WO2022065339A1 - 酸素キャリア、酸素キャリアの製造方法およびガスの製造方法 - Google Patents

酸素キャリア、酸素キャリアの製造方法およびガスの製造方法 Download PDF

Info

Publication number
WO2022065339A1
WO2022065339A1 PCT/JP2021/034706 JP2021034706W WO2022065339A1 WO 2022065339 A1 WO2022065339 A1 WO 2022065339A1 JP 2021034706 W JP2021034706 W JP 2021034706W WO 2022065339 A1 WO2022065339 A1 WO 2022065339A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen carrier
metal oxide
carrier according
oxygen
carbon dioxide
Prior art date
Application number
PCT/JP2021/034706
Other languages
English (en)
French (fr)
Inventor
昂嗣 滝沢
健一 新明
英輔 馬場
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to AU2021350268A priority Critical patent/AU2021350268A1/en
Priority to JP2022552016A priority patent/JPWO2022065339A1/ja
Priority to EP21872468.0A priority patent/EP4219403A1/en
Publication of WO2022065339A1 publication Critical patent/WO2022065339A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8474Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the present invention relates to an oxygen carrier, a method for producing an oxygen carrier and a method for producing a gas, and more particularly, for example, an oxygen carrier that can be used in a chemical looping method, and a method for producing such an oxygen carrier and a gas using such an oxygen carrier. Regarding the manufacturing method of.
  • Patent Document 1 describes a method of controlling the lattice constant and pore distribution of copper oxide within a desired range by adjusting the molar ratio of copper, zinc and aluminum. Has been done. Further, Patent Document 2 describes a method for producing a carbon dioxide conversion catalyst containing copper oxide as a main component, which has a high specific surface area.
  • Non-Patent Document 1 describes a method for producing a metal oxide having a reversible oxygen deficiency by using a mixed metal oxide of a rare earth metal oxide and iron oxide. Further, Patent Document 3 describes a method for converting carbon dioxide to carbon monoxide by using copper oxide.
  • the mixed metal oxide described in Non-Patent Document 1 is a mixture of a plurality of types of metal oxides, and the interaction between the metal oxides is not appropriate, so that the conversion efficiency of carbon dioxide to carbon monoxide is low. Further, even if the copper oxide described in Patent Document 3 alone has an oxygen deficiency, the reactivity with carbon dioxide is insufficient, and efficient conversion to carbon monoxide is difficult.
  • the present invention has been made in view of such circumstances, and an object thereof is to convert carbon monoxide into carbon dioxide by defining the electronegativity of the element to be introduced in a metal oxide containing Cu (copper).
  • the conversion efficiency of carbon dioxide is high even under high temperature conditions of 500 ° C. or higher, and for example, an oxygen carrier that can be used for a chemical looping method is provided, and a method for producing such an oxygen carrier and a method for producing a gas using the same are provided. To do.
  • the oxygen carrier of the present invention is Cu 1-x (M) x Oy (where M is an element having an electronegativity of 1.3 to 2.3 in polling, and x is positive. It represents a real number, where y represents an integer of 1 to 4) and is characterized by containing a metal oxide.
  • M is an element having an electronegativity of 1.3 to 2.3 in polling, and x is positive. It represents a real number, where y represents an integer of 1 to 4
  • the electronegativity of M is preferably 1.3 to 1.9.
  • M is at least one of the elements belonging to the third to sixth cycles.
  • M is at least one of the elements belonging to Group 2 to Group 14.
  • the M is gallium (Mg), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Mn). Fe), cobalt (Co), nickel (Ni), zinc (Zn), gallium (Ga), zirconium (Zr), niobium (Nb), silver (Ag), indium (In), hafnium (Hf) and It is preferably at least one selected from the group consisting of tantalum (Ta).
  • the x is preferably 0.1 to 0.9.
  • the oxygen carrier of the present invention when the metal oxide is measured by an X-ray diffraction method, at least one diffraction peak having a half width of 0.7 ° or less is observed in the X-ray diffraction profile. It is preferable to feature.
  • the diffraction peak is observed in the range of 2 ⁇ of 60 to 65 ° in the X-ray diffraction profile.
  • the oxygen carrier of the present invention preferably contains copper (Cu) and a metal oxide containing zinc (Zn) as M and containing a second element.
  • the second element is zinc (Zn), aluminum (Al), gadolinium (Gd), silicon (Si), manganese (Mn), cobalt (Co), yttrium. It preferably contains at least one selected from the group consisting of (Y), cerium (Ce) and magnesium (Mg).
  • the molar ratio of the second element to the total of the copper (Cu) and the second element is 10 to 90 mol%. preferable.
  • the oxygen carrier of the present invention preferably further contains a binder that binds the metal oxide.
  • the amount of the binder is preferably 70 parts by mass or less with respect to 100 parts by mass of the oxygen carrier.
  • the binder is preferably at least one selected from the group consisting of zeolite, Al2O3 , TiO2 , SiO2 , ZrO2 and MgO.
  • the oxygen carrier of the present invention is a separate reaction step of a reaction of producing a gas containing carbon monoxide by reduction of carbon dioxide and a reaction of reducing the oxidized oxygen carrier with a reducing gas containing hydrogen. It is preferable to be used for.
  • the method for producing an oxygen carrier of the present invention is a method for producing an oxygen carrier of the present invention.
  • a second step of recovering the precipitate formed in the mixed solution, and It is characterized by having a third step of calcining the recovered precipitate at a firing temperature of 500 to 800 ° C. to obtain the metal oxide.
  • the holding time of the firing temperature is preferably 1 to 24 hours.
  • the rate of temperature rise to the firing temperature is preferably 0.5 to 20 ° C./min.
  • the method for producing a gas of the present invention is to reduce the carbon dioxide by contacting the oxygen carrier of the present invention with a raw material gas containing carbon dioxide to produce a produced gas containing carbon monoxide. It is characterized by.
  • a produced gas containing carbon monoxide can be efficiently produced from a raw material gas containing carbon dioxide.
  • the oxygen carrier of the present invention can be used, for example, in a chemical looping method.
  • the oxygen carrier of the present invention is used, for example, when reducing carbon dioxide by contacting it with a raw material gas containing carbon dioxide to produce a produced gas containing carbon monoxide. Further, the oxygen carrier can be reduced (regenerated) by contacting the oxidized oxygen carrier with a reducing gas, preferably a reducing gas containing hydrogen. At this time, preferably, carbon dioxide is converted to carbon monoxide by the oxygen carrier by alternately passing the raw material gas and the reducing gas into the reaction tube (reaction vessel) filled with the oxygen carrier of the present invention. The oxygen carrier in the oxidized state is regenerated by the reducing gas.
  • the metal oxide in the oxygen carrier of the present invention is a compound capable of causing a reversible oxygen deficiency, and the oxygen element is deficient by reduction from itself, but in a state where the oxygen element is deficient (reduced state), it is combined with carbon dioxide.
  • the oxygen carrier of the present invention contains a metal oxide represented by the general formula: Cu 1-x ( M) x Oy, and a binder that binds the metal oxide.
  • M is an element having an electronegativity of polling (hereinafter, also simply referred to as “electronegativity”) of 1.3 to 2.3. (Hereinafter, it is also simply referred to as "element M").
  • metal oxides are less likely to adsorb impurities and can maintain the ability to deprive carbon dioxide of oxygen elements for a long period of time. Furthermore, since a plurality of metal elements are present, aggregation is prevented and stability is high. As a result, the efficiency of conversion of carbon dioxide to carbon monoxide by oxygen carriers can be increased.
  • x is a positive real number, preferably 0.1 to 0.9, and more preferably 0.3 to 0.7. In this case, lattice defects due to oxygen deficiency are more likely to occur in the metal oxide, and the degree of distortion of the lattice defects is likely to be appropriate.
  • y is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably an integer of 1 to 2. In this case, the stability of the metal oxide tends to be improved.
  • the general formula: Cu 1-x (M) x Oy is a composition formula, and the metal oxide represented by the general formula is represented by a specific formula, which is an embodiment of a complex of a complex metal oxide. It may include any aspect of the mixture of metal oxides, and any other aspect.
  • the electronegativity of the element M may be 1.3 to 2.3, preferably 1.3 to 1.9, and more preferably 1.5 to 1.8.
  • the electronegativity of Cu is 1.90.
  • the element M is preferably at least one of the elements belonging to the third to sixth cycles, and more preferably at least one of the elements belonging to the third to fifth cycles. In this case, since the ionic radius of the element M and the ionic radius of Cu can be brought close to each other, it is easy to synthesize a highly stable metal oxide. Further, the element M is preferably at least one of the elements belonging to the 2nd to 14th groups, and more preferably at least one of the elements belonging to the 4th to 14th groups. , 8th group, 12th group and 13th group are more preferably at least one of the elements. The present inventors have found that the efficiency of conversion of carbon dioxide to carbon monoxide by a metal oxide (oxygen carrier) can be particularly enhanced by selecting these elements M.
  • a metal oxide oxygen carrier
  • the element M includes, for example, magnesium (Mg), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), and iron.
  • Fe Cobalt (Co), Nickel (Ni), Gallium (Ga), Germanium (Ge), Ittrium (Y), Zirconium (Zr), Niob (Nb), Molybdenum (Mo), Ruthenium (Ru), Rhodium (Rh), palladium (Pd), silver (Ag), indium (In), tin (Sn), hafnium (Hf), tantalum (Ta), lanthanum (La), cerium (Ce), samarium (Sm) , Zirconium (Zn), Gadolinium (Gd), Scandium (Sc) and the like, and one or more of these can be selected.
  • the element M is selected from the group consisting of Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Zr, Nb, Ag, In, Hf and Ta. It is preferably at least one kind, and more preferably at least one kind selected from the group consisting of Mg, Al, Fe, In, and Zn.
  • the molar ratio of copper to the element M is preferably in the range of 9: 1 to 1: 9, more preferably in the range of 6: 1 to 1: 6, and 2.5: 1 to 1: 2.5. The range is even more preferred.
  • the molar ratio of the element M to the total of the copper and the element M is preferably 10 to 90 mol%, more preferably 15 to 85 mol%, and 30 It is more preferably to 70 mol%. With such a metal oxide containing a sufficient amount of element M, the degree of activation of the Cu—OM bond can be further increased.
  • the oxygen carrier of the present invention contains, as one of preferred embodiments, a metal oxide containing copper (Cu) and a second element containing zinc (Zn) as the element M.
  • a metal oxide may be in a crystalline state by dissolving the element M in copper oxide, but the crystal phase of copper oxide (crystal grain boundary) and the crystal phase of the oxide of element M (crystal grain boundary). It is preferable that these crystal phases (crystal grain boundaries) are bonded to each other via an amorphous phase (atypical phase) containing an oxygen element. Is more preferable. In this case, by selecting an appropriate element M, the above action is more likely to occur.
  • the element M other than Zn examples include those described above, and one or more of these can be selected.
  • the element M other than Zn is from the group consisting of Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Gd, Ga, Zr, Nb, Ag, Hf, In, Ta, Y and Mg. It is preferably at least one selected.
  • the elements M other than Zn are selected from Al, Gd, Si, Mn, Co, Y, Ce and Mg. It is preferably at least one selected from the group consisting of Al and Gd, and more preferably at least one selected from the group consisting of Al and Gd.
  • Cu copper
  • An advantageous oxygen carrier can be obtained.
  • such metal oxides are more likely to improve stability under high temperature conditions of 500 ° C. or higher.
  • the metal oxide when the metal oxide is measured by the X-ray diffraction method, it is preferable that at least one diffraction peak having a half width of 0.7 ° or less is observed in the X-ray diffraction profile.
  • a diffraction peak is defined as a peak whose half width is 1 ° or less among the peaks in the X-ray diffraction profile.
  • the number of diffraction peaks may increase or decrease depending on the number of elements M.
  • a diffraction peak having a half width of 0.7 ° or less (hereinafter, also referred to as “specific diffraction peak”) is observed.
  • specific diffraction peak a diffraction peak having a half width of 0.7 ° or less
  • the half width of the specific diffraction peak may be 0.7 ° or less, but is preferably 0.1 to 0.7 °, more preferably 0.2 to 0.4 °.
  • the specific diffraction peak is preferably observed in the range of 60 to 65 °, and more preferably in the range of 61 to 63 °.
  • the specific diffraction peak observed in the range of 2 ⁇ is diffraction by the crystal lattice plane of the oxide of each element, and more easily reflects the degree of crystallinity (particularly, the crystallinity of copper oxide).
  • the number of specific diffraction peaks observed in the above range may be one, but is preferably a plurality, and more preferably 2 to 4. In this case, it can be determined that the crystallinity of the oxide of each element in the metal oxide is sufficiently high. It can also be considered that the crystal phases of each oxide are uniformly dispersed and exist in the metal oxide.
  • the oxygen carrier of the present invention may be composed only of a metal oxide, or may contain a binder (carrier) for binding the metal oxide. By including such a binder, the shape of the oxygen carrier can be stably maintained when it is formed into a molded product.
  • the binder is not particularly limited as long as it is not easily denatured depending on the raw material gas, reaction conditions and the like. Specific examples of the binder include carbon materials (graphite, graphene, etc.), zeolite, montmorillonite, SiO 2 , ZrO 2 , TiO 2 , V 2 O 5 , MgO, Al 2 O 3 , or a composite oxide containing these. And so on.
  • the binder is preferably at least one selected from the group consisting of zeolite, Al 2 O 3 , TIO 2 , SiO 2 , ZrO 2 and MgO. This is because these binders have excellent binding ability of metal oxides.
  • the amount thereof is preferably 70 parts by mass or less, more preferably 50 parts by mass or less, based on 100 parts by mass of the oxygen carrier. It is more preferably 30 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the amount of the binder is preferably 2 parts by mass or more, and more preferably 5 parts by mass or more with respect to 100 parts by mass of the oxygen carrier.
  • the filling density of the oxygen carrier is preferably 1.1 g / mL or less, more preferably 0.4 to 1 g / mL, and even more preferably 0.5 to 0.9 g / mL. If the packing density is too low, the gas passing speed becomes too fast, and the time for contact between the oxygen carrier and the raw material gas and the reducing gas is reduced. As a result, the conversion efficiency of carbon dioxide into carbon monoxide by the oxygen carrier and the regeneration efficiency of the oxygen carrier in the oxidized state by the reducing gas tend to decrease. On the other hand, if the packing density is too high, the passing speed of the gas becomes too slow, the reaction becomes difficult to proceed, and it takes a long time to produce the produced gas.
