JP2018150825A - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP2018150825A
JP2018150825A JP2017045842A JP2017045842A JP2018150825A JP 2018150825 A JP2018150825 A JP 2018150825A JP 2017045842 A JP2017045842 A JP 2017045842A JP 2017045842 A JP2017045842 A JP 2017045842A JP 2018150825 A JP2018150825 A JP 2018150825A
Authority
JP
Japan
Prior art keywords
amount
control
learning
injection amount
deviation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017045842A
Other languages
English (en)
Inventor
実 豊島
Minoru Toyoshima
実 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017045842A priority Critical patent/JP2018150825A/ja
Priority to DE102018104035.0A priority patent/DE102018104035B4/de
Publication of JP2018150825A publication Critical patent/JP2018150825A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】コストの増加を抑制しつつ、エンジンにおいて噴射される燃料の噴射量を精度高く制御する。【解決手段】制御装置100は、学習条件が成立する場合(S100にてYES)、実噴射量を算出するステップ(S102)と、指令噴射量を算出するステップ(S104)と、実噴射量と指令噴射量との差分を燃料噴射量のズレ量として算出するステップ(S106)と、ズレ量と基準ズレ量との比率を補正係数として算出するステップ(S108)と、更新学習量を更新するステップ(S110)とを含む、制御処理を実行する。【選択図】図4

