WO2022075432A1 - 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品 - Google Patents

感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品 Download PDF

Info

Publication number
WO2022075432A1
WO2022075432A1 PCT/JP2021/037247 JP2021037247W WO2022075432A1 WO 2022075432 A1 WO2022075432 A1 WO 2022075432A1 JP 2021037247 W JP2021037247 W JP 2021037247W WO 2022075432 A1 WO2022075432 A1 WO 2022075432A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
mass
layer
resin structure
resin
Prior art date
Application number
PCT/JP2021/037247
Other languages
English (en)
French (fr)
Inventor
大地 岡本
英和 宮部
映▲旋▼ 周
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020170681A external-priority patent/JP2022062573A/ja
Priority claimed from JP2020172141A external-priority patent/JP2022063745A/ja
Priority claimed from JP2021005873A external-priority patent/JP2022110455A/ja
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020237012944A priority Critical patent/KR20230084182A/ko
Priority to CN202180067607.XA priority patent/CN116406331A/zh
Publication of WO2022075432A1 publication Critical patent/WO2022075432A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention has a photosensitive laminated resin structure having excellent resolution, which is useful for a resin insulating layer of a package substrate, a protective film of a printed wiring board on which a light emitting element such as a light emitting diode (LED) is mounted, a resin insulating layer, and the like.
  • the present invention relates to a body, a dry film having the photosensitive laminated resin structure, a cured product of the photosensitive laminated resin structure, and electronic components such as a package substrate or a printed wiring board having a resin insulating layer or a protective layer made of the cured product. ..
  • the solder resist or the like is formed.
  • a white protective film having excellent light reflectance is desired so that the light emission of the LED can be effectively used. Therefore, in order to increase the reflectance of light, the protective film generally contains a large amount of a filler such as titanium oxide.
  • Patent Document 3 a metal plate such as copper or aluminum is used, and a metal base is formed on one side or both sides of the metal plate via an electrically insulating layer such as a prepreg or a thermosetting resin composition.
  • the substrate is disclosed.
  • the coating film has a high film thickness
  • the irradiation light is greatly attenuated in the deep part of the coating film, and sufficient photocurability in the deep part of the coating film cannot be obtained. Therefore, the pattern after development has an undercut shape. Therefore, there is a problem that the adhesion to the underlying substrate is lowered and peeling occurs in the gold plating treatment or the like.
  • a cured coating film made of a photosensitive resin composition highly filled with such a filler component for example, although it expands with low heat, it has low toughness (brittleness) as a mechanical property, so that sufficient cracks are obtained in a thermal cycle test. Sometimes I could't get resistance.
  • the substrates before mounting the LED are stacked, stored and transported, and the substrates are housed in a metal rack or the like for processing.
  • a metal rack When the white protective films on the surface of the substrate or the white protective films on the surface of the substrate come into contact with each other, such as a metal rack, scratches or scraped metal powder adhere to the surface of the protective film.
  • discoloration scratches or scraped metal powder adhere to the surface of the protective film.
  • Such a problem not only impairs the appearance of the LED mounting substrate, but also causes a decrease in the reflectance of light.
  • the protective film when a pattern is formed by photolithography, the protective film is proportional to the light reflectance and content of these fillers.
  • Light (UV) causes diffuse reflection in the layer, resulting in deterioration of resolution. That is, there is a trade-off relationship between the light reflectance and the resolution of the protective film.
  • the substrates can be stacked, stored and transported in the substrate manufacturing process, and the substrate can be stored.
  • the material is housed in a metal rack or the like for processing, the above-mentioned problem of scratch marks arises.
  • a protective film highly filled with a heat-dissipating filler such as alumina for the purpose of enhancing heat-dissipating properties when a pattern is formed by photolithography, the resolution deteriorates in proportion to the content of these fillers. That is, there is a trade-off relationship between the heat dissipation and the resolution of the protective film.
  • the main object of the present invention is a photosensitive laminated resin structure having excellent resolution while maintaining a high degree of characteristic function peculiar to a highly filled filler, a dry film having the photosensitive laminated resin structure, and the photosensitive laminated resin structure. It is an object of the present invention to provide a cured product of a sex laminated resin structure and an electronic component having the cured product.
  • a first further object of the present invention is to have a photosensitive laminated resin structure having excellent adhesion, plating resistance, crack resistance and resolution while having a low thermal expansion rate, and the photosensitive laminated resin structure. It is an object of the present invention to provide a dry film, a cured product of the photosensitive laminated resin structure, and an electronic component having the cured product.
  • a second further object of the present invention is a photosensitive laminated resin structure in which scratch marks are less likely to occur and high resolution can be obtained while having high reflectance, and a dry film having the photosensitive laminated resin structure. It is an object of the present invention to provide a cured product of the photosensitive laminated resin structure and an electronic component having the cured product.
  • a third further object of the present invention is a photosensitive laminated resin structure capable of obtaining high resolution while being less likely to generate scratch marks and having high heat dissipation, and a dry film having the photosensitive laminated resin structure. It is an object of the present invention to provide a cured product of the photosensitive laminated resin structure and an electronic component having the cured product.
  • the photosensitive laminated resin structure of the present invention is A photosensitive laminated resin structure having a packed bed (A) and a protective layer (B).
  • the filler-filled layer (A) does not substantially contain a photopolymerization initiator, and the filler content is 10 to 80% by mass in all the components excluding the organic solvent.
  • the protective layer (B) is characterized in that the filler content is 0 to 25% by mass with respect to the filler content of the filler-filled layer (A).
  • the layer thickness of the filler-filled layer (A) is thicker than the layer thickness of the protective layer (B).
  • the filler is silica.
  • the filler is titanium oxide.
  • the protective layer (B) preferably has a titanium oxide content of 0 to 20% by mass with respect to the titanium oxide content of the filler-filled layer (A).
  • the filler is a heat-dissipating filler having a thermal conductivity higher than 10 W / m ⁇ K.
  • the filler-filled layer (A) has a content of the heat-dissipating filler of 50 to 80% by mass or more in all the components excluding the organic solvent.
  • the content of the heat-dissipating filler is preferably 0 to 20% by mass with respect to the content of the heat-dissipating filler in the filler-filled layer (A).
  • the dry film of the present invention is characterized in that at least one side of the photosensitive laminated resin structure is supported or protected by the film.
  • the cured product of the present invention is characterized by comprising the photosensitive laminated resin structure or the photosensitive laminated resin structure of the dry film.
  • the electronic component of the present invention is characterized by having the cured product.
  • a photosensitive laminated resin structure having excellent resolution, a dry film having the photosensitive laminated resin structure, and the photosensitive laminated resin while maintaining a high degree of characteristic functions peculiar to a highly filled filler It is possible to provide a cured product of a resin structure and an electronic component having the cured product.
  • a photosensitive laminated resin structure having an excellent adhesion, plating resistance, crack resistance and resolution while having a low thermal expansion rate. It is possible to provide a dry film having a photosensitive laminated resin structure, a cured product of the photosensitive laminated resin structure, and an electronic component having the cured product.
  • the photosensitive pattern can be formed with high resolution while having high reflectance. It is possible to provide a sex laminated resin structure, a dry film having the photosensitive laminated resin structure, a cured product of the photosensitive laminated resin structure, and an electronic component having the cured product.
  • a photosensitive laminated resin structure capable of forming a pattern having high resolution while having high heat dissipation and less likely to generate scratch marks. It is possible to provide a dry film having the photosensitive laminated resin structure, a cured product of the photosensitive laminated resin structure, and an electronic component having the cured product.
  • the photosensitive laminated resin structure of the present invention is a photosensitive laminated resin structure having a filler-filled layer (A) and a protective layer (B), and the filler-filled layer (A) is a photopolymerization initiator.
  • the protective layer (B) contains the filler of the filler-filled layer (A), and the filler content is 10 to 80% by mass in all the components excluding the organic solvent. It is characterized in that it is 0 to 25% by mass with respect to the rate.
  • the filler is silica.
  • the photosensitive laminated resin structure of the present invention is a photosensitive laminated resin structure having a filler-filled layer (A) and a protective layer (B), and the filler-filled layer.
  • the photopolymerization initiator is substantially not contained
  • titanium oxide is contained as a colorant
  • the content of the titanium oxide is 10 to 80% by mass in all the components excluding the organic solvent.
  • the protective layer (B) is characterized in that the content of titanium oxide is 0 to 20% by mass with respect to the content of titanium oxide in the filler-filled layer (A).
  • the "filler-filled bed (A)" is also referred to as a "colored layer (A)" in the present invention.
  • the photosensitive laminated resin structure of the present invention is a photosensitive laminated resin structure having a filler-filled layer (A) and a protective layer (B), and the filler-filled layer.
  • (A) does not substantially contain a photopolymerization initiator, contains a heat-dissipating filler having a thermal conductivity higher than 10 W / m ⁇ K, and the content of the heat-dissipating filler is all except for an organic solvent.
  • the content of the protective layer (B) is 50 to 80% by mass in the components, and the content of the heat-dissipating filler in the protective layer (B) is 0 to 20% by mass with respect to the content of the heat-dissipating filler in the filler-filled layer (A). It is characterized by being%.
  • the "filler packed bed (A)” is also referred to as a "heat dissipation layer (A)" in the present invention.
  • the filler-filled layer (A) filled with the filler contains the filler having a filler content of the filler-filled layer (A).
  • the protective layer (B) having a ratio of a certain ratio or less (including 0) is provided, and the filler-filled layer (A) does not substantially contain a photopolymerization initiator, so that the resolution is good. It becomes.
  • a cured product having a low coefficient of thermal expansion and excellent adhesion is used, and for the second further purpose, a cured product having a high reflectance but less likely to cause scratch marks.
  • the layer thickness of the filler-filled layer (A) is preferably thicker than that of the protective layer (B).
  • the layer thickness of the filler-filled layer (A) is preferably more than 1.0 times, more preferably 1.5 times or more, more preferably 2.0 times the layer thickness of the protective layer (B). It is more preferable that the amount is double or more.
  • the layer thickness of the filler-filled layer (A) covers the circuits formed on the underlying substrate without gaps, for the second further purpose, in order to exhibit sufficient colorability, for example, 3 It is up to 60 ⁇ m, but is not limited to this.
  • the layer thickness of the filler-filled layer (A) may be, for example, 10 to 60 ⁇ m.
  • the layer thickness of the protective layer (B) is, for example, 0.5 to 20 ⁇ m from the viewpoint of solubility resistance of the exposed portion to the developing solution, and plating resistance and crack resistance for the first further purpose. However, this is not the case.
  • the filler-filled layer (A) is preferably white, and the laminated resin structure is viewed from the protective layer (B) side. It is more preferable that it is white when visually recognized.
  • the filler-filled layer (A) contains an alkali-soluble resin and a heat-reactive compound.
  • the protective layer (B) contains an alkali-soluble resin, a photopolymerization initiator, and a heat-reactive compound. That is, it is preferable that the unexposed portion of the filler-filled layer (A) and the protective layer (B) is soluble in an alkaline aqueous solution.
  • the filler-filled layer (A) does not substantially contain a photopolymerization initiator from the viewpoint of suppressing the occurrence of halation and improving the resolution.
  • the protective layer (B) on the outer layer side can form a pattern by exposure and development even if it does not contain a photopolymerization initiator.
  • the protective layer (B) and the filler-filled layer (A) can collectively form a pattern by development.
  • the fact that the photopolymerization initiator is substantially not contained means that the single layer of the filler-filled layer (A) does not have photopolymerizability.
  • the protective layer (B) preferably contains a compound having a function of producing a basic substance by light irradiation as a photopolymerization initiator. Further, from the viewpoint of resolution, the protective layer (B) preferably does not substantially contain a low molecular weight compound having a radically polymerizable unsaturated double bond having a molecular weight of 1000 or less.
  • the filler-filled layer (A) is preferably made of an alkali-soluble thermosetting resin composition containing a filler having a specific content and substantially free of a photopolymerization initiator, and further comprises an alkali-soluble resin and a thermal reaction. It is more preferably composed of an alkali-soluble thermosetting resin composition containing a sex compound.
  • the filler is preferably an inorganic filler.
  • the inorganic filler a known inorganic filler used in ordinary resin compositions can be used. Specifically, for example, silica, barium sulfate, calcium carbonate, silicon nitride, aluminum nitride, boron nitride, aluminum oxide (alumina), magnesium oxide (magnesia), berylium oxide (berilia), aluminum hydroxide, magnesium hydroxide.
  • Non-metal fillers such as titanium oxide, mica, talc, organic bentonite and diamond, and metal fillers such as copper, gold, silver, palladium and silicone. These can be used alone or in combination of two or more.
  • silica is more preferable because it has a low coefficient of thermal expansion and is stable against acids, alkalis and the like.
  • the combination is not particularly limited, but a more preferable combination of silica and another inorganic filler is preferable, and examples thereof include a combination of silica and barium sulfate.
  • spherical silica is preferable.
  • the spherical silica include those having a sphericity measured as follows of 0.8 or more, but the spherical silica may be spherical and is not limited to the spherical silica.
  • silica examples include Admafine SO-C2 and SO-E2 manufactured by Admatex, Admanano series, SFP-20M and SFP-30M manufactured by Denka, UFP-30 manufactured by Denka, and Japan. Examples thereof include spherical silica such as Seahoster series manufactured by Catalyst, Sciqas series manufactured by Sakai Chemical Industry Co., Ltd., and SG-SO100 manufactured by KCM Corporation.
  • the average particle size of the inorganic filler is preferably 0.5 ⁇ m or less. When it is 0.5 ⁇ m or less, the decrease in resolution can be suppressed.
  • the average particle size of the filler is the average particle size (D50) including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates), and is determined by the laser diffraction method. It is a measured value of D50. Examples of the measuring device by the laser diffraction method include Microtrac MT3300EXII manufactured by Microtrac Bell.
  • the inorganic filler may be any one having a light reflection function such as a white colorant, but the filler filling layer (A) is preferably an inorganic filler exhibiting white color, and is oxidized.
  • Titanium is more preferred.
  • the titanium oxide is not particularly limited and may be rutile-type titanium oxide or anatase-type titanium oxide, but it is preferable to use rutile-type titanium from the viewpoint of colorability, concealment and stability.
  • Anatase-type titanium oxide which is the same titanium oxide, has a higher whiteness than rutile-type titanium oxide and is often used as a white pigment.
  • anatase-type titanium oxide has photocatalytic activity, so it is particularly irradiated from an LED.
  • the resulting light can cause discoloration of the resin.
  • the whiteness of rutile-type titanium oxide is slightly inferior to that of anatase-type, it has almost no photoactivity, so that the resin deteriorates (yellowing) due to light due to the photoactivity of titanium oxide. Is remarkably suppressed and is stable against heat.
  • One type of titanium oxide may be used alone, or two or more types may be used in combination.
  • the average particle size of titanium oxide is not particularly limited, but is preferably 0.3 ⁇ m to 10.0 ⁇ m, and more preferably 0.5 ⁇ m to 5.0 ⁇ m.
  • the filler packed bed (A) may be used in combination with a bluing agent as a colorant.
  • Examples of commercially available rutile-type titanium oxide include Typake R-820, Typake R-830, Typake R-930, Typake R-550, Typake R-580, Typake R-630, Typake R-680, and Typake R.
  • anatase-type titanium oxide known ones can be used.
  • TITON A-110, TITON TCA-123E, TITON A-190, TITON A-197, TITON SA-1, TITON SA-1L manufactured by Sakai Chemical Industry Co., Ltd.
  • the inorganic filler may have heat dissipation properties, but a heat dissipation filler having a thermal conductivity higher than 10 W / m ⁇ K is more preferable.
  • a heat dissipation filler having a thermal conductivity higher than 10 W / m ⁇ K include aluminum oxide (Al 2 O 3 ), diamond, beliria (BeO), aluminum nitride (AlN), boron nitride, silicon nitride, magnesia, and the like.
  • the heat-dissipating filler may be used alone or in combination of two or more.
  • aluminum oxide is chemically stable, has excellent cost, and has excellent insulating properties.
  • spherical aluminum oxide it is possible to mitigate the increase in viscosity when highly filled.
  • the spherical aluminum oxide include those having a sphericity measured as described above of 0.8 or more, but the spherical aluminum oxide may be spherical and is not limited to the spherical aluminum oxide.
  • the average particle size of the heat-dissipating filler is not particularly limited, but is preferably 0.01 ⁇ m to 30 ⁇ m, and more preferably 0.01 ⁇ m to 20 ⁇ m.
  • the average particle size is 0.01 ⁇ m or more, the viscosity of the composition does not become too high, the dispersion is easy, and the coating on the object to be coated becomes easy.
  • the average particle size is 30 ⁇ m or less, even when the coating film is thin, the cueing of the heat-dissipating filler is unlikely to occur, and the settling speed does not become too fast, resulting in good storage stability. ..
  • the filling can be further increased, which is preferable from the viewpoints of storage stability and thermal conductivity.
  • the inorganic filler may be surface-treated.
  • the surface treatment method for the inorganic filler is not particularly limited, and a known and commonly used method may be used. However, since a cured product having a lower thermal expansion can be obtained, a surface treatment agent having a curable reactive group, for example, a curable reactive group It is preferable to treat the surface of the inorganic filler with a coupling agent or the like having the above as an organic group.
  • a coupling agent a silane-based, titanate-based, aluminate-based, zircoaluminate-based, or other coupling agent can be used. Of these, a silane-based coupling agent is preferable.
  • silane coupling agents examples include vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminomethyl) -3-aminopropylmethyldimethoxysilane, and N- (2-aminoethyl) -3-amino.
  • Propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-anilinopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) Cyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like can be mentioned, which can be used alone or in combination.
  • silane-based coupling agents are preferably immobilized on the surface of the inorganic filler in advance by adsorption or reaction, and from the viewpoint of further improving dispersibility, they are previously dispersed (slurried) in an organic solvent and blended. Is more preferable.
  • the content of the filler in the packed bed (A) is 10 to 80% by mass in all the components except the organic solvent.
  • the content of silica in the packed bed (A) is preferably 30 to 70% by mass in all the components except the organic solvent. Within such a range, it is possible to reduce halation and deterioration of toughness while maintaining low thermal expansion.
  • the content of titanium oxide in the packed bed (A) is preferably 15 to 80% by mass, more preferably 20 to 70% by mass in all the components except the organic solvent. ..
  • the content of the heat-dissipating filler in the filler-filled layer (A) is 50 to 80% by mass in all the components except the organic solvent.
  • the alkali-soluble resin may be any resin that contains one or more functional groups among phenolic hydroxyl groups and carboxyl groups and can be developed with an alkaline aqueous solution. Preferred examples thereof include a compound having a phenolic hydroxyl group, a compound having a carboxyl group, and a resin having a phenolic hydroxyl group and a carboxyl group.
  • the alkali-soluble resin may have an ethylenically unsaturated double bond.
  • a carboxyl group-containing resin conventionally used as a solder resist composition can be mentioned.
  • the carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin.
  • the alkali-soluble resin one type may be used alone, or two or more types may be used in combination.
  • alkali-soluble resin examples include compounds (either oligomers and polymers) listed below.
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid with an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate-based polyols and polyether-based compounds.
  • a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic-based polyols, and bisphenol A-based
  • An end carboxyl group-containing urethane resin obtained by reacting an acid anhydride with an acid anhydride at the end of a urethane resin by a double addition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Meta) A carboxyl group-containing urethane resin obtained by a double addition reaction of an acrylate or a modified partial acid anhydride thereof, a carboxyl group-containing dialcohol compound and a diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are added to the molecule, such as an isophorone diisocyanate and pentaerythritol triacrylate homomolar reaction product.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the generated primary hydroxyl group.
  • reaction production obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a substance with a polybasic acid anhydride.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and (meth).
