WO2022108169A1 - 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어 - Google Patents

수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어 Download PDF

Info

Publication number
WO2022108169A1
WO2022108169A1 PCT/KR2021/015344 KR2021015344W WO2022108169A1 WO 2022108169 A1 WO2022108169 A1 WO 2022108169A1 KR 2021015344 W KR2021015344 W KR 2021015344W WO 2022108169 A1 WO2022108169 A1 WO 2022108169A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
rubber
hydrogenated
composition
Prior art date
Application number
PCT/KR2021/015344
Other languages
English (en)
French (fr)
Inventor
이중석
정혜민
박수연
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2023503458A priority Critical patent/JP2023534699A/ja
Priority to EP21894940.2A priority patent/EP4144796A4/en
Priority to US17/998,372 priority patent/US20230227645A1/en
Publication of WO2022108169A1 publication Critical patent/WO2022108169A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F240/00Copolymers of hydrocarbons and mineral oils, e.g. petroleum resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08J2323/22Copolymers of isobutene; butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2357/00Characterised by the use of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08J2357/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2457/00Characterised by the use of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08J2457/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a resin composition of a novel composition, a manufacturing method thereof, a rubber composition including the resin composition, a gas barrier film including the same, and a tire including the gas barrier film.
  • the tire inner liner is the innermost rubber layer in the tire structure. It must maintain air pressure in the tire, have flex resistance, and have excellent adhesion to adjacent supports (eg, carcass). Research on tire inner liners to maintain flex-resistance and durability performance while maintaining the
  • An object of the present invention is to provide a resin composition with improved air permeability and manufacturing processability of rubber, a manufacturing method thereof, a rubber composition and a gas barrier film including the same, and a tire including the same.
  • the base resin comprising a hydrogenated or non-hydrogenated petroleum resin; and an additive comprising a modified petroleum resin having a structure in which a molecular weight modifier is bonded to at least one of both ends of the hydrogenated or non-hydrogenated petroleum resin.
  • raw rubber and the resin composition, wherein the resin composition is provided in an amount of 1 to 50 parts by weight based on 100 parts by weight of the raw rubber.
  • a gas barrier film comprising the rubber composition.
  • a tire including the gas barrier film.
  • At least a portion of the base resin comprising a hydrogenated or non-hydrogenated petroleum resin; And at least a portion of the hydrogenated or non-hydrogenated petroleum resin by blending an additive comprising a modified petroleum resin having a structure in which a molecular weight modifier is bonded to at least one terminal of both ends of the hydrogenated or non-hydrogenated petroleum resin at a temperature of 100 ° C. to 180 ° C. to obtain a semi-solid resin
  • a method for preparing a resin composition comprising the steps.
  • the resin composition according to one embodiment of the present invention smoothes the dispersion of raw materials during the raw material blending process by including an additive including a modified petroleum resin modified with a molecular weight regulator despite the absence of process oil, and reduces the blending time
  • the resin composition has excellent compatibility with rubber, so that the gas barrier film prepared therefrom has improved air permeability.
  • 1 is a diagram schematically showing a basic configuration of a tire.
  • the term 'petroleum resin' includes a polymer obtained by polymerizing at least one of a C 5 monomer, a C 5 mixed fraction, a C 9 monomer, a C 9 mixed fraction, a cyclic diolefin monomer, and a linear olefin monomer.
  • the petroleum resin includes a homopolymer, a copolymer, and the like.
  • Examples of the homopolymer petroleum resin include a polymer in which C 5 monomer is polymerized, a polymer in which C 5 mixed oil is polymerized, a polymer in which C 9 monomer is polymerized, a polymer in which C 9 mixed oil is polymerized, and a polymer in which cyclic diolefin monomer is polymerized. , and a polymer in which a linear olefin monomer is polymerized.
  • Examples of the copolymer petroleum resin include a copolymer in which two different kinds of C 5 monomers are polymerized, a copolymer in which two different kinds of C 9 monomers are polymerized, and a copolymer in which two different kinds of cyclic diolefin monomers are polymerized.
  • a copolymer of two different types of linear olefin monomers a copolymer of a C 5 fraction and a C 5 monomer, a copolymer of a C 5 fraction and a C 9 monomer, a copolymer of a C 9 fraction and a C 5 monomer, C 5 A copolymer of a monomer and a C 9 monomer, a copolymer of a C 9 fraction and a C 9 monomer, a copolymer of a C 5 fraction and a linear olefin monomer, a copolymer of a C 9 fraction and a linear olefin monomer.
  • a copolymer of a C 5 fraction and a cyclic diolefin monomer a copolymer of a C 9 fraction and a cyclic diolefin monomer, a copolymer of a C 5 monomer and a cyclic diolefin monomer, a copolymer of a C 9 monomer and a linear olefin monomer, a cyclic diolefin and copolymers of a monomer and a linear olefin monomer.
  • 'hydrogenated petroleum resin' refers to a petroleum resin in which at least a portion of an unsaturated moiety such as ethylene among the above-described petroleum resins is modified with a saturated hydrocarbon by hydrogenation reaction.
  • 'C 5 (mixed) fraction' includes aliphatic C 5 and C 6 paraffins, olefins and diolefins derived from the cracking of naphtha.
  • the C 5 fraction may include, but is not limited to, pentene, isoprene, 2-methyl-2-butene, 2-methyl-2-pentene, cyclopentadiene, and piperylene, 2 of the C 5 monomers. All mixtures of more than one species are included.
  • the C 5 fraction may be optionally alkylated.
  • 'C 5 monomer' refers to any one of the components included in the aforementioned C 5 (mixed) fraction.
  • 'C 9 (mixed) fraction' is a composition derived from petroleum processing, such as cracking, as commonly understood in the art, and boiling at atmospheric pressure and about 100 to 300 ° C.
  • C 8 , C 9 and/or C 10 olefin species may include, for example, vinyltoluene, ⁇ -methylstyrene, styrene, dicyclopentadiene, indene, trans-beta-methylstyrene, and methylindene; It is not limited thereto, and includes all mixtures of two or more kinds of C 9 monomers.
  • the C 9 fraction may be optionally alkylated.
  • the C 9 fraction in the present invention may include vinyltoluene, indene, styrene, dicyclopentadiene and alkylated derivatives of these components, such as ⁇ -methylstyrene, methylindene, and the like.
  • 'C 9 monomer' refers to any one of the components included in the aforementioned C 9 fraction.
  • olefins may include, but are not limited to, linear olefins, cyclic olefins, ⁇ -olefins, and the like.
  • the cyclic-diolefin may include, but is not limited to, dicyclopentadiene, tricyclopentadiene, and the like.
  • the resin composition of the present invention a rubber composition and a gas barrier film including the same, a tire including the gas barrier film, and a method of manufacturing the resin composition will be described in detail.
  • the resin composition according to one aspect includes at least a base resin comprising a hydrogenated or non-hydrogenated petroleum resin; And at least a portion includes an additive comprising a modified petroleum resin having a structure in which a molecular weight regulator is bonded to at least one of both ends of the hydrogenated or non-hydrogenated petroleum resin.
  • the petroleum resin may include at least one C 9 mixed oil-derived repeating unit.
  • the petroleum resin may be composed of repeating units derived from C 9 mixed oil.
  • the weight ratio of the base resin and the additive in the resin composition may be 12:1 to 1:12.
  • the weight ratio of the base resin and the additive in the resin composition may be 11:1 to 1:11, 10:1 to 1:10, or 9:1 to 1:9.
  • the content of the base resin in the resin composition may be greater than or equal to the content of the additive.
  • the weight ratio of the base resin and the additive in the resin composition may be 12:1 to 1:1.
  • the weight ratio of the base resin and the additive in the resin composition may be 11:1 to 1:1, 10:1 to 1:1, or 9:1 to 1:1.
  • the base resin has a weight average molecular weight (Mw) of 200 to 2000, a softening point of 80 °C to 150 °C, a viscosity measured at 160 °C of 250 to 2000 cps, and a glass transition temperature of 30 °C to 100°C.
  • the base resin has a weight average molecular weight (Mw) of 400 to 1000, a softening point of 90°C to 120°C, a viscosity measured at 160°C of 500 to 1000 cps, and a glass transition temperature of 40°C to 70°C. °C.
  • the base resin may be a petroleum resin including a polymer obtained by polymerizing at least one selected from a C 5 monomer, a C 5 mixed fraction, a C 9 monomer, a C 9 mixed fraction, a cyclic diolefin monomer, and a linear olefin monomer.
  • the base resin may be a petroleum resin comprising two types of copolymers selected from C 5 monomers, C 5 mixed fractions, C 9 monomers, C 9 mixed fractions, cyclic diolefin monomers and linear olefin monomers.
  • the base resin may include a copolymer of a C 9 mixed oil and a cyclic-diolefin.
  • the base resin may include a C 9 -DCPD copolymer.
  • the petroleum resin may be a C 9 -DCPD copolymer resin.
  • the base resin is hydrogenated petroleum obtained by hydrogenation of two types of copolymers selected from C 5 monomers, C 5 mixed fractions, C 9 monomers, C 9 mixed fractions, cyclic diolefin monomers and linear olefin monomers. It may be resin.
  • the base resin may include a hydrogenated C 9 -cyclic-diolefin-based resin in which the ethylene functional group of the copolymer of the C 9 mixed oil and the cyclic-diolefin is hydrogenated.
  • the base resin may include a hydrogenated C 9 -DCPD copolymer.
  • the base resin may be a hydrogenated C 9 -DCPD copolymer resin.
  • the molecular weight modifier is a chain transfer agent, and may include thiols or halocarbons such as carbon tetrachloride.
  • the molecular weight regulator may include thiols, that is, an organic mercaptan-based molecular weight regulator including one or more thiol groups.
  • the organic mercaptan-based molecular weight modifier includes an aliphatic mercaptan compound, a cyclic aliphatic mercaptan compound, an aromatic mercaptan compound, or a combination thereof.
  • the number of thiol groups included in the organic mercaptan-based molecular weight regulator is not particularly limited, but may include 1 to 4 thiol groups per molecule, and 1 to 20 carbons per thiol group; Preferably, it may include a hydrocarbon group containing 1 to 15 carbons.
  • substituents may be additionally included in addition to the hydrocarbon group and the thiol group.
  • substituents include a hydroxyl group, a carboxylic acid group, an ether group, an ester group, a sulfide group, an amine group, an amide group, and the like. Included.
  • the molecular weight modifier is not particularly limited as long as it is an organic compound having a thiol group, and for example, alkyl mercaptans such as ethyl mercaptan, butyl mercaptan, hexyl mercaptan, or dodecyl mercaptan; thiol phenols such as phenyl mercaptan and benzyl mercaptan; mercaptans containing a hydroxyl group or a carboxylic acid group such as 2-mercaptoethanol, thioglycolic acid, or 3-mercaptopropionic acid; or mercaptans having two or more functional groups, such as pentaerythritol tetrakis (3-mercapto) propionate; or a mixture thereof.
  • alkyl mercaptans such as ethyl mercaptan, butyl mercaptan, hexyl mercaptan, or dodec
  • the molecular weight modifier is methyl mercaptan, ethyl mercaptan, butyl mercaptan, octyl mercaptan, lauryl mercaptan, mercaptoethanol, mercaptopropanol, mercaptobutanol, mercaptoacetic acid, mercapto.
  • Propionic acid benzyl mercaptan, phenyl mercaptan, cyclohexyl mercaptan, 1-thioglycerol, 2.2'-dimercaptodiethyl ether, 2,2'-dimercaptodipropyl ether, 2,2'-dimercaptodiiso pyrophyl ether, 3,3'-dimercaptodipropyl ether, 2,2'-dimercaptodiethyl sulfide, 3,3'-dimercaptodipropyl sulfide, bis( ⁇ -mercaptoethoxy) methane, bis( ⁇ -mercaptoethylthio)methane, trimethylolpropane trithioglycolate, pentaerythritol tetrathioglycolate, or a mixture thereof may be included, but is not limited thereto.
  • the molecular weight modifier includes ethyl mercaptan, butyl mercaptan, hexyl mercaptan, dodecyl mercaptan, phenyl mercaptan, benzyl mercaptan; mercaptoethanol, thiolglycolic acid, mercaptopropionic acid, pentaerythritol tetrakis(3-mercapto)propionate, or mixtures thereof.
  • the molecular weight modifier can maximize the effect of molecular weight control by using n-dodecyl mercaptan of Formula 1, 2-mercaptoethanol of Formula 2, or a mixture thereof.
  • the additive may further include a viscosity modifier.
  • the viscosity modifier may include a low-viscosity resin having a viscosity of 20 to 500 cps at 25 °C.
  • a low-viscosity resin having a viscosity of 20 to 500 cps at 25 °C.
  • any resin satisfying the above viscosity may be used without particular limitation.
  • the low-viscosity resin may include hydrogenated DCPD- C9 copolymer resins, hydrogenated DCPD resins (DCPD) resins, and mixtures thereof.
  • the hydrogenated DCPD-C 9 copolymer resin means a white thermoplastic resin obtained through polymerization and hydrogenation of dicyclopentadiene (DCPD), and as such a hydrogenated DCPD -C9 copolymer resin, commercially available ( commercial) resin can also be used.
  • DCPD dicyclopentadiene
  • the viscosity modifier includes a hydrogenated DCPD-C 9 copolymer resin having the following structure, thereby maximizing the effects of viscosity control and air permeability improvement.
  • the modified petroleum resin according to an embodiment is a C 5 monomer, a C 5 mixed fraction, a C 9 monomer, a C 9 mixed fraction, a cyclic diolefin monomer, and at least one of a linear olefin monomer is polymerized and at least a part of which is hydrogenated or non-hydrogenated.
  • the petroleum resin is a modified petroleum resin modified with the molecular weight regulator, and by modifying the ends of the petroleum resin with the molecular weight regulator, it is excellent in compatibility and compounding properties with rubber, and is compatible with the amorphous region of the polymer (compatibilized). ) film can be formed, thereby further improving processability and air permeability.
  • the terminal is not modified with a molecular weight regulator, a problem of poor mixing may occur due to low compatibility with rubber due to high non-polarity. As a result, processability and performance of the final product are reduced.
  • the modified petroleum resin includes at least one C 9 mixed oil-derived repeating unit, and the modified petroleum resin is terminally modified with the molecular weight modifier, so that compatibility and compatibility with rubber are further improved, Processability and air permeability can be further improved.
  • the modified petroleum resin according to one embodiment will be described later, but the modified petroleum resin is the C 5 monomer, C 5 mixed oil, C 9 monomer, C 9 by addition olymerization or chain polymerization reaction. At least one of the mixed fraction, the cyclic diolefin monomer, and the linear olefin monomer is polymerized, and at least one of the hydrogenated or non-hydrogenated petroleum resins has a structure in which the molecular weight modifier is bonded to at least one of both ends.
  • the modified petroleum resin may include at least one C 9 mixed oil-derived repeating unit.
  • the modified petroleum resin has a structure in which a repeating unit as shown in Chemical Formula 4a is bonded.
  • the modified petroleum resin includes styrene, ⁇ -methylstyrene, vinyltoluene, indene, methylindene, dicyclopentadiene and ⁇ -methylstyrene or methylindene and these components included in the C 9 mixed fraction.
  • the alkylated derivative monomer of may have the following structure formed in the polymerization reaction.
  • Chemical Formula 4a is merely expressed as an example, other C 5 monomers, C 9 monomers, cyclic-diolefin monomers and linear olefin monomers not indicated in addition to the structure may be included as repeating units.