Description

本発明は、エンジンにおいて噴射される燃料の噴射量のズレ量の学習に関する。
ディーゼルエンジン等のエンジンの燃料噴射装置においては、個体差や経時変化等によって制御装置が指令する燃料の噴射量(以下、指令噴射量と記載する)と実際に噴射された燃料の噴射量(以下、実噴射量と記載する)との間にずれが生じる場合がある。そのため、たとえば、実噴射量と指令噴射量との差分を燃料噴射量のズレ量として学習することが考えられる。学習された燃料噴射量のズレ量は、メモリ等の記憶媒体に記憶され、指令噴射量の補正に用いられる。これにより、実噴射量と指令噴射量とのずれを解消することができるため、燃料噴射量を精度高く制御することができる。
このような燃料噴射量のズレ量は、エンジンの運転状態によって異なる。そのため、燃料噴射量のズレ量を学習値として記憶する場合には、どのような運転状態にも対応するためにエンジンの運転領域を複数領域に分割して、分割された領域毎に学習値を記憶することが考えられる。たとえば、特開2015−145665号公報(特許文献1)には、学習値が記憶された学習領域における学習値を用いて学習値が記憶されていない学習領域の学習値を推定する技術が開示される。
特開2015−145665号公報
このようなエンジンにおいて、燃料噴射量を継続的に補正するためには、適切なタイミングで燃料噴射量のズレ量を学習して、既存の学習値を更新することと、電源が遮断された場合にも学習値を記憶しておくこととが求められる。そのため、燃料噴射量のズレ量を記憶する記憶媒体としては、書き換え可能であって、かつ、電源が遮断された場合にも記憶内容の保持が可能な不揮発性メモリ(たとえば、EEPROM(Electrically Erasable Programmable Read-Only Memory))等の記憶媒体を利用することが考えられる。しかしながら、分割された領域毎に学習値を記憶する場合には、大きな記憶容量を有する記憶媒体が必要となり、記憶媒体に要するコストが増加する場合がある。
本発明は、上述した課題を解決するためになされたものであって、その目的は、コストの増加を抑制しつつ、エンジンにおいて噴射される燃料の噴射量を精度高く制御するエンジンの制御装置を提供することである。
この発明のある局面に係るエンジンの制御装置は、気筒と気筒に燃料を噴射する燃料噴射装置とを備えるエンジンの制御装置である。この制御装置は、指令噴射量を含む制御条件に基づいて燃料噴射装置を制御する制御部と、更新学習量を記憶する第1記憶部と、基準ズレ量マップを記憶する第2記憶部とを備える。基準ズレ量マップには、複数の制御条件毎に、指令噴射量に基づいて燃料噴射装置が噴射した燃料の噴射量の指令噴射量に対するズレ量が基準ズレ量として設定されている。制御部は、学習条件が成立したと判断すると、複数の制御条件のうちのいずれかを学習制御条件として設定するとともに学習制御条件に基づいて燃料噴射装置を制御する。制御部は、気筒における実空燃比と気筒に吸入される空気量とに基づいて実噴射量を算出する。制御部は、算出された実噴射量と学習制御条件の指令噴射量との差分を実ズレ量として算出する。制御部は、第2記憶部に記憶された基準ズレ量マップより学習制御条件に対応する基準ズレ量を取得する。制御部は、実ズレ量と基準ズレ量との比率を学習制御条件における補正係数として取得する。第1記憶部は、制御部が取得した補正係数を複数の制御条件の全てに対応する新たな更新学習量として記憶する。
このようにすると、更新学習量と制御条件に対応した基準ズレ量とを用いて実噴射量と指令噴射量との差分(すなわち、ズレ量)を算出することができる。そのため、エンジンにおいて噴射される燃料の噴射量を精度高く制御することができる。さらに、更新学習量として単一の値が用いられるため、更新学習量を記憶する第1記憶部において必要となる記憶容量の増加を抑制することができる。そのため、コストの増加を抑制することができる。
好ましくは、制御部は、前記学習条件の非成立時には、前記第2記憶部に記憶された前記基準ズレ量マップよりエンジンの運転状態に応じて前記複数の制御条件のうちのいずれかの制御条件を設定し、設定した前記制御条件に対応する前記基準ズレ量を取得し、取得した前記基準ズレ量に前記第1記憶部に記憶されている前記更新学習量を乗算した値を前記燃料噴射装置の制御に反映させる、請求項1に記載のエンジンの制御装置。
このようにすると、基準ズレ量と更新学習量とを乗算した値を燃料噴射装置の制御に反映させることにより、エンジンにおいて噴射される燃料の噴射量を精度高く制御することができる。
この発明によると、コストの増加を抑制しつつ、エンジンにおいて噴射される燃料噴射量のずれを精度高く補正するエンジンの制御装置を提供することができる。
エンジンの全体構成を概略的に示した図である。 制御装置において構成される演算ブロックを示す図である。 指令噴射量とレール圧と基準ズレ量との関係を示すマップを表形式で示す図である。 制御装置で実行される、更新学習量を更新する制御処理の一例を示すフローチャートである。 制御装置で実行される、燃料噴射制御の制御処理の一例を示すフローチャートである。 制御装置の動作を説明するためのタイミングチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
図1は、エンジン10の全体構成を概略的に示した図である。図1に示すエンジン10は、ディーゼルエンジン等の内燃機関である。エンジン10は、たとえば、車両や建設機械等に駆動源として搭載される。
図1に示すように、エンジン10は、気筒11と吸気通路8と排気通路7とを含む。吸気通路8の一方端には、エアクリーナ等(図示せず)が設けられる。吸気通路8の他方端は、気筒11に接続される。吸気通路8の一方端からEGR通路18との合流位置との間にエアフローメータ2が設けられる。
エアフローメータ2は、吸気通路8からエンジン10に導入される新気の流量(吸入空気量)を検出し、検出された吸入空気量を示す信号を制御装置100に送信する。
エアフローメータ2よりも下流の位置には、吸気絞り弁16が設けられる。吸気絞り弁16には、吸気絞り弁16の開度を検出する絞り弁センサ17が設けられる。絞り弁センサ17は、検出された吸気絞り弁16の開度を示す信号を制御装置100に出力する。吸気絞り弁16は、制御装置100からの制御信号によって開閉動作を行なう。
気筒11は、シリンダ11aとピストン11bとを含む。気筒11の頂部には燃料噴射装置13が設けられる。燃料噴射装置13は、たとえば、噴孔が形成されたボディと、ボディ内部に設けられ、噴孔を開閉するニードルとを有するインジェクタによって構成される。燃料噴射装置13は、コモンレール15を介して燃料ポンプ14および燃料タンク12に接続される。燃料ポンプ14は、制御装置100からの制御信号に応じて、コモンレール15内の燃料の圧力が所定の圧力になるように燃料タンク12内の燃料をコモンレール15に供給する。燃料噴射装置13は、制御装置100からの制御信号に応じてソレノイド等を用いてニードルを動作させて、噴孔を開状態にすることによってコモンレール15内の燃料を気筒11内の燃焼室に供給する。
コモンレール15には、コモンレール内の圧力(以下、レール圧と記載する)を検出する圧力センサ21が設けられる。圧力センサ21は、レール圧を示す信号を制御装置100に送信する。
制御装置100は、アクセル開度やエンジン10の状態(エンジン回転数や吸入空気量)等に基づいて燃料噴射装置13において1サイクル中に噴射される燃料噴射量に対応する制御指令値を決定する。制御装置100は、決定された制御指令値に基づいて燃料噴射装置13を制御する。制御指令値は、たとえば、燃料噴射装置13からの燃料の噴射時間(噴孔の開時間)を示す値である。なお、制御指令値は、噴射量そのものを示す値であってもよい。
ピストン11bは、クランク軸(図示せず)に接続されており、クランク軸には、クランク軸の回転数(エンジン回転数)を検出するエンジン回転数センサ20が設けられる。エンジン回転数センサ20は、制御装置100に接続され、検出されたエンジン回転数を示す信号を制御装置100に送信する。
排気通路7は、第1通路7aと、第2通路7bと、第3通路7cと、第4通路7dとを含み、第1通路7a、第2通路7b、第3通路7c、および、第4通路7dの順で接続される。第4通路7dの端部は、排気ガスを大気に放出する出口に接続される。
排気通路7には、排気処理装置1が設けられる。排気処理装置1は、DPF(Diesel Particulate Filter)4と酸化触媒9とを含む。DPF4は、セラミックまたはステンレス等から形成される。DPF4は、第3通路7cに収納される。DPF4は、排気ガスの通過を許容しつつ、通過する排気ガスから粒子状物質を捕集する。
酸化触媒9は、DPF4よりも上流の第2通路7bに収納される。酸化触媒9は、排気ガスが通過することを許容し、通過する排気ガス中の窒素酸化物(NOx)および炭素酸化物(COx)などを酸化する。
排気通路7の第2通路7bの入口には、排気温度センサ5が設けられる。排気温度センサ5は、酸化触媒9の上流側(入口)の排気ガスのガス温度を検出して、検出結果を示す信号を制御装置100に送信する。
空燃比センサ3は、第4通路7dに設けられ、第4通路7d内を通過する排気ガス中の酸素濃度を検出する。空燃比センサ3は、検出信号を制御装置100に送信する。制御装置100は、空燃比センサ3の検出結果に基づいて気筒11における空燃比を算出する。
エンジン10には、さらにEGR(排気ガス再循環)システムが設けられる。EGRシステムは、EGR通路18とEGR弁19とを含む。EGR通路18は、気筒11を経由しないで排気通路7と吸気通路8とを連通して、排気通路7に排出された排気ガスの一部を吸気通路8に戻す。EGR弁19は、制御装置100からの制御信号に応じて、EGR通路18によって循環するガス流量を調整する。制御装置100は、エンジン10の運転状態に基づいてEGR弁19の開度を制御する。
具体的には、制御装置100は、たとえば、燃料噴射量とエンジン回転数とに基づいてEGR率の目標値を設定する。制御装置100の後述するメモリ150には、たとえば、燃料噴射量とエンジン回転数とEGR率の目標値との関係を示すマップが記憶される。制御装置100は、制御指令値に対応する燃料噴射量とエンジン回転数と上述したマップとからEGR率の目標値を設定する。制御装置100は、EGR率が目標値になるようにEGR弁19の開度を制御する。
制御装置100は、各種処理を行なうCPU(Central Processing Unit)148と、CPU148の処理結果、プログラム、あるいは、データ等を記憶するメモリ150と、制御装置100の外部の機器と情報のやり取りを行なうための入力ポートおよび出力ポート(いずれも図示せず)とを含む。本実施の形態においてCPU148が「制御部」に対応する。
メモリ150は、EEPROMによって構成される第1記憶部150aと、ROMによって構成される第2記憶部150bと、RAM(Random Access Memory)によって構成される第3記憶部150cとを含む。
そのため、第1記憶部150aにおいては、電源から制御装置100への電力供給が遮断された場合にも記憶内容が保持されるとともに、CPU148は、第1記憶部150aの記憶内容を書き換えることができる。第2記憶部150bにおいては、電源から制御装置100への電力供給が遮断された場合にも記憶内容の保持は可能であるものの、記憶内容の書き換えが不可である。第3記憶部150cにおいては、電源から制御装置100に電力が供給されている間は、記憶内容が保持され、電源から制御装置100への電力の供給が遮断されると、記憶内容が保持されず消去される。
入力ポートには、エアフローメータ2、空燃比センサ3、排気温度センサ5、絞り弁センサ17、エンジン回転数センサ20および圧力センサ21等が接続される。
制御装置100は、入力ポートに接続された各機器から信号を受信し、受信した信号に基づいて出力ポートに接続された絞り弁センサ17、燃料噴射装置13、燃料ポンプ14、EGR弁19等を制御する。
以上のような構成において、燃料噴射装置13においては、噴孔やニードル等の個体差や経時変化等によって制御装置100が指令する燃料の噴射量(以下、指令噴射量と記載する)と実際に噴射された燃料噴射量(以下、実噴射量と記載する)との間にずれが生じる場合がある。そのため、たとえば、実噴射量と指令噴射量との差分を燃料噴射量のズレ量として学習することが考えられる。学習された燃料噴射量のズレ量は、メモリ150に記憶され、指令噴射量の補正に用いることができる。これにより、実噴射量と指令噴射量とのずれを解消することができるため、燃料噴射量を精度高く制御することができる。
このような燃料噴射量のズレ量は、エンジンの運転状態によって異なる。そのため、燃料噴射量のズレ量を学習値としてメモリ150に記憶する場合には、どのような運転状態にも対応するためにエンジンの運転領域を複数領域に分割して、分割された領域毎に学習値を記憶することが考えられる。
このようなエンジン10において、燃料噴射量を継続的に補正するためには、適切なタイミングで燃料噴射量のズレ量を学習して、既存の学習値を更新することと、電源が遮断される場合にも学習値を記憶しておくこととが求められる。たとえば、建設機械等においては、機能を停止させる場合には、電源から制御装置への電力供給も遮断される場合がある。そのため、燃料噴射量のズレ量を記憶する記憶媒体としては、書き換え可能であって、かつ、電源が遮断された場合にも記憶内容の保持が可能な不揮発性メモリ(たとえば、EEPROM)等の記憶媒体を利用することが考えられる。
しかしながら、分割された領域毎に学習値を記憶する場合には、大きな記憶容量を有する記憶媒体が必要なり、記憶媒体に要するコストが増加する場合がある。
そこで、本実施の形態においては、制御装置100は、以下の構成を有するものとする。すなわち、第1記憶部150aには、更新学習量が記憶される。第2記憶部150bには、基準ズレ量マップが記憶される。基準ズレ量マップには、複数の制御条件毎に、指令噴射量に基づいて燃料噴射装置13が噴射した燃料噴射量の指令噴射量に対するズレ量が基準ズレ量として設定されている。制御装置100は、学習条件が成立したと判断すると、複数の制御条件のうちのいずれかを学習制御条件として設定するとともに学習制御条件に基づいて燃料噴射装置13を制御する。制御装置100は、気筒11における実空燃比と気筒11に吸入される空気量とに基づいて実噴射量を算出する。制御装置100は、算出された実噴射量と学習制御条件の指令噴射量との差分を実ズレ量として算出する。制御装置100は、第2記憶部150bに記憶された基準ズレ量マップより学習制御条件に対応する基準ズレ量を取得する。制御装置100は、実ズレ量と基準ズレ量との比率を学習制御条件における補正係数として取得する。第1記憶部150aは、取得された補正係数を複数の制御条件の全てに対応する新たな更新学習量として記憶する。本実施の形態において、制御条件は、指令噴射量に加えてレール圧を含むものとする。
このようにすると、更新学習量と基準ズレ量とを用いて実噴射量と指令噴射量との差分(すなわち、ズレ量)を算出することができる。そのため、エンジン10において噴射される燃料の噴射量を精度高く制御することができる。さらに、更新学習量として単一の値が用いられるため、更新学習量を記憶する第1記憶部150aにおいて必要となる記憶容量の増加を抑制することができる。
図2は、制御装置100において構成される演算ブロックを示す図である。図2に示すように、制御装置100は、実噴射量算出部102と、指令噴射量算出部104と、ズレ量算出部106と、比率算出部108と、学習量更新部110とを含む。
実噴射量算出部102は、空燃比センサ3を用いて取得される気筒11における実空燃比と吸入空気量とに基づいて実噴射量を算出する。具体的には、実噴射量算出部102は、たとえば、エアフローメータ2から吸入空気量を取得し、1サイクル当たりの吸入空気量を算出する。実噴射量算出部102は、算出された1サイクル当たりの吸入空気量を実空燃比で除算することによって1サイクル当たりの実噴射量を算出する。
指令噴射量算出部104は、制御指令値に基づいて指令噴射量を算出する。指令噴射量算出部104は、たとえば、1サイクル当たりの制御指令値を1サイクル当たりの指令噴射量に換算する換算式を用いて1サイクル当たりの指令噴射量を算出する。
ズレ量算出部106は、実噴射量と指令噴射量との差分値をズレ量として算出する。ズレ量算出部106は、たとえば、実噴射量から指令噴射量を減算することによってズレ量を算出する。
比率算出部108は、算出されたズレ量と基準ズレ量との比率を算出する。比率算出部108は、燃料噴射装置13の制御状態に基づいて基準ズレ量を取得する。基準ズレ量は、レール圧と指令噴射量とに基づいて予め設定される燃料噴射量のズレ量の基準となる値である。比率算出部108は、レール圧と指令噴射量と基準ズレ量との関係を示すマップを用いて基準ズレ量を算出する。
図3は、指令噴射量とレール圧と基準ズレ量との関係を示すマップを表形式で示す図である。以下の説明において図3に示されるマップを基準ズレ量マップと記載する場合がある。図3の基準ズレ量マップの左端には、複数の指令噴射量が上端から小さい順に下方向に配置される。複数の指令噴射量は、予め定められた間隔毎に設定される。図3の基準ズレ量マップの上端には、複数のレール圧が左端から小さい順に右方向に配置される。複数のレール圧は、予め定められた間隔毎に設定される。図3の基準ズレ量マップの上端および左端以外の領域には、各指令噴射量と各レール圧とに対応づけられた複数の基準ズレ量が配置される。なお、図3の基準ズレ量マップにおいては、指令噴射量、レール圧および基準ズレ量の一部が一例として抜粋して示されているが、図3に示される基準ズレ量以外にも所定の範囲内で指令噴射量とレール圧とに対応づけられた基準ズレ量が設定される。
図3の基準ズレ量マップにおいて、たとえば、レール圧が「30」MPaであって、指令噴射量が1サイクル当たり「20」mmである場合には、基準ズレ量として「0.6」mmが対応づけられている。同様に、たとえば、レール圧が「150」MPaであって、指令噴射量が1サイクル当たり「60」mmである場合には、基準ズレ量として「1.0」mmが対応づけられている。図3の基準ズレ量マップは、たとえば、実験的あるは設計的に適合されて予め作成される。
比率算出部108は、レール圧と指令噴射量と図3の基準ズレ量マップとから基準ズレ量を取得すると、算出されたズレ量を取得された基準ズレ量で除算することによって比率を補正係数として算出する。なお、比率算出部108は、たとえば、圧力センサ21から検出信号に基づいてレール圧を取得する。
学習量更新部110は、比率算出部108によって算出された補正係数を更新学習量として第1記憶部150aに記憶された値を更新する。
次に図4および図5を参照して、本実施の形態において制御装置100で実行される制御処理について説明する。図4は、制御装置100で実行される、更新学習量を更新する制御処理を示すフローチャートである。図5は、制御装置100で実行される、燃料噴射制御の制御処理の一例を示すフローチャートである。これらのフローチャートに示される処理は、CPU148によって所定の制御周期(=単位時間)毎にメインルーチン(図示せず)から呼び出されて実行される。これらのフローチャートに含まれる各ステップは、基本的には制御装置100によるソフトウェア処理によって実現されるが、その一部または全部(たとえば、図2の演算ブロック図に示される構成の一部または全部)が制御装置100内に作製されたハードウェア(電気回路)によって実現されてもよい。
図4を参照して、制御装置100で実行される、更新学習量を更新する制御処理について説明する。
ステップ(以下、ステップをSと記載する)100にて、制御装置100は、学習条件が成立するか否かを判定する。学習条件は、たとえば、空燃比が所定値以下の予め定められた範囲内であるという条件と、エンジン10の暖機が完了しているという条件とを含む。予め定められた範囲は、たとえば、空燃比がリッチ側の値となる範囲である。また、制御装置100は、たとえば、エンジン10の水温がしきい値よりも高い場合にエンジン10の暖機が完了していると判定する。学習条件が成立していると判定される場合(S100にてYES)、処理はS102に移される。
S102にて、制御装置100は、1サイクル当たりの実噴射量を算出する。S104にて、制御装置100は、1サイクル当たりの指令噴射量を算出する。実噴射量および指令噴射量の算出方法については上述したとおりであるため、その詳細な説明は繰り返さない。
S106にて、制御装置100は、実噴射量から指令噴射量を減算することによってズレ量を算出する。S108にて、制御装置100は、現時点のレール圧と指令噴射量と図3の基準ズレ量マップとを用いて基準ズレ量を取得する。なお、学習条件が成立する場合におけるレール圧と指令噴射量とが「学習制御条件」に対応する。制御装置100は、算出されたズレ量を取得された基準ズレ量で除算することによって比率(補正係数)を算出する。
S110にて、制御装置100は、算出された補正係数を用いて更新学習量を更新する。具体的には、制御装置100は、たとえば、算出された補正係数を新たな更新学習量として第1記憶部150aに記憶される値を新たな更新学習量を示す値に書き換える。なお、S100にて、学習条件が成立しない場合には(S100にてNO)、この処理は終了する。
次に、図5を参照して、制御装置100で実行される、燃料噴射制御の制御処理の一例について説明する。
S200にて、制御装置100は、エンジン10の運転状態に応じたレール圧および指令噴射量を取得する。制御装置100は、たとえば、圧力センサ21から検出信号に基づいてレール圧を取得する。さらに、制御装置100は、制御指令値に基づいて指令噴射量を取得する。
S202にて、制御装置100は、レール圧と、指令噴射量と、第2記憶部150bに記憶された図3の基準ズレ量マップとを用いて制御条件に対応した基準ズレ量を取得する。S204にて、制御装置100は、取得された基準ズレ量と第1記憶部150aに記憶された更新学習量とを乗算して補正量を算出する。
S206にて、制御装置100は、算出された補正量を用いて制御指令値を補正する。制御装置100は、たとえば、補正量に対応する噴射時間を制御指令値に加算することによって制御指令値を補正する。S208にて、制御装置100は、補正された制御指令値を用いて燃料噴射制御を実行する。具体的には、制御装置100は、補正された制御指令値に対応する時間だけ噴孔が開状態になるように燃料噴射装置13を制御する。
以上のような構造およびフローチャートに基づく本実施の形態における制御装置100の動作について図6を参照しつつ説明する。図6は、制御装置100の動作を説明するためのタイミングチャートである。図6の縦軸は、エンジン回転数、指令噴射量、レール圧および補正量を示し、図6の横軸は、時間を示す。すなわち、図6のLN1は、エンジン回転数の変化を示す。図6のLN2は、指令噴射量の変化を示す。図6のLN3は、レール圧の変化を示す。図6のLN4は、補正量の変化を示す。
たとえば、時間T(0)において、学習条件が成立した場合を想定する。アクセル開度やエンジン10の状態(たとえば、回転数(図6のLN1参照)および吸入空気量)によって制御指令値が決定される。
学習条件が成立するため(S100にてYES)、図6のLN2に示すように、制御指令値に基づいて指令噴射量(たとえば、1サイクル当たり60mm)が算出されるとともに、実空燃比と吸入空気量とに基づいて実噴射量(たとえば、1サイクル当たり62mm)が算出される(S102,S104)。実噴射量から指令噴射量を減算した差分値(2mm)がズレ量として算出される(S106)。圧力センサ21によってレール圧が検出され(たとえば、150MPa)、検出されたレール圧と指令噴射量と図3の基準ズレ量マップとを用いて基準ズレ量が取得される(たとえば、図3より基準ズレ量として1.0が取得される)。算出されたズレ量が取得された基準ズレ量で除算されることによって比率(2.0)が算出される(S108)。算出された比率を新たな更新学習量として第1記憶部150aに記憶される値が更新される(S110)。
第1記憶部150aにおいて更新学習量が更新されると、学習条件の非成立時に、更新された更新学習量を用いた燃料噴射制御が実行される。たとえば、時間T(1)において、たとえば、図6のLN2に示すように、指令噴射量が1サイクル当たり70mmであって、図6のLN3に示すように、レール圧が200MPaである場合には(S200)、図3の基準ズレ量マップから基準ズレ量1.5が取得される(S202)。そのため、基準ズレ量1.5×更新学習量2.0=3.0が補正量として算出される(S204)。算出された補正量を用いて制御指令値が補正され(S206)、補正された制御指令値を用いて燃料噴射制御が実行される(S208)。
以上のようにして、本実施の形態に係るエンジンの制御装置によると、更新学習量と、レール圧および指令噴射量に基づく基準ズレ量とを乗算することによって、実噴射量と指令噴射量との差分(すなわち、ズレ量)を算出することができる。そのため、エンジン10において噴射量される燃料の噴射量を精度高く制御することができる。さらに、更新学習量として単一の値が用いられるため、更新学習量を記憶する第1記憶部において必要となる記憶容量の増加を抑制することができる。そのため、コストの増加を抑制することができる。したがって、コストの増加を抑制しつつ、エンジンにおいて噴射される燃料噴射量を精度高く制御するエンジンの制御装置を提供することができる。
さらに、基準ズレ量と更新学習量とを乗算した値を燃料噴射装置13の制御に反映させることにより、エンジン10において噴射される燃料の噴射量を精度高く制御することができる。
さらに更新対象となるデータが単一の更新学習量のみであるため、エンジンの運転領域を複数の領域に分割し、分割された領域毎にズレ量を補正する場合と比較して学習値の更新時間を短時間にすることができる。
さらに、基準ズレ量マップは、更新する必要がないため、基準ズレ量マップをメモリ150に記憶させる場合には、第2記憶部150bのように書き換え不可のメモリ等を利用することができる。そのため、コストの増加を抑制することができる。
さらに燃料噴射量を精度高く制御することによって、たとえば、EGR率の制御についても適切な目標EGR率を設定することができるため、燃費や排気ガスの浄化性能の向上を図ることができる。
以下、変形例について説明する。
上述の実施の形態においては、学習条件として、空燃比が所定値以下の予め定められた範囲内であるという条件と、エンジン10の暖機が完了しているという条件とを含むものとして説明したが、たとえば、これらの条件に加えて、エンジン10の回転数が通常の使用範囲に対応する予め定められた範囲内であるという条件と、吸気温度が常温に対応する予め定められた範囲内であるという条件と、大気圧が平地の大気圧に対応する予め定められた範囲内であるという条件と、前回の更新学習量の更新の時点から予め定められた期間が経過しているという条件とのうちの少なくともいずれかの条件を含むようにしてもよい。
さらに、上述の実施の形態においては、エンジン10は、ターボチャージャーの構成を有しない場合を一例として説明したが、ターボチャージャーを有する構成であってもよい。この場合において、EGRシステムは、気筒11から排気通路7に排出された排気ガスの一部をターボチャージャーのコンプレッサの下流の吸気通路に戻すHPL(High Pressure Loop)−EGRの構成に限定されるものではなく、ターボチャージャーのコンプレッサの上流の吸気通路に戻すLPL(Low Pressure Loop)−EGRの構成であってもよい。
さらに上述の実施の形態においては、学習条件が成立した場合に更新学習量を更新するものとして説明したが、更新学習量がすでに設定されている場合(第1記憶部150aに記憶されている場合)には、前回設定された更新学習量(第1記憶部150aに更新学習量として記憶されている値)と新たな更新学習量との差分がしきい値以上の場合に新たな更新学習量に更新するようにしてもよいし、あるいは、差分の値うちの所定割合に相当する値を前回の更新学習量に加算した値を新たな更新学習量として更新するようにしてもよい。
さらに上述の実施の形態においては、1サイクル当たりの実噴射量と1サイクル当たりの指令噴射量との差分を基準ズレ量で除算して更新学習量を算出するものとして説明したが、たとえば、所定時間当たりの実噴射量と所定時間当たりの指令噴射量との差分を基準ズレ量で除算して更新学習量を算出してもよい。所定時間は、たとえば、単位時間を含む。また、制御装置は、たとえば、エンジン回転数からエンジン10の動作サイクル数を算出し、算出された動作サイクル数に制御指令値に対応する燃料噴射量を乗算することによって所定時間当たりの指令噴射量を算出する。
さらに上述の実施の形態においては、エンジン10としてディーゼルエンジンを一例として説明したが、たとえば、エンジン10は、ガソリンエンジンであってもよい。
なお、上記した変形例は、その全部または一部を組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 排気処理装置、2 エアフローメータ、3 空燃比センサ、5 排気温度センサ、7 排気通路、7a 第1通路、7b 第2通路、7c 第3通路、7d 第4通路、8 吸気通路、9 酸化触媒、10 エンジン、11 気筒、11a シリンダ、11b ピストン、12 燃料タンク、13 燃料噴射装置、14 燃料ポンプ、15 コモンレール、16 吸気絞り弁、17 絞り弁センサ、18 EGR通路、19 EGR弁、20 エンジン回転数センサ、21 圧力センサ、100 制御装置、102 実噴射量算出部、104 指令噴射量算出部、106 ズレ量算出部、108 比率算出部、110 学習量更新部、150 メモリ、150a 第1記憶部、150b 第2記憶部、150c 第3記憶部。

Claims (2)

  1. 気筒と前記気筒に燃料を噴射する燃料噴射装置とを備えるエンジンの制御装置であって、
    指令噴射量を含む制御条件に基づいて前記燃料噴射装置を制御する制御部と、
    更新学習量を記憶する第1記憶部と、
    基準ズレ量マップを記憶する第2記憶部とを備え、
    前記基準ズレ量マップには、複数の制御条件毎に、指令噴射量に基づいて前記燃料噴射装置が噴射した燃料の噴射量の当該指令噴射量に対するズレ量が基準ズレ量として設定されており、
    前記制御部は、学習条件が成立したと判断すると、前記複数の制御条件のうちのいずれかを学習制御条件として設定するとともに前記学習制御条件に基づいて前記燃料噴射装置を制御し、前記気筒における実空燃比と前記気筒に吸入される空気量とに基づいて実噴射量を算出し、算出された前記実噴射量と前記学習制御条件の前記指令噴射量との差分を実ズレ量として算出し、前記第2記憶部に記憶された前記基準ズレ量マップより前記学習制御条件に対応する基準ズレ量を取得し、前記実ズレ量と前記基準ズレ量との比率を前記学習制御条件における補正係数として取得し、
    前記第1記憶部は、前記制御部が取得した前記補正係数を前記複数の制御条件の全てに対応する新たな更新学習量として記憶する、エンジンの制御装置。
  2. 前記制御部は、前記学習条件の非成立時には、前記第2記憶部に記憶された前記基準ズレ量マップよりエンジンの運転状態に応じて前記複数の制御条件のうちのいずれかの制御条件を設定し、設定した前記制御条件に対応する前記基準ズレ量を取得し、取得した前記基準ズレ量に前記第1記憶部に記憶されている前記更新学習量を乗算した値を前記燃料噴射装置の制御に反映させる、請求項1に記載のエンジンの制御装置。
JP2017045842A 2017-03-10 2017-03-10 エンジンの制御装置 Pending JP2018150825A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017045842A JP2018150825A (ja) 2017-03-10 2017-03-10 エンジンの制御装置
DE102018104035.0A DE102018104035B4 (de) 2017-03-10 2018-02-22 Steuerungsvorrichtung eines Motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045842A JP2018150825A (ja) 2017-03-10 2017-03-10 エンジンの制御装置

Publications (1)

Publication Number Publication Date
JP2018150825A true JP2018150825A (ja) 2018-09-27

Family

ID=63259136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045842A Pending JP2018150825A (ja) 2017-03-10 2017-03-10 エンジンの制御装置

Country Status (2)

Country Link
JP (1) JP2018150825A (ja)
DE (1) DE102018104035B4 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176559A (ja) * 2019-04-19 2020-10-29 マツダ株式会社 燃料噴射量の学習制御方法
JP2021050698A (ja) * 2019-09-26 2021-04-01 ボッシュ株式会社 燃料噴射制御装置及び燃料噴射制御装置の制御方法
WO2022065310A1 (ja) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 内燃機関の制御装置および内燃機関システム
WO2022065122A1 (ja) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 ピストン温度推定装置およびピストン温度推定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3089565B1 (fr) 2018-12-10 2021-02-19 Continental Automotive France Procédé de commande d’un injecteur dans un système à rail commun

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802274A1 (de) 1988-01-27 1989-08-03 Bosch Gmbh Robert Steuer-/regelsystem fuer instationaeren betrieb einer brennkraftmaschine
JPH06173743A (ja) 1992-12-03 1994-06-21 Nippondenso Co Ltd 内燃機関の空燃比学習制御方法
JP2000110647A (ja) 1998-09-30 2000-04-18 Mazda Motor Corp エンジンの制御装置
JP4065790B2 (ja) 2003-01-17 2008-03-26 三菱電機株式会社 車載電子制御装置
JP3904022B2 (ja) 2005-08-18 2007-04-11 いすゞ自動車株式会社 燃料噴射制御システム
JP4428405B2 (ja) 2007-06-12 2010-03-10 株式会社デンソー 燃料噴射制御装置及びエンジン制御システム
JP2015145665A (ja) 2014-02-04 2015-08-13 日立オートモティブシステムズ株式会社 内燃機関空燃比制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176559A (ja) * 2019-04-19 2020-10-29 マツダ株式会社 燃料噴射量の学習制御方法
JP7282311B2 (ja) 2019-04-19 2023-05-29 マツダ株式会社 燃料噴射量の学習制御方法
JP2021050698A (ja) * 2019-09-26 2021-04-01 ボッシュ株式会社 燃料噴射制御装置及び燃料噴射制御装置の制御方法
JP7364410B2 (ja) 2019-09-26 2023-10-18 ボッシュ株式会社 燃料噴射制御装置及び燃料噴射制御装置の制御方法
WO2022065310A1 (ja) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 内燃機関の制御装置および内燃機関システム
WO2022065122A1 (ja) * 2020-09-24 2022-03-31 いすゞ自動車株式会社 ピストン温度推定装置およびピストン温度推定方法
JP2022053360A (ja) * 2020-09-24 2022-04-05 いすゞ自動車株式会社 内燃機関の制御装置および内燃機関システム
JP7363727B2 (ja) 2020-09-24 2023-10-18 いすゞ自動車株式会社 内燃機関の制御装置および内燃機関システム

Also Published As

Publication number Publication date
DE102018104035A1 (de) 2018-09-13
DE102018104035B4 (de) 2023-07-06

Similar Documents

Publication Publication Date Title
JP2018150825A (ja) エンジンの制御装置
JP3931853B2 (ja) 内燃機関の制御装置
EP2578857A1 (en) Fuel injection quantity control apparatus
JP3487192B2 (ja) 内燃機関の空燃比制御装置
US11067026B2 (en) Engine controller, engine control method, and memory medium
JP3818226B2 (ja) 内燃機関の制御装置
JP6344080B2 (ja) 内燃機関の制御装置
JP2007231884A (ja) 内燃機関の制御装置
EP3088716B1 (en) Engine controlling apparatus
JP5293889B2 (ja) 内燃機関の空燃比制御装置
JP5397555B2 (ja) 内燃機関の制御装置
JP4552590B2 (ja) 内燃機関の制御装置
JP5071494B2 (ja) 内燃機関の制御装置
EP2884085B1 (en) Fuel injection control apparatus of engine
CN109281766B (zh) 内燃机的控制装置
JP2012117472A (ja) 内燃機関の制御装置
JP5295177B2 (ja) エンジンの制御装置
JP6848524B2 (ja) エンジンの制御装置
JP3979212B2 (ja) エンジンの空燃比制御装置
US8726637B2 (en) Air-fuel ratio control system for internal combustion engine
EP3144511B1 (en) Air-fuel ratio control method and exhaust gas purification device
JP2006046077A (ja) 水素添加内燃機関の制御装置
JP6331016B2 (ja) 内燃機関の燃料噴射制御装置
JP5177329B2 (ja) 内燃機関の制御装置
JP2020007968A (ja) エンジンシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210126