  • An unsaturated group-containing monocarboxylic acid such as acrylic acid is reacted with respect to the alcoholic hydroxyl group of the obtained reaction product with maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and anhydrous.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
  • the filler-filled layer (A) uses an alkali-soluble resin composed of the resin of (7) in (7) and (14) from the viewpoint of developability and resolution. Is preferable. From the viewpoint of discoloration resistance, it is preferable to use an alkali-soluble resin composed of the resin of (1) in (1) and (14), and it is particularly preferable for the second further purpose. From the viewpoint of insulation reliability, it is preferable to use the alkali-soluble resin according to (10), and it is particularly preferable for the third further purpose.
  • (meth) acrylate is a generic term for acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • the alkali-soluble resin as described above has a large number of hydrophilic groups such as carboxyl groups in the side chains of the backbone polymer, it can be developed with an alkaline aqueous solution.
  • the acid value of the alkali-soluble resin having a carboxyl group is appropriately in the range of 40 to 200 mgKOH / g, and more preferably in the range of 45 to 120 mgKOH / g.
  • the acid value of the carboxyl group-containing resin is within the above range, the alkali solubility is good and patterning by alkaline development becomes easy.
  • the weight average molecular weight of the alkali-soluble resin varies depending on the resin skeleton, but is generally 2,000 to 150,000, more preferably 3,000 to 100,000, still more preferably 5,000 to 100, It is in the range of 000. When the weight average molecular weight is within the above range, the balance between the development speed in the development process and the development resistance of the pattern portion is excellent.
  • the content of such an alkali-soluble resin is 10 to 75% by mass, preferably 15 to 75% by mass, and more preferably 20 to 70% by mass in all the components of the filler packed bed (A) excluding the organic solvent.
  • The% range is appropriate.
  • the content of the alkali-soluble resin is preferably in the range of 15 to 75% by mass, more preferably 20 to 70% by mass, a cured film having high adhesion to the substrate and excellent toughness can be obtained. Can be done.
  • the content of the alkali-soluble resin is preferably 15% by mass or more, more preferably 20% by mass or more, the film strength becomes good, while the content is preferably 75% by mass or less.
  • the viscosity of the composition does not become too high, and the coatability and the like are good.
  • a range of preferably 10 to 45% by mass, more preferably 15 to 40% by mass is suitable, and when the content of the alkali-soluble resin is 10% by mass or more, the film strength is high. It is preferable because it is good, while when it is 45% by mass or less, the viscosity of the composition does not become too high and the coatability and the like are good, which is preferable.
  • thermoreactive compound a known and commonly used compound having a functional group capable of a thermosetting reaction such as a cyclic (thio) ether group is used.
  • a compound that undergoes a thermosetting reaction with the alkali-soluble resin contained in the filler-filled layer (A) is preferable, and an epoxy resin is preferably used.
  • the heat-reactive compound may be used alone or in combination of two or more.
  • the epoxy resin examples include bisphenol A type epoxy resin, brominated epoxy resin, novolak type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hidden in type epoxy resin, and alicyclic epoxy.
  • examples thereof include a contained epoxy resin and an epoxy resin having a dicyclopentadiene skeleton.
  • the content of the heat-reactive compound is preferably 70% by mass or less, more preferably 5 to 60% by mass, in all the components of the packed bed (A) excluding the organic solvent.
  • the content of the heat-reactive compound is 70% by mass or less, the undeveloped portion of the unexposed portion in the developer is unlikely to be left undeveloped.
  • it is preferably 40% by mass or less, more preferably 2 to 30% by mass, and development residue is less likely to occur due to a decrease in solubility of the unexposed portion in the developing solution.
  • the filler-filled layer (A) may contain a low molecular weight compound having an unsaturated double bond capable of radical polymerization in order to adjust the viscosity of the resin composition, promote photocurability and improve developability.
  • the molecular weight of such a low molecular weight compound is, for example, a molecular weight of 1000 or less.
  • Examples of the low molecular weight compound having a radically polymerizable unsaturated double bond include polyester (meth) acrylate, polyether (meth) acrylate, urethane (meth) acrylate, carbonate (meth) acrylate, and epoxy (meth) acrylate. Meta) Acrylate monomers can be mentioned.
  • Specific compounds include hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol and propylene glycol; N, N- Acrylamides such as dimethylacrylamide, N-methylolacrylamide, N, N-dimethylaminopropylacrylamide; aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl acrylate; hexanediol, trimethylol Polyhydric alcohols such as propane, pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate or polyhydric acrylates such as ethylene oxide adducts, propylene oxide adducts, or ⁇ -caprolactone adducts thereof; phenoxyacrylates
  • Polyvalent acrylates such as A-diacrylate and ethylene oxide adducts or propylene oxide adducts of these phenols; glycidyl such as glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl isocyanurate.
  • Polyvalent acrylates of ether not limited to the above, acrylates and melamine acrylates obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl group-terminated polybutadienes, polyester polyols, or urethane acrylates via diisocyanates, and melamine acrylates. At least one of each methacrylate corresponding to the above acrylate can be mentioned.
  • the low molecular weight compound having an unsaturated double bond capable of radical polymerization one kind may be used alone, or two or more kinds may be used in combination.
  • the content of the low molecular weight compound having a radically polymerizable unsaturated double bond is preferably 0 to 50% by mass, more preferably 1 to 50% in all the components of the filler-filled layer (A) excluding the organic solvent.
  • the ratio is% by mass, more preferably 3 to 30% by mass.
  • the content of this low molecular weight compound is 1% by mass or more, development resistance can be easily obtained by light irradiation, and resolution is further improved.
  • the ratio is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, still more preferably 3 to 20% by mass.
  • this low molecular weight compound When the content of this low molecular weight compound is 1% by mass or more, development resistance can be easily obtained by light irradiation, and resolution is further improved. On the other hand, when it is 40% by mass or less, the flexibility of the cured coating film is excellent.
  • the packed bed (A) does not substantially contain a photopolymerization initiator from the viewpoint of resolution.
  • the fact that the photopolymerization initiator is not substantially contained means that the filler-filled layer (A) does not have photopolymerizability in the single layer, and is contained in a small amount within a range that does not impair the photopolymerizability. Is not excluded.
  • the photopolymerization initiator contained in the protective layer (B) may be transferred to the filler-filled layer (A), but even in such a case, the photopolymerization initiator contained in the protective layer (B) may be started. It is preferably 50% or less of the concentration of the agent.
  • the filler-filled layer (A) may contain an antioxidant, and a cured product having excellent resistance to electroless gold plating and discoloration after reflow can be obtained.
  • antioxidants examples include hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent sulfur compounds, and phosphite ester compounds containing a trivalent phosphorus atom.
  • hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent sulfur compounds, and phosphite ester compounds containing a trivalent phosphorus atom.
  • one type may be used alone, or two or more types may be used in combination.
  • the content of the antioxidant is preferably in the range of 0.1 to 10% by mass in all the components of the filler packed bed (A) excluding the organic solvent.
  • the packed bed (A) may contain a polymerization inhibitor from the viewpoint of resolution.
  • the polymerization inhibitor include phenothiazine, hydroquinone, N-phenylnaphthylamine, chloranyl, pyrogallol, benzoquinone, t-butylcatechol, hydroquinone, methylhydroquinone, tert-butylhydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol, naphthoquinone, 4-methoxy-.
  • Examples thereof include 1-naphthol, 2-hydroxy 1,4-hydroquinone, a phosphorus-containing compound having a phenolic hydroxyl group, and a nitrosamine-based compound.
  • the polymerization inhibitor may be used alone or in combination of two or more.
  • the content of the polymerization inhibitor in the packed bed (A) is preferably 5% by mass or less in all the components of the packed bed (A) excluding the organic solvent.
  • the protective layer (B) is preferably made of a photosensitive curable resin composition having a lower filler content than the filler-filled layer (A) described above, and further includes an alkali-soluble resin, a photopolymerization initiator, and a thermosetting agent. More preferably, it comprises a photosensitive curable resin composition containing a compound.
  • Alkaline-soluble resin As the alkali-soluble resin, the above-mentioned alkali-soluble resin can be used, and one type may be used alone or two or more types may be used in combination. Above all, for the first further purpose, it is preferable to use the alkali-soluble resin of (7) in (7) and (14) from the viewpoint of developability and resolvability, and further, heat resistance and mechanical properties are From the viewpoint, it is more preferable to use the alkali-soluble polyimide resin of (13) in (13) and (14).
  • the alkali-soluble resin of (7) in (7) and (14) from the viewpoint of developability and resolution, and from the viewpoint of discoloration resistance, (1) and It is preferable to use the alkali-soluble resin of (1) in (14), and further, from the viewpoint of heat resistance, mechanical properties, and resolution, the alkali-soluble of (13) in (13) and (14). It is more preferable to use a polyimide resin.
  • the alkali-soluble resin of (7) in (7) and (14) from the viewpoint of developability and resolution, and it is preferable to use the alkali-soluble resin of heat resistance, mechanical properties and resolution. From the viewpoint, it is preferable to use an alkali-soluble polyimide resin composed of the resin of (13) in (13) and (14), and from the viewpoint of insulation reliability, the alkali-soluble resin of (10) is used. Is preferable.
  • the content of the alkali-soluble resin is preferably 10 to 75% by mass, more preferably 15% by mass to 75% by mass, still more preferably, in all the components of the protective layer (B) excluding the organic solvent. Is 20% by mass to 70% by mass. When it is 15% by mass or more, the toughness of the cured coating film is improved. Further, when it is 75% by mass or less, damage such as scratches is less likely to occur on the surface in the developing process. However, for the third further purpose, it is preferably 10 to 75% by mass, more preferably 15 to 70% by mass, and when it is 10% by mass or more, the toughness of the cured coating film is improved. When it is 75% by mass or less, damage such as scratches is less likely to occur on the surface in the developing process.
  • photopolymerization initiator As the photopolymerization initiator, one type may be used alone, or two or more types may be used in combination.
  • the photopolymerization initiator is one or more types of light selected from the group consisting of an oxime ester-based photopolymerization initiator having an oxime ester group, an ⁇ -aminoacetophenone-based photopolymerization initiator, and an acylphosphine oxide-based photopolymerization initiator.
  • a polymerization initiator can be preferably used.
  • oxime ester-based photopolymerization initiator examples include CGI-325 manufactured by BASF Japan, Irgacure OXE01, Irgacure OXE02, N-1919 manufactured by ADEKA, and NCI-831. Further, a photopolymerization initiator having two oxime ester groups in the molecule can also be preferably used.
  • the content of such an oxime ester-based photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the alkali-soluble resin.
  • it is 0.01 part by mass or more, the coating film characteristics such as chemical resistance are good.
  • it is 20 parts by mass or less, the light absorption on the surface of the coating film does not become too intense, and the deep curability becomes good. More preferably, it is 0.5 to 15 parts by mass.
  • ⁇ -aminoacetophenone-based photopolymerization initiator examples include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanol-1, 2-benzyl-2-dimethylamino-1-. (4-Molholinophenyl) -butane-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N , N-dimethylaminoacetophenone and the like.
  • Examples of commercially available products include Omnirad 907, Omnirad 369, and Omnirad 379 manufactured by IGM Resins.
  • acylphosphine oxide-based photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxy).
  • Benzoyl) -2,4,4-trimethyl-pentylphosphine oxide and the like can be mentioned.
  • Examples of commercially available products include Lucillin TPO manufactured by BASF, Omnirad 819 manufactured by IGM Resins, and the like.
  • the content of these ⁇ -aminoacetophenone-based photopolymerization initiators and acylphosphine oxide-based photopolymerization initiators is preferably 0.01 to 15 parts by mass with respect to 100 parts by mass of the alkali-soluble resin.
  • the coating film characteristics such as chemical resistance are similarly good.
  • the outgas is reduced, the light absorption on the surface of the coating film is not too intense, and the deep curability is good. More preferably, it is 0.5 to 10 parts by mass.
  • the photopolymerization initiator used when it is used as a catalyst for the polymerization reaction of a heat-reactive compound described later, not only a photoradical but also a basic substance is generated by light irradiation, so that the oxime ester type is used.
  • Photopolymerization initiators and ⁇ -aminoacetophenone-based photopolymerization initiators are preferable, and among them, oxime ester-based photopolymerization initiators are more preferable because they are excellent in resolution.
  • thermoreactive compound As the heat-reactive compound, the above-mentioned heat-reactive compound can be used, and one type may be used alone or two or more types may be used in combination.
  • a compound that thermally cures with the alkali-soluble resin contained in the protective layer (B) is preferable, and the epoxy resin described above is preferably used.
  • the content of the heat-reactive compound is preferably 3 to 50% by mass, more preferably 5 to 40% by mass in all the components of the protective layer (B) excluding the organic solvent. When it is 3% by mass or more, the toughness of the coating film can be obtained, and when it is 50% by mass or less, good developability can be obtained.
  • the protective layer (B) may contain an antioxidant.
  • the antioxidant the above-mentioned antioxidant can be used, and one type may be used alone or two or more types may be used in combination. A cured product having excellent resistance to electroless gold plating and discoloration after reflow can be obtained.
  • the content of the antioxidant is preferably in the range of 0.1% to 10% in all the components of the protective layer (B) excluding the organic solvent.
  • the protective layer (B) may contain a filler.
  • the filler the above-mentioned filler can be used, one type may be used alone, or two or more types may be used in combination. Further, as the filler of the protective layer (B), the same type and shape as the filler used for the filler-filled layer (A) described above may be selected, or fillers of different types and shapes may be used.
  • the content of the filler in the protective layer (B) is 25% by mass or less of the content of the filler contained in the filler-filled layer (A), and may not be contained.
  • the filler content of the protective layer (B) is preferably 0 to 20% by mass, preferably 0 to 15% by mass, in all the components in the protective layer (B) excluding the organic solvent. It is more preferably 0 to 10% by mass, and particularly preferably 0 to 5% by mass.
  • the protective layer (B) may contain titanium oxide.
  • the titanium oxide the above-mentioned titanium oxide can be used, and one kind may be used alone or two or more kinds may be used in combination.
  • the content of titanium oxide in the protective layer (B) is 20% by mass or less of the content of titanium oxide contained in the packed bed (A), and may not be contained.
  • the titanium oxide content of the protective layer (B) is preferably 0 to 20% by mass, preferably 0 to 10% by mass, in all the components in the protective layer (B) excluding the organic solvent. Is more preferable.
  • an inorganic filler other than titanium oxide can be blended in the protective layer (B), but from the viewpoint of scratch resistance, the content of the inorganic filler other than titanium oxide is determined in the protective layer (B) excluding the organic solvent. It is preferably 0 to 20% by mass in all the components.
  • the protective layer (B) does not contain a heat-dissipating filler having a thermal conductivity higher than 10 W / m ⁇ K from the viewpoint of scratch resistance, but contains it to the extent that it does not affect the scratch resistance. You may. That is, from the viewpoint of scratch resistance, the content of the heat-dissipating filler in the protective layer (B) needs to be 20% by mass or less with respect to the content of the heat-dissipating filler in the filler-filled layer (A). ..
  • the heat-dissipating filler the above-mentioned heat-dissipating filler can be used, and one kind may be used alone or two or more kinds may be used in combination.
  • the content of the heat-dissipating filler in the protective layer (B) is preferably 0 to 20% by mass, preferably 0 to 10% by mass in all the components in the protective layer (B) excluding the organic solvent. It is more preferable to have. Further, an inorganic filler other than the heat-dissipating filler can be blended in the protective layer (B), but from the viewpoint of scratch resistance, the content of the inorganic filler other than the heat-dissipating filler is the protective layer (excluding the organic solvent). It is preferably 0 to 20% by mass in all the components in B).
  • the protective layer (B) may contain a low molecular weight compound having an unsaturated double bond capable of radical polymerization.
  • a low molecular weight compound having an unsaturated double bond capable of radical polymerization the above-mentioned low molecular weight compound can be used, and one kind may be used alone or two or more kinds may be used in combination.
  • the content of the low molecular weight compound having a radically polymerizable unsaturated double bond having a molecular weight of 1000 or less is not substantially contained, for example, the protective layer excluding an organic solvent. It is 0 to 20% by mass, preferably 0 to 15% by mass, more preferably 0 to 10% by mass, still more preferably 0 to 2% by mass, and particularly preferably 0% by mass in all the components in (B).
  • the protective layer (B) may contain the above-mentioned polymerization inhibitor from the viewpoint of resolution.
  • the content of the polymerization inhibitor in the protective layer (B) is preferably 5% by mass or less in all the components of the protective layer (B) excluding the organic solvent.
  • the photosensitive laminated resin structure of the present invention can be preferably used for forming a protective film for electronic components, particularly a printed wiring board, and particularly for forming a permanent protective film such as a solder resist layer and a coverlay of a flexible printed wiring board. It can be preferably used.
  • the printed wiring board is not particularly limited, but the photosensitive laminated resin structure of the present invention has low thermal expansion but has good adhesion, plating resistance, crack resistance and resolution. Since it is excellent, it can be suitably used for a package substrate.
  • the printed wiring board is not particularly limited for the second further purpose, but is preferably a printed wiring board on which a light emitting element such as an LED is mounted because of its excellent reflectance.
  • the printed wiring board is not particularly limited for the third further purpose, but is preferably a package substrate or a surface mount type light emitting diode because of its excellent heat dissipation.
  • the photosensitive laminated resin structure of the present invention is excellent in reflectance for the second further purpose, it is preferably used for forming a reflector for a light emitting element such as an LED or electroluminescence (EL). Can be done.
  • a light emitting element such as an LED or electroluminescence (EL).
  • the filler packed layer (A) and the protective layer (B) are laminated.
  • the dry film of the present invention is characterized in that at least one side of the photosensitive laminated resin structure of the present invention is supported or protected by the film.
  • the protective film 14, the filler packed layer (A) 13, the protective layer (B) 12, and the support film 11 are laminated in this order as shown in FIG.
  • the dry film of the present invention may be laminated so that the protective layer (B) is on the surface layer side, and the film to be peeled off at the time of laminating may be either a support film or a protective film. Therefore, the support film and the filler are filled.
  • the layer (A), the protective layer (B), and the protective film may be laminated in this order. Further, the dry film of the present invention may be wound in a roll shape.
  • the dry film of the present invention can be produced, for example, as follows. That is, first, on the support film (carrier film), the resin composition constituting the protective layer (B) and the resin composition constituting the filler-filled layer (A) are diluted with an organic solvent to have appropriate viscosities. And apply sequentially by a known method such as a comma coater according to a conventional method. Then, usually, by drying at a temperature of 50 to 140 ° C. for 1 to 30 minutes, a dry film having a coating film of the protective layer (B) and the filler-filled layer (A) formed on the support film can be produced. ..
  • a peelable protective film can be further laminated on the dry film for the purpose of preventing dust from adhering to the surface of the coating film.
  • the support film and the protective film conventionally known plastic films can be appropriately used, and the protective film has a smaller adhesive force than the adhesive force between the resin layer and the support film when the protective film is peeled off. It is preferable to have.
  • the thickness of the support film and the protective film is not particularly limited, but is generally selected as appropriate in the range of 10 to 150 ⁇ m.
  • the cured product of the present invention is characterized by being composed of the photosensitive laminated resin structure of the present invention.
  • the cured product of the present invention preferably has a coefficient of thermal expansion (CTE ⁇ 1) before the glass transition temperature of 40 ppm / ° C. or less, and more preferably 30 ppm / ° C. or less.
  • the Y value of the XYZ color system measured from the protective layer (B) side is preferably 70 or more, more preferably 75 or more, and further preferably 80 or more. preferable.
  • the cured product of the present invention preferably has a thermal conductivity of 1.5 W / m ⁇ K or more when the thermal conductivity is measured by a periodic heating method.
  • the electronic component of the present invention is characterized by having a cured product of the present invention.