  • the pore volume of the oxygen carrier is preferably 0.4 cm 3 / g or more, more preferably 1 to 30 cm 3 / g, and even more preferably 5 to 20 cm 3 / g. If the pore volume is too small, it becomes difficult for the raw material gas and the reducing gas to enter the inside of the oxygen carrier. As a result, the contact area between the oxygen carrier and the raw material gas and the reducing gas is reduced, and the conversion efficiency of carbon dioxide into carbon monoxide by the oxygen carrier and the regeneration efficiency of the oxygen carrier in the oxidized state by the reducing gas are likely to decrease. On the other hand, even if the pore volume is increased beyond the upper limit, no further increase in the effect can be expected, and the mechanical strength tends to decrease depending on the type of oxygen carrier.
  • the shape of the oxygen carrier is not particularly limited, but for example, granules are preferable. If it is granular, it is easy to adjust the packing density of the oxygen carrier within the above range.
  • the term "granular" is a concept including powder, particle, lump, pellet, etc., and the form thereof may be spherical, plate-like, polygonal, crushed, columnar, needle-like, scale-like, or the like. ..
  • the average particle size of the oxygen carrier is preferably 0.1 ⁇ m to 5 mm, more preferably 0.5 ⁇ m to 1 mm, and even more preferably 1 ⁇ m to 0.5 mm. If the oxygen carrier has such an average particle size, the packing density tends to be in the above range.
  • the average particle size means the average value of the particle size of any 200 oxygen carriers in one field of view observed with an electron microscope.
  • the "particle size” means the maximum length of the distance between two points on the contour line of the oxygen carrier.
  • the maximum length of the distance between two points on the contour line of the end face is defined as “particle size”.
  • the average particle size is, for example, lumpy, and when the primary particles are agglomerated, it means the average particle size of the secondary particles.
  • the BET specific surface area of the oxygen carrier is preferably 1 to 500 m 2 / g, more preferably 3 to 450 m 2 / g, and even more preferably 5 to 400 m 2 / g. When the BET specific surface area is within the above range, it becomes easy to improve the conversion efficiency of carbon dioxide into carbon monoxide by oxygen carriers.
  • the oxygen capacity of the oxygen carrier is high in a wide range from low temperature (about 400 ° C.) to high temperature (about 650 ° C.). Can be maintained at. That is, the oxygen carrier can efficiently convert carbon dioxide into carbon monoxide over a wide temperature range.
  • the oxygen capacity of the oxygen carrier at 400 ° C. is preferably 1 to 40% by mass, more preferably 2 to 30% by mass. If the oxygen capacity of the oxygen carrier at a low temperature is within the above range, it means that the oxygen capacity is sufficiently high even at the actual operating temperature (about 650 ° C.), and the conversion efficiency of carbon dioxide to carbon monoxide is high. It can be said that it is an extremely high oxygen carrier.
  • the metal oxide can be synthesized by, for example, a coprecipitation method, a sol-gel method, a solid phase method, a hydrothermal synthesis method, or the like.
  • the metal oxide can be synthesized as follows, for example. First, an aqueous solution of a raw material is prepared by dissolving salts of a plurality of elements constituting a metal oxide (hereinafter, also referred to as “constituent elements”) in water. Then, the raw material aqueous solution and the alkaline aqueous solution are added dropwise to water to obtain a mixed solution. Then, after recovering the precipitate formed in this mixed solution, it is dried and fired. That is, the metal oxide in the present invention can be easily and surely synthesized by the so-called coprecipitation method.
  • a raw material aqueous solution containing a salt of a constituent element (copper and element M) and an alkaline aqueous solution are added dropwise to water to obtain a mixed solution.
  • the salt of the constituent element include nitrate, sulfate, chloride, hydroxide, carbonate or a composite thereof, and among these, nitrate is preferable.
  • a hydrate may be used if necessary.
  • the alkali include sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, ammonia, urea and the like.
  • the dropping speed of the raw material aqueous solution into water is not particularly limited, but is preferably 0.1 to 50 mL / min, and more preferably 1 to 25 mL / min.
  • a precipitate containing each constituent element is individually generated, and it is possible to prevent aggregation and generate a sufficient amount of a precipitate containing copper and the element M. ..
  • the concentration of the raw material aqueous solution and the concentration of the alkaline aqueous solution are not particularly limited, but are preferably 0.1 to 5 mol / L, and more preferably 0.25 to 2.5 mol / L.
  • a precipitate containing each constituent element can be individually generated and prevented from agglomerating, and a sufficient amount of a precipitate containing copper and the element M can be produced.
  • the temperature of the mixed solution is also not particularly limited, but is preferably 20 to 90 ° C, more preferably 40 to 70 ° C. By adjusting to such a temperature, a precipitate containing copper and element M can be smoothly formed.
  • the pH of the mixed solution is preferably 6.5 to 8.5, more preferably 6.6 to 7.7, and even more preferably 6.7 to 7.3.
  • the precipitate formed in the mixed solution is recovered by, for example, filtration. It is preferable to stir the mixed solution for a predetermined time in order to promote the formation (ripening) of the precipitate containing copper and the element M. in this case.
  • the stirring speed of the mixed solution is preferably 50 rpm or more, more preferably 75 to 100 rpm.
  • the stirring time is preferably 0.5 to 5 hours, more preferably 1 to 3 hours.
  • the recovered precipitate is then dried.
  • the precipitate may be dried at a temperature of preferably 20 to 200 ° C., more preferably 50 to 150 ° C., preferably 0.5 to 20 hours, more preferably 1 to 15 hours.
  • the dried precipitate is calcined.
  • the calcination of the precipitate is preferably at a temperature (calcination temperature) of preferably 300 to 1200 ° C., more preferably 350 to 800 ° C., still more preferably 500 to 800 ° C., particularly preferably 550 to 750 ° C., and preferably 1 to 24 ° C.
  • the time more preferably 1.5 to 20 hours (the above-mentioned holding time of the firing temperature), is preferable. If the precipitate is calcined under such calcining conditions, a metal oxide having excellent stability can be obtained even under high temperature conditions of 500 ° C. or higher.
  • the temperature may be raised at a heating rate of 0.5 to 20 ° C./min, preferably a heating rate of 1 to 20 ° C./min, and more preferably a heating rate of 2 to 10 ° C./min. ..
  • a heating rate of 0.5 to 20 ° C./min preferably a heating rate of 1 to 20 ° C./min, and more preferably a heating rate of 2 to 10 ° C./min. ..
  • the metal oxide obtained at this stage may be used as it is or may be pulverized (classified if necessary) to serve as the oxygen carrier of the present invention, and the molded product obtained through the following molding step is used in the present invention. It may be used as an oxygen carrier.
  • the obtained metal oxide (particles or lumps) is pulverized, if necessary, and then mixed with the particles of the binder to obtain a mixture. Then, the mixture is fired to obtain a sintered body, and the sintered body is crushed and then classified as necessary. As a result, an oxygen carrier formed by binding the metal oxide with a binder can be obtained.
  • the mixture may be fired at a temperature of preferably 300 to 1200 ° C., more preferably 350 to 800 ° C., preferably 1 to 24 hours, more preferably 1.5 to 20 hours.
  • the sintered body can be pulverized by using, for example, a jet mill, a ball mill, a bead mill, a rod mill, or the like.
  • the oxygen carrier of the present invention can be used, for example, in a chemical looping method. Further, as described above, the oxygen carrier of the present invention can be used for the purpose of reducing carbon dioxide. More specifically, it is preferable to carry out a carbon dioxide reduction reaction and an oxygen carrier reduction reaction, and the oxygen carrier should be used so as to circulate between the carbon dioxide reduction reaction and the oxygen carrier reduction reaction. Is preferable. In the reduction reaction of the oxygen carrier, another reducing agent, preferably a reducing gas containing hydrogen, is used.
  • the oxygen carrier of the present invention is preferably used for a so-called reverse water-gas shift reaction.
  • the reverse water-gas shift reaction is a reaction that produces carbon monoxide and water from carbon dioxide and hydrogen.
  • the reverse water-gas shift reaction is divided into an oxygen carrier reduction reaction (first process) and a carbon dioxide reduction reaction (second process), and the oxygen carrier reduction reaction is as follows.
  • the reaction is represented by the formula (A)
  • the carbon dioxide reduction reaction is the reaction represented by the following formula (B).
  • n is usually a value smaller than 2, preferably 0.05 to 1.7, and more preferably 0.1 to 1.5. It is more preferably 0.15 to 1.3. That is, in the reduction reaction of oxygen carriers, hydrogen, which is a kind of reducing gas, is oxidized to generate water. Further, in the carbon dioxide reduction reaction, carbon dioxide is reduced to produce carbon monoxide.
  • the reaction temperature in the reduction reaction of the oxygen carrier may be any temperature at which the reduction reaction can proceed, but is preferably 300 ° C. or higher, more preferably 400 ° C. or higher, still more preferably 500 ° C. or higher. It is particularly preferable that the temperature is 550 ° C. or higher. Within such a temperature range, an efficient reduction reaction of oxygen carriers can proceed.
  • the upper limit of the reaction temperature is preferably 850 ° C. or lower, more preferably 750 ° C. or lower, and even more preferably 700 ° C. or lower. By setting the upper limit of the reaction temperature within the above range, economic efficiency can be improved.
  • the reaction temperature in the carbon dioxide reduction reaction is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, and even more preferably 400 ° C. or higher. Within such a temperature range, an efficient carbon dioxide reduction reaction can proceed.
  • the upper limit of the reaction temperature is preferably 1000 ° C. or lower, more preferably 850 ° C. or lower, further preferably 700 ° C. or lower, and particularly preferably 650 ° C. or lower. Since the oxygen carrier can carry out the reduction reaction of carbon dioxide to carbon monoxide with high efficiency even at a low temperature, the reduction reaction of carbon dioxide can be set to a relatively low temperature. Further, by setting the upper limit of the reaction temperature in the above range, not only the waste heat can be easily utilized, but also the economic efficiency can be further improved.
  • the reduced product obtained by the reduction reaction of carbon dioxide may be a substance other than carbon monoxide, and specific examples thereof include methane. It is preferable that the reduced product such as carbon monoxide obtained by the reduction reaction of carbon dioxide is further converted into an organic substance or the like by microbial fermentation or the like. Examples of microbial fermentation include anaerobic fermentation. Examples of the obtained organic substance include methanol, ethanol, acetic acid, butanol, derivatives thereof, mixtures thereof, compounds of C5 or higher such as isoprene, and the like.
  • the reduced product such as carbon monoxide may be converted into a compound from C1 to C20 containing a hydrocarbon and an alcohol conventionally synthesized by petrochemicals by a metal oxide or the like.
  • the obtained compound include methane, ethane, propylene, methanol, ethanol, propanol, acetaldehyde, diethyl ether, acetic acid, butyric acid, diethyl carbonate, butadiene and the like.
  • the oxygen carrier of the present invention preferably has the following characteristics. That is, when a stainless steel reaction tube having an inner diameter of 8 mm in which a pressure gauge is arranged in the flow path is filled with an oxygen carrier at a height of 40 cm and nitrogen gas having a concentration of 100% by volume is passed through at 30 mL / min.
  • the pressure increase in 10 minutes is preferably 0.03 MPaG or less, and more preferably 0.01 MPaG or less. It can be determined that the oxygen carrier exhibiting such characteristics has the filling density and the pore volume satisfying the above ranges, and the conversion efficiency of carbon dioxide into carbon monoxide can be sufficiently increased.
  • the oxygen carrier, the method for producing an oxygen carrier, and the method for producing a gas of the present invention have been described above, the present invention is not limited thereto.
  • the oxygen carrier, the method for producing an oxygen carrier, and the method for producing a gas of the present invention may have any other additional configurations with respect to the above-described embodiment, and any other structure may have a similar function. It may be replaced with the configuration, and some configurations may be omitted.
  • solutions A and B were simultaneously added dropwise to a container containing 20 mL of distilled water at 70 ° C. to prepare a mixed solution.
  • the dropping rate of the liquid A was 10 mL / min, and the mixed liquid was stirred so that the generated precipitate did not aggregate.
  • the temperature of the mixed solution was maintained at 70 ° C., and the dropping rate of the solution B was also adjusted so that the pH was 7.0.
  • stirring was continued while maintaining the mixed solution at 70 ° C., and aging was carried out for 3 hours. After the aging was completed, the precipitate was collected by filtration and washed thoroughly with water. Then, the recovered precipitate was dried at 120 ° C. for 12 hours by a dryer and then calcined at 700 ° C. for 3 hours to obtain a metal oxide.
  • the metal oxide was pulverized by a ball mill to obtain granular oxygen carriers (average particle size: 0.5 ⁇ m) consisting only of the metal oxide.
  • X-ray diffraction (XRD) measurements were performed on the metal oxide particles using a RINT-TTRIII device (CuK ⁇ radiation, 50 kV, 300 mA).
  • the obtained oxygen carrier (metal oxide) was confirmed to have characteristic diffraction peaks derived from copper (II) oxide and magnesium (II) oxide.
  • Example 2 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the molar ratio of Cu and Mg in the liquid A was 0.7: 0.3. did.
  • the oxygen carrier (metal oxide) was confirmed to have characteristic peaks derived from copper (II) oxide and magnesium (II) oxide.
  • the ICP measurement of the oxygen carrier (metal oxide) was confirmed that the molar ratio of Cu and Mg was 0.7: 0.3.
  • Example 3 Manganese nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and Mn in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Mn was 0.3: 0.7.
  • Example 4 Niobium chloride (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and Nb in solution A is 0.3: Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the value was 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Nb was 0.3: 0.7.
  • Example 5 Aluminum nitrate nine hydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and Al in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Al was 0.3: 0.7.
  • Example 6 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 5 except that the molar ratio of Cu and Al in the liquid A was 0.5: 0.5. did. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Al was 0.5: 0.5.
  • Example 7 Instead of magnesium nitrate hexahydrate, iron nitrate nine hydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%) is used, and the molar ratio of Cu and Fe in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Fe was 0.3: 0.7.
  • Example 8 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 5 except that the molar ratio of Cu and Fe in the liquid A was 0.7: 0.3. did. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Fe was 0.7: 0.3.
  • Example 9 Cobalt nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and Co in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Co was 0.3: 0.7.
  • Example 10 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 5 except that the molar ratio of Cu and Co in the liquid A was 0.7: 0.3. did. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Co was 0.7: 0.3.
