℃析晶,过滤、干燥得固体I-3,7.08g,收率59%,纯度65.8%(HPLC),de值:88%。
实施例12 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苯基恶唑烷-2-酮(I-3)的制备
Figure PCTCN2021125648-appb-000026
于250mL圆底烧瓶中,加入甲苯40mL和碳酸钾(12.02g,90mmol)搅拌得悬浊溶液;将化合物III-3(10g,35mmol)、N-苄基氯化辛克宁II-1(1.46g,3.5mmol,0.1eq)、硝基甲烷(4.25g,70mmol)溶于40mL甲苯中,将化合物III-3悬浊液滴加至碳酸钾的甲苯悬浊液中,室温搅拌反应36h,于反应液中加入80mL水,分液,有机相浓缩至干得13g,de值:26%。50~80℃条件下经异丙醇(70g,1.16mol)加热至溶解,控制在15~25℃析晶,过滤、干燥得固体I-3,9.7g,收率:76%,纯度94.05%(HPLC),de值:46%。50~80℃条件下再经异丙醇(97g,1.6mol)加热至溶解,控制在25~30℃析晶,过滤、干燥得固体6.4g,总收率53%,纯度97.61%(HPLC),de值:99.92%。
1H NMR(400MHz,CDCl 3)δ7.43–7.27(m,5H),5.43(dd,J=8.8,4.0Hz,1H),4.72(t,J=8.9Hz,1H),4.42(dd,J=12.1,6.2Hz,1H),4.36–4.26(m,2H),3.15–3.01(m,2H),2.72(dddd,J=13.2,7.6,5.8,1.8Hz,1H),1.65–1.59(m,1H),1.24(t,J=7.2Hz,2H),0.88(d,J=6.6Hz,6H)。
ESI-MS(m/z)=335.28[M+H] +
实施例13 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苯基恶唑烷-2-酮(I-3)的制备
Figure PCTCN2021125648-appb-000027
于250mL圆底烧瓶中,加入甲苯40mL和碳酸钾(12.02g,90mmol)搅拌得悬浊溶液;将化合物III-3(10g,35mmol)、N-苄基溴化辛克宁II-2(1.6g,3.5mmol)、硝基甲烷(4.25g,70mmol)溶于40mL甲苯中,将化合物III-3悬浊液滴加至碳酸钾的甲苯悬浊液中,室温搅拌反应36h,50~80℃条件下经异丙醇(9g,0.15mol)加热至溶解,控制在15~25℃析晶,过滤、干燥得固体6.8g,收率56%,纯度95%(HPLC),de值:90.07%,50~80℃条件下再经异丙醇加热至溶解,控制在25~30℃析晶,过滤、干燥得化合物I-3,5.52g,收率46%,纯度98.6%(HPLC),de值:98.4%。
实施例14 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苯基恶唑烷-2-酮(I-3)的制备
Figure PCTCN2021125648-appb-000028
于250mL圆底烧瓶中,加入甲苯40mL和碳酸钾(12.02g,0.09mol)搅拌得悬浊溶液;将化合物III-3(10g,0.035mol)、硝基甲烷(4.25g,0.07mol)溶于40mL甲苯中,将化合物III-3溶液滴加至碳酸钾的甲苯悬浊液中,室温搅拌反应36h,于反应液中加入80mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(70g,1.16mol)加热至溶解,控制在15~25℃析晶,过滤得固体,收率44%,纯度96%(HPLC),de值:96.04%,50~80℃条件下再经异丙醇加热至溶解,控制在25~30℃析晶,过滤得固体,经干燥得化合物I-3,3.6g,收率30%,纯度98.6%(HPLC),de值:100%。
1H NMR(400MHz,CDCl 3)δ7.43–7.27(m,5H),5.43(dd,J=8.8,4.0Hz,1H),4.72(t,J=8.9Hz,1H),4.42(dd,J=12.1,6.2Hz,1H),4.36–4.26(m,2H),3.15–3.01(m,2H),2.72(dddd,J=13.2,7.6,5.8,1.8Hz,1H),1.65–1.59(m,1H),1.24(t,J=7.2Hz,2H),0.88(d,J=6.6Hz,6H)。
ESI-MS(m/z)=335.28[M+H] +
实施例15 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-(2,6-二甲基苯基)恶唑烷-2-酮(I-4)的制备
Figure PCTCN2021125648-appb-000029