  • the modified petroleum resin is a polymer represented by the structure, and the polymer refers to a random polymer, but is not limited thereto, and includes a block copolymer or an alternating copolymer.
  • the modified petroleum resin may include a structure in which at least one of the repeating units shown in Chemical Formula 4a is hydrogenated.
  • the modified petroleum resin may include a structure in which the following repeating units are bonded.
  • a structure in which at least one of both ends of the modified petroleum resin has a structure having a double bond, and a structure having a double bond at both ends of the modified petroleum resin is exemplarily shown in Chemical Formula 4b below.
  • the double bond positioned at at least one terminal and the molecular weight regulator are combined to form a petroleum resin modified with the molecular weight regulator (eg, a polymer of C 9 mixed oil).
  • the molecular weight modifier may be bound to both ends, or may be bound to only one end as shown by the following Chemical Formula 4c, which is exemplarily expressed.
  • the modified petroleum resin may include a structure in which at least one of the repeating units represented by Formula 4b or 4c is hydrogenated.
  • the additive including the modified petroleum resin may have a number average molecular weight (Mn) of 200 to 500, and in this range, compatibility and processability of the modified polymer with the raw rubber may be excellent. If the number average molecular weight is lower than 200, there may be a problem that the compounding efficiency is lowered, and if it is higher than 500, the compounding processability may be reduced.
  • Mn number average molecular weight
  • the additive containing the modified petroleum resin has excellent processability due to non-polarity, and has a low crystallinity so that it can be compatible with the amorphous region of the polymer to form a film, thereby further improving processability and air permeability.
  • the additive has a viscosity of 2,500 to 4,000 cps at 60 °C, and a glass transition temperature of -25 to -15 °C.
  • the viscosity of the additive may be 2,700 to 3800, or 3000 to 3500.
  • the glass transition temperature of the additive is lower than -25 °C, there may be a problem in air permeability, and if it is higher than -15 °C, a problem in low temperature durability may be caused.
  • the additive may have an aromaticity of 20% to 60%.
  • the additive may be 30% to 50% aromatic, or 35% to 45% aromatic.
  • the aromaticity is less than 20%, the compatibility with the raw rubber is lowered, and the effect of improving the air permeability of the gas barrier film prepared therefrom is insignificant.
  • the glass transition temperature (Tg) rises due to Fairness may be compromised.
  • the additive may include a modified petroleum resin and a viscosity modifier, and 80 to 98 wt% and 2 to 20 wt% of the modified petroleum resin and the viscosity modifier, respectively.
  • the additives include C 5 monomer, C 5 mixed oil, C 9 monomer, C 9 mixed oil, cyclic di It can be obtained by performing a polymerization reaction by adding a polymerization catalyst and/or heat to a solution containing at least one of an olefin monomer and a linear olefin monomer, a molecular weight control agent, and a viscosity control agent, and the polymerization reaction product is a modified petroleum resin and It may be a mixture of viscosity modifiers.
  • the base resin and the additive are mixed in an appropriate ratio, compatibility with raw rubber is excellent, and air permeability can be improved.
  • the resin composition has a number average molecular weight (Mn) of 100 to 550, a glass transition temperature of 0°C to 60°C, a softening point of 50°C to 90°C, and aromaticity of 5 to 35%.
  • the number average molecular weight (Mn) of the resin composition may be 150 to 500, 200 to 450, 250 to 400, or 300 to 350.
  • the glass transition temperature may be 5 °C to 65 °C, 10 °C to 60 °C, 15 °C to 55 °C, 20 °C to 50 °C, 25 °C to 45 °C, or 30 °C to 40 °C.
  • the softening point may be 55 °C to 85 °C.
  • the aromaticity may be 10% to 30%.
  • the resin composition satisfies the above physical properties, compatibility with rubber is improved, and thus, it has excellent air permeation resistance.
  • the C 5 monomer, C 5 mixed fraction, C 9 monomer, C 9 mixed fraction, cyclic diolefin monomer, and linear olefin monomer refer to the above description, and various embodiments of the molecular weight modifier and the viscosity modifier are as described above.
  • the method for producing the resin composition according to an aspect includes at least a base resin comprising a hydrogenated or non-hydrogenated petroleum resin; And at least a portion of the hydrogenated or non-hydrogenated petroleum resin by blending an additive comprising a modified petroleum resin having a structure in which a molecular weight modifier is bonded to at least one terminal of both ends of the hydrogenated or non-hydrogenated petroleum resin at a temperature of 100 ° C. to 180 ° C. to obtain a semi-solid resin includes steps.
  • the semi-solid phase means a substance in an intermediate state between a solid and a liquid.
  • the content of the base resin and the content of the additive may have a weight ratio of 12:1 to 1:12.
  • the weight ratio of the base resin and the additive in the resin composition may be 11:1 to 1:1, 10:1 to 1:1, or 9:1 to 1:1.
  • the content of the base resin may be higher than the content of the additive.
  • the content of the base resin and the content of the additive may have a weight ratio of 9:1 to 5:5.
  • the additive may further include a viscosity modifier, and for the viscosity modifier, refer to the foregoing.
  • the additive is polymerized in a solution containing at least one of a C 5 monomer, a C 5 mixed fraction, a C 9 monomer, a C 9 mixed fraction, a cyclic diolefin monomer and a linear olefin monomer, a molecular weight modifier, and a viscosity modifier. It can be obtained by carrying out a polymerization reaction by adding a catalyst and/or heat.
  • the polymerization catalyst may be selected from a Lewis acid catalyst, halohydric acid, AlCl 3 , BF 3 and mixtures thereof.
  • the polymerization catalyst may be selected from AlCl 3 , BF 3 , SnCl 4 , TiCl 4 , AgClO 4 , I 2 , and mixtures thereof.
  • the addition of heat may be performed at about 230 to about 280 °C.
  • the polymerization reaction of the additive may be performed under a pressure of 5 to 10 bar for about 1 hour to about 3 hours.
  • raw rubber and the above-mentioned resin composition; and, wherein the resin composition is included in an amount of 1 to 50 parts by weight based on 100 parts by weight of the raw rubber, a rubber composition is provided.
  • the content of the resin composition is less than 1 part by weight, it is difficult to expect improvement in air permeability, and when it exceeds 50 parts by weight, the physical properties of the rubber compound are deteriorated due to the lowering of dispersibility when compounding the raw rubber.
  • the rubber composition may further include a homogenizer, a reinforcing agent, a vulcanization aid, sulfur and a vulcanization accelerator in addition to the raw rubber and the above-mentioned resin composition.
  • the rubber composition may include 1 to 8 parts by weight of a homogenizer, 20 to 80 parts by weight of a reinforcing agent, and 0.1 to 10 parts by weight of a vulcanization aid based on 100 parts by weight of the raw rubber.
  • the rubber composition may further include 0.1 to 2 parts by weight of sulfur and 0.5 to 5 parts by weight of a vulcanization accelerator based on 100 parts by weight of the raw rubber.
  • the raw rubber is not particularly limited as long as it has an olefinic double bond (carbon-carbon double bond), and natural rubber, synthetic rubber, or a mixture thereof may be used.
  • the raw rubber is natural rubber (NR), butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene-isoprene-butadiene rubber, acrylo from the group consisting of nitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber and halogenated isobutylene-p-methyl styrene rubber. It may include one or more selected from.
  • NBR nitrile-butadiene rubber
  • NBR ethylene-propylene-diene rubber
  • halogenated butyl rubber halogenated isoprene rubber
  • halogenated isobutylene copolymer chloropre
  • the raw rubber may include a mixture of natural rubber and synthetic rubber.
  • the raw rubber may be a mixture of halogenated butyl rubber (eg, chlorinated butyl rubber) and natural rubber.
  • the rubber composition may include a homogenizer.
  • 40MS Watol
  • the homogenizer can be used as the homogenizer, and as the homogenizer is added, it is possible to obtain the effect of improving the kneading properties of butyl rubber and natural rubber, which do not mix well.
  • the rubber composition may include a reinforcing agent.
  • the reinforcing agent may include carbon black.
  • the carbon black improves the processability of the rubber composition due to its high specific surface area, and thus the film prepared from the final rubber composition has advantageous effects such as improvement of abrasion resistance, improvement of rotational resistance, and prevention of cracking or deterioration due to ultraviolet rays.
  • the type of the carbon black is not particularly limited, and any one commonly used in the tire field may be used.
  • carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite may be used as the carbon black.
  • carbon black physical properties such as particle diameter, pore volume, and specific surface area of carbon black are not particularly limited, and various carbon blacks conventionally used in the rubber industry, for example, SAF, ISAF, HAF, FEF, GPF, SRF (all are abbreviations for carbon black classified by ASTM standard D-1765-82a of the United States) or the like can be appropriately used.
  • the carbon black is preferably included in an amount of 20 to 80 parts by weight based on 100 parts by weight of the raw rubber.
  • the carbon black is a reinforcing filler and is an essential element in rubber compounding. If the content is less than the above range, the effect of reinforcing is deteriorated. On the contrary, when it exceeds the above range, there is difficulty in dispersion.
  • the reinforcing agent in addition to the carbon black, powders of minerals such as silica, clay, and talc, carbonates such as magnesium carbonate and calcium carbonate, and alumina hydrates such as aluminum hydroxide may be used.
  • the rubber composition may include sulfur.
  • the sulfur may be used without particular limitation as long as it can proceed with the vulcanization process.
  • the sulfur content in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the raw rubber, the air permeability of the film prepared from the final rubber composition may be improved.
  • the rubber composition may include a vulcanization accelerator.
  • vulcanization represents a bridge
  • the vulcanization accelerator include thiuram-based accelerators such as tetramethylthiuram monosulfide, tramethylthiuram disulfide and tetraethylthiuram disulfide; thiazole accelerators such as N-t-butyl benzothiazole-2-sulfenamide (TBBS), 2-mercaptobenzothiazole and dibenzothiazole disulfide; sulfenamide accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine-based accelerators such as diphenylguanidine (DPG) and diorthotrilguanidine; aldehyde-amine accelerators such as n-
  • DPG di
  • the content of the vulcanization accelerator is 0.5 to 5 parts by weight based on 100 parts by weight of the raw rubber, the air permeability of the film prepared from the final rubber composition can be improved.
  • the rubber composition may include a vulcanization aid.
  • 'vulcanization' refers to a bridge having at least one sulfur atom interposed therebetween.
  • metal oxides such as zinc oxide (zincification) and magnesium oxide
  • metal hydroxides such as calcium hydroxide
  • metal carbonates such as zinc carbonate and basic zinc carbonate
  • fatty acids such as stearic acid and oleic acid
  • aliphatic metal salts such as zinc stearate and magnesium stearate
  • amines such as di(n-butyl)amine and dicyclohexylamine
  • Ethylene dimethacrylate, diallyl phthalate, N,N-m-phenylenedimaleimide, triallyl isocyanurate, trimethylolpropane trimethacrylate, etc. are mentioned.
  • cure adjuvant When mix
  • the content of the vulcanization aid is used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the raw rubber, so that the air permeability of the film prepared from the final rubber composition can be improved.
  • the rubber composition further comprises one or two or more of various additives used in the field of rubber industry, for example, an anti-aging agent, a vulcanization retarder, an annealing agent, a plasticizer, and the like, as needed. can do.
  • the blending amount of these additives is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the raw rubber.
  • composition comprising the composition as described above is prepared as a gas barrier film using a known method.
  • the gas barrier film is applicable to a tire, for example as an innerliner.
  • the rubber composition may be prepared by kneading each of the above components using, for example, a kneader such as a plastomill, a Banbury mixer, a roll, or an internal mixer.
  • a kneader such as a plastomill, a Banbury mixer, a roll, or an internal mixer.
  • it can be prepared by first kneading the components other than sulfur and the vulcanization accelerator among the above components, and then adding sulfur and the vulcanization accelerator to the obtained kneaded material and further kneading.
  • the rubber composition prepared by the above method can be used as a material constituting the gas barrier film.
  • the gas barrier film thus prepared has excellent mechanical properties (hardness, tensile strength, modulus, etc.). In particular, it has excellent air permeability and can be used as a film for tire inner liners.
  • the gas permeability may be 150 cm 3 /(m 2 ⁇ day ⁇ atm) or less.
  • the gas permeability may be 145 cm 3 /(m 2 ⁇ day ⁇ atm) or less.
  • the rubber specimen may have a glass transition temperature (Tg) of -16°C or less. The rubber specimen has an advantage in that the glass transition temperature is -16 °C or less, the processability is improved, the manufacturing cost is reduced, and the physical properties of the final product are improved.
  • the method for preparing the rubber specimen may be prepared by a method commonly used in the art using the rubber composition.
  • the rubber composition is subjected to a compression molding method in hot press to prepare a specimen with a size of 12 cm x 12 cm (width x length) and a thickness of 0.5 mm ⁇ 0.2 mm, and then measure the gas permeability at 25 ° C. under 60RH% atmosphere can do.
  • the resin composition may be used as an additive in a rubber composition forming an existing tire, and is included, for example, as a resin to replace the process oil added to improve the miscibility of raw materials in the manufacturing process of a tire inner liner.
  • the resin composition according to the exemplary embodiment of the present invention instead of the process oil, air permeability and processability are improved compared to the case of including the conventional process oil.
  • the conventionally known process oil is a petroleum oil, and includes a paraffinic oil, a naphthenic oil, an aromatic oil, and a combination thereof.
  • 1 is a diagram schematically showing the configuration of a tire.
  • the tire includes a tread part 1, a shoulder part 2, a sidewall part 3, a bead part 4, a belt part 5, an inner liner part 6, a carcass part ( 7), and a cap ply part (8).
  • the tread portion is a portion in direct contact with the road surface, and is made of rubber having excellent abrasion resistance located on the outside of the cap ply. In addition, it serves to improve the wet (wet) grip force and dry grip force of the tire on the road surface of the transportation device.
  • the shoulder portion is located on the side of the tread between the tread and the sidewall portion, and serves to connect the sidewall portion and the tread.
  • the sidewall portion is positioned between the tread and the bead portion to cover a side portion of the tire.
  • the sidewall part protects the carcass part from external stimuli by covering the carcass part, and suppresses the deformation of the outer shape of the tire due to the centrifugal force generated in the tire during operation of the transport device, thereby ensuring stable operation of the transport device.