  • the cured product of the present invention is excellent in plating resistance and crack resistance in the first further purpose, and is excellent in scratch resistance and reflectance in the second further purpose, and is also a third further purpose.
  • the cured product is formed so that the protective layer (B) becomes the outermost layer in the electronic component of the present invention because of its excellent scratch resistance.
  • PEB step a step of heating the photosensitive laminated resin structure (PEB step) is inserted between the exposure step and the developing step, and the patterned photosensitive laminated resin structure is collectively formed by the developing step. You may. In particular, when an alkali-soluble resin is used in the protective layer (B), it is preferable to use this procedure. Further, when the protective layer (B) contains a compound that produces a basic substance by light irradiation, it is preferable to carry out the PEB step from the viewpoint of resolution.
  • the resin composition constituting the filler packed bed (A) 3 and the protective layer (B) 4 is sequentially applied onto the substrate and dried on the printed wiring board 1 on which the conductor circuit 2 is formed.
  • the resin composition constituting the filler-filled layer (A) 3 and the protective layer (B) 4 is directly formed, or the resin composition constituting the filler-filled layer (A) 3 and the protective layer (B) 4 is formed in the form of a dry film. It can be formed by a method of sequentially laminating the same material on a substrate. Further, a laminated structure in the form of a dry film having a two-layer structure may be formed by a method of laminating on a base material.
  • the laminated structure can also be supported or protected by a film.
  • a film to be used a plastic film that can be peeled off from the laminated structure can be used.
  • the thickness of the film is not particularly limited, but is generally selected appropriately in the range of 10 to 150 ⁇ m. From the viewpoint of the strength of the coating film, the interface between the layers may be familiar.
  • the laminator a commercially available vacuum heating and pressurizing laminator or the like can be used.
  • a vacuum pressurizing laminator manufactured by Meiki Co., Ltd. a vacuum applicator manufactured by Nichigo Morton, etc. can be used, and continuous operation can be performed. can. Further, the laminating step may be performed by using different devices.
  • a roll laminator, a vacuum roll laminator, a vacuum press, or the like can be used.
  • the vacuum press a commercially available ordinary device can be applied, and for example, a multi-stage press, a multi-stage vacuum press, a quick press, a continuous forming machine, an autoclave forming machine and the like can be used.
  • the above operating conditions of the laminator and the like can be performed at 60 to 130 ° C., a pressure of 0.1 to 0.7 MPa, a heating and pressurizing time of 1 to 90 seconds, a vacuum degree of 10 to 10,000 Pa, and a vacuum time of 1 to 90. It can be processed in the range of seconds.
  • the photopolymerization initiator contained in the protective layer (B) 4 or the filler-filled layer (A) 3 is activated in a negative pattern by irradiation with active energy rays, and the exposed portion is cured.
  • the exposure machine a direct drawing device, an exposure machine equipped with a metal halide lamp, or the like can be used.
  • the mask for patterned exposure is a negative type mask.
  • the active energy ray used for exposure it is preferable to use laser light, scattered light or parallel light having a maximum wavelength in the range of 350 to 450 nm. By setting the maximum wavelength in this range, the photopolymerization initiator can be efficiently activated.
  • the exposure amount varies depending on the film thickness and the like, but is usually 50 to 1500 mJ / cm 2 .
  • the unexposed portion is removed by alkaline development to form a negative patterned protective film, particularly a coverlay and a solder resist.
  • a known method such as dipping can be used.
  • the developing solution sodium carbonate, potassium carbonate, potassium hydroxide, amines, imidazoles such as 2-methylimidazole, an alkaline aqueous solution such as tetramethylammonium hydroxide aqueous solution (TMAH), or a mixed solution thereof may be used.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • the protective film may be further irradiated with light, or may be heated at, for example, 150 ° C. or higher.
  • the heating temperature is, for example, 80 to 170 ° C., and the heating time is 5 to 100 minutes. Since the curing of the photosensitive laminated resin structure in the present invention is, for example, a ring-opening reaction of the epoxy resin by a thermal reaction, strain and curing shrinkage can be suppressed as compared with the case where curing proceeds by a photoradical reaction.
  • the exposed portion may be cured by heating the photosensitive laminated resin structure between the exposure step and the developing step.
  • the heating temperature is, for example, 70 to 140 ° C., and the heating time is 2 to 100 minutes.
  • the reaction product was cooled to 80-90 ° C., 106 parts of tetrahydrophthalic anhydride was added, the mixture was reacted for 8 hours, cooled, and then taken out.
  • the resin solution of the photosensitive resin having both an ethylenically unsaturated bond and a carboxyl group thus obtained had a non-volatile content of 65%, a solid acid value of 100 mgKOH / g, and a weight average molecular weight of Mw of about 3,500. ..
  • the weight average molecular weight of the obtained resin was measured by high performance liquid chromatography in which three pumps LC-804, KF-803, and KF-802 manufactured by Shimadzu Corporation were connected.
  • Example 1 ⁇ Adjustment of inorganic filler> (Slurry of inorganic filler X) 50 g of spherical silica particles (SO-C2 manufactured by Admatex, average particle size: 500 nm), 48 g of PMA as a solvent, and 2 g of a silane coupling agent having a methacrylic group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed. , A silica slurry treated with methacrylsilane (silica component 50% by mass) was obtained.
  • Slurry of inorganic filler X 50 g of spherical silica particles (SO-C2 manufactured by Admatex, average particle size: 500 nm), 48 g of PMA as a solvent, and 2 g of a silane coupling agent having a methacrylic group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed. , A silic
  • (Slurry of inorganic filler Y) 50 g of spherical silica particles (SO-C2 manufactured by Admatex, average particle size: 500 nm), 48 g of PMA as a solvent, and 2 g of a silane coupling agent having an epoxy group (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) are uniformly dispersed. , An epoxysilane-treated silica slurry (silica component 50% by mass) was obtained.
  • Slurry of inorganic filler Z 50 g of spherical silica particles (SO-C2 manufactured by Admatex, average particle size: 500 nm), 48 g of PMA as a solvent, and 2 g of a dispersant (BYK-111) are uniformly dispersed, and a silica slurry without surface treatment (silica component 50) is uniformly dispersed. Mass%) was obtained.
  • a photosensitive laminated resin structure was prepared as follows. First, a photosensitive resin composition having the composition shown as the protective layer (B) in Table 1 was applied onto a 35 ⁇ m-thick polyethylene terephthalate (PET) support film and dried to prepare a dry film having the protective layer (B). .. Next, the alkali-soluble resin composition having the composition shown as the filler-filled layer (A) in Table 1 was applied onto the protective layer (B) and dried to prepare a dry film having the filler-filled layer (A).
  • PET polyethylene terephthalate
  • a 15 ⁇ m-thick biaxially stretched polypropylene film was laminated on the surface of the filler-filled layer (A), and the support film (PET film), the protective layer (B), the filler-filled layer (A), and the protective film (OPP film) were formed.
  • a dry film consisting of four layers was prepared.
  • a dry film composed of three layers of a support film, a filler-filled layer (A), and a protective film was produced.
  • a single-sided printed wiring board on which a circuit having a copper thickness of 15 ⁇ m was formed was prepared, and pretreatment was performed using CZ8100 manufactured by MEC.
  • the protective film in contact with the filler-filled layer (A) in each of the dry films of the Examples and Comparative Examples is peeled off and bonded using a vacuum laminator so that the filler-filled layer (A) is in contact with the substrate on the substrate.
  • a photosensitive laminated resin structure was formed on the surface.
  • This substrate is exposed via a step tablet (Kodak No. 2) using an exposure device equipped with a high-pressure mercury lamp (short arc lamp), and after exposure, it is heated at 100 ° C. for 30 minutes and then a protective layer (B). ) Is peeled off and developed (30 ° C, 0.2 MPa, 1 wt% Na 2 CO 3 aqueous solution) in 60 seconds, and the optimum exposure amount is when the pattern of the step tablet remaining is 5 steps. bottom.
  • An electrolytic copper foil having a thickness of 9 ⁇ m was prepared, and the protective film in contact with the filler-filled layer (A) in each of the dry films of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4 was peeled off.
  • a photosensitive laminated resin structure was formed on the electrolytic copper foil by laminating the filler-filled layer (A) with a vacuum laminator so that the filler-filled layer (A) was in contact with the glossy surface of the electrolytic copper foil.
  • the photosensitive laminated resin structure was exposed to the entire surface at the above optimum exposure amount using an exposure apparatus equipped with a high-pressure mercury lamp, baked at 100 ° C.
  • the film is developed with a 1 wt% sodium carbonate aqueous solution at 30 ° C. under the condition of a spray pressure of 0.2 MPa for 60 seconds, and further irradiated with ultraviolet rays under the condition of an integrated exposure of 1000 mJ / cm 2 in a UV conveyor furnace, and then 150 ° C. It was cured by heating for 60 minutes.
  • the electrolytic copper foil is removed by etching with an etching solution having a composition of 340 g / l of cupric chloride and a free hydrochloric acid concentration of 51.3 g / l, and the copper foil is thoroughly washed with water and dried to obtain each photosensitive laminated resin.
  • a cured film made of a structure was produced.
  • the average coefficient of linear thermal expansion when the temperature was changed from -30 ° C to 250 ° C was measured using TMA-Q400EM manufactured by TA Instruments (sample width 5 mm, measuring jig interval 15 mm, load). was measured as film thickness ( ⁇ m) ⁇ 0.5 g weight).
  • a single-sided printed wiring board on which a circuit having a copper thickness of 15 ⁇ m was formed was prepared, and pretreatment was performed using CZ8100 manufactured by MEC.
  • the protective film in contact with the filler-filled layer (A) in each of the dry films of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4 is peeled off, and the filler-filled layer (A) is in contact with the substrate.
  • a photosensitive laminated resin structure was formed on the substrate by laminating using a vacuum laminator.
  • a negative pattern having via aperture diameters of 500 ⁇ m, 300 ⁇ m, 150 ⁇ m, 100 ⁇ m, and 80 ⁇ m was used as a negative mask for evaluating resolution on this substrate, and a pattern was exposed at the above optimum exposure amount using an exposure apparatus equipped with a high-pressure mercury lamp. After baking at ° C for 30 minutes, the PET film in contact with the protective layer (B) is peeled off, and development is performed with a 1 wt% sodium carbonate aqueous solution at 30 ° C for 60 seconds under a spray pressure of 0.2 MPa to obtain a solder resist pattern.
  • This substrate is irradiated with ultraviolet rays under the condition of an integrated exposure of 1000 mJ / cm 2 in a UV conveyor furnace, then heated at 150 ° C. for 60 minutes to be cured, and a test piece provided with a cured product made of each photosensitive laminated resin structure. Was produced. In each of the obtained test pieces, the pattern opening was observed by SEM and the minimum opening diameter was evaluated.
  • Electroless gold plating resistance Using the test pieces of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4 described in the above (evaluation of resolution), commercially available electroless nickel plating baths and electroless gold plating baths. After plating under the conditions of nickel 0.5 ⁇ m and gold 0.03 ⁇ m, the presence or absence of peeling of the laminated resin structure and the presence or absence of plating penetration were evaluated by tape peeling, and then the laminated resin structure was subjected to tape peeling. The presence or absence of peeling was evaluated. The judgment criteria are as follows. ⁇ : No soaking or peeling is seen. ⁇ : Slight penetration is confirmed after plating, but it does not peel off after tape peeling. X: There is peeling after plating.
  • a substrate on which a 2 mm copper line pattern was formed was prepared and pretreated using CZ8100 manufactured by MEC.
  • Each of the above-mentioned Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4 are performed on this substrate in the same manner as in the method described in the above (evaluation of resolution (evaluation of minimum aperture diameter)).
  • a photosensitive laminated resin structure was formed using a dry film.
  • the PET film in contact with the protective layer (B) is peeled off, and the method according to the above (resolution evaluation (evaluation of minimum aperture diameter)).
  • the film was cured by irradiation with ultraviolet rays and heating to prepare a substrate for evaluating each crack resistance.
  • This evaluation substrate was placed in a thermal cycle machine in which a temperature cycle was performed between ⁇ 65 ° C. for 30 minutes and 175 ° C. for 30 minutes, and TCT (Thermal Cycle Test) was performed. Then, the appearance at 600 cycles and 1000 cycles was observed by SEM, and the occurrence of cracks was evaluated according to the following criteria.
  • No abnormality in 1000 cycles.
  • Cracks occur in 1000 cycles.
  • Cracks occur in 600 cycles.
  • a 25 ⁇ m-thick polyimide film (Kapton 100H manufactured by Toray DuPont) was prepared, and the filler-filled layer (A) in each of the dry films of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4 was prepared.
  • a photosensitive laminated resin structure was formed on the polyimide film by peeling off the protective film in contact with the polyimide film and laminating the filler-filled layer (A) so as to be in contact with one side of the polyimide film using a vacuum laminator. Next, the photosensitive laminated resin structure was exposed to the entire surface at the optimum exposure amount using an exposure apparatus equipped with a high-pressure mercury lamp, baked at 100 ° C.
  • the sample for evaluation of low warpage was cut out to 50 mm ⁇ 50 mm, placed on a horizontal table, and the heights of the four corners were measured to obtain an average value, which was evaluated according to the following criteria.
  • Warpage is less than 4 mm.
  • The warp is 4 mm or more and less than 8 mm.
  • X The warp is 8 mm or more.
  • the photosensitive laminated resin structures of Examples 1-1 to 1-9 have low CTE, but also have good adhesion, plating resistance, and resolution, and cracks. It can be seen that it is also excellent in resistance.
  • Example 2 ⁇ Preparation of resin composition> According to the formulation shown in Table 2 below, the materials shown in Table 2 were blended, premixed with a stirrer, and then kneaded with a three-roll mill to prepare each resin composition. Unless otherwise specified, the values in the table are parts by mass and are the contents excluding the organic solvent.
  • a photosensitive laminated resin structure was prepared as follows. First, the composition of Table 2 corresponding to the protective layer (B) shown in Tables 3 and 4 is applied onto a polyethylene terephthalate (PET) supporting film having a thickness of 35 ⁇ m and dried to obtain a dry film having the protective layer (B). Made. Next, the composition of Table 2 corresponding to the filler-filled layer (hereinafter referred to as the colored layer (A)) shown in Tables 3 and 4 is applied onto the protective layer (B) and dried to obtain the colored layer (A). A dry film having a packed bed was prepared.
  • PET polyethylene terephthalate
  • a 15 ⁇ m-thick biaxially stretched polypropylene (OPP) film is laminated on the surface of the colored layer (A), and a support film (PET film), a protective layer (B), a colored layer (A), and a protective film (OPP film) are laminated.
  • a dry film consisting of four layers was prepared.
  • a dry film consisting of a support film, a protective layer (B) and a protective film and for Comparative Example 2-5, a dry film composed of three layers of a support film, a colored layer (A) and a protective film was produced. bottom.
  • a single-sided printed wiring board on which a circuit having a copper thickness of 15 ⁇ m was formed was prepared, and pretreatment was performed using CZ8100 manufactured by MEC.
  • the protective film in contact with the colored layer (A) in each of the dry films of the Examples and Comparative Examples is peeled off and bonded to the substrate by using a vacuum laminator so that the colored layer (A) is in contact with the substrate.
  • a sex laminated resin structure was formed.
  • This substrate is exposed via a step tablet (Kodak No. 2) using an exposure device equipped with a high-pressure mercury lamp (short arc lamp), and after exposure, it is heated at 100 ° C. for 30 minutes and then a protective layer (B). ) Is peeled off and developed (30 ° C, 0.2 MPa, 1 wt% Na 2 CO 3 aqueous solution) in 60 seconds, and the optimum exposure amount is when the pattern of the step tablet remaining is 5 steps. bottom.
  • a single-sided printed wiring board on which a circuit having a copper thickness of 15 ⁇ m was formed was prepared, and pretreatment was performed using CZ8100 manufactured by MEC.
  • the protective film in contact with the colored layer (A) in each of the dry films of Examples 2-1 to 2-14 and Comparative Examples 2-1 to 2-5 is peeled off so that the colored layer (A) is in contact with the substrate.
  • a photosensitive laminated resin structure was formed on the substrate by laminating using a vacuum laminator. Using an exposure apparatus equipped with a high-pressure mercury lamp on this substrate, the entire surface was exposed at each optimum exposure amount, heated at 100 ° C. for 30 minutes, and then the PET film in contact with the protective layer (B) was peeled off.
  • the film was developed with a 1 wt% sodium carbonate aqueous solution at 30 ° C. for 60 seconds under a spray pressure of 0.2 MPa, heated at 150 ° C. for 60 minutes to cure, and a test piece for measuring reflectance was obtained.
  • the Y value of the XYZ color system was measured using a colorimeter CR-400 manufactured by Minolta. (The Y value is the Y value of the XYZ color system, and the larger the value, the higher the reflectance.)
  • the judgment criteria are as follows. ⁇ : Y value ⁇ 80 ⁇ : 80> Y value ⁇ 75 ⁇ : 75> Y value ⁇ 70 ⁇ : 70> Y value
  • the via opening diameter was used as a negative mask for resolution evaluation at the time of exposure.
  • the pattern exposure was performed at each optimum exposure amount through a negative mask having a negative pattern of 500 ⁇ m, 300 ⁇ m, 150 ⁇ m, 100 ⁇ m, and 80 ⁇ m.
  • a test piece for evaluating the resolution was obtained. For each of the obtained test pieces, the pattern opening was observed by SEM and the minimum opening diameter was evaluated.
  • Electroless gold plating resistance Using the test pieces of Examples 2-1 to 2-14 and Comparative Examples 2-1 to 2-5 described in the above (evaluation of resolution), commercially available electroless nickel plating baths and electroless gold plating baths. After plating under the conditions of nickel 0.5 ⁇ m and gold 0.03 ⁇ m, the presence or absence of peeling of the resist layer and the presence or absence of plating penetration were evaluated by tape peeling, and then the resist layer was peeled off by tape peeling. The presence or absence was evaluated. The judgment criteria are as follows. ⁇ : No soaking or peeling is seen. ⁇ : Slight penetration is confirmed after plating, but it does not peel off after tape peeling. X: There is peeling after plating.
  • ⁇ E * ab is a calculation of the difference between the initial value and the post-accelerated deterioration in the L * a * b * color system, and the larger the value, the larger the discoloration.
  • the evaluation criteria are as follows. ⁇ : ⁇ E * ab ⁇ 1.0 ⁇ : 1.0 ⁇ ⁇ E * ab ⁇ 1.5 ⁇ : 1.5 ⁇ ⁇ E * ab ⁇ 3.0 ⁇ : 3.0 ⁇ ⁇ E * ab
  • Example 3 ⁇ Preparation of resin composition> According to the formulation shown in Table 5 below, the materials shown in Table 5 were each blended, premixed with a stirrer, and then kneaded with a three-roll mill to prepare each resin composition. Unless otherwise specified, the values in the table are parts by mass and are the contents excluding the organic solvent.
  • a photosensitive laminated resin structure was prepared as follows. First, the composition of Table 5 corresponding to the protective layer (B) shown in Table 6 was applied onto a 35 ⁇ m-thick polyethylene terephthalate (PET) support film and dried to prepare a dry film having the protective layer (B). .. Next, the composition of Table 5 corresponding to the filler-filled layer (A) (hereinafter referred to as the heat radiation layer (A)) shown in Table 6 is applied onto the protective layer (B), dried, and the heat radiation layer (A) is dried. A dry film having the above was prepared.
  • the composition of Table 5 corresponding to the protective layer (B) shown in Table 6 was applied onto a 35 ⁇ m-thick polyethylene terephthalate (PET) support film and dried to prepare a dry film having the protective layer (B). ..
  • the composition of Table 5 corresponding to the filler-filled layer (A) (hereinafter referred to as the heat radiation layer (A)) shown in Table 6 is applied onto the protective layer
  • a 15 ⁇ m-thick biaxially stretched polypropylene (OPP) film is laminated on the surface of the heat radiating layer (A), and a support film (PET film), a protective layer (B), a heat radiating layer (A), and a protective film (OPP film) are laminated.
  • a dry film consisting of four layers was prepared.
  • a single-sided printed wiring board on which a circuit having a copper thickness of 15 ⁇ m was formed was prepared, and pretreatment was performed using CZ8100 manufactured by MEC.
  • the protective film in contact with the heat radiating layer (A) in each of the dry films of Examples 3-1 to 3-8 and Comparative Examples 3 to 1 to 3-3 is peeled off so that the heat radiating layer (A) is in contact with the substrate.
  • a photosensitive laminated resin structure was formed on the substrate by laminating using a vacuum laminator. This substrate is exposed via a step tablet (Kodak No. 2) using an exposure device equipped with a high-pressure mercury lamp (short arc lamp), and after exposure, it is heated at 100 ° C. for 30 minutes and then a protective layer (B). ) Is peeled off and developed (30 ° C, 0.2 MPa, 1 wt% Na 2 CO 3 aqueous solution) in 60 seconds, and the optimum exposure amount is when the pattern of the step tablet remaining is 5 steps. bottom.
  • a 50 ⁇ m Teflon sheet is attached to one side of an etchout substrate having a thickness of 0.8 mm, and then the heat dissipation layer (A) of each of the dry films of Examples 3-1 to 3-8 and Comparative Examples 3 to 1 to 3-3. ) was peeled off and bonded using a vacuum laminator so that the heat radiating layer (A) was in contact with the Teflon sheet. Then, each of the bonded dry films was exposed to the entire surface at each optimum exposure amount using an exposure apparatus equipped with a high-pressure mercury lamp, and heated at 100 ° C. for 30 minutes.
  • the PET film in contact with the protective layer (B) was peeled off, developed with a 1 wt% sodium carbonate aqueous solution at 30 ° C. under the condition of a spray pressure of 0.2 MPa for 60 seconds, and heated at 150 ° C. for 60 minutes to cure. Then, the cured dry film (cured film) was peeled off from the Teflon sheet to obtain a test piece for measuring thermal conductivity.
  • the thermal conductivity of each of the obtained test pieces was measured using "Periodic heating method thermal diffusivity measuring device FTC-RT" manufactured by Advance Riko Co., Ltd. The thermal conductivity of each test piece is shown in Table 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Materials For Photolithography (AREA)