于250mL圆底烧瓶中,加入甲苯10mL和碳酸钾(1.12g,8.3mmol)搅拌得悬浊溶液,将化合物III-4(1g,3.2mmol)、硝基甲烷(0.45g,6.64mmol)、N-苄基氯化辛克宁II-1(0.13g,0.32mmol)、溶于10mL甲苯中,将化合物III-4溶液滴加至碳酸钾的甲苯悬浊液中,室温反应36h,于反应液中加入40mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(10g,0.16mol)加热至溶解,控制在15~25℃析晶,过滤得固体I-4,0.83g,收率:70%,de值:55%,50~80℃条件下再经异丙醇(8g,0.13mol)加热至溶解,控制在25~30℃析晶,过滤、干燥得I-4,0.75g,总收率63%,纯度98.4%(HPLC),de值:96.3%。
1H NMR(400MHz,CDCl 3)δ7.12(dd,J=8.6,6.9Hz,1H),7.07–7.02(m,2H),5.50(dd,J=5.3,3.3Hz,1H),5.07(q,J=1.2Hz,1H),4.82(q,J=1.0Hz,1H),4.53(dd,J=12.5,J=3.3Hz,1H),4.38(dd,J=12.4,5.2Hz,1H),4.34–4.28(m,2H),2.73(pt,J=9.1,6.9Hz,1H),2.45(qdt,J=13.2,7.0,1.0Hz,2H),2.27(d,J=0.6Hz,5H),1.63(dq,J=14.0,7.0Hz,1H),1.50–1.36(m,2H),0.92(d,J=7.1Hz,5H)。
ESI-MS(m/z)=361.21[M+H] +
实施例16 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-(3,5-二甲基苯基)恶唑烷-2-酮(I-5)的制备
Figure PCTCN2021125648-appb-000030
于250mL圆底烧瓶中,加入甲苯10mL和碳酸钾(1.12g,8.3mmol)搅拌得悬浊溶液,将化合物III-5(1g,3.2mmol)、硝基甲烷(0.45g,6.64mmol)、N-苄基氯化辛克宁II-1(0.13g,0.32mmol)溶于10mL甲苯中,将化合物III-5溶液滴加至碳酸钾悬浊液中,室温反应36h,于反应液中加入40mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(10g,0.16mol)加热至溶解,控制在15~25℃析晶,过滤得固体I-5,0.88g,收率:75%,de值:52%,50~80℃条件下再经异丙醇(8g,0.13mol)加热至溶解,控制在25~30℃析晶,过滤、干燥得I-5,0.8g,总收率67%,纯度98.6%,de:98.7%。
1H NMR(400MHz,CDCl 3)δ7.03–6.99(m,2H),6.85–6.80(m,1H),5.20–5.15(m,1H),5.07(q,J=1.2Hz,1H),4.82(q,J=1.0Hz,1H),4.46(dd,J=12.4,5.2Hz,1H),4.40(dd,J=12.5,3.7Hz,1H),4.35–4.28(m,2H),2.83–2.70(m,1H),2.45(qdt,J=13.2,7.0,1.0Hz,2H),2.20(s,6H),1.63(dq,J=14.1,7.0Hz,1H),1.41–1.28(m,2H),0.92(d,J=7.0Hz,6H)。
ESI-MS(m/z)=361.21[M+H] +
实施例17 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-(2,6-二甲氧基苯基)恶唑烷-2-酮(I-6)的制备
Figure PCTCN2021125648-appb-000031
于250mL圆底烧瓶中,加入甲苯10mL和碳酸钾(1.12g,8.3mmol)搅拌得悬浊溶液,将化合物III-6(1g,3mmol)、硝基甲烷(0.37g,6mmol)、N-苄基氯化辛克宁II-1(0.13g,0.3mmol)溶于10mL甲苯中,将化合物III-6溶液滴加至碳酸钾悬浊液中,室温反应36h,于反应液中加入40mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(10g,0.16mol)加热至溶解,控制在15~25℃析晶,过滤得固体I-6,0.82g,收率:70%,de值:49%,50~80℃条件下再经异丙醇(8g,0.13mol)加热至溶解,控制在25~30℃析晶,过滤、干燥得I-6,0.71g,总收率61%,纯度98.6%(HPLC),de:99.7%。
1H NMR(500MHz,CDCl 3)δ7.15(t,J=8.4Hz,1H),6.66(d,J=8.4Hz,2H),5.65(dd,J=5.3,3.5Hz,1H),4.47–4.40(m,2H),4.39–4.35(m,2H),3.84(s,6H),2.91(tt,J=8.8, 7.8Hz,1H),2.69(dd,J=15.1,7.8Hz,1H),2.42(dd,J=15.1,7.8Hz,1H),1.63(dt,J=13.9,7.0Hz,1H),1.55–1.44(m,2H),0.92(d,J=7.0Hz,6H).