  • the bead portion is a region in which one or a plurality of steel wire bundles wound around the distal end of the carcass portion exist in a twisted state, and the steel wire is completely covered by a rubber film.
  • the bead portion serves to mount and fix the tire to the wheel rim. In particular, it serves to prevent separation of the tire from the wheel rim when air leaks.
  • the belt part is a coating layer located in the middle of the tread part and the carcass part.
  • the belt part serves to prevent damage to internal structures such as the carcass part due to external impact or external conditions, and serves to improve the contact area between the tread part and the road surface.
  • the inner liner part is located on the innermost side of the tire, and prevents the air from leaking out to the outside, thereby maintaining a constant air pressure in the tire.
  • the carcass part is made of high-strength synthetic fiber, and serves to form and maintain the skeleton of the tire.
  • the carcass part serves to withstand loads and shocks transferred during operation of transportation equipment and to maintain air pressure.
  • the cap ply part is a protective layer positioned under the tread part, and serves to protect internal components from heat and external impact transmitted from the tread part.
  • the tread portion has a function of improving the grip force of the tire on the road surface.
  • the grip force means the adhesion force between the tire and the road surface, and when the grip force is improved, the braking performance is improved when cornering or stopping the transportation equipment.
  • the tread portion may be formed using a rubber composition including raw rubber and a resin.
  • the tread part may include a single-layered rubber composition or a laminate of a plurality of rubber compositions.
  • the raw rubber may include natural rubber, synthetic rubber, or a combination thereof.
  • the natural rubber may be general natural rubber or modified natural rubber
  • the synthetic rubber is butadiene rubber, nitrile rubber, silicone rubber, isoprene rubber, styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene-isoprene- Butadiene rubber, acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber, butyl rubber, halogenated isobutylene-p-methyl styrene rubber, or a mixture thereof.
  • the resin may be selected from the aforementioned resin composition, hydrocarbon resin, alkyl phenol resin, phenol/acetylene resin, terpene phenol resin, rosin-derived resin, and mixtures thereof.
  • the tread portion may further include a tire cord in addition to the rubber composition.
  • the tire cord may be appropriately selected by a person skilled in the art in consideration of adhesion to rubber, tire stiffness and fatigue resistance, heat resistance, and dimensional stability.
  • the tire cord includes, for example, rayon, nylon, polyester, aramid and steel.
  • a conductive material may be mixed as necessary.
  • the rubber composition for the tread may further include a homogenizer, a reinforcing agent, a vulcanization aid, sulfur and a vulcanization accelerator in addition to the raw rubber and resin.
  • a homogenizer a reinforcing agent, a vulcanization aid, sulfur and a vulcanization accelerator in addition to the raw rubber and resin.
  • the homogenizers, reinforcing agents, vulcanization aids, sulfur and vulcanization accelerators refer to the description herein.
  • various additives such as vegetable oil and antioxidants may be further added.
  • the content of the component included in the rubber composition for tread may be appropriately selected by a person skilled in the art according to desired physical properties.
  • the shoulder portion is disposed between the tread portion and the sidewall portion, which connects the sidewall portion located on the side surface of the tire from the tread portion of the tire. Since the shoulder part has the thickest thickness among the components of the tire, it is designed so that heat generated inside the tire is easily discharged to the outside while driving.
  • the shoulder part may have a rounder shoulder or a square shoulder structure.
  • the shoulder portion may be formed using a rubber composition for tread, and a person skilled in the art may appropriately select the composition ratio of the components according to desired physical properties.
  • the sidewall part means a side part of the tire extending from the shoulder in the bead direction, and functions to protect the carcass part inside the tire.
  • the sidewall part has a function of absorbing the shock transmitted during the vertical movement of the tire, as well as accommodating the repeated expansion and contraction of the tire while the transportation equipment is running.
  • the sidewall part may be made of a rubber composition including raw rubber and a tire cord.
  • the raw rubber may include natural rubber, synthetic rubber, modified natural rubber, or a combination thereof.
  • the modified natural rubber is obtained by performing a modification or purification step of natural rubber to improve compatibility and physical properties of general natural rubber, for example, epoxidized natural rubber, deproteinized natural rubber, hydrogenated natural rubber, and the like.
  • the tire cord refers to the bar described above in the tread, but aramid fibers may be used in terms of improving impact resistance.
  • additives such as a homogenizer, a reinforcing agent, a vulcanization aid, sulfur, a vulcanization accelerator, a vegetable oil, and an anti-aging agent may be further added to the rubber composition used for the production of the sidewall part, as necessary, in addition to the raw rubber and tire cord described above. .
  • the content of the component of the rubber composition used for manufacturing the sidewall part may be appropriately selected by a person skilled in the art according to desired physical properties.
  • the bead portion is a portion of the tire in contact with the wheel, and functions to fix the tire to the wheel and maintain airtightness when air is filled.
  • the bead portion may include one or more steel wires coated with rubber, and the one or more steel wires may be twisted to each other.
  • the belt part is located under the tread part, and serves to maintain a ground contact area of the tread part, to relieve external shock transmitted from the tread part, and to support a load applied to the tire.
  • the belt part may be made of a rubber composition including raw rubber and a tire cord.
  • the tire cord may be disposed in the tire circumferential direction in order to withstand an external force acting in the circumferential direction of the tire.
  • the raw rubber may include natural rubber, synthetic rubber, modified natural rubber, or a combination thereof.
  • the rubber composition for the belt part may further include an adhesive for strong adhesion to the tire cord.
  • an adhesive for example, latex, rosin-based resin, terpene-phenol resin, aliphatic petroleum resin, aromatic petroleum resin, and dicyclopentadiene-based petroleum resin may be used.
  • composition ratio of the components of the rubber composition for the belt part may be appropriately selected by a person skilled in the art according to desired physical properties.
  • the inner liner unit may include the above-described gas barrier film.
  • the above-described gas barrier film and a polyamide-based gas barrier film made of a rubber composition including a mixture of raw rubber and polyamide-based resin may be used together for the inner liner part.
  • the inner liner part is formed of a single layer structure of the gas barrier film according to an embodiment of the present invention, or includes a gas barrier film layer and a polyamide-based gas barrier film layer according to an embodiment of the present invention. It may have a multi-layered structure.
  • the polyamide-based gas barrier film may include a copolymer including a polyamide unit and a polyether unit, or a mixture of a polymer including a polyamide unit and a polymer including a polyether unit.
  • the ratio of polyamide units included in the polyamide-based gas barrier film may be higher than the ratio of polyether units.
  • the weight ratio of the polyamide unit and the polyether unit included in the gas barrier film may be 9.5:0.5 to 5.5:4.5.
  • the polyamide unit is, for example, nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, a copolymer of nylon 6/66, nylon 6/66/610 copolymer, nylon MXD6, Nylon 6T, Nylon 6/6T copolymer, Nylon 66/PP copolymer, Nylon 66/PPS copolymer, Methoxymethylate of 6-nylon, Methoxymethylide of 6-610-nylon and Methoxy of 612-nylon It may be a main repeating unit included in one kind of polyamide-based resin selected from the group consisting of methylation.
  • the polyether-based unit is, for example, one selected from the group consisting of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene diamine, polyoxypropylene diamine, polyoxytetramethylene diamine, and copolymers thereof. It may be a main repeating unit included in the polyether-based resin.
  • the inner liner portion may include an additional adhesive film on its surface to maintain a firm bond with adjacent components.
  • the adhesive film may be a single layer or multiple layers.
  • any one of the multilayers may be a release film including an oxygen barrier film.
  • the oxygen barrier foil may include a gas barrier film according to an embodiment of the present invention.
  • the thickness of the inner liner part is not particularly limited, and a person skilled in the art may appropriately select and perform the operation in consideration of fuel efficiency and air permeability of transportation equipment.
  • the carcass part is located above the inner liner part to form the skeleton of the tire, and has the functions of maintaining the outer shape of the tire, maintaining internal air pressure, and buffering against external impact.
  • the carcass portion is made of a rubber composition including raw rubber and a tire cord material, and the tire cord material may be radially disposed to withstand a force acting in the radial direction of the tire.
  • the raw rubber may include natural rubber, synthetic rubber, modified natural rubber, or a combination thereof.
  • the rubber composition for the carcass may further include the above-described adhesive for strong adhesion to the tire cord.
  • composition ratio of the components of the rubber composition for carcass may be appropriately selected by a person skilled in the art according to desired physical properties.
  • the cap ply part is disposed between the belt part and the tread part, and serves to fix the belt part.
  • the cap ply part may be made of rayon, nylon, polyester, aramid, or steel.
  • the cap ply part may be made of a nylon film.
  • the cap ply part may further include an adhesive to improve adhesion, if necessary.
  • the adhesive for example, latex, rosin-based resin, terpene-phenol resin, aliphatic petroleum resin, aromatic petroleum resin, and dicyclopentadiene-based petroleum resin may be used.
  • the cap ply part may further include one or more of a heat resistance agent, an antioxidant, a stabilizer, a reinforcing agent, an antifoaming agent, and a filler, if necessary.
  • composition ratio of the material components of the cap ply part may be appropriately selected by a person skilled in the art according to desired physical properties.
  • n-dodecyl mercaptan After adding 2.5 parts by weight of molecular weight modifier n-dodecyl mercaptan based on 100 parts by weight of a composition consisting of 93% by weight of purified C9 oil (YCNCC) and 7% by weight of viscosity modifier LP200 (Kolon Industries), 260° C. and high pressure ( 5 to 10 bar), polymerization was carried out for 2 hours. When BF 3 as a polymerization catalyst was added, polymerization was performed at 180° C. and high pressure (5 to 10 bar) for 2 hours. After the polymerization was completed, a resin composition for use as an additive was prepared by removing unreacted reactants through a degassing process.
  • YCNCC purified C9 oil
  • LP200 viscosity modifier LP200
  • the additive and C9/DCPD copolymer resin (SU-400 or SU-490) obtained in Preparation Example 1 were blended in a weight ratio of 3:7 at a high temperature (100° C. to 180° C.) to prepare a resin composition.
  • a resin composition was prepared by blending the additive and C9/DCPD copolymer resin (SU-400 or SU-490) obtained in Example 1 at a high temperature (100° C. to 180° C.) in a weight ratio of 1:9.
  • the glass transition temperature, softening point, viscosity, number average molecular weight, and aromaticity of the resin compositions prepared in Preparation Examples 1 to 3 were measured and shown in Table 1 below.
  • the glass transition temperature was confirmed through DSC analysis.
  • the softening point was measured using the Ring and ball softening method (ASTM E 28). Melt the resin in a ring-shaped mold, place it in a beaker containing glycerin, place the ball on the ring containing the resin, and increase the temperature by 2.5°C per minute to determine the temperature (softening point) when the resin melts and the balls fall measured
  • the viscosity was measured using a Brookfield viscometer (ASTM D3236) using spindle #27.
  • the number average molecular weight was determined by gel permeation chromatography (manufactured by Hewlett-Packard, model name: HP-1100) to obtain a polystyrene reduced number average molecular weight (Mn).
  • Preparation Example 1 Preparation 2 Preparation 3 Glass transition temperature (°C) -20 30 40 Softening Point (°C) - 60 80 Viscosity (@60°C, cps) 2700 - - Number average molecular weight (Mn) 240 310 330 Aromatic (%) 37 26 11
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of the resin composition prepared in Preparation Example 3 was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of the additive prepared in Preparation Example 1 was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of a process oil (TDAE, manufactured by H&R) was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • TDAE process oil
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of paraffin oil (manufactured by Michang Petrochemical) was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • paraffin oil manufactured by Michang Petrochemical
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of naphthenic oil (manufactured by Michang Petrochemical) was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of 40MS (manufactured by Strucktol) was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • a rubber specimen was prepared in the same manner as in Example 1, except that 10 parts by weight of C9/DCPD copolymer resin (SU-400 Kolon) was used instead of the resin composition prepared in Preparation Example 2 when preparing the rubber specimen.
  • C9/DCPD copolymer resin SU-400 Kolon
  • the rheometer results measured by the rubber rheometer are parameters related to the curing rate and the behavior of the rubber composition when the process is applied, and are related to the processability during tire manufacturing. At this time, if the values (Toq(Min), Toq(Max)) are too high or too low, it is not easy to apply to the existing process, which means that a new process design is required. Results of Comparative Examples 1 to 4, such as Toq(Min), Toq(Max), Tc50 (time to 50% cure), Tc90 (time to 90% cure), etc. of Example 1 shown in Table 2 In comparison with , it can be seen that the specification corresponds to the easily applicable specification to the existing process.
  • Mooney viscosity results and mechanical properties are also, as shown in Table 2, the results of Examples 1 and 2 are equivalent to or higher than the results of Comparative Examples 2 to 5. show
  • the gas permeation amount and the Tg value are values related to air permeability and processability, respectively.
  • the gas permeation rates of Examples 1 and 2 are 132 and 125 cm 3 /(m 2 ⁇ day ⁇ atm), and it can be seen that the gas permeation rate is significantly improved compared to the rubber specimens of Comparative Examples 1 to 5.
  • Examples 1 and 2 have improved fairness by having a lower Tg value compared to Comparative Example 6.
  • the rubber composition for a tire inner liner according to the present invention not only satisfies basic physical properties required for the construction of a tire, that is, tensile strength, abrasion resistance, durability, hardness, etc., but also improves workability and significantly improves air permeability. It can be seen to improve significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 C9 중합체를 포함하는 첨가제;를 포함하는, 수지 조성물, 이를 포함하는 가스 배리어 필름, 및 타이어에 관한 것이다.