Abstract

高充填するフィラー特有の特性機能を高度に維持しつつ、解像性に優れた感光性積層樹脂構造体等を提供する。フィラー充填層(A)と、保護層(B)とを有する感光性積層樹脂構造体であって、前記フィラー充填層(A)は、光重合開始剤を実質的に含まず、かつフィラー含有率が有機溶剤を除く全成分中に10~80質量%であり、前記保護層(B)は、フィラー含有率が、前記フィラー充填層(A)のフィラー含有率に対して0~25質量%であることを特徴とする感光性積層樹脂構造体等である。

Description

感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
 本発明は、パッケージ基板の樹脂絶縁層、発光ダイオード(LED)等の発光素子が実装されるプリント配線板の保護膜、樹脂絶縁層などに有用な、解像性に優れた感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、ならびに該硬化物からなる樹脂絶縁層や保護層を有するパッケージ基板やプリント配線板などの電子部品に関する。
 近年、電子機器の小型化、高性能化に伴い、回路基板に用いられる絶縁材料には、微細パターンの形成や熱膨張率の更なる低減などが求められている。
 これに対し従来、このような絶縁材料の低熱膨張化を図る手段としては、シリカ等のフィラー成分を組成物中に高充填化する方法が一般的に知られている。中でも球状シリカは、充填性に優れ、熱膨張係数(CTE)が低いことから、ソルダーレジスト等の感光性樹脂組成物の特性向上に広く用いられてきた(特許文献1参照)。
 また、近年、プリント配線板においては、携帯端末、パソコン、テレビ等のディスプレイのバックライト、また照明器具の光源などの分野で、低電力で発光するLEDを直接実装する設計が増えている(特許文献2参照)。
 例えば、ディスプレイ分野では、赤・青・緑の微細な発光素子を配列してなるミニLEDディスプレイ、マイクロLEDディスプレイの開発が盛んにおこなわれており、これらのアプリケーションに用いられる保護膜にも発光素子のサイズに応じた微細なパターン形成(解像性)が求められる。
 また、このようなLEDを実装するプリント配線板の保護膜として被覆形成されるソルダーレジスト等には、通常要求される耐溶剤性、表面硬度、はんだ耐熱性、電気絶縁性等の特性に加え、LEDの発光を有効に利用することができるよう、光の反射率に優れた白色の保護膜が所望される。
 そのため、かかる保護膜には、光の反射率を高めるため、保護膜に酸化チタン等のフィラーを多く含有することが一般的である。
 また、近年、半導体素子の高機能化、プリント配線板への電子部品実装の高密度化が進んでいる。そして、これらの半導体素子や電子部品を高密度に集積したパッケージ部品では発熱による不具合が大きな課題となっており、半導体素子や電子部品を実装する回路基板には、優れた放熱性が求められている。例えば、特許文献3では、銅やアルミニウムなどの金属板を使用し、この金属板の片面又は両面に、プリプレグや熱硬化性樹脂組成物などの電気絶縁層を介して回路パターンを形成する金属ベース基板が開示されている。
 しかしながら、かかる金属ベース基板では、電気絶縁層の熱伝導性が悪いために絶縁層を薄くしなければ優れた放熱性が得られず、一方で、絶縁層を薄くした場合には、厚み方向の絶縁耐圧が不足するといった問題が生じる場合があった。
 そこで、最近では、プリント配線板の保護膜であるソルダーレジストの放熱性を高める要求があり、熱伝導性の高いアルミナ等の無機フィラーを導入することが検討されている(特許文献4)。
特開2014-81611号公報 特開2007-249148号公報 特開平6-224561号公報(特許請求の範囲) 特開2007-254688号公報(特許請求の範囲)
 しかしながら、このようなフィラー成分を高充填した感光性樹脂組成物では、かかる樹脂組成物からなる塗膜をパターン露光する際に、照射光がフィラー成分と樹脂成分等との界面で反射・散乱し、遮光領域(未露光部)まで光硬化が進行する現象(いわゆるハレーション)が生じるため、解像性が悪化するという問題があった。
 また、塗膜が高膜厚である場合には、塗膜深部での照射光の減衰が大きく、塗膜深部の光硬化性が十分に得られないため、現像後のパターンがアンダーカット形状になり、下地の基材との密着性が低下し、金めっき処理等で剥離が生じるという問題があった。さらに、このようなフィラー成分を高充填した感光性樹脂組成物からなる硬化塗膜では、例えば、低熱膨張化するものの機械特性として靭性が低く(脆く)なるため、冷熱サイクル試験にて十分なクラック耐性が得られないことがあった。
 また、白色の保護膜を備えるLED搭載用基板の製造プロセスやLED素子の実装プロセスでは、LED搭載前の基板を重ねて保管、搬送することや、基板を金属製のラック等に収容して処理を行うことがあるため、基板表面の白色の保護膜同士や基板表面の白色の保護膜と金属製ラック等が接触することにより、保護膜の表面に、傷や削れた金属粉等が付着し、変色する(いわゆるスクラッチ痕)といった課題がある。このような課題は、LED搭載用基板としての外観を損なうだけでなく、光の反射率を低下させる原因となる。また、光の反射率を高める目的で酸化チタン等のフィラーを用いた保護膜では、フォトリソグラフィーによりパターンを形成する場合、これらのフィラーの光の反射率や含有量に比例して、保護膜の層内にて光(UV)が乱反射を生じ、結果として解像性が悪化する。すなわち保護膜の光の反射率と解像性はトレードオフの関係にある。
 また、回路基板の表層に形成されるソルダーレジスト等の保護膜にアルミナ等の放熱性の無機フィラーを用いた場合でも、基板製造プロセスにて、基板を重ねて保管、搬送することや、基板を金属製のラック等に収容して処理を行う際に、上述したスクラッチ痕の課題が生じる。また、放熱性を高める目的でアルミナ等の放熱性フィラーを高充填した保護膜でも、フォトリソグラフィーによりパターンを形成する場合、これらのフィラーの含有量に比例して、解像性が悪化する。すなわち保護膜の放熱性と解像性にもトレードオフの関係がある。
 そこで本発明の主たる目的は、高充填するフィラー特有の特性機能を高度に維持しつつ、解像性に優れた感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することにある。
 また、本発明の第一のさらなる目的は、低熱膨張率でありながら、密着性、めっき耐性、クラック耐性および解像性に優れた感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することにある。
 本発明の第二のさらなる目的は、スクラッチ痕が発生しにくく、高反射率でありながら、高解像性が得られる感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することにある。
 本発明の第三のさらなる目的は、スクラッチ痕が発生しにくく、高放熱性でありながら、高解像性が得られる感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、フィラー成分を特定の含有率で含む非感光性樹脂層と、かかる非感光性樹脂層に比べてフィラー成分の含有率が少ない感光性樹脂層を積層してなる積層樹脂構造体であれば、かかる課題を解決し得ることを見出し、本発明を完成するに至った。
 即ち、本発明の感光性積層樹脂構造体は、
 フィラー充填層(A)と、保護層(B)とを有する感光性積層樹脂構造体であって、
 前記フィラー充填層(A)は、光重合開始剤を実質的に含まず、かつ、フィラー含有率が有機溶剤を除く全成分中に10~80質量%であり、
 前記保護層(B)は、フィラー含有率が前記フィラー充填層(A)のフィラー含有率に対して0~25質量%であることを特徴とするものである。
 本発明の感光性積層樹脂構造体は、前記フィラー充填層(A)の層厚が前記保護層(B)の層厚よりも厚いことが好ましい。
 本発明の感光性積層樹脂構造体は、前記フィラーが、シリカであることが好ましい。
 本発明の感光性積層樹脂構造体は、前記フィラーが、酸化チタンであり、
 前記保護層(B)は、前記酸化チタンの含有率が、前記フィラー充填層(A)の前記酸化チタンの含有率に対して0~20質量%であることが好ましい。
 本発明の感光性積層樹脂構造体は、前記フィラーが、熱伝導率が10W/m・Kよりも高い放熱性フィラーであり、
 前記フィラー充填層(A)は、前記放熱性フィラーの含有率が有機溶剤を除く全成分中に50~80質量%以上であり、
 前記保護層(B)は、前記放熱性フィラーの含有率が、前記フィラー充填層(A)の前記放熱性フィラーの含有率に対して0~20質量%であることが好ましい。
 本発明のドライフィルムは、前記感光性積層樹脂構造体の少なくとも片面が、フィルムで支持または保護されてなることを特徴とするものである。
 本発明の硬化物は、前記感光性積層樹脂構造体または前記ドライフィルムの感光性積層樹脂構造体からなることを特徴とするものである。
 本発明の電子部品は、前記硬化物を有することを特徴とするものである。
 本発明によれば、高充填するフィラー特有の特性機能を高度に維持しつつ、解像性に優れた感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することができる。
 また、(フィラーとして低熱膨張機能を有するものを含む)本発明によれば、低熱膨張率でありながら、密着性、めっき耐性、クラック耐性および解像性に優れた感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することができる。
 また、(フィラーとして白色着色剤等の光反射機能を有するものを含む)本発明によれば、スクラッチ痕が発生しにくく、高反射率でありながら、高解像性のパターン形成が可能な感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、及び該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することができる。
 また、(フィラーとして放熱機能を有するものを含む)本発明によれば、スクラッチ痕が発生しにくく、高放熱性でありながら、高解像性のパターン形成が可能な感光性積層樹脂構造体、該感光性積層樹脂構造体を有するドライフィルム、及び該感光性積層樹脂構造体の硬化物、および該硬化物を有する電子部品を提供することができる。
本発明のドライフィルムの一例を模式的に示す図である。 本発明の感光性積層樹脂構造体を用いたプリント配線板の製造方法の一例を模式的に示す工程図である。
 以下、本発明の実施の形態について詳述する。
 本発明の感光性積層樹脂構造体は、フィラー充填層(A)と、保護層(B)とを有する感光性積層樹脂構造体であって、前記フィラー充填層(A)は、光重合開始剤を実質的に含まず、かつフィラー含有率が有機溶剤を除く全成分中に10~80質量%であり、前記保護層(B)は、フィラー含有率が前記フィラー充填層(A)のフィラー含有率に対して0~25質量%であることを特徴とするものである。
 上記第一のさらなる目的においては、前記フィラーがシリカであることが好ましい。
 上記第二のさらなる目的においては、本発明の感光性積層樹脂構造体は、フィラー充填層(A)と、保護層(B)とを有する感光性積層樹脂構造体であって、前記フィラー充填層(A)は、光重合開始剤を実質的に含まず、着色剤として酸化チタンを含有し、かつ前記酸化チタンの含有率が、有機溶剤を除く全成分中に10~80質量%であり、前記保護層(B)は、酸化チタンの含有率が、前記フィラー充填層(A)の酸化チタンの含有率に対して0~20質量%であることを特徴とするものである。この場合、本発明において「フィラー充填層(A)」は「着色層(A)」とも呼称される。
 上記第三のさらなる目的においては、本発明の感光性積層樹脂構造体は、フィラー充填層(A)と、保護層(B)とを有する感光性積層樹脂構造体であって、前記フィラー充填層(A)は、光重合開始剤を実質的に含まず、熱伝導率が10W/m・Kよりも高い放熱性フィラーを含有し、かつ前記放熱性フィラーの含有率が、有機溶剤を除く全成分中に50~80質量%であり、前記保護層(B)は、前記放熱性フィラーの含有率が、前記フィラー充填層(A)の前記放熱性フィラーの含有率に対して0~20質量%であることを特徴とするものである。この場合、本発明において「フィラー充填層(A)」は「放熱層(A)」とも呼称される。
 本発明においては、上記のような感光性積層樹脂構造体としたことが肝要であり、フィラーが充填された前記フィラー充填層(A)に、フィラー含有率がフィラー充填層(A)のフィラー含有率に対して一定割合以下(0を含む)の前記保護層(B)を設け、かつ、前記フィラー充填層(A)が光重合開始剤を実質的に含まないことによって、解像性が良好となる。さらに、第一のさらなる目的においては、低熱膨張率であり、密着性に優れた硬化物を、第二のさらなる目的においては、高反射率でありながら、スクラッチ痕が生じにくい硬化物を、また、第三のさらなる目的においては、高放熱性でありながら、スクラッチ痕が生じにくい硬化物を得ることができる。
 さらに、解像性がより優れることから、また、第二のさらなる目的においては高反射率およびリフロー後の変色耐性の観点からも、また、第三のさらなる目的においては高放熱性の観点からも、前記フィラー充填層(A)の層厚は、前記保護層(B)の層厚よりも厚いことが好ましい。例えば、前記フィラー充填層(A)の層厚は、前記保護層(B)の層厚の1.0倍超であることが好ましく、1.5倍以上であることがより好ましく、2.0倍以上であることがさらに好ましい。
 前記フィラー充填層(A)の層厚は、下地の基材に形成された回路間を隙間なく被覆するため、第二のさらなる目的においては十分な着色性を発現するためにも、例えば、3~60μmであるがこれに限られない。前記フィラー充填層(A)の層厚は、例えば10~60μmであってもよい。
 前記保護層(B)の層厚は、露光部の現像液に対する耐溶解性、また、第一のさらなる目的においてはめっき耐性およびクラック耐性の観点から、例えば、0.5~20μm厚さであるがこの限りではない。
 本発明の感光性積層樹脂構造体は、第二のさらなる目的においては、前記フィラー充填層(A)が白色であることが好ましく、また、前記積層樹脂構造体を前記保護層(B)側から視認した場合に白色であることがより好ましい。
 また、本発明の感光性積層樹脂構造体は、前記フィラー充填層(A)がアルカリ溶解性樹脂および熱反応性化合物を含むことが好ましい。また、前記保護層(B)がアルカリ溶解性樹脂、光重合開始剤、熱反応性化合物を含むことが好ましい。即ち、前記フィラー充填層(A)および前記保護層(B)は、その未露光部がアルカリ水溶液に可溶であることが好ましい。
 本発明の感光性積層樹脂構造体において、フィラー充填層(A)は、前述したハレーションの発生を抑制し、解像性を向上する観点から光重合開始剤を実質的に含まない。このフィラー充填層(A)は、基材面側にラミネートされると、光重合開始剤を含まなくても、外層側の保護層(B)が露光および現像によりパターン形成が可能であれば、保護層(B)とフィラー充填層(A)とが現像によりパターンを一括形成することが可能となる。
 尚、本発明において光重合開始剤を実質的に含まないとは、フィラー充填層(A)の単独層にて光重合性を有さないことである。
 保護層(B)は、光重合開始剤として、光照射により塩基性物質を生成する機能を有する化合物を含有することが好ましい。また、保護層(B)は、解像性の観点から、分子量1000以下のラジカル重合可能な不飽和二重結合を有する低分子量化合物を実質的に含まないことが好ましい。
 以下、フィラー充填層(A)、保護層(B)についてさらに詳述する。
[フィラー充填層(A)]
 フィラー充填層(A)は、特定の含有率のフィラーを含み、光重合開始剤を実質的に含まないアルカリ溶解性熱硬化性樹脂組成物からなることが好ましく、さらにアルカリ溶解性樹脂および熱反応性化合物を含むアルカリ溶解性熱硬化性樹脂組成物からなることがより好ましい。
(フィラー)
 フィラーは無機フィラーであることが好ましい。無機フィラーは、通常の樹脂組成物に用いられる公知の無機フィラーを用いることができる。具体的には、例えば、シリカ、硫酸バリウム、炭酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化ベリリウム(べリリア)、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、マイカ、タルク、有機ベントナイト、ダイヤモンドなどの非金属フィラーや、銅、金、銀、パラジウム、シリコーンなどの金属フィラーが挙げられる。これらは単独で又は2種以上を組合せて使用することができる。
 第一のさらなる目的においては、無機フィラーのなかでも、熱膨張係数が低く、酸やアルカリ等に対して安定であるため、シリカがより好ましい。また、2種以上組み合わせる場合、組み合わせは特に限定されないが、より好ましいシリカと他の無機フィラーの組み合わせが好ましく、例えば、シリカと硫酸バリウムの組み合わせ等が挙げられる。
 シリカとしては、球状シリカが好ましい。球状シリカとしては、例えば以下のように測定される真球度が、0.8以上のものが挙げられるが、球状であればよく、真球のものに限定されるものではない。
 真球度の測定は、SEMで写真を撮り、その観察される粒子の面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)}として算出される。具体的には、画像処理装置を用いて100個の粒子について測定した平均値を採用する。
 市販されているシリカとしては、例えば、アドマテックス社製のアドマファインSO-C2、SO-E2、アドマナノシリーズ、デンカ社製のSFP-20M、SFP-30M、デンカ社製のUFP-30、日本触媒社製のシーホスターシリーズ、堺化学工業社製のSciqasシリーズ、共立マテリアル社製のSG-SO100等の球状シリカが挙げられる。
 第一のさらなる目的においては、無機フィラーの平均粒子径は0.5μm以下であることが好ましい。0.5μm以下だと解像性の低下を抑えることができる。ここで、本明細書において、フィラーの平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、マイクロトラック・ベル社製のMicrotrac MT3300EXIIが挙げられる。
 第二のさらなる目的においては、この無機フィラーとしては、白色着色剤等の光反射機能を有するものであればよいが、フィラー充填層(A)が白色を呈する無機フィラーであることが好ましく、酸化チタンであることがより好ましい。この酸化チタンは特に限定されず、ルチル型酸化チタンでもアナターゼ型酸化チタンでもよいが、着色性、隠蔽性および安定性からルチル型チタンを用いることが好ましい。同じ酸化チタンであるアナターゼ型酸化チタンは、ルチル型酸化チタンと比較して白色度が高く、白色顔料としてよく使用されるが、アナターゼ型酸化チタンは、光触媒活性を有するために、特にLEDから照射される光により、樹脂の変色を引き起こすことがある。これに対し、ルチル型酸化チタンは、白色度はアナターゼ型と比較して若干劣るものの、光活性を殆ど有さないために、酸化チタンの光活性に起因する光による樹脂の劣化(黄変)が顕著に抑制され、また熱に対しても安定である。酸化チタンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。酸化チタンの平均粒子径は特に限定されないが、0.3μm~10.0μmであるものが好ましく、0.5μm~5.0μmであるものがさらに好ましい。また、フィラー充填層(A)は、着色剤として、ブルーイング剤を併用してもよい。
 市販されているルチル型酸化チタンとしては、例えば、タイペークR-820、タイペークR-830、タイペークR-930、タイペークR-550、タイペークR-580、タイペークR-630、タイペークR-680、タイペークR-670、タイペークR-680、タイペークR-670、タイペークR-780、タイペークR-820、タイペークR-850、タイペークCR-50、タイペークCR-57、タイペークCR-Super70、タイペークCR-80、タイペークCR-90、タイペークCR-93、タイペークCR-95、タイペークCR-97、タイペークCR-60、タイペークCR-63、タイペークCR-67、タイペークCR-58、タイペークCR-85、タイペークUT771(石原産業社製)、タイピュアR-100、タイピュアR-101、タイピュアR-102、タイピュアR-103、タイピュアR-104、タイピュアR-105、タイピュアR-108、タイピュアR-900、タイピュアR-902、タイピュアR-960、タイピュアR-706、タイピュアR-931(デュポン社製)、R-25、R-21、R-32、R-7E、R-5N、R-61N、R-62N、R-42、R-45M、R-44、R-49S、GTR-100、GTR-300、D-918、TCR-29、TCR-52、FTR-700(堺化学工業社製)、TR-600、TR-700、TR-750、TR-840(富士チタン工業社製)、KR270、KR310、KR380(チタン工業社製)等を使用することができる。
 また、アナターゼ型酸化チタンとしては、公知のものを使用することができる。市販されているアナターゼ型酸化チタンとしては、TITON A-110、TITON TCA-123E、TITON A-190、TITON A-197、TITON SA-1、TITON SA-1L(堺化学工業社製)、TA-100、TA-200、TA-300、TA-400、TA-500、TP-2(富士チタン工業社製)、TITANIX JA-1、TITANIX JA-3、TITANIX JA-4、TITANIXJA-5、TITANIX JA-C(テイカ社製)、KA-10、KA-15、KA-20、KA-30、KA-35、KA-90(チタン工業社製)、タイペークA-100、タイペークA-220、タイペークW-10(石原産業社製)等を使用することができる。
 第三のさらなる目的においては、この無機フィラーとしては、放熱性を有するものであればよいが、熱伝導率が10W/m・Kよりも高い放熱性フィラーがより好ましい。この熱伝導率が10W/m・Kよりも高い放熱性フィラーとしては、酸化アルミニウム(Al)、ダイヤモンド、べリリア(BeO)、窒化アルミニウム(AlN)、窒化ホウ素、窒化ケイ素、マグネシア、などからなるフィラーが挙げられる。前記放熱性フィラーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。前記放熱性フィラーの中でも酸化アルミニウムは、化学的にも安定で、コストに優れ、絶縁性にも優れている。特に、球状の酸化アルミニウムを用いることで高充填した際の粘度上昇を和らげることができる。球状の酸化アルミニウムとしては、例えば上記のように測定される真球度が、0.8以上のものが挙げられるが、球状であればよく、真球のものに限定されるものではない。
 第三のさらなる目的において、前記放熱性フィラーの平均粒子径は、特に限定されないが、好ましくは0.01μm~30μm、より好ましくは0.01μm~20μmである。平均粒子径が、0.01μm以上であると、組成物の粘度が高くなりすぎず、分散が容易であり、被塗布物への塗布も容易となる。一方、平均粒子径が、30μm以下であると、塗布膜が薄い場合であっても、放熱性フィラーの頭出しが発生しにくく、また、沈降速度が速くなり過ぎず保存安定性が良好となる。また、最密充填となるような粒度分布を持つ2種類以上の平均粒子径のものを配合することにより、更に高充填にすることができ、保存安定性、熱伝導率の両側面から好ましい。
 無機フィラーは表面処理されていてもよい。無機フィラーの表面処理方法は特に限定されず、公知慣用の方法を用いればよいが、より低熱膨張の硬化物が得られることから、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で無機フィラーの表面を処理することが好ましい。
 カップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコアルミネート系等のカップリング剤が使用できる。中でもシラン系カップリング剤が好ましい。かかるシラン系カップリング剤の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができ、これらは単独で、あるいは併用して使用することができる。これらのシラン系カップリング剤は、あらかじめ無機フィラーの表面に吸着あるいは反応により固定化されていることが好ましく、さらに分散性を向上する観点から、予め有機溶剤に分散(スラリー化)して配合することがより好ましい。
 前記フィラー充填層(A)におけるフィラーの含有率は、有機溶剤を除く全成分中に10~80質量%である。
 第一のさらなる目的においては、前記フィラー充填層(A)におけるシリカの含有率は、有機溶剤を除く全成分中に、30~70質量%であることが好ましい。このような範囲であれば、低熱膨張性を維持しつつ、ハレーションや靭性の悪化を低減することができる。第二のさらなる目的においては、前記フィラー充填層(A)における酸化チタンの含有率は、有機溶剤を除く全成分中に、好ましくは15~80質量%、より好ましくは20~70質量%である。第三のさらなる目的においては、前記フィラー充填層(A)における前記放熱性フィラーの含有率は、有機溶剤を除く全成分中に50~80質量%である。
(アルカリ溶解性樹脂)
 アルカリ溶解性樹脂としては、フェノール性水酸基、カルボキシル基のうち1種以上の官能基を含有し、アルカリ水溶液で現像可能な樹脂であればよい。好ましくは、フェノール性水酸基を有する化合物、カルボキシル基を有する化合物、フェノール性水酸基およびカルボキシル基を有する樹脂が挙げられる。アルカリ溶解性樹脂は、エチレン性不飽和二重結合を有していてもよい。例えば、従来からソルダーレジスト組成物として用いられている、カルボキシル基含有樹脂が挙げられる。カルボキシル基含有樹脂は、カルボキシル基含有感光性樹脂であってもよい。アルカリ溶解性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アルカリ溶解性樹脂の具体例としては、以下に列挙するような化合物(オリゴマーおよびポリマーのいずれでもよい)が挙げられる。
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
 (5)上記(2)または(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。
 (6)上記(2)または(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。
 (7)多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。
 (8)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。
 (9)多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。
 (12)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。
 (13)カルボキシル基および/又はフェノール性水酸基含有カルボン酸無水物と、カルボキシル基および/又はフェノール性水酸基含有アミンなどのアミン類との反応、および必要に応じてその他のカルボン酸無水物、アミン、イソシアネートとの反応によって得られるアルカリ溶解性ポリイミド樹脂。
 (14)上記(1)~(13)等に記載のアルカリ溶解性樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるアルカリ溶解性樹脂。
 上記アルカリ溶解性樹脂のうち、フィラー充填層(A)では、現像性、解像性の観点から(7)および(14)における(7)の樹脂を用いたものからなるアルカリ溶解性樹脂を用いることが好ましい。変色耐性の観点では(1)および(14)における(1)の樹脂を用いたものからなるアルカリ溶解性樹脂を用いることが好ましく、特に第二のさらなる目的において好ましい。絶縁信頼性の観点から(10)に記載のアルカリ溶解性樹脂を用いることが好ましく、特に第三のさらなる目的において好ましい。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
 前記のようなアルカリ溶解性樹脂は、バックボーン・ポリマーの側鎖に多数のカルボキシル基等の親水性基を有するため、アルカリ水溶液による現像が可能になる。
 また、前記カルボキシル基を有するアルカリ溶解性樹脂の酸価は、40~200mgKOH/gの範囲が適当であり、より好ましくは45~120mgKOH/gの範囲である。カルボキシル基含有樹脂の酸価が上記の範囲内であると、アルカリ溶解性が良好で、アルカリ現像によるパターニングが容易となる。
 また、前記アルカリ溶解性樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、より好ましくは3,000~100,000、さらに好ましくは5,000~100,000の範囲である。重量平均分子量が上記の範囲内であると、現像工程における現像速度とパターン部の耐現像性のバランスに優れる。
 このようなアルカリ溶解性樹脂の含有率は、有機溶剤を除く前記フィラー充填層(A)の全成分中に、10~75質量%、好ましくは15~75質量%、より好ましくは20~70質量%の範囲が適当である。アルカリ溶解性樹脂の含有率が好ましくは15~75質量%、より好ましくは20~70質量%の範囲であると、基材に対しての密着性が高く、靭性に優れた硬化膜を得ることができる。第二のさらなる目的においては、アルカリ溶解性樹脂の含有率が好ましくは15質量%以上、より好ましくは20質量%以上である場合、皮膜強度が良好となり、一方、好ましくは75質量%以内、より好ましくは70質量%以内である場合、組成物の粘性が高くなり過ぎず、塗布性等が良好である。第三のさらなる目的においては、好ましくは10~45質量%、より好ましくは15~40質量%の範囲が適当であり、アルカリ溶解性樹脂の含有率が10質量%以上である場合、皮膜強度が良好となるため好ましく、一方、45質量%以内である場合、組成物の粘性が高くなり過ぎず、塗布性等が良好であるため好ましい。
(熱反応性化合物)
 熱反応性化合物としては、環状(チオ)エーテル基などの熱硬化反応が可能な官能基を有する公知慣用の化合物が用いられる。特に、前記フィラー充填層(A)に含まれるアルカリ溶解性樹脂と熱硬化反応する化合物が好ましく、好適には、エポキシ樹脂が用いられる。熱反応性化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ブロム化エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物、ビスフェノールS型エポキシ樹脂、ビスフェノールA型ノボラックエポキシ樹脂、複素環式エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレン基含有エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂などが挙げられる。
 熱反応性化合物の含有率は、有機溶剤を除く前記フィラー充填層(A)の全成分中に好ましくは70質量%以下、より好ましくは5~60質量%である。熱反応性化合物の含有率が70質量%以下だと、現像液での未露光部分の現像残りが発生しにくい。ただし、第三のさらなる目的においては、好ましくは40質量%以下、より好ましくは2~30質量%であり、現像液での未露光部分の溶解性低下による、現像残りが発生しにくい。
(ラジカル重合可能な不飽和二重結合を有する低分子量化合物)
 フィラー充填層(A)は、樹脂組成物の粘度調整、光硬化性の促進や現像性の向上の為に、ラジカル重合可能な不飽和二重結合を有する低分子量化合物を含有してもよい。そのような低分子量化合物の分子量としては例えば分子量1000以下である。
 ラジカル重合可能な不飽和二重結合を有する低分子量化合物としては、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレートなどの(メタ)アクリレートモノマーが挙げられる。具体的な化合物としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレートなどのヒドロキシアルキルアクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミドなどのアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレートなどのアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレートなどの多価アルコールまたはこれらのエチレンオキサイド付加物、プロピレンオキサイド付加物、もしくはε-カプロラクトン付加物などの多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多価アクリレート類;上記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオールなどのポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および上記アクリレートに対応する各メタクリレート類の少なくとも何れか1種が挙げられる。ラジカル重合可能な不飽和二重結合を有する低分子量化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ラジカル重合可能な不飽和二重結合を有する低分子量化合物の含有率は、有機溶剤を除く前記フィラー充填層(A)の全成分中に好ましくは、0~50質量%、より好ましくは1~50質量%、さらに好ましくは、3~30質量%の割合である。この低分子量化合物の含有率が、1質量%以上の場合、光照射により耐現像性が得られやすくなり、解像性がさらに向上する。一方、50質量%以下の場合、硬化塗膜の柔軟性に優れる。ただし、第三のさらなる目的においては、好ましくは、1~40質量%、より好ましくは2~30質量%、さらに好ましくは、3~20質量%の割合である。この低分子量化合物の含有率が、1質量%以上の場合、光照射により耐現像性が得られやすくなり、解像性がさらに向上する。一方、40質量%以下の場合、硬化塗膜の柔軟性に優れる。
(光重合開始剤)
 フィラー充填層(A)は、解像性の観点から、光重合開始剤を実質的に含まない。ここで、光重合開始剤を実質的に含まないとは、フィラー充填層(A)が単独層にて光重合性を有さないことであり、光重合性を損なわない範囲で少量含まれることは排除されない。例えば、保護層(B)に含まれる光重合開始剤がフィラー充填層(A)に移行する場合も考えられるが、そのような場合であっても、保護層(B)に含まれる光重合開始剤の濃度の50%以下であることが好ましい。
(酸化防止剤)
 フィラー充填層(A)は、酸化防止剤を含有してもよく、無電解金めっき耐性やリフロー後の変色耐性に優れた硬化物を得ることができる。
 酸化防止剤としては、例えば2,6-ジアルキルフェノール誘導体などのヒンダードフェノール系化合物、2価のイオウ系化合物、3価のリン原子を含む亜リン酸エステル系化合物などが挙られる。酸化防止剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 酸化防止剤の含有率は、有機溶剤を除く前記フィラー充填層(A)の全成分中に0.1~10質量%の範囲であることが好ましい。
(重合禁止剤)
 フィラー充填層(A)は、解像性の観点から、重合禁止剤を含有してもよい。
 重合禁止剤としては、フェノチアジン、ヒドロキノン、N-フェニルナフチルアミン、クロラニール、ピロガロール、ベンゾキノン、t-ブチルカテコール、ハイドロキノン、メチルハイドロキノン、tert-ブチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール、ナフトキノン、4-メトキシ-1-ナフトール、2-ヒドロキシ1,4-ナフトキノン、フェノール性水酸基を有するリン含有化合物、ニトロソアミン系化合物等が挙げられる。重合禁止剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 フィラー充填層(A)における重合禁止剤の含有率は、有機溶剤を除く前記フィラー充填層(A)の全成分中に5質量%以下であることが好ましい。
[保護層(B)]
 保護層(B)は、上述したフィラー充填層(A)に対してフィラー含有率が少ない感光性硬化性樹脂組成物からなることが好ましく、さらにアルカリ溶解性樹脂、光重合開始剤、熱反応性化合物を含む感光性硬化性樹脂組成物からなることがより好ましい。
(アルカリ溶解性樹脂)
 アルカリ溶解性樹脂としては上述のアルカリ溶解性樹脂を用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、第一のさらなる目的においては、現像性、解像性の観点で(7)および(14)における(7)のアルカリ溶解性樹脂を用いることが好ましく、さらに、耐熱性や機械的特性の観点から、(13)および(14)における(13)のアルカリ溶解性のポリイミド樹脂を用いることがより好ましい。また、第二のさらなる目的においては、現像性、解像性の観点で(7)および(14)における(7)のアルカリ溶解性樹脂を用いることが好ましく、変色耐性の観点から(1)および(14)における(1)のアルカリ溶解性樹脂を用いることが好ましく、さらに、耐熱性や機械的特性、解像性の観点から、(13)および(14)における(13)のアルカリ溶解性のポリイミド樹脂を用いることがより好ましい。第三のさらなる目的においては、現像性、解像性の観点で(7)および(14)における(7)のアルカリ溶解性樹脂を用いることが好ましく、耐熱性や機械的特性、解像性の観点から(13)と(14)における(13)の樹脂を用いたものからなるアルカリ溶解性のポリイミド樹脂を用いることが好ましく、絶縁信頼性の観点から(10)のアルカリ溶解性樹脂を用いることが好ましい。
 アルカリ溶解性樹脂の含有率は、好ましくは、有機溶剤を除く前記保護層(B)の全成分中に10~75質量%であり、より好ましくは15質量%~75質量%であり、さらに好ましくは20質量%~70質量%である。15質量%以上である場合、硬化塗膜の強靭性が向上する。また、75質量%以下である場合、現像工程にて表面に傷等のダメージが入りにくくなる。ただし、第三のさらなる目的においては、好ましくは、10~75質量%であり、さらに好ましくは15~70質量%であり、10質量%以上である場合、硬化塗膜の強靭性が向上し、75質量%以下である場合、現像工程にて表面に傷等のダメージが入りにくくなる。
(光重合開始剤)
 光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。光重合開始剤としては、オキシムエステル基を有するオキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤からなる群から選択される1種以上の光重合開始剤を好適に使用することができる。
 オキシムエステル系光重合開始剤としては、市販品として、BASFジャパン社製のCGI-325、イルガキュアー OXE01、イルガキュアー OXE02、ADEKA社製N-1919、NCI-831などが挙げられる。また、分子内に2個のオキシムエステル基を有する光重合開始剤も好適に用いることがでる。
 このようなオキシムエステル系光重合開始剤の含有量は、前記アルカリ溶解性樹脂100質量部に対して、0.01~20質量部とすることが好ましい。0.01質量部以上であると、耐薬品性などの塗膜特性が良好となる。一方、20質量部以下であると、塗膜表面での光吸収が激しくなり過ぎず、深部硬化性が良好となる。より好ましくは、0.5~15質量部である。
 α-アミノアセトフェノン系光重合開始剤としては、具体的には2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノンなどが挙げられる。市販品としては、IGM Resins社製のOmnirad 907、Omnirad 369、Omnirad 379などが挙げられる。
 アシルホスフィンオキサイド系光重合開始剤としては、具体的には2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイドなどが挙げられる。市販品としては、BASF社製のルシリンTPO、IGM Resins社製のOmnirad 819などが挙げられる。
 これらα-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤の含有量は、前記アルカリ溶解性樹脂100質量部に対して、0.01~15質量部であることが好ましい。0.01質量部以上であると、同様に耐薬品性などの塗膜特性が良好となる。一方、15質量部以下であると、アウトガスが低減され、さらに塗膜表面での光吸収が激しくなり過ぎず、深部硬化性が良好となる。より好ましくは0.5~10質量部である。
 ここで、用いる光重合開始剤としては、後述する熱反応性化合物の重合反応の触媒とする場合には、光照射により光ラジカルのみならず、塩基性物質を生成する点から、上記オキシムエステル系光重合開始剤やα-アミノアセトフェノン系光重合開始剤が好ましく、中でも、解像性に優れることから、オキシムエステル系光重合開始剤がより好ましい。