ESI-MS(m/z)=395.20[M+H] +
实施例18 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-(3,5-二甲氧基苯基)恶唑烷-2-酮(I-7)的制备
Figure PCTCN2021125648-appb-000032
于250mL圆底烧瓶中,加入甲苯10mL和碳酸钾(1.12g,8.3mmol)搅拌得悬浊溶液,将化合物III-7(1g,3mmol)、硝基甲烷(0.37g,6mmol)、N-苄基氯化辛克宁II-1(0.13g,0.3mmol)溶于10mL甲苯中,将化合物III-7溶液滴加至碳酸钾悬浊液中,室温反应36h,于反应液中加入40mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(10g,0.16mol)加热至溶解,控制在15~25℃析晶,过滤得固体I-7,0.9g,收率:76%,de值:68%,50~80℃条件下再经异丙醇(9g,0.14mol)加热至溶解,控制在25~30℃析晶,过滤、干燥得I-7,0.81g,总收率68%,纯度98%(HPLC),de:99.4%。
1H NMR(500MHz,CDCl 3)δ6.61(dd,J=2.2,0.7Hz,2H),6.46(t,J=2.2Hz,1H),5.40–5.31(m,1H),4.54–4.39(m,2H),4.39–4.34(m,2H),3.80(s,6H),2.91(tt,J=8.8,7.8Hz,1H),2.69(dd,J=15.1,7.8Hz,1H),2.42(dd,J=15.1,7.8Hz,1H),1.63(dt,J=13.9,7.0Hz,1H),1.53–1.44(m,2H),0.92(d,J=7.0Hz,6H)。
ESI-MS(m/z)=395.20[M+H] +
实施例19 (R)-3-((S)-5-甲基-3-(硝基甲基)己酰基)-4-苯基恶唑烷-2-酮(I-3)的制备
Figure PCTCN2021125648-appb-000033
于1000mL圆底烧瓶中,加入甲苯200mL和碳酸铯(59.6g,0.18mol)搅拌得悬浊 溶液;将化合物III-3(50g,0.18mol)、硝基甲烷(27.91g,0.45mol)溶于200mL甲苯中,将化合物III-3溶液滴加至碳酸铯甲苯悬浊液中,室温搅拌反应22h,于反应液中加入400mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(212.1g,3.5mol)加热至溶解,控制在15~25℃析晶,过滤得固体,烘至恒重得31.2g化合物I-3,收率52%,纯度95.1%(HPLC),de值:99.5%,50~80℃条件下再经异丙醇(310g,5.2mol)加热至溶解,控制在25~30℃析晶,过滤、干燥得I-3,20.4g,收率34%,纯度98.9%(HPLC),de值:99.8%。
实施例20 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000034
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.68g,20mmol)、一水氢氧化锂(0.17g,7mmol),于0-5℃条件下搅拌得混合溶液。将化合物I-1(2g,6.6mmol)溶解于10mL四氢呋喃溶液中,将化合物I-1溶液滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(2.82g,0.02mol)分批加入反应液中,冰浴反应0.5h。于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.77g,收率:64%,纯度:91.3%(HPLC)。
1H NMR(400MHz,CDCl 3)δ4.49(qd,J=12.3,6.1Hz,2H),2.74–2.63(m,1H),2.52(d,J=6.3Hz,2H),1.73–1.60(m,1H),1.36–1.23(m,2H),0.94(q,J=6.9Hz,6H)。
ESI-MS(m/z)=190[M+H] +
实施例21 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000035
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.7g,20mmol)、一水氢氧化锂(0.3g,7mmol),于0-5℃条件下搅拌得混合溶液。将化合物I-2(2g,5.2mmol)溶解于10mL四氢呋喃溶液中,将化合物I-2溶液滴加至双氧水-一水氢氧化锂-四氢呋喃 溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(2.82g,0.02mol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.72g,收率:66%,纯度:92.5%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例22 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000036