  • Nickel nitrate hexahydrate manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%
  • the molar ratio of Cu and Ni in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Ni was 0.3: 0.7.
  • Example 12 Zinc nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and Zn in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.3: 0.7.
  • Example 13 First, as raw materials, copper (II) nitrate trihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.9%) and zinc nitrate hexahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) , Purity: 99.0%). Next, this raw material was dissolved in ethanol to prepare a 1 mol / L raw material aqueous solution (Liquid A). The molar ratio of Cu and Zn in the liquid A was set to 0.5: 0.5. Next, zeolite particles (manufactured by Tosoh Zeolite Co., Ltd., "330HUA”) were added to this solution A. The amount of the zeolite particles added was set to 50 parts by mass with respect to 100 parts by mass of the total (oxygen carrier) of the generated metal oxide and the zeolite particles.
  • ethanol was distilled off from the liquid A containing the zeolite particles using an evaporator, and the residue was recovered.
  • the recovered residue was dried at 120 ° C. for 12 hours in a dryer and then calcined at 700 ° C. for 3 hours to carry out granular oxygen carriers (average particle size) composed of zeolite particles carrying (bonding) a metal oxide. : 0.5 ⁇ m) was obtained. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.5: 0.5.
  • Example 14 Indium nitrate trihydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 97.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and In in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.1: 0.9. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and In was 0.1: 0.9.
  • Example 15 Indium nitrate trihydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 97.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and In in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.3: 0.7. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and In was 0.3: 0.7.
  • Example 16 Indium nitrate trihydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 97.0%) is used instead of magnesium nitrate hexahydrate, and the molar ratio of Cu and In in solution A is Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 1 except that the ratio was 0.7: 0.3. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and In was 0.7: 0.3.
  • the pulverized mixture was pulverized in an agate mortar for 30 minutes and then calcined at 700 ° C. for 3 hours to obtain a metal oxide.
  • the metal oxide was pulverized by a ball mill to obtain granular oxygen carriers (average particle size: 0.5 ⁇ m) consisting only of the metal oxide. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Ca was 0.5: 0.5.
  • a sodium tungstate aqueous solution was added dropwise to the copper (II) nitrate aqueous solution.
  • the dropping rate was set to 15 ml / min while stirring the copper (II) nitrate aqueous solution, and the sodium tungstate aqueous solution was dropped at room temperature to obtain a mixed solution.
  • the temperature of the mixed solution was raised to 90 ° C., and the mixture was stirred at that temperature for 4 hours.
  • the mixed solution was suction-filtered using a filter paper (“No. 4, 95 ⁇ m / m” manufactured by Kiriyama Glass Co., Ltd.), and the precipitate was collected and then washed with pure water.
  • the recovered precipitate was dried at 120 ° C. for 12 hours by a dryer and then calcined at 600 ° C. for 4 hours to obtain a metal oxide.
  • the metal oxide was pulverized by a ball mill to obtain granular oxygen carriers (average particle size: 0.5 ⁇ m) consisting only of the metal oxide. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and W was 0.3: 0.7.
  • ⁇ -alumina particles manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., average particle size: 0.5 ⁇ m
  • the amount of ⁇ -alumina particles added is determined by the metal oxide to be produced and ⁇ -.
  • An oxygen carrier average particle size: 0.5 ⁇ m was produced. It was confirmed by ICP measurement of the metal oxide that the molar ratio of Cu and Zn was 0.5: 0.5.
  • X-ray diffraction measurement Before performing the X-ray diffraction measurement, a sample of oxygen carrier was prepared. First, about 100 mg of oxygen carrier was measured in a mortar and pestle and ground using a pestle. Then, the oxygen carrier was uniformly filled in the hole of the sample filling portion of the sample plate, and the surface of the sample plate was adjusted so that the surface of the sample plate and the surface of the oxygen carrier were flush with each other. A sample horizontal multipurpose X-ray diffractometer (“D8 DISCOVER” manufactured by BRUKER Co., Ltd.) was used for the X-ray diffraction measurement.
  • D8 DISCOVER manufactured by BRUKER Co., Ltd.
  • the diffractometer is appropriately selected with a divergence slit of 0.5 to 1 °, a divergence vertical limiting slit of 10 mm, a scattering slit of 1 to 2 °, and a light receiving slit of 0.15 to 0.3 mm.
  • the prepared oxygen carrier sample was irradiated with X-rays under the conditions of a tube voltage of 40 kV and a tube current of 20 mA.
  • the scanning angle of the goniometer was set in the range of 10 to 80 °, and the scanning speed was appropriately measured between 0.1 and 0.5 ° / min. The measurement was performed at an arbitrary number of times of integration of 2 times or more. After the measurement was completed, the obtained data was analyzed. The data was displayed in a graph (X-ray diffraction profile) as the horizontal axis angle and vertical axis intensity (cps) using Excel (registered trademark) or the like, and the presence or absence of a diffraction peak was confirmed.
  • the value with the highest intensity of the peak was taken as the apex, and the difference between the angle of the apex and the angle of the part showing the intensity value of half of the intensity value of the apex was calculated, and this was defined as the half width. Then, a peak having a half width of 1 ° or less was defined as a diffraction peak.
  • the half-value width was different on the left and right of the peak, the larger one was adopted as the half-value width.
  • the half width of each was calculated.
  • the peak fitting was performed using the least squares method or the like to separate the peaks, and the full width at half maximum was calculated.
  • the X-ray diffraction measurement was performed three times for each sample, and the average value was used as the measured value. Then, a diffraction peak having a half width of 0.7 ° or less was identified, and the peak position was confirmed.
  • hydrogen gas (reducing gas) was passed through the reaction tube of the microreactor at a flow rate of 20 mL / min for 5 minutes to carry out a reduction reaction (first process) of oxygen carriers to reduce oxygen carriers.
  • the gas discharged from the discharge port of the microreactor contained water vapor.
  • helium gas was flowed at a flow rate of 20 mL / min for 5 minutes, and then carbon dioxide gas was flowed at a flow rate of 20 mL / min for 5 minutes to carry out a carbon dioxide reduction reaction (second process).
  • Carbon dioxide gas raw material gas
  • the produced gas discharged from the discharge port of the microreactor contained carbon monoxide.
  • helium gas was flowed at a flow rate of 20 mL / min for 5 minutes.
  • Hydrogen gas (reducing gas) was passed through the reaction tube of the microreactor at a flow rate of 5 mL / min for 5 minutes to carry out a reduction reaction (first process) of oxygen carriers to reduce oxygen carriers.
  • the gas discharged from the discharge port of the microreactor contained water vapor.
  • helium gas was flowed at a flow rate of 20 mL / min for 5 minutes, and then carbon dioxide gas was flowed at a flow rate of 5 mL / min for 5 minutes to carry out a carbon dioxide reduction reaction (second process).
  • Carbon dioxide gas raw material gas
  • the produced gas discharged from the discharge port of the microreactor contained carbon monoxide.
  • the above process was carried out under atmospheric pressure conditions while maintaining the temperature of the oxygen carrier at 650 ° C. when any of the gases was flown.
  • the conversion efficiency of carbon dioxide to carbon monoxide by oxygen carriers was calculated by the following formula.
  • the conversion efficiency is the average conversion efficiency for 1 minute after the distribution of carbon dioxide gas into the reaction tube is started.
  • X CO (%) n CO, out / (n CO2, in ) ⁇ 100
  • n is a mole fraction of carbon dioxide or carbon monoxide in the raw material gas or the produced gas.
  • the measurement conditions in the gas chromatograph mass spectrometer are as follows. Column temperature: 200 ° C Injection temperature: 200 ° C Detector temperature: 250 ° C Column: EGA tube (L: 2.5 m, ⁇ (inner diameter): 0.15 mm, t: 0 mm) Column flow rate: 1.00 mL / min Split ratio: 250 Purge flow rate: 3.0 mL / min These results are shown in Table 1 below.
  • the oxygen carriers of each example had high conversion efficiency of carbon dioxide to carbon monoxide. Further, by changing the type and amount of the element M (doped metal element) constituting the oxygen carrier and the amount of the binder, the conversion efficiency of carbon dioxide into carbon monoxide could be adjusted. On the other hand, the oxygen carriers of each comparative example had a low efficiency of converting carbon dioxide to carbon monoxide.
  • solutions A and B were simultaneously added dropwise to a container containing 20 mL of distilled water at 70 ° C. to prepare a mixed solution.
  • the dropping rate of the liquid A was 10 mL / min, and the mixed liquid was stirred so that the generated precipitate did not aggregate.
  • the temperature of the mixed solution was maintained at 70 ° C., and the dropping rate of the solution B was also adjusted so that the pH was 7.0.
  • stirring was continued at a speed of 50 rpm or more, and aging was carried out for 3 hours. After the aging was completed, the precipitate was collected by filtration and washed thoroughly with water. Then, the recovered precipitate was dried at 120 ° C.
  • the metal oxide was pulverized by a ball mill to obtain granular oxygen carriers (average particle size: 0.5 ⁇ m) consisting only of the metal oxide. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.7: 0.3.
  • Example 18 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 17 except that the molar ratio of Cu and Zn in the liquid A was 0.5: 0.5. did. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.5: 0.5.
  • Example 19 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 17 except that the molar ratio of Cu and Zn in the liquid A was 0.3: 0.7. did. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.3: 0.7.
  • Example 20 Part of zinc nitrate hexahydrate is replaced with aluminum nitrate nine hydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 98.0%), and the molar ratio of Cu, Zn and Al in solution
  • a Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 17 except that the value was 0.5: 0.17: 0.33. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu, Zn and Al was 0.5: 0.17: 0.33.
  • Example 21 Part of zinc nitrate hexahydrate is replaced with gadolinium nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.5%), and the molar ratio of Cu, Zn and Gd in solution
  • a Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 17 except that the value was 0.5: 0.17: 0.33. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu, Zn and Gd was 0.5: 0.17: 0.33.
  • Example 22 First, as raw materials, copper (II) nitrate trihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.9%) and zinc nitrate hexahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) , Purity: 99.0%). Next, this raw material was dissolved in ethanol to prepare a 1 mol / L raw material aqueous solution (Liquid A). The molar ratio of Cu and Zn in the liquid A was set to 0.5: 0.5. Next, zeolite particles (manufactured by Tosoh Zeolite Co., Ltd., "330HUA”) were added to this solution A. The amount of the zeolite particles added was set to 50 parts by mass with respect to 100 parts by mass of the total (oxygen carrier) of the generated metal oxide and the zeolite particles.
  • ethanol was distilled off from the liquid A containing the zeolite particles using an evaporator, and the residue was recovered.
  • the recovered residue was dried at 120 ° C. for 12 hours in a dryer and then calcined at 700 ° C. for 3 hours to carry out granular oxygen carriers (average particle size) composed of zeolite particles carrying (bonding) a metal oxide. : 0.5 ⁇ m) was obtained. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.5: 0.5.
  • Example 23 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 17 except that the firing temperature was set to 900 ° C. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.7: 0.3.
  • Example 4 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 17 except that the firing temperature was set to 400 ° C. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu and Zn was 0.7: 0.3.
  • Example 5 Granular oxygen carriers (average particle size: 0.5 ⁇ m) were produced in the same manner as in Example 20 except that the firing temperature was set to 400 ° C. It was confirmed by ICP measurement of the oxygen carrier (metal oxide) that the molar ratio of Cu, Zn and Al was 0.5: 0.17: 0.33.
  • Oxygen carrier characterization (conversion efficiency) Regarding the oxygen carriers obtained in Examples 17 to 22 and Comparative Examples 4 to 5, the above 3.
  • the characteristics of the oxygen carrier were evaluated by the following procedure under different conditions. First, in evaluating the characteristics of oxygen carriers in the microreactor, the following process was performed in order to activate the oxygen carriers. A reaction tube made of quartz having an inner diameter of 3 mm and a length of 78 mm was filled with 0.2 g of oxygen carriers. Then, while flowing helium gas at a flow rate of 20 mL / min, the temperature was raised at a heating rate of 40 ° C./min and heated for 20 minutes.
  • hydrogen gas (reducing gas) was passed through the reaction tube of the microreactor at a flow rate of 20 mL / min for 5 minutes to carry out a reduction reaction (first process) of oxygen carriers to reduce oxygen carriers.
  • the gas discharged from the discharge port of the microreactor contained water vapor.
  • helium gas was flowed at a flow rate of 20 mL / min for 5 minutes, and then carbon dioxide gas was flowed at a flow rate of 20 mL / min for 5 minutes to carry out a carbon dioxide reduction reaction (second process).
  • Carbon dioxide gas raw material gas
  • the produced gas discharged from the discharge port of the microreactor contained carbon monoxide.
  • helium gas was flowed at a flow rate of 20 mL / min for 5 minutes.
  • Hydrogen gas (reducing gas) was passed through the reaction tube of the microreactor at a flow rate of 30 mL / min for 20 minutes to carry out a reduction reaction (first process) of oxygen carriers to reduce oxygen carriers.
  • the gas discharged from the discharge port of the microreactor contained water vapor.
  • helium gas was flowed at a flow rate of 20 mL / min for 5 minutes, and then carbon dioxide gas was flowed at a flow rate of 3 mL / min for 20 minutes to carry out a carbon dioxide reduction reaction (second process).
  • Carbon dioxide gas raw material gas
  • the produced gas discharged from the discharge port of the microreactor contained carbon monoxide.
  • the above process was carried out under atmospheric pressure conditions while maintaining the temperature of the oxygen carrier at 550 ° C. when any of the gases was flown.
  • Example 17 7.
  • Comparative Example 4 400 ° C.
  • Example 17 700 ° C.
  • Example 23 900 ° C.
  • the distribution of each element was dense. It was confirmed that the conversion efficiency of carbon dioxide into carbon monoxide decreased in the order of Example 17, Example 23, and Comparative Example 4 due to this difference in the distribution state.
  • a production gas containing carbon monoxide can be efficiently produced from a raw material gas containing carbon dioxide.
  • the oxygen carrier of the present invention can be used, for example, in the chemical looping method, it is possible to contribute to the realization of a carbon cycle society by converting carbon dioxide into a valuable substance and reusing it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

