WO2022065692A1 - 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어 - Google Patents

경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어 Download PDF

Info

Publication number
WO2022065692A1
WO2022065692A1 PCT/KR2021/010810 KR2021010810W WO2022065692A1 WO 2022065692 A1 WO2022065692 A1 WO 2022065692A1 KR 2021010810 W KR2021010810 W KR 2021010810W WO 2022065692 A1 WO2022065692 A1 WO 2022065692A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
tire
weft
adhesive layer
reinforcing material
Prior art date
Application number
PCT/KR2021/010810
Other languages
English (en)
French (fr)
Inventor
이상우
전옥화
이민호
이성규
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to US17/998,511 priority Critical patent/US20230278319A1/en
Priority to EP21872722.0A priority patent/EP4137315A1/en
Priority to JP2022573411A priority patent/JP2023527443A/ja
Priority to CN202180039307.0A priority patent/CN115666935A/zh
Publication of WO2022065692A1 publication Critical patent/WO2022065692A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09J161/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/14Carcasses built-up with sheets, webs, or films of homogeneous material, e.g. synthetics, sheet metal, rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09J161/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C09J161/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1807Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers comprising fabric reinforcements
    • B60C2009/1814Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers comprising fabric reinforcements square woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2238Physical properties or dimensions of the ply coating rubber
    • B60C2009/2247Thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a lightweight rubber reinforcing material capable of reducing the weight of a tire, a manufacturing method thereof, and a tire including the rubber reinforcing material.
  • the tire cord may be classified according to the part used and the role.
  • the tire cord may be largely divided into a carcass that supports the tire as a whole, a belt that supports load and prevents deformation due to high-speed driving, and a cap ply that prevents deformation of the belt (see FIG. 1 ).
  • Examples of the material used for the tire cord include nylon, rayon, aramid, and polyester.
  • tire cords are rolled together with a rubber component for adhesion to rubber. That is, a rolling process is involved in the tire manufacturing process.
  • the process cost increases, and the density of the tire increases more than necessary due to rolling, which may unnecessarily increase the weight of the tire. .
  • Rolling resistance is related to the weight of the tire and has a major impact on a car's fuel consumption and carbon dioxide emissions.
  • R/R rolling resistance
  • the energy required for driving a vehicle increases.
  • the resistance to rotation, inclination, and acceleration of a vehicle is closely related to the weight of the vehicle. Accordingly, studies are being conducted to reduce the weight of automobiles through weight reduction of tires and, as a result, to reduce energy consumption.
  • An object of the present invention is to provide a rubber reinforcing material for a tire having a thin thickness and excellent durability.
  • An object of the present invention is to provide a method for manufacturing a rubber reinforcing material having excellent durability while having a thin thickness.
  • Another object of the present invention is to provide a tire including the rubber support material.
  • the fiber base is a fabric woven with warp yarns and weft yarns
  • the warp is included in the fabric as a single-ply yarn having a fineness of 420 denier to 800 denier at a warp density of 55 yarns/inch to 65 yarns/inch,
  • the weft yarn has a dry heat shrinkage of -1.0% to +3.0% according to the standard test method of ASTM D 885 (177 °C, 2 minutes, load of 0.05 g/de),
  • a rubber reinforcement is provided.
  • a tire including the rubber reinforcing material.
  • the fiber base is a fabric woven with warp yarns and weft yarns
  • the warp is a single yarn having a fineness of 420 denier to 800 denier, and is included in the fabric at a warp density of 55 yarns/inch to 65 yarns/inch,
  • the weft yarn has a dry heat shrinkage of -1.0% to +3.0% according to the standard test method of ASTM D 885 (177 °C, 2 minutes, load of 0.05 g/de),
  • a rubber reinforcement is provided.
  • the rubber reinforcing material including the fiber base can exhibit excellent durability while having a thin thickness.
  • the rubber reinforcing material of the above embodiment has excellent adhesion to rubber, it may be strongly adhered to the rubber without going through a rolling process in the tire manufacturing process. Accordingly, the rubber reinforcing material makes it possible to reduce the manufacturing cost of the tire and prevent unnecessary increases in density and weight of the tire due to rolling.
  • the rubber reinforcing material has excellent adhesion to rubber, and thus air pockets are reduced during manufacturing of the green tire, thereby reducing the defect rate of the tire.
  • the rubber reinforcing material has a thin thickness to satisfy the demand for reducing the thickness of the rubber layer in order to reduce the weight of the tire. Furthermore, the rubber reinforcing material can lower the rolling resistance of the tire, and it is possible to improve the fuel efficiency of the vehicle. In particular, the rubber reinforcing material makes it possible to improve fuel efficiency and improve driving performance of the electric vehicle.
  • FIG. 2 is a schematic cross-sectional view of a rubber reinforcement 201 according to an embodiment of the present invention.
  • the rubber reinforcement 201 includes a fiber base 210 , an adhesive layer 220 disposed on the fiber base 210 , and a rubber compound layer 230 disposed on the adhesive layer 220 .
  • the fiber base is a fabric woven with warp yarns and weft yarns.
  • the warp yarn and the weft yarn may each independently include one or more materials selected from the group consisting of nylon, rayon, aramid, polyester, and cotton.
  • the warp may include one or more materials selected from the group consisting of nylon, rayon, aramid, and polyester.
  • the weft yarn may include one or more materials selected from the group consisting of nylon, rayon, aramid, polyester, and cotton.
  • the fiber base 210 is densified in the oblique direction.
  • the warp yarn is a single-ply yarn having a fineness of 420 denier to 800 denier, and is included in the fabric at a warp density of 55 yarns/inch to 65 yarns/inch.
  • the warp density of the fiber base is 55 pieces/inch or more.
  • the warp density of the fiber base be 65 pieces/inch or less.
  • the warp is a single-ply yarn (single-ply yarn), the fineness may be determined in consideration of the warp density. However, in order to secure the durability of the fiber base, the fineness of the warp is preferably 420 denier or more.
  • the fiber substrate has an inter-warp density of 65% or more.
  • the density between the warps represents the area occupied by the warps per inch, and can be specifically expressed as ⁇ (thickness of one warp strand (inch) * number of warps per inch (n)) / inch ⁇ * 100 (%).
  • the density between the gradients may be 65% or more, or 75% or more, or 90% or more.
  • the effect targeted in the present invention may be sufficiently expressed.
  • the inclination may be twisted.
  • the degree of twist of the warp may be 0 to 250 TPM (twist per meter).
  • TPM tilt per meter
  • the fiber base 210 includes a densified warp, it includes a weft yarn having physical properties so that the warp can be uniformly arranged.
  • the weft yarn preferably has a dry heat shrinkage rate of -1.0% to +3.0% according to the standard test method of ASTM D 885 (177 °C, 2 minutes, load of 0.05 g/de).
  • the dry heat shrinkage value is (+), it means a shrinkage behavior, and when it is (-), it means a relaxation behavior.
  • the weft yarn included in the fiber base 210 has a dry heat shrinkage rate of ⁇ 0.5% according to the standard test method of ASTM D 885 (177 ° C, 2 minutes, a load of 0.05 g/de) Accordingly, the overlapping phenomenon of the inclinations can be effectively suppressed.
  • Dry heat shrinkage of the weft yarn was measured according to the standard test method of ASTM D 885, after applying a load of 0.05 g/de to the weft sample (length 60 cm) and applying heat at 177° C. for 2 minutes, the length of the weft sample This is done by measuring the amount of change.
  • the weft yarn is -1.0% to +3.0%, or -1.0% to +2.0%, or -0.5 according to the standard test method of ASTM D 885 (177°C, 2 minutes, load of 0.05 g/de) % to +2.0%, or -0.5% to +1.5%, or -0.5% to +1.0%, or -0.50% to +0.50%, or -0.40% to +0.50%, or -0.40% to +0.40% , or -0.30% to +0.40%, or -0.30% to +0.30%, or -0.20% to +0.30%.
  • the weft yarn is a single-ply yarn having a fineness of 420 denier to 800 denier.
  • said weft yarns are from 0.05 pcs/mm to 5 pcs/mm, or from 0.05 pcs/mm to 4.5 pcs/mm, or from 0.05 pcs/mm to 4 pcs/mm, or from 0.05 pcs/mm to 3.5 pcs/mm, or 0.05 pcs/mm It may be incorporated into the fabric at a weft density of between mm and 3 threads/mm, or between 0.05 threads/mm and 2.5 threads/mm.
  • the fiber base 201 may have a thickness of 100 ⁇ m to 600 ⁇ m, or 200 ⁇ m to 500 ⁇ m, or 200 ⁇ m to 400 ⁇ m.
  • the fiber base may have excellent durability within the above-described thickness range.
  • the fiber base is -1.0% to +3.0% according to the standard test method of ASTM D 885 (specimen size: weft direction length 60 cm x width 1 cm, 177 °C, 2 minutes, load of 0.05 g/de based on weft) It may have dry heat shrinkage.
  • dry heat shrinkage value when the dry heat shrinkage value is (+), it means a shrinkage behavior, and when it is (-), it means a relaxation behavior.
  • a load of 0.05 g/de was applied to a fiber base specimen (length 60 cm in the weft direction x 1 cm in width) based on the fineness of the weft, and It is carried out by measuring the amount of change in length and width of a fiber-based specimen after applying heat at 177° C. for 2 minutes.
  • the fiber substrate is -1.0% to -1.0% according to the standard test method of ASTM D 885 (specimen size: weft direction length 60 cm x width 1 cm, 177 ° C., 2 minutes, load of 0.05 g/de based on weft) +3.0%, or -1.0% to +2.0%, or -0.5% to +2.0%, or -0.5% to +1.5%, or -0.5% to +1.0%, or -0.50% to +0.50%, or It may have a dry heat shrinkage rate of -0.40% to +0.50%, or -0.40% to +0.40%, or -0.30% to +0.40%, or -0.30% to +0.30%.
  • the rubber reinforcement 201 includes the adhesive layer 220 disposed on the fiber base 210 .
  • the adhesive layer 220 includes resorcinol-formaldehyde-latex (RFL).
  • RTL resorcinol-formaldehyde-latex
  • the adhesive layer 220 may be formed by an adhesive coating solution containing resorcinol-formaldehyde-latex (RFL) and a solvent.
  • RTL resorcinol-formaldehyde-latex
  • the resorcinol-formaldehyde-latex acts as an adhesive component.
  • Resorcinol-formaldehyde-latex improves the affinity and adhesion between the fibrous substrate 210 and the rubber components.
  • the adhesive layer 220 improves the internal adhesion between the fiber base 210 and the rubber compound layer 230 , and improves the external adhesion between the rubber reinforcement 201 and the rubber (eg, tread, etc.) make it
  • the fiber base 210 and the rubber compound layer 230 may be stably attached without being separated from each other, and a defect rate may be reduced in the manufacturing process of the tire 101 .
  • the rubber reinforcing material 201 includes a rubber compound layer 230 disposed on the adhesive layer 220 .
  • the rubber compound layer 230 may include at least one elastic polymer selected from the group consisting of natural rubber and synthetic rubber.
  • the rubber compound layer 230 may be formed by applying a liquid rubber coating solution including the elastic polymer on the adhesive layer 220 .
  • the rubber reinforcing material 201 may have a thin rubber compound layer 230 that is difficult to achieve through a rolling process using solid rubber.
  • the weight of the rubber reinforcing material 201 including the rubber compound layer 230 and the tire 101 including the rubber reinforcing material 201 may be reduced.
  • the rubber compound layer 230 may be formed from a rubber coating solution including an elastic polymer composition and a solvent.
  • the elastomeric composition may include an elastomeric polymer and additives.
  • the elastic polymer may be at least one rubber selected from the group consisting of natural rubber and synthetic rubber.
  • the elastomer is natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isobutylene rubber (IBR), isoprene rubber (IR), nitrile rubber ( NBR), butyl rubber, and may be at least one rubber selected from the group consisting of neoprene rubber.
  • additives examples include carbon black, para oil, zinc oxide, stearic acid, antioxidants, sulfur, vulcanization accelerators, activators, adhesives, and adhesives.
  • the solvent included in the rubber coating solution is not particularly limited as long as it can dissolve the elastic polymer.
  • the solvent may include at least one selected from toluene, naphtha, methanol, xylene, and tetrahydrofuran.
  • the rubber coating solution may include 10 wt% to 40 wt% of the elastomer composition and 60 wt% to 90 wt% of the solvent, based on the total weight of the rubber coating solution.
  • the concentration of the elastic polymer composition in the rubber coating solution is too low, the thickness of the rubber compound layer may be too thin, and required tackiness and adhesion may not be developed. Therefore, it is preferable that the rubber coating solution contains 10% by weight or more of the elastic polymer composition.
  • the rubber coating solution contains 40 wt% or less of the elastomer composition.
  • the rubber compound layer 230 may have a thickness t1 of 5 ⁇ m to 200 ⁇ m, or 5 ⁇ m to 150 ⁇ m, or 5 ⁇ m to 100 ⁇ m, or 5 ⁇ m to 50 ⁇ m.
  • the thickness t1 of the rubber compound layer 230 is from one surface of the rubber compound layer 230 in contact with the adhesive layer 220 to the rubber compound layer 230 positioned on the opposite side to the adhesive layer 220 . It is measured as the longest distance to the other side of
  • the rubber layer since the rubber layer is formed by rolling the rubber base on the fiber base, the rubber layer generally has a thickness of 1 mm or more, and a thickness of at least 0.8 mm or more.
  • the rubber compound layer 230 may be formed by the rubber coating solution and have a thin thickness of 200 ⁇ m or less. Accordingly, the overall thickness of the rubber reinforcing material 201 may be reduced, and further, the thickness of the tire 101 including the rubber reinforcing material 201 may be reduced.
  • the rubber compound layer 230 preferably has a thickness t1 of 5 ⁇ m or more.
  • the thickness of the rubber compound layer 230 may not meet the purpose of the present invention to provide the rubber reinforcing material 201 having a thin thickness.
  • the thickness t1 of the rubber compound layer 230 is too thick, bubbles may be formed in the rubber compound layer 230 during the volatilization of the solvent, so that it may be difficult for the rubber reinforcing material 201 to have a uniform thickness.
  • an air pocket may be generated in the tire to which this is applied, thereby reducing the quality of the tire and increasing the defect rate.
  • the rubber compound layer 230 preferably has a thickness t1 of 200 ⁇ m or less.
  • the rubber reinforcing material 201 according to the embodiment is in accordance with the standard test method of ASTM D 885 (specimen size: weft direction length 60 cm x width 1 cm, 150 ° C., 2 minutes, load 10 g) - 4% to - It can have a dry heat shrinkage of 2%.
  • the rubber reinforcing material 201 may exhibit a maximum load of 1.0 kgf to 1.2 kgf, or 1.1 kgf to 1.2 kgf in a tensile test at 150 ° C for a specimen (size: weft direction length 25 cm x width 1 cm). .
  • the rubber reinforcing material 201 may exhibit a maximum load of 1.0 kgf to 1.2 kgf, or 1.0 kgf to 1.1 kgf in a tensile test at 160° C. on a specimen (size: length 25 cm in weft direction x width 1 cm).
  • the rubber reinforcing material 201 may exhibit a maximum load of 0.8 kgf to 1.1 kgf, or 0.9 kgf to 1.1 kgf in a tensile test at 177° C. on a specimen (size: weft direction length 25 cm x width 1 cm).
  • the rubber reinforcing material 201 has a tensile strain of 11.0% to 13.0%, or 11.0% to 12.0% in a tensile test at 150° C. for a specimen (size: weft direction length 25cm x width 1cm) strain) may be present.
  • the rubber reinforcing material 201 may have a tensile strain of 13.0% to 15.0%, or 14.0% to 15.0% in a tensile test at 160° C. for a specimen (size: weft direction length 25 cm x width 1 cm). .
  • the rubber reinforcing material 201 may have a tensile strain of 13.0% to 15.0%, or 14.0% to 15.0% in a tensile test at 177 ° C for a specimen (size: weft direction length 25cm x width 1cm). .
  • the tensile test may be performed using a half chamber in consideration of the configuration of the rubber reinforcement.
  • a general high-temperature chamber the entire specimen is placed in the chamber, heat is applied, and the tensile properties are evaluated after leaving it under high temperature for a specific time.
  • the rubber compound layer 230 is formed on the outside of the rubber reinforcing material, when a general high-temperature chamber is used, the grip portion slips due to the high temperature, making it difficult to measure physical properties. Therefore, it is preferable to perform the tensile test using the half-chamber capable of heating only a central portion of the rubber reinforcement specimen.
  • the rubber reinforcement 201 according to the embodiment may be applied to at least one of the cap ply 90 , the belt 50 , and the carcass 70 of the tire 101 .
  • ASTM D 885 177° C., 2 minutes, load of 0.05 g/de
  • the step of forming the adhesive layer 220 on the fiber base 210 is performed.
  • the adhesive layer 220 may be formed by an adhesive coating solution containing resorcinol-formaldehyde-latex (RFL) and a solvent.
  • RTL resorcinol-formaldehyde-latex
  • the adhesive coating solution may be applied on the fiber base 210 .
  • the immersion process may be performed by passing the fiber base 210 through the adhesive coating solution.
  • Such immersion can be performed in an immersion apparatus in which tension, immersion time and temperature can be controlled.
  • the adhesive coating solution may be applied on the fiber base 210 by coating using a blade or a coater, or spraying using a sprayer.
  • the step of forming the adhesive layer 220 may further include a step of immersing or applying the adhesive coating solution on the fiber base 210 and heat-treating it at 130° C. to 250° C. for 80 seconds to 120 seconds.
  • the heat treatment may be performed in a conventional heat treatment apparatus.
  • the adhesive layer 220 may be formed by curing and fixing resorcinol-formaldehyde-latex (RFL) by the heat treatment. By this heat treatment, the adhesive layer 220 may be more stably formed.
  • RTL resorcinol-formaldehyde-latex
  • a step of forming a rubber compound layer 230 on the adhesive layer 220 is performed by applying a rubber coating solution on the adhesive layer 220 and heat-treating it.
  • the rubber compound layer 230 may be formed from a rubber coating solution including an elastic polymer composition and a solvent.
  • the elastomeric composition may include an elastomeric polymer and additives.
  • the elastic polymer may be at least one rubber selected from the group consisting of natural rubber and synthetic rubber.
  • the elastomer is natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isobutylene rubber (IBR), isoprene rubber (IR), nitrile rubber ( NBR), butyl rubber, and may be at least one rubber selected from the group consisting of neoprene rubber.
  • Examples of the additive that may be included in the elastic polymer composition include carbon black, para-oil, zinc oxide, stearic acid, anti-aging agent, sulfur, vulcanization accelerator, activator, pressure-sensitive adhesive, adhesive, and the like.
  • the solvent included in the rubber coating solution is not particularly limited as long as it can dissolve the elastic polymer.
  • the solvent may include at least one selected from toluene, naphtha, methanol, xylene, and tetrahydrofuran.
  • the rubber coating solution may include 10 wt% to 40 wt% of the elastomer composition and 60 wt% to 90 wt% of the solvent, based on the total weight of the rubber coating solution.
  • the concentration of the elastic polymer composition in the rubber coating solution is too low, the thickness of the rubber compound layer may be too thin, and required tackiness and adhesion may not be developed. Therefore, it is preferable that the rubber coating solution contains 10% by weight or more of the elastic polymer composition.
  • the rubber coating solution contains 40 wt% or less of the elastomer composition.
  • a method of applying the rubber coating solution on the adhesive layer 220 is not particularly limited, and a known coating method may be applied.
  • the fiber base on which the adhesive layer 220 is formed may be immersed in the rubber coating solution.
  • a rubber coating solution may be applied on the adhesive layer 220 by immersion.
  • the rubber coating solution may be applied on the adhesive layer 220 by comma coating using a comma coater.
  • the coating may be made at a temperature at which the solvent can be volatilized, for example, at a temperature of 65 °C to 100 °C.
  • a heat treatment process is further performed.
  • the heat treatment may be performed in a conventional heat treatment apparatus.
  • heat may be applied for 30 seconds to 150 seconds under a temperature of 50 °C to 160 °C.
  • the coating amount per unit area of the rubber coating solution may be 75 g/m 2 to 300 g/m 2 , or 100 g/m 2 to 200 g/m 2 .
  • the rubber compound layer 230 may have a thickness t1 of 5 ⁇ m to 200 ⁇ m, or 5 ⁇ m to 150 ⁇ m, or 5 ⁇ m to 100 ⁇ m, or 5 ⁇ m to 50 ⁇ m.
  • a slitting step is a step of cutting the rubber reinforcing material 201 manufactured in a plate shape as needed or suitable for the purpose of use.
  • the slitting may be performed using a conventional cutter knife or a heating knife.
  • the rubber reinforcement 201 manufactured by the above method may be wound around a winder.
  • a tire including the above-described rubber reinforcing material.
  • FIG. 1 is a partially cut-away view of a tire 101 according to an embodiment of the present invention.
  • the tire 101 includes a tread 10 , a shoulder 20 , a side wall 30 , a bead 40 , and a belt. 50 , an inner liner 60 , a carcass 70 and a capply 90 .
  • the tread 10 is a part in direct contact with the road surface.
  • the tread 10 is a strong rubber layer attached to the outside of the cap ply 90, and is made of rubber having excellent wear resistance.
  • the tread 10 plays a direct role in transmitting the driving force and braking force of the vehicle to the ground.
  • a groove 80 is formed in the area of the tread 10 .
  • the shoulder 20 is a corner portion of the tread 10 and is a portion connected to the side wall 30 .
  • the shoulder 20 along with the sidewall 30 is one of the weakest parts of the tire.
  • the side wall 30 is a side part of the tire 101 connecting the tread 10 and the bead 40 , and protects the carcass 70 and provides lateral stability to the tire.
  • the bead 40 is a region containing an iron wire that winds the end of the carcass 70, and has a structure in which a rubber film is applied to the wire and wraps the cord.
  • the bead 40 serves to mount and fix the tire 101 to a wheel rim.
  • the belt 50 is a coat layer located in the middle between the tread 10 and the carcass 70 .
  • the belt 50 serves to prevent damage to internal components such as the carcass 70 due to external impact or external conditions, and maintains the shape of the tread 10 flat so that the tire 101 and the road surface are separated from each other. Make sure your contact is at its best.
  • the belt 50 may include a rubber reinforcement 201 according to another embodiment of the present invention (see FIG. 2 ).
  • the inner liner 60 is used instead of a tube in a tubeless tire, and is made of special rubber with little or no air permeability.
  • the inner liner 60 prevents the air filled in the tire 101 from leaking.
  • the carcass 70 is made by overlapping several cords made of strong synthetic fibers, and is an important part forming the skeleton of the tire 101 .
  • the carcass 70 serves to withstand the load and impact of the tire 101 and to maintain the air pressure.
  • the carcass 70 may include a rubber reinforcement 201 according to another embodiment of the present invention.
  • Groove 80 refers to a void in the tread area.
  • the groove 80 serves to increase the drainage property of the tire and increase the gripping force of the tire when driving on a wet road surface.
  • the cap ply 90 is a protective layer under the tread 10, protecting other components therein.
  • the cap ply 90 is essentially applied to a high-speed driving vehicle. In particular, as the driving speed of the vehicle increases, the belt portion of the tire is deformed and ride comfort is deteriorated. Accordingly, the importance of the cap ply 90 for preventing the deformation of the belt portion is increasing.
  • the cap ply 90 may be made of a rubber reinforcement 201 according to another embodiment of the present invention.
  • the tire 101 includes a rubber reinforcing material 201 .
  • the rubber reinforcement 201 may be applied to at least one of the cap ply 90 , the belt 50 and the carcass 70 .
  • a rubber reinforcing material having excellent durability while having a thin thickness and light weight is provided.
  • the rubber reinforcing material enables the expression of improved rolling resistance while reducing the weight of the tire.
  • FIG. 1 is a partially cut-away view of a tire according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a rubber reinforcement according to another embodiment of the present invention.
  • Example 3 is an image taken with a camera after measuring the dry heat shrinkage rate of the fiber base material according to (a) Example 1 and (b) Comparative Example 1 of the present invention.
  • the weft yarn has a dry heat shrinkage rate of 0.16% - according to the standard test method of ASTM D 885 (177 °C, 2 minutes, a load of 0.05 g/de) (see Test Examples below).
  • a fibrous substrate 210 having a thickness of 45 ⁇ m and having a warp density of 55 pieces/inch (inter-warp density 90%) and a weft yarn density of 2.5 pieces/mm was woven.
  • the adhesive layer 220 was formed.
  • a rubber reinforcing material 201 having a 10 ⁇ m rubber compound layer 230 was prepared.
  • the elastomer composition is dispersed in a mixed solvent in which toluene and tetrahydrofuran are mixed in a weight ratio of 20:80 at a concentration of 12% by weight.
  • the elastic polymer composition includes 60 parts by weight of carbon black, 20 parts by weight of para-oil, 3 parts by weight of zinc oxide, 2 parts by weight of stearic acid, and 2 parts by weight of an antioxidant (RUBBER ANTIOXIDANTS, BHT) based on 100 parts by weight of styrene butadiene rubber (SBR).
  • RTBBER ANTIOXIDANTS BHT
  • SBR styrene butadiene rubber
  • ZnBX vulcanization accelerators
  • the rubber reinforcing material for the cap ply 90 was manufactured by cutting the rubber reinforcing material 201 to a width of 10 mm. A cutter knife was used for the cutting.
  • the cut rubber reinforcing material was applied to the manufacture of tires of 205/55R16 standard.
  • a bodyply and a steel cord belt comprising a 1300De/2ply HMLS tire cord were used.
  • the rubber for body fly is laminated on the inner liner rubber, the bead wire and the belt unit are laminated, the rubber reinforcement material prepared above is put in, and a rubber layer for forming the tread part, the shoulder part and the side wall part is sequentially formed.
  • Green tires were manufactured. The green tire was placed in a vulcanization mold and vulcanized at 170° C. for 15 minutes to manufacture a tire.
  • a rubber reinforcing material and a tire including the same were manufactured in the same manner as in Example 1, except that a single-ply yarn (twist of 200 TPM) made of rayon having a fineness of 260 denier was used as the weft yarn.
  • the weft yarn has a dry heat shrinkage rate of +0.27% according to the standard test method of ASTM D 885 (177° C., 2 minutes, a load of 0.05 g/de) (see Test Examples below).
  • a rubber reinforcing material and a tire including the same were manufactured in the same manner as in Example 1, except that a nylon single-ply yarn (twist of 200 TPM) having a fineness of 630 denier was used as the weft yarn.
  • the weft yarn has a dry heat shrinkage rate of +5.06% according to the standard test method of ASTM D 885 (177° C., 2 minutes, a load of 0.05 g/de) (see Test Examples below).
  • a rubber reinforcing material and a tire including the same were manufactured in the same manner as in Example 1, except that a cotton covering nylon yarn (twisted at 200 TPM) having a fineness of 160 denier was used as the weft yarn.
  • the weft yarn has a dry heat shrinkage rate of -1.04% according to the standard test method of ASTM D 885 (177° C., 2 minutes, a load of 0.05 g/de) (see Test Examples below).
  • the thickness of the fiber base and the rubber compound layer was measured using vernier calipers manufactured by Mitutoyo.
  • Example 1 Comparative Example 1 Comparative Example 2 weft - 0.16 + 0.27 + 5.06 - 1.04 fiber base - 0.25 + 0.21 + 5.02 - 1.08
  • Example 1 Comparative Example 1 load 5 g load 10 g load 5 g load 10 g @ 25°C - 0.21 - 0.35 - 0.01 - 0.18 @ 150°C - 1.03 - 2.94 - 0.08 - 0.19 @ 160°C - 1.05 - 2.37 - 0.07 - 0.30 @ 177°C - 2.32 - 1.69 - 0.02 + 0.03
  • Specimens of rubber reinforcement according to Example 1 and Comparative Example 1 were mounted in a half chamber to measure tensile properties.
  • the specimen was mounted on the upper and lower grips (grip distance of 20 cm) of the half chamber in a direction perpendicular to the horizontal plane. After applying heat (25 °C, 150 °C, 160 °C, or 177 °C) for 2 minutes to the part of the specimen (heating length 12 cm) located between the grips, the specimen was tensioned at a rate of 300 mm/min. . The maximum load (kgf) and tensile strain (tensile strain) when the specimen was broken were measured. It was measured a total of 5 times, and the average value is shown in Table 3 below.
  • the rubber reinforcing material of Comparative Example 1 exhibits a higher tensile strain than the rubber reinforcing material of Example 1. This means that the rubber reinforcing material of Comparative Example 1 is difficult to make a uniform product due to overlapping between fabrics during the manufacturing process. Through this, it can be predicted that the rubber reinforcing material of Comparative Example 1 has relatively poor manufacturing uniformity.
  • a 205/60 R16 tire to which a tire cord manufactured by a rolling process (a nylon two-ply yarn having a fineness of 840 denier is used as a warp, and a warp density of 25 pieces/inch) is applied was prepared as a reference example.
  • the physical property value of the tire of Example 1 is a value obtained by converting the physical property value of the tire of the reference example into a reference (100%).
  • the tire of Example 1 includes the rubber reinforcing material according to the embodiment of the present invention, and thus is lighter than the tire of the Reference Example and has excellent high-speed running performance, durability, and rolling resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Tires In General (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Tyre Moulding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어에 관한 것이다. 본 발명에 따르면, 얇은 두께와 가벼운 무게를 가지면서도 우수한 내구성을 갖는 고무 보강재가 제공된다. 상기 고무 보강재는 타이어를 경량화하면서도 향상된 구름 저항성의 발현을 가능하게 한다.

Description

경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어
본 발명은 타이어의 중량을 감소시킬 수 있는 경량화된 고무 보강재와 그 제조 방법 및 이러한 고무 보강재를 포함하는 타이어에 관한 것이다.
자동차의 성능이 점차 향상되고 도로 상황이 개선됨에 따라, 자동차의 고속 주행 시에 타이어의 안정성과 내구성을 유지할 것이 요구되고 있다. 또한, 환경 문제, 에너지 문제 및 연료 효율 등을 고려하여 가벼우면서도 내구성이 우수한 타이어가 요구되고 있다. 이러한 요구에 부합하기 위한 하나의 방안으로, 타이어의 고무 보강재로 사용되는 타이어 코드에 대한 연구가 활발히 진행되고 있다.
타이어 코드는 사용되는 부위 및 역할에 따라 구분될 수 있다. 예를 들어, 타이어 코드는 타이어를 전체적으로 지지하는 카카스, 고속 주행에 따른 하중 지지 및 변형을 방지하는 벨트, 벨트의 변형을 방지하는 캡플라이로 크게 구분될 수 있다(도 1 참조).
타이어 코드에 사용되는 소재로는 나일론, 레이온, 아라미드, 및 폴리에스테르 등을 예로 들 수 있다.
일반적으로, 타이어 코드는 고무와의 접착을 위해 고무 성분과 함께 압연된다. 즉, 타이어 제조 과정에서 압연 공정이 수반된다. 그런데, 타이어의 제조 과정에서 타이어 코드와 고무의 접착을 위한 압연 공정이 적용되는 경우, 공정 비용이 증가하며, 압연으로 인해 타이어의 밀도가 필요 이상으로 증가하여 타이어의 무게가 불필요하게 증가할 수 있다.
타이어 코드에 고무를 압연하는 공정에서는 일반적으로 고체 상태의 고무가 사용된다. 그런데, 이와 같은 고체 상태 고무의 압연에 의해 형성된 제품은 200 ㎛ 이하, 특히 5 ㎛ 내지 30 ㎛ 정도의 얇은 박막 형태로 만들어지기 어려우며, 이러한 제품이 고무 보강재로 사용되는 경우 타이어의 두께 및 무게가 증가한다.
최근 타이어 제조사에서는 타이어의 초경량화 및 보강재의 경량화를 위해 고무층의 두께를 감소시키고자 한다. 구름 저항(rolling resistance, R/R)은 타이어의 무게와 관련이 있으며, 자동차의 연료 소비와 이산화탄소 배출에 큰 영향을 미친다. 예를 들어, 구름 저항(R/R)이 클수록 자동차의 주행시 필요한 에너지가 증가한다. 또한, 자동차의 회전, 경사, 가속에 대한 저항은 자동차 무게와 밀접한 관련이 있다. 따라서, 타이어 경량화를 통해 자동차를 경량화하고, 그 결과 에너지 소비가 감소되도록 하는 연구도 진행되고 있다.
본 발명은 얇은 두께를 가지면서도 우수한 내구성을 갖는 타이어용 고무 보강재를 제공하기 위한 것이다.
본 발명은 얇은 두께를 가지면서도 우수한 내구성을 갖는 고무 보강재의 제조 방법을 제공하기 위한 것이다.
그리고, 본 발명은 상기 고무 보공재를 포함하는 타이어를 제공하기 위한 것이다.
본 발명의 일 구현 예에 따르면,
섬유 기재;
상기 섬유 기재 상에 배치된 접착층; 및
상기 접착층 상에 배치된 고무 컴파운드 층을 포함하고,
상기 섬유 기재는 경사(warp yarn)와 위사(weft yarn)로 제직된 직물이며,
상기 경사는 420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)으로서 55 개/inch 내지 65 개/inch의 경사 밀도로 상기 직물에 포함되고,
상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는,
고무 보강재가 제공된다.
본 발명의 다른 일 구현 예에 따르면,
420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)인 경사(warp yarn)와 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는 위사(weft yarn)를 사용하여, 55 개/inch 내지 65 개/inch의 경사 밀도로 제직된 섬유 기재를 준비하는 단계;
상기 섬유 기재 상에 접착층을 형성하는 단계; 및
상기 접착층 상에 고무 코팅액을 도포하고 열처리하여, 상기 접착층 상에 고무 컴파운드 층을 형성하는 단계
를 포함하는, 상기 고무 보강재의 제조 방법이 제공된다.
본 발명의 또 다른 일 구현 예에 따르면, 상기 고무 보강재를 포함하는 타이어가 제공된다.
이하, 본 발명의 구현 예들에 따른 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어에 대하여 보다 상세히 설명하기로 한다.
본 명세서에서 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 통상의 기술자들에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 "포함"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 상기 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서, 예를 들어 '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
본 명세서에서, 예를 들어 '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
본 명세서에서 "적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다.
I. 고무 보강재
발명의 일 구현 예에 따르면,
섬유 기재;
상기 섬유 기재 상에 배치된 접착층; 및
상기 접착층 상에 배치된 고무 컴파운드 층을 포함하고,
상기 섬유 기재는 경사(warp yarn)와 위사(weft yarn)로 제직된 직물이며,
상기 경사는 420 데니어 내지 800 데니어의 섬도를 갖는 단사(single yarn)로서 55 개/inch 내지 65 개/inch의 경사 밀도로 상기 직물에 포함되고,
상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는,
고무 보강재가 제공된다.
본 발명자들의 계속적인 연구 결과, 상기 섬유 기재를 포함하는 고무 보강재는 얇은 두께를 가지면서도 우수한 내구성을 나타낼 수 있음이 확인되었다.
또한, 상기 구현예의 고무 보강재는 고무에 대해 우수한 접착력을 가지기 때문에, 타이어 제조 과정에서 압연 공정을 거치지 않고도, 고무와 강력하게 접착될 수 있다. 그에 따라 상기 고무 보강재는 타이어 제조 비용의 절감을 가능하게 하고, 압연으로 인해 타이어의 밀도와 무게가 불필요하게 증가하는 것을 방지할 수 있다.
또한, 상기 고무 보강재는 고무에 대한 우수한 접착력을 가져, 그린타이어 제조시 에어 포켓(air pocket)이 감소하여 타이어의 불량률을 낮출 수 있다.
상기 고무 보강재는 얇은 두께를 가져 타이어의 초경량화를 위해 고무층의 두께를 감소시키고자 하는 요구를 만족시킬 수 있다. 나아가, 상기 고무 보강재는 타이어의 구름 저항을 낮출 수 있고, 자동차의 연비 개선을 가능하게 한다. 특히, 상기 고무 보강재는 전기 자동차의 연비 개선과 주행 성능 향상을 가능하게 한다.
도 2는 본 발명의 일 실시예에 따른 고무 보강재(201)에 대한 개략적인 단면도이다.
상기 고무 보강재(201)는 섬유 기재(210), 상기 섬유 기재(210) 상에 배치된 접착층(220) 및 상기 접착층(220) 상에 배치된 고무 컴파운드 층(230)을 포함한다.
발명의 구현 예에 따르면, 상기 섬유 기재는 경사(warp yarn)와 위사(weft yarn)로 제직된 직물이다.
상기 섬유 기재에서, 상기 경사 및 상기 위사는 각각 독립적으로 나일론, 레이온, 아라미드, 폴리에스테르, 및 면으로 이루어진 군에서 선택된 1종 이상의 소재를 포함할 수 있다.
바람직하게는, 상기 경사는 나일론, 레이온, 아라미드, 및 폴리에스테르로 이루어진 군에서 선택된 1종 이상의 소재를 포함할 수 있다. 그리고, 바람직하게는, 상기 위사는 나일론, 레이온, 아라미드, 폴리에스테르, 및 면으로 이루어진 군에서 선택된 1종 이상의 소재를 포함할 수 있다.
특히, 상기 섬유 기재(210)는 경사 방향으로 고밀도화된 것이다.
구체적으로, 상기 경사는 420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)으로서, 55 개/inch 내지 65 개/inch의 경사 밀도로 상기 직물에 포함된다.
상기 고무 보강재(201)가 얇은 두께를 가지면서도 우수한 내구성을 나타낼 수 있도록 하기 위하여, 상기 섬유 기재의 경사 밀도는 55 개/inch 이상인 것이 바람직하다.
경사 밀도가 너무 클 경우 경사의 균일한 배열이 어려워진다. 그리고, 배열이 어긋난 경사들의 겹침 현상에 의해 상기 섬유 기재 상에 주름이 생기고, 이러한 주름으로 인해 상기 섬유 기재의 물성이 불균일해진다. 그러므로, 상기 섬유 기재의 경사 밀도는 65 개/inch 이하인 것이 바람직하다.
그리고, 상기 경사는 싱글-플라이 얀(single-ply yarn)으로서, 그 섬도는 상기 경사 밀도를 고려하여 결정될 수 있다. 다만, 상기 섬유 기재의 내구성 확보를 위하여, 상기 경사의 섬도는 420 데니어 이상인 것이 바람직하다.
상기 섬유 기재는 65 % 이상의 경사 간 밀도를 갖는 것이 바람직하다.
상기 경사 간 밀도는 inch 당 경사가 차지하는 면적을 나타내며, 구체적으로 {(경사 1 가닥의 두께(inch) * inch 당 경사 개수(n)) / inch} *100 (%)로 나타낼 수 있다.
구체적으로, 상기 경사 간 밀도는 65 % 이상, 또는 75 % 이상, 또는 90 % 이상일 수 있다. 상기 경사 간 밀도가 65 % 이상인 경우 본 발명에서 목표로 하는 효과가 충분히 발현될 수 있다.
상기 경사는 꼬임이 부여된 것일 수 있다. 상기 경사가 갖는 꼬임의 정도는 0 내지 250 TPM (twist per meter)일 수 있다. 상기 경사에 꼬임이 부여되는 경우, 상기 섬유 기재의 집속성이 향상되고 내피로 성능이 좋아질 수 있다.
상기 섬유 기재(210)는 고밀도화된 경사를 포함함에 따라, 상기 경사가 균일하게 배열될 수 있도록 하기 위한 물성을 갖는 위사를 포함한다.
특히, 상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는 것이 바람직하다.
여기서, 상기 건열수축율 값이 (+)인 경우 수축 거동을 의미하고, (-)인 경우 이완 거동을 의미한다.
상기 고무 보강재의 제조 과정에서 상기 섬유 기재에 소정의 열이 부여된다. 이때 상기 섬유 기재에는 경사 방향의 장력과 열에 의한 위사의 수축이 발생한다. 그런데, 상기 섬유 기재는 고밀도화된 경사를 포함함에 따라, 배열이 어긋난 경사들의 겹침 현상에 의해 상기 섬유 기재 상에 주름이 생길 수 있다. 이러한 주름은 상기 섬유 기재(210) 상에 순차로 배치되는 접착층(220) 및 고무 컴파운드 층(230)이 올바르게 형성되지 못하게 한다.
발명의 구현 예에 따르면, 상기 섬유 기재(210)에 포함된 상기 위사가 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 ± 0.5 %의 건열수축율을 가짐에 따라, 상기 경사들의 겹침 현상을 효과적으로 억제할 수 있다.
상기 위사에 대한 건열수축율 측정은, ASTM D 885의 표준 시험법에 따라, 위사 시편(길이 60 cm)에 0.05 g/de의 하중을 부여하고 2 분 동안 177 ℃의 열을 가한 후 위사 시편의 길이 변화량을 측정하는 방법으로 수행된다.
바람직하게는, 상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %, 혹은 - 1.0 % 내지 + 2.0 %, 혹은 - 0.5 % 내지 + 2.0 %, 혹은 - 0.5 % 내지 + 1.5 %, 혹은 - 0.5 % 내지 + 1.0 %, 혹은 - 0.50 % 내지 + 0.50 %, 혹은 - 0.40 % 내지 + 0.50 %, 혹은 - 0.40 % 내지 + 0.40 %, 혹은 - 0.30 % 내지 + 0.40 %, 혹은 - 0.30 % 내지 + 0.30 %, 혹은 - 0.20 % 내지 + 0.30 %의 건열수축율을 가질 수 있다.
발명의 구현 예에 따르면, 상기 위사는 420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)이다.
상기 위사는 0.05 개/mm 내지 5 개/mm, 혹은 0.05 개/mm 내지 4.5 개/mm, 혹은 0.05 개/mm 내지 4 개/mm, 혹은 0.05 개/mm 내지 3.5 개/mm, 혹은 0.05 개/mm 내지 3 개/mm, 혹은 0.05 개/mm 내지 2.5 개/mm의 위사 밀도로 상기 직물에 포함될 수 있다.
상기 섬유 기재(201)는 100 ㎛ 내지 600 ㎛, 혹은 200 ㎛ 내지 500 ㎛, 혹은 200 ㎛ 내지 400 ㎛의 두께를 가질 수 있다. 상기 섬유 기재는 상술한 두께 범위 내에서 우수한 내구성을 가질 수 있다.
상기 섬유 기재는 ASTM D 885의 표준 시험법(시편 크기: 위사 방향 길이 60 cm x 폭 1 cm, 177 ℃, 2분, 위사 기준 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가질 수 있다. 여기서, 상기 건열수축율 값이 (+)인 경우 수축 거동을 의미하고, (-)인 경우 이완 거동을 의미한다.
상기 섬유 기재에 대한 건열수축율 측정은, ASTM D 885의 표준 시험법에 따라, 섬유 기재 시편(위사 방향 길이 60 cm x 폭 1 cm)에 위사의 섬도를 기준으로 0.05 g/de의 하중을 부여하고 2 분 동안 177 ℃의 열을 가한 후 섬유 기재 시편의 길이 및 폭의 변화량을 측정하는 방법으로 수행된다.
바람직하게는, 상기 섬유 기재는 ASTM D 885의 표준 시험법(시편 크기: 위사 방향 길이 60 cm x 폭 1 cm, 177 ℃, 2분, 위사 기준 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %, 혹은 - 1.0 % 내지 + 2.0 %, 혹은 - 0.5 % 내지 + 2.0 %, 혹은 - 0.5 % 내지 + 1.5 %, 혹은 - 0.5 % 내지 + 1.0 %, 혹은 - 0.50 % 내지 + 0.50 %, 혹은 - 0.40 % 내지 + 0.50 %, 혹은 - 0.40 % 내지 + 0.40 %, 혹은 - 0.30 % 내지 + 0.40 %, 혹은 - 0.30 % 내지 + 0.30 %의 건열수축율을 가질 수 있다.
한편, 상기 고무 보강재(201)는 상기 섬유 기재(210) 상에 배치된 상기 접착층(220)을 포함한다.
상기 접착층(220)은 레조시놀-포름알데하이드-라텍스(RFL)를 포함한다.
예를 들어, 상기 접착층(220)은 레조시놀-포름알데하이드-라텍스(RFL) 및 용제를 포함하는 접착 코팅액에 의해 형성될 수 있다.
상기 레조시놀-포름알데하이드-라텍스는 접착 성분으로 작용한다. 레조시놀-포름알데하이드-라텍스는, 특히 섬유 기재(210)와 고무 성분들 사이의 친화도 및 접착력을 향상시킨다. 그에 따라, 상기 접착층(220)은 섬유 기재(210)와 고무 컴파운드 층(230)의 내적인 접착력을 향상시키고, 고무 보강재(201)와 고무(예를 들어, 트레드 등) 사이의 외적인 접착력을 향상시킨다.
이에 따라, 상기 섬유 기재(210)와 고무 컴파운드 층(230)이 서로 분리되지 않고 안정적으로 부착될 수 있으며, 타이어(101)의 제조 과정에서 불량율을 낮출 수 있다.
한편, 상기 고무 보강재(201)는 상기 접착층(220)에 배치된 고무 컴파운드 층(230)을 포함한다.
상기 고무 컴파운드 층(230)은 천연 고무 및 합성 고무로 이루어진 군에서 선택된 1종 이상의 탄성 중합체를 포함할 수 있다.
상기 고무 컴파운드 층(230)은 상기 탄성 중합체를 포함한 액체 상태의 고무 코팅액을 상기 접착층(220) 상에 도포하여 형성될 수 있다. 이를 통해, 상기 고무 보강재(201)는, 고체 상태의 고무를 사용하는 압연 공정을 통해서는 달성하기 어려운, 얇은 두께의 고무 컴파운드 층(230)을 가질 수 있다. 고무 컴파운드 층(230)의 두께가 얇아짐에 따라, 이를 포함하는 고무 보강재(201) 및 상기 고무 보강재(201)를 포함하는 타이어(101)의 경량화에도 기여할 수 있다.
구체적으로, 상기 고무 컴파운드 층(230)은 탄성 중합체 조성물 및 용매를 포함하는 고무 코팅액으로부터 형성될 수 있다.
상기 탄성 중합체 조성물은 탄성 중합체 및 첨가제를 포함할 수 있다.
상기 탄성 중합체는 천연 고무 및 합성 고무로 이루어진 군에서 선택된 1종 이상의 고무일 수 있다. 예를 들어, 상기 탄성 중합체는 천연 고무(NR), 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 클로로프렌 고무(CR), 이소부틸렌 고무(IBR), 이소프렌 고무(IR), 니트릴고무(NBR), 부틸고무, 및 네오프렌 고무로 이루어진 군에서 선택된 1종 이상의 고무일 수 있다.
상기 탄성 중합체 조성물에 포함될 수 있는 상기 첨가제로는, 카본블랙, 파라오일, 산화아연, 스테아린산, 노화방지제, 황, 가황촉진제, 활성제, 점착제, 접착제 등을 예로 들 수 있다.
상기 고무 코팅액에 포함되는 용매는 상기 탄성 중합체를 용해할 수 있는 것이라면 그 종류가 특별히 제한되지 않는다. 예를 들어, 상기 용매는 톨루엔, 나프타, 메탄올, 자일렌, 및 테트라하이드로퓨란 중에서 선택된 적어도 하나를 포함할 수 있다.
상기 고무 코팅액은, 상기 고무 코팅액의 전체 중량을 기준으로, 10 중량% 내지 40 중량%의 탄성 중합체 조성물 및 60 중량% 내지 90 중량%의 용매를 포함할 수 있다.
상기 고무 코팅액에서 상기 탄성 중합체 조성물의 농도가 너무 낮으면 상기 고무 컴파운드 층의 두께가 너무 얇아지고, 필요로 하는 점착성 및 접착력이 발현되지 못할 수 있다. 그러므로, 상기 고무 코팅액은 10 중량% 이상의 탄성 중합체 조성물을 포함하는 것이 바람직하다.
다만, 상기 고무 코팅액에서 상기 탄성 중합체 조성물의 농도가 너무 높으면 점도의 상승으로 인해 고무 코팅액의 교반성이 저하되고 구성 성분의 분산성이 낮아져 코팅성이 저하하고 코팅 두께가 불균일해질 수 있다. 그러므로, 상기 고무 코팅액은 40 중량% 이하의 탄성 중합체 조성물을 포함하는 것이 바람직하다.
상기 고무 컴파운드 층(230)은 5 ㎛ 내지 200 ㎛, 혹은 5 ㎛ 내지 150 ㎛, 혹은 5 ㎛ 내지 100 ㎛, 혹은 5 ㎛ 내지 50 ㎛의 두께(t1)를 가질 수 있다.
도 2에 도시된 바와 같이, 고무 컴파운드 층(230)의 두께(t1)는 접착층(220)과 접하는 고무 컴파운드 층(230)의 일면에서부터 접착층(220)과 반대쪽에 위치하는 고무 컴파운드 층(230)의 다른 일면까지의 최장 거리로 측정된다.
종래의 고무 보강재는 섬유 기재 상에 고무 기재가 압연되어 고무층이 형성되므로, 상기 고무층이 일반적으로 1 mm 이상의 두께, 적어도 0.8 mm 이상의 두께를 가지게 된다.
그에 비하여, 상기 고무 컴파운드 층(230)은 상기 고무 코팅액에 의해 형성되어 200 ㎛ 이하의 얇은 두께를 가질 수 있다. 이에 따라 고무 보강재(201)의 전체 두께가 얇아질 수 있고, 나아가 고무 보강재(201)를 포함하는 타이어(101)의 두께가 얇아질 수 있다.
상기 고무 컴파운드 층(230)의 두께가 너무 얇으면 고무 컴파운드 층(230)이 충분한 점착성과 접착력을 가지지 못하여 타이어 제조시 불량율이 높아지고 타이어의 내구성이 저하할 수 있다. 그러므로, 상기 고무 컴파운드 층(230)은 5 ㎛ 이상의 두께(t1)를 갖는 것이 바람직하다.
다만, 상기 고무 컴파운드 층(230)의 두께가 너무 두꺼우면 얇은 두께의 고무 보강재(201)를 제공하려는 발명의 목적에 부합하지 않을 수 있다. 특히, 고무 컴파운드 층(230)의 두께(t1)가 너무 두꺼우면 용매의 휘발 과정에서 상기 고무 컴파운드 층(230) 내에 기포가 형성되어 고무 보강재(201)가 균일한 두께를 가지기 어려울 수 있다. 그리고, 이를 적용한 타이어 내에 에어 포켓이 발생하여 타이어의 품질이 저하하고 불량율이 높아질 수 있다. 또한, 고무 컴파운드 층(230)을 두껍게 형성하기 위해 코팅 작업을 여러 번 수행해야 하기 때문에 공정의 효율이 저하할 수 있다. 그러므로, 상기 고무 컴파운드 층(230)은 200 ㎛ 이하의 두께(t1)를 갖는 것이 바람직하다.
한편, 상기 구현 예에 따른 고무 보강재(201)는 ASTM D 885의 표준 시험법(시편 크기: 위사 방향 길이 60 cm x 폭 1 cm, 150 ℃, 2분, 하중 10 g)에 따른 - 4 % 내지 - 2 %의 건열수축율을 가질 수 있다.
상기 고무 보강재에 대한 건열수축율 측정은, ASTM D 885의 표준 시험법에 따라, 고무 보강재 시편(위사 방향 길이 60 cm x 폭 1 cm)에 10 g의 하중을 부여하고 2 분 동안 150 ℃의 열을 가한 후 고무 보강재 시편의 길이 및 폭의 변화량을 측정하는 방법으로 수행된다.
상기 구현 예에 따른 고무 보강재(201)는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 150 ℃ 하의 인장 시험에서 1.0 kgf 내지 1.2 kgf, 혹은 1.1 kgf 내지 1.2 kgf의 최대 하중을 나타낼 수 있다.
상기 고무 보강재(201)는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 160 ℃ 하의 인장 시험에서 1.0 kgf 내지 1.2 kgf, 혹은 1.0 kgf 내지 1.1 kgf의 최대 하중을 나타낼 수 있다.
상기 고무 보강재(201)는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 177 ℃ 하의 인장 시험에서 0.8 kgf 내지 1.1 kgf, 혹은 0.9 kgf 내지 1.1 kgf의 최대 하중을 나타낼 수 있다.
그리고, 상기 구현 예에 따른 고무 보강재(201)는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 150 ℃ 하의 인장 시험에서 11.0 % 내지 13.0 %, 혹은 11.0 % 내지 12.0 %의 인장 변형율(tensile strain)을 가질 수 있다.
상기 고무 보강재(201)는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 160 ℃ 하의 인장 시험에서 13.0 % 내지 15.0 %, 혹은 14.0 % 내지 15.0 %의 인장 변형율(tensile strain)을 가질 수 있다.
상기 고무 보강재(201)는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 177 ℃ 하의 인장 시험에서 13.0 % 내지 15.0 %, 혹은 14.0 % 내지 15.0 %의 인장 변형율(tensile strain)을 가질 수 있다.
상기 인장 시험은 상기 고무 보강재의 구성을 고려하여 하프 챔버(half chamber)를 이용하여 수행될 수 있다. 일반적인 고온 챔버의 경우 시편 전체를 챔버 내에 넣고 열을 부여하여 특정시간 동안 고온 하에서 방치한 후 인장 물성을 평가한다. 그런데, 상기 고무 보강재는 외측에 고무 컴파운드 층(230)이 형성되어 있어 일반적인 고온 챔버를 이용할 경우 고온으로 인해 그립 부분의 슬립(slip)이 발생하여 물성 측정이 어렵다. 그러므로, 상기 고무 보강재 시편의 가운데 부분만 가열할 수 있는 상기 하프 챔버를 이용하여 상기 인장 시험을 수행하는 것이 바람직하다.
상기 구현 예에 따른 고무 보강재(201)는 타이어(101)의 캡플라이(90), 벨트(50), 및 카카스(70) 중 적어도 하나에 적용될 수 있다.
II. 고무 보강재의 제조 방법
발명의 다른 일 구현 예에 따르면,
420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)인 경사(warp yarn)와 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는 위사(weft yarn)를 사용하여, 55 개/inch 내지 65 개/inch의 경사 밀도로 제직된 섬유 기재를 준비하는 단계;
상기 섬유 기재 상에 접착층을 형성하는 단계; 및
상기 접착층 상에 고무 코팅액을 도포하고 열처리하여, 상기 접착층 상에 고무 컴파운드 층을 형성하는 단계
를 포함하는, 상기 고무 보강재의 제조 방법이 제공된다.
420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)인 경사(warp yarn)와 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는 위사(weft yarn)를 사용하여, 55 데니어 내지 65 개/inch의 경사 밀도로 제직된 섬유 기재(210)가 준비된다.
상기 섬유 기재(210)에 관한 사항은 상기 『I. 고무 보강재』 항목에서 상술한 내용으로 갈음한다.
상기 섬유 기재(210) 상에 접착층(220)을 형성하는 단계가 수행된다.
상기 접착층(220)은 레조시놀-포름알데하이드-라텍스(RFL) 및 용제를 포함하는 접착 코팅액에 의해 형성될 수 있다.
예를 들어, 상기 섬유 기재(210)를 상기 접착 코팅액에 침지함으로써 상기 섬유 기재(210) 상에 접착 코팅액이 도포되도록 할 수 있다. 또는, 상기 섬유 기재(210)를 상기 접착 코팅액에 통과시킴으로써 침지 공정이 이루어질 수 있다. 이러한 침지는 장력, 침지 시간 및 온도가 조절될 수 있는 침지 장치에서 수행될 수 있다.
이 밖에, 블레이드 혹은 코터를 이용한 코팅, 또는 분사기를 이용한 분사에 의하여 상기 섬유 기재(210) 상에 상기 접착 코팅액을 도포할 수 있다.
상기 접착층(220)을 형성하는 단계는, 상기 섬유 기재(210) 상에 상기 접착 코팅액을 침지 또는 도포하고, 130 ℃ 내지 250 ℃에서 80 초 내지 120 초간 열처리하는 공정을 더 포함 할 수 있다. 상기 열처리는 통상적인 열처리 장치에서 이루어질 수 있다. 상기 열처리에 의해 레조시놀-포름알데하이드-라텍스(RFL)가 경화 및 고정되어 접착층(220)이 형성될 수 있다. 이러한 열처리에 의하여 접착층(220)이 보다 안정적으로 형성될 수 있다.
이어서, 상기 접착층(220) 상에 고무 코팅액을 도포하고 열처리하여, 상기 접착층(220) 상에 고무 컴파운드 층(230)을 형성하는 단계가 수행된다.
상기 고무 컴파운드 층(230)은 탄성 중합체 조성물 및 용매를 포함하는 고무 코팅액으로부터 형성될 수 있다.
상기 탄성 중합체 조성물은 탄성 중합체 및 첨가제를 포함할 수 있다.
상기 탄성 중합체는 천연 고무 및 합성 고무로 이루어진 군에서 선택된 1종 이상의 고무일 수 있다. 예를 들어, 상기 탄성 중합체는 천연 고무(NR), 스티렌 부타디엔 고무(SBR), 부타디엔 고무(BR), 클로로프렌 고무(CR), 이소부틸렌 고무(IBR), 이소프렌 고무(IR), 니트릴고무(NBR), 부틸고무, 및 네오프렌 고무로 이루어진 군에서 선택된 1종 이상의 고무일 수 있다.
상기 탄성 중합체 조성물에 포함될 수 있는 상기 첨가제로는, 카본블랙, 파라오일, 산화아연, 스테아린산, 노화방지제, 황, 가황촉진제, 활성제, 점착제, 접착제 등을 예로 들 수 있다.
상기 고무 코팅액에 포함되는 용매는 상기 탄성 중합체를 용해할 수 있는 것이라면 그 종류가 특별히 제한되지 않는다. 예를 들어, 상기 용매는 톨루엔, 나프타, 메탄올, 자일렌, 및 테트라하이드로퓨란 중에서 선택된 적어도 하나를 포함할 수 있다.
상기 고무 코팅액은, 상기 고무 코팅액의 전체 중량을 기준으로, 10 중량% 내지 40 중량%의 탄성 중합체 조성물 및 60 중량% 내지 90 중량%의 용매를 포함할 수 있다.
상기 고무 코팅액에서 상기 탄성 중합체 조성물의 농도가 너무 낮으면 상기 고무 컴파운드 층의 두께가 너무 얇아지고, 필요로 하는 점착성 및 접착력이 발현되지 못할 수 있다. 그러므로, 상기 고무 코팅액은 10 중량% 이상의 탄성 중합체 조성물을 포함하는 것이 바람직하다.
다만, 상기 고무 코팅액에서 상기 탄성 중합체 조성물의 농도가 너무 높으면 점도의 상승으로 인해 고무 코팅액의 교반성이 저하되고 구성 성분의 분산성이 낮아져 코팅성이 저하하고 코팅 두께가 불균일해질 수 있다. 그러므로, 상기 고무 코팅액은 40 중량% 이하의 탄성 중합체 조성물을 포함하는 것이 바람직하다.
상기 고무 코팅액을 상기 접착층(220) 상에 도포하는 방법은 특별히 제한되지 않으며, 공지의 코팅 방법이 적용될 수 있다.
예를 들어, 고무 컴파운드 층(230)의 형성을 위해, 접착층(220)이 형성된 섬유 기재를 상기 고무 코팅액에 침지할 수 있다. 침지에 의해 접착층(220) 상에 고무 코팅액이 도포될 수 있다.
코팅 방법으로는 그라비어(gravure) 코팅, 마이크로 그라비어(micro gravure) 코팅, 콤마 코팅(comma coating) 등이 적용될 수 있다. 예를 들어 콤마 코터(comma coater)를 이용한 콤마 코팅(comma coating)에 의해 상기 고무 코팅액이 접착층(220) 상에 도포될 수 있다. 이 때, 코팅은 용매가 휘발될 수 있는 온도, 예를 들어 65 ℃ 내지 100 ℃의 온도 조건에서 이루어질 수 있다.
상기 접착층(220) 상에 상기 고무 코팅액을 도포 후, 열처리 하는 과정이 더 수행된다. 상기 열처리는 통상적인 열처리 장치에서 이루어질 수 있다. 상기 열처리를 위해 50 ℃ 내지 160 ℃의 온도 하에서 30 초 내지 150 초간 열이 인가될 수 있다.
상기 고무 코팅액의 단위 면적당 도포량은 75 g/m2 내지 300 g/m2, 또는 100 g/m2 내지 200 g/m2일 수 있다. 상기 접착층(220)에 대한 상기 고무 코팅액의 단위 면적당 도포량을 상기 범위로 조절하여, 두께가 얇으면서도 고무에 대해 우수한 접착성을 가지고 내구성이 우수한 고무 보강재(101)를 제조할 수 있다.
상기 고무 컴파운드 층(230)은 5 ㎛ 내지 200 ㎛, 혹은 5 ㎛ 내지 150 ㎛, 혹은 5 ㎛ 내지 100 ㎛, 혹은 5 ㎛ 내지 50 ㎛의 두께(t1)를 가질 수 있다.
한편, 상기 고무 컴파운드 층(230)의 형성 이후에, 선택적으로 슬리팅(slitting) 단계가 수행될 수 있다. 상기 슬리팅 단계는 판상으로 제조된 상기 고무 보강재(201)를 필요에 따라 또는 사용 목적에 적합하도록 재단하는 단계이다. 상기 슬리팅은 통상적인 커터 나이프 또는 히팅 나이프를 이용하여 수행될 수 있다.
상기 방법으로 제조된 고무 보강재(201)는 와인더에 권취될 수 있다.
III. 타이어
발명의 또 다른 일 구현 예에 따르면, 상술한 고무 보강재를 포함하는 타이어가 제공된다.
도 1은 본 발명의 일 실시예에 따른 타이어(101)의 부분 절개도이다.
도 1을 참고하면, 타이어(101)는, 트레드(tread)(10), 숄더(shoulder)(20), 사이드 월(side wall)(30), 비드(bead)(40), 벨트(belt)(50), 이너 라이너(inner liner) (60), 카카스(cacass)(70) 및 캡플라이(capply)(90)를 포함한다.
트레드(10)는 직접 노면과 접촉하는 부분이다. 트레드(10)는 캡플라이(90)의 외측에 붙어있는 강력한 고무층으로, 내마모성이 우수한 고무로 이루어진다. 트레드(10)는 자동차의 구동력 및 제동력을 지면에 전달하는 직접적인 역할을 한다. 트레드(10) 영역에는 그루브(groove)(80)가 형성되어 있다.
숄더(20)는 트레드(10)의 모서리 부분으로 사이드 월(30)과 연결되는 부분이다. 숄더(20)는 사이드 월(30)과 함께 타이어의 가장 약한 부분 중 하나이다.
사이드 월(30)은 트레드(10)와 비드(40)를 연결하는 타이어(101)의 옆 부분으로, 카카스(70)를 보호하고, 타이어에 측면 안정성을 제공한다.
비드(40)는 카카스(70)의 끝 부분을 감아주는 철선이 들어있는 영역으로, 철선에 고무막을 입히고 코드를 감싸는 구조로 되었다. 비드(40)는 타이어(101)를 휠 림(wheel rim)에 장착 및 고정하는 역할을 한다.
벨트(50)는 트레드(10)와 카카스(70)의 중간에 위치한 코트층이다. 벨트(50)는 외부로부터의 충격이나 외적 조건에 의한 카카스(70) 등 내부 구성 요소의 손상을 방지하는 역할을 하며, 트레드(10)의 형상을 편평하게 유지하여 타이어(101)와 노면의 접촉이 최상의 상태로 유지되도록 한다. 벨트(50)는 본 발명의 다른 일 실시예에 따른 고무 보강재(201)를 포함할 수 있다(도 2 참조).
이너 라이너(60)는 튜브리스(tubeless) 타이어에서 튜브 대신 사용되는 것으로, 공기 투과성이 없거나 매우 적은 특수 고무로 만들어진다. 이너 라이너(60)는 타이어(101)에 충진된 공기가 새지 않도록 한다.
카카스(70)는 강도가 강한 합성섬유로 된 코드가 여러 장 겹쳐져 만들어지며, 타이어(101)의 골격을 형성하는 중요한 부분이다. 카카스(70)는 타이어(101)가 받는 하중과 충격을 견디고 공기압을 유지하는 역할을 한다. 카카스(70)는 본 발명의 다른 일 실시예에 따른 고무 보강재(201)를 포함할 수 있다.
그루브(80)는 트레드 영역에 있는 굵은 홈(void)을 지칭한다. 그루브(80)는 젖은 노면 주행시 타이어의 배수성을 높이고 타이어의 접지력을 높이는 기능을 한다.
캡플라이(90)는 트레드(10) 아래의 보호층으로, 그 내부의 다른 구성 요소들을 보호한다. 캡플라이(90)는 고속 주행 차량에 필수적으로 적용된다. 특히, 자동차의 주행속도가 증가함에 따라 타이어의 벨트 부분이 변형되어 승차감이 저하되는 등의 문제가 발생하고 있어, 벨트 부분의 변형을 방지하는 캡플라이(90)의 중요성이 증가되고 있다. 캡플라이(90)는 본 발명의 다른 일 실시예에 따른 고무 보강재(201)로 이루어질 수 있다.
본 발명의 일 실시예에 따른 타이어(101)는 고무 보강재(201)를 포함한다. 고무 보강재(201)는 캡플라이(90), 벨트(50) 및 카카스(70) 중 적어도 하나에 적용될 수 있다.
본 발명에 따르면, 얇은 두께와 가벼운 무게를 가지면서도 우수한 내구성을 갖는 고무 보강재가 제공된다. 상기 고무 보강재는 타이어를 경량화하면서도 향상된 구름 저항성의 발현을 가능하게 한다.
도 1은 본 발명의 일 실시예에 따른 타이어의 부분 절개도이다.
도 2는 본 발명의 다른 일 실시예에 따른 고무 보강재에 대한 개략적인 단면도이다.
도 3은 본 발명의 (a) 실시예 1 및 (b) 비교예 1에 따른 섬유 기재에 대한 건열수축율 측정 후 외관을 카메라로 촬영한 이미지이다.
<부호의 설명>
10: 트레드 20: 숄더
30: 사이드 월 40: 비드
50: 벨트 60: 이너 라이너
70: 카카스 80: 그루브
90: 캡플라이 101: 타이어
201: 고무 보강재 210: 섬유 기재
220: 접착층 230: 고무 컴파운드 층
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
실시예 1
경사(warp yarn)로 630 데니어의 섬도를 갖는 나일론 소재의 싱글-플라이 얀(200 TPM의 꼬임)을 준비하였다. 위사(weft yarn)로 260 데니어의 섬도를 갖는 면 소재의 싱글-플라이 얀(200 TPM의 꼬임)을 준비하였다. 상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 0.16 %의 건열수축율을 가진다(하기 시험예 참고).
상기 경사와 위사를 사용하여, 55 개/inch의 경사 밀도 (경사 간 밀도 90%) 및 2.5 개/mm의 위사 밀도를 갖는 두께 45 ㎛의 섬유 기재(210)를 제직하였다.
상기 섬유 기재(210)를 15 중량%의 레조시놀-포름알데하이드-라텍스(RFL) 및 85 중량%의 용제(물, H2O)를 포함하는 접착 코팅액에 침지한 후, 150 ℃에서 100 초 동안 열처리하여 접착층(220)을 형성하였다.
이어서, 콤마 코터(comma coater)를 이용하여, 상기 접착층(220) 상에 고무 코팅층을 단위 면적당 도포량 120 ~ 130 g/m2로 도포한 후, 70 ℃의 온도에서 용매를 휘발시켜 두께(t1) 10 ㎛의 고무 컴파운드 층(230)이 형성된 고무 보강재(201)를 제조하였다.
이때, 상기 고무 컴파운드 층(230)을 형성하기 위한 상기 고무 코팅액으로는, 톨루엔과 테트라하이드로퓨란이 20:80의 중량비로 혼합된 혼합 용매에 탄성 중합체 조성물을 12 중량%의 농도로 분산시킨 것을 사용하였다.
상기 탄성 중합체 조성물로는 스티렌 부타디엔 고무(SBR) 100 중량부에 대하여 카본블랙 60 중량부, 파라오일 20 중량부, 산화아연 3 중량부, 스테아린산 2 중량부, 노화방지제(RUBBER ANTIOXIDANTS, BHT) 2 중량부, 황 2 중량부, 및 가황촉진제(vulcanization accelerators, ZnBX) 1 중량부를 혼합한 것을 사용하였다.
상기 고무 보강재(201)를 10 mm 폭으로 재단하여 캡플라이(90)용 고무 보강재를 제조하였다. 상기 재단에는 커터 나이프가 사용되었다.
재단된 고무 보강재를 205/55R16 규격의 타이어의 제조에 적용하였다. 상기 타이어의 제조를 위해, 1300De/2ply HMLS 타이어 코드를 포함하는 바디플라이 및 스틸 코드(steel cord) 벨트가 사용되었다.
구체적으로, 이너라이너 고무 상에 바디플라이용 고무를 적층하고, 비드 와이어 및 벨트부를 적층한 후 상기 제조된 고무 보강재를 투입하고, 트레드부, 숄더부 및 사이드월부 형성을 위한 고무층을 순차적으로 형성하여 그린타이어를 제조하였다. 상기 그린타이어를 가류 틀에 넣고 170 ℃에서 15 분 동안 가류하여 타이어를 제조하였다.
실시예 2
위사(weft yarn)로 260 데니어의 섬도를 갖는 레이온 소재의 싱글-플라이 얀(200 TPM의 꼬임)을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고무 보강재 및 이를 포함한 타이어를 제조하였다. 상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 + 0.27 %의 건열수축율을 가진다(하기 시험예 참고).
비교예 1
위사(weft yarn)로 630 데니어의 섬도를 갖는 나일론 소재의 싱글-플라이 얀(200 TPM의 꼬임)을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고무 보강재 및 이를 포함한 타이어를 제조하였다. 상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 + 5.06 %의 건열수축율을 가진다(하기 시험예 참고).
비교예 2
위사(weft yarn)로 160 데니어의 섬도를 갖는 면사 커버링 나일론사(200 TPM의 꼬임)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고무 보강재 및 이를 포함한 타이어를 제조하였다. 상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.04 %의 건열수축율을 가진다(하기 시험예 참고).
시험예
(1) 두께 측정
실시예 및 비교예에 따른 고무 보강재에서 섬유 기재 및 고무 컴파운드 층의 두께를 Mitutoyo社의 vernier calipers를 이용하여 측정하였다.
(2) 위사의 건열수축율 측정
ASTM D 885의 표준 시험법에 따라, 실시예 및 비교예에 적용된 위사의 시편(길이 60 cm)에 0.05 g/de의 하중을 부여하고 2 분 동안 177 ℃의 열을 가한 후 위사 시편의 길이 변화량을 측정하였다. 총 5 회 측정하였고, 위사 시편의 길이 변화율(%)의 평균값을 하기 표 1에 나타내었다. 상기 건열수축율 값이 (+)인 경우 수축 거동을 의미하고, (-)인 경우 이완 거동을 의미한다.
(3) 섬유 기재의 건열수축율 측정
ASTM D 885의 표준 시험법에 따라, 실시예 및 비교예에 따른 섬유 기재의 시편(위사 방향 길이 60 cm x 폭 1 cm)에 위사의 섬도를 기준으로 0.05 g/de의 하중을 위사 방향으로 부여하고 2 분 동안 177 ℃의 열을 가한 후 섬유 기재 시편의 길이 및 폭의 변화량을 측정하였다. 총 5 회 측정하였고, 섬유 기재 시편의 면적 변화율(%)의 평균값을 하기 표 1에 나타내었다. 상기 건열수축율 값이 (+)인 경우 수축 거동을 의미하고, (-)인 경우 이완 거동을 의미한다.
건열수축율(%) 실시예 1 실시예 2 비교예 1 비교예 2
위사 - 0.16 + 0.27 + 5.06 - 1.04
섬유 기재 - 0.25 + 0.21 + 5.02 - 1.08
(4) 고무 보강재의 건열수축율 측정
ASTM D 885의 표준 시험법에 따라, 실시예 1 및 비교예 1에 따른 고무 보강재의 시편(위사 방향 길이 60 cm x 폭 1 cm)에 위사 방향으로 하중(5 g 또는 10 g)을 부여하고 2 분 동안 열(25 ℃, 150 ℃, 160 ℃, 또는 177 ℃)을 가한 후 고무 보강재 시편의 길이 및 폭의 변화량을 측정하였다. 총 5 회 측정하였고, 고무 보강재 시편의 면적 변화율(%)의 평균값을 하기 표 2에 나타내었다. 상기 건열수축율 값이 (+)인 경우 수축 거동을 의미하고, (-)인 경우 이완 거동을 의미한다.
건열수축율(%) 실시예 1 비교예 1
하중 5 g 하중 10 g 하중 5 g 하중 10 g
@ 25 ℃ - 0.21 - 0.35 - 0.01 - 0.18
@ 150 ℃ - 1.03 - 2.94 - 0.08 - 0.19
@ 160 ℃ - 1.05 - 2.37 - 0.07 - 0.30
@ 177 ℃ - 2.32 - 1.69 - 0.02 + 0.03
(5) 섬유 기재의 외관
상기 시험예 (3)에 따라 섬유 기재의 건열수축율 측정 후, 실시예 1 및 비교예 1에 따른 섬유 기재의 외관을 카메라로 촬영하였다. 촬영된 이미지를 도 3에 나타내었다 ((a): 실시예 1, (b) 비교예 1).
도 3을 참고하면, 비교예 1의 섬유 기재는 배열이 어긋난 경사들의 겹침 현상에 의해 주름이 생긴 것으로 확인된다. 그에 비하여, 실시예 1의 섬유 기재는 경사의 배열이 균일하고 주름이 생기지 않은 것으로 확인된다.
(6) 고무 보강재의 인장 물성 측정
실시예 1 및 비교예 1에 따른 고무 보강재의 시편(크기: 위사 방향 길이 25cm x 폭 1cm)을 하프 챔버(half chamber)에 장착하여 인장 물성을 측정하였다.
상기 시편은 상기 하프 챔버의 상부 그립과 하부 그립(그립간 거리 20 cm)에 지평면에 수직 방향으로 장착되었다. 상기 그립들의 사이에 위치한 상기 시편 부분(가열 길이 12 cm)에 2 분 동안 열(25 ℃, 150 ℃, 160 ℃, 또는 177 ℃)을 가한 후, 300 mm/min의 속도로 상기 시편을 인장하였다. 상기 시편이 파단될 때의 최대 하중(kgf) 및 인장 변형율(tensile strain)을 측정하였다. 총 5 회 측정하였고, 그 평균값을 하기 표 3에 나타내었다.
인장
물성
실시예 1 비교예 1
최대 하중 (kgf) 인장 변형율(%) 최대 하중 (kgf) 인장 변형율(%)
@ 25 ℃ 1.96 19.12 17.33 34.72
@ 150 ℃ 1.13 11.60 11.90 32.08
@ 160 ℃ 1.06 14.80 11.40 33.50
@ 177 ℃ 0.99 14.80 11.07 33.95
상기 표 3을 참고하면, 비교예 1의 고무 보강재는 실시예 1의 고무 보강재에 비하여 높은 인장 변형율을 나타낸다. 이는 비교예 1의 고무 보강재가 제조 공정상 원단 간 겹칩 현상으로 인해 균일한 제품을 만들기 어려움을 의미하는 것이다. 이를 통해 비교예 1의 고무 보강재는 상대적으로 열악한 제조 균일성을 가짐을 예측할 수 있다.
(7) 타이어의 물성 평가
압연 공정으로 제조된 타이어 코드(840 데니어의 섬도를 갖는 나일론 소재의 투-플라이 얀을 경사로 사용, 25 개/inch의 경사 밀도)를 적용한 205/60 R16 규격의 타이어를 참고예로 준비하였다.
상기 참고예와 상기 실시예 1의 타이어에 대해 아래의 물성을 측정하였다. 상기 실시예 1의 타이어가 갖는 물성 값은 상기 참고예의 타이어의 물성 값을 기준(100%)으로 환산한 값이다.
- 재료 중량: 실시예 1의 고무 보강재 및 참고예의 타이어 코드의 무게
- 타이어 중량: 실시예 1 및 참고예의 타이어의 중량
- 고속 주행성: 미국 FMVSS 139H의 표준 시험법에 따라 측정
- 내구력 I: 미국 FMVSS 139E의 표준 시험법에 따라 측정
- 내구력 II: 유럽 ECE-R119의 표준 시험법에 따라 측정
- 구름 저항성(RRc): ISO 28580의 표준 시험법에 따라 측정
타이어 실시예 1 (index) 참고예 (index)
재료 중량 30 100
타이어 중량 98 100
고속 주행성 104 100
내구력 I 106 100
내구력 II 105 100
구름 저항성(RRc) 102 100
상기 표 4를 참고하면, 실시예 1의 타이어는 발명의 구현 예에 따른 고무 보강재를 포함함에 따라 참고예의 타이어에 비해 가벼우면서도 고속 주행성, 내구력, 구름 저항성이 우수한 것으로 확인되었다.

Claims (14)

  1. 섬유 기재;
    상기 섬유 기재 상에 배치된 접착층; 및
    상기 접착층 상에 배치된 고무 컴파운드 층을 포함하고,
    상기 섬유 기재는 경사와 위사로 제직된 직물이며,
    상기 경사는 420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)으로서 55 개/inch 내지 65 개/inch의 경사 밀도로 상기 직물에 포함되고,
    상기 위사는 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는,
    고무 보강재.
  2. 제 1 항에 있어서,
    상기 경사 및 상기 위사는 각각 독립적으로 나일론, 레이온, 아라미드, 폴리에스테르, 및 면으로 이루어진 군에서 선택된 1종 이상의 소재를 포함하는, 고무 보강재.
  3. 제 1 항에 있어서,
    상기 위사는 420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)이고, 0.05 개/mm 내지 5 개/mm의 위사 밀도로 상기 직물에 포함되는, 고무 보강재.
  4. 제 1 항에 있어서,
    상기 섬유 기재는 100 ㎛ 내지 600 ㎛의 두께를 갖는, 고무 보강재.
  5. 제 1 항에 있어서,
    상기 섬유 기재는 ASTM D 885의 표준 시험법(시편 크기: 위사 방향 길이 60 cm x 폭 1 cm, 177 ℃, 2분, 위사 기준 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는, 고무 보강재.
  6. 제 1 항에 있어서,
    상기 접착층은 레조시놀-포름알데하이드-라텍스(RFL)를 포함하는, 고무 보강재.
  7. 제 1 항에 있어서,
    상기 고무 컴파운드 층은 천연 고무 및 합성 고무로 이루어진 군에서 선택된 1종 이상의 탄성 중합체를 포함하는, 고무 보강재.
  8. 제 1 항에 있어서,
    상기 고무 컴파운드 층은 5 ㎛ 내지 200 ㎛의 두께를 갖는, 고무 보강재.
  9. 제 1 항에 있어서,
    상기 고무 보강재는 시편(크기: 위사 방향 길이 25cm x 폭 1cm)에 대한 150 ℃ 하의 인장 시험에서 1.0 kgf 내지 1.2 kgf의 최대 하중 및 11 % 내지 13 %의 인장 변형율(tensile strain)을 가지는, 고무 보강재.
  10. 420 데니어 내지 800 데니어의 섬도를 갖는 싱글-플라이 얀(single-ply yarn)인 경사와 ASTM D 885의 표준 시험법(177 ℃, 2분, 0.05 g/de의 하중)에 따른 - 1.0 % 내지 + 3.0 %의 건열수축율을 가지는 위사를 사용하여, 55 개/inch 내지 65 개/inch의 경사 밀도로 제직된 섬유 기재를 준비하는 단계;
    상기 섬유 기재 상에 접착층을 형성하는 단계; 및
    상기 접착층 상에 고무 코팅액을 도포하고 열처리하여, 상기 접착층 상에 고무 컴파운드 층을 형성하는 단계
    를 포함하는, 제 1 항에 따른 고무 보강재의 제조 방법.
  11. 제 10 항에 있어서,
    상기 접착층은 레조시놀-포름알데하이드-라텍스(RFL)를 포함하는, 고무 보강재의 제조 방법.
  12. 제 10 항에 있어서,
    상기 고무 코팅액은 천연 고무 및 합성 고무로 이루어진 군에서 선택된 1종 이상의 탄성 중합체 조성물 10 중량% 내지 40 중량% 및 용매 60 중량% 내지 90 중량%를 포함하는, 고무 보강재의 제조 방법.
  13. 제 1 항에 따른 고무 보강재를 포함하는 타이어.
  14. 제 13 항에 있어서,
    상기 고무 보강재가 캡플라이, 벨트 및 카카스 중 적어도 하나에 적용된, 타이어.
PCT/KR2021/010810 2020-09-25 2021-08-13 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어 WO2022065692A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/998,511 US20230278319A1 (en) 2020-09-25 2021-08-13 Rubber reinforcing material with reduced weight, method of preparing the same, and tire comprising the same
EP21872722.0A EP4137315A1 (en) 2020-09-25 2021-08-13 Lightened rubber-reinforcing material, method of producing same, and tire comprising same
JP2022573411A JP2023527443A (ja) 2020-09-25 2021-08-13 軽量化されたゴム補強材、その製造方法およびそれを含むタイヤ
CN202180039307.0A CN115666935A (zh) 2020-09-25 2021-08-13 具有减轻的重量的橡胶增强材料、其制备方法和包括该橡胶增强材料的轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200125240A KR20220041671A (ko) 2020-09-25 2020-09-25 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어
KR10-2020-0125240 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065692A1 true WO2022065692A1 (ko) 2022-03-31

Family

ID=80846706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010810 WO2022065692A1 (ko) 2020-09-25 2021-08-13 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어

Country Status (7)

Country Link
US (1) US20230278319A1 (ko)
EP (1) EP4137315A1 (ko)
JP (1) JP2023527443A (ko)
KR (1) KR20220041671A (ko)
CN (1) CN115666935A (ko)
TW (1) TWI823133B (ko)
WO (1) WO2022065692A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168700A (ja) * 1996-12-06 1998-06-23 Toray Ind Inc エアバッグ用基布およびエアバッグとその製造方法
KR100462924B1 (ko) * 2003-10-22 2004-12-23 주식회사 효성 비피복 에어백용 저수축 폴리아미드 섬유 및 이의 제조방법
KR101513374B1 (ko) * 2010-06-15 2015-04-17 밀리켄 앤드 캄파니 점착성 마무리제 및 이로써 처리된 텍스타일 물질과 제품
KR20180120932A (ko) * 2017-04-28 2018-11-07 주식회사 송이실업 인쇄가 가능한 차양막용 직물 및 이의 제조방법
KR20200063545A (ko) * 2018-11-28 2020-06-05 주식회사 성림섬유 구조물 내진보강용 섬유 직물 및 이를 이용한 구조물 내진 보강 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094962A1 (fr) * 2001-05-22 2002-11-28 Bridgestone Corporation Compositions adhesives et procede de fixation sur du caoutchouc
AU2003280837A1 (en) * 2003-11-17 2004-06-06 Akihiro Yamamoto Pneumatic tire and process for producing the same
JP2008254704A (ja) * 2007-04-09 2008-10-23 Bridgestone Corp ランフラットタイヤ
JP5811030B2 (ja) * 2012-05-22 2015-11-11 住友ベークライト株式会社 タイヤインナーライナー用シート及びタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168700A (ja) * 1996-12-06 1998-06-23 Toray Ind Inc エアバッグ用基布およびエアバッグとその製造方法
KR100462924B1 (ko) * 2003-10-22 2004-12-23 주식회사 효성 비피복 에어백용 저수축 폴리아미드 섬유 및 이의 제조방법
KR101513374B1 (ko) * 2010-06-15 2015-04-17 밀리켄 앤드 캄파니 점착성 마무리제 및 이로써 처리된 텍스타일 물질과 제품
KR20180120932A (ko) * 2017-04-28 2018-11-07 주식회사 송이실업 인쇄가 가능한 차양막용 직물 및 이의 제조방법
KR20200063545A (ko) * 2018-11-28 2020-06-05 주식회사 성림섬유 구조물 내진보강용 섬유 직물 및 이를 이용한 구조물 내진 보강 방법

Also Published As

Publication number Publication date
CN115666935A (zh) 2023-01-31
EP4137315A1 (en) 2023-02-22
JP2023527443A (ja) 2023-06-28
TWI823133B (zh) 2023-11-21
TW202212671A (zh) 2022-04-01
US20230278319A1 (en) 2023-09-07
KR20220041671A (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2019004666A1 (ko) 경량화된 고무 보강재, 그 제조방법 및 이를 포함하는 타이어
WO2018182229A1 (ko) 고무 보강재용 친환경 접착 조성물 및 이를 이용한 고무 보강재의 제조방법
WO2020190070A1 (ko) 내절단성 폴리에틸렌 원사, 그 제조방법, 및 이것을 이용하여 제조된 보호용 제품
WO2020022848A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2022065692A1 (ko) 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2018074889A2 (ko) 그라파이트 시트의 제조방법
WO2018062960A1 (ko) 하이브리드 타이어 코드 및 그 제조방법
WO2018124419A1 (en) Sheet type materials drying apparatus and a method for controlling the same
WO2022114497A1 (ko) 경량화된 고무 보강재, 그 제조 방법 및 이를 포함하는 타이어
WO2021045322A1 (ko) 실리콘 커버를 포함하는 인체에 무해한 고탄성 항균 매트
WO2020246719A1 (ko) 신축성이 우수한 폴리에스테르 복합섬유 및 이의 제조방법
WO2019221345A1 (ko) 타이어 구조체 및 이의 체결 구조
WO2018147606A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2020067850A1 (ko) 자동차 내장재용 인조가죽 및 이의 제조방법
WO2018101668A1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
WO2018101669A1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
WO2021045344A1 (ko) 타이어용 인서트
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2021221374A1 (ko) 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
WO2021206471A1 (ko) 접착제 조성물 및 고무 보강재
WO2022108169A1 (ko) 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어
WO2023239078A1 (ko) 접착제 조성물, 고무 보강재 및 물품
WO2021206491A1 (ko) 타이어 코드용 접착 조성물, 타이어 코드 및 타이어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021872722

Country of ref document: EP

Effective date: 20221115

ENP Entry into the national phase

Ref document number: 2022573411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE