WO2022065310A1 - 内燃機関の制御装置および内燃機関システム - Google Patents

内燃機関の制御装置および内燃機関システム Download PDF

Info

Publication number
WO2022065310A1
WO2022065310A1 PCT/JP2021/034604 JP2021034604W WO2022065310A1 WO 2022065310 A1 WO2022065310 A1 WO 2022065310A1 JP 2021034604 W JP2021034604 W JP 2021034604W WO 2022065310 A1 WO2022065310 A1 WO 2022065310A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
control device
injection amount
amount
Prior art date
Application number
PCT/JP2021/034604
Other languages
English (en)
French (fr)
Inventor
昌宏 梶山
直人 村澤
佑樹 菅谷
貴大 及川
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022065310A1 publication Critical patent/WO2022065310A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • This disclosure relates to an internal combustion engine control device and an internal combustion engine system.
  • the calorific value in the internal combustion engine is estimated based on the state information (engine speed, indicated injection amount to the fuel injection valve) indicating the state of the internal combustion engine, and the calorific value in the internal combustion engine is estimated based on the calorific value.
  • a lubricating oil supply system for an internal combustion engine that estimates the piston temperature is disclosed.
  • An object of the present disclosure is to provide an internal combustion engine control device and an internal combustion engine system capable of improving the accuracy of the estimated piston temperature.
  • control device of the internal combustion engine in the present disclosure is A learning unit that learns the difference between the actual injection amount of fuel injected by the fuel injection valve arranged corresponding to the cylinder of the internal combustion engine and the indicated injection amount for the fuel injection valve.
  • a correction unit that corrects the indicated injection amount based on the learned difference,
  • a temperature estimation unit that estimates the piston temperature of the internal combustion engine based on the corrected indicated injection amount, and To prepare for.
  • the internal combustion engine system in the present disclosure is The control device for the internal combustion engine is provided.
  • the accuracy of the estimated piston temperature can be improved.
  • FIG. 1 is a functional block diagram showing a part of an internal combustion engine system including a control device for an internal combustion engine according to the present embodiment.
  • FIG. 2 is a flowchart showing an example of the operation of the control device of the internal combustion engine.
  • FIG. 1 is a functional block diagram showing a part of an internal combustion engine system 1 including an internal combustion engine control device 100 according to the present embodiment.
  • the internal combustion engine system 1 includes a diesel engine (hereinafter, simply referred to as an engine) (hereinafter, simply referred to as an engine), a fuel injection valve (injector) arranged corresponding to the cylinder of the engine, an intake amount sensor 2, and a lambda. It includes a sensor 3, an exhaust temperature sensor 4, a crank angle sensor 5, an oil temperature sensor 6, an accelerator opening sensor 7, and a control device 100.
  • the intake air amount sensor 2 is sucked into the cylinder from an air cleaner (not shown) and detects the intake air amount of the intake air.
  • the intake air amount sensor 2 is also referred to as a mass flow sensor (Mass Flow Sensor: MAF).
  • the lambda sensor 3 detects the actual value (actual ⁇ ) of the air-fuel ratio based on the amount of oxygen in the exhaust gas of the engine.
  • the exhaust temperature sensor 4 detects the temperature of the engine exhaust.
  • the crank angle sensor 5 detects the crank angle of the engine.
  • the control unit 50 (described later) calculates the amount of change in the crank angular velocity from the detected value of the crank angle sensor 5.
  • the oil temperature sensor 6 detects, for example, the temperature of the lubricating oil stored in the oil pan (not shown). Lubricating oil is used to lubricate various parts including the engine.
  • the accelerator opening sensor 7 detects an indicated injection amount (instructed value for the injector) according to the amount of depression of the accelerator pedal (not shown).
  • the control device 100 for an internal combustion engine includes a control unit 50 having an acquisition unit 10, a learning unit 20, a correction unit 30, and a temperature estimation unit 40.
  • the control unit 50 is, for example, an ECU (Electronic control Unit) including a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. (not shown) and an input / output device. Sensors 2, 3, 4, 5, 6, 7 are connected to the input circuit of the control unit 50.
  • ECU Electronic control Unit
  • a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. (not shown) and an input / output device.
  • Sensors 2, 3, 4, 5, 6, 7 are connected to the input circuit of the control unit 50.
  • the acquisition unit 10 acquires the detection results of each of the sensors 2, 3, 4, 5, 6, and 7.
  • the learning unit 20 includes the intake air amount detected by the intake air amount sensor 2, the actual value (actual ⁇ ) of the air-fuel ratio detected by the lambda sensor 3, the theoretical air-fuel ratio (here, 14.6), and the indicated injection.
  • the difference between the actual injection amount and the indicated injection amount is calculated based on the amount.
  • Calculation ⁇ intake amount / indicated injection amount * 14.6 ... (2)
  • the coefficient can be obtained by experiment or simulation.
  • the learning unit 20 averages each of the real ⁇ and the calculated ⁇ .
  • the learning unit 20 calculates the difference using the averaged real ⁇ and the calculated ⁇ .
  • the calculated difference is stored in a memory (not shown) as a learning value for each area divided by the engine speed and the fuel injection amount.
  • the correction unit 30 corrects the indicated injection amount based on the difference (learning value) stored in the memory.
  • the temperature estimation unit 40 estimates the piston temperature of the internal combustion engine based on the corrected indicated injection amount and the engine speed.
  • the estimated piston temperature is called the "estimated piston temperature”.
  • the learning value is calculated based on the intake air amount detected by the intake air amount sensor 2, if the intake air sensor 2 is not normal, the accuracy of the estimated piston temperature may decrease.
  • the control unit 50 takes in air based on at least one of the exhaust temperature of the engine, the amount of change in the crank angle speed of the engine, and the temperature (oil temperature) of the lubricating oil supplied to the engine. It is determined whether or not the amount sensor 2 is normal. As described above, the exhaust temperature of the engine is detected by the exhaust temperature sensor 4. Further, the amount of change in the crank angular velocity of the engine is calculated by the control unit 50 from the detection value of the crank angle sensor 5. Further, the temperature (oil temperature) of the lubricating oil supplied to the engine is detected by the oil temperature sensor 6.
  • control unit 50 has a case where the exhaust temperature of the engine is less than a predetermined value, a change amount of the crank angular velocity is less than a predetermined value, and a change amount ⁇ of the oil temperature is less than a threshold value. In this case, it is determined that the intake air amount sensor 2 is normal. Further, the control unit 50 controls the learning unit 20 so that the difference learning is performed when the intake amount sensor 2 is normal.
  • the learning value (difference) is calculated based on the intake air amount detected by the normal intake air amount sensor 2, the instruction injection amount is corrected based on the learning value, and the instruction injection amount is corrected. Since the piston temperature is estimated, it is possible to suppress a decrease in the accuracy of the estimated piston temperature.
  • control unit 50 determines whether or not the engine is operated under stable conditions.
  • control unit 50 determines that the engine is operating under stable conditions when the engine has been warmed up, the engine is steady, and the lambda sensor 3 has high reliability. do.
  • the high reliability of the lambda sensor 3 means that the actual value (actual ⁇ ) of the air-fuel ratio detected by the lambda sensor 3 is less than a predetermined threshold value (here, “3”).
  • control unit 50 controls the learning unit 20 so that the difference is learned when the engine is operated under stable conditions.
  • FIG. 2 is a flowchart showing an example of the operation of the control device 100 of the internal combustion engine. This flow is started when the engine is started and is repeated at a predetermined cycle. In the following description, it is assumed that the CPU executes each function of the control device 100 of the internal combustion engine.
  • step S100 the CPU determines whether or not the intake air amount sensor 2 is normal.
  • step S100: YES the process proceeds to step S110.
  • step S100: NO the flow shown in FIG. 2 is terminated.
  • step S110 the CPU determines whether the engine is operating under stable conditions. If the engine is operating under stable conditions (step S110: YES), the process transitions to step S120. When the engine is not operated under stable conditions (step S110: NO), the flow shown in FIG. 2 ends.
  • step S120 the CPU acquires the intake amount detected by the intake amount sensor 2.
  • step S130 the CPU acquires the actual value (actual ⁇ ) of the air-fuel ratio detected by the lambda sensor 3.
  • step S140 the CPU acquires the stoichiometric air-fuel ratio.
  • step S150 the CPU acquires the indicated injection amount.
  • step S160 the CPU determines the difference between the actual injection amount and the indicated injection amount according to the above equations (1) and (2) based on the intake amount, the actual ⁇ , the stoichiometric air-fuel ratio, and the indicated injection amount. To learn.
  • step S170 the CPU corrects the indicated injection amount based on the difference.
  • step S180 the CPU estimates the piston temperature based on the corrected indicated injection amount.
  • the control device 100 of the internal combustion engine learns to learn the difference between the actual injection amount of fuel injected by the fuel injection valve arranged corresponding to the cylinder of the engine and the indicated injection amount to the fuel injection valve.
  • a unit 20 includes a correction unit 30 that corrects the indicated injection amount based on the learned difference, and a temperature estimation unit 40 that estimates the piston temperature of the engine based on the corrected indicated injection amount.
  • the indicated injection amount is corrected based on the learned difference, and the piston temperature is estimated based on the corrected indicated injection amount, so that the accuracy of the estimated piston temperature can be improved.
  • the learning unit 20 indicates the intake amount detected by the intake amount sensor 2, the theoretical air-fuel ratio, and the air-fuel ratio detected by the lambda sensor 3. The difference is learned based on the injection amount. This makes it possible to reliably learn the difference.
  • the control unit 50 determines the exhaust temperature of the engine, the amount of change in the crank angle speed of the engine, and the temperature (oil temperature) of the lubricating oil supplied to the engine. Based on this, it is determined whether or not the intake air amount sensor 2 is normal, and if the intake air amount sensor 2 is normal, the learning unit 20 is controlled so that the difference (learning value) is learned. As a result, the difference is learned based on the accurate detected value, so that it is possible to suppress a decrease in the accuracy of the estimated piston temperature.
  • control unit 50 controls the learning unit 20 so that the difference is learned when the engine is operated under stable conditions. As a result, the difference learning is efficiently performed, so that the effectiveness of learning by the learning unit 20 can be improved.
  • control unit 50 determines whether or not the intake air amount sensor 2 is normal, the exhaust temperature of the engine, the amount of change in the crank angle speed of the engine, and the lubricating oil supplied to the engine.
  • present disclosure is not limited to this, and the present disclosure may be performed based on any one of, for example, the exhaust temperature, the amount of change in the crank angle speed, and the oil temperature.
  • the intake air amount sensor 2 it may be determined whether or not the intake air amount sensor 2 is normal based on the temperature of the cooling water supplied to the engine.
  • the temperature of the cooling water supplied to the engine is detected by, for example, a water temperature sensor provided near the outlet of a water jacket (not shown) and detecting the temperature of the cooling water flowing from the water jacket into the flow path.
  • the present disclosure is suitably used for an apparatus that requires an increase in the accuracy of the estimated piston temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

内燃機関の制御装置および内燃機関システムは、ピストン推定温度の精度を上げることが可能である。内燃機関の制御装置は、内燃機関の気筒に対応して配置された燃料噴射弁が噴射する燃料の実噴射量と燃料噴射弁に対する指示噴射量との差分を学習する学習部と、学習された差分に基づいて指示噴射量を補正する補正部と、補正された指示噴射量に基づいて内燃機関のピストン温度を推定する温度推定部と、を備える。例えば、学習部は、吸気量センサにより検出された吸気量と、理論空燃比と、ラムダセンサにより検出された空燃比と、指示噴射量とに基づいて、差分を学習する。

Description

内燃機関の制御装置および内燃機関システム
 本開示は、内燃機関の制御装置および内燃機関システムに関する。
 従来、高圧、高温環境下にさらされるピストンの寿命等を把握するために、ピストン温度を推定することが有用であることが知られている。
 例えば、特許文献1には、内燃機関の状態を示す状態情報(エンジン回転数、燃料噴射弁に対する指示噴射量)に基づいて、内燃機関における発熱量を推定し、推定した発熱量に基づいて、ピストン温度を推定する内燃機関の潤滑油供給システムが開示されている。
日本国特開2011-256787号公報
 ところで、特許文献1に記載の技術では、例えば、燃料の実噴射量と指示噴射量との間に乖離が生じている状態で、指示噴射量に基づいてピストン温度を推定した場合、ピストン推定温度の精度が低下するという問題がある。ひいては、ピストンの寿命等を正確に把握することが困難になるという問題もある。
 本開示の目的は、ピストン推定温度の精度を上げることが可能な内燃機関の制御装置および内燃機関システムを提供することである。
 上記の目的を達成するため、本開示における内燃機関の制御装置は、
 内燃機関の気筒に対応して配置された燃料噴射弁が噴射する燃料の実噴射量と前記燃料噴射弁に対する指示噴射量との差分を学習する学習部と、
 学習された前記差分に基づいて前記指示噴射量を補正する補正部と、
 補正された前記指示噴射量に基づいて内燃機関のピストン温度を推定する温度推定部と、
 を備える。
 本開示における内燃機関システムは、
 上記内燃機関の制御装置を備える。
 本開示によれば、ピストン推定温度の精度を上げることができる。
図1は、本実施の形態に係る内燃機関の制御装置を備える内燃機関システムの一部を示す機能ブロック図である。 図2は、内燃機関の制御装置の動作の一例を示すフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 本実施の形態は、自動車に搭載されたディーゼルエンジン(内燃機関)に本発明を適用した場合について説明する。
 図1は、本実施の形態に係る内燃機関の制御装置100を備える内燃機関システム1の一部を示す機能ブロック図である。
 本実施の形態に係る内燃機関システム1は、図示しないディーゼルエンジン(以下、単にエンジンという)と、エンジンの気筒に対応して配置された燃料噴射弁(インジェクタ)と、吸気量センサ2と、ラムダセンサ3と、排気温センサ4と、クランク角センサ5と、油温センサ6と、アクセル開度センサ7と、制御装置100と、を備える。
 吸気量センサ2は、エアクリーナー(不図示)から気筒内に吸入され吸気の吸気量を検出する。吸気量センサ2は、マスフローセンサ(Mass Flow Sensor : MAF)とも称される。
 ラムダセンサ3は、エンジンの排気中の酸素量に基づいて空燃比の実値(実λ)を検出する。
 排気温センサ4は、エンジンの排気の温度を検出する。
 クランク角センサ5は、エンジンのクランク角を検出する。制御部50(後述する)は、クランク角センサ5の検出値からクランク角速度の変化量を算出する。
 油温センサ6は、例えば、オイルパン(不図示)に貯留された潤滑油の温度を検出する。潤滑油は、エンジンを含む各部の潤滑に用いられる。
 アクセル開度センサ7は、アクセルペダル(不図示)の踏み込み量に応じた指示噴射量(インジェクタに対する指示値)を検出する。
 本実施の形態に係る内燃機関の制御装置100は、取得部10と、学習部20と、補正部30と、温度推定部40と、を有する制御部50とを備える。
 制御部50は、例えば、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等からなるマイクロコンピュータと入出力装置とを備えるECU(Electronic control Unit)である。制御部50の入力回路には、各センサ2,3,4,5,6,7が接続されている。
 取得部10は、センサ2,3,4,5,6,7それぞれの検出結果を取得する。
 学習部20は、吸気量センサ2により検出された吸気量と、ラムダセンサ3により検出された空燃比の実値(実λ)と、理論空燃比(ここでは、14.6)と、指示噴射量とに基づいて、実噴射量と指示噴射量との差分を算出する。
 差分(学習値)は、次式(1)、(2)により算出される。
 学習値=(指示噴射量×(実λ-計算λ)/実λ)*係数・・・(1)
 計算λ=吸気量/指示噴射量*14.6・・・(2)
 なお、係数は、実験やシミュレーションにより求めることが可能である。
 学習部20は、実λおよび計算λのそれぞれを平均化する。学習部20は、平均化した実λおよび計算λを用いて差分を算出する。算出された差分は、エンジン回転数および燃料噴射量により区分された領域ごとに、学習値としてメモリ(不図示)に記憶される。
 補正部30は、メモリに記憶された差分(学習値)に基づいて、指示噴射量を補正する。
 温度推定部40は、補正された指示噴射量、および、エンジン回転数に基づいて内燃機関のピストン温度を推定する。推定されたピストンの温度を、「ピストン推定温度」という。
 ところで、学習値は、吸気量センサ2により検出された吸気量に基づいて算出されるため、吸気センサ2が正常でない場合、ピストン推定温度の精度が低下するおそれがある。
 そこで、本実施の形態では、制御部50は、エンジンの排気温度、エンジンのクランク角速度の変化量、および、エンジンに供給される潤滑油の温度(油温)の少なくとも一つに基づいて、吸気量センサ2が正常であるかどうかを判定する。なお、前述するように、エンジンの排気温度は、排気温センサ4により検出される。また、エンジンのクランク角速度の変化量は、クランク角センサ5の検出値から制御部50により算出される。また、エンジンに供給される潤滑油の温度(油温)は、油温センサ6により検出される。
 具体的には、制御部50は、エンジンの排気温度が所定値未満である場合、かつ、クランク角速度の変化量が所定値未満である場合、かつ、油温の変化量Δが閾値未満である場合、吸気量センサ2が正常であると判定する。さらに、制御部50は、吸気量センサ2が正常である場合、差分の学習が行われるように学習部20を制御する。
 以上の構成により、正常な吸気量センサ2により検出された吸気量に基づいて、学習値(差分)が算出され、学習値に基づいて指示噴射量が補正され、補正された指示噴射量に基づいてピストン温度が推定されるため、ピストン推定温度の精度の低下を抑えることが可能となる。
 ところで、例えば、暖気中のエンジンのように、エンジンが安定条件下で運転されていない場合、学習部20による学習の実効性が低下する。
 そこで、本実施の形態では、制御部50は、エンジンが安定条件下で運転される場合、制御部50は、エンジンが安定条件下で運転されているかどうかを判定する。
 具体的には、制御部50は、エンジンの暖気後であり、かつ、エンジンが定常であり、かつ、ラムダセンサ3が高い信頼性を有する場合、エンジンが安定条件下で運転されていると判定する。なお、ラムダセンサ3が高い信頼性を有するとは、ラムダセンサ3により検出された空燃比の実値(実λ)が所定の閾値(ここでは、「3」)未満である場合をいう。
 さらに、制御部50は、エンジンが安定条件下で運転される場合、差分の学習が行われるように学習部20を制御する。
 次に、本実施の形態に係る内燃機関の制御装置100の動作の一例について図2を参照して説明する。図2は、内燃機関の制御装置100の動作の一例を示すフローチャートである。本フローはエンジンの始動に伴い開始され、所定の周期で繰り返される。なお、以下の説明では、内燃機関の制御装置100が有する各機能をCPUが実行するものとして説明する。
 先ず、ステップS100において、CPUは、吸気量センサ2が正常であるかどうかについて判定する。吸気量センサ2が正常である場合(ステップS100:YES)、処理はステップS110に遷移する。吸気量センサ2が正常でない場合(ステップS100:NO)、図2に示すフローを終了する。
 次に、ステップS110において、CPUは、エンジンが安定条件下で運転されているかどうかを判定する。エンジンが安定条件下で運転されている場合(ステップS110:YES)、処理はステップS120に遷移する。エンジンが安定条件下で運転されていない場合(ステップS110:NO)、図2に示すフローは終了する。
 まず、ステップS120において、CPUは、吸気量センサ2により検出された吸気量を取得する。
 次に、ステップS130において、CPUは、ラムダセンサ3により検出された空燃比の実値(実λ)を取得する。
 次に、ステップS140において、CPUは、理論空燃比を取得する。
 次に、ステップS150において、CPUは、指示噴射量を取得する。
 次に、ステップS160において、CPUは、吸気量、実λ、理論空燃比、および、指示噴射量に基づき、上記の式(1)、(2)により、実噴射量と指示噴射量との差分を学習する。
 次に、ステップS170において、CPUは、差分に基づいて、指示噴射量を補正する。
 次に、ステップS180において、CPUは、補正された指示噴射量に基づいて、ピストン温度を推定する。
 上記実施の形態に係る内燃機関の制御装置100は、エンジンの気筒に対応して配置された燃料噴射弁が噴射する燃料の実噴射量と燃料噴射弁に対する指示噴射量との差分を学習する学習部20と、学習された差分に基づいて指示噴射量を補正する補正部30と、補正された指示噴射量に基づいてエンジンのピストン温度を推定する温度推定部40と、を備える。
 上記構成により、学習された差分に基づいて指示噴射量が補正され、補正された指示噴射量に基づいてピストン温度が推定されるため、ピストン推定温度の精度を上げることができる。
 また、上記実施の形態に係る内燃機関の制御装置100では、学習部20は、吸気量センサ2により検出された吸気量と、理論空燃比と、ラムダセンサ3により検出された空燃比と、指示噴射量とに基づいて、差分を学習する。これにより、確実に差分を学習することができる。
 また、上記実施の形態に係る内燃機関の制御装置100では、制御部50は、エンジンの排気温度、エンジンのクランク角速度の変化量、および、エンジンに供給される潤滑油の温度(油温)に基づいて、吸気量センサ2が正常であるかどうかを判定し、吸気量センサ2が正常である場合、差分(学習値)の学習が行われるように学習部20を制御する。これにより、正確な検出値に基づいて差分の学習が行われるため、ピストン推定温度の精度の低下を抑えることができる。
 また、上記実施の形態に係る内燃機関の制御装置100は、制御部50は、エンジンが安定条件下で運転される場合、差分の学習が行われるように学習部20を制御する。これにより、差分の学習が効率よく行われるため、学習部20による学習の実効性を上げることが可能となる。
 なお、上記実施の形態においては、制御部50は、吸気量センサ2が正常であるかどうかの判定を、エンジンの排気温度、エンジンのクランク角速度の変化量、および、エンジンに供給される潤滑油の温度(油温)に基づいて行うが、本開示はこれに限らず、例えば、排気温度、クランク角速度の変化量、および、油温のいずれか一つに基づいて、行ってもよい。
 また、上記実施の形態では、吸気量センサ2が正常であるかどうかの判定を、エンジンに供給される冷却水の温度に基づいて行ってもよい。なお、エンジンに供給される冷却水の温度は、例えば、ウォータージャケット(不図示)の出口部近傍に設けられ、ウォータージャケットから流路に流れ込む冷却水の温度を検出する水温センサにより検出される。
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本出願は、2020年9月24日付けで出願された日本国特許出願(特願2020-160156)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、ピストン推定温度の精度を上げることが要求される装置に好適に利用される。
 1 内燃機関システム
 2 吸気量センサ
 3 ラムダセンサ
 4 排気温センサ
 5 クランク角センサ
 6 油温センサ
 7 アクセル開度センサ
 10 取得部
 20 学習部
 30 補正部
 40 温度推定部
 50 制御部
 100 内燃機関の制御装置

Claims (6)

  1.  内燃機関の気筒に対応して配置された燃料噴射弁が噴射する燃料の実噴射量と前記燃料噴射弁に対する指示噴射量との差分を学習する学習部と、
     学習された前記差分に基づいて前記指示噴射量を補正する補正部と、
     補正された前記指示噴射量に基づいて内燃機関のピストン温度を推定する温度推定部と、
     を備える、
     内燃機関の制御装置。
  2.  前記学習部は、吸気量センサにより検出された吸気量と、理論空燃比と、ラムダセンサにより検出された空燃比と、前記指示噴射量とに基づいて、前記差分を学習する、
     請求項1に記載の内燃機関の制御装置。
  3.  前記吸気量センサが正常である場合、前記差分の学習が行われるように前記学習部を制御する制御部を備える、
     請求項2に記載の内燃機関の制御装置。
  4.  前記制御部は、前記内燃機関の排気温度、前記内燃機関のクランク角速度の変化量、および、前記内燃機関に供給される潤滑油の温度の少なくとも一つに基づいて、前記吸気量センサが正常であるかどうかを判定する、
     請求項3に記載の内燃機関の制御装置。
  5.  前記内燃機関が安定条件下で運転される場合、前記差分の学習が行われるように前記学習部を制御する制御部を備える、
     請求項3に記載の内燃機関の制御装置。
  6.  内燃機関と、
     請求項1から5のいずれか一項に記載の内燃機関の制御装置を備える、
     内燃機関システム。
PCT/JP2021/034604 2020-09-24 2021-09-21 内燃機関の制御装置および内燃機関システム WO2022065310A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-160156 2020-09-24
JP2020160156A JP7363727B2 (ja) 2020-09-24 2020-09-24 内燃機関の制御装置および内燃機関システム

Publications (1)

Publication Number Publication Date
WO2022065310A1 true WO2022065310A1 (ja) 2022-03-31

Family

ID=80845508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034604 WO2022065310A1 (ja) 2020-09-24 2021-09-21 内燃機関の制御装置および内燃機関システム

Country Status (2)

Country Link
JP (1) JP7363727B2 (ja)
WO (1) WO2022065310A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256712A (ja) * 2004-03-11 2005-09-22 Toyota Motor Corp センサ異常検出装置
JP2008095615A (ja) * 2006-09-15 2008-04-24 Denso Corp 燃料噴射制御装置
JP2012225269A (ja) * 2011-04-20 2012-11-15 Toyota Motor Corp エアフローメーターの故障検出装置
JP2016142171A (ja) * 2015-02-02 2016-08-08 いすゞ自動車株式会社 排気浄化システム
US20170107927A1 (en) * 2015-10-20 2017-04-20 GM Global Technology Operations LLC Method of operating a fuel injector
JP2018150825A (ja) * 2017-03-10 2018-09-27 株式会社豊田自動織機 エンジンの制御装置
JP2018193881A (ja) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 ピストン温度推定装置及びピストン温度推定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857662B2 (ja) * 2011-11-18 2016-02-10 いすゞ自動車株式会社 内燃機関の燃料噴射の異常判定方法と内燃機関

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256712A (ja) * 2004-03-11 2005-09-22 Toyota Motor Corp センサ異常検出装置
JP2008095615A (ja) * 2006-09-15 2008-04-24 Denso Corp 燃料噴射制御装置
JP2012225269A (ja) * 2011-04-20 2012-11-15 Toyota Motor Corp エアフローメーターの故障検出装置
JP2016142171A (ja) * 2015-02-02 2016-08-08 いすゞ自動車株式会社 排気浄化システム
US20170107927A1 (en) * 2015-10-20 2017-04-20 GM Global Technology Operations LLC Method of operating a fuel injector
JP2018150825A (ja) * 2017-03-10 2018-09-27 株式会社豊田自動織機 エンジンの制御装置
JP2018193881A (ja) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 ピストン温度推定装置及びピストン温度推定方法

Also Published As

Publication number Publication date
JP2022053360A (ja) 2022-04-05
JP7363727B2 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
US6732707B2 (en) Control system and method for internal combustion engine
US7654133B2 (en) Malfunction diagnostic apparatus and malfunction diagnostic method for combustion improvement device
JP4826560B2 (ja) 内燃機関の燃料性状検出装置
US8362405B2 (en) Heater controller of exhaust gas sensor
JP2008101591A (ja) 内燃機関の着火時期制御装置
EP1900929B1 (en) Engine control system
US8181628B2 (en) Throttle valve controller for internal combustion engine
JP2009024609A (ja) 内燃機関の異常検出装置および内燃機関の空燃比制御装置
JP7268533B2 (ja) エンジン制御装置
WO2010029396A1 (en) Burned-gas passage amount computing method and system used in exhaust gas recirculation system
JP4778401B2 (ja) 内燃機関の制御装置
WO2022065310A1 (ja) 内燃機関の制御装置および内燃機関システム
US6729305B2 (en) Fuel injection amount control apparatus and method for internal combustion engine
JP2008025511A (ja) 内燃機関の空燃比制御装置
JP2008075633A (ja) 内燃機関の燃焼制御装置
JP2006177288A (ja) エンジンの燃料系異常検出装置
JP2005344604A (ja) 内燃機関制御装置
JP2010159721A (ja) ブローバイガス還元装置
JP4986836B2 (ja) エンジン制御装置およびエンジン制御方法
WO2024018567A1 (ja) 内燃機関の制御装置
JP2011196263A (ja) 内燃機関の制御装置
JP2007205274A (ja) 内燃機関の制御装置
JP2021143633A (ja) エンジンシステム
JP4252913B2 (ja) エンジンの制御装置
JP2023095395A (ja) エンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872439

Country of ref document: EP

Kind code of ref document: A1