(熱反応性化合物)
 熱反応性化合物としては上述の熱反応性化合物を用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。特に、上記保護層(B)に含まれるアルカリ溶解性樹脂と熱硬化反応する化合物が好ましく、好適には、上述のエポキシ樹脂が用いられる。
 熱反応性化合物の含有率は、好ましくは、有機溶剤を除く前記保護層(B)の全成分中に3~50質量%であり、さらに好ましくは5~40質量%である。3質量%以上である場合、塗膜の強靭性が得られ、50質量%以下である場合、良好な現像性を得ることが出来る。
(酸化防止剤)
 保護層(B)は、酸化防止剤を含有してもよい。酸化防止剤としては上述の酸化防止剤を用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。無電解金めっき耐性やリフロー後の変色耐性に優れた硬化物を得ることができる。
 酸化防止剤の含有率は、有機溶剤を除く前記保護層(B)の全成分中に0.1%~10%の範囲であることが好ましい。
(フィラー)
 保護層(B)は、フィラーを含有してもよい。フィラーとしては上述のフィラーを用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、保護層(B)のフィラーは、上述したフィラー充填層(A)に用いたフィラーと同様の種類や形状を選択しても良く、異なる種類や形状のフィラーを用いても良い。
 保護層(B)のフィラーの含有率は、フィラー充填層(A)に含まれるフィラーの含有率の25質量%以下であり、含有しなくてもよい。
 また、保護層(B)のフィラーの含有率は、有機溶剤を除く前記保護層(B)中の全成分中に0~20質量%であることが好ましく、0~15質量%であることがより好ましく、0~10質量%であることがさらに好ましく、0~5質量%であることが特に好ましい。
 第二のさらなる目的において、保護層(B)は、酸化チタンを含有してもよい。酸化チタンとしては上述の酸化チタンを用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。保護層(B)の酸化チタンの含有率は、フィラー充填層(A)に含まれる酸化チタンの含有率の20質量%以下であり、含有しなくてもよい。また、保護層(B)の酸化チタンの含有率は、有機溶剤を除く前記保護層(B)中の全成分中に0~20質量%であることが好ましく、0~10質量%であることがより好ましい。また、保護層(B)に酸化チタン以外にも無機フィラーを配合することが出来るが、スクラッチ耐性の観点から、酸化チタン以外の無機フィラー含有率は、有機溶剤を除く保護層(B)中の全成分中に0~20質量%である事が好ましい。
 第三のさらなる目的において、保護層(B)は、スクラッチ耐性の観点から、熱伝導率が10W/m・Kよりも高い放熱性フィラーを含有しないが、スクラッチ耐性に影響を及ぼさない範囲で含有してもよい。即ち、スクラッチ耐性の観点から、保護層(B)の前記放熱性フィラーの含有率は、前記フィラー充填層(A)の前記放熱性フィラーの含有率に対して20質量%以下である必要がある。前記放熱性フィラーとしては上述の放熱性フィラーを用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、保護層(B)の前記放熱性フィラーの含有率は、有機溶剤を除く前記保護層(B)中の全成分中に0~20質量%であることが好ましく、0~10質量%であることがより好ましい。また、保護層(B)に前記放熱性フィラー以外にも無機フィラーを配合することが出来るが、スクラッチ耐性の観点から、前記放熱性フィラー以外の無機フィラー含有率は、有機溶剤を除く保護層(B)中の全成分中に0~20質量%であることが好ましい。
(ラジカル重合可能な不飽和二重結合を有する低分子量化合物)
 保護層(B)は、ラジカル重合可能な不飽和二重結合を有する低分子量化合物を含有してもよい。ラジカル重合可能な不飽和二重結合を有する低分子量化合物としては上述の低分子量化合物を用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 しかしながら、解像性の観点からは、分子量1000以下のラジカル重合可能な不飽和二重結合を有する低分子量化合物の含有率は、実質的に含有しないことが好ましく、例えば有機溶剤を除く前記保護層(B)中の全成分中に0~20質量%、好ましくは0~15質量%、より好ましくは0~10質量%、さらに好ましくは0~2質量%、特に好ましくは0質量%である。
(重合禁止剤)
 保護層(B)は、解像性の観点から、上述の重合禁止剤を含有してもよい。
 保護層(B)における重合禁止剤の含有率は、有機溶剤を除く前記保護層(B)の全成分中に5質量%以下であることが好ましい。
[感光性積層樹脂構造体]
 本発明の感光性積層樹脂構造体は、電子部品、特にプリント配線板の保護膜の形成に好ましく用いることができ、中でもソルダーレジスト層、フレキシブルプリント配線板のカバーレイ等の永久保護膜の形成に好ましく用いることができる。また、前記プリント配線板は特に限定されないが、本発明の感光性積層樹脂構造体は、第一のさらなる目的においては、低熱膨張でありながら、密着性、めっき耐性、クラック耐性および解像性に優れることから、パッケージ基板に好適に用いることができる。第二のさらなる目的において前記プリント配線板は特に限定されないが、反射率に優れることから、LED等の発光素子が実装されるプリント配線板であることが好ましい。第三のさらなる目的において前記プリント配線板は特に限定されないが、放熱性に優れることから、パッケージ基板や表面実装型発光ダイオードであることが好ましい。
 また、本発明の感光性積層樹脂構造体は、第二のさらなる目的においては、反射率に優れることから、LEDやエレクトロルミネセンス(EL)等の発光素子用反射板の形成にも好ましく用いることができる。
 本発明の感光性積層樹脂構造体は、フィラー充填層(A)と保護層(B)とが積層していることが好ましい。
[ドライフィルム]
 本発明のドライフィルムは、本発明の感光性積層樹脂構造体の少なくとも片面が、フィルムで支持または保護されてなることを特徴とするものである。好ましい態様の一つとしては、図1に示すような、保護フィルム14と、フィラー充填層(A)13と、保護層(B)12と、支持フィルム11とが、この順序に積層された4層構造のドライフィルム10である。尚、本発明のドライフィルムは、保護層(B)が表層側となるようにラミネートできればよく、ラミネートする際に剥離するフィルムは支持フィルムでも保護フィルムでもどちらでもよいことから、支持フィルム、フィラー充填層(A)、保護層(B)、保護フィルムの順序に積層されていてもよい。また、本発明のドライフィルムは、ロール状に巻き回されていてもよい。
 本発明のドライフィルムは、例えば以下のようにして製造できる。
 すなわち、まず、支持フィルム(キャリアフィルム)上に、上記保護層(B)を構成する樹脂組成物およびフィラー充填層(A)を構成する樹脂組成物を、それぞれ有機溶剤で希釈して適切な粘度に調整し、常法に従い、コンマコーター等の公知の手法で順次塗布する。その後、通常、50~140℃の温度で1~30分間乾燥することで、支持フィルム上に保護層(B)およびフィラー充填層(A)の塗膜を形成したドライフィルムを作製することができる。このドライフィルム上には、塗膜表面に塵が付着することを防ぐ等の目的で、さらに、剥離可能な保護フィルム(カバーフィルム)を積層することができる。支持フィルムおよび保護フィルムとしては、従来公知のプラスチックフィルムを適宜用いることができ、保護フィルムについては、保護フィルムを剥離するときに、樹脂層と支持フィルムとの接着力よりも接着力が小さいものであることが好ましい。支持フィルムおよび保護フィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。
[硬化物]
 本発明の硬化物は、本発明の感光性積層樹脂構造体からなることを特徴とするものである。本発明の硬化物は、第一の目的においては、ガラス転移温度前の熱膨張係数(CTEα1)が40ppm/℃以下であることが好ましく、30ppm/℃以下であることがより好ましい。第二のさらなる目的においては、保護層(B)側から測定したXYZ表色系のY値が、70以上であることが好ましく、75以上であることがより好ましく、80以上であることがさらに好ましい。また、本発明の硬化物は、第三のさらなる目的においては、熱伝導度を周期加熱法により測定した場合、1.5W/m・K以上の熱伝導度を有することが好ましい。
[電子部品]
 本発明の電子部品は、本発明の硬化物を有することを特徴とするものである。
 本発明の硬化物は、第一のさらなる目的においては、めっき耐性、クラック耐性に優れることから、第二のさらなる目的においては、スクラッチ耐性および反射率に優れることから、また、第三のさらなる目的においては、スクラッチ耐性に優れることから、本発明の電子部品においては、保護層(B)が最外層になるように硬化物が形成されていることが好ましい。
[電子部品の製造方法]
 本発明の感光性積層樹脂構造体を用いた電子部品の製造方法として、プリント配線板の製造法の一例を、図2の工程図に示す手順に基づき説明する。すなわち、導体回路が形成されたプリント配線基板に本発明の感光性積層樹脂構造体を形成する工程(積層工程)、この感光性積層樹脂構造体に活性エネルギー線をパターン状に照射する工程(露光工程)、および、この感光性積層樹脂構造体をアルカリ現像して、パターン化された感光性積層樹脂構造体を一括形成する工程(現像工程)を含む製造方法である。また、必要に応じて、アルカリ現像後、さらなる光硬化や熱硬化(ポストキュア工程)を行い、感光性積層樹脂構造体を完全に硬化させて、信頼性の高いプリント配線板を得ることができる。さらに、必要に応じて、露光工程と現像工程の間に感光性積層樹脂構造体を加熱する工程(PEB工程)を入れて、現像工程により、パターン化された感光性積層樹脂構造体を一括形成してもよい。特に、保護層(B)においてアルカリ溶解性樹脂を用いた場合には、この手順を用いることが好ましい。さらに、保護層(B)が、光照射により塩基性物質を生成する化合物を含有する場合には、解像性の観点から、前記PEB工程を行うことが好ましい。
[積層工程]
 この工程では、導体回路2が形成されたプリント配線基板1に、フィラー充填層(A)3および保護層(B)4を構成する樹脂組成物を、順次、基材上に塗布、乾燥することにより、フィラー充填層(A)3および保護層(B)4を直接形成するか、または、フィラー充填層(A)3および保護層(B)4を構成する樹脂組成物をそれぞれドライフィルムの形態にしたものを基材に順次にラミネートする方法により形成することができる。また、2層構造のドライフィルム形態にした積層構造体を、基材にラミネートする方法により形成してもよい。この場合、積層構造体の少なくとも片面を、フィルムで支持または保護することもできる。使用するフィルムとしては、積層構造体から剥離可能なプラスチックフィルムを用いることができる。フィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。塗膜強度の観点から、各層間の界面は、馴染んでいてもよい。ラミネーターとしては、市販の真空加熱加圧型ラミネーターなどを用いることができ、たとえば名機製作所社製真空加圧式ラミネーター、ニチゴー・モートン社製バキューム・アプリケーターなどを用いることができ、連続的に行うこともできる。また、積層工程は別々の装置を用いて行ってもよい。この場合は前述の真空ラミネーターのほか、ロールラミネーター、真空ロールラミネーターや真空プレスなどを使用して行うこともできる。真空プレスは市販されている通常の装置が適用でき、例えば多段プレス、多段真空プレス、クイックプレス、連続成形、オートクレーブ成形機等が使用できる。以上のラミネーター等の運転条件は、60~130℃で行うことができ、圧力0.1~0.7MPa、加熱加圧時間1~90秒、真空度10~10,000Pa、真空時間1~90秒の範囲で処理することができる。
[露光工程]
 この工程では、活性エネルギー線の照射により、保護層(B)4またはフィラー充填層(A)3に含まれる光重合開始剤をネガ型のパターン状に活性化させて、露光部を硬化する。露光機としては、直接描画装置、メタルハライドランプを搭載した露光機などを用いることができる。パターン状の露光用のマスクは、ネガ型のマスクである。
 露光に用いる活性エネルギー線としては、最大波長が350~450nmの範囲にあるレーザー光、散乱光または平行光を用いることが好ましい。最大波長をこの範囲とすることにより、効率よく光重合開始剤を活性化させることができる。また、その露光量は膜厚等によって異なるが、通常は、50~1500mJ/cmとすることができる。
[現像工程]
 この工程では、アルカリ現像により、未露光部を除去して、ネガ型のパターン状の保護膜、特には、カバーレイおよびソルダーレジストを形成する。現像方法としては、ディッピング等の公知の方法によることができる。また、現像液としては、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、アミン類、2-メチルイミダゾール等のイミダゾール類、水酸化テトラメチルアンモニウム水溶液(TMAH)等のアルカリ水溶液、または、これらの混合液を用いることができる。
[ポストキュア工程]
 なお、現像工程の後に、さらに、保護膜に光照射してもよく、また、例えば、150℃以上で加熱してもよい。加熱温度は、例えば、80~170℃であり、加熱時間は5~100分である。本発明における感光性積層樹脂構造体の硬化は、例えば、熱反応によるエポキシ樹脂の開環反応であるため、光ラジカル反応で硬化が進行する場合と比べてひずみや硬化収縮を抑えることができる。
 なお、上記PEB工程として、露光工程と現像工程の間に感光性積層樹脂構造体を加熱することにより、露光部を硬化させてもよい。加熱温度は、例えば、70~140℃であり、加熱時間は、2~100分である。
 以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
(アルカリ溶解性樹脂の合成例1)
 クレゾールノボラック型エポキシ樹脂(DIC社製、エピクロンN-695、エポキシ当量:220)220部を撹拌機及び還流冷却器の付いた四つ口フラスコに入れ、カルビトールアセテート214部を加え、加熱溶解した。次に、重合禁止剤としてハイドロキノン0.1部と、反応触媒としてジメチルベンジルアミン2.0部を加えた。この混合物を95~105℃に加熱し、アクリル酸72部を徐々に滴下し、16時間反応させた。この反応生成物を80~90℃まで冷却し、テトラヒドロフタル酸無水物106部を加え、8時間反応させ、冷却後、取り出した。
 このようにして得られたエチレン性不飽和結合及びカルボキシル基を併せ持つ感光性樹脂の樹脂溶液は、不揮発分65%、固形物の酸価100mgKOH/g、重量平均分子量Mw約3,500であった。
 なお、得られた樹脂の重量平均分子量の測定は、島津製作所社製ポンプLC-804、KF-803、KF-802を三本つないだ高速液体クロマトグラフィーにより測定した。
(アルカリ溶解性樹脂の合成例2)
 窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、「BAPP」という)6.98g、3,5-ジアミノ安息酸3.80g、ジェファーミンXTJ-542(ハンツマン社製、分子量1025.64)8.21g、およびγ-ブチロラクトン86.49gを室温で仕込み溶解した。
 次いで、シクロへキサン-1,2,4-トリカルボン酸-1,2-無水物17.84gおよび無水トリメリット酸2.88gを仕込み、室温で30分間保持した。さらにトルエン30gを仕込み、160℃まで昇温して、トルエンと共に生成する水を除去した後、3時間保持し、室温まで冷却することでイミド化物溶液を得た。
 得られたイミド化物溶液に、無水トリメリット酸9.61gおよびトリメチルヘキサメチレンジイソシアネート17.45gを仕込み、160℃の温度で32時間保持した。こうして、カルボキシル基を含有するポリアミドイミド樹脂を40.1%(不揮発分)含む樹脂溶液を得た。固形分酸価は83.1mgKOH/gであった。
(アルカリ溶解性樹脂の合成例3)
 攪拌機、温度計、還流冷却管、滴下ロートおよび窒素導入管を備えた2リットル容セパラブルフラスコに、ジエチレングリコールジメチルエーテル900g、およびt-ブチルパーオキシ2-エチルヘキサノエート(日油社製パーブチルO)21.4gを仕込み、90℃に昇温後、メタクリル酸309.9g、メタクリル酸メチル116.4g、及びラクトン変性2-ヒドロキシエチルメタクリレート(ダイセル化学工業社製プラクセルFM1)109.8gをビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(日油社製パーロイルTCP)21.4gと共にジエチレングリコールジメチルエーテル中に3時間かけて滴下し、さらに6時間熟成することによってカルボキシル基含有共重合樹脂溶液を得た。反応は、窒素雰囲気下で行った。
 次に上記カルボキシル基含有共重合樹脂溶液に、3,4-エポキシシクロヘキシルメチルアクリレート(ダイセル化学社製サイクロマーA200)363.9g、ジメチルベンジルアミン3.6g、ハイドロキノンモノメチルエーテル1.80gを加え、100℃に昇温し、撹拌することによってエポキシの開環付加反応を行った。16時間後、固形分酸価=108.9mgKOH/g、重量平均分子量=25,000(スチレン換算)のエチレン性不飽和結合及びカルボキシル基を併せ持つ感光性の共重合樹脂を、53.8%(不揮発分)含む樹脂溶液を得た。
[実施例1]
<無機フィラーの調整>
(無機フィラーXのスラリー化)
 球状シリカ粒子(アドマテックス社製SO-C2、平均粒径:500nm)50gと、溶剤としてPMA48gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)2gとを均一分散させ、メタクリルシラン処理されたシリカスラリー(シリカ成分50質量%)を得た。
(無機フィラーYのスラリー化)
 球状シリカ粒子(アドマテックス社製SO-C2、平均粒径:500nm)50gと、溶剤としてPMA48gと、エポキシ基を有するシランカップリング剤(信越化学工業社製KBM-403)2gとを均一分散させ、エポキシシラン処理されたシリカスラリー(シリカ成分50質量%)得た。
(無機フィラーZのスラリー化)
 球状シリカ粒子(アドマテックス社製SO-C2、平均粒径:500nm)50gと、溶剤としてPMA48gと、分散剤(BYK-111)2gとを均一分散させ、表面処理なしのシリカスラリー(シリカ成分50質量%)を得た。
<樹脂組成物の調製>
 下記表1記載の配合に従って、実施例および比較例に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、表1に保護層(B)として示す組成の感光性樹脂組成物およびフィラー充填層(A)として示す組成のアルカリ溶解性樹脂組成物を調製した。表中の値は、特に断りが無い限り、質量部であり、有機溶剤を除いた含有量である。
<感光性積層樹脂構造体を有するドライフィルムの作製>
 上記により得られた表1に記載の各樹脂組成物を用いて次のように感光性積層樹脂構造体を作製した。まず、35μm厚のポリエチレンテレフタレート(PET)支持フィルム上に表1に保護層(B)として示す組成の感光性樹脂組成物を塗布、乾燥して、保護層(B)を有するドライフィルムを作製した。次いで、前記保護層(B)上に表1にフィラー充填層(A)として示す組成のアルカリ溶解性樹脂組成物を塗布、乾燥してフィラー充填層(A)を有するドライフィルムを作製した。次いで、フィラー充填層(A)の表面に15μm厚の二軸延伸ポリプロピレンフィルムをラミネートし、支持フィルム(PETフィルム)、保護層(B)、フィラー充填層(A)、保護フィルム(OPPフィルム)の4層から成るドライフィルムを作製した。ただし、比較例1-1については、支持フィルム、フィラー充填層(A)、保護フィルムの3層から成るドライフィルムを作製した。
Figure JPOXMLDOC01-appb-T000001
*1-1:上記合成例1で得たエチレン性不飽和結合及びカルボキシル基を併せ持つ感光性樹脂の樹脂溶液
*1-2:上記合成例2で得たポリアミドイミド樹脂の樹脂溶液
*1-3:ジペンタエリスリトールヘキサアクリレート(日本化薬社製)
*1-4:ビスフェノールA型ノボラックエポキシ樹脂(DIC社製)
*1-5:テトラメチルビフェノール型エポキシ樹脂(三菱ケミカル社製)
*1-6:オキシムエステル系光重合開始剤(BASF社製)
*1-7:メタクリルシラン処理されたシリカスラリー(表中はシリカの質量部として記載)
*1-8:エポキシシラン処理されたシリカスラリー(表中はシリカの質量部として記載)
*1-9:表面処理剤なしのシリカスラリー(表中はシリカの質量部として記載)
 上記で作製した実施例1-1~1-9および比較例1-1~1-4の各ドライフィルムを用いて、感光性積層樹脂構造体について、下記のように評価を行った。
(最適露光量)
 銅厚15μmの回路が形成してある片面プリント配線基板を用意し、メック社製CZ8100を使用して前処理を行った。前記実施例及び比較例の各ドライフィルムにおけるフィラー充填層(A)に接する保護フィルムを剥離し、フィラー充填層(A)が基板に接するように、真空ラミネーターを用いて貼り合わせることにより、基板上に感光性積層樹脂構造体を形成した。この基板を高圧水銀灯(ショートアークランプ)搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、露光後、100℃で30分間の加熱を行った後、保護層(B)に接するPETフィルムを剥離し、現像(30℃、0.2MPa、1wt%NaCO水溶液)を60秒で行った際に残存するステップタブレットのパターンが5段の時を最適露光量とした。
(CTEの測定)
 厚さ9μmの電解銅箔を用意し、前記各実施例1-1~1-9及び比較例1-1~1-4の各ドライフィルムにおけるフィラー充填層(A)に接する保護フィルムを剥離し、フィラー充填層(A)が前記電解銅箔の光沢面に接するように、真空ラミネーターを用いて貼り合わせることにより、電解銅箔上に感光性積層樹脂構造体を形成した。次いで、高圧水銀灯を搭載した露光装置を用いて上記最適露光量で感光性積層樹脂構造体を全面露光し、100℃で30分間のベークを行った後、保護層(B)に接するPETフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、さらに、UVコンベア炉にて積算露光量1000mJ/cmの条件で紫外線照射した後、150℃で60分加熱して硬化した。その後、電解銅箔を、塩化第二銅340g/l、遊離塩酸濃度51.3g/lの組成のエッチング液を用いて銅箔をエッチング除去し、十分に水洗、乾燥して各感光性積層樹脂構造体からなる硬化フィルムを作製した。
 上記各硬化フィルムについて、温度を-30℃から250℃まで変化させたときの平均線熱膨張係数を、TA Instruments社製TMA-Q400EMを用いて(サンプルの幅5mm、測定治具間隔15mm、荷重を膜厚(μm)×0.5g重として)測定した。
(解像性評価(最小開口径の評価))
 銅厚15μmの回路が形成してある片面プリント配線基板を用意し、メック社製CZ8100を使用して前処理を行った。前記各実施例1-1~1-9及び比較例1-1~1-4の各ドライフィルムにおけるフィラー充填層(A)に接する保護フィルムを剥離し、フィラー充填層(A)が基板に接するように、真空ラミネーターを用いて貼り合わせることにより、基板上に感光性積層樹脂構造体を形成した。この基板に、解像性評価用ネガマスクとしてビア開口径500μm、300μm、150μm、100μm、80μmを有するネガパターンを介し、高圧水銀灯を搭載した露光装置を用いて上記最適露光量でパターン露光し、100℃で30分間のベークを行った後、保護層(B)に接するPETフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、ソルダーレジストパターンを得た。この基板を、UVコンベア炉にて積算露光量1000mJ/cmの条件で紫外線照射した後、150℃で60分加熱して硬化し、各感光性積層樹脂構造体からなる硬化物を備える試験片を作製した。
 得られた各試験片において、パターン開口部をSEMにて観察し、最小開口径の評価を行った。
(無電解金めっき耐性)
 上記(解像性評価)に記載した各実施例1-1~1-9及び比較例1-1~1-4の試験片にて、市販品の無電解ニッケルめっき浴及び無電解金めっき浴を用いて、ニッケル0.5μm、金0.03μmの条件でめっきし、テープピーリングにより、積層樹脂構造体の剥がれの有無やめっきのしみ込みの有無を評価した後、テープピーリングにより積層樹脂構造体の剥がれの有無を評価した。判定基準は以下のとおりである。
○:染み込み、剥がれが見られない。
△:めっき後に少し染み込みが確認されるが、テープピール後は剥がれない。
×:めっき後に剥がれがある。
(密着性の評価)
 上記(解像性評価)に記載した各実施例1-1~1-9及び比較例1-1~1-4の試験片にて、試験片上の硬化物にカッターナイフで1mm間隔の碁盤目状の切込みを入れ、セロハンテープを貼り付けた後、セロハンテープを剥離し、試験片上の残存する硬化物の状態を以下の判定基準で評価した。
○:はがれが無い。
×:はがれの数が5カ所以上。
(クラック耐性の評価)
 2mmの銅ラインパターンが形成された基板を用意し、メック社製CZ8100を使用して前処理を行った。この基板上に、上記(解像性評価(最小開口径の評価))に記載の方法と同様に、前記各実施例1-1~1-9及び比較例1-1~1-4の各ドライフィルムを用いて感光性積層樹脂構造体を形成した。次いで、クラック耐性評価用ネガマスクとして3mm角のネガパターンを有するネガパターンを介して、前記基板の銅ライン上に3mm角の開口パターンが形成されるよう高圧水銀灯を搭載した露光装置を用いて上記最適露光量でパターン露光し、100℃で30分間のベークを行った後、保護層(B)に接するPETフィルムを剥離し、上記(解像性評価(最小開口径の評価))に記載の方法と同様の条件で、現像を行い、ソルダーレジストパターンを得た後、紫外線照射と加熱によって硬化し、各クラック耐性評価用基板を作製した。
 この評価用基板を、-65℃30分と175℃30分の間で温度サイクルが行われる冷熱サイクル機に入れ、TCT(Thermal Cycle Test)を行った。そして、600サイクル時および1000サイクル時の外観をSEMにて観察し、クラックの発生を以下の判定基準にて評価した。
◎:1000サイクルで異常なし。
○:1000サイクルでクラック発生。
×:600サイクルでクラック発生。
(低反り性)
 25μm厚のポリイミドフィルム(東レ・デュポン社製カプトン100H)を用意し、前記各実施例1-1~1-9及び比較例1-1~1-4の各ドライフィルムにおけるフィラー充填層(A)に接する保護フィルムを剥離し、フィラー充填層(A)が前記ポリイミドフィルムの片面に接するように、真空ラミネーターを用いて貼り合わせることにより、ポリイミドフィルム上に感光性積層樹脂構造体を形成した。次いで、高圧水銀灯を搭載した露光装置を用いて上記最適露光量で感光性積層樹脂構造体を全面露光した後、100℃で30分間のベークを行った後、保護層(B)に接するPETフィルムを剥離し、上記(解像性評価(最小開口径の評価))に記載の方法と同様の条件で、現像を行い、紫外線照射と加熱によって硬化し、低反り性評価用のサンプルを作製した。
 上記低反り性評価用のサンプルを50mm×50mmに切り出し、水平な台に静置し、4角の反りの高さを測定して平均値を求め、以下の基準で評価した。
○:反りが4mm未満であるもの。
△:反りが4mm以上、8mm未満であるもの。
×:反りが8mm以上であるもの。
 上記表中に示す評価結果から明らかなように、実施例1-1~1-9の感光性積層樹脂構造体は低CTEを有しながら、密着性、めっき耐性、解像性も良好でクラック耐性にも優れていることが分かる。
[実施例2]
<樹脂組成物の調製>
 下記表2記載の配合に従って、表2に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、各樹脂組成物を調製した。表中の値は、特に断りが無い限り、質量部であり、有機溶剤を除いた含有量である。
Figure JPOXMLDOC01-appb-T000002
*2-1:上記合成例1で得たカルボキシル基含有樹脂の樹脂溶液
*2―2:上記合成例3で得たカルボキシル基含有樹脂の樹脂溶液
*2-3:上記合成例2で得たカルボキシル基含有樹脂の樹脂溶液
*2-4:ジペンタエリスリトールヘキサアクリレート(日本化薬社製)
*2-5:ビスフェノールA型ノボラックエポキシ樹脂(DIC社製)
*2-6:テトラメチルビフェノール型エポキシ樹脂(三菱ケミカル社製)
*2-7:オキシムエステル系光重合開始剤(BASF社製)
*2-8:酸化チタン(タイペークCR-90、石原産業社製)
*2-9:ヒンダードフェノール系化合物(BASF社製)
*2-10:ハイドロキノン化合物(川口化学工業社製)
<感光性積層樹脂構造体を有するドライフィルムの作製>
 上記により得られた各樹脂組成物2-1~2-14を用いて次のように感光性積層樹脂構造体を作製した。まず、35μm厚のポリエチレンテレフタレート(PET)支持フィルム上に表3、4に示す保護層(B)に相当する表2の組成物を塗布、乾燥して、保護層(B)を有するドライフィルムを作製した。次いで、前記保護層(B)上に表3、4に示すフィラー充填層(以下、着色層(A)と称する)に相当する表2の組成物を塗布、乾燥して着色層(A)を有するドライフィルムを作製した。次いで、着色層(A)の表面に15μm厚の二軸延伸ポリプロピレン(OPP)フィルムをラミネートし、支持フィルム(PETフィルム)、保護層(B)、着色層(A)、保護フィルム(OPPフィルム)の4層から成るドライフィルムを作製した。ただし、比較例2-4については、支持フィルム、保護層(B)、保護フィルム、比較例2-5については、支持フィルム、着色層(A)、保護フィルムの3層から成るドライフィルムを作製した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記で作製した実施例2-1~2-14および比較例2-1~2-5の各ドライフィルムを用いて、感光性積層樹脂構造体について、下記のように評価を行った。
(最適露光量)
 銅厚15μmの回路が形成してある片面プリント配線基板を用意し、メック社製CZ8100を使用して前処理を行った。前記実施例及び比較例の各ドライフィルムにおける着色層(A)に接する保護フィルムを剥離し、着色層(A)が基板に接するように、真空ラミネーターを用いて貼り合わせることにより、基板上に感光性積層樹脂構造体を形成した。この基板を高圧水銀灯(ショートアークランプ)搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、露光後、100℃で30分間の加熱を行った後、保護層(B)に接するPETフィルムを剥離し、現像(30℃、0.2MPa、1wt%NaCO水溶液)を60秒で行った際に残存するステップタブレットのパターンが5段の時を最適露光量とした。
(反射率の測定)
 銅厚15μmの回路が形成してある片面プリント配線基板を用意し、メック社製CZ8100を使用して前処理を行った。前記実施例2-1~2-14及び比較例2-1~2-5の各ドライフィルムにおける着色層(A)に接する保護フィルムを剥離し、着色層(A)が基板に接するように、真空ラミネーターを用いて貼り合わせることにより、基板上に感光性積層樹脂構造体を形成した。この基板に、高圧水銀灯を搭載した露光装置を用いて、各最適露光量にて全面露光した後、100℃で30分間の加熱を行った後、保護層(B)に接するPETフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、150℃で60分加熱して硬化し、反射率の測定用の試験片を得た。得られた各試験片について、ミノルタ製色彩色差計CR-400を用い、XYZ表色系のY値を測定した。(Y値は、XYZ表色系のYの値であり、数値が大きいほど高い反射率を示す。)
 判定基準は以下の通り。
 ◎:Y値 ≧ 80
 〇:80> Y値 ≧75
 △:75> Y値 ≧70
 ×:70> Y値 
(解像性評価(最小開口径の評価))
 上記(反射率の測定)に記載した各実施例2-1~2-14及び比較例2-1~2-5の試験片の作製にて、露光時に解像性評価用ネガマスクとしてビア開口径500μm、300μm、150μm、100μm、80μmのネガパターンを有するネガマスクを介し、各最適露光量にてパターン露光を行った以外は、上記(反射率の測定)に記載した試験片の作製と同じ方法で解像性評価用の試験片を得た。得られた各試験片について、パターン開口部をSEMにて観察し、最小開口径の評価を行った。
(スクラッチ耐性)
 上記(反射率の測定)に記載した各実施例2-1~2-14及び比較例2-1~2-5の試験片上で、直径1cm、高さ2cmの真鍮製の円柱、10gのおもりを順に乗せて固定し、おもりを載せた円柱を試験片上で1cm/秒の速度で5cmスライドさせ、試験片上に黒いスクラッチ痕が発生するか否かを目視にて確認した。
 判定基準は以下の通り。
 ○:スクラッチ痕の発生無し
 ×:スクラッチ痕が発生
(無電解金めっき耐性)
 上記(解像性評価)に記載した各実施例2-1~2-14及び比較例2-1~2-5の試験片にて、市販品の無電解ニッケルめっき浴及び無電解金めっき浴を用いて、ニッケル0.5μm、金0.03μmの条件でめっきを行い、テープピーリングにより、レジスト層の剥がれの有無やめっきのしみ込みの有無を評価した後、テープピーリングによりレジスト層の剥がれの有無を評価した。判定基準は以下のとおりである。
 ○:染み込み、剥がれが見られない。
 △:めっき後に少し染み込みが確認されるが、テープピール後は剥がれない。
 ×:めっき後に剥がれがある。
(変色耐性(リフロー))
 上記(反射率の測定)に記載した各実施例2-1~2-14及び比較例2-1~2-5の試験片について、ミノルタ製色彩色差計CR-400を用い、XYZ表色系のY値の初期値とL*a*b*表色系のL*、a*、b*の初期値を測定した。その後、各試験片を最大温度260度のリフロー炉を3回通過させ、再度、ミノルタ製色彩色差計CR-400で各数値を測定しY値の変化とΔE*abで評価した。ΔE*abは、L*a*b*表色系において初期値と加速劣化後の差を算出したもので、数値が大きいほど、変色が大きいことを示す。ΔE*abの計算式は以下の通りである。
ΔE*ab=((L*2-L*1)+(a*2-a*1)+(b*2-b*1)0.5
(式中、L*1、a*1、b*1は、各々L*、a*、b*の初期値を表し、L*2、a*2、b*2は、各々リフロー3回通過後のL*、a*、b*の値を表す。)
 評価基準は下記の通り。
 ◎:ΔE*ab<1.0
 〇:1.0≦ΔE*ab<1.5
 △:1.5≦ΔE*ab<3.0
 ×:3.0≦ΔE*ab
 上記表3、4に示す評価結果から、実施例2-1~2-14の感光性積層構造体は高反射率でありながら、解像性も良好でスクラッチ耐性にも優れていることが分かる。
[実施例3]
<樹脂組成物の調製>
 下記表5記載の配合に従って、表5に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、各樹脂組成物を調製した。表中の値は、特に断りが無い限り、質量部であり、有機溶剤を除いた含有量である。
Figure JPOXMLDOC01-appb-T000005
*3-1:上記合成例1で得たカルボキシル基含有樹脂の樹脂溶液
*3-2:上記合成例2で得たカルボキシル基含有樹脂の樹脂溶液
*3-3:ジペンタエリスリトールヘキサアクリレート(日本化薬社製)
*3-4:ビスフェノールA型ノボラックエポキシ樹脂(DIC社製)
*3-5:テトラメチルビフェノール型エポキシ樹脂(三菱ケミカル社製)
*3-6:オキシムエステル系光重合開始剤(BASF社製)
*3-7:酸化アルミニウム(日本軽金属社製)(平均粒子径0.5μm、熱伝導率30W/m・K)
*3-8:硫酸バリウム(堺化学社製)(平均粒子径0.3μm、熱伝導率1.5W/m・K)
<感光性積層樹脂構造体を有するドライフィルムの作製>
 上記により得られた各樹脂組成物3-1~3-9を用いて次のように感光性積層樹脂構造体を作製した。まず、35μm厚のポリエチレンテレフタレート(PET)支持フィルム上に表6に示す保護層(B)に相当する表5の組成物を塗布、乾燥して、保護層(B)を有するドライフィルムを作製した。次いで、前記保護層(B)上に表6に示すフィラー充填層(A)(以下、放熱層(A)と称する)に相当する表5の組成物を塗布、乾燥して放熱層(A)を有するドライフィルムを作製した。次いで、放熱層(A)の表面に15μm厚の二軸延伸ポリプロピレン(OPP)フィルムをラミネートし、支持フィルム(PETフィルム)、保護層(B)、放熱層(A)、保護フィルム(OPPフィルム)の4層から成るドライフィルムを作製した。
Figure JPOXMLDOC01-appb-T000006
 上記で作製した実施例3-1~3-8および比較例3~1~3-3の各ドライフィルムを用いて、感光性積層樹脂構造体について、下記のように評価を行った。
(最適露光量)
 銅厚15μmの回路が形成してある片面プリント配線基板を用意し、メック社製CZ8100を使用して前処理を行った。前記実施例3-1~3-8及び比較例3~1~3-3の各ドライフィルムにおける放熱層(A)に接する保護フィルムを剥離し、放熱層(A)が基板に接するように、真空ラミネーターを用いて貼り合わせることにより、基板上に感光性積層樹脂構造体を形成した。この基板を高圧水銀灯(ショートアークランプ)搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、露光後、100℃で30分間の加熱を行った後、保護層(B)に接するPETフィルムを剥離し、現像(30℃、0.2MPa、1wt%NaCO水溶液)を60秒で行った際に残存するステップタブレットのパターンが5段の時を最適露光量とした。
(熱伝導度の測定)
 厚み0.8mmのエッチアウト基板の片面に50μmのテフロンシートを貼り付け、次いで、前記実施例3-1~3-8および比較例3~1~3-3の各ドライフィルムの放熱層(A)に接する保護フィルムを剥離し、放熱層(A)がテフロンシートに接するように、真空ラミネーターを用いて貼り合わせた。その後、貼り合せた各ドライフィルムに、高圧水銀灯を搭載した露光装置を用いて、各最適露光量にて全面露光し、100℃で30分間の加熱を行った。次いで、保護層(B)に接するPETフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、150℃で60分加熱して硬化した。その後、テフロンシートから硬化したドライフィルム(硬化膜)を剥離し、熱伝導度の測定用の試験片を得た。得られた各試験片の熱伝導率を、アドバンス理工社製「周期加熱法熱拡散率測定装置FTC-RT」を用いて測定した。
 各試験片の熱伝導率を表6に示す。
(解像性評価(最小開口径の評価))
 上記(熱伝導度の測定)に記載した各実施例3-1~3-8および比較例3~1~3-3の試験片の作製にて、露光時に解像性評価用ネガマスクとしてビア開口径500μm、300μm、150μm、100μm、80μm、60μmのネガパターンを有するネガマスクを介し、各最適露光量にてパターン露光を行った以外は、上記(熱伝導度の測定)に記載した試験片の作製と同じ方法で解像性評価用の試験片を得た。得られた各試験片について、パターン開口部をSEMにて観察し、最小開口径の評価を行った。
(スクラッチ耐性)
 上記(熱伝導度の測定)に記載した各試験片上で、直径1cm、高さ2cmの真鍮製の円柱、10gのおもりを順に乗せて固定し、おもりを載せた円柱を試験片上で1cm/秒の速度で5cmスライドさせ、試験片上に黒いスクラッチ痕が発生するか否かを目視にて確認した。
 判定基準は以下の通り。
 ○:スクラッチ痕の発生無し
 ×:スクラッチ痕が発生
(破壊電圧)
 厚み0.8mmの銅張基板の片面に、各実施例3-1~3-8および比較例3~1~3-3の上記各ドライフィルムを放熱層(A)が銅張基板に接するように、真空ラミネーターを用いて貼り合わせた。その後、貼り合せた各ドライフィルムに、高圧水銀灯を搭載した露光装置を用いて、各最適露光量にて全面露光し、100℃で30分間の加熱を行った。次いで、保護層(B)に接するPETフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、150℃で60分加熱して硬化し、破壊電圧評価用の試験片を得た。その後、得られた各試験片について、菊水電子工業(株)社製の耐電圧試験器TOS5051Aを用いて、硬化膜の厚さ方向(Z軸方向)に対して電圧を0.5kV/secで昇圧させ、導電する電圧を破壊電圧とした。
 上記表6に示す評価結果から、実施例3-1~3-8の感光性積層構造体は高放熱性でありながら、解像性も良好でスクラッチ耐性にも優れていることが分かる。
 1 プリント配線基板
 2 導体回路
 3 フィラー充填層(A)
 4 保護層(B)
 5 マスク
10 ドライフィルム
11 支持フィルム
12 保護層(B)
13 フィラー充填層(A)
14 保護フィルム

Claims (8)

  1.  フィラー充填層(A)と、保護層(B)とを有する感光性積層樹脂構造体であって、
     前記フィラー充填層(A)は、光重合開始剤を実質的に含まず、かつ、フィラー含有率が有機溶剤を除く全成分中に10~80質量%であり、
     前記保護層(B)は、フィラー含有率が、前記フィラー充填層(A)のフィラー含有率に対して0~25質量%であることを特徴とする感光性積層樹脂構造体。
  2.  前記フィラー充填層(A)の層厚が前記保護層(B)の層厚よりも厚いことを特徴とする請求項1に記載の感光性積層樹脂構造体。
  3.  前記フィラーが、シリカであることを特徴とする請求項1または2記載の感光性積層樹脂構造体。
  4.  前記フィラーが、酸化チタンであり、
     前記保護層(B)は、前記酸化チタンの含有率が、前記フィラー充填層(A)の前記酸化チタンの含有率に対して0~20質量%であることを特徴とする請求項1または2記載の感光性積層樹脂構造体。
  5.  前記フィラーが、熱伝導率が10W/m・Kよりも高い放熱性フィラーであり、
     前記フィラー充填層(A)は、前記放熱性フィラーの含有率が有機溶剤を除く全成分中に50~80質量%以上であり、
     前記保護層(B)は、前記放熱性フィラーの含有率が、前記フィラー充填層(A)の前記放熱性フィラーの含有率に対して0~20質量%であることを特徴とする請求項1または2記載の感光性積層樹脂構造体。
  6.  請求項1~5に記載の感光性積層樹脂構造体の少なくとも片面が、フィルムで支持または保護されてなることを特徴とするドライフィルム。
  7.  請求項1~5に記載の感光性積層樹脂構造体、または、請求項6に記載のドライフィルムの感光性積層樹脂構造体からなることを特徴とする硬化物。
  8.  請求項7記載の硬化物を有することを特徴とする電子部品。
PCT/JP2021/037247 2020-10-08 2021-10-07 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品 WO2022075432A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237012944A KR20230084182A (ko) 2020-10-08 2021-10-07 감광성 적층 수지 구조체, 드라이 필름, 경화물 및 전자 부품
CN202180067607.XA CN116406331A (zh) 2020-10-08 2021-10-07 感光性层叠树脂结构体、干膜、固化物和电子部件

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020170681A JP2022062573A (ja) 2020-10-08 2020-10-08 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
JP2020-170681 2020-10-08
JP2020-172141 2020-10-12
JP2020172141A JP2022063745A (ja) 2020-10-12 2020-10-12 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
JP2021005873A JP2022110455A (ja) 2021-01-18 2021-01-18 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
JP2021-005873 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022075432A1 true WO2022075432A1 (ja) 2022-04-14

Family

ID=81126508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037247 WO2022075432A1 (ja) 2020-10-08 2021-10-07 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品

Country Status (3)

Country Link
KR (1) KR20230084182A (ja)
CN (1) CN116406331A (ja)
WO (1) WO2022075432A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024316A (ja) * 2012-06-20 2014-02-06 Fujifilm Corp 転写フィルム、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
WO2016158362A1 (ja) * 2015-03-27 2016-10-06 日立化成株式会社 ドライフィルム、硬化物、積層体及びレジストパターンの形成方法
JP2017211555A (ja) * 2016-05-26 2017-11-30 日立化成株式会社 ドライフィルム及びレジストパターンの形成方法
JP2018136510A (ja) * 2017-02-23 2018-08-30 太陽インキ製造株式会社 感光性フィルム積層体およびそれを用いて形成された硬化物
JP2020126090A (ja) * 2019-02-01 2020-08-20 富士フイルム株式会社 感光性転写材料、樹脂パターンの製造方法、回路配線の製造方法、及び、タッチパネルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224561A (ja) 1993-01-25 1994-08-12 Ibiden Co Ltd 放熱構造プリント配線板及びその製造方法
JP4711208B2 (ja) 2006-03-17 2011-06-29 山栄化学株式会社 感光性熱硬化性樹脂組成物、並びにレジスト膜被覆平滑化プリント配線基板及びその製造法。
JP4927426B2 (ja) 2006-03-27 2012-05-09 太陽ホールディングス株式会社 硬化性樹脂組成物及びその硬化物
JP5514355B2 (ja) 2012-09-28 2014-06-04 太陽インキ製造株式会社 光硬化性樹脂組成物、プリント配線板、及び光硬化性樹脂組成物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024316A (ja) * 2012-06-20 2014-02-06 Fujifilm Corp 転写フィルム、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
WO2016158362A1 (ja) * 2015-03-27 2016-10-06 日立化成株式会社 ドライフィルム、硬化物、積層体及びレジストパターンの形成方法
JP2017211555A (ja) * 2016-05-26 2017-11-30 日立化成株式会社 ドライフィルム及びレジストパターンの形成方法
JP2018136510A (ja) * 2017-02-23 2018-08-30 太陽インキ製造株式会社 感光性フィルム積層体およびそれを用いて形成された硬化物
JP2020126090A (ja) * 2019-02-01 2020-08-20 富士フイルム株式会社 感光性転写材料、樹脂パターンの製造方法、回路配線の製造方法、及び、タッチパネルの製造方法

Also Published As

Publication number Publication date
KR20230084182A (ko) 2023-06-12
CN116406331A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
JP5838200B2 (ja) 硬化性樹脂組成物、その硬化物及びそれらを用いたプリント配線板
KR102369508B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
KR102023165B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
TW201132502A (en) Layered structure and light-sensitive dry film used in same
JP2020170172A (ja) 積層型電子部品用樹脂組成物、ドライフィルム、硬化物、積層型電子部品、および、プリント配線板
WO2016157587A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
WO2020066601A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電子部品
KR102554514B1 (ko) 감광성 수지 조성물
JP2020166207A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP6705412B2 (ja) 感光性樹脂組成物
WO2022075432A1 (ja) 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
JP2022063745A (ja) 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
KR102319223B1 (ko) 감광성 수지 조성물, 해당 감광성 수지 조성물을 사용한 솔더 레지스트 필름, 플렉시블 프린트 배선판 및 화상 표시 장치
JP2022062573A (ja) 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
JP2021039202A (ja) 感光性樹脂組成物
KR20190114827A (ko) 경화성 수지 조성물, 해당 조성물을 포함하는 드라이 필름, 경화물 및 해당 경화물을 갖는 프린트 배선판
JP6724097B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電子部品
KR102571046B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
KR102559680B1 (ko) 감광성 수지 조성물
JP7388374B2 (ja) 感光性樹脂組成物
JP7444192B2 (ja) 感光性樹脂組成物
TW201945844A (zh) 硬化性樹脂組成物、乾膜、硬化物,及電子零件
JP2022110455A (ja) 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品
WO2023051718A1 (zh) 固化性树脂组合物、层叠体、固化物及电子部件
JP2022060252A (ja) 樹脂組成物、感光性フィルム、支持体付き感光性フィルム、プリント配線板及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012944

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877731

Country of ref document: EP

Kind code of ref document: A1