【課題】Cu(銅)を含む金属酸化物において、二酸化炭素の一酸化炭素への変換効率が高く、例えば、ケミカルルーピング法に利用可能な酸素キャリア、並びに、かかる酸素キャリアの製造方法およびかかる酸素キャリアを使用したガスの製造方法を提供する。 【解決手段】本発明の酸素キャリアは、Cu1-x(M)(ただし、Mは、ポーリングの電気陰性度が1.3~2.3である元素であり、xは、正の実数を示し、yは、1~4の整数を示す。)で表される金属酸化物を含む酸素キャリアである。また、本発明の酸素キャリアの好適な態様の一つは、銅(Cu)と、亜鉛(Zn)を含む第2の元素とを含有する金属酸化物を含み、前記金属酸化物をX線回折法により測定したとき、X線回折プロファイルにおいて、半値幅が0.7°以下である回折ピークが少なくとも1つ観察されることを特徴とする。

Description

酸素キャリア、酸素キャリアの製造方法およびガスの製造方法
 本発明は、酸素キャリア、酸素キャリアの製造方法およびガスの製造方法に関し、より詳しくは、例えば、ケミカルルーピング法に利用可能な酸素キャリア、並びにかかる酸素キャリアの製造方法およびかかる酸素キャリアを使用したガスの製造方法に関する。
 近年、温室効果ガスの一種である二酸化炭素は、その大気中の濃度が上昇を続けている。大気中の二酸化炭素の濃度の上昇は、地球温暖化を助長する。したがって、大気中に放出される二酸化炭素を回収することは重要であり、さらに回収した二酸化炭素を有価物質に変換して再利用できれば、炭素循環社会を実現することができる。
 例えば、二酸化炭素を含む合成ガスからメタノールを合成するための触媒として、銅と亜鉛とを含む金属酸化物が利用されている。触媒では、物質間の相互作用を利用するので、その表面における作用点の大小が特性を大きく左右する。したがって、大きな活性を期待して、触媒(金属酸化物)の構造について、いくつか研究例が報告されている。
 触媒の活性を向上させるために、例えば、特許文献1では、銅、亜鉛およびアルミニウムのモル比を調整することで、酸化銅の格子定数や細孔分布を所望の範囲内にコントロールする方法が記載されている。また、特許文献2では、高い比表面積を有する酸化銅を主成分とした二酸化炭素変換触媒の製造方法が記載されている。
 一方、二酸化炭素から一酸化炭素を製造する方法として、逆水性ガスシフト反応を利用した方法が知られている。かかる反応は、通常500℃以上の温度で行われるが、特許文献1および2の触媒を利用した場合、金属酸化物の細孔分布や比表面積を調整しても、反応温度が500℃以上の高温条件下では、反応中に金属酸化物の焼成が進行し、金属酸化物の構造変化が生じ易い。また、上記に伴い金属の凝集が進行する結果、二酸化炭素との反応性が低下して、効率的に一酸化炭素を生成するのが困難であることを、本発明者らは知見した。
 また、この従来の逆水性ガスシフト反応は、生成物である一酸化炭素と水とが系内に共存するため、化学平衡の制約により二酸化炭素の一酸化炭素への変換効率が低くなるという点で問題があった。
 そこで、上記問題を解決するため、ケミカルルーピング法を利用して二酸化炭素から一酸化炭素の変換(合成)が行われる。ここで言うケミカルルーピング法とは、上記逆水性ガスシフト反応を、水素による還元反応と、二酸化炭素からの一酸化炭素の生成反応との2つの反応に分割し、これらの反応を金属酸化物(MOx)によって橋渡しさせるという方法である(下記式参照)。
  H + MO → HO + MOx-1
  CO + MOx-1 → CO + MO
 なお、上記式中、MOx-1は、金属酸化物の一部または全部が還元された状態を示す。
 ケミカルルーピング法では、それぞれの反応時には、逆反応の基質である水および一酸化炭素が共存しないため、逆水性ガスシフト反応の化学平衡よりも高い二酸化炭素の一酸化炭素への変換効率を得られる可能性がある。
 このケミカルルーピング法において、反応を橋渡しする金属酸化物としては、酸素欠損が生じ易い酸化セリウム等が広く用いられている。
 例えば、非特許文献1には、希土類金属酸化物と酸化鉄との混合金属酸化物を用いることにより、可逆的な酸素欠損を有する金属酸化物を生成させる方法が記載されている。また、特許文献3には、酸化銅により二酸化炭素から一酸化炭素へ変換する方法が記載されている。
Journal of CO2 Utilization 17 (2017) 60-68
国際公開第2013/072197号 米国特許第9492809号 米国特許9540236号
 非特許文献1に記載の混合金属酸化物は、複数種の金属酸化物の混合物であり、金属酸化物同士の相互作用が適切でないため、二酸化炭素の一酸化炭素への変換効率が低い。また、特許文献3に記載の酸化銅のみでは酸素欠損が存在していても、二酸化炭素との反応性が不十分であり、効率的な一酸化炭素への変換が困難である。
 本発明は、かかる状況に鑑みてなされたものであり、その目的は、Cu(銅)を含む金属酸化物において、導入する元素の電気陰性度を規定することにより、二酸化炭素の一酸化炭素への変換効率が500℃以上の高温条件下においても高く、例えば、ケミカルルーピング法に利用可能な酸素キャリアを提供すること、並びに、かかる酸素キャリアの製造方法およびこれを使用したガスの製造方法を提供することにある。
 このような目的は、下記の本発明により達成される。
(1)本発明の酸素キャリアは、Cu1-x(M)(ただし、Mは、ポーリングの電気陰性度が1.3~2.3である元素であり、xは、正の実数を示し、yは、1~4の整数を示す。)で表される金属酸化物を含むことを特徴とする。
(2)本発明の酸素キャリアでは、前記Mの電気陰性度は1.3~1.9であるのが好ましい。
(3)本発明の酸素キャリアでは、前記Mは第3周期~第6周期に属する元素のうちの少なくとも1種であるのが好ましい。
(4)本発明の酸素キャリアでは、前記Mは第2族~第14族に属する元素のうちの少なくとも1種であるのが好ましい。
(5)本発明の酸素キャリアでは、前記Mはマグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、ニオブ(Nb)、銀(Ag)、インジウム(In)、ハフ二ウム(Hf)およびタンタル(Ta)からなる群より選択される少なくとも1種であるのが好ましい。
(6)本発明の酸素キャリアでは、前記xは0.1~0.9であるのが好ましい。
(7)本発明の酸素キャリアでは、前記金属酸化物をX線回折法により測定したとき、X線回折プロファイルにおいて、半値幅が0.7°以下である回折ピークが少なくとも1つ観察されることを特徴とするのが好ましい。
(8)本発明の酸素キャリアでは、前記回折ピークは、前記X線回折プロファイルにおいて、2θが60~65°の範囲に観察されるのが好ましい。
(9)本発明の酸素キャリアでは、銅(Cu)と、前記Mとして亜鉛(Zn)を含み、かつ第2の元素を含有する金属酸化物を含むのが好ましい。
(10)本発明の酸素キャリアでは、前記第2の元素は、前記亜鉛(Zn)と、アルミニウム(Al)、ガドリニウム(Gd)、ケイ素(Si)、マンガン(Mn)、コバルト(Co)、イットリウム(Y)、セリウム(Ce)およびマグネシウム(Mg)からなる群より選択される少なくとも1種とを含むのが好ましい。
(11)本発明の酸素キャリアでは、前記金属酸化物において、前記銅(Cu)と前記第2の元素との合計に占める前記第2の元素のモル比率は10~90モル%であるのが好ましい。
(12)本発明の酸素キャリアでは、さらに前記金属酸化物を結合する結合剤を含むのが好ましい。
(13)本発明の酸素キャリアでは、前記結合剤の量が、前記酸素キャリア100質量部に対して70質量部以下であるのが好ましい。
(14)本発明の酸素キャリアでは、前記結合剤は、ゼオライト、Al、TiO、SiO、ZrOおよびMgOからなる群より選択される少なくとも1種であるのが好ましい。
(15)本発明の酸素キャリアは、二酸化炭素の還元により一酸化炭素を含むガスを生成する反応と、酸化された当該酸素キャリアを、水素を含む還元ガスにより還元する反応との別々の反応工程に使用されることが好ましい。
(16)本発明の酸素キャリアの製造方法は、本発明の酸素キャリアを製造する方法であって、
 前記銅(Cu)の塩および前記Mの塩を含有する原料水溶液と、アルカリ水溶液とを、水に滴下して混合液を得る第1の工程と、
 前記混合液中に生じた沈殿物を回収する第2の工程と、
 回収された前記沈殿物を500~800℃の焼成温度で焼成して、前記金属酸化物を得る第3の工程と、を有することを特徴とする。
(17)本発明の酸素キャリアの製造方法では、前記焼成温度の保持時間は1~24時間であることが好ましい。
(18)本発明の酸素キャリアの製造方法では、前記焼成温度までの昇温速度は0.5~20℃/分であることが好ましい。
(19)本発明のガスの製造方法は、本発明の酸素キャリアを、二酸化炭素を含む原料ガスと接触させることにより、前記二酸化炭素を還元して、一酸化炭素を含む生成ガスを製造することを特徴とする。
 本発明によれば、例えば、二酸化炭素を含む原料ガスから、効率よく一酸化炭素を含む生成ガスを製造することができる。また、本発明の酸素キャリアは、例えば、ケミカルルーピング法に利用可能である。
STEM-EDS分析によるマッピング測定で得られた画像である。
 以下、本発明の酸素キャリア、酸素キャリアの製造方法およびガスの製造方法について、好適実施形態に基づいて詳細に説明する。
 [酸素キャリア]
 本発明の酸素キャリアは、例えば、二酸化炭素を含む原料ガスと接触させることにより、二酸化炭素を還元して、一酸化炭素を含む生成ガスを製造する際に使用される。また、酸化された酸素キャリアに還元ガス、好適には水素を含む還元ガスを接触させることにより、酸素キャリアを還元(再生)することができる。
 この際、好ましくは、本発明の酸素キャリアを充填した反応管(反応容器)内に、原料ガスおよび還元ガスを交互に通過させることにより、酸素キャリアによる二酸化炭素の一酸化炭素への変換と、還元ガスによる酸化状態の酸素キャリアの再生とが行われる。
 本発明の酸素キャリアにおける金属酸化物は、可逆的な酸素欠損を生じ得る化合物であり、それ自体から還元により酸素元素が欠損するが、酸素元素が欠損した状態(還元状態)で、二酸化炭素と接触すると、二酸化炭素から酸素元素を奪い取って還元する作用を示す化合物のことを言う。
 本発明の酸素キャリアは、一般式:Cu1-x(M)で表される金属酸化物と、この金属酸化物を結合する結合剤とを含む。一般式:Cu1-x(M)において、Mは、ポーリングの電気陰性度(以下、単に「電気陰性度」とも記載する。)が1.3~2.3である元素である(以下、単に「元素M」とも記載する)。
 一般式:Cu1-x(M)で表される金属酸化物が、上記範囲の電気陰性度の元素Mを含むことにより、Cu-O-Mの結合が活性化されて、還元ガスとの接触により酸素元素がより効率よく離脱することにより酸素欠損が誘発され、格子欠陥が生成するとともに、この格子欠損の歪みにより二酸化炭素から酸素元素を奪い取り易くなるものと考えられる。
 また、単純金属酸化物またはその混合物は、原料ガスや還元ガス中に含まれる不純物を吸着し易く、安定性が低い。加えて、酸化と還元が交互に生じるケミカルループ法において、単純金属酸化物のみでは凝集が生じやすいために安定性が低い。これに対して、金属酸化物は、不純物を吸着し難く、二酸化炭素から酸素元素を奪い取る能力を長時間にわたって維持することができる。さらに、複数の金属元素が存在するため、凝集を防ぎ安定性が高い。その結果、酸素キャリアによる二酸化炭素からの一酸化炭素への変換効率を高めることができる。
 ここで、xは、正の実数であり、0.1~0.9であることが好ましく、0.3~0.7であることがより好ましい。この場合、金属酸化物において酸素欠損による格子欠陥がより生じ易くなるとともに、その格子欠損の歪みの程度が適度になり易い。
 また、yは、1~4の整数であり、1~3の整数であることが好ましく、1~2の整数であることがより好ましい。この場合、金属酸化物の安定性が向上し易い。
 なお、上記一般式:Cu1-x(M)は組成式であり、かかる一般式で表される金属酸化物は、複雑な金属酸化物の複合体の態様、特定の式で示される金属酸化物の混合物の態様、その他の態様のいずれをも包含しうる。
 元素Mの電気陰性度は、1.3~2.3であればよいが、1.3~1.9であることが好ましく、1.5~1.8であることがより好ましい。Cuの電気陰性度は1.90であるが、このCuの電気陰性度に近い電気陰性度の元素M、さらに、Cuの電気陰性度より低い電気陰性度の元素Mを選択することにより、Cu-O-Mの結合の活性化の程度を高め易い。
 元素Mは、第3周期~第6周期に属する元素のうちの少なくとも1種であることが好ましく、第3周期~第5周期に属する元素のうちの少なくとも1種であることがより好ましい。この場合、元素Mのイオン半径とCuのイオン半径とを近づけることができるため、安定性の高い金属酸化物を合成し易い。
 また、元素Mは、第2族~第14族に属する元素のうちの少なくとも1種であることが好ましく、第4族~第14族に属する元素のうちの少なくとも1種であることがより好ましく、第8族、第12族および第13族に属する元素のうちの少なくとも1種であることがさらに好ましい。これらの元素Mを選択することにより、金属酸化物(酸素キャリア)による二酸化炭素からの一酸化炭素への変換効率を特に高められることを本発明者らは知見している。
 以上のようなことから、元素Mとしては、例えば、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、インジウム(In)、スズ(Sn)、ハフ二ウム(Hf)、タンタル(Ta)、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、亜鉛(Zn)、ガドリニウム(Gd)、スカンジウム(Sc)等が挙げられ、これらの1種または2種以上を選択することができる。
 これらの中でも、元素Mは、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Ga、Zr、Nb、Ag、In、HfおよびTaからなる群より選択される少なくとも1種であることが好ましく、Mg、Al、Fe、In、およびZnからなる群より選択される少なくとも1種であることがより好ましい。
 前記酸化物において、銅と元素Mのモル比は9:1~1:9の範囲が好ましく、6:1~1:6の範囲がより好ましく、2.5:1~1:2.5の範囲がさらに好ましい。換言すれば、前記金属酸化物において、銅と元素Mとの合計に占める元素Mのモル比率は、10~90モル%であることが好ましく、15~85モル%であることがより好ましく、30~70モル%であることがさらに好ましい。このように十分な量の元素Mを含む金属酸化物では、Cu-O-Mの結合の活性化の程度をさらに高めることができる。
 本発明の酸素キャリアは、好適な態様の一つとして、銅(Cu)と、元素Mとして、亜鉛(Zn)を含む第2の元素とを含有する金属酸化物を含む。かかる金属酸化物は、酸化銅に元素Mが固溶されて結晶状態となっていてもよいが、酸化銅の結晶相(結晶粒界)と元素Mの酸化物の結晶相(結晶粒界)とを互いに近接して含む状態となっているのが好ましく、これらの結晶相(結晶粒界)同士が酸素元素を含む非晶相(不定形相)を介して結合された状態となっているのがより好ましい。この場合、適切な元素Mを選択することにより、上記作用がより発現しやすい。
 また、酸化銅のみでは、原料ガス(二酸化炭素)や還元ガス(水素)との吸着が起き難い。これに対して、上記金属酸化物は、原料ガスや還元ガスとの吸着が起き易く、二酸化炭素または水素との接触時間を長時間にわたって維持することができる。その結果、酸素キャリアによる二酸化炭素からの一酸化炭素への変換効率を高めることができる。
 Zn以外の元素Mとしては例えば上記したものが挙げられ、これらの1種または2種以上を選択することができる。中でも、Zn以外の元素Mは、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Gd、Ga、Zr、Nb、Ag、Hf、In、Ta、YおよびMgからなる群より選択される少なくとも1種であることが好ましい。
 以上のような条件の下、二酸化炭素からの一酸化炭素への変換効率を特に高め得る観点から、Zn以外の元素Mとしては、Al、Gd、Si、Mn、Co、Y、CeおよびMgからなる群より選択される少なくとも1種であることが好ましく、AlおよびGdからなる群より選択される少なくとも1種であることがより好ましい。本発明によれば、活性種として安価な金属元素である銅(Cu)を使用しつつも、適切な元素Mを選択することにより、二酸化炭素の一酸化炭素への変換効率が高く、かつ経済的に有利な酸素キャリアが得られる。また、かかる金属酸化物は、500℃以上の高温条件下における安定性をより高め易い。
 本発明の酸素キャリアでは、金属酸化物をX線回折法により測定したとき、X線回折プロファイルにおいて、半値幅が0.7°以下である回折ピークが少なくとも1つ観察されることが好ましい。ここで、本明細書では、回折ピークを、X線回折プロファイルにおいて、ピークのうち、その半値幅が1°以下のピークと定義する。なお、回折ピークの数は、元素Mの数に応じて増減する場合がある。
 金属酸化物のX線回折プロファイルでは、複数の回折ピークが観察されるが、特に、半値幅が0.7°以下である回折ピーク(以下、「特定回折ピーク」とも記載する。)が観察される。かかる特定回折ピークが観察されれば、金属酸化物中における各元素の酸化物の結晶性が高く、1次粒子が大きいと判断することができる。このため、500℃以上の高温条件下においても、焼成に伴う凝集が進行し難く、Cu-O-Mの結合の活性が高度に維持され、二酸化炭素からの一酸化炭素への変換効率が高い。
 特定回折ピークの半値幅は、0.7°以下であればよいが、0.1~0.7°であることが好ましく、0.2~0.4°であることがより好ましい。
 特定回折ピークは、X線回折プロファイルにおいて、2θが60~65°の範囲に観察されることが好ましく、61~63°の範囲に観察されることがより好ましい。かかる2θの範囲に観察される特定回折ピークは、各元素の酸化物の結晶格子面による回折であり、結晶性(特に、酸化銅の結晶性)の程度をより反映し易い。
 また、上記範囲に観察される特定回折ピークの数は、1つであってもよいが、複数であることが好ましく、2~4であることがより好ましい。この場合、金属酸化物中における各元素の酸化物の結晶性が十分に高いと判断することができる。また、金属酸化物中において、各酸化物の結晶相が均一に分散して存在するとも考えることができる。
 本発明の酸素キャリアは、金属酸化物のみで構成されてもよく、金属酸化物を結合する結合剤(担体)を含んでもよい。かかる結合剤を含むことにより、酸素キャリアを成形物とする際に、その形状を安定的に保持することができる。
 結合剤は、原料ガスや反応条件等に応じて変性し難いものであればよく、特に限定されない。結合剤の具体例としては、例えば、炭素材料(グラファイト、グラフェン等)、ゼオライト、モンモリロナイト、SiO、ZrO、TiO、V、MgO、Alまたはこれらを含む複合酸化物等が挙げられる。これらの中でも、結合剤は、ゼオライト、Al、TiO、SiO、ZrOおよびMgOからなる群より選択される少なくとも1種であることが好ましい。これらの結合剤は、金属酸化物の結合能に優れるためである。
 本発明の酸素キャリアが結合剤を含む場合であっても、その量は、酸素キャリア100質量部に対して、70質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることがさらに好ましく、10質量部以下であることが特に好ましい。また、結合剤の量は、酸素キャリア100質量部に対して、2質量部以上であることが好ましく、5質量部以上であることがより好ましい。
 酸素キャリアに含まれる結合剤の量を上記範囲とすることにより、酸素キャリアによる二酸化炭素の一酸化炭素への変換を促進すること、すなわち変換効率を十分にさらに高めることができる。また、酸素キャリアを成形物とした際の形状安定性(機械的強度)をより高めることもできる。
 酸素キャリアの充填密度は、1.1g/mL以下であることが好ましく、0.4~1g/mLであることがより好ましく、0.5~0.9g/mLであることがさらに好ましい。この充填密度が低過ぎると、ガスの通過速度が速くなり過ぎ、酸素キャリアと原料ガスおよび還元ガスとが接触する時間が減少する。その結果、酸素キャリアによる二酸化炭素の一酸化炭素への変換効率や、還元ガスによる酸化状態の酸素キャリアの再生効率が低下し易い。一方、この充填密度が高過ぎると、ガスの通過速度が遅くなり過ぎ、反応が進行し難くなったり、生成ガスを製造するのに長時間を要するようになったりする。
 酸素キャリアの細孔容積は、0.4cm/g以上であることが好ましく、1~30cm/gであることがより好ましく、5~20cm/gであることがさらに好ましい。この細孔容積が小さ過ぎると、原料ガスおよび還元ガスが酸素キャリアの内部にまで入り難くなる。その結果、酸素キャリアと原料ガスおよび還元ガスとの接触面積が減少し、酸素キャリアによる二酸化炭素の一酸化炭素への変換効率や、還元ガスによる酸化状態の酸素キャリアの再生効率が低下し易い。一方、この細孔容積を、上限値を超えて大きくしても、それ以上の効果の増大が期待できず、酸素キャリアの種類によっては機械的強度が低下する傾向を示す。
 酸素キャリアの形状としては特に限定されないが、例えば粒状が好ましい。粒状であれば、酸素キャリアの充填密度を上記範囲に調整し易い。
 ここで、粒状とは、粉末状、粒子状、塊状、ペレット状等を含む概念であり、その形態も球状、板状、多角状、破砕状、柱状、針状、鱗片状等のいずれでもよい。
 酸素キャリアの平均粒径は、0.1μm~5mmであることが好ましく、0.5μm~1mmであることがより好ましく、1μm~0.5mmであることがさらに好ましい。かかる平均粒径を有する酸素キャリアであれば、その充填密度が上記範囲になり易い。
 なお、本明細書において、平均粒径とは、電子顕微鏡で観察される一視野中の任意の200個の酸素キャリアの粒径の平均値を意味する。この際、「粒径」とは、酸素キャリアの輪郭線上の2点間の距離のうち最大の長さを意味する。なお、酸素キャリアが柱状である場合、その端面の輪郭線上の2点間の距離のうち最大の長さを「粒径」とする。また、平均粒径は、例えば、塊状などであり、一次粒子が凝集している場合には、二次粒子の平均粒径を意味する。
 酸素キャリアのBET比表面積は、1~500m/gであることが好ましく、3~450m/gであることがより好ましく、5~400m/gであることがさらに好ましい。BET比表面積が上記範囲内であることで、酸素キャリアによる二酸化炭素の一酸化炭素への変換効率を向上させ易くなる。
 また、本発明では、金属酸化物の格子欠損の歪みを十分に大きくすることができるため、低温(400℃程度)~高温(650℃程度)の広い範囲において、酸素キャリアの酸素容量を高い状態に維持することができる。すなわち、酸素キャリアは、広い温度範囲で二酸化炭素を一酸化炭素へ効率よく変換することができる。
 酸素キャリアの400℃における酸素容量は、1~40質量%であることが好ましく、2~30質量%であることがより好ましい。酸素キャリアの低温における酸素容量が上記範囲であれば、実稼働時の温度(650℃程度)においても酸素容量が十分に高いことを意味しており、二酸化炭素の一酸化炭素への変換効率が極めて高い酸素キャリアであると言える。
 [酸素キャリアの製造方法]
 次に、酸素キャリアの製造方法について説明する。
 金属酸化物は、例えば、共沈法、ゾル-ゲル法、固相法、水熱合成法等により合成することができる。
 金属酸化物は、一例として、例えば、次のようにして合成することができる。まず、金属酸化物を構成する複数種の元素(以下、「構成元素」とも記載する。)の塩を水に溶解して原料水溶液を調製する。次いで、この原料水溶液とアルカリ水溶液とを水に滴下して混合液を得る。そして、この混合液中で生じた沈殿物を回収した後、乾燥および焼成する。すなわち、本発明における金属酸化物は、いわゆる共沈法により、容易かつ確実に合成することができる。
[混合液調製工程(第1の工程)]
 まず、構成元素(銅および元素M)の塩を含有する原料水溶液と、アルカリ水溶液とを、水に滴下して混合液を得る。
 構成元素の塩としては、例えば、硝酸塩、硫酸塩、塩化物、水酸化物、炭酸塩またはこれらの複合物等が挙げられるが、これらの中でも硝酸塩であることが好ましい。また、構成元素の塩には、必要に応じて、水和物を使用してもよい。
 アルカリとしては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、アンモニア、尿素等が挙げられる。
 原料水溶液の水への滴下速度は、特に限定されないが、0.1~50mL/分であることが好ましく、1~25mL/分であることがより好ましい。かかる滴下速度で原料水溶液を滴下すれば、各構成元素を含む沈殿物が個別に生成され、凝集するのを防止して、銅および元素Mを含む沈殿物を十分な量で生成させることができる。
 原料水溶液の濃度およびアルカリ水溶液の濃度は、それぞれ特に限定されないが、0.1~5mol/Lであることが好ましく、0.25~2.5mol/Lであることがより好ましい。かかる濃度の水溶液を使用することによっても、各構成元素を含む沈殿物が個別に生成され、凝集するのを防止して、銅および元素Mを含む沈殿物を十分な量で生成させることができる。
 混合液の温度も、特に限定されないが、20~90℃であることが好ましく、40~70℃であることがより好ましい。かかる温度に調整することにより、銅および元素Mを含む沈殿物を円滑に生成させることができる。
 また、混合液のpHは、6.5~8.5であることが好ましく、6.6~7.7であることがより好ましく、6.7~7.3であることがさらに好ましい。かかる範囲に混合液のpHを調整することにより、銅および元素Mを含む沈殿物を迅速に生成させることができる。
[金属酸化物生成工程(第2の工程)]
 次に、混合液中に生じた沈殿物を、例えば、濾過により回収する。
 銅および元素Mを含む沈殿物の生成(熟成)を促すべく、所定の時間、混合液を攪拌することが好ましい。この場合。混合液の攪拌速度は、50rpm以上であることが好ましく、75~100rpmであることがより好ましい。また、攪拌の時間は、0.5~5時間であることが好ましく、1~3時間であることがより好ましい。
 [乾燥工程]
 次に、回収した沈殿物を乾燥する。
 沈殿物の乾燥は、好ましくは20~200℃、より好ましくは50~150℃の温度で、好ましくは0.5~20時間、より好ましくは1~15時間の時間で行うとよい。
 [焼成工程(第3の工程)]
 次に、乾燥後の沈殿物を焼成する。これにより金属酸化物が得られる。
 沈殿物の焼成は、好ましくは300~1200℃、より好ましくは350~800℃、さらに好ましくは500~800℃、特に好ましくは550~750℃での温度(焼成温度)で、好ましくは1~24時間、より好ましくは1.5~20時間の時間(上記焼成温度の保持時間)で行うとよい。かかる焼成条件で沈殿物の焼成を行えば、500℃以上の高温条件下においても安定性に優れる金属酸化物が得られる。
 上記焼成温度に到達するまでは、昇温速度0.5~20℃/分、好ましくは昇温速度1~20℃/分、より好ましくは昇温速度2~10℃/分で昇温するとよい。これにより、酸化銅の結晶相の成長を促進させるとともに、金属酸化物の割れを回避することもできる。以上のような条件で沈殿物の焼成を行うことで、Cu-O-Mの存在比が少なくなるのを防止しつつ、酸化銅の結晶相の結晶化度をより高めることができる。
 この段階で得られた金属酸化物をそのまま、または、粉砕(必要に応じて分級)して、本発明の酸素キャリアとしてもよく、次の成形工程を経て得られた成形体を、本発明の酸素キャリアとしてもよい。
 次に、得られた金属酸化物(粒子または塊状物)を、必要に応じて粉砕した後、結合剤の粒子と混合して混合物を得る。その後、混合物を焼成して焼結体を得、この焼結体を粉砕した後、必要に応じて分級する。これにより、金属酸化物を結合剤で結合してなる酸素キャリアが得られる。
 混合物の焼成は、好ましくは300~1200℃、より好ましくは350~800℃での温度で、好ましくは1~24時間、より好ましくは1.5~20時間の時間で行うとよい。
 焼結体の粉砕は、例えば、ジェットミル、ボールミル、ビーズミル、ロッドミル等を使用して行うことができる。
 [酸素キャリアの使用方法]
 本発明の酸素キャリアは、上述したように、例えば、ケミカルルーピング法で利用することができる。また、本発明の酸素キャリアは、上述したように、二酸化炭素を還元する用途に使用することができる。
 より具体的には、二酸化炭素の還元反応と、酸素キャリアの還元反応とを行うとよく、酸素キャリアは、二酸化炭素の還元反応と酸素キャリアの還元反応との間で循環するように使用することが好ましい。なお、酸素キャリアの還元反応では、他の還元剤、好適には水素を含む還元ガスを使用する。
 また、本発明の酸素キャリアは、いわゆる逆水性ガスシフト反応に使用することが好ましい。逆水性ガスシフト反応とは、二酸化炭素と水素とから、一酸化炭素と水とを生成する反応である。逆水性ガスシフト反応は、ケミカルルーピング法を適用する場合、酸素キャリアの還元反応(第1プロセス)と二酸化炭素の還元反応(第2プロセス)とに分割して行われ、酸素キャリアの還元反応が下記式(A)に示す反応となり、二酸化炭素の還元反応が下記式(B)で示す反応となる。
 H(ガス)+Cu1-x(M)(固体)
     →HO(ガス)+Cu1-x(M)y-n(固体)  (A)
 CO(ガス)+Cu1-x(M)y-n(固体)
     →CO(ガス)+Cu1-x(M)        (B)
 なお、式(A)および(B)において、nは、通常2より小さい値であり、0.05~1.7であることが好ましく、0.1~1.5であることがより好ましく、0.15~1.3であることがさらに好ましい。
 すなわち、酸素キャリアの還元反応では、還元ガスの一種である水素が酸化されて水が生成される。また、二酸化炭素の還元反応では、二酸化炭素が還元されて一酸化炭素が生成される。
 酸素キャリアの還元反応における反応温度は、還元反応が進行できる温度であればよいが、300℃以上であることが好ましく、400℃以上であることがより好ましく、500℃以上であることがさらに好ましく、550℃以上であることが特に好ましい。かかる温度範囲で、効率的な酸素キャリアの還元反応を進行させることができる。
 この反応温度の上限は、850℃以下であることが好ましく、750℃以下であることがより好ましく、700℃以下であることがさらに好ましい。反応温度の上限を上記範囲に設定することにより、経済性の向上を図ることができる。
 また、二酸化炭素の還元反応における反応温度は、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましい。かかる温度範囲で、効率的な二酸化炭素の還元反応を進行させることができる。
 この反応温度の上限は、1000℃以下であることが好ましく、850℃以下であることがより好ましく、700℃以下であることがさらに好ましく、650℃以下であることが特に好ましい。酸素キャリアは、低温下でも高い効率で二酸化炭素の一酸化炭素への還元反応を行うことができるので、二酸化炭素の還元反応を比較的低温に設定することができる。また、反応温度の上限を上記範囲に設定することにより、廃熱活用が容易になるばかりでなく、更なる経済性の向上を図ることができる。
 なお、本発明では、二酸化炭素の還元反応で得られる還元物は、一酸化炭素以外の物質であってもよく、具体的にはメタンが挙げられる。上記二酸化炭素の還元反応で得られた一酸化炭素等の還元物は、さらに微生物発酵等により有機物質等に変換されることが好ましい。微生物発酵としては、嫌気性発酵が挙げられる。得られる有機物質としては、メタノール、エタノール、酢酸、ブタノール、これらの誘導体、またはこれらの混合物、イソプレン等のC5以上の化合物等が挙げられる。
 さらに、一酸化炭素等の還元物は、金属酸化物等により、従来石油化学により合成される炭化水素、アルコールを含むC1からC20までの化合物に変換されてもよい。得られる具体的な化合物としては、メタン、エタン、プロピレン、メタノール、エタノール、プロパノール、アセトアルデヒド、ジエチルエーテル、酢酸、酪酸、炭酸ジエチル、ブタジエン等が挙げられる。
 [酸素キャリアの特性]
 本発明の酸素キャリアは、次のような特性を有することが好ましい。
 すなわち、流路内に圧力計を配置した内径8mmのステンレス鋼製の反応管内に、酸素キャリアを40cmの高さで充填し、濃度100体積%の窒素ガスを30mL/分で通過させたとき、10分間での圧力上昇が0.03MPaG以下であることが好ましく、0.01MPaG以下であることがより好ましい。
 かかる特性を示す酸素キャリアは、充填密度および細孔容積が上記範囲を満たすと判断することができ、二酸化炭素の一酸化炭素への変換効率を十分に高めることができる。
 以上、本発明の酸素キャリア、酸素キャリアの製造方法およびガスの製造方法について説明したが、本発明は、これらに限定されるものではない。
 例えば、本発明の酸素キャリア、酸素キャリアの製造方法およびガスの製造方法は、上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
1.酸素キャリアの製造
 (実施例1)
 まず、原料として、硝酸銅(II)三水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)と、硝酸マグネシウム六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)とを用意した。
 次に、この原料を蒸留水に溶解して、1mol/Lの原料水溶液(A液)を調製した。なお、A液中におけるCuとMgとのモル比が0.3:0.7となるようにした。
 また、炭酸ナトリウムを蒸留水に溶解して、1mol/Lの炭酸ナトリウム水溶液(B液)を調製した。
 次に、A液およびB液を、70℃の蒸留水20mLを収容した容器に内に同時に滴下して、混合液とした。なお、A液の滴下速度は、10mL/分とし、生成する沈殿物が凝集しないように、混合液を攪拌した。
 また、混合液の温度を70℃に維持するとともに、pHが7.0となるように、B液の滴下速度も調節した。
 その後、混合液を70℃に維持しつつ攪拌を継続し、3時間熟成を行った。熟成終了後、沈殿物を濾過により回収し、十分に水洗した。
 次いで、回収した沈殿物を乾燥機により120℃で12時間乾燥した後、700℃で3時間焼成して、金属酸化物を得た。
 次に、金属酸化物をボールミルにより粉砕して、金属酸化物のみからなる粒状の酸素キャリア(平均粒径:0.5μm)を得た。
 この金属酸化物の粒子に対して、RINT-TTRIII装置(CuKα放射線、50kV、300mA)を使用して、X線回折(XRD)測定を行った。
 その結果、得られた酸素キャリア(金属酸化物)は、酸化銅(II)および酸化マグネシウム(II)に由来する特徴的な回折ピークが確認された。また、酸素キャリア(金属酸化物)のICP測定によりCuとMgとのモル比が0.3:0.7となっていることを確認した。
 (実施例2)
 A液中におけるCuとMgとのモル比が0.7:0.3となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、上記と同様のXRD測定の結果、酸素キャリア(金属酸化物)は、酸化銅(II)および酸化マグネシウム(II)に由来する特徴的なピークが確認された。また、酸素キャリア(金属酸化物)のICP測定によりCuとMgとのモル比が0.7:0.3となっていることを確認した。
 (実施例3)
 硝酸マグネシウム六水和物に代えて、硝酸マンガン六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとMnとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとMnとのモル比が0.3:0.7となっていることを確認した。
 (実施例4)
 硝酸マグネシウム六水和物に代えて、塩化ニオブ(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとNbとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとNbとのモル比が0.3:0.7となっていることを確認した。
 (実施例5)
 硝酸マグネシウム六水和物に代えて、硝酸アルミニウム九水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとAlとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとAlとのモル比が0.3:0.7となっていることを確認した。
 (実施例6)
 A液中におけるCuとAlとのモル比が0.5:0.5となるようにした以外は、実施例5と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとAlとのモル比が0.5:0.5となっていることを確認した。
 (実施例7)
 硝酸マグネシウム六水和物に代えて、硝酸鉄九水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとFeとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとFeとのモル比が0.3:0.7となっていることを確認した。
 (実施例8)
 A液中におけるCuとFeとのモル比が0.7:0.3となるようにした以外は、実施例5と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとFeとのモル比が0.7:0.3となっていることを確認した。
 (実施例9)
 硝酸マグネシウム六水和物に代えて、硝酸コバルト六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとCoとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとCoとのモル比が0.3:0.7となっていることを確認した。
 (実施例10)
 A液中におけるCuとCoとのモル比が0.7:0.3となるようにした以外は、実施例5と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとCoとのモル比が0.7:0.3となっていることを確認した。
 (実施例11)
 硝酸マグネシウム六水和物に代えて、硝酸ニッケル六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとNiとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとNiとのモル比が0.3:0.7となっていることを確認した。
 (実施例12)
 硝酸マグネシウム六水和物に代えて、硝酸亜鉛六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)を使用し、A液中におけるCuとZnとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.3:0.7となっていることを確認した。
 (実施例13)
 まず、原料として、硝酸銅(II)三水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)と、硝酸亜鉛六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)とを用意した。
 次に、この原料をエタノールに溶解して、1mol/Lの原料水溶液(A液)を調製した。なお、A液中におけるCuとZnとのモル比が0.5:0.5となるようにした。
 次に、このA液にゼオライト粒子(東ソーゼオライト社製、「330HUA」)を添加した。なお、ゼオライト粒子の添加量は、生成する金属酸化物とゼオライト粒子との合計(酸素キャリア)100質量部に対して50質量部となるようにした。
 その後、ゼオライト粒子を含むA液からエバポレーターを用いてエタノールを留去して、残渣を回収した。
 次いで、回収した残渣を乾燥機により120℃で12時間乾燥した後、700℃で3時間焼成して、金属酸化物を担持(結合)したゼオライト粒子で構成される粒状の酸素キャリア(平均粒径:0.5μm)を得た。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.5:0.5となっていることを確認した。
 (実施例14)
 硝酸マグネシウム六水和物に代えて、硝酸インジウム三水和物(富士フイルム和光純薬工業株式会社製、純度:97.0%)を使用し、A液中におけるCuとInとのモル比が0.1:0.9となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとInとのモル比が0.1:0.9となっていることを確認した。
 (実施例15)
 硝酸マグネシウム六水和物に代えて、硝酸インジウム三水和物(富士フイルム和光純薬工業株式会社製、純度:97.0%)を使用し、A液中におけるCuとInとのモル比が0.3:0.7となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとInとのモル比が0.3:0.7となっていることを確認した。
 (実施例16)
 硝酸マグネシウム六水和物に代えて、硝酸インジウム三水和物(富士フイルム和光純薬工業株式会社製、純度:97.0%)を使用し、A液中におけるCuとInとのモル比が0.7:0.3となるようにした以外は、実施例1と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとInとのモル比が0.7:0.3となっていることを確認した。
 (比較例1)
 まず、酸化銅(II)(富士フイルム和光純薬工業株式会社製、純度:99.9%)と酸化カルシウム(富士フイルム和光純薬工業株式会社製、純度:99.0%)とを混合して混合物を得た。なお、酸化銅(II)と酸化カルシウムとを、CuとCaとのモル比が0.5:0.5となるように混合した。
 次いで、この混合物をボールミルにより1時間粉砕しつつ混合した後、乾燥した。
 その後、粉砕後の混合物をメノウ乳鉢で30分間粉砕した後、700℃で3時間焼成して、金属酸化物を得た。
 次に、金属酸化物をボールミルにより粉砕して、金属酸化物のみからなる粒状の酸素キャリア(平均粒径:0.5μm)を得た。なお、酸素キャリア(金属酸化物)のICP測定によりCuとCaとのモル比が0.5:0.5となっていることを確認した。
 (比較例2)
 まず、硝酸銅(II)三水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)を2.7g計量し、22mLの蒸留水に溶解して、硝酸銅(II)水溶液を得た。
 次いで、この硝酸銅(II)水溶液に25%アンモニア水溶液を滴下し、pHを13に調整した。なお、このとき、硝酸銅(II)水溶液を攪拌しつつ、滴下速度を15mL/分とし、室温でアンモニウム水溶液を滴下した。
 一方、タングステン酸ナトリウム二水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)を1.41g計量し、10mLの蒸留水溶解して、タングステン酸ナトリウム水溶液を得た。
 次に、硝酸銅(II)水溶液にタングステン酸ナトリウム水溶液を滴下した。なお、このとき、硝酸銅(II)水溶液を攪拌しつつ、滴下速度を15ml/分とし、室温でタングステン酸ナトリウム水溶液を滴下して、混合液を得た。
 滴下終了後、混合液を90℃まで昇温し、その温度で4時間撹拌した。放冷後、混合液をろ紙(有限会社桐山製作所社製、「No.4、95φm/m」)を用いて吸引ろ過し、沈殿物を回収した後、純水で洗浄した。
 次いで、回収した沈殿物を乾燥機により120℃で12時間乾燥した後、600℃で4時間焼成して、金属酸化物を得た。
 次に、金属酸化物をボールミルにより粉砕して、金属酸化物のみからなる粒状の酸素キャリア(平均粒径:0.5μm)を得た。なお、酸素キャリア(金属酸化物)のICP測定によりCuとWとのモル比が0.3:0.7となっていることを確認した。
 (比較例3)
 ゼオライト粒子に代えて、α-アルミナ粒子(富士フイルム和光純薬工業株式会社製、平均粒径:0.5μm)を使用し、α-アルミナ粒子の添加量を、生成する金属酸化物とα-アルミナ粒子との合計(酸素キャリア)100質量部に対して90質量部となるようにした以外は、実施例13と同様にして、金属酸化物を担持したα-アルミナ粒子で構成される粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、金属酸化物のICP測定によりCuとZnとのモル比が0.5:0.5となっていることを確認した。
2.X線回折測定
 X線回折測定を行う前に、酸素キャリアのサンプル調製を行った。
 まず、100mg程度の酸素キャリアを乳鉢に計り取り、乳棒を用いてすりつぶした。その後、酸素キャリアを試料板の試料充填部の穴に均一に充填し、試料板の表面と酸素キャリアによる表面が同一面になるように調整した。
 X線回折測定には、試料水平型多目的X線回折装置(株式会社BRUKER社製 「D8 DISCOVER」)を使用した。
 対陰極には、純銅を用いた銅管球を用い,CuKαの特性X線(波長(λ)=1.5418Å(0.15418nm))を回折に使用した。
 回折計は、発散スリットを0.5~1°、発散縦制限スリットを10mm、散乱スリットを1~2°、受光スリット0.15~0.3mmで適宜選択される。
 その後、管電圧40kV、管電流を20mAの条件で、調製した酸素キャリアのサンプルに対してX線を照射した。
 なお、ゴニオメーターの走査角度を10~80°の範囲に設定し、走査速度は0.1~0.5°/分の間で適宜測定を行った。積算回数2回以上の任意の回数で測定を行った。
 測定終了後、得られたデータの解析を行った。データをExcel(登録商標)等で横軸角度、縦軸強度(cps)としてグラフ(X線回折プロファイル)を表示し、回折ピークの有無を確認した。グラフにおいて、ピークの強度が最も高い値を頂点とし、頂点の角度と頂点の強度値の半分の強度値を示す箇所の角度の差を算出し、これを半値幅とした。そして、半値幅が1°以下のピークを回折ピークとした。
 なお、ピークの左右で半値幅が異なる場合、大きい方を半値幅として採用した。ピークが複数ある場合は、それぞれの半値幅を算出した。
 また、ピークが重なっていて半値幅が算出できない場合は、最小二乗法等を用いたピークフィッテイングを行ってピークを分離して、半値幅を算出した。
 なお、X線回折測定は、各サンプルについて3回行い、その平均値を測定値とした。
 そして、半値幅が0.7°以下である回折ピークを特定し、そのピーク位置を確認した。
3.酸素キャリアの特性評価(変換効率)
 マイクロリアクターと、マイクロリアクターに直結するガスクロマトグラフ質量分析計(GC/MS)とを備える迅速触媒評価システム(フロンティア・ラボ株式会社製、「シングルμ-リアクターRx-3050SR」)を用いて、以下の手順により酸素キャリアの特性を評価した。
 まず、マイクロリアクターで酸素キャリアの特性評価を行うにあたり、酸素キャリアを賦活化するために、以下のプロセスを行った。内径3mm、長さ78mmの石英製の反応管内に、0.2gの酸素キャリアを充填した。その後、20mL/分の流量でヘリウムガスを流しつつ、40℃/分の昇温速度で昇温させ、20分間加熱した。
 次に、マイクロリアクターの反応管に、水素ガス(還元ガス)を流量20mL/分で5分間流して酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、マイクロリアクターの排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した後、二酸化炭素ガスを流量20mL/分で5分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、マイクロリアクターの排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した。
 次に、本試験のため、以下のプロセスを行った。マイクロリアクターの反応管に、水素ガス(還元ガス)を流量5mL/分で5分間流して、酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、マイクロリアクターの排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した後、二酸化炭素ガスを流量5mL/分で5分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、マイクロリアクターの排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 なお、以上のプロセスでは、いずれのガスを流す際にも、酸素キャリアの温度を650℃に維持するとともに、大気圧条件で行った。
 酸素キャリアによる二酸化炭素の一酸化炭素への変換効率は、次の式により計算した。
 なお、変換効率は、反応管内への二酸化炭素ガスの流通を開始した後、1分間の平均変換効率である。
 XCO(%)=nCO,out/(nCO2,in)×100
 上記式中、nは、原料ガスまたは生成ガス中の二酸化炭素または一酸化炭素のモル分率である。
 また、反応の選択性は100%なので、総nCO2=nCO2,in+nCO,outである。
 なお、ガスクロマトグラフ質量分析計における測定条件は、以下の通りである。
  カラム温度:200℃
  インジェクション温度:200℃
  検出器温度:250℃
  カラム:EGAチューブ(L:2.5m、φ(内径):0.15mm、t:0mm)
  カラム流量:1.00mL/分
  スプリット比:250
  パージ流量:3.0mL/分
 これらの結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 各実施例の酸素キャリアは、二酸化炭素の一酸化炭素への変換効率が高かった。また、酸素キャリアを構成する元素M(ドープ金属元素)の種類および量、結合剤の量を変更することにより、二酸化炭素の一酸化炭素への変換効率を調整することができた。
 これに対して、各比較例の酸素キャリアは、二酸化炭素の一酸化炭素への変換効率が低かった。
4.酸素キャリアの製造
 (実施例17)
 まず、原料として、硝酸銅(II)三水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)と、硝酸亜鉛六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)とを用意した。
 次に、この原料を蒸留水に溶解して、1mol/Lの原料水溶液(A液)を調製した。なお、A液中におけるCuとZnとのモル比が0.7:0.3となるようにした。
 また、炭酸ナトリウムを蒸留水に溶解して、1mol/Lの炭酸ナトリウム水溶液(B液)を調製した。
 次に、A液およびB液を、70℃の蒸留水20mLを収容した容器に内に同時に滴下して、混合液とした。なお、A液の滴下速度は、10mL/分とし、生成する沈殿物が凝集しないように、混合液を攪拌した。
 また、混合液の温度を70℃に維持するとともに、pHが7.0となるように、B液の滴下速度も調節した。
 その後、混合液を70℃に維持しつつ50rpm以上の速度での攪拌を継続し、3時間熟成を行った。熟成終了後、沈殿物を濾過により回収し、十分に水洗した。
 次いで、回収した沈殿物を乾燥機により120℃で12時間乾燥した後、700℃で3時間焼成して、金属酸化物を得た。
 次に、金属酸化物をボールミルにより粉砕して、金属酸化物のみからなる粒状の酸素キャリア(平均粒径:0.5μm)を得た。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.7:0.3となっていることを確認した。
 (実施例18)
 A液中におけるCuとZnとのモル比が0.5:0.5となるようにした以外は、実施例17と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.5:0.5となっていることを確認した。
 (実施例19)
 A液中におけるCuとZnとのモル比が0.3:0.7となるようにした以外は、実施例17と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.3:0.7となっていることを確認した。
 (実施例20)
 硝酸亜鉛六水和物の一部を硝酸アルミニウム九水和物(富士フイルム和光純薬工業株式会社製、純度:98.0%)に代え、A液中におけるCuとZnとAlとのモル比が0.5:0.17:0.33となるようにした以外は、実施例17と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとAlとのモル比が0.5:0.17:0.33となっていることを確認した。
 (実施例21)
 硝酸亜鉛六水和物の一部を硝酸ガドリニウム六水和物(富士フイルム和光純薬工業株式会社製、純度:99.5%)に代え、A液中におけるCuとZnとGdとのモル比が0.5:0.17:0.33となるようにした以外は、実施例17と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとGdとのモル比が0.5:0.17:0.33となっていることを確認した。
 (実施例22)
 まず、原料として、硝酸銅(II)三水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)と、硝酸亜鉛六水和物(富士フイルム和光純薬工業株式会社製、純度:99.0%)とを用意した。
 次に、この原料をエタノールに溶解して、1mol/Lの原料水溶液(A液)を調製した。なお、A液中におけるCuとZnとのモル比が0.5:0.5となるようにした。
 次に、このA液にゼオライト粒子(東ソーゼオライト社製、「330HUA」)を添加した。なお、ゼオライト粒子の添加量は、生成する金属酸化物とゼオライト粒子との合計(酸素キャリア)100質量部に対して50質量部となるようにした。
 その後、ゼオライト粒子を含むA液からエバポレーターを用いてエタノールを留去して、残渣を回収した。
 次いで、回収した残渣を乾燥機により120℃で12時間乾燥した後、700℃で3時間焼成して、金属酸化物を担持(結合)したゼオライト粒子で構成される粒状の酸素キャリア(平均粒径:0.5μm)を得た。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.5:0.5となっていることを確認した。
 (実施例23)
 焼成温度を900℃とした以外は、実施例17と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.7:0.3となっていることを確認した。
 (比較例4)
 焼成温度を400℃とした以外は、実施例17と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとのモル比が0.7:0.3となっていることを確認した。
 (比較例5)
 焼成温度を400℃とした以外は、実施例20と同様にして、粒状の酸素キャリア(平均粒径:0.5μm)を製造した。なお、酸素キャリア(金属酸化物)のICP測定によりCuとZnとAlとのモル比が0.5:0.17:0.33となっていることを確認した。
5.X線回折測定
 実施例17~22、比較例4~5で得た酸素キャリアについて、上記2.と同様にしてX線回折測定を行い、X線回折プロファイルより回折ピークと半値幅を算出した。
6.酸素キャリアの特性評価(変換効率)
 実施例17~22、比較例4~5で得た酸素キャリアについて、上記3.と同様の迅速触媒評価システムを用いて、上記3.とは異なる条件で、以下の手順により酸素キャリアの特性を評価した。
 まず、マイクロリアクターで酸素キャリアの特性評価を行うにあたり、酸素キャリアを賦活化するために、以下のプロセスを行った。内径3mm、長さ78mmの石英製の反応管内に、0.2gの酸素キャリアを充填した。その後、20mL/分の流量でヘリウムガスを流しつつ、40℃/分の昇温速度で昇温させ、20分間加熱した。
 次に、マイクロリアクターの反応管に、水素ガス(還元ガス)を流量20mL/分で5分間流して酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、マイクロリアクターの排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した後、二酸化炭素ガスを流量20mL/分で5分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、マイクロリアクターの排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した。
 次に、本試験のため、以下のプロセスを行った。マイクロリアクターの反応管に、水素ガス(還元ガス)を流量30mL/分で20分間流して、酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、マイクロリアクターの排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/分で5分間流した後、二酸化炭素ガスを流量3mL/分で20分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、マイクロリアクターの排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 なお、以上のプロセスでは、いずれのガスを流す際にも、酸素キャリアの温度を550℃に維持するとともに、大気圧条件で行った。
 酸素キャリアによる二酸化炭素の一酸化炭素への変換効率を、上記3.と同様にして計算した。ガスクロマトグラフ質量分析計における測定条件も上記3.と同様である。
 これらの結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
7.酸素キャリア中における元素の分布状態の確認
 実施例17、実施例23および比較例4で得られた酸素キャリアについて、透過電子顕微鏡(HD2700)を使用して、STEM-EDS分析によるマッピング測定を行った。
 その結果を図1に示す。
 図1に示すように、比較例4(400℃)では、各元素の分布状態が疎であり、実施例17(700℃)では、各元素の分布状態が適度であり、実施例23(900℃)では、各元素の分布状態が密であった。この分布状態の違いにより、実施例17、実施例23、比較例4の順に、二酸化炭素の一酸化炭素への変換効率が低下することが確認された。
 本発明の酸素キャリアによれば、例えば、二酸化炭素を含む原料ガスから、効率よく一酸化炭素を含む生成ガスを製造することができる。また、本発明の酸素キャリアは、例えばケミカルルーピング法に利用可能であるので、二酸化炭素を有価物質に変換して再利用することによって、炭素循環社会の実現に寄与できる。

 

Claims (19)

  1.  Cu1-x(M)(ただし、Mは、ポーリングの電気陰性度が1.3~2.3である元素であり、xは、正の実数を示し、yは、1~4の整数を示す。)で表される金属酸化物を含む酸素キャリア。
  2.  前記Mの電気陰性度は1.3~1.9である、請求項1に記載の酸素キャリア。
  3.  前記Mは第3周期~第6周期に属する元素のうちの少なくとも1種である、請求項1または2に記載の酸素キャリア。
  4.  前記Mは第2族~第14族に属する元素のうちの少なくとも1種である、請求項1~3のいずれか1項に記載の酸素キャリア。
  5.  前記Mはマグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、ニオブ(Nb)、銀(Ag)、インジウム(In)、ハフ二ウム(Hf)およびタンタル(Ta)からなる群より選択される少なくとも1種である、請求項1~4のいずれか1項に記載の酸素キャリア。
  6.  前記xは0.1~0.9である、請求項1~5のいずれか1項に記載の酸素キャリア。
  7.  前記金属酸化物をX線回折法により測定したとき、X線回折プロファイルにおいて、半値幅が0.7°以下である回折ピークが少なくとも1つ観察されることを特徴とする、請求項1~6のいずれか1項に記載の酸素キャリア。
  8.  前記回折ピークは、前記X線回折プロファイルにおいて、2θが60~65°の範囲に観察される、請求項1~7のいずれか1項に記載の酸素キャリア。
  9.  銅(Cu)と、前記Mとして亜鉛(Zn)を含み、かつ第2の元素を含有する金属酸化物を含む、請求項1~8のいずれか1項に記載の酸素キャリア。
  10.  前記第2の元素は、前記亜鉛(Zn)と、アルミニウム(Al)、ガドリニウム(Gd)、ケイ素(Si)、マンガン(Mn)、コバルト(Co)、イットリウム(Y)、セリウム(Ce)およびマグネシウム(Mg)からなる群より選択される少なくとも1種とを含む、請求項1~9のいずれか1項に記載の酸素キャリア。
  11.  前記金属酸化物において、前記銅(Cu)と前記第2の元素との合計に占める前記第2の元素のモル比率は10~90モル%である、請求項1~10のいずれか1項に記載の酸素キャリア。
  12.  さらに前記金属酸化物を結合する結合剤を含む、請求項1~11のいずれか1項に記載の酸素キャリア。
  13.  前記結合剤の量が、前記酸素キャリア100質量部に対して70質量部以下である、請求項12に記載の酸素キャリア。
  14.  前記結合剤は、ゼオライト、Al、TiO、SiO、ZrOおよびMgOからなる群より選択される少なくとも1種である、請求項12または13に記載の酸素キャリア。
  15.  前記酸素キャリアは、二酸化炭素の還元により一酸化炭素を含むガスを生成する反応と、酸化された当該酸素キャリアを、水素を含む還元ガスにより還元する反応との別々の反応工程に使用される、請求項1~14のいずれか1項に記載の酸素キャリア。
  16.  請求項1~15のいずれか1項に記載の酸素キャリアを製造する方法であって、
     前記銅(Cu)の塩および前記Mの塩を含有する原料水溶液と、アルカリ水溶液とを、水に滴下して混合液を得る第1の工程と、
     前記混合液中に生じた沈殿物を回収する第2の工程と、
     回収された前記沈殿物を500~800℃の焼成温度で焼成して、前記金属酸化物を得る第3の工程と、を有することを特徴とする酸素キャリアの製造方法。
  17.  前記焼成温度の保持時間は1~24時間である、請求項16に記載の酸素キャリアの製造方法。
  18.  前記焼成温度までの昇温速度は0.5~20℃/分である、請求項16または17に記載の酸素キャリアの製造方法。
  19.  請求項1~15のいずれか1項に記載の酸素キャリアを、二酸化炭素を含む原料ガスと接触させることにより、前記二酸化炭素を還元して、一酸化炭素を含む生成ガスを製造することを特徴とするガスの製造方法。

     
PCT/JP2021/034706 2020-09-24 2021-09-22 酸素キャリア、酸素キャリアの製造方法およびガスの製造方法 WO2022065339A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021350268A AU2021350268A1 (en) 2020-09-24 2021-09-22 Oxygen carrier, method for producing oxygen carrier, and method for producing gas
JP2022552016A JPWO2022065339A1 (ja) 2020-09-24 2021-09-22
EP21872468.0A EP4219403A1 (en) 2020-09-24 2021-09-22 Oxygen carrier, method for producing oxygen carrier, and method for producing gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020159852 2020-09-24
JP2020-159853 2020-09-24
JP2020159853 2020-09-24
JP2020-159852 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022065339A1 true WO2022065339A1 (ja) 2022-03-31

Family

ID=80845466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034706 WO2022065339A1 (ja) 2020-09-24 2021-09-22 酸素キャリア、酸素キャリアの製造方法およびガスの製造方法

Country Status (4)

Country Link
EP (1) EP4219403A1 (ja)
JP (1) JPWO2022065339A1 (ja)
AU (1) AU2021350268A1 (ja)
WO (1) WO2022065339A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920279A (zh) * 2022-05-09 2022-08-19 西南石油大学 一种氧载体用于低温氧化甲烷制氢的制备方法与应用
CN116532130A (zh) * 2023-07-04 2023-08-04 潍坊学院 多金属复合载氧体、其制备方法及其在丁烷脱氢制备丁烯中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110207069A1 (en) * 2008-10-10 2011-08-25 Arnold Lambert REDOX MASSES HAVING A SPINEL TYPE STRUCTURE AxA'x,ByB'y,O4 AND USE IN A CHEMICAL LOOPING COMBUSTION PROCESS
WO2014155116A1 (en) * 2013-03-26 2014-10-02 Gas Recovery And Recycle Limited Materials for use in chemical looping combustion process
US9492809B2 (en) 2009-06-17 2016-11-15 Johnson Matthey Plc Carbon oxides conversion process
US9540236B2 (en) 2011-05-11 2017-01-10 Chinook End-Stage Recycling Limited Synthesis gas processing and system using copper catalyst in two step reactions at 475-525° C. and 250-290° C.
KR101889654B1 (ko) * 2017-03-27 2018-08-20 영남대학교 산학협력단 다양한 지지체를 포함하는 Cu계 금속산화물복합체 산소공여입자, 이를 이용한 매체순환식 연소 방법
CN110553275A (zh) * 2019-07-29 2019-12-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种用于密闭体系的消氢器及消氢方法
KR20200055939A (ko) * 2018-11-14 2020-05-22 전북대학교산학협력단 케미컬 루핑 연소에 의한 일산화탄소의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110207069A1 (en) * 2008-10-10 2011-08-25 Arnold Lambert REDOX MASSES HAVING A SPINEL TYPE STRUCTURE AxA'x,ByB'y,O4 AND USE IN A CHEMICAL LOOPING COMBUSTION PROCESS
US9492809B2 (en) 2009-06-17 2016-11-15 Johnson Matthey Plc Carbon oxides conversion process
US9540236B2 (en) 2011-05-11 2017-01-10 Chinook End-Stage Recycling Limited Synthesis gas processing and system using copper catalyst in two step reactions at 475-525° C. and 250-290° C.
WO2014155116A1 (en) * 2013-03-26 2014-10-02 Gas Recovery And Recycle Limited Materials for use in chemical looping combustion process
KR101889654B1 (ko) * 2017-03-27 2018-08-20 영남대학교 산학협력단 다양한 지지체를 포함하는 Cu계 금속산화물복합체 산소공여입자, 이를 이용한 매체순환식 연소 방법
KR20200055939A (ko) * 2018-11-14 2020-05-22 전북대학교산학협력단 케미컬 루핑 연소에 의한 일산화탄소의 제조방법
CN110553275A (zh) * 2019-07-29 2019-12-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种用于密闭体系的消氢器及消氢方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIGO TAKUMA, MAKIURA JUN-ICHIRO, KUROSAWA YUTARO, MURAKAMI KOTA, OGO SHUHEI, TSUNEKI HIDEAKI, HASHIMOTO YASUSHI, SATO YASUSHI, SEK: "Fast oxygen ion migration in Cu-In-oxide bulk and its utilization for effective CO2 conversion at lower temperature", CHEMRXIV, 18 June 2027 (2027-06-18), US , pages 1 - 5, XP009535459, ISSN: 2573-2293, DOI: 10.26434/chemrxiv.12973844.v1 *
IMOTO EIJI: "Development of the concepts of electronegativity", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 1 January 1990 (1990-01-01), pages 2 - 15, XP055915506, DOI: 10.5059/yukigoseikyokaishi.48.2 *
JOURNAL OF CO2 UTILIZATION, vol. 17, 2017, pages 60 - 68

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920279A (zh) * 2022-05-09 2022-08-19 西南石油大学 一种氧载体用于低温氧化甲烷制氢的制备方法与应用
CN114920279B (zh) * 2022-05-09 2023-10-24 西南石油大学 一种氧载体用于低温氧化甲烷制氢的制备方法与应用
CN116532130A (zh) * 2023-07-04 2023-08-04 潍坊学院 多金属复合载氧体、其制备方法及其在丁烷脱氢制备丁烯中的应用
CN116532130B (zh) * 2023-07-04 2023-09-08 潍坊学院 多金属复合载氧体、其制备方法及其在丁烷脱氢制备丁烯中的应用

Also Published As

Publication number Publication date
EP4219403A1 (en) 2023-08-02
AU2021350268A1 (en) 2023-06-01
JPWO2022065339A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2022065339A1 (ja) 酸素キャリア、酸素キャリアの製造方法およびガスの製造方法
WO2021192871A1 (ja) 還元剤およびガスの製造方法
Guliants et al. Bulk mixed Mo–V–Te–O catalysts for propane oxidation to acrylic acid
Liang et al. Template preparation of nanoscale Ce x Fe 1− x O 2 solid solutions and their catalytic properties for ethanol steam reforming
JP4098508B2 (ja) 炭化水素と水蒸気とを反応させるための触媒の製造方法および当該触媒を使用した炭化水素から水素を製造する方法
JP4222827B2 (ja) 炭化水素の改質方法
CN111225743B (zh) 用于选择性和稳定地生产烯烃的复合催化剂
KR20150129786A (ko) 이산화탄소의 존재 하에 탄화수소를 개질하기 위한 니켈 헥사알루민에이트-함유 촉매
JPWO2021192871A5 (ja)
JP6720086B2 (ja) 炭化水素の脱水素化のための改良された触媒
Wu et al. Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement
US20170267608A1 (en) Sintering-resistant nanosized iron oxide based catalysts
WO2018069759A1 (en) Copper/zinc/aluminium catalyst for the methanol synthesis prepared from a binary zinc-aluminium precursor solution
WO2022196729A1 (ja) 還元剤およびガスの製造方法
CN114534722B (zh) 一种贵金属甲醇制氢催化剂及其制备方法和应用
WO2021192872A1 (ja) 還元剤およびガスの製造方法
JP2022053181A (ja) 酸素キャリアおよびガスの製造方法
WO2022163819A1 (ja) 酸素キャリアおよびガスの製造方法
WO2022186319A1 (ja) 還元剤、ガスの製造方法および変換効率増加方法
JP2021155232A (ja) 酸素キャリアの製造方法およびガスの製造方法
Bhosale et al. Solar thermochemical conversion of CO2 into synthetic fuels via ferrite based redox reactions
JP7312071B2 (ja) 還元剤
WO2023176485A1 (ja) 還元剤およびガスの製造方法
KR101657958B1 (ko) 메탄올 합성용 촉매, 이의 제조방법 및 이의 용도
JP4202087B2 (ja) ジメチルエーテル改質用触媒および該触媒を用いた水素含有ガスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872468

Country of ref document: EP

Effective date: 20230424

ENP Entry into the national phase

Ref document number: 2021350268

Country of ref document: AU

Date of ref document: 20210922

Kind code of ref document: A