Description

수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어
본 발명은 신규 조성의 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어에 관한 것이다.
타이어 이너라이너는 타이어 구조 중 가장 내측에 위치하는 고무층으로서, 타이어 내 공기압을 유지하고, 내굴곡성을 가지며, 인접 지지부(예, 카카스)에 대한 우수한 접착성을 가져야 하며, 이 중 타이어의 내공기압을 유지하면서 내굴곡성의 내구 성능을 유지하기 위한 타이어 이너라이너에 대한 연구가 지속적으로 이루어지고 있는 실정이다.
현재까지 타이어 이너라이너의 내공기 투과도를 향상시키기 위한 기술로 고무 층의 두께를 증가시키거나, 할로겐화부틸고무 함량을 증가시키는 방법이 활용되고 있다. 하지만, 이너라이너의 두께를 증가시키는 경우 타이어 전체 중량이 증가하게 되어 연비 저하가 야기된다. 또한, 내공기 투과도가 우수한 할로겐화부틸고무 함량을 증가시키거나, 할로겐화부틸고무를 원료 고무로서 단독으로 사용하는 경우 타이어 제조 공정성이 저하되어, 제조원가가 상승하는 문제점이 여전히 존재한다.
이러한 문제점을 해결하기 위하여 할로겐화부틸고무를 천연고무와 함께 배합하고, 프로세스 오일, 가공조제, 필러(유기 및/또는 무기 필러)를 첨가하여 이너라이너용 고무 조성물을 제조하는 기술이 연구되어왔다. 하지만, 할로겐화부틸고무 이외의 재료의 배합에 의하여 할로겐화부틸고무의 내공기 투과도가 저하되는 문제점이 발생하였다.
즉, 제조 공정성 및 내공기 투과도는 트레이드 오프(trade off) 관계로서 이들을 동시에 향상시키기 위한 연구가 지속적으로 이루어지고 있는 실정이다.
따라서, 내공기 투과도 및 제조 공정성이 향상된 이너라이너용 용 고무의 제조를 위한 수지 조성물에 대한 요구가 존재한다.
또한 부틸고무 단독 배합이 어렵기 때문에 배합시 천연고무 비율을 높이고, 기타 재료인 프로세스오일, 가공조제, 필러(유기 및 무기 필러)를 사용하여 인너라이너용 고무를 배합한다. 부틸고무를 제외한 재료들이 들어가게 되면 내공기 투과도에는 불리할 수 밖에 없다. 이에 기체의 투과도를 낮추기 위해 비극성이면서 분자량이 작아 가공성이 우수하며, 비결정성의 고점도 반고상 탄화수소 수지가 폴리머의 무정형 영역에 상용되어 막을 형성시키는 효과가 있어 인너라이너에 적용함으로써 가공성 향상과 동시에 내공기 투과도의 개선이 가능하다.
고무의 내공기 투과성 및 제조 공정성이 향상된 수지 조성물, 이의 제조방법, 이를 포함하는 고무 조성물과 가스 배리어 필름, 및 이를 포함하는 타이어를 제공하는 것을 목적으로 한다.
일 측면에 따르면, 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 석유수지를 포함하는 첨가제;를 포함하는, 수지 조성물이 제공된다.
다른 측면에 따르면, 원료 고무; 및 상기 수지 조성물;을 포함하고, 상기 수지 조성물은 원료 고무 100 중량부를 기준으로 1 내지 50 중량부로 포함되는 고무 조성물이 제공된다.
또 다른 측면에 따르면, 상기 고무 조성물을 포함하는 가스 배리어 필름이 제공된다.
또 다른 측면에 따르면, 상기 가스 배리어 필름을 포함하는 타이어가 제공된다.
또 다른 측면에 따르면, 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 석유수지를 포함하는 첨가제를 100℃ 내지 180℃ 온도에서 블렌딩하여 반고상의 수지를 얻는 단계를 포함하는, 수지 조성물의 제조방법이 제공된다.
본 발명의 일 구현예에 따른 수지 조성물은 프로세스 오일의 부재에도 불구하고 분자량 조절제로 개질된 개질된 석유수지를 포함하는 첨가제를 포함하는 것에 의하여 원료 배합공정 중에 원료 분산을 원활하게 하고, 배합시간을 단축시킴으로써 경제적 이점을 가져올 뿐만 아니라, 상기 수지 조성물은 고무와의 상용성이 우수하여 이로부터 제조된 가스 배리어 필름은 향상된 내공기 투과도를 갖는다.
도 1은 타이어의 기본적인 구성을 개략적으로 나타낸 도면이다.
이하에서 설명되는 본 창의적 사상(present inventive concept)은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 상세한 설명에 상세하게 설명한다. 그러나, 이는 본 창의적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 창의적 사상의 기술 범위에 포함되는 모든 변환, 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
이하에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 창의적 사상을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품, 성분, 재료 또는 이들을 조합한 것이 존재함을 나타내려는 것이지, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성 요소, 부품, 성분, 재료 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하에서 사용되는 "/"는 상황에 따라 "및"으로 해석될 수도 있고 "또는"으로 해석될 수도 있다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하거나 축소하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 또는 "위에" 있다고 할 때, 이는 다른 부분의 바로 위에 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 명세서 전체에서 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
본 명세서에서 사용되는 과학 용어는 다르게 정의되지 않는 한 본 발명의 기술분야에 속하는 통상의 기술자가 일반적으로 이해하는 바와 동일하게 이해될 수 있다.
본 명세서에서 '석유수지'는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중 하나 이상이 중합된 중합체를 포함한다. 예를 들어, 상기 석유수지는 호모폴리머, 코폴리머 등을 포함한다. 상기 호모폴리머 석유수지의 예로는 C5 단량체가 중합된 중합체, C5 혼합 유분이 중합된 중합체, C9 단량체가 중합된 중합체, C9 혼합유분이 중합된 중합체, 환형 디올레핀 단량체가 중합된 중합체, 선형 올레핀 단량체가 중합된 중합체를 들 수 있다. 상기 코폴리머 석유수지의 예로는 서로 다른 2종의 C5 단량체가 중합된 공중합체, 서로 다른 2종의 C9 단량체가 중합된 공중합체, 서로 다른 2종의 환형 디올레핀 단랑체가 중합된 공중합체, 서로 다른 2종의 선형 올레핀 단량체가 중합된 공중합체, C5 유분과 C5 단량체의 공중합체, C5 유분과 C9 단량체의 공중합체, C9 유분과 C5 단량체의 공중합체, C5 단량체와 C9 단량체의 공중합체, C9 유분과 C9 단량체의 공중합체, C5 유분과 선형 올레핀 단량체의 공중합체, C9 유분과 선형 올레핀 단량체의 공중합체. C5 유분과 환형 디올레핀 단량체의 공중합체, C9 유분과 환형 디올레핀 단량체의 공중합체, C5 단량체와 환형 디올레핀 단량체의 공중합체, C9 단량체와 선형 올레핀 단량체의 공중합체, 환형 디올레핀 단량체와 선형 올레핀 단량체의 공중합체를 들 수 있다.
본 명세서에서 '수첨 석유수지'는 전술한 석유수지 중 에틸렌과 같은 불포화 모이어티의 적어도 일부가 수소 첨가 반응에 의하여 포화 탄화수소로 개질된 석유수지를 의미한다.
본 명세서에서 'C5 (혼합) 유분'은, 나프타의 분해로부터 유도된 지방족 C5 및 C6 파라핀, 올레핀 및 디올레핀을 포함한다. 예를 들어, C5 유분은 펜텐, 이소프렌, 2-메틸-2-부텐, 2-메틸-2-펜텐, 사이클로펜타디엔, 및 피페릴렌을 포함할 수 있으며, 이에 한정되지 않고 C5 단량체 중 2종 이상의 혼합물을 모두 포함한다. 또한, 상기 C5 유분은 선택적으로 알킬화될 수 있다.
본 명세서에서 'C5 단량체'는 전술한 C5 (혼합) 유분에 포함된 성분 중 어느 하나를 지시한다.
본 명세서에서 'C9 (혼합) 유분'은 본 발명이 속하는 기술분야에서 통상적으로 이해되듯이, 석유 가공, 예컨대 분해로부터 유도된 조성물로서, 대기압 및 약 100 내지 300 ℃에서 비등하는 C8, C9 및/또는 C10 올레핀 종을 포함하며, 예를 들어, 비닐톨루엔, α-메틸스티렌, 스티렌, 디사이클로펜타디엔, 인덴, 트랜스-베타-메틸스티렌, 및 메틸인덴을 포함할 수 있으나, 이에 한정되는 것은 아니며 C9 단량체 중 2종 이상의 혼합물을 모두 포함한다. 또한, 상기 C9 유분은 선택적으로 알킬화될 수 있다. 예를 들어, 본 발명에서 C9 유분은 비닐톨루엔, 인덴, 스티렌, 디사이클로펜타디엔 및 이들 성분의 알킬화된 유도체, 예를 들어 α-메틸스티렌, 메틸인덴, 등을 포함할 수 있다.
본 명세서에서 'C9 단량체'는 전술한 C9 유분에 포함된 성분 중 어느 하나를 지시한다.
본 명세서에서 '올레핀'은 적어도 하나의 에틸렌성 불포화기(C=C) 결합을 포함하는 불포화 화합물을 포함한다. 예를 들어, 올레핀은 선형 올레핀, 환형 올레핀, α-올레핀 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 '고리형-디올레핀'은 2개의 C=C 결합을 포함하는 고리형 불포화 화합물을 포함한다. 예를 들어, 고리형-디올레핀은 디사이클로펜타디엔, 트리시클로펜타디엔 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
이하에서는 본원 발명의 수지 조성물, 이를 포함하는 고무 조성물 및 가스 배리어 필름, 상기 가스 배리어 필름을 포함하는 타이어, 및 상기 수지 조성물의 제조방법에 대하여 구체적으로 설명한다.
[수지 조성물]
일 측면에 따른 수지 조성물은 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 석유수지를 포함하는 첨가제를 포함한다.
상기 베이스 수지에 상기 첨가제를 포함하는 것에 의하여 가공성이 향상되고 이로부터 제조된 가스 배리어 필름은 향상된 내공기 투과도를 갖는다.
일 구현예에 따르면, 상기 석유수지는 C9 혼합 유분 유래 반복단위를 적어도 하나 포함할 수 있다. 예를 들어, 상기 석유수지는 C9 혼합 유분 유래 반복단위로 구성될 수 있다.
일 구현예에 따르면, 상기 수지 조성물 중 상기 베이스 수지 및 첨가제의 중량비는 12:1 내지 1:12일 수 있다. 예를 들어, 상기 수지 조성물 중 상기 베이스 수지 및 첨가제의 중량비는 11:1 내지 1:11, 10:1 내지 1:10, 또는 9:1 내지 1:9일 수 있다
일 구현예에 따르면, 상기 수지 조성물 중 상기 베이스 수지의 함량은 상기 첨가제의 함량 이상으로 포함될 수 있다. 예를 들어, 상기 수지 조성물 중 상기 베이스 수지 및 첨가제의 중량비는 12:1 내지 1:1일 수 있다. 예를 들어, 상기 수지 조성물 중 상기 베이스 수지 및 첨가제의 중량비는 11:1 내지 1:1, 10:1 내지 1:1 또는 9:1 내지 1:1일 수 있다
상기 베이스 수지 및 첨가제의 함량비를 만족하는 것에 의하여 원료 고무와의 상용성과 배합성이 우수한 수지 조성물이 얻어지고, 타이어 이너라이너용 원료 고무의 무정형 영역에 상용되어 막을 형성시킴으로써 내공기 투과도가 향상된다.
일 구현예에 따르면, 상기 베이스 수지는 중량평균분자량(Mw)이 200 내지 2000이고, 연화점이 80℃ 내지 150℃이고, 160℃에서 측정된 점도가 250 내지 2000 cps 이고, 유리전이온도가 30℃ 내지 100℃일 수 있다.
예를 들어, 상기 베이스 수지는 중량평균분자량(Mw)이 400 내지 1000이고, 연화점이 90℃ 내지 120℃이고, 160℃에서 측정된 점도가 500 내지 1000 cps 이고, 유리전이온도가 40℃ 내지 70℃일 수 있다.
일 구현예에 따르면, 상기 베이스 수지는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중에서 선택된 하나 이상이 중합된 중합체를 포함한 석유수지일 수 있다
일 구현예에 따르면, 상기 베이스 수지는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중에서 선택된 2종의 공중합체를 포함하는 석유수지일 수 있다. 예를 들어, 상기 베이스 수지는 C9 혼합 유분과 고리형-디올레핀의 공중합체를 포함할 수 있다.
일 구현예에 따르면, 상기 베이스 수지는 C9-DCPD 공중합체를 포함할 수 있다. 예를 들어, 상기 석유수지는 C9-DCPD 공중합체 수지일 수 있다.
일 구현예에 따르면, 상기 베이스 수지는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중에서 선택된 2종의 공중합체의 수소화에 의해 얻어진 수첨 석유수지일 수 있다. 예를 들어, 상기 베이스 수지는 C9 혼합 유분과 고리형-디올레핀의 공중합체의 에틸렌 관능기가 수소화된 수첨 C9-고리형-디올레핀계 수지를 포함할 수 있다.
일 구현예에 따르면, 상기 베이스 수지는 수첨 C9-DCPD 공중합체를 포함할 수 있다. 예를 들어, 상기 베이스 수지는 수첨 C9-DCPD 공중합체 수지일 수 있다.
일 구현예에 따르면, 상기 분자량 조절제는 연쇄이동제(chain transfer agent)로서, 싸이올류(thiols) 또는 카본 테트라클로라이드와 같은 할로카본류(halocarbons) 등을 들 수 있다.
일 구현예에 따르면, 상기 분자량 조절제는 싸이올류, 즉 하나 이상의 싸이올기를 포함하는 유기 머캡탄계 분자량 조절제를 포함할 수 있다. 예를 들어, 상기 유기 머캡탄계 분자량 조절제는 지방족 머캡탄류 화합물, 환형지방족 머캡탄류 화합물, 방향족 머캡탄류 화합물, 또는 이들의 조합을 포함한다.
일 구현예에 따르면, 상기 유기 머캡탄계 분자량 조절제에 포함된 싸이올기의 개수는 특별히 한정되지 않으나, 한 분자당 1 내지 4개의 싸이올기를 포함할 수 있고, 한 싸이올기당 1 내지 20 개의 탄소, 바람직하게는 1 내지 15개의 탄소를 포함하는 탄화수소기를 포함할 수 있다.
또한, 탄화수소기와 싸이올기 외에 다른 치환기를 추가로 포함할 수 있으며, 이러한 치환기의 예에는 히드록시기, 카르복실산기, 에테르(ether)기, 에스테르(ester)기, 설파이드기, 아민기, 아마이드기 등이 포함된다.