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.7g,20mmol)、一水氢氧化锂(0.3g,7mmol),于0-5℃条件下搅拌得混合溶液。将实施例19中制得的化合物I-3(2g,6mmol,de值:99.8%)溶解于10mL四氢呋喃溶液中,将化合物I-3溶液滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(2.82g,0.02mol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.94g,收率:87%,纯度:93.5%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例23 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000037
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.7g,20mmol)、一水氢氧化锂(0.3g,7mmol),于0-5℃条件下搅拌得混合溶液。将实施例14中制得的化合物I-3(2g,6mmol,de值:100%)溶解于10mL四氢呋喃溶液中,滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(2.82g,0.02mol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.9g,收率:83%,纯度:94.5%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例24 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000038
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.7g,20mmol)、一水氢氧化锂(0.3g,7mmol),于0-5℃条件下搅拌得混合溶液。将化合物I-4(2g,5.5mmol)溶解于10mL THF溶液中,将化合物I-4溶液滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(2.82g,0.02mol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使PH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.7g,收率:67%,纯度:91.5%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例25 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000039
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.7g,20mmol)、一水氢氧化锂(0.3g,7mmol),于0-5℃条件下搅拌得混合溶液。将化合物I-5(2g,5.2mmol)溶解于10mL THF溶液中,将化合物I-5溶液滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(2.82g,0.02mol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.8g,收率:77%,纯度:94.5%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例26 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000040
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.43g,12.68mmol)、一水氢氧化锂(0.12g,2.94mmol),于0-5℃条件下搅拌得混合溶液。将化合物I-6(1g,2.5mmol)溶解于10mL THF溶液中,将化合物I-6溶液滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(0.98g,9.5mmol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.28g,收率:60%,纯度:91.3%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例27 (R)-5-甲基-3-(硝基甲基)己酸(1)的制备
Figure PCTCN2021125648-appb-000041
于100mL三颈烧瓶中,加入四氢呋喃10mL、双氧水(0.43g,12.68mmol)、一水氢氧化锂(0.12g,2.94mmol),于0-5℃条件下搅拌得混合溶液。将化合物I-7(1g,2.5mmol)溶解于10mL THF溶液中,将化合物I-7溶液滴加至双氧水-一水氢氧化锂-四氢呋喃溶液中,控制反应温度<10℃,搅拌反应6h,再将亚硫酸钠(0.98g,9.5mmol)分批次加入反应液中,冰浴反应0.5h,于反应液中加入20mL水,二氯甲烷30mL萃取,水相置于冰浴条件下滴加稀盐酸使pH=4-5,加入40mL二氯甲烷(20mL*2)萃取,有机相浓缩至恒重,得到油状物0.28g,收率:60%,纯度:92.1%(HPLC)。
ESI-MS(m/z)=190[M+H] +
实施例28 (S)-3-氨甲基-5-甲基己酸(普瑞巴林)的制备
Figure PCTCN2021125648-appb-000042
于圆底烧瓶中,依次加入实施例22中制得的化合物1(0.9g,4.7mmol,)、甲醇10mL、钯碳0.01g制得悬浊溶液,在常压条件下通入氢气,10h后过滤,浓缩,取异丙醇-水(质量比1:1)5g重结晶,得到白色固体0.68g,收率90%,ee:100%。
1H NMR(400MHz,D 2O)δ2.84(qd,J=12.9,6.1Hz,2H),2.18(dd,J=14.6,6.0Hz,1H),2.13–1.98(m,2H),1.59–1.44(m,J=6.7Hz,1H),1.08(t,J=7.1Hz,2H),0.75(dd,J=6.6,4.7Hz,6H)。D 2O交换活泼氢不出峰(可参考OPRD 1997,1,26-38)。
ESI-MS(m/z)=160[M+H] +
实施例29 (S)-3-氨甲基-5-甲基己酸(普瑞巴林)的制备
Figure PCTCN2021125648-appb-000043
于圆底烧瓶中,依次加入实施例23中制得的化合物1(0.9g,4.7mmol)、甲醇10mL、钯碳0.01g制得悬浊溶液,在常压条件下通入氢气,10h后过滤,浓缩,取异丙醇-水(质量比1:1)5g重结晶,得到白色固体0.66g,收率88%,ee:100%。
实施例30 (S)-3-氨甲基-5-甲基己酸(普瑞巴林)的制备
于圆底烧瓶中,依次化合物1(45g,0.24mol)、甲醇100mL、钯碳0.45g制得悬浊
Figure PCTCN2021125648-appb-000044
溶液,在常压条件下通入氢气,10h后过滤,浓缩,取异丙醇-水(质量比1:1)150g重结晶,得到白色固体32.56g,收率86%,ee:99.91%。
对比实施例1
Figure PCTCN2021125648-appb-000045
于100mL圆底烧瓶中,加入甲苯20mL和TMG(0.84g,7.3mmol)搅拌得悬浊溶液;将化合物III-3(2g,7mmol)、硝基甲烷(1.11g,17.5mol)溶于20mL甲苯中,将化合物III-3溶液滴加至TMG甲苯悬浊液中,室温搅拌反应36h,于反应液中加入40mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(15g,0.25mol)加热至溶解,控 制在15~25℃析晶,过滤得固体I-3,0.18g,收率7.5%,50~80℃条件下再经异丙醇(1.8g,0.03mol)加热至溶解,控制在25~30℃析晶,过滤得白色固体I-3,0.11g,收率4.5%,纯度99%(HPLC),de值:99.22%。
对比实施例2
Figure PCTCN2021125648-appb-000046
于100mL圆底烧瓶中,加入甲苯20mL和TBAF·H 2O(2.3g,7mmol)搅拌得悬浊溶液;将化合物III-3(2g,7mmol)、硝基甲烷(1.11g,17.5mmol)溶于20mL甲苯中,将化合物III-3溶液滴加至TBAF·H 2O甲苯悬浊液中,室温搅拌反应36h,于反应液中加入40mL水,分液,有机相浓缩至干。50~80℃条件下经异丙醇(15g,0.25mol)加热至溶解,控制在15~25℃析晶,过滤得固体I-3,0.42g,收率17.5%,50~80℃条件下再经异丙醇(4.2g,0.07mol)加热至溶解,控制在25~30℃析晶,过滤得白色固体I-3,0.38g,收率15.8%,纯度99.4%(HPLC),de值:99.92%。

Claims (16)

  1. 一种如式(I)所示化合物;
    Figure PCTCN2021125648-appb-100001
    其中,
    R为C 1-C 6烷基、苯基、R a取代的苯基、苄基或R b取代的苄基;R a和R b的个数独立地为一个或多个,当所述R a的个数为多个时,所述R a相同或不同;当所述R b的个数为多个时,所述R b相同或不同;
    R a和R b独立地为C 1-C 6烷基或C 1-C 6烷氧基。
  2. 如权利要求1所述如式(I)所示化合物,其特征在于,R为甲基、乙基或异丙基;
    和/或,所述R a和R b独立地为甲基、乙基、异丙基、甲氧基、乙氧基或异丙氧基;
    和/或,所述R a的个数为1个或2个;当所述R a的个数为2个时,所述R a相同或不同;
    和/或,所述R b的个数为1个或2个;当所述R b的个数为2个时,所述R b相同或不同。
  3. 如权利要求1所述如式(I)所示化合物,其为下列任一化合物:
    Figure PCTCN2021125648-appb-100002
    Figure PCTCN2021125648-appb-100003
  4. 如权利要求1-3任一项所述的如式(I)所示化合物的制备方法,其为如下任一方法:
    方法(1)包括如下步骤:有机溶剂中,在碱存在下,将如式(III)所示化合物和硝基甲烷反应,经手性拆分即可得到所述如式(I)所示化合物;
    Figure PCTCN2021125648-appb-100004
    方法(2)包括如下步骤:有机溶剂中,在碱存在下,如式(III)所示化合物在如式(II)所示催化剂作用下与硝基甲烷反应,即可;
    Figure PCTCN2021125648-appb-100005
    所述方法(1)和所述方法(2)中,所述的碱为K 2CO 3和/或Cs 2CO 3
    所述方法(2)中,R 2为C 6-C 14芳基或苄基;R 3为羟基或氨基;X为卤素。
  5. 如权利要求4所述的如式(I)所示化合物的制备方法,其特征在于,
    方法(1)中,所述如式(III)所示化合物、所述硝基甲烷与所述有机溶剂形成的溶液滴加至所述碱的所述有机溶剂悬浊液中;
    和/或,方法(1)中,所述有机溶剂为二氯甲烷、乙腈、甲苯、THF、丙酮、DMSO和甲醇中的一种或多种;
    和/或,方法(1)中,所述如式(III)所示化合物和所述硝基甲烷的摩尔比为1:(1~3),优选为1:(1.5~2.5),例如1:2;
    和/或,方法(1)中,所述碱和所述如式(III)所示化合物的摩尔比的比值为1.0~2.8,例如:2.5或2.6;
    和/或,方法(1)中,所述反应的温度为10~40℃,优选为20~30℃;
    和/或,方法(1)中,所述反应的反应时间为22h~36h;
    和/或,方法(1)中,在反应结束后、手性拆分前还进一步包括:将反应体系依次进行淬灭、分液、浓缩;
    和/或,方法(1)中,所述手性拆分采用重结晶。
  6. 如权利要求5所述的如式(I)所示化合物的制备方法,其特征在于,
    方法(1)中,所述如式(III)所示化合物、所述硝基甲烷与所述有机溶剂形成的溶液中,所述如式(III)所示化合物和所述有机溶剂的质量体积比的比值为0.1g/mL~0.25g/mL;
    和/或,方法(1)中,所述碱的所述有机溶剂悬浊液中,所述碱和所述有机溶剂的质量体积比的比值为0.1g/mL~0.4g/mL,例如0.3g/mL;
    和/或,方法(1)中,所述重结晶包括如下步骤:将50℃-80℃如式(I)所示化合物的有机溶剂的溶液,置于15℃-30℃,例如25℃-30℃,析晶;
    和/或,方法(1)中,所述重结晶使用的有机溶剂为醇类溶剂,以及醇类溶剂和水形成的混合溶剂中的一种或多种,优选为异丙醇;
    和/或,方法(1)中,所述手性拆分采用二次重结晶。
  7. 如权利要求6所述的如式(I)所示化合物的制备方法,其特征在于,
    方法(1)中,所述二次重结晶包括如下步骤:将50℃-80℃如式(I)所示化合物的有机溶剂的溶液,置于15℃-25℃析晶,过滤,干燥得固体,再将50℃-80℃所述固体的有机溶剂的溶液,置于25℃-30℃析晶。
  8. 如权利要求4所述的如式(I)所示化合物的制备方法,其特征在于,
    所述方法(2)中,R 2为苯基、苄基、蒽基或萘基;
    和/或,所述方法(2)中,X为Cl或Br;
    和/或,所述方法(2)中,所述有机溶剂为二氯甲烷、乙腈、甲苯、THF、丙酮、DMSO和甲醇中的一种或多种;
    和/或,所述方法(2)中,所述如式(III)所示化合物、所述硝基甲烷、所述如式(II)所示催化剂与有机溶剂形成的溶液滴加至所述碱的所述有机溶剂悬浊液中;
    和/或,所述方法(2)中,所述如式(III)所示化合物和所述硝基甲烷的摩尔比为1:(1~3),优选为1:(1.5~2.5),例如1:2;
    和/或,所述方法(2)中,所述如式(III)所示化合物和所述如式(II)所示催化剂的摩尔比为1:(0.07~0.1);
    和/或,所述方法(2)中,所述碱和所述如式(III)所示化合物的摩尔比的比值为1.0~2.8,例如:2.5或2.6;
    和/或,所述方法(2)中,所述反应的温度为10~40℃,优选为20~30℃;
    和/或,所述方法(2)中,所述反应的反应时间为22h~36h;
    和/或,所述方法(2)中,还包括后处理,所述后处理包括如下步骤:将反应体系依次进行淬灭、分液、浓缩和纯化。
  9. 如权利要求8所述的如式(I)所示化合物的制备方法,其特征在于,
    所述方法(2)中,所述如式(III)所示化合物、所述硝基甲烷、所述如式(II)所示催化剂与有机溶剂形成的溶液中,所述如式(III)所示化合物和所述有机溶剂的质量体积比的比值为0.1g/mL~0.25g/mL;
    和/或,所述方法(2)中,所述碱的所述有机溶剂悬浊液中,所述碱和所述有机溶剂的质量体积比的比值为0.1g/mL~0.4g/mL,例如0.3g/mL;
    和/或,所述方法(2)中,所述纯化采用重结晶或柱层析;
    和/或,所述方法(2)中,当R为苯基或R a取代的苯基时,所述纯化采用重结晶;当R为C 1-C 6烷基、苄基或R b取代的苄基,例如R为异丙基或苄基时,所述纯化采用柱层析。
  10. 如权利要求9所述的如式(I)所示化合物的制备方法,其特征在于,
    所述方法(2)中,所述重结晶包括如下步骤:将50℃-80℃如式(I)所示化合物的有机溶剂的溶液,置于15℃-30℃,例如25℃-30℃,析晶;
    和/或,所述方法(2)中,所述重结晶使用的有机溶剂为醇类溶剂,以及醇类溶剂和水形成的混合溶剂中的一种或多种,优选为异丙醇;
    和/或,所述方法(2)中,所述重结晶采用二次重结晶;
    和/或,所述方法(2)中,所述柱层析的洗脱剂为石油醚和乙酸乙酯的混合溶液;
    和/或,所述方法(2)中,所述石油醚和乙酸乙酯的体积比为(8~10):1。
  11. 如权利要求10所述的如式(I)所示化合物的制备方法,其特征在于,
    方法(2)中,所述二次重结晶包括如下步骤:将50℃-80℃如式(I)所示化合物的有机溶剂的溶液,置于15℃-25℃析晶,过滤,干燥得固体,再将50℃-80℃所述固体的有机溶剂的溶液,置于25℃-30℃析晶。
  12. 如权利要求4所述的如式(I)所示化合物的制备方法,其特征在于,
    所述如式(I)所示化合物的制备方法还包括如下步骤:在有机溶剂中,在催化剂和碱存在条件下,将如式(IV)所示化合物与如式(V)所示化合物进行反应,即可;
    Figure PCTCN2021125648-appb-100006
    其中,R 4为羟基或卤素,优选为氯。
  13. 一种如式1所示化合物的制备方法,其特征在于,在有机溶剂中,将如权利要求1所述如式(I)所示化合物在碱和氧化剂存在条件下反应,即可;
    Figure PCTCN2021125648-appb-100007
  14. 一种重结晶方法,其特征在于,包括如下步骤:将50℃-80℃如式(I)所示化合物的有机溶剂的溶液,置于15℃-30℃析晶;
    Figure PCTCN2021125648-appb-100008
  15. 如权利要求14所述的重结晶方法,其特征在于,
    所述有机溶剂为醇类溶剂,以及醇类溶剂和水形成的混合溶剂中的一种或多种,优选为异丙醇;
    和/或,所述重结晶的析晶温度为25~30℃;
    较佳地,所述重结晶采用二次重结晶,所述二次重结晶包括如下步骤:将50℃-80℃如式(I)所示化合物的有机溶剂的溶液,置于15℃-25℃析晶,过滤,干燥得固体,再将50℃-80℃所述固体的有机溶剂的溶液,置于25℃-30℃析晶。
  16. 一种如式(III)所示化合物,其为下列任一化合物:
    Figure PCTCN2021125648-appb-100009
PCT/CN2021/125648 2020-10-23 2021-10-22 一种普瑞巴林的中间体及其制备方法 WO2022083728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011146809.7A CN114478422B (zh) 2020-10-23 2020-10-23 一种普瑞巴林的中间体及其制备方法
CN202011146809.7 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022083728A1 true WO2022083728A1 (zh) 2022-04-28

Family

ID=81291639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125648 WO2022083728A1 (zh) 2020-10-23 2021-10-22 一种普瑞巴林的中间体及其制备方法

Country Status (2)

Country Link
CN (1) CN114478422B (zh)
WO (1) WO2022083728A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100010219A1 (en) * 2006-12-07 2010-01-14 Japan Tobacco Inc. Method for producing pyrrolidine compound
US20120029230A1 (en) * 2010-07-27 2012-02-02 Jen-Huang Kuo Method for preparing chiral baclofen
CN109942446A (zh) * 2019-04-17 2019-06-28 黄冈鲁班药业股份有限公司 一种普瑞巴林的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833562B (zh) * 2013-12-04 2015-08-12 惠州市莱佛士制药技术有限公司 一种不对称合成普瑞巴林的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100010219A1 (en) * 2006-12-07 2010-01-14 Japan Tobacco Inc. Method for producing pyrrolidine compound
US20120029230A1 (en) * 2010-07-27 2012-02-02 Jen-Huang Kuo Method for preparing chiral baclofen
CN109942446A (zh) * 2019-04-17 2019-06-28 黄冈鲁班药业股份有限公司 一种普瑞巴林的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COLONNA STEFANO, RE ALBERTO, HANS WYNBERG: "Asymmetric Induction in the Michael Reaction by Means of Chiral Phase-transfer Catalysts derived f tom Cinchona and Ephedra Alkaloids", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, 1 January 1981 (1981-01-01), pages 547 - 552, XP055923836, DOI: 10.1039/P19810000547 *
HE CHASHENG, ZHAI ZIRAN, ZHOU YANG, LI JIANQI, WANG GUAN: "A new synthetic route for the preparation of pregabalin", SYNTHETIC COMMUNICATIONS, TAYLOR & FRANCIS INC., US, US , pages 1 - 7, XP055923832, ISSN: 0039-7911, DOI: 10.1080/00397911.2021.1919710 *
LELE WEN, LIANG YIN, QILONG SHEN, LONG LU: "Enantioselective Organocatalytic Michael Addition of Nitroalkanes and Other Nucleophiles to β-Trifluoromethylated Acrylamides", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 3, no. 4, 5 April 2013 (2013-04-05), US , pages 502 - 506, XP055437906, ISSN: 2155-5435, DOI: 10.1021/cs300806w *
PALOMO CLAUDIO, OIARBIDE MIKEL, LASO ANTONIO, LÓPEZ ROSA: "Catalytic Enantioselective Aza-Henry Reaction with Broad Substrate Scope", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 127, no. 50, 1 December 2005 (2005-12-01), pages 17622 - 17623, XP055923835, ISSN: 0002-7863, DOI: 10.1021/ja056594t *
TOVAR-GUDINO ERIKA, MORALES-NAVA ROSMARBEL, FERNANDEZ-ZERTUCHE MARIO: "Diasteroselective conjugate addition of diethylaluminum cyanide to a conjugated N-enoyl system: an alternative synthesis of", CANADIAN JOURNAL OF CHEMISTRY, vol. 92, no. 1, 1 January 2014 (2014-01-01), CA , pages 45, XP009535945, ISSN: 0008-4042, DOI: 10.1139/cjc-2013-0397 *

Also Published As

Publication number Publication date
CN114478422A (zh) 2022-05-13
CN114478422B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2010081404A1 (zh) 一种利奈唑胺的制备方法及其中间体
RU2029761C1 (ru) Способ получения 1-(аминометил)циклогексануксусной кислоты
US9771317B2 (en) Process for preparing lacosamide and related compounds
CN108456238A (zh) 奥贝胆酸衍生物及奥贝胆酸的制备方法
WO2022083728A1 (zh) 一种普瑞巴林的中间体及其制备方法
CN111072660A (zh) 一种瑞来巴坦的简便制备方法
US7375245B2 (en) N-(4-oxo-butanoic acid) -L-amino acid-ester derivatives and methods of preparation thereof
CN115784922B (zh) 一种(2s)-2-氨基-4-(环丙基/环丁基)丁酸的制备方法
US6340773B1 (en) Preparation of halogenated primary amines
JP4829418B2 (ja) 光学活性なハロヒドリン誘導体およびその使用方法
JP3849155B2 (ja) ベンゾビスオキサゾロン誘導体の製造法及びその中間体
JP3847375B2 (ja) 2−インダノール誘導体の製造方法
JP3644811B2 (ja) 4’−メチル−2−シアノビフェニルの製法
CN102690254B (zh) 辛伐他汀铵盐中间体及其制备方法
CN101830815B (zh) 环状化合物及以其作为中间体制备氮杂螺环化合物的方法
JP3387579B2 (ja) 2−オキサインダン誘導体の製造法
CN116969831A (zh) 一种莫奈太尔的中间体及其制备方法
JP3144920B2 (ja) α−アシルアミノケトン誘導体、その製造方法及びその利用
CN101575287B (zh) 一种辛伐他汀铵盐的合成方法及所用中间体及其制备方法
CN110804008A (zh) 一种1,3-二取代的吲哚啉的衍生物及其制备方法
KR20020066476A (ko) 펩타이드 유도체의 제조방법
JPS6344736B2 (zh)
JPH10237058A (ja) 2,2’− ビス(5− オキソテトラヒドロフラン−2− カルボニルアミノ)−5,5’− ジニトロジフェニルジスルフィド及びその製造方法
JPH0796534B2 (ja) Dl及び光学活性フエニルアラニノ−ルの製造方法
WO1994021597A1 (en) Aniline derivative and process for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882141

Country of ref document: EP

Kind code of ref document: A1