일 구현예에 따르면, 상기 분자량 조절제는 싸이올기를 갖는 유기 화합물이라면 특별히 한정되지 않으며, 예를 들어 에틸 머캡탄, 부틸 머캡탄, 헥실 머캡탄, 또는 도데실 머캡탄 등의 알킬 머캡탄류; 페닐 머캡탄 또는 벤질 머캡탄 등의 싸이올페놀류; 2-머캡토에탄올, 싸이올글리콜산(thioglycolic acid) 또는 3-머캡토 프로피온산 등의 히드록시기 또는 카르복실산기 함유 머캡탄류; 또는 펜타에리트리톨 테트라키스(3-머캡토)프로피오네이트 등과 같이 기능기를 두 개 이상 갖는 머캡탄류; 또는 이들의 혼합물을 포함할 수 있다.
예를 들어, 상기 분자량 조절제는 메틸 머캡탄, 에틸 머캡탄, 부틸 머캡탄, 옥틸 머캡탄, 라우릴(lauryl) 머캡탄, 머캡토에탄올, 머캡토프로판올, 머캡토부탄올, 머캡토아세트산, 머캡토프로피온산, 벤질 머캡탄, 페닐 머캡탄, 사이클로헥실 머캡탄, 1-싸이오글리세롤, 2.2'-디머캡토디에틸 에테르, 2,2'-디머캡토디프로필 에테르, 2,2'-디머캡토디이소피로필 에테르, 3,3'-디머캡토디프로필 에테르, 2,2'-디머캡토디에틸 설파이드, 3,3'-디머캡토디프로필 설파이드, 비스(β-머캡토에톡시) 메탄, 비스(β-머캡토에틸싸이오)메탄, 트리메틸올프로판 트리싸이오글리콜레이트, 펜타에리트리톨 테트라싸이오글리콜레이트 또는 이들의 혼합물을 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 분자량 조절제에는 에틸 머캡탄, 부틸 머캡탄, 헥실 머캡탄, 도데실 머캡탄, 페닐 머캡탄, 벤질 머캡탄; 머캡토에탄올, 싸이올글리콜산, 머캡토 프로피온산, 펜타에리트리톨 테트라키스(3-머캡토)프로피오네이트, 또는 이들의 혼합물을 포함할 수 있다.
일 구현예에 따르면, 상기 분자량 조절제는 하기 화학식 1의 n-도데실 머캡탄이나 하기 화학식 2의 2-머캡토에탄올 또는 이들의 혼합물을 사용함으로써 분자량 조절의 효과를 극대화할 수 있다.
[화학식 1]
Figure PCTKR2021015344-appb-I000001
[화학식 2]
Figure PCTKR2021015344-appb-I000002
일 구현예에 따르면, 상기 첨가제는 점도 조절제를 더 포함할 수 있다.
일 구현예에 따르면, 상기 점도 조절제는 25 ℃에서 점도가 20 내지 500 cps인 저점도 수지를 포함할 수 있다. 상기 점도 조절제로는 상기 점도를 만족하는 수지라면 특별한 제한없이 사용될 수 있다.
예를 들어, 상기 저점도 수지는 수첨 DCPD-C9 공중합체 수지(hydrogenated DCPD-C9 copolymer resins), 수첨 DCPD (hydrogenated DCPD resins) 수지 및 이들의 혼합물을 포함할 수 있다.
여기서, 수첨 DCPD-C9 공중합체 수지는 디사이클로펜타디엔(DCPD)의 중합과 수첨을 통해 얻어지는 백색의 열가소성 수지를 의미하며, 이와 같은 수첨 DCPD-C9 공중합체 수지로서 SUKOREZTM 수지와 같은 상용(commercial) 수지를 사용할 수도 있다.
일 구현예에 따르면, 상기 점도 조절제는 하기 구조를 갖는 수첨 DCPD-C9 공중합체 수지를 포함하고, 이로부터 점도 조절과 내공기투과도 향상의 효과를 극대화 할 수 있게 된다.
[화학식 3]
Figure PCTKR2021015344-appb-I000003
일 구현예에 따른 개질된 석유수지는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중 하나 이상이 중합되고 적어도 일부가 수소화 또는 비수소화된 석유수지가 상기 분자량 조절제로 개질된 형태의 개질 석유수지인데, 상기 석유수지를 분자량 조절제로 말단을 개질함으로써, 고무와의 상용성과 배합성이 우수할 뿐 아니라, 폴리머의 무정형 영역에 상용되어(compatibilized) 막을 형성시킬 수 있어, 가공성과 내공기투과도를 더욱 향상시킬 수 있다. 그와 달리, 분자량 조절제로 말단이 개질되지 않는 경우 비극성도가 높음으로 인해 고무와의 상용성이 낮아 배합이 잘 되지 않는 문제점이 발생할 수 있다. 그 결과 가공성 및 최종 제품의 성능이 저하된다.
다른 구현예에 따른, 상기 개질 석유수지는 C9 혼합 유분 유래 반복단위를 적어도 하나 포함하고, 상기 개질 석유수지가 상기 분자량 조절제로 말단이 개질됨으로써, 고무와의 상용성과 배합성이 더욱 개선되어, 가공성과 내공기투과도가 더욱 향상될 수 있다.
일 구현예에 따른 개질된 석유수지는 후술하겠지만, 상기 개질 석유수지는 부가중합(addition olymerization) 또는 사슬중합(chain polymerization) 반응에 의한 상기 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중 하나 이상이 중합되고 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 상기 분자량 조절제가 결합되어 있는 구조를 갖는다.
상기 개질된 석유수지는 C9 혼합 유분 유래 반복단위를 적어도 하나 포함할 수 있다.
일 구현예에 따르면, 상기 개질된 석유수지는 하기 화학식 4a와 같은 반복단위가 결합되어 있는 구조를 갖는다. 예를 들어, 상기 개질된 석유수지는 C9 혼합 유분에 포함되는 스티렌, α-메틸스티렌, 비닐톨루엔, 인덴, 메틸인덴, 디사이클로펜타디엔 및 α-메틸스티렌이나 메틸인덴과 이 이들 성분의 알킬화된 유도체 단량체가 중합 반응에 형성된 하기와 같은 구조를 포함할 수 있다.
[화학식 4a]
Figure PCTKR2021015344-appb-I000004
상기 화학식 4a는 예시적으로 표현한 것에 불과할 뿐이어서, 상기 구조에 추가해서 표시되지 않은 다른 C5 단량체, C9 단량체, 고리형-디올레핀 단량체 및 선형 올레핀 단량체가 반복단위로 포함될 수도 있다.
예를 들어, 상기 개질된 석유수지는 상기 구조로 표현되는 중합체이고, 상기 중합체가 랜덤 중합체를 의미하나, 이에 한정되지 않고 블록 공중합체 또는 교호(alternating) 공중합체 등도 포함된다.
별도로 도시하지 않으나, 상기 개질된 석유수지는 상기 화학식 4a에 표시된 반복 단위들 중 적어도 하나가 수소화된 구조를 포함할 수 있다.
다른 구현예에 있어서, 상기 개질된 석유수지는 하기와 같은 반복단위가 결합되어 있는 구조를 포함할 수 있다. 예를 들어, 상기 개질된 석유수지의 양 말단 중 적어도 하나가 이중결합을 지니는 구조를 가지며, 양 말단 모두 이중결합을 가지는 구조를 예시적으로 하기 화학식 4b에 표시하였다.
[화학식 4b]
Figure PCTKR2021015344-appb-I000005
이렇게 적어도 하나의 말단에 위치하는 이중결합과 분자량 조절제가 결합되어 분자량 조절제로 개질된 석유수지(예를 들어 C9 혼합 유분의 중합체)를 형성하게 된다. 분자량 조절제는 양 말단 모두에 결합될 수도 있고, 예시적으로 표현한 하기 화학식 4c와 같이 어느 하나의 말단에만 결합될 수도 있다.
별도로 도시하지 않으나, 상기 개질된 석유수지는 화학식 4b 또는 4c에 표시된 반복 단위들 중 적어도 하나가 수소화된 구조를 포함할 수 있다.
[화학식 4c]
Figure PCTKR2021015344-appb-I000006
일 구현예에 따르면, 상기 개질된 석유수지를 포함하는 첨가제는 수평균분자량(Mn)이 200 내지 500이고, 이러한 범위에서 개질 중합체의 원료 고무와의 상용성 및 가공성이 우수할 수 있다. 수평균분자량이 200보다 낮으면 배합 효율이 낮아지는 문제가 있을 수 있고, 500보다 높으면 배합 가공성이 저하될 수 있다.
일 구현예에 따르면, 상기 개질 석유수지를 포함하는 첨가제는 비극성에 의하여 가공성이 우수하며, 결정화도가 낮아 폴리머의 무정형 영역에 상용되어 막을 형성시킬 수 있어, 가공성과 내공기투과도를 더욱 향상시킬 수 있다. 또한, 상기 첨가제는 60 ℃에서 점도가 2,500 내지 4,000 cps이고, 유리전이온도가 -25 내지 -15 ℃이다.
상기 첨가제의 점도는 2,700 내지 3800, 또는 3000 내지 3500 일 수 있다.
상기 첨가제의 유리전이온도가 -25 ℃보다 낮으면 내공기투과도에 문제가 있을 수 있고, -15 ℃보다 높으면 저온내구성에 문제가 야기될 수 있다.
일 구현예에 따르면, 상기 첨가제는 방향족성(aromaticity)이 20% 내지 60%일 수 있다. 예를 들어, 상기 첨가제는 방향족성이 30% 내지 50%, 또는 35% 내지 45%일 수 있다. 방향족성이 20% 미만일 경우는 원료 고무와의 상용성이 낮아져 이로부터 제조된 가스배리어 필름의 내공기투과도 향상 효과가 미미하고, 60%를 초과하는 경우에는 유리전이온도(Tg)의 상승으로 인해 공정성이 저하될 수 있다.
일 구현예에 따르면, 상기 첨가제는 개질된 석유수지 및 점도 조절제를 포함하고, 상기 개질된 석유수지 및 상기 점도 조절제를 각각 80 내지 98 중량%와 2 내지 20 중량%로 포함할 수 있다.
상기 점도 조절제는 생성물인 중합체의 구조 형성에는 가담하지 않고 반응물과 생성물의 점도를 조절하는 역할을 수행하므로, 상기 첨가제는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중 하나 이상, 분자량 조절제, 점도 조절제를 포함하는 용액에 중합촉매 또는/및 열을 부가하여 중합반응을 수행하여 얻어질 수 있는데, 이와 같은 중합 반응 생성물은 개질된 석유수지 및 점도 조절제의 혼합물일 수 있다.
일 구현예에 따르면, 상기 수지 조성물은 상기 베이스 수지 및 첨가제가 적절한 비율로 배합됨으로써, 원료 고무와의 상용성이 우수하고, 내공기 투과성능이 향상될 수 있다.
상기 수지 조성물은 수평균분자량(Mn)이 100 내지 550이고, 유리전이온도가 0℃ 내지 60℃이고, 연화점이 50℃ 내지 90℃이고, 방향족성이 5 내지 35%이다.
예를 들어, 상기 수지 조성물의 수평균분자량(Mn)은 150 내지 500, 200 내지 450, 250 내지 400, 또는 300 내지 350일 수 있다.
예를 들어, 상기 유리전이온도는 5℃ 내지 65℃, 10℃ 내지 60℃, 15℃ 내지 55℃, 20℃ 내지 50℃, 25℃ 내지 45℃, 또는 30℃ 내지 40℃일 수 있다.
예를 들어, 상기 연화점은 55℃ 내지 85℃일 수 있다.
예를 들어, 상기 방향족성은 10% 내지 30%일 수 있다.
상기 수지 조성물이 상기와 같은 물성을 만족함으로써 고무와의 상용성이 향상되어 우수한 내공기 투과성능을 갖는다.
C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체는 전술한 바를 참고하고, 분자량 조절제, 점도 조절제 등의 여러 구현예는 앞서 언급한 바와 같다.
[수지 조성물의 제조방법]
일 측면에 따른 상기 수지 조성물의 제조방법은 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 석유수지를 포함하는 첨가제를 100℃ 내지 180℃ 온도에서 블렌딩하여 반고상의 수지를 얻는 단계를 포함한다. 여기서, 반고상은 고체 및 액체의 중간 상태의 물질을 의미한다.
일 구현예에 따르면, 상기 베이스 수지의 함량 및 상기 첨가제의 함량은 12:1 내지 1:12의 중량비를 가질 수 있다. 예를 들어, 상기 수지 조성물 중 상기 베이스 수지 및 첨가제의 중량비는 11:1 내지 1:1, 10:1 내지 1:1 또는 9:1 내지 1:1일 수 있다
일 구현예에 따르면, 상기 베이스 수지의 함량이 상기 첨가제의 함량 보다 높을 수 있다. 예를 들어, 상기 베이스 수지의 함량 및 상기 첨가제의 함량은 9:1 내지 5:5의 중량비를 가질 수 있다.
상기 베이스 수지 및 상기 첨가제의 함량비가 전술한 범위를 갖는 경우, 타이어 이너라이너용 원료 고무와의 상용성 및 공정성이 향상되어, 내공기투과도가 향상된 타이어 이너라이너의 제조가 가능하다.
일 구현예에 따르면, 상기 첨가제는 점도 조절제를 더 포함할 수 있으며, 상기 점도 조절제에 관한 내용은 전술한 바를 참고한다.
일 구현예에 따르면, 상기 첨가제는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중 하나 이상, 분자량 조절제 및 점도 조절제를 포함하는 용액에 중합 촉매 또는/및 열을 부가하여 중합반응을 수행하여 얻어질 수 있다.
일 구현예에 따르면, 상기 중합촉매는 루이스산 촉매, 할로하이드릭산(halohydric acid), AlCl3, BF3 및 이들의 혼합물 중에서 선택될 수 있다.
예를 들어, 상기 중합촉매는 AlCl3, BF3, SnCl4, TiCl4, AgClO4, I2 및 이들의 혼합물 중에서 선택될 수 있다.
일 구현예에 따르면, 상기 열의 부가는 약 230 내지 약 280℃에서 수행될 수 있다.
일 구현예에 따르면, 상기 첨가제의 중합반응은 약 1시간 내지 약 3시간 동안 5 내지 10 bar 압력 하에서 수행될 수 있다.
[고무 조성물]
일 측면에 따르면, 원료 고무; 및 전술한 수지 조성물;을 포함하고, 상기 수지 조성물이 원료 고무 100 중량부를 기준으로 1 내지 50 중량부로 포함되는, 고무 조성물이 제공된다.
상기 수지 조성물의 함량이 1 중량부 미만이면 내공기투과도의 향상을 기대하기 어렵고, 50 중량부를 초과하면 원료 고무 배합시 분산성 저하에 따른 고무 배합물의 물성 저하가 야기된다.
일 구현예에 따르면, 상기 고무 조성물은 원료 고무 및 전술한 수지 조성물 이외에, 균질제, 보강제, 가류 조제, 황 및 가류 촉진제를 더 포함할 수 있다.
일 구현예에 따르면, 상기 고무 조성물은 원료 고무 100 중량부를 기준으로 균질제 1 내지 8 중량부, 보강제 20 내지 80 중량부, 가류 조제 0.1 내지 10 중량부를 포함할 수 있다.
일 구현예에 따르면, 상기 고무 조성물은 원료 고무 100 중량부를 기준으로 황 0.1 내지 2 중량부, 가류 촉진제 0.5 내지 5 중량부를 더 포함할 수 있다.
이하, 상기 수지와 함께 고무 조성물을 구성하는 성분을 자세히 설명하면 다음과 같다.
일 구현예에 따르면, 상기 원료 고무는 올레핀성 이중 결합(탄소-탄소 이중 결합)을 갖는 것이면 특별히 제한은 없고, 천연 고무, 합성 고무, 또는 이들을 혼합하여 사용할 수 있다.
일 구현예에 따르면, 상기 원료 고무는 천연 고무(NR), 부타디엔 고무, 니트릴 고무, 실리콘 고무, 이소프렌 고무, 스티렌-부타디엔 고무(SBR), 이소프렌-부타디엔 고무, 스티렌-이소프렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무(NBR), 에틸렌-프로필렌-디엔 고무, 할로겐화 부틸 고무, 할로겐화 이소프렌 고무, 할로겐화 이소부틸렌 공중합체, 클로로프렌 고무, 부틸 고무 및 할로겐화 이소부틸렌-p-메틸 스티렌 고무로 이루어진 그룹으로부터 선택되는 1종 이상을 포함할 수 있다.
예를 들어, 상기 원료 고무는 천연 고무 및 합성 고무의 혼합물을 포함할 수 있다. 예를 들어, 상기 원료 고무는 할로겐화부틸 고무(예, 클로로화부틸 고무) 및 천연 고무의 혼합물일 수 있다.
일 구현예에 따르면, 고무 조성물은 균질제를 포함할 수 있다. 상기 균질제로는 40MS(Strcucktol사)를 사용할 수 있으며, 상기 균질제를 첨가함에 따라서 잘 섞이지 않는 부틸고무와 천연 고무의 혼련성을 개선시키는 효과를 얻을 수 있다.
일 구현예에 따르면, 고무 조성물은 보강제를 포함할 수 있다. 예를 들어, 상기 보강제는 카본 블랙을 포함할 수 있다. 상기 카본 블랙은 높은 비표면적에 기인하여 고무 조성물의 가공성을 향상시키어, 최종 고무 조성물로부터 제조된 필름은 내마모성의 향상, 회전 저항 특성의 향상, 자외선에 의한 균열 또는 열화 방지 등의 유리한 효과를 갖는다.
상기 카본 블랙의 종류는 특별히 한정되지 않으며, 타이어 분야에서 통상적으로 사용되는 것이면 어느 것이든 사용이 가능하다. 예를 들어, 상기 카본 블랙으로는 퍼니스 블랙, 아세틸렌 블랙, 서멀 블랙, 채널 블랙, 그래파이트 등의 카본 블랙을 사용할 수 있다.
또한, 카본 블랙의 입자 직경, 세공 용적, 비표면적 등의 물리적 특성에 관해서도 특별히 한정되는 것이 아니고, 종래 고무 공업에서 사용되고 있는 각종의 카본 블랙, 예를 들면, SAF, ISAF, HAF, FEF, GPF, SRF(모두, 미국의 ASTM 규격 D-1765-82a로 분류된 카본 블랙의 약칭) 등을 적절히 사용할 수 있다.
이러한 카본 블랙은 원료 고무 100 중량부에 대하여 20 내지 80 중량부로 포함되는 것이 바람직하다. 상기 카본 블랙은 보강성 충전제로 고무 배합에 필수적인 요소로서, 만약 그 함량이 상기 범위 미만인 경우에는 보강의 효과가 떨어지게 되고, 이와 반대로 상기 범위를 초과하는 경우에는 분산의 어려움이 있다.
일 구현예에 따르면, 상기 보강제로 상기 카본 블랙 외에 실리카, 클레이, 활석 등의 광물의 분말류, 탄산마그네슘, 탄산칼슘 등의 탄산염류, 수산화알루미늄 등의 알루미나 수화물 등을 사용할 수 있다.
일 구현예에 따르면, 상기 고무 조성물은 유황을 포함할 수 있다. 상기 유황으로는 가황 공정을 진행할 수 있는 것이라면 특별한 제한 없이 사용할 수 있다. 이러한 유황의 함량은 원료 고무 100 중량부에 대해 0.1 내지 2 중량부로 사용하는 것에 의하여, 최종 고무 조성물로부터 제조한 필름의 내공기 투과도가 향상될 수 있다.
일 구현예에 따르면, 상기 고무 조성물은 가류 촉진제를 포함할 수 있다. 여기서 '가류'란 유황 원자를 적어도 1개 개재하는 가교를 나타낸다. 상기 가류 촉진제로서는 예를 들면, 테트라메틸티우람모노설파이드, 트라메틸티우람디설파이드, 테트라에틸티우람디설파이드 등의 티우람계 촉진제; N-t-부틸 벤조티아졸-2-설펜아미드(TBBS), 2-머캅토벤조티아졸, 디벤조티아졸디설파이드 등의 티아졸계 촉진제; N-사이클로헥실-2-벤조티아질설펜아미드, N-옥시디에틸렌-2-벤조티아조릴설펜아미드 등의 설펜아미드계 촉진제; 디페닐구아니딘(DPG), 디오르토트릴구아니딘 등의 구아니딘계 촉진제; n-부틸알데히드-아닐린 축합물, 부틸알데히드-모노부틸아민 축합물 등의 알데히드-아민계 촉진제; 헥사메틸렌테트라민 등의 알데히드-암모니아계 촉진제; 티오카르바닐리드 등의 티오요소계 촉진제 등을 들 수 있다. 이들 가류 촉진제를 배합하는 경우에는 1종류를 단독으로 사용해도 좋고 2종 이상을 조합하여 사용해도 좋다. 상기 가류 촉진제는 디벤조티아졸디설파이드 일 수 있다.
이러한 가류 촉진제의 함량은 원료 고무 100 중량부에 대해 0.5 내지 5 중량부로 사용하는 것에 의하여, 최종 고무 조성물로부터 제조한 필름의 내공기 투과도가 향상될 수 있다.
일 구현예에 따르면, 상기 고무 조성물은 가류 조제를 포함할 수 있다. 앞서 언급한 것처럼, '가류'란 유황 원자를 적어도 1개 개재하는 가교를 나타낸다.
예를 들어, 상기 가류 조제로는 산화아연(아연화), 산화마그네슘 등의 금속 산화물; 수산화칼슘 등의 금속 수산화물; 탄산아연, 염기성 탄산아연 등의 금속 탄산염; 스테아르산, 올레산 등의 지방산; 스테아르산 아연, 스테아르산 마그네슘 등의 지방족 금속염; 디(n-부틸)아민, 디사이클로헥실아민 등의 아민류; 에틸렌디메타크릴레이트, 디알릴프탈레이트, N,N-m-페닐렌디말레이미드, 트리알릴이소시아누레이트, 트리메틸올프로판트리메타크릴레이트 등을 들 수 있다.
이들 가류 조제를 배합하는 경우에는 1종을 단독으로 사용해도 좋고, 2종 이상을 조합하여 사용해도 좋다. 이러한 가류 조제의 함량은 원료 고무 100 중량부에 대해 0.1 내지 10 중량부로 사용하는 것에 의하여 최종 고무 조성물로부터 제조한 필름의 내공기 투과도가 향상될 수 있다.
일 구현예에 따르면, 상기 고무 조성물은 또한 고무 공업의 분야에서 사용되는 각종 첨가제, 예를 들면 노화 방지제, 가류 지연제, 풀림제, 가소제 등을 1종 또는 2종 이상 혼합하여 필요에 따라 더 포함할 수 있다. 이들 첨가제의 배합량은 원료 고무 100 중량부에 대해 0.1 내지 10 중량부인 것이 바람직하다.
전술한 바의 조성을 포함하는 조성물은 공지의 방법을 이용하여 가스 배리어 필름으로 제조된다. 예를 들어, 상기 가스 배리어 필름은 타이어에, 예를 들어 이너라이너로서 적용가능하다.
일 구현예에 따르면, 상기 고무 조성물은 상기의 각 성분을 예를 들면 플라스토밀(plastomill), 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 이용하여 혼련함으로써 조제할 수 있다.
일 구현예에 따르면, 상기의 각 성분 중에서 황 및 가류 촉진제 이외의 성분을 먼저 혼련하고, 그 후 얻어진 혼련물에 황 및 가류 촉진제를 첨가하여 추가로 혼련함으로써 조제할 수 있다.
상기 방법으로 제조된 고무 조성물은 가스 배리어 필름을 구성하는 재료로서 사용할 수 있다. 이렇게 제조된 가스 배리어 필름은 기계적 물성(경도, 인장 강도, 모듈러스 등)이 우수하다. 특히, 내공기투과도가 우수하여 타이어 이너라이너 용 필름으로의 적용이 가능하다.
일 구현예에 따라 얻은 고무 조성물을 고무시편으로 제조한 후 KS M ISO 2556 방법으로 가스 투과도를 측정한 결과, 가스 투과도가 150 cm3/(m2·day·atm) 이하일 수 있다. 예를 들어, 상기 가스 투과도는 145 cm3/(m2·day·atm) 이하일 수 있다. 또한, 상기 고무시편은 유리전이온도(Tg)가 -16℃ 이하일 수 있다. 상기 고무시편은 유리전이온도가 -16℃ 이하인 것에 의하여, 가공성이 향상되어 제조 비용이 감소되고 최종 생성물의 물성이 향상되는 이점을 갖는다.
상기 고무시편 제조방법은 상기 고무 조성물을 사용하여 당업계에서 통상으로 사용하는 방법으로 제조할 수 있다. 예를들어, 상기 고무 조성물을 핫프레스에서 압축 성형 방법으로 시편은 크기 12 cm x 12 cm(가로x세로), 두께 0.5mm ± 0.2mm로 제작한 후, 25℃ 60RH% 분위기 하에서 가스 투과도를 측정할 수 있다.
상기 수지 조성물은 기존의 타이어를 형성하는 고무조성물의 첨가제로서 사용될 수 있으며, 예를 들어 타이어 이너라이너 제조 과정에서 원료의 혼화성 개선을 위해 첨가되는 프로세스 오일을 대체할 수지로서 포함된다.
본 발명의 일 측면에 따른 타이어 이너라이너 고무 조성물은 프로세스 오일 대신에 본 발명의 일 구현예에 다른 수지 조성물을 포함함으로써, 기존의 프로세스 오일을 포함하는 경우에 비하여 내공기투과도 및 가공성이 향상된다.
예를 들어, 기존에 알려진 프로세스 오일은 석유계 오일로서, 파라핀계 오일, 나프텐계 오일, 방향족계 오일 및 이들의 조합을 포함한다.
[타이어]
도 1은 타이어의 구성을 개략적으로 보여주는 도면이다.
도 1을 참고하면, 상기 타이어는 트레드부(1), 숄더부(2), 사이드월부(3), 비드부(4), 벨트부(5), 이너라이너부(6), 카카스부(7), 및 캡플라이부(8)를 포함한다.
상기 트레드부는 노면과 직접 접촉하는 부분으로, 캡플라이의 외측에 위치하는 내마모성이 우수한 고무로 이루어진다. 또한, 운송장치의 타이어의 노면에 대한 웨트(wet) 그립력 및 드라이 그립력을 향상시키는 역할을 한다.
상기 숄더부는 상기 트레드와 상기 사이드월부 사이에서 상기 트레드의 측부에 위치하고, 상기 사이드월부와 트레드를 연결하는 역할을 한다.
상기 사이드월부는 상기 트레드와 상기 비드부 사이에 위치하여, 타이어의 측면부분을 커버한다. 상기 사이드월부는 카카스부를 커버함으로써 외부 자극으로부터 카카스부를 보호하고, 운송장치 운행시 타이어에서 발생되는 원심력에 의한 타이어 외형의 변형을 억제함으로써, 운송장치의 안정적인 운행을 보장한다.
상기 비드부는 카카스부의 말단부를 감아주는 하나 또는 복수의 강철와이어 다발이 꼬인상태로 존재하는 영역으로, 상기 강철와이어는 고무막에 의하여 완전히 커버되어 있다. 또한, 상기 비드부는 타이어를 휠림에 장착하고 고정하는 역할을 한다. 특히, 공기 누출시에 휠림으로부터 타이어의 분리를 방지하는 역할을 한다.
상기 벨트부는 상기 트레드부와 상기 카카스부의 중간에 위치한 코팅층이다. 벨트부는 외부로부터의 충격이나 외부 조건에 의한 카카스부 등 내부 구조물의 손상을 방지하는 역할을 하며, 상기 트레드부와 노면의 접촉 면적을 향상시키는 역할을 한다.
상기 이너라이너부는 타이어의 최내측에 위치하고, 내부에 공기가 외부로 유출되는 것을 방지하여 타이어 내의 공기압을 일정하게 유지하는 역할을 한다.
상기 카카스부는 고강도의 합성섬유로 이루어지고, 타이어의 골격을 형성하고 유지하는 역할을 한다. 카카스부는 운송장비의 운행중 전달되는 하중 및 충격을 견디고 공기압을 유지하는 역할을 한다.
상기 캡플라이부는 상기 트래드부의 하부에 위치하는 보호층으로, 트래드부로부터 전달되는 열 및 외부 충격으로부터 내부의 구성요소를 보호하는 역할을 한다.
[트레드부]
상기 트레드부는 타이어의 노면에 대한 그립력을 향상시키는 기능을 갖는다. 상기 그립력은 타이어와 노면의 부착력을 의미하며, 그립력이 향상되면 운송장비의 코너링 또는 정차시 제동성이 향상된다.
상기 트레드부는 원료 고무 및 수지를 포함하는 고무 조성물을 이용하여 형성될 수 있다. 이때, 트레드부는 단층의 고무 조성물 또는 복수의 고무 조성물의 적층체를 포함할 수 있다.
상기 원료 고무는 천연 고무, 합성 고무 또는 이들의 조합을 포함할 수 있다.
예를 들어, 천연 고무는 일반적인 천연 고무 또는 변성 천연고무일 수 있으며, 합성 고무는 부타디엔 고무, 니트릴 고무, 실리콘 고무, 이소프렌 고무, 스티렌-부타디엔 고무(SBR), 이소프렌-부타디엔 고무, 스티렌-이소프렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무(NBR), 에틸렌-프로필렌-디엔 고무, 할로겐화 부틸 고무, 할로겐화 이소프렌 고무, 할로겐화 이소부틸렌 공중합체, 클로로프렌 고무, 부틸 고무, 할로겐화 이소부틸렌-p-메틸 스티렌 고무, 또는 이들의 혼합물일 수 있다.
예를 들어, 상기 수지는 전술한 수지 조성물, 탄화수소 수지, 알킬 페놀 수지, 페놀/아세틸렌 수지, 테르펜 페놀 수지, 로진 유래 수지, 및 이들의 혼합물 중에서 선택될 수 있다.
상기 트레드부는 고무 조성물 이외에 타이어 코드를 더 포함할 수 있다.
상기 타이어 코드는 고무와의 접착성, 타이어의 강성 및 내피로성, 내열성 및 치수 안정성을 고려하여 통상의 기술자가 적절히 선택할 수 있다.
상기 타이어 코드로는, 예들 들어 레이온, 나일론, 폴리에스테르, 아라미드 및 스틸 등이 있다. 상기 타이어 코드는 필요에 따라 도전재가 혼입될 수 있다.
상기 트레드 용 고무 조성물은 원료 고무 및 수지 이외에, 균질제, 보강제, 가류 조제, 황 및 가류 촉진제를 더 포함할 수 있다. 상기 균질제, 보강제, 가류 조제, 황 및 가류 촉진제는 본 명세서의 기재를 참고한다.
또한, 필요에 따라, 식물성 오일, 노화 방지제 등의 각종 첨가제가 더 첨가될 수 있다.
상기 트레드용 고무 조성물에 포함되는 성분의 함량은 소망하는 물성에 따라 통상의 기술자가 적절히 선택하여 실시할 수 있다.
[숄더부]
숄더부는 타이어의 트레드부로부터 타이어의 측면에 위치하는 사이드월부를 연결하는, 트레드부와 사이드월부 사이에 배치된다. 상기 숄더부는 타이어의 구성요소 중 두께가 가장 두껍기 때문에, 주행 중 내부에서 발생하는 열이 외부로 배출되기 용이하도록 설계된다.
예를 들어, 상기 숄더부는 라운더 숄더 또는 스퀘어 숄더 구조를 가질 수 있다.
숄더부는 트레드 용 고무 조성물을 이용하여 형성될 수 있으며, 소망하는 물성에 따라 구성성분의 조성비를 통상의 기술자가 적절히 선택할 수 있다.
[사이드월부]
사이드월부는 숄더로부터 비드 방향으로 연장하는 타이어의 측면 부분을 의미하고, 타이어 내부의 카카스부를 보호하는 기능을 수행한다. 특히, 사이드월부는 타이어의 상하 운동시 전달되는 충격을 흡수할 뿐만 아니라, 운송장비의 주행 중 반복적인 타이어의 팽창 및 수축을 수용하는 기능을 갖는다.
사이드월부는 원료 고무 및 타이어 코드를 포함하는 고무 조성물로 이루어질 수 있다.
예를 들어, 상기 원료 고무는 천연 고무, 합성 고무, 변성 천연 고무 또는 이들의 조합을 포함할 수 있다.
상기 천연 고무 및 합성 고무는 트레드부에서 전술한 바를 참고한다.
상기 변성 천연 고무는 일반적인 천연 고무의 상용성, 물성의 개선을 위하여 천연 고무의 변성 또는 정제 단계를 수행하여 얻어지는 것으로서, 예를 들어 에폭시화 천연고무, 탈단백 천연고무, 수소화 천연고무 등이 있다.
상기 타이어 코드는 트레드부에서 전술한 바를 참고하나, 내충격성 향상 측면에서 아라미드 섬유를 사용할 수 있다.
사이드월부의 제조에 사용되는 고무 조성물은 전술한 원료 고무 및 타이어 코드 이외에, 필요에 따라 균질제, 보강제, 가류 조제, 황, 가류 촉진제, 식물성 오일, 노화 방지제 등의 각종 첨가제가 더 첨가될 수 있다.
사이드월부의 제조에 사용되는 고무 조성물의 성분의 함량은 소망하는 물성에 따라 통상의 기술자가 적절히 선택하여 실시할 수 있다.
[비드부]
상기 비드부는 타이어에서 휠과 맞닿는 부분으로, 공기를 충진하였을 때 타이어를 휠에 고정시키고 공기 기밀성을 유지하는 기능을 수행한다.
상기 비드부는 고무로 코팅된 하나 이상의 강철와이어를 포함하고, 상기 하나 이상의 강철와이어가 상호간에 트위스트된 형태로 존재할 수 있다.
[벨트부]
벨트부는 트레드부의 하부에 위치하여, 트레드부의 접지 면적을 유지하고, 트레드부로부터 전달되는 외부 충격을 완화할 뿐만 아니라, 타이어에 가해지는 하중을 지지하는 역할을 한다.
벨트부는 원료 고무 및 타이어 코드를 포함하는 고무 조성물로 이루어질 수 있다. 이때 타이어 코드는 타이어의 원주 방향으로 작용하는 외력을 견디기 위하여 타이어 원주 방향으로 배치될 수 있다.
예를 들어, 상기 원료 고무는 천연 고무, 합성 고무, 변성 천연 고무 또는 이들의 조합을 포함할 수 있다.
상기 천연 고무 및 합성 고무는 트레드부에서 전술한 바를 참고하고, 변성 천연 고무는 사이드월부에서 전술한 바를 참고한다.
상기 타이어 코드는 트레드부에서 전술한 바를 참고한다.
상기 벨트부 용 고무 조성물은 타이어 코드와의 견고한 접착을 위하여 접착제를 더 포함할 수 있다. 접착제로는 예를 들어, 라텍스, 로진계 수지, 테르펜-페놀수지, 지방족계 석유수지, 방향족계 석유수지, 및 디시클로펜타디엔계 석유수지 등이 사용될 수 있다.
상기 벨트부 용 고무 조성물의 성분의 조성비는 소망하는 물성에 따라 통상의 기술자가 적절히 선택하여 실시할 수 있다.
[이너라이너부]
이너라이너부에는 전술한 가스 배리어 필름을 포함할 수 있다. 또는, 상기 이너라이너부에는 전술한 가스 배리어 필름 및, 원료 고무와 폴리아마이드계 수지의 혼합물을 포함하는 고무 조성물로 제조한 폴리아마이드계 가스 배리어 필름이 함께 사용될 수 있다.
예를 들어, 상기 이너라이너부는 본 발명의 일 구현예에 따른 가스 배리어 필름의 단일층의 구조로 형성되거나, 본 발명의 일 구현예에 따른 가스 배리어 필름층 및 폴리아마이드계 가스 배리어 필름층을 포함하는 다중층의 구조를 가질 수 있다.
예를 들어, 이러한 폴리아마이드계 가스 배리어 필름은 폴리아마이드 단위체와 폴리에테르 단위체를 포함하는 공중합체, 또는 폴리아마이드 단위체를 포함하는 중합체와 폴리에테르 단위체를 포함하는 중합체의 혼합물을 포함할 수 있다.
폴리아마이드계 가스 배리어 필름 내에 포함된 폴리아마이드 단위체의 비율은 폴리에테르 단위체의 비율보다 높을 수 있ㅇ다. 예를 들어, 가스 배리어 필름 내에 포함된 폴리아미드 단위체 및 폴리에테르 단위체의 중량비는 9.5:0.5 내지 5.5:4.5일 수 있다.
상기 폴리아미드 단위체는, 예를 들어 나일론 6, 나일론 66, 나일론 46, 나일론 11, 나일론 12, 나일론 610, 나일론 612, 나일론 6/66의 공중합체, 나일론 6/66/610 공중합체, 나일론 MXD6, 나일론 6T, 나일론 6/6T 공중합체, 나일론 66/PP 공중합체, 나일론 66/PPS 공중합체, 6-나일론의 메톡시메틸화물, 6-610-나일론의 메톡시메틸화물 및 612-나일론의 메톡시메틸화물로 이루어진 군에서 선택된 1종의 폴리아마이드계 수지에 포함되는 주요 반복 단위일 수 있다.
상기 폴리에테르계 단위체는, 예를 들어 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리테트라메틸렌 글리콜, 폴리옥시에틸렌 디아민, 폴리옥시프로필렌 디아민, 폴리옥시테트라메틸렌 디아민 및 이들의 공중합체로 이루어진 군에서 선택된 1종의 폴리에테르계 수지에 포함되는 주요 반복 단위일 수 있다.
이너라이너부는 인접 구성요소와의 견고한 결합을 유지하기 위하여, 그 표면에 추가의 접착 필름을 포함할 수 있다. 상기 접착 필름은 단일층 또는 다중층일 수 있다. 상기 접착 필름이 다중층인 경우 다중층 중 어느 하나의 층은 산소차단막을 포함하는 이형 필름일 수 있다. 상기 산소차단박은 본 발명의 일 구현예에 따른 가스 배리어 필름을 포함할 수 있다.
이너라이너부의 두께는 특별히 한정되는 것은 아니며, 운송장비의 연비, 내공기 투과도를 고려하여 통상의 기술자가 적절히 선택하여 실시할 수 있다.
[카카스부]
카카스부는 이너라이너부 상부에 위치하여 타이어의 골격을 형성하는 부분이며, 타이어의 외형 유지, 내부 공기압 유지, 외부의 충격에 대한 완충 작용을 하는 기능을 갖는다.
카카스부는 원료 고무 및 타이어 코드 재료를 포함하는 고무 조성물로 이루어지며, 타이어의 반경 방향으로 작용하는 힘을 견디도록 타이어 코드 재료가 반경 방향으로 배치될 수 있다.
예를 들어, 상기 원료 고무는 천연 고무, 합성 고무, 변성 천연 고무 또는 이들의 조합을 포함할 수 있다.
상기 천연 고무 및 합성 고무는 트레드부에서 전술한 바를 참고하고, 변성 천연 고무는 사이드월부에서 전술한 바를 참고한다.
상기 타이어 코드는 트레드부에서 전술한 바를 참고한다.
상기 카카스 용 고무 조성물은 타이어 코드와의 견고한 접착을 위하여 전술한 접착제를 더 포함할 수 있다.
상기 카카스 용 고무 조성물의 성분의 조성비는 소망하는 물성에 따라 통상의 기술자가 적절히 선택하여 실시할 수 있다.
[캡플라이부]
캡플라이부는 벨트부와 트레드부 사이에 배치되어, 벨트부를 고정하는 역할을 한다.
캡플라이부는 레이온, 나일론, 폴리에스테르, 아라미드, 또는 스틸로 이루어질 수 있다. 예를 들어, 캡플라이부는 나일론 필름으로 구성될 수 있다.
캡플라이부는 필요에 따라 접착성을 향상시키기 위하여 접착제를 더 포함할 수 있다.
접착제로는 예를 들어, 라텍스, 로진계 수지, 테르펜-페놀수지, 지방족계 석유수지, 방향족계 석유수지, 및 디시클로펜타디엔계 석유수지 등이 사용될 수 있다.
그 밖에, 캡플라이부는 필요에 따라 내열제, 산화 방지제, 안정제, 보강제, 소포제, 및 필러 중 1종 이상을 더 포함할 수 있다.
상기 캡플라이부 재료 성분의 조성비는 소망하는 물성에 따라 통상의 기술자가 적절히 선택하여 실시할 수 있다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.
[실시예]
(수지 조성물의 제조)
제조예 1
정제 C9 유분(YCNCC사) 93 중량%와 점도 조절제 LP200 (코오롱인더스트리사) 7 중량%로 구성된 조성물 100 중량부를 기준으로 분자량 조절제 n-도데실 머캡탄 2.5 중량부를 추가한 후, 260 ℃ 및 고압(5 내지 10 bar)에서 중합반응을 2 시간 동안 진행하였다. 중합촉매인 BF3를 투입하는 경우에는 180 ℃ 및 고압(5 내지 10 bar)에서 2 시간 동안 중합반응을 수행하였다. 중합이 완료된 중합물은 탈기 과정을 거쳐 미반응 반응물을 제거하여 첨가제 용도의 수지 조성물을 제조하였다.
제조예 2
제조예 1에서 얻은 첨가제 및 C9/DCPD 공중합 수지(SU-400 또는 SU-490)를 3:7의 중량비로 고온(100℃ 내지 180℃)의 온도에서 블랜딩하여 수지 조성물을 제조하였다.
제조예 3
실시예 1에서 얻은 첨가제 및 C9/DCPD 공중합 수지(SU-400 또는 SU-490)를 1:9의 중량비로 고온(100℃ 내지 180℃)의 온도에서 블랜딩하여 수지 조성물을 제조하였다.
시험예 1: 수지 조성물의 평가
제조예 1 내지 3에서 제조한 수지 조성물에 대한 유리전이온도, 연화점, 점도, 수평균분자량, 방향족성을 측정하여 하기 표 1에 나타내었다.
상기 유리전이온도는 DSC 분석을 통해 확인하였다
상기 연화점은 연화점은 Ring and ball softening method(ASTM E 28)을 이용하여 측정하였다. 환 모양의 틀에 수지를 녹여 투입하고, 글리세린이 담긴 비커에 거치한 다음, 수지가 담긴 환에 볼을 올려놓고 온도를 분당 2.5℃씩 승온시켜 수지가 녹아 볼이 떨어질 때의 온도(연화점)를 측정하였다
상기 점도는 Brookfield 점도계를 사용하였으며(ASTM D3236) spindle#27번을 사용하여 측정하였다.
상기 수평균분자량은 겔 투과 크로마토그래피(휴렛패커드사 제품, 모델명 HP-1100)에 의해 폴리스티렌 환산 수평균분자량(Mn)을 구하였다.
상기 방향족성은 NMR 분석을 통해 확인하였다.
제조예 1 제조예 2 제조예 3
유리전이온도(℃) -20 30 40
연화점(℃) - 60 80
점도(@60℃, cps) 2700 - -
수평균분자량(Mn) 240 310 330
방향족성(%) 37 26 11
(고무 시편의 제조)
실시예 1
클로로화부틸 고무(HT-1066, 엑슨화학사 제품) 80 중량부, 천연 고무(NR, Sritrang사 제품) 20 중량부로 이루어진 원료 고무 100 중량부와 상기 제조예 2에서 제조한 수지 조성물 10 중량부, 균질제(40MS, Strucktol사 제품) 4 중량부, 카본 블랙(N-660, Pentacarbon사) 60 중량부, 산화아연(ZnO, Kemai Chem사 제품) 3 중량부, 스테아린산(stearic acid, Kemai Chem사 제품) 2 중량부를 밴버리 믹서에 넣고 150 ℃에서 혼합시킨 후 1차 배합고무를 방출시켰다. 이어서, 1차 배합고무에 유황(sulfur, Miwon Chem사 제품) 0.5 중량부, 가류 촉진제(DM, dibenzothiazole disulfide, Sunsine사 제품) 1.2 중량부를 밴버리 믹서에 넣고 100 ℃에서 가류 후 방출하여 고무 시편을 제조하였다.
실시예 2
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 제조예 3에서 제조한 수지 조성물 10 중량부를 사용한 점을 제외하고는 실시예 1와 동일한 방법으로 고무 시편을 제조하였다.
비교예 1
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 제조예 1에서 제조한 첨가제 10 중량부를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 고무 시편을 제조하였다.
비교예 2
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 프로세스 오일(TDAE, H&R사 제품) 10 중량부를 사용한 점을 제외하고는 실시예 1와 동일한 방법으로 고무 시편을 제조하였다.
비교예 3
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 파라핀 오일(미창석유사 제품) 10 중량부를 사용한 점을 제외하고는 실시예 1와 동일한 방법으로 고무 시편을 제조하였다.
비교예 4
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 나프텐 오일(미창석유사 제품) 10 중량부를 사용한 점을 제외하고는 실시예 1와 동일한 방법으로 고무 시편을 제조하였다.
비교예 5
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 40MS (Strucktol사 제품) 10 중량부를 사용한 점을 제외하고는 실시예 1와 동일한 방법으로 고무 시편을 제조하였다.
비교예 6
고무 시편 제조시에 제조예 2에서 제조한 수지 조성물 대신에 C9/DCPD 공중합 수지(SU-400 Kolon사 제품) 10 중량부를 사용한 점을 제외하고는 실시예 1와 동일한 방법으로 고무 시편을 제조하였다.
시험예 2: 고무 시편의 물성 평가
상기 실시예 1 내지 2 및 비교예 1 내지 6에서 제조한 고무 시편 각각에 대하여 물성을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
구분 실시예 1 실시예 2 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6
레오미터1) Toq(Max) 11.1 11.8 11.3 11.2 12.5 11.7 12.6 11.9
Toq(Min) 2.4 2.5 2.3 2.3 2.1 2.2 2.8 2.5
Tc50 5:54 6:22 5:25 5:44 6:00 6:12 6:57 6:30
Tc90 9:25 10:24 8:42 9:33 9:55 10:10 11:06 10:33
무니점도2) 100℃ 66 69 64 69 62 63 75 70
125℃, T05 37:57 40:44 33:55 33:58 31:34 38:33 39:33 41:23
UTM물성3) 경도 47 49 46 47 47 46 50 50
100% 모듈러스 20 21 19 20 22 20 25 22
300% 모듈러스 60 61 56 60 66 59 63 62
인장강도(T.S.) 110 107 112 115 115 114 119 106
신율(E.B.) 589 588 645 631 563 624 621 586
가스투과량4)
(cm3/(m2dayatm))
132 125 141 184 236 204 170 117
Tg(DMA) -17.5 -16.8 -22.3 -21.3 -25.8 -23.5 -20.5 -15.8
주1) 레오미터: MDR 2000E(Monsanto; St. Louis, Mo.)를 사용하여 ASTM D 5289에 따라 측정
주2) 무늬점도: 25±3㎤ 크기의 시편을 제작하고, 챔버 내부에 장착 후 30∼200℃로 온도를 변화시켜 Mooney Viscometer MV-2000(LABTECH)를 이용하여 측정
주3) UTM 물성: ASTM D412에 의거하여 U.T.M - Shimadzu AG-1S (Load cell: PFG-5kN) 측정 기기를 이용하여 500mm/min로 인장하여 측정
주4) 가스 투과도: KS M ISO 2556:2006의 방법으로, Oxygen Permeation Analyzer(Model 2/61, Mocon사 제품)을 사용하여 25도 60RH% 분위기하에서 측정
고무 레오미터로 측정되는 레오미터 결과는 공정 적용 시 경화속도 및 고무 조성물의 거동과 관련된 파라미터로서, 타이어 제조 시 가공성과 연관이 있다. 이때 그 수치(Toq(Min), Toq(Max))가 너무 높거나 낮은 경우 기존 공정에 적용이 용이하지 않아, 새로운 공정 설계가 필요함을 의미한다. 상기 표 2에서 제시된 상기 실시예 1의 Toq(Min), Toq(Max), Tc50(50% 경화에 이르는 시간), Tc90 (90% 경화에 이르는 시간) 등의 결과를 비교예 1 내지 4의 결과와 비교하여 볼 때 기존 공정에 용이하게 적용 가능한 스펙에 해당함을 알 수 있다.
또한 무니 점도 결과 및 기계적 물성(모듈러스, 인장강도, 신율, 경도 등) 역시, 상기 표 2에 나타난 바와 같이, 실시예 1 및 2의 결과는 비교예 2 내지 5의 결과에 대등하거나 그 이상이라는 것을 보여준다.
한편, 가스 투과량 및 Tg 값은 각각 내공기투과성 및 공정성과 관련 있는 값으로서, 가스 투과량은 낮을수록 타이어 이너라이너로서의 활용성이 높으며, Tg 값은 낮을수록 공정과정에서 유리하다.
이와 관련하여, 실시예 1 및 2의 가스 투과량은 132 및 125 cm3/(m2·day·atm)로서, 비교예 1 내지 5의 고무 시편에 비해 현저히 향상된 가스 투과량을 보임을 알 수 있다.
또한, 실시예 1 및 2는 비교예 6에 비하여 낮은 Tg 값을 가짐으로써, 향상된 공정성을 가짐을 알 수 있다.
이러한 결과로부터, 본 발명에 따른 타이어 인너라이너용 고무 조성물은 타이어의 구성으로서 요구되는 기본 물성, 즉 인장 강도, 내마모성, 내구성 및 경도 등을 만족할 뿐만 아니라, 가공성을 향상시킴과 동시에 내공기투과도를 현저하게 향상시키는 것을 알 수 있다.

Claims (27)

  1. 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 석유수지를 포함하는 첨가제;
    를 포함하는, 수지 조성물.
  2. 제1항에 있어서,
    상기 수지 조성물 중 상기 베이스 수지 및 첨가제의 중량비는 12:1 내지 1:12인, 수지 조성물.
  3. 제2항에 있어서,
    상기 중량비는 10:1 내지 1:10의 비율로 포함되는, 수지 조성물.
  4. 제1항에 있어서,
    상기 베이스 수지는
    중량평균분자량(Mw)이 200 내지 2000이고,
    연화점이 80℃ 내지 150℃이고,
    160℃에서 측정된 점도가 250 내지 2000 cps 이고,
    유리전이온도가 30℃ 내지 100℃인, 수지 조성물.
  5. 제1항에 있어서,
    상기 베이스 수지는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중에서 선택된 하나 이상이 중합된 석유수지 중합체, 또는 상기 중합체의 적어도 일부가 수소화된 수첨 석유수지를 포함하는, 수지 조성물.
  6. 제5항에 있어서,
    상기 베이스 수지는 C9 혼합 유분과 고리형-디올레핀의 공중합체, 상기 공중합체의 적어도 일부가 수소화된 수첨 공중합체, 또는 이들의 조합을 포함하는, 수지 조성물.
  7. 제1항에 있어서,
    상기 분자량 조절제는 에틸 머캡탄, 부틸 머캡탄, 헥실 머캡탄, 도데실 머캡탄, 페닐 머캡탄, 벤질 머캡탄, 머캡토에탄올, 사이올글리콜산, 머캡토 프로피온산, 펜타에리트리톨 테트라키스(3-머캡토)프로피노네이트, 또는 이들의 조합을 포함하는, 수지 조성물.
  8. 제1항에 있어서,
    상기 첨가제는
    수평균분자량(Mn)이 200 내지 500이고,
    유리전이온도가 -25 내지 -15℃인, 수지 조성물.
  9. 제1항에 있어서,
    상기 첨가제는 점도 조절제를 더 포함하는, 수지 조성물.
  10. 제9항에 있어서,
    상기 점도 조절제는 25℃에서 측정된 점도가 20 내지 500 cps인 저점도 수지를 포함하는, 수지 조성물.
  11. 제10항에 있어서,
    상기 저점도 수지는 수첨 DCPD-C9 공중합체 수지(hydrogenated DCPD-C9 copolymer resins), 수첨 DCPD (hydrogenated DCPD resins), 또는 이들의 조합을 포함하는, 수지 조성물.
  12. 제1항에 있어서,
    상기 첨가제는 60℃에서 측정된 점도가 2,000 내지 4,000 cps인, 수지 조성물.
  13. 제1항에 있어서,
    상기 수지 조성물은
    수평균분자량(Mn)이 100 내지 550이고,
    유리전이온도가 0℃ 내지 60℃이고,
    연화점이 50℃ 내지 90℃인, 수지 조성물.
  14. 제1항에 있어서,
    상기 수지 조성물은 방향족성이 5% 내지 35%인, 수지 조성물.
  15. 원료 고무; 및
    제1항 내지 제14항 중 어느 한 항에 따른 수지 조성물;을 포함하고,
    상기 수지 조성물은 원료 고무 100 중량부를 기준으로 1 내지 50 중량부로 포함되는, 고무 조성물.
  16. 제15항에 있어서,
    상기 고무 조성물은 프로세스 오일을 포함하지 않는, 고무 조성물.
  17. 제15항에 있어서,
    상기 고무 조성물은 원료 고무 100 중량부를 기준으로 균질제 1 내지 8 중량부, 보강제 20 내지 80 중량부, 및 가류 조제 0.1 내지 10 중량부를 더 포함하는, 고무 조성물.
  18. 제17항에 있어서,
    상기 고무 조성물은 원료 고무 100 중량부를 기준으로 황 0.1 내지 2 중량부, 및 가류 촉진제 0.5 내지 5 중량부를 더 포함하는, 고무 조성물.
  19. 제17항에 있어서,
    상기 고무 조성물은 고무 시편으로 제조한 후, KS M ISO 2556 방법으로 측정된 가스 투과도가 150 cm3/(m2·day·atm) 이하이고,
    유리전이온도(Tg)가 -16℃ 이하인, 고무 조성물.
  20. 제15항에 따른 고무 조성물을 포함하는 가스 배리어 필름.
  21. 제20항에 따른 가스 배리어 필름을 포함하는, 타이어.
  22. 적어도 일부가 수소화 또는 비수소화된 석유수지를 포함하는 베이스 수지; 및 적어도 일부가 수소화 또는 비수소화된 석유수지의 양 말단 중 적어도 일 말단에 분자량 조절제가 결합된 구조를 갖는 개질된 석유수지를 포함하는 첨가제를 100℃ 내지 180℃ 온도에서 블렌딩하여 반고상의 수지를 얻는 단계를 포함하는, 수지 조성물의 제조방법.
  23. 제22항에 있어서,
    상기 베이스 수지의 함량이 상기 첨가제의 함량보다 높은, 수지 조성물의 제조방법.
  24. 제22항에 있어서,
    상기 첨가제는 점도 조절제를 더 포함하는, 수지 조성물의 제조방법.
  25. 제24항에 있어서,
    상기 첨가제는 C5 단량체, C5 혼합 유분, C9 단량체, C9 혼합 유분, 환형 디올레핀 단량체 및 선형 올레핀 단량체 중 하나 이상, 분자량 조절제 및 점도 조절제를 포함하는 용액에 중합 촉매 또는/및 열을 부가하여 중합반응을 수행하여 얻어지는, 수지 조성물의 제조방법.
  26. 제25항에 있어서,
    상기 중합 촉매는 AlCl3, BF3. SnCl4, TiCl4, AgClO4, I20 또는 이의 조합을 포함하는, 수지 조성물의 제조방법.
  27. 제25항에 있어서,
    상기 열의 부가는 230 내지 280℃에서 수행되는, 수지 조성물의 제조방법.
PCT/KR2021/015344 2020-11-20 2021-10-28 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어 WO2022108169A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023503458A JP2023534699A (ja) 2020-11-20 2021-10-28 樹脂組成物、その製造方法、該樹脂組成物を含むゴム組成物、それを含むガスバリアフィルム、及び該ガスバリアフィルムを含むタイヤ
EP21894940.2A EP4144796A4 (en) 2020-11-20 2021-10-28 RESIN COMPOSITION, MANUFACTURING METHOD THEREFOR, RUBBER COMPOSITION WITH THE RESIN COMPOSITION, GAS BARRIER FILM THEREFOR, AND TYRE WITH THE GAS BARRIER FILM
US17/998,372 US20230227645A1 (en) 2020-11-20 2021-10-28 Resin composition, production method for same, rubber composition comprising resin composition, gas barrier film comprising same, and tyre comprising gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200156932A KR102563213B1 (ko) 2020-11-20 2020-11-20 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어
KR10-2020-0156932 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022108169A1 true WO2022108169A1 (ko) 2022-05-27

Family

ID=81709209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015344 WO2022108169A1 (ko) 2020-11-20 2021-10-28 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어

Country Status (5)

Country Link
US (1) US20230227645A1 (ko)
EP (1) EP4144796A4 (ko)
JP (1) JP2023534699A (ko)
KR (1) KR102563213B1 (ko)
WO (1) WO2022108169A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130995B2 (ja) * 1992-02-05 2001-01-31 株式会社ブリヂストン トレッドゴム組成物
JP2009256504A (ja) * 2008-04-18 2009-11-05 Jsr Corp 射出成形体形成用樹脂組成物および射出成形体
KR101919722B1 (ko) * 2014-09-17 2018-11-16 엑손모빌 케미칼 패턴츠 인코포레이티드 유리 전이 온도가 높은 탄화수소 수지를 포함하는 타이어용 엘라스토머 블렌드
KR102047637B1 (ko) * 2012-04-04 2019-11-21 주식회사 쿠라레 공중합체, 그것을 사용한 고무 조성물 및 타이어
JP2019218416A (ja) * 2018-06-15 2019-12-26 東ソー株式会社 部分水添ジシクロペンタジエン系樹脂及びそれを含むゴム組成物
KR102110151B1 (ko) * 2013-02-12 2020-05-13 니폰 제온 가부시키가이샤 수지 조성물 및 그의 성형체
KR102155698B1 (ko) * 2019-12-17 2020-09-14 코오롱인더스트리 주식회사 수소첨가 석유수지 및 이를 포함하는 고무 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043708A1 (ja) * 2010-09-29 2012-04-05 日本ゼオン株式会社 アルコキシシリル基を有するブロック共重合体水素化物及びその利用
CN103249746B (zh) * 2010-09-29 2015-05-06 日本瑞翁株式会社 具有烷氧基甲硅烷基的嵌段共聚物氢化物及其利用
EP3117990A4 (en) * 2014-03-13 2017-11-15 Zeon Corporation Composite multi-layer sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130995B2 (ja) * 1992-02-05 2001-01-31 株式会社ブリヂストン トレッドゴム組成物
JP2009256504A (ja) * 2008-04-18 2009-11-05 Jsr Corp 射出成形体形成用樹脂組成物および射出成形体
KR102047637B1 (ko) * 2012-04-04 2019-11-21 주식회사 쿠라레 공중합체, 그것을 사용한 고무 조성물 및 타이어
KR102110151B1 (ko) * 2013-02-12 2020-05-13 니폰 제온 가부시키가이샤 수지 조성물 및 그의 성형체
KR101919722B1 (ko) * 2014-09-17 2018-11-16 엑손모빌 케미칼 패턴츠 인코포레이티드 유리 전이 온도가 높은 탄화수소 수지를 포함하는 타이어용 엘라스토머 블렌드
JP2019218416A (ja) * 2018-06-15 2019-12-26 東ソー株式会社 部分水添ジシクロペンタジエン系樹脂及びそれを含むゴム組成物
KR102155698B1 (ko) * 2019-12-17 2020-09-14 코오롱인더스트리 주식회사 수소첨가 석유수지 및 이를 포함하는 고무 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4144796A4 *

Also Published As

Publication number Publication date
JP2023534699A (ja) 2023-08-10
EP4144796A4 (en) 2024-06-05
KR102563213B1 (ko) 2023-08-04
US20230227645A1 (en) 2023-07-20
EP4144796A1 (en) 2023-03-08
KR20220069622A (ko) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR100359180B1 (ko) 고무조성물
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018030645A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2017078408A1 (ko) 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
WO2021125837A1 (ko) 수소첨가 석유수지 및 이를 포함하는 고무 조성물
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2022108169A1 (ko) 수지 조성물, 이의 제조방법, 상기 수지 조성물을 포함하는 고무 조성물, 이를 포함하는 가스 배리어 필름, 및 상기 가스 배리어 필름을 포함한 타이어
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021137631A1 (ko) 수지 조성물 및 이의 제조방법
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2021066543A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2022108143A1 (ko) 수지 조성물, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2022108144A1 (ko) 수지 조성물, 이의 제조방법, 및 이를 포함하는 도료 조성물
WO2019045504A1 (ko) 고무 조성물
WO2017111463A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
WO2017111499A1 (ko) 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2021085829A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019225824A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021894940

Country of ref document: EP

Effective date: 20221129

ENP Entry into the national phase

Ref document number: 2023503458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE