WO2022064303A1 - 半導体装置、及び電子機器 - Google Patents

半導体装置、及び電子機器 Download PDF

Info

Publication number
WO2022064303A1
WO2022064303A1 PCT/IB2021/058147 IB2021058147W WO2022064303A1 WO 2022064303 A1 WO2022064303 A1 WO 2022064303A1 IB 2021058147 W IB2021058147 W IB 2021058147W WO 2022064303 A1 WO2022064303 A1 WO 2022064303A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
transistor
potential
memory cell
time
Prior art date
Application number
PCT/IB2021/058147
Other languages
English (en)
French (fr)
Inventor
山崎舜平
木村肇
國武寛司
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202180062785.3A priority Critical patent/CN116114019A/zh
Priority to KR1020237009829A priority patent/KR20230071139A/ko
Priority to US18/025,457 priority patent/US20230335173A1/en
Priority to JP2022551435A priority patent/JPWO2022064303A1/ja
Publication of WO2022064303A1 publication Critical patent/WO2022064303A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/36Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using diodes, e.g. as threshold elements, i.e. diodes assuming a stable ON-stage when driven above their threshold (S- or N-characteristic)
    • G11C11/38Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using diodes, e.g. as threshold elements, i.e. diodes assuming a stable ON-stage when driven above their threshold (S- or N-characteristic) using tunnel diodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/221Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using ferroelectric capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2259Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2293Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2273Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2275Writing or programming circuits or methods

Definitions

  • One aspect of the present invention relates to a semiconductor device and an electronic device.
  • one aspect of the present invention is not limited to the above technical fields.
  • the technical field of the invention disclosed in the present specification and the like relates to a product, a driving method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition (composition of matter). Therefore, more specifically, the technical fields of one aspect of the present invention disclosed in the present specification include semiconductor devices, display devices, liquid crystal display devices, light emitting devices, power storage devices, image pickup devices, storage devices, signal processing devices, and processors. , Electronic devices, systems, their driving methods, their manufacturing methods, or their inspection methods.
  • a CPU is an aggregate of semiconductor elements formed by processing a semiconductor wafer, having a chipped semiconductor integrated circuit (at least a transistor and a memory), and forming an electrode as a connection terminal.
  • Patent Document 1 discloses a semiconductor memory cell having a transistor in which a ferroelectric film is provided on a gate insulating film on the back gate side.
  • Patent Document 2 discloses a memory having a configuration in which a ferroelectric capacitor is electrically connected to the gate of a transistor.
  • DRAM Dynamic Random Access Memory
  • the DRAM may require a circuit for writing back the data after reading the data.
  • the power consumption may increase.
  • One aspect of the present invention is to provide a semiconductor device (semiconductor device that performs non-destructive readout) that does not require rewriting of data.
  • a semiconductor device with reduced power consumption Alternatively, one aspect of the present invention is to provide a semiconductor device having a reduced circuit area.
  • a novel semiconductor device is to provide an electronic device having any of the above-mentioned semiconductor devices.
  • the problem of one aspect of the present invention is not limited to the problems listed above.
  • the issues listed above do not preclude the existence of other issues.
  • Other issues are issues not mentioned in this item, which are described below. Issues not mentioned in this item can be derived from the description of the description, drawings, etc. by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one aspect of the present invention solves at least one of the above-listed problems and other problems. It should be noted that one aspect of the present invention does not need to solve all of the above-listed problems and other problems.
  • One aspect of the present invention is a semiconductor device including a first transistor, a second transistor, a first FTJ element, and a second FTJ element.
  • each of the first FTJ element and the second FTJ element has an input terminal, a tunnel insulating film, a dielectric, and an output terminal.
  • each of the first FTJ element and the second FTJ element has a configuration in which an input terminal, a tunnel insulating film, a dielectric, and an output terminal are superimposed in this order.
  • it is preferable that one of the source and drain of the first transistor is electrically connected to the output terminal of the first FTJ element, the input terminal of the second FTJ element, and the gate of the second transistor.
  • the tunnel insulating film has silicon oxide or silicon nitride, and the dielectric has an oxide containing one or both of hafnium and zirconium. It is preferable to have a configuration.
  • one aspect of the present invention is a semiconductor device including a first transistor, a second transistor, a first ferroelectric capacitor, and a second ferroelectric capacitor.
  • the first terminal of the first transistor is electrically connected to the first terminal of the first ferroelectric capacitor, the first terminal of the second ferroelectric capacitor, and the gate of the second transistor. preferable.
  • the ferroelectric capacitor is preferably configured to have a dielectric.
  • the dielectric preferably has an oxide containing one or both of hafnium and zirconium.
  • one aspect of the present invention is a semiconductor device including a first transistor, a second transistor, a first circuit element, and a second circuit element.
  • one of the source and drain of the first transistor is electrically connected to the output terminal of the first circuit element, the input terminal of the second circuit element, and the gate of the second transistor.
  • Each of the first circuit element and the second circuit element has any one of a resistance changing element, an MTJ element, and a phase changing memory element.
  • one of the source or drain of the second transistor is electrically connected to the other of the source or drain of the first transistor. It may be configured.
  • one aspect of the present invention has a third transistor, and one of the source or drain of the second transistor is one of the source or drain of the third transistor. It may be configured to be electrically connected.
  • one aspect of the present invention may be configured in the above (7), in which the other of the source or drain of the third transistor is electrically connected to the other of the source or drain of the first transistor.
  • one aspect of the present invention is an electronic device having the semiconductor device according to any one of (1) to (8) above and a housing.
  • the semiconductor device is a device that utilizes semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having the same circuit, and the like. It also refers to all devices that can function by utilizing semiconductor characteristics.
  • a semiconductor element transistor, diode, photodiode, etc.
  • the storage device, the display device, the light emitting device, the lighting device, the electronic device, and the like may be a semiconductor device itself, and may have a semiconductor device.
  • X and Y are connected, the case where X and Y are electrically connected and the case where X and Y are functionally connected. It is assumed that the case where X and Y are directly connected is disclosed in the present specification and the like. Therefore, it is not limited to the predetermined connection relationship, for example, the connection relationship shown in the figure or text, and the connection relationship other than the connection relationship shown in the figure or text is also disclosed in the figure or text. It is assumed that X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display
  • One or more devices, light emitting devices, loads, etc. can be connected between X and Y.
  • the switch has a function of controlling on / off. That is, the switch is in a conducting state (on state) or a non-conducting state (off state), and has a function of controlling whether or not a current flows.
  • a circuit that enables functional connection between X and Y for example, a logic circuit (inverter, NAND circuit, NOR circuit, etc.), signal conversion) Circuits (digital-analog conversion circuit, analog-to-digital conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes the potential level of the signal, etc.), voltage source, current source , Switching circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, storage circuit, control circuit, etc.) It is possible to connect one or more to and from. As an example, even if another circuit is sandwiched between X and Y, if the signal output from X is transmitted to Y, it is assumed that X and Y are functionally connected. do.
  • X and Y are electrically connected, it means that X and Y are electrically connected (that is, another element between X and Y). Or when they are connected by sandwiching another circuit) and when X and Y are directly connected (that is, they are connected without sandwiching another element or another circuit between X and Y). If there is) and.
  • X and Y, the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor are electrically connected to each other, and the X, the source (or the second terminal, etc.) of the transistor are connected to each other. (1 terminal, etc.), the drain of the transistor (or the 2nd terminal, etc.), and Y are electrically connected in this order.
  • the source of the transistor (or the first terminal, etc.) is electrically connected to X
  • the drain of the transistor (or the second terminal, etc.) is electrically connected to Y
  • the first terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are electrically connected in this order.
  • X is electrically connected to Y via the source (or first terminal, etc.) and drain (or second terminal, etc.) of the transistor, and X, the source (or first terminal, etc.) of the transistor.
  • the terminals, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
  • the source (or first terminal, etc.) and drain (or second terminal, etc.) of the transistor can be separated. Separately, the technical scope can be determined. It should be noted that these expression methods are examples, and are not limited to these expression methods.
  • X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • the circuit diagram shows that the independent components are electrically connected to each other, the case where one component has the functions of a plurality of components together.
  • one conductive film has both the function of the wiring and the function of the component of the function of the electrode. Therefore, the electrical connection in the present specification also includes the case where one conductive film has the functions of a plurality of components in combination.
  • the “resistance element” can be, for example, a circuit element having a resistance value higher than 0 ⁇ , wiring higher than 0 ⁇ , and the like. Therefore, in the present specification and the like, the “resistance element” includes wiring having a resistance value, a transistor in which a current flows between a source and a drain, a diode, a coil, and the like. Therefore, the term “resistance element” may be paraphrased into terms such as “resistance”, “load”, and “region having a resistance value”. On the contrary, the terms “resistance”, “load”, and “region having a resistance value” may be paraphrased into terms such as “resistance element”.
  • the resistance value can be, for example, preferably 1 m ⁇ or more and 10 ⁇ or less, more preferably 5 m ⁇ or more and 5 ⁇ or less, and further preferably 10 m ⁇ or more and 1 ⁇ or less. Further, for example, it may be 1 ⁇ or more and 1 ⁇ 10 9 ⁇ or less.
  • the “capacitance element” means, for example, a circuit element having a capacitance value higher than 0F, a wiring region having a capacitance value higher than 0F, a parasitic capacitance, and a transistor. It can be the gate capacitance of. Therefore, in the present specification and the like, the “capacitive element” includes a pair of electrodes and a circuit element including a dielectric contained between the electrodes. Further, terms such as “capacitive element”, “parasitic capacitance”, and “gate capacitance” may be paraphrased into terms such as "capacity”.
  • the term “capacity” may be paraphrased into terms such as “capacitive element”, “parasitic capacitance”, and “gate capacitance”.
  • the term “pair of electrodes” of “capacity” can be paraphrased as “pair of conductors", “pair of conductive regions", “pair of regions” and the like.
  • the value of the capacitance can be, for example, 0.05 fF or more and 10 pF or less. Further, for example, it may be 1 pF or more and 10 ⁇ F or less.
  • the transistor has three terminals called a gate, a source, and a drain.
  • the gate is a control terminal that controls the conduction state of the transistor.
  • the two terminals that function as sources or drains are the input and output terminals of the transistor.
  • One of the two input / output terminals becomes a source and the other becomes a drain depending on the high and low potentials given to the conductive type (n-channel type and p-channel type) of the transistor and the three terminals of the transistor. Therefore, in the present specification and the like, the terms source and drain may be paraphrased with each other.
  • the transistor when explaining the connection relationship of transistors, "one of the source or drain” (or the first electrode or the first terminal), “the other of the source or drain” (or the second electrode, or the second electrode, or The notation (second terminal) is used.
  • it may have a back gate in addition to the above-mentioned three terminals.
  • one of the gate and the back gate of the transistor may be referred to as a first gate
  • the other of the gate or the back gate of the transistor may be referred to as a second gate.
  • the terms “gate” and “backgate” may be interchangeable.
  • the respective gates When the transistor has three or more gates, the respective gates may be referred to as a first gate, a second gate, a third gate, and the like in the present specification and the like.
  • a transistor having a multi-gate structure having two or more gate electrodes can be used as an example of a transistor.
  • the channel forming regions are connected in series, so that the structure is such that a plurality of transistors are connected in series. Therefore, the multi-gate structure can reduce the off-current and improve the withstand voltage of the transistor (improve the reliability).
  • the multi-gate structure even if the voltage between the drain and the source changes when operating in the saturation region, the current between the drain and the source does not change much, and the voltage / current has a flat slope. The characteristics can be obtained. By utilizing the voltage / current characteristics with a flat slope, it is possible to realize an ideal current source circuit or an active load having a very high resistance value. As a result, it is possible to realize a differential circuit or a current mirror circuit having good characteristics.
  • the circuit element may have a plurality of circuit elements.
  • one resistance is described on the circuit diagram, it includes the case where two or more resistances are electrically connected in series.
  • one capacity is described on the circuit diagram, it includes a case where two or more capacities are electrically connected in parallel.
  • one transistor is described on the circuit diagram, two or more transistors are electrically connected in series, and the gates of the respective transistors are electrically connected to each other.
  • Shall include.
  • the switch has two or more transistors, and two or more transistors are electrically connected in series or in parallel. It is assumed that the gates of the respective transistors are electrically connected to each other.
  • the node can be paraphrased as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, etc., depending on the circuit configuration and the device structure.
  • terminals and wiring can be paraphrased as nodes.
  • ground potential ground potential
  • the potentials are relative, and when the reference potential changes, the potential given to the wiring, the potential applied to the circuit, the potential output from the circuit, and the like also change.
  • the terms “high level potential” and “low level potential” do not mean a specific potential.
  • the high level potentials provided by both wirings do not have to be equal to each other.
  • the low-level potentials provided by both wirings do not have to be equal to each other. ..
  • the "current” is a charge transfer phenomenon (electrical conduction).
  • the description “electrical conduction of a positively charged body is occurring” means “electrical conduction of a negatively charged body in the opposite direction”. Is happening. " Therefore, in the present specification and the like, the term “current” refers to a charge transfer phenomenon (electrical conduction) associated with carrier transfer, unless otherwise specified.
  • the carrier here include electrons, holes, anions, cations, complex ions, and the like, and the carriers differ depending on the system in which the current flows (for example, semiconductor, metal, electrolytic solution, vacuum, etc.).
  • the "current direction” in wiring or the like is the direction in which the carrier that becomes a positive charge moves, and is described as a positive current amount.
  • the direction in which the carrier that becomes a negative charge moves is opposite to the direction of the current, and is expressed by the amount of negative current. Therefore, in the present specification and the like, if there is no disclaimer regarding the positive or negative current (or the direction of the current), the description such as “current flows from element A to element B” is described as “current flows from element B to element A”. Can be rephrased as. Further, the description such as “a current is input to the element A” can be rephrased as "a current is output from the element A” or the like.
  • the ordinal numbers “first”, “second”, and “third” are added to avoid confusion of the components. Therefore, the number of components is not limited. Moreover, the order of the components is not limited. For example, the component referred to in “first” in one of the embodiments of the present specification and the like may be the other embodiment or the component referred to in “second” in the scope of claims. There can also be. Further, for example, the component referred to in “first” in one of the embodiments of the present specification and the like may be omitted in another embodiment or in the scope of claims.
  • the terms “upper” and “lower” do not limit the positional relationship of the components to be directly above or directly below and to be in direct contact with each other.
  • the terms “electrode B on the insulating layer A” it is not necessary that the electrode B is formed in direct contact with the insulating layer A, and another configuration is formed between the insulating layer A and the electrode B. Do not exclude those that contain elements.
  • words such as “membrane” and “layer” can be interchanged with each other depending on the situation.
  • the terms “insulating layer” and “insulating film” may be changed to the term "insulator”.
  • Electrode may be used as part of a “wiring” and vice versa.
  • terms such as “electrode” and “wiring” include the case where a plurality of “electrodes”, “wiring” and the like are integrally formed.
  • a “terminal” may be used as part of a “wiring”, “electrode”, etc., and vice versa.
  • the term “terminal” includes a case where a plurality of "electrodes", “wiring”, “terminals” and the like are integrally formed.
  • the "electrode” can be a part of “wiring” or “terminal”, and for example, “terminal” can be a part of “wiring” or “electrode”. Further, terms such as “electrode”, “wiring”, and “terminal” may be replaced with terms such as "area” in some cases.
  • terms such as “wiring”, “signal line”, and “power line” can be interchanged with each other in some cases or depending on the situation.
  • the reverse is also true, and it may be possible to change terms such as “signal line” and “power line” to the term “wiring”.
  • a term such as “power line” may be changed to a term such as "signal line”.
  • a term such as “signal line” may be changed to a term such as “power line”.
  • the term “potential” applied to the wiring may be changed to a term such as “signal” in some cases or depending on the situation.
  • the reverse is also true, and terms such as “signal” may be changed to the term “potential”.
  • the semiconductor impurities refer to, for example, other than the main components constituting the semiconductor layer.
  • an element having a concentration of less than 0.1 atomic% is an impurity.
  • the inclusion of impurities may result in, for example, an increase in the defect level density of the semiconductor, a decrease in carrier mobility, a decrease in crystallinity, and the like.
  • the impurities that change the characteristics of the semiconductor include, for example, group 1 element, group 2 element, group 13 element, group 14 element, group 15 element, and other than the main component.
  • the impurities that change the characteristics of the semiconductor include, for example, Group 1 elements, Group 2 elements, Group 13 elements, Group 15 elements and the like (however, oxygen, Does not contain hydrogen).
  • the switch means a switch that is in a conducting state (on state) or a non-conducting state (off state) and has a function of controlling whether or not a current flows.
  • the switch means a switch having a function of selecting and switching a path through which a current flows. Therefore, the switch may have two or three or more terminals through which a current flows, in addition to the control terminals.
  • an electric switch, a mechanical switch, or the like can be used. That is, the switch is not limited to a specific switch as long as it can control the current.
  • Examples of electrical switches include transistors (for example, bipolar transistors, MOS transistors, etc.), diodes (for example, PN diodes, PIN diodes, shotkey diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.), or logic circuits that combine these.
  • transistors for example, bipolar transistors, MOS transistors, etc.
  • diodes for example, PN diodes, PIN diodes, shotkey diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.
  • the "conduction state" of the transistor is, for example, a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically short-circuited, and a current is applied between the source electrode and the drain electrode. A state in which it can be
  • the "non-conducting state" of the transistor means a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically cut off.
  • the polarity (conductive type) of the transistor is not particularly limited.
  • An example of a mechanical switch is a switch that uses MEMS (Micro Electro Mechanical Systems) technology.
  • the switch has an electrode that can be moved mechanically, and by moving the electrode, conduction and non-conduction are controlled and operated.
  • parallel means a state in which two straight lines are arranged at an angle of -10 ° or more and 10 ° or less. Therefore, the case of ⁇ 5 ° or more and 5 ° or less is also included.
  • substantially parallel or approximately parallel means a state in which two straight lines are arranged at an angle of -30 ° or more and 30 ° or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, the case of 85 ° or more and 95 ° or less is also included.
  • substantially vertical or “approximately vertical” means a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less.
  • a semiconductor device semiconductor device that performs non-destructive readout
  • a semiconductor device with reduced power consumption it is possible to provide a semiconductor device having a reduced circuit area.
  • a novel semiconductor device can be provided by one aspect of the present invention.
  • an electronic device having any of the above-mentioned semiconductor devices can be provided.
  • the effect of one aspect of the present invention is not limited to the effects listed above.
  • the effects listed above do not preclude the existence of other effects.
  • the other effects are the effects not mentioned in this item, which are described below. Effects not mentioned in this item can be derived from the description in the specification, drawings, etc. by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one aspect of the present invention has at least one of the above-listed effects and other effects. Therefore, one aspect of the present invention may not have the effects listed above in some cases.
  • FIG. 1A and 1B are circuit diagrams showing a configuration example of a memory cell according to a semiconductor device.
  • FIG. 2 is a timing chart illustrating an operation example of a memory cell related to a semiconductor device.
  • 3A and 3B are timing charts illustrating an operation example of a memory cell according to a semiconductor device.
  • 4A to 4C are circuit diagrams showing a configuration example of a memory cell according to a semiconductor device.
  • 5A to 5F are circuit diagrams showing a configuration example of a memory cell according to a semiconductor device.
  • 6A to 6F are circuit diagrams showing a configuration example of a memory cell according to a semiconductor device.
  • FIG. 7 is a circuit diagram showing a configuration example of a memory cell related to a semiconductor device.
  • FIG. 8A and 8B are circuit diagrams showing a configuration example of a memory cell according to a semiconductor device.
  • 9A and 9B are timing charts illustrating an operation example of a memory cell according to a semiconductor device.
  • FIG. 10 is a block diagram showing a configuration example of the storage device.
  • FIG. 11 is a timing chart illustrating an operation example of the storage device.
  • FIG. 12 is a timing chart illustrating an operation example of the storage device.
  • FIG. 13 is a timing chart illustrating an operation example of the storage device.
  • FIG. 14 is a timing chart illustrating an operation example of the storage device.
  • FIG. 15 is a timing chart illustrating an operation example of the storage device.
  • FIG. 16 is a block diagram showing a configuration example of an arithmetic circuit.
  • FIG. 17 is a circuit diagram showing a configuration example of a circuit included in the arithmetic circuit.
  • 18A and 18B are circuit diagrams showing a configuration example of a memory cell according to a storage device.
  • FIG. 19 is a timing chart illustrating an operation example of a memory cell according to a storage device.
  • 20A and 20B are timing charts illustrating an operation example of a memory cell according to a storage device.
  • FIG. 21 is a circuit diagram showing a configuration example of a memory cell according to a storage device.
  • FIG. 22 is a timing chart illustrating an operation example of a memory cell according to a storage device.
  • FIG. 23 is a schematic cross-sectional view showing a configuration example of the semiconductor device.
  • FIG. 24A to 24C are schematic cross-sectional views showing a configuration example of a transistor.
  • FIG. 25 is a schematic cross-sectional view showing a configuration example of a semiconductor device.
  • 26A and 26B are schematic cross-sectional views showing a configuration example of a transistor.
  • FIG. 27 is a schematic cross-sectional view showing a configuration example of a transistor.
  • FIG. 28 is a schematic cross-sectional view showing a configuration example of a semiconductor device.
  • FIG. 29 is a schematic cross-sectional view showing a configuration example of the transistor.
  • FIG. 30 is a schematic cross-sectional view showing a configuration example of a semiconductor device.
  • FIG. 31A is a diagram for explaining the classification of the crystal structure of IGZO, FIG.
  • FIG. 31B is a diagram for explaining the XRD spectrum of crystalline IGZO
  • FIG. 31C is a diagram for explaining the microelectron diffraction pattern of crystalline IGZO.
  • 32A is a perspective view showing an example of a semiconductor wafer
  • FIG. 32B is a perspective view showing an example of a chip
  • FIGS. 32C and 32D are perspective views showing an example of an electronic component.
  • FIG. 33 is a block diagram illustrating a CPU.
  • 34A to 34I are perspective views or schematic views illustrating an example of the product.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as Oxide Semiconductor or simply OS) and the like. For example, when a metal oxide is contained in the channel forming region of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide can form a channel forming region of a transistor having at least one of an amplification action, a rectifying action, and a switching action, the metal oxide is referred to as a metal oxide semiconductor. be able to. Further, when the term "OS transistor" is used, it can be rephrased as a transistor having a metal oxide or an oxide semiconductor.
  • a metal oxide having nitrogen may also be collectively referred to as a metal oxide. Further, the metal oxide having nitrogen may be referred to as a metal oxynitride.
  • the configuration shown in each embodiment can be appropriately combined with the configuration shown in other embodiments to form one aspect of the present invention. Further, when a plurality of configuration examples are shown in one embodiment, the configuration examples can be appropriately combined with each other.
  • the content described in one embodiment (may be a part of the content) is different from the content described in the embodiment (may be a part of the content) and one or more different implementations. It is possible to apply, combine, or replace at least one content with the content described in the form of (may be a part of the content).
  • figure (which may be a part) described in one embodiment is different from another part of the figure, another figure (which may be a part) described in the embodiment, and one or more different figures.
  • the figure (which may be a part) described in the embodiment is different from another part of the figure, another figure (which may be a part) described in the embodiment, and one or more different figures.
  • more figures can be formed.
  • the code is used for identification such as "_1", “[n]”, “[m, n]”. May be added and described. Further, in the drawings and the like, when the reference numerals such as “_1”, “[n]” and “[m, n]” are added to the reference numerals, when it is not necessary to distinguish them in the present specification and the like, when it is not necessary to distinguish them.
  • the identification code may not be described.
  • FIG. 1A shows an example of a circuit configuration of a memory cell MC provided in a storage device which is a semiconductor device of one aspect of the present invention.
  • the memory cell MC has transistors M1 to M3, an FTJ element FJA, and an FTJ element FJB.
  • Each of the FTJ element FJA and the FTJ element FJB is a tunnel junction element including a pair of electrodes, a material capable of having ferroelectricity, and an insulator functioning as a tunnel insulating film. Further, the FTJ element has a function of changing the resistance value according to the direction and strength of polarization of the material which may have ferroelectricity.
  • the insulator is provided so as to be superimposed on a material having a ferroelectricity, and the insulator and a material having a ferroelectricity are provided between the pair of electrodes.
  • the FTJ element has a rectifying characteristic because an insulator functioning as a tunnel insulating film is provided so as to be superimposed on a material capable of having ferroelectricity.
  • the current of the FTJ element when the FTJ element is configured such that one of the pair of electrodes, an insulator functioning as a tunnel insulating film, a material having a strong dielectric property, and the other of the pair of electrodes are laminated in this order, the current of the FTJ element.
  • the forward direction in which the current flows is from one of the pair of electrodes to the other of the pair of electrodes.
  • one of the pair of electrodes may be described as an input terminal, and the other of the pair of electrodes may be described as an output terminal.
  • a first conductor, a tunnel insulating film, a material capable of having ferroelectricity, and a second conductor are placed in this order on a flat insulating film or conductive film. It can be formed by laminating.
  • the first conductor can be paraphrased as a lower electrode, and the second conductor can be paraphrased as an upper electrode.
  • the first conductor and the second conductor are the pair of electrodes described above, and the first conductor (lower electrode) functions as an input terminal as an example, and the second conductor. (Upper electrode) functions as an output terminal as an example.
  • the FTJ element described in the present specification and the like includes a first conductor (lower electrode), a material capable of having ferroelectricity, a tunnel insulating film, and a second, on a flat insulating film or a conductive film.
  • Conductors (upper electrodes) may be laminated in this order. Further, at this time, the first conductor (lower electrode) functions as an output terminal as an example, and the second conductor (upper electrode) functions as an input terminal as an example.
  • tunnel insulating film for example, silicon oxide, silicon nitride, a laminate of silicon oxide and silicon nitride can be used.
  • the resistance value of the FTJ element changes depending on the direction and strength of the polarization of the material which may have ferroelectricity.
  • the direction of polarization is the direction from the output terminal to the input terminal (at this time, the direction of the polarization vector is negative).
  • the amount of current flowing from the input terminal to the output terminal in the FTJ element becomes large.
  • the direction of polarization is the direction from the input terminal to the output terminal (at this time, the direction of the polarization vector is positive).
  • the amount of current flowing from the input terminal to the output terminal in the FTJ element becomes small. That is, in the FTJ element, when the direction of polarization is the direction from the input terminal to the output terminal, the resistance value against the current flowing from the input terminal to the output terminal of the FTJ element becomes large, and in the FTJ element, the direction of polarization. When is in the direction from the output terminal to the input terminal, the resistance value with respect to the current flowing from the input terminal of the FTJ element to the output terminal becomes small.
  • a high voltage may be applied between the input terminal and the output terminal of the FTJ element.
  • a high voltage may be applied between the input terminal and the output terminal of the FTJ element.
  • the direction of polarization is from the input terminal to the output terminal ( By applying a low level potential to the input terminal side of the FTJ element and a high level potential to the output terminal side, the direction of polarization is directed from the output terminal to the input terminal (negative direction).
  • the FTJ element Since the FTJ element has a hysteresis property in the intensity of polarization, it is necessary to apply a voltage corresponding to the structure of the FTJ element in order to cause polarization (change the direction of polarization), which is lower than the voltage. At voltage, polarization does not occur in the FTJ element (the direction of polarization does not change).
  • the FTJ element is represented as a diode circuit symbol with an arrow added.
  • the triangular side corresponding to the anode of the circuit symbol of the diode connected to the wiring is used as the input terminal in the FTJ element, and corresponds to the cathode of the circuit symbol of the diode connected to the wiring.
  • the anode and the line of the triangle to be formed are used as output terminals in the FTJ element.
  • hafnium oxide As a material capable of having ferroelectricity, for example, it is preferable to use hafnium oxide.
  • the film thickness of hafnium oxide is preferably 10 nm or less. It is more preferably 5 nm or less, and further preferably 2 nm or less.
  • hafnium oxide other than hafnium oxide, zirconium oxide, zirconium oxide hafnium (HfZrOX ( X may be described as a real number larger than 0)
  • hafnium oxide may be used.
  • Element J1 (where element J1 is zirconium (Zr), silicon (Si), aluminum (Al), gadrinium (Gd), yttrium (Y), lanthanum (La), strontium (Sr), etc.) was added.
  • element J2 here is hafnium (Hf), silicon (Si), aluminum (Al), gadrinium (Gd), yttrium (Y), lanthanum (La), strontium (Sr), etc. ) Is added, and the like.
  • lead titanate sometimes referred to as PbTIO X
  • barium titanate strontium BST
  • strontium titanate lead zirconate titanate
  • PZT lead zirconate titanate
  • bismuth tantanate are examples of materials that can have strong dielectric properties.
  • Piezoelectric ceramics having a perovskite structure, such as strontium titanate (SBT), bismuth ferrite (BFO), and barium titanate, may be used.
  • the material capable of having ferroelectricity for example, a mixture or a compound selected from the materials listed above can be used.
  • the material capable of having ferroelectricity can be a laminated structure composed of a plurality of materials selected from the materials listed above.
  • the crystal structure (characteristics) of hafnium oxide, zirconium oxide, zirconium oxide hafnium oxide, and materials obtained by adding the element J1 to hafnium oxide may change not only depending on the film forming conditions but also depending on various processes. In the present specification and the like, not only a material exhibiting ferroelectricity is referred to as a ferroelectric substance, but also a material capable of having ferroelectricity.
  • zirconium oxide hafnium oxide is used as a material having a ferroelectricity
  • ALD atomic layer deposition
  • thermal ALD thermal ALD
  • a material capable of having ferroelectricity is formed by using the thermal ALD method
  • Hydro Carbon also referred to as Hydro Carbon
  • a precursor containing no hydrocarbon a chlorine-based material can be mentioned.
  • HfCl 4 and / or ZrCl 4 may be used as the precursor.
  • high-purity intrinsicity is achieved by thoroughly eliminating at least one of impurities, here hydrogen, hydrocarbon, and carbon in the film. It is possible to form a film capable of having a strong ferroelectricity. It should be noted that the film having high-purity intrinsic ferroelectricity and the high-purity intrinsic oxide semiconductor shown in the embodiment described later have very high consistency in the manufacturing process. Therefore, it is possible to provide a method for manufacturing a semiconductor device having high productivity.
  • zirconium oxide hafnium oxide is used as a material capable of having ferroelectricity, it is preferable to alternately deposit hafnium oxide and zirconium oxide in a 1: 1 composition by using the thermal ALD method.
  • the oxidizing agent of the thermal ALD method is not limited to this.
  • the oxidizing agent in the thermal ALD method may contain one or more selected from O 2 , O 3 , N 2 O, NO 2 , H 2 O, and H 2 O 2 .
  • the crystal structure of the material that can have ferroelectricity is not particularly limited.
  • the crystal structure of a material capable of having strong dielectric property any one crystal structure selected from a cubic system, a tetragonal system, an orthorhombic system, and a monoclinic system, or a composite structure having a plurality of crystal structures is selected. And it is sufficient.
  • a material capable of having ferroelectricity it is preferable to have an orthorhombic crystal structure because ferroelectricity is exhibited.
  • a composite structure having an amorphous structure and a crystal structure may be used.
  • an OS transistor can be applied.
  • the metal oxide contained in the channel forming region of the OS transistor for example, an oxide containing at least one of indium, gallium, and zinc is preferably contained.
  • the metal oxide includes, for example, indium and element M (element M includes, for example, aluminum, ittrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, and cerium. , One or more selected from neodymium, hafnium, tantalum, tungsten, magnesium and the like, etc.), and may be an oxide containing at least one of zinc. Further, it is more preferable that the transistors M1 to M3 have the transistor structure described in the sixth embodiment.
  • a transistor in which silicon is contained in the channel forming region may be applied other than the OS transistor.
  • the silicon may be, for example, amorphous silicon (sometimes referred to as hydride amorphous silicon), microcrystalline silicon, polycrystalline silicon, single crystal silicon, or the like.
  • each of the transistors M1 to M3, other than the OS transistor and the Si transistor a transistor containing Ge or the like in the channel forming region, or a compound semiconductor such as ZnSe, CdS, GaAs, InP, GaN, or SiGe is used as a channel.
  • Transistors included in the formation region, transistors in which carbon nanotubes are contained in the channel formation region, transistors in which organic semiconductors are contained in the channel formation region, and the like may be applied.
  • the channel forming regions of the transistors M1 to M3 may contain the same material or may contain different materials.
  • a part may be an OS transistor and the rest may be a Si transistor.
  • the transistors M1 to M3 shown in FIG. 1A are, for example, transistors having a structure having gates above and below the channel, and each of the transistors M1 to M3 has a first gate and a second gate, respectively. ..
  • the first gate is described as a gate (sometimes referred to as a front gate) and the second gate is described as a back gate, but the first gate and the second gate are interchanged with each other. Can be done. Therefore, in the present specification and the like, the phrase “gate” can be replaced with the phrase “back gate”. Similarly, the phrase “backgate” can be replaced with the phrase "gate”.
  • the connection configuration that "the gate is electrically connected to the first wiring and the back gate is electrically connected to the second wiring" is "the back gate is electrically connected to the first wiring". And the gate is electrically connected to the second wiring.
  • the memory cell MC according to the semiconductor device of one aspect of the present invention does not depend on the connection configuration of the back gate of the transistor.
  • a back gate is shown in the transistors M1 to M3 shown in FIG. 1A, and the connection configuration of the back gate is not shown.
  • the electrical connection destination of the back gate is at the design stage. You can decide. For example, in a transistor having a back gate, the gate and the back gate may be electrically connected in order to increase the on-current of the transistor. That is, for example, the gate of the transistor M1 and the back gate may be electrically connected.
  • a wiring electrically connected to an external circuit or the like is provided in order to fluctuate the threshold voltage of the transistor or to reduce the off current of the transistor. Therefore, a fixed potential or a variable potential may be applied to the back gate of the transistor by the external circuit or the like. The same applies not only to FIG. 1A but also to the transistors described in other parts of the specification or the transistors shown in other drawings.
  • each of the transistors M1 to M3 shown in FIG. 1A may have a configuration that does not have a back gate, that is, a transistor having a single gate structure. Further, some transistors may be configured to have a back gate, and some other transistors may be configured to have no back gate. The same applies not only to FIG. 1A but also to the transistors described in other parts of the specification or the transistors shown in other drawings.
  • the transistors M1 to M3 shown in FIG. 1A show n-channel transistors as an example, but depending on the situation, or in some cases, all or part of them are p-channel transistors. May be replaced with. Further, when the n-channel transistor is replaced with the p-channel transistor, it is necessary to appropriately change the potential input to the memory cell MC or the like so that the memory cell MC operates normally. In addition, the result output from the memory cell MC may change. The same applies not only to FIG. 1A but also to the transistors described in other parts of the specification or the transistors shown in other drawings. Further, in the present embodiment, the configuration and operation of the memory cell MC will be described with the transistors M1 to M3 as n-channel transistors.
  • the first terminal of the transistor M1 is electrically connected to the wiring WDL, and the gate of the transistor M1 is electrically connected to the wiring WWL.
  • the input terminal of the FTJ element FJA is electrically connected to the wiring FCA.
  • the output terminal of the FTJ element FJA is electrically connected to the second terminal of the transistor M1, the input terminal of the FTJ element FJB, and the gate of the transistor M2.
  • the output terminal of the FTJ element FJB is electrically connected to the wiring FCB.
  • the first terminal of the transistor M2 is electrically connected to the wiring VCE, and the second terminal of the transistor M2 is electrically connected to the first terminal of the transistor M3.
  • the second terminal of the transistor M3 is electrically connected to the wiring RDL, and the gate of the transistor M3 is electrically connected to the wiring RWL.
  • the wiring WDL functions as a wiring for transmitting data written to the memory cell MC as an example. That is, the wiring WDL may function as a write data line.
  • the wiring RDL functions as a wiring for transmitting the data read from the memory cell MC as an example. That is, the wiring RDL may function as a read data line.
  • the wiring WWL functions as wiring for selecting the memory cell MC to which the data is written, as an example. That is, the wiring WWL may function as a writing word line.
  • the wiring RWL functions as wiring for selecting the memory cell MC for reading data, as an example. That is, the wiring RWL may function as a read word line.
  • each of the wiring FCA and the wiring FCB causes polarization in the material having a strong dielectric property contained in each of the FTJ element FJA and the FTJ element FJB when writing data to the memory cell MC. It functions as a wiring that gives a certain degree of potential. Further, each of the wiring FCA and the wiring FCB also functions as, for example, as a wiring that gives a potential that does not change the polarization of the material that may have ferroelectricity when reading data from the memory cell MC.
  • the wiring VCE functions as a wiring that gives a constant voltage as an example.
  • the constant voltage can be, for example, a high level potential, a low level potential, a ground potential, or the like.
  • FIG. 2 is a timing chart showing an example of a data writing operation in the memory cell MC of FIG. 1A.
  • the timing chart of FIG. 2 shows changes in the potentials of the wiring WWL, the wiring WDL, the wiring FCA, the wiring FCB, and the wiring RWL during and near the time T11 to the time T18.
  • the potential of the wiring RDL does not change, so it is not shown in the timing chart of FIG. Further, the potential of the wiring RDL between the time T11 and the time T18 is not particularly limited.
  • the potential given by the wiring VCE can be a high level potential, a low level potential, a ground potential, or the like as described above, but in this operation example, it is a low level potential VSS .
  • the potentials of the wiring WWL and the wiring RWL are low level potentials (denoted as Low in FIG. 2). Therefore, a low level potential is input to the gate of the transistor M1, and a low level potential is input to the gate of the transistor M3. Therefore, each of the transistor M1 and the transistor M3 is in the off state.
  • the potential of the wiring WDL is set to the ground potential (denoted as GND in FIG. 2) as an example between the time T11 and the time T12.
  • the ground potential is preferably 0 V.
  • V 0A and V 0B can be, for example, a reference potential or a value near the reference potential.
  • the value near the reference potential for example, when the reference potential is VC, VC - 0.1 [V] or more, VC - 0.05 [V] or more, or VC - 0.01 [V]. ] Or higher potential, and VC +0.01 [V] or lower, VC +0.05 [V] or lower, or VC +0.1 [V] or lower.
  • the reference potential VC is more preferably 0 [V] or the ground potential, for example. Further, it is more preferable that V 0A and V 0B have potentials equal to each other.
  • the potential given by the wiring WWL changes from a low level potential to a high level potential (denoted as High in FIG. 2). Therefore, a high level potential is input to the gate of the transistor M1 and the transistor M1 is turned on. That is, the wiring WDL and the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) are in a conductive state. Therefore, the ground potential given by the wiring WDL is given to the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB). Therefore, the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is assumed to be the ground potential.
  • V 0 and V 1 are a potential representing binary data (digital value).
  • V 0 can be a potential indicating either “0” or “1”
  • V 1 can be a potential indicating the other of "0" or “1”.
  • V 0 is described as a potential indicating “0”
  • V 1 is described as a potential indicating “1”.
  • the magnitudes of V 0 and V 1 are set so that V 1 ⁇ V 0 causes the polarization of the FTJ element FJA and the FTJ element FJB, respectively, or rewrites the direction of the polarization. be able to.
  • V 1 and V 0 are V 1 ⁇ V 0 of 3V or more. It should be set so as to be. It is preferable that V 0 is equal to, for example, the potentials of V 0A and / or V 0B . Specifically, for example, V 0 may be 0V and V 1 may be 3V. In this operation example, writing and reading of binary data will be described, but the memory cell MC may be capable of writing and / or reading multi-valued data and analog potential, for example. be.
  • the wiring FCA is given a potential V 1A and the wiring FCB is given a potential V 0B .
  • V 1A is assumed to have a higher potential than V 0A .
  • V 1A has a potential at which polarization occurs in the FTJ element FJA when the output terminal of the FTJ element FJA is V 0 .
  • the direction of the polarization is the direction (positive direction) from the input terminal to the output terminal of the FTJ element FJA.
  • V 1A is equal to the potential of V 1 as an example.
  • the wiring FCA is given a potential V 0A and the wiring FCB is given a potential V 1B .
  • V 1B is assumed to have a higher potential than V 0B .
  • V 1B has a potential at which polarization occurs in the FTJ element FJB (a degree in which the direction of polarization changes) when the input terminal of the FTJ element FJB is V 0 .
  • the direction of the polarization is the direction (negative direction) from the output terminal of the FTJ element FJB to the input terminal.
  • V 1B is equal to V 1A . That is, V 1B is preferably equal to V 1 .
  • the potentials of the wiring FCA and the wiring FCB change as shown in the timing chart of FIG. 2, so that the FTJ can be applied to the gate of the transistor M2 from the wiring WDL.
  • the polarization directions of the element FJA and the FTJ element FJB are determined as shown in the following table.
  • the potentials given by the wiring FCA and the wiring FCB are V 0A and V 0B , respectively. That is, after the time T16, the potential given by the wiring FCA and the wiring FCB is the same as the potential given by the wiring FCA and the wiring FCB before the time T14.
  • the transmission of data from the wiring WDL to the memory cell MC ends.
  • the wiring WDL is given a ground potential. Since the transistor M1 has been on since before the time T16, the ground potential given by the wiring WDL is given to the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB). Therefore, the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is assumed to be the ground potential.
  • the ground potential given by the wiring WDL is given to the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB). Therefore, the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is assumed to be the ground potential. Even if the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) becomes the ground potential, the FTJ element FJA and the FTJ element written between the time T14 and the time T16. The direction of each polarization of the FJB does not change.
  • Data can be written to the memory cell MC of FIG. 1A by the operation between the time T11 and the time T18 described above.
  • FIG. 3A is a timing chart showing an example of a data read operation in the memory cell MC of FIG. 1A.
  • the timing chart of FIG. 3A shows changes in the potentials of the wiring WWL, the wiring FCA, the wiring FCB, the wiring RWL, and the wiring RDL during and near the time T21 to the time T27.
  • the potential of the wiring WDL does not change, so it is not shown in the timing chart of FIG. 3A. Further, the potential of the wiring WDL between the time T21 and the time T27 is not particularly limited. In this operation example, it is assumed that the ground potential is given as an example.
  • the potential given by the wiring VCE can be a high level potential, a low level potential, a ground potential, or the like as described above, but in this operation example, it is a low level potential VSS .
  • the potentials of the wiring WWL and the wiring RWL are low level potentials (denoted as Low in FIG. 3A). Therefore, a low level potential is input to the gate of the transistor M1, and a low level potential is input to the gate of the transistor M3. Therefore, each of the transistor M1 and the transistor M3 is in the off state.
  • the potentials given by the wiring FCA and the wiring FCB are the same as the potentials given by the wiring FCA and the wiring FCB between the time T11 and the time T12. Let it be 0A and V0B .
  • V RE1 which is a constant voltage is given to the potential of the wiring RDL.
  • V RE1 is a constant voltage for reading higher than VSS .
  • the wiring FCA is given a potential VM and the wiring FCB is given a potential V 0B .
  • VM has a potential higher than V 0A and V 0B and lower than V 1A . Further, when the potential of the wiring FCB is V 0B , the VM is set to such a potential that the polarization does not change (the direction of polarization does not change) in the FTJ element FJA and the FTJ element FJB.
  • the voltage division of the FTJ element FJA and the FTJ element FJB is applied to each of the FTJ element FJA and the FTJ element FJB.
  • a voltage VM ⁇ V 0B is applied between the wiring FCA and the wiring FCB, and the FTJ element FJA and the FTJ element FJB are divided by the ratio of a: b (a and b are positive real numbers).
  • VFJA (VM ⁇ V 0B ) ⁇ a / (a + b)
  • VFJB (VM ⁇ V 0B ) ⁇ b / (a + b)
  • the VFJA when the direction of polarization is the direction from the input terminal (wiring FCA) to the output terminal (positive direction), the VFJA becomes high, and the direction of polarization is from the output terminal to the input terminal. When it is in the direction (negative direction) of (wiring FCA), VFJA becomes low.
  • the FTJ element FJB when the direction of polarization is the direction from the output terminal (wiring FCB) to the input terminal (negative direction), the VFJB becomes low and the direction of polarization is output from the input terminal. When it is in the direction (positive direction) of the terminal (wiring FCB), the VFJB becomes high.
  • the direction of polarization of the FTJ element FJA is the direction from the input terminal (wiring FCA) to the output terminal. Since it is in the (positive direction), the VFJA becomes high, and the polarization direction of the FTJ element FJB becomes the direction (negative direction) from the output terminal (wiring FCB) to the input terminal, so that the VFJB becomes low. That is, the ratio a: b of the partial pressure applied to each of the FTJ element FJA and the FTJ element FJB is a> b. Further, the potential of the gate of the transistor M2 at this time (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is set to VHLD0 .
  • the direction of polarization of the FTJ element FJA is the direction from the output terminal to the input terminal (wiring FCA). Since it is in the negative direction), the VFJA becomes low, and the polarization direction of the FTJ element FJB becomes the direction (positive direction) from the input terminal to the output terminal (wiring FCB), so that the VFJB becomes high. That is, the ratio a: b of the partial pressure applied to each of the FTJ element FJA and the FTJ element FJB is b> a. Further, the potential of the gate of the transistor M2 at this time (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is set to VHLD1 .
  • the voltage V FJB between the input terminal and the output terminal of the FTJ element FJB is higher when the potential written in the memory cell MC is V 1 than when it is V 0 . Therefore, when the potential V 0B given by the wiring FCB is used as a reference, the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is V 0 as the potential written in the memory cell MC. It is higher at V1 than at. That is, V HLD1 > V HLD 0 .
  • the potential of the gate of the transistor M2 is V HLD0 or V HLD1
  • the potential of the first terminal of the transistor M2 is V SS
  • a constant potential V RE1 higher than VSS is input from the wiring RDL as an example to the second terminal of the transistor M2.
  • the gate-source voltage V HLD0 ⁇ V SS (or V HLD1 ⁇ V SS ) of the transistor M2 is higher than the threshold voltage Vth of the transistor M2, the gate-source voltage of the transistor M2 is high.
  • a current corresponding to the inter-voltage V HLD0 -V SS (or V HLD1 -V SS ) flows.
  • the amount of current flowing through the wiring RDL is determined according to the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB). Specifically, since V HLD1 > V HLD 0 , the current flowing from the transistor M2 to the wiring RDL is larger when the potential given to the memory cell MC from the wiring WDL is V 1 than when the potential is V 0 . ..
  • the data held in the memory cell MC can be read out.
  • a read-out circuit for example, a current-voltage conversion circuit or the like
  • the wiring FCA is given a potential V 0A
  • the wiring FCB is given a potential V 0B . That is, after the time T26, the potential given by the wiring FCA and the wiring FCB is the same as the potential given by the wiring FCA and the wiring FCB before the time T23.
  • the data written in the memory cell MC of FIG. 1A can be read out. Further, when the data is read from the memory cell MC of FIG. 1A, the polarization directions of the FTJ element FJA and the FTJ element FJB do not change, so that the above-mentioned data reading operation example is not destructive reading. That is, the data can be read from the memory cell MC while retaining the data written in the memory cell MC.
  • the potential given by the wiring VCE is set to the low level potential VSS, but the potential given by the wiring VCE may be set to the high level potential.
  • the timing chart of FIG. 3B shows an operation example when the potential given by the wiring VCE is set to a high level potential in the reading operation example of the timing chart of FIG. 3A.
  • the fluctuation of the potential is shown by a solid line and a broken line.
  • the potential change shown by the solid line indicates the case where V 0 is input from the wiring WDL to the memory cell MC in the writing operation of the timing chart of FIG. 2, and the potential change shown by the broken line is the timing chart of FIG. In the writing operation of, the case where V1 is input from the wiring WDL to the memory cell MC is shown.
  • the low level potential VSS is precharged with respect to the wiring RDL between the time T22 and the time T23. Further, after the wiring RDL is precharged, the wiring RDL is assumed to be in a floating state.
  • the potential of the wiring RWL changes from the low level potential to the high level potential. Therefore, a high level potential is input to the gate of the transistor M3, and the transistor M3 is turned on.
  • the potential of the gate of the transistor M2 is V HLD0 or V HLD1
  • the potential of the first terminal of the transistor M2 is V DD .
  • the transistor M3 since the transistor M3 is in the ON state, the precharged potential in the wiring RDL is input to the second terminal of the transistor M2.
  • the gate-source voltage V HLD0 -V SS (or V HLD1 -V SS ) of the transistor M2 is higher than the threshold voltage V th of the transistor M2, the potential of the wiring RDL is V SS . To a predetermined potential.
  • the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is V HLD 0
  • the potential of the wiring RDL is from VSS to V HLD0 ⁇ V th ( In FIG. 3B, it is described as V ON .).
  • the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is V HLD1
  • the potential of the wiring RDL is from VSS to V HLD1 ⁇ V . It rises to th (described as V OP in FIG. 3B).
  • the memory cell MC is similar to the timing chart and the reading operation example of FIG. 3A.
  • the data held in can be read out.
  • the potential given by the wiring VCE is set to VDD , and after the time T22, a constant voltage for reading lower than that of VDD is given to the wiring RDL, and the timing of FIG. 3A is obtained. Similar to the operation of the chart, the data held in the memory cell MC can be read out by acquiring the amount of the current flowing through the wiring RDL.
  • the operation of the timing charts of FIGS. 2, 3A, and 3B described in the present embodiment is an example, the operation can be changed depending on the situation or in some cases.
  • a high level potential is given to the wiring WWL
  • V 0 or V 1 is given to the wiring WD L.
  • a high level potential may be applied to the wiring WWL within the period in which V 0 or V 1 is applied to the wiring WD L.
  • the potential V 1A is given to the wiring FCA and the potential V 0B is given to the wiring FCB
  • the potential V 0A is given to the wiring FCA and the potential V 1B is given to the wiring FCB.
  • the period may be any timing as long as the wiring WWL is given a high level potential and the wiring WDL is given V 0 or V 1 . Further, during the period in which the potential V 0A is given to the wiring FCA and the potential V 1B is given to the wiring FCB, the potential V 1A is given to the wiring FCA and the potential V 0B is given to the wiring FCB. It may be earlier than the period.
  • the memory cell MC provided in the storage device which is the semiconductor device of one aspect of the present invention, is not limited to the circuit configuration of FIG. 1A.
  • the circuit configuration of the memory cell MC provided in the storage device may be changed depending on the situation or the situation. In this configuration example, a memory cell MC in which one of the FTJ element FJA and the FTJ element FJB provided in the memory cell MC of FIG. 1A is changed to another circuit element will be described.
  • the memory cell MC may have a configuration in which the FTJ element FJA is replaced with a ferroelectric capacitor FEA and the FTJ element FJB is replaced with a ferroelectric capacitor FEB.
  • the circuit symbol of the ferroelectric capacitor (for example, the ferroelectric capacitor FEA, the ferroelectric capacitor FEB, etc.) is the capacity circuit symbol with a diagonal line added as shown in FIG. 4A. Further, as another circuit symbol, as shown in FIG. 4B, a plurality of diagonal lines may be added between two lines parallel to each other in the capacity circuit symbol.
  • the voltage applied between the wiring FCA and the wiring FCB can be divided by the strong dielectric capacitor FEA and the strong dielectric capacitor FEB.
  • the memory cell MC of FIG. 4A (FIG. 4B) has a strong dielectric capacitor FEA and a strong dielectric capacitor according to the data written to the memory cell MC of FIG. 4A (FIG. 4B), similarly to the memory cell MC of FIG. 1A. Since the ratio of each voltage division of the FEB is determined, it may be possible to write the data to the memory cell MC and read the data without destroying the retained data.
  • FIGS. 4A and 4B an example in which the FTJ element FJA and the FTJ element FJB of the memory cell MC of FIG. 1A are replaced with the dielectric capacitor FEA and the dielectric capacitor FEB is shown.
  • the FTJ element FJA and the FTJ element FJB of the MC may be replaced with circuit elements other than the dielectric capacitor.
  • the FTJ element FJA and the FTJ element FJB of the memory cell MC in FIG. 1A may be replaced with a circuit element ANA and a circuit element ANB capable of changing the resistance value, as shown in FIG. 4C.
  • the input terminal of the circuit element ANA is electrically connected to the wiring FCA
  • the output terminal of the circuit element ANA is the second terminal of the transistor M1, the gate of the transistor M2, and the input terminal of the circuit element ANB.
  • the output terminal of the circuit element ANB is electrically connected to the wiring FCB.
  • a resistance changing element used for ReRAM Resistive Random Access Memory
  • an MTJ Magnetic
  • MRAM Magnetic Random Access Memory
  • PCM phase change memory
  • the FTJ element FJA and the FTJ element FJB of the memory cell MC of FIG. 1A are replaced with the circuit element ANA and the circuit element ANB, the same as the memory cell MC of FIG.
  • the voltage applied between the wiring FCA and the wiring FCB can be divided by the circuit element ANA and the circuit element ANB.
  • the ratio of the divided pressures of the circuit element ANA and the circuit element ANB is different according to the data written in the memory cell MC of FIG. 4C. Since it is determined, it may be possible to write data to the memory cell MC and read the data without destroying the retained data.
  • the memory cell MC may have a configuration in which the FTJ element FJA of the memory cell MC of FIG. 1A is replaced with a resistor REA.
  • the FTJ element FJA may not be replaced with the resistor REA, and the FTJ element FJB may be replaced with the resistor REB.
  • the data written in the memory cell MC can be held by the other of the FTJ element FJA and the FTJ element FJB.
  • the direction of the polarization generated in the other of the FTJ element FJA and the FTJ element FJB can be determined according to the data (V 0 or V 1 ). Therefore, even if the circuit configurations of the memory cells MC of FIGS. 5A and 5B are used, the retained data can be read out without destroying the retained data.
  • the memory cell MC may have a configuration in which the FTJ element FJA of the memory cell MC of FIG. 1A is replaced with a capacitance CA.
  • the FTJ element FJA may not be replaced with the capacitance CA, and the FTJ element FJB may be replaced with the capacitance CB.
  • the memory cell MC is caused by the other of the FTJ element FJA and the FTJ element FJB as in FIGS. 5A and 5B. Can hold data written to. Further, even if the memory cells MC shown in FIGS. 5C and 5D are used, the retained data can be read out without destroying the retained data as in FIGS. 5A and 5B.
  • the memory cell MC may have a configuration in which the FTJ element FJA of the memory cell MC of FIG. 1A is replaced with the circuit element ANA described in FIG. 4C.
  • the FTJ element FJA may not be replaced with the circuit element ANA
  • the FTJ element FJB may be replaced with the circuit element ANB described with reference to FIG. 4C.
  • the circuit element ANA and circuit element ANB shown in FIGS. 5E and 5F include, for example, a resistance changing element used for ReRAM, an MTJ element used for MRAM, a phase change memory element, and a ferroelectric capacitor. Etc. can be used.
  • the FTJ element FJA and the FTJ element FJB of the memory cell MC of FIG. 1A By replacing one of the FTJ element FJA and the FTJ element FJB of the memory cell MC of FIG. 1A with a circuit element ANA (circuit element ANB), the FTJ element FJA and the FTJ element FJB can be obtained in the same manner as in FIGS. 5A and 5B. The other allows the data to be written to the memory cell MC to be retained. Further, even if the memory cells MC shown in FIGS. 5E and 5F are used, the retained data can be read out without destroying the retained data as in FIGS. 5A and 5B.
  • circuit element ANA circuit element ANB
  • the memory cell MC may have a configuration in which the FTJ element FJA is replaced with the transistor M4A as shown in FIGS. 6A and 6C.
  • the first terminal of the transistor M4A is electrically connected to the wiring FCA and the gate of the transistor M4A, and the second terminal of the transistor M4A is the second terminal of the transistor M1.
  • the two terminals are electrically connected to the gate of the transistor M2 and the input terminal of the FTJ element FJB.
  • the first terminal of the transistor M4A is electrically connected to the wiring FCA
  • the second terminal of the transistor M4A is the gate of the transistor M4A, the second terminal of the transistor M1, and the transistor. It is electrically connected to the gate of the M2 and the input terminal of the FTJ element FJB.
  • the FTJ element FJA may not be replaced with the transistor M4A, and the FTJ element FJB may be replaced with the transistor M4B.
  • the first terminal of the transistor M4B is a gate of the transistor M4B, a second terminal of the transistor M1, a gate of the transistor M2, and an output terminal of the FTJ element FJA. It is electrically connected, and the second terminal of the transistor M4B is electrically connected to the wiring FCB.
  • the first terminal of the transistor M4B is electrically connected to the second terminal of the transistor M1, the gate of the transistor M2, and the output terminal of the FTJ element FJA, and is connected to the second terminal of the transistor M4B.
  • the second terminal is electrically connected to the gate of the transistor M4B and the wiring FCB.
  • the transistor M4A has a so-called diode-connected configuration. Further, in FIGS. 6B and 6D, the transistor M4B is also configured to be connected by a diode. As shown in FIGS. 6A to 6D, even if one of the FTJ element FJA and the FTJ element FJB is replaced with a circuit element having rectifying characteristics such as a diode, the memory cell MC is caused by the other of the FTJ element FJA and the FTJ element FJB. Can hold the data written to. Further, even if the memory cells MC shown in FIGS. 6A to 6D are used, the data can be read out without destroying the retained data, as in FIGS. 5A to 5D.
  • FIGS. 6A and 6C show a configuration in which the transistor M4A is connected by a diode, but as shown in FIG. 6E, the gate of the transistor M4A is not the first terminal and the second terminal of the transistor M4A.
  • it may be electrically connected to a wiring BSA that gives a constant voltage.
  • the wiring BSA functions as wiring that applies a bias voltage as a constant voltage to the gate of the transistor M4A.
  • a current corresponding to the potential of each of the first terminal, the second terminal, and the gate of the transistor M4A is generated between the first terminal and the second terminal of the transistor M4A. It flows.
  • the voltage between the first terminal and the second terminal of the transistor M4A and the voltage between the input terminal and the output terminal of the FTJ element FJB are divided by the voltage between the wiring FCA and the wiring FCB, respectively. Therefore, when the direction of polarization of the FTJ element FJB is determined, the voltage between the input terminal and the output terminal of the FTJ element FJB is determined, and the voltage between the first terminal and the second terminal of the transistor M4A is also determined. Therefore, since the potential of the gate of the transistor M2 is determined according to the data written in the memory cell MC, even if the memory cell MC shown in FIG. 6E is used, it is the same as in FIGS. 5A to 5D and 6A to 6D. In addition, it is possible to write data and read data without destroying the data.
  • FIGS. 6B and 6D show a configuration in which the transistor M4B is connected by a diode, but as shown in FIG. 6F, the gate of the transistor M4B is not the first terminal and the second terminal of the transistor M4B. As an example, it may be electrically connected to a wiring BSB that gives a constant voltage. That is, like the memory cell MC of FIG. 6E, the memory cell MC of FIG. 6F has the voltage between the input terminal and the output terminal of the FTJ element FJA and the first terminal-2nd of the transistor M4B according to the data to be written. The voltage between the terminals is determined. Further, similarly to the memory cell of FIG. 6E, the data can be read out without destroying the possessed data.
  • the memory cell MC shown in FIG. 7 is a modification of the memory cell MC of FIG. 1A, in which the wiring WDL and the wiring RDL are combined into one wiring WRDL, and the second terminal of the transistor M3 is electrically connected to the wiring WRDL. It is configured to be connected to each other.
  • the memory cell MC in FIG. 7 has a circuit configuration in which the write data line and the read data line are combined into one wiring. Therefore, the wiring WRDL also functions as wiring for transmitting data for writing to the memory cell MC.
  • the timing chart in FIG. 2 is taken into consideration.
  • the potential given to the wiring WRDL may be the same as the potential given to the wiring WDL shown in the timing chart of FIG.
  • the timing chart of FIG. 3A or FIG. 3B is referred to.
  • the potential given to the wiring WRDL may be the same as the potential given to the wiring RDL shown in the timing chart of FIG. 3A or FIG. 3B.
  • the memory cell MC shown in FIG. 8A is a modification of the memory cell MC of FIG. 1A, and has a configuration in which the transistor M3 is not provided. Further, since the transistor M3 is not provided, the wiring RWL is not provided in FIG. 8A. Further, in the memory cell MC of FIG. 8A, the first terminal of the transistor M2 is electrically connected to the wiring RVE instead of the wiring VCE.
  • the wiring RVE functions as a wiring that gives a variable potential as an example. Specifically, the wiring RVE can give a potential such as a high level potential (for example, VDD ) or a low level potential (for example, VSS) depending on the situation.
  • the memory cell MC of FIG. 1A has a configuration in which the second terminal of the transistor M2 and the wiring RDL are in a conductive state or a non-conducting state by switching the on state and the off state of the transistor M3.
  • the memory cell MC of 8A has a configuration in which the potential given to the wiring RVE is fluctuated so that the second terminal of the transistor M2 and the wiring RDL are in a conductive state or a non-conducting state.
  • the operation example of the timing chart of FIG. 2 is taken into consideration for the potential changes of the wiring WWL, the wiring WDL, the wiring FCA, and the wiring FCB.
  • the transistor M2 is turned off regardless of the potential of the gate of the transistor M2. Can be.
  • the transistor M2 is turned off by giving equal potentials to each of the wiring RVE and the wiring RDL. It should be.
  • the timing chart shown in FIG. 9A may be operated as an example. Since the potential changes of the wiring WWL, the wiring WDL, the wiring FCA, and the wiring FCB are the same as the operation examples of the timing charts of FIGS. 3A and 3B, the potential changes of these wirings are shown in FIGS. 3A and 3B. The explanation of the timing chart of FIG. 3B is taken into consideration.
  • the potential of the wiring RVE has the same potential change as that of the wiring RDL.
  • the potentials of the wiring RVE and the wiring RDL are low level potentials between the time T21 and the time T24.
  • the voltage between the first terminal and the second terminal of the transistor M2 becomes 0V, so that the transistor M2 can be turned off.
  • the wiring RDL is in a floating state between the time T22 and the time T23 in the timing chart of FIG. 9A.
  • the potential of the wiring RVE is described as a low level potential (denoted as Low in FIG. 9) to a high level potential (denoted as High in FIG. 9).
  • the transistor M2 is temporarily turned on, and the high level potential of the wiring RDL is set to the gate of the transistor M2 as in the time T24 to the time T25 in the timing chart of FIG. 3A. It can be changed to the potential according to the potential of. After that, by acquiring the potential of the wiring RDL by a reading circuit or the like, the data can be read out without destroying the data held in the memory cell MC of FIG. 8A.
  • the potential of the wiring RVE has the same potential change as that of the wiring RDL.
  • the potentials of the wiring RVE and the wiring RDL are low level potentials between the time T21 and the time T24.
  • the voltage between the first terminal and the second terminal of the transistor M2 becomes 0V, so that the transistor M2 can be turned off.
  • the wiring RDL does not have to be in the floating state between the time T22 and the time T23 in the timing chart of FIG. 9B.
  • the potential of the wiring RVE is changed to a constant voltage V RE2 for reading higher than the low level potential (denoted as Low in FIG. 9B).
  • V RE2 the low level potential
  • the transistor M2 is turned on, and a current corresponding to the potential of the gate of the transistor M2 flows between the wiring RVE and the wiring RDL via the transistor M2.
  • the data can be read out without destroying the data held in the memory cell MC of FIG. 8A.
  • circuit configuration of the memory cell MC according to the semiconductor device of one aspect of the present invention is not limited to the circuit configuration of the memory cell MC of FIG. 8A.
  • the configuration of the memory cell MC according to the semiconductor device of one aspect of the present invention may be a configuration in which the memory cell MC of FIG. 8A is modified depending on the situation or the situation.
  • the circuit configuration of the memory cell MC in FIG. 8A may be changed to the circuit configuration of the memory cell MC shown in FIG. 8B. Similar to the memory cell MC shown in FIG. 7, the memory cell MC of FIG. 8B has a configuration in which the wiring WDL and the wiring RDL shown in FIG. 8A are combined into one wiring WRDL.
  • the wiring WRDL also functions as a wiring for transmitting data to be written to the memory cell MC, like the wiring WRDL electrically connected to the memory cell MC in FIG. 7, and also from the memory cell MC. It also functions as wiring that supplies precharge potential to read data.
  • the description of the data writing operation example of the memory cell MC of FIG. 7 is taken into consideration.
  • the potential given to the wiring WRDL may be the same as the potential given to the wiring WDL shown in the timing chart of FIG.
  • the timing chart of FIG. 9A or FIG. 9B is referred to.
  • the potential given to the wiring WRDL may be the same as the potential given to the wiring RDL shown in the timing chart of FIG. 3A or FIG. 3B.
  • the memory cell MC By applying the memory cell MC to the semiconductor device described in the present embodiment, it is possible to configure a semiconductor device (semiconductor device that performs non-destructive reading) that does not require data rewriting. Further, by applying the memory cell MC to the semiconductor device, it is not necessary to rewrite the data, so that the power consumption required for the rewriting can be reduced. Further, by applying the memory cell MC to the semiconductor device, it is not necessary to provide a circuit for rewriting the data, so that the circuit area of the semiconductor device can be reduced.
  • FIG. 10 is an example of the circuit configuration of the storage device.
  • the storage device 100 includes a memory cell array MCA, a circuit WDD, a circuit RDD, a circuit WWD, a circuit RWD, and a circuit FECD.
  • the memory cell MC applicable to the storage device 100 of FIG. 10 is, as an example, the memory cell MC of FIG. 1A (FIG. 1B).
  • the memory cell array MCA has a plurality of memory cell MCs. Further, in the memory cell array MCA, a plurality of memory cell MCs are arranged in a matrix of m rows and n columns (each of m and n is an integer of 1 or more). In FIG. 10, as an example, the memory cell MC located in the i-row j column (i is an integer of 1 or more and m or less and j is an integer of 1 or more and n or less) is the memory cell MC [i. , J] (memory cell MC [i, j] is not shown).
  • wiring WDL [1] to wiring WDL [n] and wiring RDL [1] to wiring RDL [n] are extended in the column direction.
  • [1] attached to the wiring WDL and the wiring RDL indicates that the wiring is in the first row
  • [n] attached to the wiring WDL and the wiring RDL is the wiring in the nth row. It shows that it is.
  • wiring RWL [1] to wiring RWL [m] wiring WWL [1] to wiring WWL [m]
  • [1] attached to the wiring RWL, the wiring WWL, the wiring FCA, and the wiring FCB indicates that it is the wiring of the first line, and is attached to the wiring RWL, the wiring WWL, the wiring FCA, and the wiring FCB.
  • [M] indicates that the wiring is on the mth line.
  • the wiring WDL [1] to the wiring WDL [n] correspond to the wiring WDL in the memory cell MC of FIG. 1A (FIG. 1B), and the wiring RDL [1] to the wiring RDL [n] correspond to the wiring WDL in FIG. 1A (FIG. 1B). It corresponds to the wiring RDL in the memory cell MC. Further, the wiring RWL [1] to the wiring RWL [m] correspond to the wiring RWL in the memory cell MC of FIG. 1A (FIG. 1B), and the wiring WWL [1] to the wiring WWL [m] correspond to FIG. 1A (FIG. 1B).
  • the circuit WDD is electrically connected to the wiring WDL [1] to the wiring WDL [n].
  • the circuit RWD is electrically connected to the wiring RWL [1] to the wiring RWL [m].
  • the circuit WWD is electrically connected to the wiring WWL [1] to the wiring WWL [m].
  • the circuit FECD is electrically connected to the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m].
  • the circuit RDD is electrically connected to the wiring RDL [1] to the wiring RDL [n].
  • the circuit WWD functions as a write word line driver circuit as an example.
  • the circuit WWD transmits a selection signal to one of the wirings WWL [1] to WWL [m] and a non-selection signal to the remaining wirings, whereby the writing operation is performed in the memory cell array MCA.
  • the selection signal may be a high level potential and the non-selection signal may be a low level potential.
  • the non-selection signal may be a low level potential.
  • the transistor M1 when a high level potential is applied to the wiring WWL, the transistor M1 is turned on, so that data for writing can be transmitted from the wiring WDL to the memory cell MC.
  • the transistor M1 when a low level potential is applied to the wiring WWL, the transistor M1 is turned off, so that data for writing from the wiring WDL to another memory cell MC can be obtained. Even if it is transmitted, the data is not written to the memory cell MC to which the low level potential is given from the wiring WWL.
  • the circuit RWD functions as a read word line driver circuit as an example.
  • the circuit RDD transmits a selection signal to one of the wirings RWL [1] to RWL [m] and a non-selection signal to the remaining wirings, whereby the reading operation is performed in the memory cell array MCA. It is possible to select a plurality of memory cells MC to perform the above. Specifically, for example, in the case of the memory cell MC of FIG. 1A, the selection signal may be a high level potential and the non-selection signal may be a low level potential. In the memory cell MC of FIG.
  • the transistor M1 when the wiring RWL is given a high level potential, the transistor M1 is turned on, so that the data held in the memory cell MC is transmitted from the memory cell MC to the wiring RDL. Can be done.
  • the transistor M3 when a low level potential is applied to the wiring RWL, the transistor M3 is turned off, so that the data held in the memory cell MC is transmitted from the memory cell MC to the wiring RDL. Will not be done.
  • the circuit FECD has a function of giving a constant potential to each of the wiring FCA and the wiring FCB.
  • the circuit FECD when data is written to the memory cell MC, the FTJ element FJA provided in each of the plurality of memory cell MCs by applying a constant potential to each of the wiring FCA and the wiring FCB. And the polarization of the FTJ element FJB can be generated (the direction of the polarization is changed).
  • the circuit FECD applies a constant potential to each of the wiring FCA and the wiring FCB when reading data from the memory cell MC, so that the input terminal and the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB- A voltage division corresponding to the potential difference between the wiring FCA and the wiring FCB can be applied to each of the output terminals.
  • the circuit WDD functions as a write data line driver circuit as an example.
  • the circuit WDD is arranged in a specific row selected by the circuit WWD by transmitting data for writing (for example, voltage) to each of the wiring WDL [1] to the wiring WDL [n]. Data for writing can be written to the memory cell MC of.
  • the circuit RDD functions as a read circuit as an example.
  • the circuit RDD connects data (for example, voltage, current, etc.) output from a plurality of memory cell MCs arranged in a specific row selected by the circuit RWD to the wiring RDL [1] to the wiring RDL [n].
  • the data can be read out by acquiring from each of the above.
  • the circuit WDD has, for example, one or a plurality selected from a precharge circuit, a sense amplifier circuit, a current-voltage conversion circuit, and the like.
  • FIG. 11 is a timing chart showing an example of an operation of writing data to the memory cell MC of the storage device 100.
  • the timing chart of FIG. 2 described in the above embodiment shows an operation example in one memory cell MC
  • the timing chart of FIG. 11 shows a plurality of timing charts included in the memory cell array MCA. An operation example of writing data to the memory cell MC is shown.
  • the timing chart of FIG. 11 shows the wiring WWL [1], the wiring WWL [2], the wiring WWL [m], the wiring WDL [1], and the wiring WDL [1] in the time between the time U1 and the time U13 and in the vicinity thereof. 2], wiring WDL [n], wiring FCA [1], wiring FCB [1], wiring FCA [2], wiring FCB [2], wiring FCA [m], and wiring FCB [m]. Shows.
  • the circuit WWD gives the wiring WWL [1] to the wiring WWL [m] a low level potential (described as Low in FIG. 11) as an initial potential. Therefore, since a low level potential is applied to the gate of each transistor M1 of all the memory cell MCs included in the memory cell array MCA, the transistor M1 is turned off.
  • the circuit WDD does not transmit the data for writing to the wiring WDL [1] to the wiring WDL [n]. Therefore, between the time U1 and the time U2, the circuit WDD gives the wiring WDL [1] to the wiring WDL [n] a ground potential as an example.
  • the circuit FECD has a potential V 0A and a potential for each of the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m].
  • V 0B For the potential V 0A and the potential V 0B , the explanation of the timing chart of FIG. 2 is taken into consideration.
  • the circuit WWD gives the wiring WWL [1] a high level potential (denoted as High in FIG. 11) and the wiring WWL [2] to the wiring WWL [m] low. Gives a level potential. Therefore, in the memory cell array MCA, a high level potential is given to the gate of the transistor M1 included in each of the memory cells MC [1,1] to the memory cells MC [1, n] arranged in the first row. Therefore, the transistor M1 included in each of the memory cell MC [1,1] to the memory cell MC [1, n] is turned on.
  • a low level is applied to the gate of the transistor M1 included in each of the memory cells MC [2, 1] to the memory cells MC [m, n] arranged in the second to mth rows. Since the potential is given, the transistor M1 included in each of the memory cells MC [2, 1] to the memory cells MC [m, n] is turned off. That is, the circuit WWD gives a high level potential to the wiring WWL [1] and a low level potential to the wiring WWL [2] to the wiring WWL [m], so that the writing destination is the first line of the memory cell array MCA.
  • the arranged memory cell MC can be selected.
  • the circuit WDD is, as an example, D [1,1] to D [1] as data for writing to each of the wiring WDL [1] to the wiring WDL [n]. , N] is given. Further, since the memory cell MC arranged in the first row of the memory cell array MCA is selected as the write destination by the circuit WWD, each of the memory cell MC [1,1] to the memory cell MC [1, n]. A potential corresponding to D [1,1] to D [1, n] is applied to the gate of the transistor M2 of the above.
  • the circuit FECD gives the potential V 1A to the wiring FCA [1] and the potential V 0B to the wiring FCB [1].
  • the circuit FECD imparts a potential V 0A to each of the wiring FCA [2] to the wiring FCA [m], and also imparts a potential V 0B to each of the wiring FCB [2] to the wiring FCB [m].
  • the circuit FECD imparts the potential V 0A to the wiring FCA [1] and the potential V 1B to the wiring FCB [1].
  • the circuit FECD subsequently imparts a potential V 0A to each of the wiring FCA [2] to the wiring FCA [m], and also imparts a potential V 0B to each of the wiring FCB [2] to the wiring FCB [m].
  • the direction of polarization generated in the element FJB is determined according to D [1,1] to D [1, n] sent from the wiring WDL [1] to the wiring WDL [n]. That is, in the operation from the time U2 to the time U5, D [1,1] to D [1, n] are written to each of the memory cells MC [1,1] to the memory cells MC [1, n]. Will be.
  • the circuit WWD imparts a high level potential to the wiring WWL [2] and a low level potential to the wiring WWL [1] and the wiring WWL [3] to WWL [m]. .. Therefore, in the memory cell array MCA, a high level potential is given to the gate of the transistor M1 included in each of the memory cell MC [2,1] to the memory cell MC [2, n] arranged in the second row. Therefore, the transistor M1 included in each of the memory cell MC [2,1] to the memory cell MC [2, n] is turned on.
  • the transistor M1 included in each of the cell MC [3,1] to the memory cell MC [m, n] is turned off.
  • the circuit WWD gives a high level potential to the wiring WWL [2] and gives a low level potential to the wiring WWL [1] and the wiring WWL [3] to the wiring WWL [m], so that the memory is used as a write destination.
  • the memory cell MC arranged in the second row of the cell array MCA can be selected.
  • the circuit WDD is, as an example, D [2,1] to D [2] as data for writing to each of the wiring WDL [1] to the wiring WDL [n]. , N] is given. Further, since the memory cell MC arranged in the second row of the memory cell array MCA is selected as the write destination by the circuit WWD, each of the memory cell MC [2, 1] to the memory cell MC [2, n]. A potential corresponding to D [2,1] to D [2, n] is applied to the gate of the transistor M2.
  • the circuit FECD gives the potential V 1A to the wiring FCA [2] and the potential V 0B to the wiring FCB [2].
  • the circuit FECD gives a potential V 0A to each of the wiring FCA [1] and the wiring FCA [3] to the wiring FCA [m], and the wiring FCB [1] and the wiring FCB [3] to the wiring FCB [m].
  • the potential V 0B is given to each of m].
  • the circuit FECD imparts the potential V 0A to the wiring FCA [2] and the potential V 1B to the wiring FCB [2].
  • the circuit FECD subsequently applies a potential V 0A to each of the wiring FCA [1] and the wiring FCA [3] to the wiring FCA [m], and the wiring FCB [1] and the wiring FCB [3] to A potential V 0B is given to each of the wiring FCB [m].
  • the direction of polarization generated in the element FJB is determined according to D [2,1] to D [2, n] sent from the wiring WDL [1] to the wiring WDL [n]. That is, in the operation from the time U5 to the time U8, D [2,1] to D [2, n] are written to each of the memory cells MC [2,1] to the memory cells MC [2,n]. Will be.
  • time U8 and time U9 data writing operation to the memory cell MC arranged in the first row of the memory cell array MCA performed between time U2 and time U5, and time U5 to time U8 Similar to the operation of writing data to the memory cell MC arranged in the second row of the memory cell array MCA performed up to, the memory cell array MCA is arranged from the third row to the m-1th row. The operation of writing data to the existing memory cell MC is performed.
  • the circuit WWD gives a high level potential to the wiring WWL [m] and a low level potential to the wiring WWL [1] to the wiring WWL [m-1]. Therefore, in the memory cell array MCA, a high level potential is given to the gate of the transistor M1 included in each of the memory cell MC [m, 1] to the memory cell MC [m, n] arranged in the mth row. Therefore, the transistor M1 included in each of the memory cell MC [m, 1] to the memory cell MC [m, n] is turned on.
  • the memory cell MC arranged in the eye can be selected.
  • the circuit WDD is, as an example, D [m, 1] to D [m] as data for writing to each of the wiring WDL [1] to the wiring WDL [n]. , N] is given. Further, since the memory cell MC arranged in the m-th row of the memory cell array MCA is selected as the write destination by the circuit WWD, each of the memory cell MC [m, 1] to the memory cell MC [m, n]. A potential corresponding to D [m, 1] to D [m, n] is applied to the gate of the transistor M2 of the above.
  • the circuit FECD gives the potential V 1A to the wiring FCA [m] and the potential V 0B to the wiring FCB [m].
  • the circuit FECD gives a potential V 0A to each of the wiring FCA [1] to the wiring FCA [m-1], and also applies a potential V 0B to each of the wiring FCB [1] to the wiring FCB [m-1]. give.
  • the circuit FECD imparts a potential V 0A to the wiring FCA [m] and a potential V 1B to the wiring FCB [m].
  • the circuit FECD subsequently gives a potential V 0A to each of the wiring FCA [1] to the wiring FCA [m-1], and also gives a potential V to each of the wiring FCB [1] to the wiring FCB [m-1].
  • the direction of polarization generated in the element FJB is determined according to D [m, 1] to D [m, n] sent from the wiring WDL [1] to the wiring WDL [n]. That is, in the operation from the time U9 to the time U12, D [m, 1] to D [m, n] are written to each of the memory cells MC [m, 1] to the memory cells MC [m, n]. Will be.
  • the circuit WWD gives a low level potential to the wiring WWL [1] to the wiring WWL [m].
  • the circuit WDD gives a ground potential to the wiring WDL [1] to the wiring WDL [n].
  • the potential V 0A and the potential V 0B are given to the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m], respectively.
  • the operation of the timing chart in FIG. 11 is an example, the operation may be changed depending on the situation or in some cases.
  • a high level potential is applied to the wiring WWL [1]
  • the wiring WDL [1] to the wiring WDL [n] are D [1, Although 1] to D [1, n] are given, D [1, 1] to D [1, n] may be given, or within the period in which D [1,1] to D [1, n] are given to the wiring WDL [1] to the wiring WDL [n].
  • a high level potential may be applied to the wiring WWL [1].
  • the potential V 1A is given to the wiring FCA [1] and the wiring FCB. It may be earlier than the period in which the potential V 0B is given to [1].
  • the timing chart shown in FIG. 12 shows an example of a writing operation different from the writing operation example of the timing chart of FIG. Similar to the timing chart of FIG. 11, the timing chart of FIG. 12 shows the wiring WWL [1], the wiring WWL [2], and the wiring WWL [m] at the time between the time U1 and the time U13 and the time in the vicinity thereof.
  • the writing operation of the timing chart in FIG. 12 is such that a high level potential is input to each of the wiring WWL [1] to the wiring WWL [m] between the time U2 and the time U12, and the time U1 to the time U13.
  • the potential fluctuations of the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m] are different from the writing operation of the timing chart of FIG.
  • the memory Since a high level potential is input to each of the wiring WWL [1] and the wiring WWL [m] between the time U2 and the time U12 in the timing chart of FIG. 12, the memory is stored between the time U2 and the time U12. Since a high level potential is input to the gate of each transistor M1 of the memory cells MC [1,1] to the memory cells MC [m, n] included in the cell array MCA, the memory cells MC [1,1] to Each transistor M1 of the memory cell MC [m, n] is turned on. That is, focusing on the j-th column, the wiring WDL [j] and the gate of each transistor M2 of the memory cell MC [1, j] to the memory cell MC [m, j] are in a conductive state.
  • a potential V NA is given to the wiring FCA [1] to the wiring FCA [m]
  • the wiring FCB [1] to the wiring FCB [m] are given a potential V NA. Is given the potential V NB .
  • the V NA is a potential at which polarization does not occur (does not change) in the FTJ element FJA for all the data (potential) input from the wiring WD L to the gate of the transistor M2, and the V NB is the wiring.
  • the potentials are set so that polarization does not occur (does not change) in the FTJ element FJB.
  • V NA can have a potential higher than V 0A and lower than V 1A .
  • V NB can have a potential higher than V 0B and lower than V 1B .
  • the wiring FCA [1] is given the potential V 1A
  • the wiring FCB [1] is given the potential V 0B .
  • the potential V NA is continuously given to each of the wiring FCA [2] to the wiring FCA [m]
  • the potential V NB is continuously given to each of the wiring FCB [2] to the wiring FCB [m].
  • the wiring FCA [1] is given the potential V 0A
  • the wiring FCB [1] is given the potential V 1B
  • the potential V NA is continuously given to each of the wiring FCA [2] to the wiring FCA [m]
  • the potential V NB is continuously given to each of the wiring FCB [2] to the wiring FCB [m].
  • each of the memory cells MC [1,1] to the memory cells MC [1, n] in the first row of the memory cell array MCA due to the operation between the time U2 and the time U5 in the timing chart of FIG.
  • the direction of polarization generated in the FTJ element FJA and the FTJ element FJB is determined according to D [1,1] to D [1, n] sent from the wiring WDL [1] to the wiring WDL [n]. ..
  • a potential V NA is given to each of the wiring FCA [2] to the wiring FCA [m]
  • each of the wiring FCB [2] to the wiring FCB [m] is given a potential V NA.
  • the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m] are each of the polarization of the FTJ element FJA and the FTJ element FJB. It can function not only as a wiring for control but also as a selection signal line for writing data.
  • the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] are matched with the data transmitted from the wiring WDL [1] to the wiring WDL [n].
  • the memory cell array MCA can be used in the same manner as in the operation example of the timing chart of FIG. D [2,1] to D [m, n] can be written in each of the included memory cells MC [2,1] to memory cells MC [m, n].
  • FIG. 13 is a timing chart showing an example of the operation of reading data from the memory cell MC of the storage device 100.
  • the timing charts of FIGS. 3A and 3B described in the above embodiment show an operation example in one memory cell MC, and the timing chart of FIG. 13 shows the memory cell array MCA. An operation example of reading data from a plurality of memory cells MC included in is shown.
  • the timing chart of FIG. 13 shows the wiring RWL [1], the wiring RWL [2], the wiring RWL [m], the wiring FCA [1], and the wiring FCB [1] in the time between the time U21 and the time U33 and in the vicinity thereof. 1], wiring FCA [2], wiring FCB [2], wiring FCA [m], wiring FCB [m], wiring RDL [1], wiring RDL [2], and wiring RDL [n]. Shows.
  • the circuit RWD gives the wiring RWL [1] to the wiring RWL [m] a low level potential (described as Low in FIG. 13) as an initial potential. Therefore, a low level potential is applied to the gate of each transistor M3 of all the memory cell MCs included in the memory cell array MCA, so that the transistor M3 is turned off.
  • the circuit FECD has a potential V 0A and a potential for each of the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m].
  • V 0B the explanation of the timing charts of FIGS. 2 and 3A will be taken into consideration.
  • the wiring RDL [1] to the wiring RDL [n] a potential corresponding to the potential given to the wiring VCE as an example.
  • the wiring VCE has a low level potential
  • the wiring RDL [1] to the wiring RDL [n] is given a high level potential
  • the wiring VCE has a high level potential
  • V RE3 is given to the wiring RDL [1] to the wiring RDL [n] as a potential that does not hinder the reading of data from the memory cell MC.
  • the circuit FECD From time U22 to time U25, the circuit FECD imparts a potential VM to the wiring FCA [1] and a potential V 0B to the wiring FCB [1]. Further, in the circuit FECD, the potential V 0A is given to the wiring FCA [2] to the wiring FCA [m], and the potential V 0B is given to the wiring FCB [2] to the wiring FCB [m]. At this time, since the voltage of VM ⁇ V 0B is applied between the wiring FCA [1] and the wiring FCB [1], the memory cells MC [1, 1] to the memory cells MC in the first row of the memory cell array MCA are applied.
  • Each of the FTJ element FJA and the FTJ element FJB of [1, n] is subjected to a divided voltage of the voltage. Therefore, the potential of the gate of each transistor M2 of the memory cell MC [1,1] to the memory cell MC [1, n] is in the direction of polarization of the FTJ element FJA and the FTJ element FJB, that is, in the memory cell MC. Determined by the data being written.
  • the circuit RWD gives the wiring RWL [1] a high level potential (denoted as High in FIG. 13). Further, the circuit RWD gives a low level potential to the wiring RWL [2] to the wiring RWL [m]. Therefore, in the memory cell array MCA, a high level potential is given to the gate of the transistor M3 included in each of the memory cells MC [1,1] to the memory cells MC [1, n] arranged in the first row. Therefore, the transistor M3 included in each of the memory cell MC [1,1] to the memory cell MC [1, n] is turned on.
  • a low level is applied to the gate of the transistor M3 included in each of the memory cells MC [2, 1] to the memory cells MC [m, n] arranged in the second to mth rows. Since the potential is given, the transistor M3 included in each of the memory cells MC [2, 1] to the memory cells MC [m, n] is turned off.
  • the circuit FECD gives the wiring FCA [1] the potential VM, the wiring FCB [1] the potential V 0B , the wiring FCA [2] to the wiring FCA [m] the potential V 0A , and the wiring FCB [ 2] to the wiring FCB [m] is given a potential V 0B , the circuit RWD is given a high level potential to the wiring RWL [1], and the wiring RWL [2] to the wiring RWL [m] is given a low level potential. Then, the memory cell MC arranged in the first row of the memory cell array MCA can be selected as the read source.
  • the memory cell MC [1,1] to the memory cell MC is acquired by acquiring the data (for example, current or voltage) transmitted to the wiring RDL [1] to the wiring RDL [n] by the circuit RDD or the like.
  • D [1,1] to D [1, n] held in each of [1, n] can be read out.
  • the circuit FECD From time U25 to time U27, the circuit FECD imparts a potential VM to the wiring FCA [2] and a potential V 0B to the wiring FCB [2]. Further, the circuit FECD gives a potential V 0A to the wiring FCA [1] and the wiring FCA [3] to the wiring FCA [m], and gives the wiring FCB [1] and the wiring FCB [3] to the wiring FCB [m]. The potential V 0B is given.
  • Each of the FTJ element FJA and the FTJ element FJB of [2, n] is subjected to a divided voltage of the voltage. Therefore, the potential of the gate of each transistor M2 of the memory cell MC [2,1] to the memory cell MC [2, n] is in the direction of polarization of the FTJ element FJA and the FTJ element FJB, that is, in the memory cell MC. Determined by the data being written.
  • the circuit RWD gives the wiring RWL [2] a high level potential. Further, the circuit RWD gives a low level potential to the wiring RWL [1] and the wiring RWL [3] to the wiring RWL [m]. Therefore, in the memory cell array MCA, a high level potential is given to the gate of the transistor M3 included in each of the memory cells MC [2, 1] to the memory cells MC [2, n] arranged in the second row. Therefore, the transistor M3 included in each of the memory cells MC [2, 1] to the memory cells MC [2, n] is turned on.
  • a low level potential is given to the gate of the transistor M3 included in each of the memory cell MCs arranged in the first row and the third row to the mth row, so that the first row and the first row and the gate of the transistor M3 are given a low level potential.
  • the transistors M3 included in each of the memory cells MC arranged in the third row to the mth row are turned off.
  • the circuit FECD gives the wiring FCA [2] the potential VM, the wiring FCB [2] the potential V 0B , and the wiring FCA [1] and the wiring FCA [3] to the wiring FCA [m] the potential V 0A .
  • the wiring FCB [1] and the wiring FCB [3] to the wiring FCB [m] are given the potential V 0B
  • the circuit RWD gives the wiring RWL [2] a high level potential, and the wiring RWL [1] and By applying a low level potential to the wiring RWL [3] to the wiring RWL [m], the memory cell MC arranged in the second row of the memory cell array MCA can be selected as the read source.
  • the potentials of the wiring RDL [1] to the wiring RDL [n] change according to the potential of the gate of each transistor M2 of the memory cell MC [2,1] to the memory cell MC [2, n]. .. That is, in the wiring RDL [1] to the wiring RDL [n], D [2,1] to D [2,1] to the data held in each of the memory cells MC [2,1] to the memory cell MC [2, n]. Data (for example, current or voltage) corresponding to D [2, n] is transmitted to the wiring RDL [1] to the wiring RDL [n].
  • the memory cell MC [2,1] to the memory cell MC is acquired by acquiring the data (for example, current or voltage) transmitted to the wiring RDL [1] to the wiring RDL [n] by the circuit RDD or the like.
  • D [2,1] to D [2, n] held in each of [2, n] can be read out.
  • the memory cell array MCA is arranged from the third row to the m-1th row. The operation of reading data from the existing memory cell MC is performed.
  • the circuit FECD From time U29 to time U32, the circuit FECD imparts a potential VM to the wiring FCA [m] and a potential V 0B to the wiring FCB [m]. Further, in the circuit FECD, the potential V 0A is given to the wiring FCA [1] to the wiring FCA [m-1], and the potential V 0B is given to the wiring FCB [1] to the wiring FCB [m-1].
  • the FTJ element FJA and the FTJ element FJB of [m, n] are each subjected to a divided voltage of the voltage. Therefore, the potential of the gate of each transistor M2 of the memory cell MC [m, 1] to the memory cell MC [m, n] is in the direction of polarization of the FTJ element FJA and the FTJ element FJB, that is, in the memory cell MC. Determined by the data being written.
  • the circuit RWD gives a high level potential to the wiring RWL [m]. Further, the circuit RWD gives a low level potential to the wiring RWL [1] to the wiring RWL [m-1]. Therefore, in the memory cell array MCA, a high level potential is given to the gate of the transistor M3 included in each of the memory cells MC [m, 1] to the memory cells MC [m, n] arranged in the mth row. Therefore, the transistor M3 included in each of the memory cell MC [m, 1] to the memory cell MC [m, n] is turned on.
  • the circuit FECD gives the potential VM to the wiring FCA [m], gives the potential V 0B to the wiring FCB [m], gives the potential V 0A to the wiring FCA [1] to the wiring FCA [m-1], and makes the wiring.
  • the potential V 0B is applied to the FCB [1] to the wiring FCB [m-1], and the circuit RWD applies a high level potential to the wiring RWL [m] to the wiring RWL [1] to the wiring RWL [m-1].
  • the memory cell MC arranged in the m-th row of the memory cell array MCA can be selected as the read source.
  • the potentials of the wiring RDL [1] to the wiring RDL [n] change according to the potential of the gate of each transistor M2 of the memory cell MC [m, 1] to the memory cell MC [m, n].
  • the data held in each of the memory cells MC [m, 1] to the memory cells MC [m, n] is D [m, 1] to D [m, 1] to Data (for example, current or voltage) corresponding to D [m, n] is transmitted to the wiring RDL [1] to the wiring RDL [n].
  • D [1,1] to D [from each of the memory cells MC [1,1] to the memory cells MC [m, n] included in the memory cell array MCA. m, n] can be read.
  • the circuit RWD gives a low level potential to the wiring RWL [1] to the wiring RWL [m].
  • the potential V 0A and the potential V 0B are given to the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m], respectively.
  • a ground potential is given to each of the wiring RDL [1] to the wiring RDL [n] as an example.
  • the timing chart shown in FIG. 14 shows an example of a reading operation different from the reading operation example of the timing chart of FIG. Similar to the timing chart of FIG. 13, the timing chart of FIG. 14 shows the wiring RWL [1], the wiring RWL [2], and the wiring RWL [m] in the time between the time U21 and the time U33 and in the vicinity thereof.
  • each of the wiring FCA [1] and the wiring FCA [m] has a potential VM between the time U22 and the time U32 . It is different from the operation.
  • VM is input to each of the wiring FCA [1] to the wiring FCA [m] between the time U22 and the time U32 in the timing chart of FIG. 14, and each of the wiring FCB [1] to the wiring FCB [m]. Since V 0B is input, between the time U22 and the time U32, the potential of the gate of each transistor M2 of the memory cell MC [1,1] to the memory cell MC [m, n] is the respective memory. The potential corresponds to the data held in the cell MC. Further, at this time, since a voltage is generated between the gate and the first terminal of each transistor M2 of the memory cell MC [1,1] to the memory cell MC [m, n], it depends on the potential of the second terminal of the transistor M2. , A current flows between the first terminal and the second terminal of the transistor M2.
  • a high level potential is input to any one of the wiring RWL [1] and the wiring RWL [m] from the circuit RWD, and the remaining wiring is performed. It can be done by inputting a low level potential to.
  • a high level potential is given to the wiring RWL [1] and a low level potential is given to the wiring RWL [2] to the wiring RWL [m] as shown between the time U23 and the time U24. Then, the data held in the memory cell MC arranged in the first row of the memory cell array MCA can be read out.
  • a high level potential is applied to the wiring RWL [2]
  • a low level potential is applied to the wiring RWL [1] and the wiring RWL [3] to the wiring RWL [m].
  • the data held in the memory cell MC arranged in the second row of the memory cell array MCA can be read out, and a high level potential is applied to the wiring RWL [m] as between the time U30 and the time U31.
  • a low level potential to the wiring RWL [1] to the wiring RWL [m-1]
  • the data held in the memory cell MC arranged in the mth row of the memory cell array MCA can be read out. ..
  • the fluctuation of the potential of the wiring RWL [1] to the wiring RWL [m] can be the same as the operation example of the timing chart of FIG.
  • the circuit FECD when reading out a plurality of memory cell MCs included in the memory cell array MCA, the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m] are used. It is not necessary to change the potential of each of the above for each memory cell MC to be read. That is, by applying the operation example of the timing chart of FIG. 14, the circuit FECD can be configured not to have a circuit for selecting a wiring for transmitting a signal such as a selector.
  • the timing chart shown in FIG. 15 shows an example of a reading operation different from the reading operation example of the timing charts of FIGS. 13 and 14. Similar to the timing charts of FIGS. 13 and 14, the timing chart of FIG. 15 shows the wiring RWL [1], the wiring RWL [2], and the wiring RWL at the time between the time U21 and the time U33 and in the vicinity thereof. [M], Wiring FCA [1], Wiring FCB [1], Wiring FCA [2], Wiring FCB [2], Wiring FCA [m], Wiring FCB [m], Wiring RDL [1], Wiring RDL [2] ], And the change in the potential of the wiring RDL [n] is shown.
  • each of the wiring RWL [1] and the wiring RWL [m] has a high level potential between the time U22 and the time U32, and the time U22 to the time U32. It differs from the timing chart reading operation of FIG. 13 in the potential fluctuations of the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m].
  • the wiring FCA [1] is given the potential VM, and the wiring FCB [1] is given the potential V 0B .
  • the potential V 0A is given to the wiring FCA [2] to the wiring FCA [m]
  • the potential V 0B is given to the wiring FCB [2] to the wiring FCB [m].
  • the memory cells MC [1, 1] to the memory cells MC in the first row of the memory cell array MCA are applied.
  • Each of the FTJ element FJA and the FTJ element FJB of [1, n] is subjected to a divided voltage of the voltage. Therefore, the potential of the gate of each transistor M2 of the memory cell MC [1,1] to the memory cell MC [1, n] is in the direction of polarization of the FTJ element FJA and the FTJ element FJB, that is, in the memory cell MC. Determined by the data being written.
  • the potentials of the wiring RDL [1] to the wiring RDL [n] change according to the potential of the gate of each transistor M2 of the memory cell MC [1,1] to the memory cell MC [1, n]. .. That is, in the wiring RDL [1] to the wiring RDL [n], D [1,1] to D [1,1] to the data held in each of the memory cells MC [1,1] to the memory cells MC [1, n]. Data (for example, current or voltage) corresponding to D [1, n] is transmitted to the wiring RDL [1] to the wiring RDL [n]. As a result, D [1,1] to D [1, n] can be read out as the data held in the memory cells MC [1,1] to the memory cells MC [1, n].
  • the memory cell array MCA 2 A partial pressure of V 0A ⁇ V 0B is applied to each of the FTJ element FJA and the FTJ element FJB of the memory cell MC from the row to the mth row.
  • V 0A ⁇ V 0B is set to a value near 0V or 0V
  • the potential of the gate of each transistor M2 of the memory cell MC [1,1] to the memory cell MC [1, n] is also set to a value near 0V or 0. can do.
  • the transistor M2 is turned off. Therefore, in the memory cell MC from the second row to the mth row of the memory cell array MCA, the wiring VCE and the wiring RDL [ It becomes a non-conducting state between 1] and the wiring RDL [m], and the data (for example, current, voltage, etc.) corresponding to the data held in the memory cell MC is the wiring RDL [1] to the wiring RDL [m]. ] Does not flow.
  • the potential VM when reading data from the memory cell MC in the second row of the memory cell array MCA, the potential VM is given to the wiring FCA [2] as between the time U26 and the time U27, and the wiring FCB.
  • the potential V 0B may be given to [2].
  • a potential VM is given to the wiring FCA [m] and a potential is applied to the wiring FCB [m] as between the time U30 and the time U31.
  • V 0B may be given.
  • the wiring FCA [1] to the wiring FCA [m] function as a selection signal line for selecting the memory cell MC to be read from the memory cell array MCA. Therefore, in the operation example of the timing chart of FIG. 15, it is not necessary to change the potential for each memory cell MC to be read in each of the wiring RWL [1] to the wiring RWL [m]. Therefore, by applying the operation example of the timing chart of FIG. 15, the circuit RDD can be configured not to have a circuit for selecting a wiring for transmitting a signal such as a selector.
  • ⁇ Calculation circuit 1> As an example, consider the storage device 100 of FIG. 10 to which the memory cell MC of FIG. 1A is applied. Further, in this case, the storage device 100 that functions as an arithmetic circuit can perform a product-sum operation of, for example, a plurality of first data and a plurality of second data. Further, each of the plurality of first data is set to "0" or "1", and each of the plurality of second data is set to "0" or "1".
  • the first data is, for example, held in a plurality of memory cell MCs included in the memory cell array MCA of the storage device 100. That is, it is assumed that the plurality of memory cell MCs included in the memory cell array MCA hold "0" or "1" as data.
  • V 0 corresponds to the data “0” and V 1 corresponds to the data “1”.
  • V 0B is input to the wiring FCB as shown between the time T23 and the time T25 in the timing chart of FIG. 3A or FIG.
  • the potential of the gate of the transistor M2 becomes V HLD0
  • the potential of the gate of the transistor M2 becomes V HLD1 . ..
  • the transistor M2 is turned off when the potential of the gate of the transistor M2 included in the memory cell MC is VHLD0 .
  • the transistor M2 is turned off when the potential of the gate of the transistor M2 included in the memory cell MC is VHLD0 .
  • the second data can be, for example, a value corresponding to the potential given to the wiring RWL. For example, when the second data is "0", the wiring RWL is given a low level potential by the circuit RWD, and when the second data is "1", the wiring RWL is given a high level potential by the circuit RWD. It shall be.
  • the potential of the gate of the transistor M2 included in the memory cell MC becomes VHLD0 , so that the transistor M2 is turned off.
  • the potential of the gate of the transistor M2 included in the memory cell MC becomes VHLD1 , so that the transistor M2 is turned on and the transistor M2 is turned on.
  • a current corresponding to the gate-source voltage of the transistor M2 flows through the first terminal and the second terminal.
  • the transistor M3 included in the memory cell MC is turned off.
  • the transistor M3 included in the memory cell MC is turned on.
  • the amount of current flowing between the memory cell MC and the wiring RDL is IMP when each of the first data and the second data is "1"
  • the first data and the second data Depending on each value, the amount of current flowing between the memory cell MC and the wiring RDL is as shown in the table below.
  • the memory cell MC can calculate the product of the first data and the second data by holding the first data in the memory cell MC and then inputting the second data to the memory cell MC. can.
  • a plurality of second data are collectively stored in each of the wiring RWL [1] to the wiring RWL [m].
  • the first data held in the memory cell MC [i, j] (i is an integer of 1 or more and m or less, j is an integer of 1 or more and n or less) is W [i, j], and the wiring RWL.
  • X [i] be the second data supplied to [i].
  • X [1] to X as second data from the wiring RWL [1] to the wiring RWL [m] in each of the memory cells MC [1, j] to the memory cells MC [m, j].
  • [m] is input, in each of the memory cells MC [1, j] to the memory cells MC [m, j], W [1, j] ⁇ X [1] to W [m, j] ⁇ X.
  • the calculation of [m] is performed.
  • the current of the current amount IMP flows between the memory cell MC and the wiring RDL [j], so that the current flows in the wiring RDL [j].
  • the total current is the amount of current corresponding to the number of memory cell MCs having a product of 1 among W [1, j] ⁇ X [1] to W [m, j] ⁇ X [m].
  • M is an integer of 1 or more and m or less.
  • a current of a current amount of M ⁇ IMP flows through the wiring RDL [j].
  • the circuit RDD has a function such as a current-voltage conversion circuit, for example, the total sum of the currents flowing in the wiring RDL [j] can be converted into a voltage value. That is, the current amount M ⁇ IMP, which is the result of the sum of products performed in the memory cells MC [1, j] to the memory cells MC [m, j] in the jth column of the memory cell array MCA, can be output as a voltage value. can.
  • the circuit RDD may have a function of further performing a function calculation using the result of the sum of products, for example.
  • the circuit RDD can perform an operation of an artificial neural network by performing an operation of an activation function using the result of the sum of products.
  • the activation function for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, or the like can be used.
  • the result of the product-sum operation of the plurality of first data and the plurality of second data in the memory cells MC [1, j] to the memory cells MC [m, j] located in the j-th column has been described.
  • the plurality of second data are transmitted by the wiring RWL [1] to the wiring RWL [m] extending in the row direction, the product-sum operation can be performed even in columns other than the j-th column. That is, when the storage device 100 is used as a circuit for executing the product-sum operation, the product-sum operation can be executed simultaneously for the number of columns (n in FIG. 10).
  • FIG. 16 takes a plurality of first data that take any of "positive value”, “0", and “negative value” and one of "-1", “0", and “1".
  • This is a configuration example of an arithmetic circuit capable of performing a product-sum operation with a plurality of second data.
  • the arithmetic circuit 110 includes a memory cell array MCA, a circuit WDD, a circuit RDD, a circuit WWD, a circuit RWD, and a circuit FECD.
  • the memory cell array MCA has a plurality of memory cell MCs. Further, in the memory cell array MCA, a plurality of memory cell MCs are arranged in a matrix of m rows and n columns (where m and n are each an integer of 1 or more). Note that FIG. 16 shows excerpts of memory cells MC [1, j] and memory cells MC [m, j]. Further, in FIG. 16, as an example, the memory cell MC located in the i-row and j-column (where i is an integer of 1 or more and m or less and j is an integer of 1 or more and n or less) is a memory cell. MC [i, j] (not shown).
  • the memory cell MC has a circuit MP and a circuit MPr.
  • the circuit configurations of the circuit MP and the circuit MPr will be described later.
  • wiring WDL [1] to wiring WDL [n] wiring WDrl [1] to wiring WDrl [n]
  • wiring RDL [1] to wiring RDL [n] are used.
  • Wiring RDRr [1] to wiring RDRr [n] are extended in the column direction. Note that [j] attached to the wiring WDL, the wiring WDrl, the wiring RDL, and the wiring RDLr indicates that the wiring is in the jth column.
  • the wiring RWLa [1] to the wiring RWLa [m], the wiring RWLb [1] to the wiring RWLb [m], the wiring WWL [1] to the wiring WWL [m], and the wiring FCA [1] to the wiring FCA [ m] and the wiring FCB [1] to the wiring FCB [m] are extended in the row direction.
  • [i] attached to the wiring RWLa, the wiring RWLb, the wiring WWL, the wiring FCA, and the wiring FCB indicates that the wiring is the wiring on the i-th line.
  • the circuit MP [1, j] includes the wiring WDL [j], the wiring RWLa [1], the wiring RWLb [1], the wiring WWL [1], and the wiring FCA [ 1], the wiring FCB [1], the wiring RDL [j], and the wiring RDLr [j] are electrically connected.
  • the circuit MPr [1, j] includes wiring WDLr [j], wiring RWLa [1], wiring RWLb [1], wiring WWL [1], wiring FCA [1], and wiring FCB [1]. ], The wiring RDL [j], and the wiring RDLr [j] are electrically connected.
  • the circuit MP [m, j] includes wiring WDL [j], wiring RWLa [m], wiring RWLb [m], wiring WWL [m], and wiring. It is electrically connected to the FCA [m], the wiring FCB [m], the wiring RDL [j], and the wiring RDLr [j]. Further, the circuit MPr [m, j] includes wiring WDLr [j], wiring RWLa [m], wiring RWLb [m], wiring WWL [m], wiring FCA [m], and wiring FCB [m]. ], The wiring RDL [j], and the wiring RDLr [j] are electrically connected.
  • FIG. 17 shows an example of a circuit configuration applicable to the memory cell MC included in the memory cell array MCA of the arithmetic circuit 110 of FIG.
  • the circuit MP shown in FIG. 17 is a modification of the configuration of the memory cell MC of FIG. 1A described in the first embodiment, and has a configuration in which the transistor M3 is replaced with the transistor M3a and the transistor M3b.
  • the first terminal of the transistor M3a is electrically connected to the second terminal of the transistor M2, the second terminal of the transistor M3a is electrically connected to the wiring RDL, and the gate of the transistor M3a is electrically connected to the wiring RWLa. It is connected. Further, the first terminal of the transistor M3b is electrically connected to the second terminal of the transistor M2, the second terminal of the transistor M3b is electrically connected to the wiring RDBr, and the gate of the transistor M3b is electrically connected to the wiring RWLb. Is connected.
  • circuit MPr shown in FIG. 17 has the same configuration as the circuit MP. Therefore, in order to distinguish the circuit element of the circuit MPr from the circuit element of the circuit MP, "r" is added to the reference numeral.
  • the first terminal of the transistor M1r is electrically connected to the wiring WDLr, and the gate of the transistor M1r is electrically connected to the wiring WWL. Further, the input terminal of the FTJ element FJAr is electrically connected to the wiring FCA. Further, the output terminal of the FTJ element FJAr is electrically connected to the second terminal of the transistor M1r, the input terminal of the FTJ element FJBr, and the gate of the transistor M2r. Further, the output terminal of the FTJ element FJBr is electrically connected to the wiring FCB.
  • the first terminal of the transistor M2r is electrically connected to the wiring VCEr
  • the second terminal of the transistor M2r is electrically connected to the first terminal of the transistor M3ar and the first terminal of the transistor M3br.
  • the second terminal of the transistor M3ar is electrically connected to the wiring RDBr
  • the gate of the transistor M3ar is electrically connected to the wiring RWLa.
  • the second terminal of the transistor M3br is electrically connected to the wiring RDL, and the gate of the transistor M3br is electrically connected to the wiring RWLb.
  • Each of the wiring WDL and the wiring WDrl functions as, for example, the circuit MP of the memory cell MC and the wiring for transmitting the first data for writing to the circuit MPr.
  • the first data is represented by a wiring WDL and a set of signals transmitted to the wiring WDrl.
  • the wiring RDL functions as a circuit MP of the memory cell MC or a wiring for transmitting the calculation result by the circuit MPr as data. Further, as an example, the wiring RDLr functions as a circuit MP of the memory cell MC or a wiring for transmitting the calculation result by the circuit MPr as data, similarly to the wiring RDL.
  • the wiring WWL functions as wiring for selecting the memory cell MC to which the data is written, as an example. That is, the wiring WWL may function as a writing word line.
  • the wiring RWLa and the wiring RWLb function as wiring for transmitting the second data as an example.
  • the second data is represented by a set of signals transmitted to the wiring RWLa and the wiring RWLb.
  • each of the wiring FCA and the wiring FCB has the FTJ element FJA, when writing the first data to the circuit MP and the circuit MPr, similarly to the memory cell MC of FIG. 1 described in the first embodiment.
  • the FTJ element FJB, the FTJ element FJAr, and the FTJ element FJBr each function as a wiring that gives a potential to the extent that the material having a strong dielectric property is polarized.
  • each of the wiring FCA and the wiring FCB is a wiring that gives a potential that does not change the polarization of the dielectric when calculating the product of the first data and the second data in the memory cell MC. Also works as. Further, the potential may be a pulse voltage.
  • the wiring VCE functions as a wiring that gives a constant voltage as an example.
  • the constant voltage can be, for example, a high level potential, a low level potential, a ground potential, or the like. Further, the potential given by the wiring VCE may be a pulse voltage.
  • the wiring VCEr functions as a wiring that gives a constant voltage as an example.
  • the constant voltage can be, for example, a high level potential, a low level potential, a ground potential, or the like.
  • the potential given by the wiring VCEr may be a pulse voltage.
  • the wiring VCE and the wiring VCEr may be in a conductive state with each other.
  • the circuit WDD is electrically connected to the wiring WDL [1] to the wiring WDL [n] and the wiring WDLr [1] to the wiring WDrl [n]. Further, the circuit RWD is electrically connected to the wiring RWLa [1] to the wiring RWLa [m] and the wiring RWLb [1] to the wiring RWLb [m]. Further, the circuit WWD is electrically connected to the wiring WWL [1] to the wiring WWL [m]. Further, the circuit FECD is electrically connected to the wiring FCA [1] to the wiring FCA [m] and the wiring FCB [1] to the wiring FCB [m]. Further, the circuit RDD is electrically connected to the wiring RDL [1] to the wiring RDL [n] and the wiring RDLr [1] to the wiring RDLr [1].
  • circuit WWD the circuit WWD of the storage device 100 of FIG. 10 described in the second embodiment is taken into consideration.
  • circuit FECD the circuit FECD of the storage device 100 of FIG. 10 described in the second embodiment is referred to.
  • the circuit WDD functions as a circuit for supplying the first data to the wiring WDL [j] and the wiring WDLr [j] in the jth column. Further, the circuit WDD may be configured to be capable of collectively supplying the first data to the wiring WDL [1] to the wiring WDL [n] and the wiring WDLr [1] to the wiring WDrl [n].
  • the circuit RWD functions as a circuit for supplying the second data to the wiring RWLa [i] and the wiring RWLb [i]. Further, the circuit RWD may be configured to be capable of collectively supplying the second data to the wiring RWLa [1] to the wiring RWLa [m] and the wiring RWLb [1] to the wiring RWLb [m].
  • the potentials supplied to each of the circuit MP and the circuit MPr of the memory cell MC are defined as follows.
  • the first memory cell MC is used.
  • the potential of the gate of the transistor M2 becomes V HLD1 and the potential of the gate of the transistor M2r becomes V HLD 0.
  • the potential of the gate of the transistor M2 becomes V HLD0
  • the potential of the gate of the transistor M2r becomes V HLD1 .
  • the potential of the gate of the transistor M2 becomes V HLD0
  • the potential of the gate of the transistor M2r becomes V HLD0 .
  • the transistor M2 when the potential of the gate of the transistor M2 included in the circuit MP is VHLD0 , it is preferable that the transistor M2 is in the off state. Further, when the potential of the gate of the transistor M2r included in the circuit MPr is VHLD0 , it is preferable that the transistor M2r is in the off state. In the present embodiment, when the potential of the gate of the transistor M2 included in the circuit MP is V HLD0 , the transistor M2 is in the off state, and the potential of the gate of the transistor M2r included in the circuit MPr is V. When it is HLD0 , the transistor M2r is assumed to be in the off state.
  • the arithmetic circuit 110 when the potential of the gate of the transistor M2 included in the circuit MP is VHLD1 and a predetermined potential is input to the second terminal of the transistor M2, the first terminal and the second terminal of the transistor M2 It is assumed that a current of the amount of current IM flows between the terminal and the terminal.
  • the potential of the gate of the transistor M2r included in the circuit MPr is VHLD1 and a predetermined potential is input to the second terminal of the transistor M2r , the first terminal and the second terminal of the transistor M2r It is assumed that a current of the amount of current IM flows between them.
  • the potentials supplied to each of the wiring RWLa and the wiring RWLb are defined as follows.
  • the low level potential is supplied from the wiring RWLa to the circuit MP and the circuit MPr, and the low level potential is supplied from the wiring RWLb to the circuit MP and the circuit MPr. It shall be done.
  • the transistor M3a is in the on state and the transistor M3b is in the off state in the circuit MP
  • the transistor M3ar is in the on state and the transistor in the circuit MPr. Since M3br is in the off state, the circuit MP and the wiring RDL [j] are in a conductive state, the circuit MPr and the wiring RDLr [j] are in a conductive state, and the circuit MP and the wiring RDLr [j] are in a conductive state. The space becomes non-conducting, and the circuit MPr and the wiring RDL [j] become non-conducting.
  • the transistor M3a is in the off state and the transistor M3b is in the on state in the circuit MP
  • the transistor M3ar is in the off state in the circuit MPr. Since the transistor M3br is turned on, the circuit MP and the wiring RDL [j] are in a non-conducting state, the circuit MPr and the wiring RDLr [j] are in a non-conducting state, and the circuit MP and the wiring RDLr [j] are in a non-conducting state. ], And the circuit MPr and the wiring RDL [j] are in a conductive state.
  • the transistor M3a is in the off state and the transistor M3b is in the off state in the circuit MP
  • the transistor M3ar is in the off state and the transistor in the circuit MPr. Since M3br is turned off, the circuit MP and the wiring RDL [j] are in a non-conducting state, the circuit MPr and the wiring RDLr [j] are in a non-conducting state, and the circuit MP and the wiring RDLr [j] are in a non-conducting state. There is a non-conducting state between the circuit MPr and the wiring RDL [j].
  • the current flowing between the memory cell MC and the wiring RDL or the wiring RDLr is as shown in the table below.
  • the memory cell MC can calculate the product of the first data and the second data by holding the first data in the memory cell MC and then inputting the second data to the memory cell MC. can.
  • the wiring RWLa [1] to the wiring RWLa [m] and the wiring RWLb [1] to the wiring RWLb [m] ] Let us consider the case of supplying a plurality of second data at once.
  • the first data held in the memory cell MC [i, j] (i is an integer of 1 or more and m or less, j is an integer of 1 or more and n or less) is W [i, j], and the wiring RWL.
  • X [i] be the second data supplied to [i].
  • the number of memory cell MCs in which the product of 1 data and the 2nd data is "1" is P
  • the number of memory cell MCs in which the product of the 1st data and the 2nd data is "-1" is Q, the first.
  • the total amount of current flowing through the wiring RDL [j] is P ⁇ IMP
  • the total amount of current flowing through the wiring RDLr [j] is Q ⁇ IMP .
  • the circuit RDD acquires, for example, the difference between the amount of current P ⁇ IM flowing in the wiring RDL [j] and the amount of current Q ⁇ IM flowing in the wiring RDLr [j], and converts the difference into a voltage value.
  • the result of the product-sum calculation of the plurality of first data and the plurality of second data in the memory cell MC [1, j] to the memory cell MC [m, j] is used as the voltage value. Can be output.
  • the circuit RDD may have a function of further performing a function calculation using the result of the sum of products, for example.
  • the circuit RDD can perform an operation of an artificial neural network by performing an operation of an activation function using the result of the sum of products.
  • the activation function for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, or the like can be used.
  • the result of the product-sum operation of the plurality of first data and the plurality of second data in the memory cells MC [1, j] to the memory cells MC [m, j] located in the j-th column has been described.
  • the plurality of second data are transmitted by the wiring RWLa [1] to the wiring RWLa [m] and the wiring RWLb [1] to the wiring RWLb [m] extending in the row direction, the data other than the j-th column are transmitted.
  • Multiply-accumulate operations can also be performed on columns. That is, when the product-sum operation is executed by the arithmetic circuit 110, the product-sum operation can be executed at the same time by the number of columns (n in FIG. 16).
  • the first data has three values of "1", “0", and “-1" has been described, but the first data can be changed by changing the operation method, the circuit configuration, and the like. Can be treated as a binary value, a value of four or more, or an analog value.
  • the second data can be changed by changing the operation method, the circuit configuration, and the like. Can be treated as a binary value, a value of four or more, or an analog value.
  • the potential corresponding to the second data supplied to each of the wiring RWLa and the wiring RWLb is defined as the pulse voltage.
  • the pulse voltage input by either the wiring RWLa or the wiring RWLb has a high level potential
  • one of the transistor M3a and the transistor M3ar or one of the transistor M3b and the transistor M3br is turned on for the input time of the pulse voltage. ..
  • the wiring RWLa is given a high level potential and the wiring RWLb is given a low level potential for the input time Tut.
  • the amount of charge flowing between the circuit MP of the memory cell MC and the wiring RDL is Tut ⁇ IMP
  • the amount of charge flowing between the circuit MPr of the memory cell MC and the wiring RDL is 0, and the memory cell MC.
  • the amount of electric charge flowing between the circuit MP and the wiring RDBr of the memory cell MC is 0, and the amount of electric charge flowing between the circuit MPr of the memory cell MC and the wiring RDBr is 0.
  • the wiring RWLa is given a high level potential and the wiring RWLb is given a low level potential for an input time of 2 ⁇ Tut.
  • the amount of charge flowing between the circuit MP of the memory cell MC and the wiring RDL is 2 ⁇ Tut ⁇ IMP
  • the amount of charge flowing between the circuit MPr of the memory cell MC and the wiring RDL is 0, and the memory
  • the amount of electric charge flowing between the circuit MP of the cell MC and the wiring RDBr is 0, and the amount of electric charge flowing between the circuit MPr of the memory cell MC and the wiring RDBr is 0.
  • the second data is "-2"
  • a low level potential is given to the wiring RWLa and a high level potential is given to the wiring RWLb for an input time of 2 ⁇ Tut.
  • the amount of electric charge flowing between the circuit MP of the memory cell MC and the wiring RDL becomes 0, the amount of electric charge flowing between the circuit MPr of the memory cell MC and the wiring RDL becomes 0, and the amount of electric charge flowing between the circuit MP of the memory cell MC and the wiring RDL becomes 0.
  • the amount of electric charge flowing between the wiring RDLr is 2 ⁇ Tu ⁇ IMP, and the amount of electric charge flowing between the circuit MPr of the memory cell MC and the wiring RDLr is 0.
  • the memory cell MC can be determined by determining the input time according to the value of the second data.
  • the second data can be set to a binary value, a value of four or more, or an analog value, and an amount of electric charge corresponding to the result of the product of the first data and the second data can be passed through the wiring RDL or the wiring RDLr.
  • the circuit RDD includes, for example, a circuit (for example, a QV conversion circuit, an integrator circuit, etc.) that converts each of the amount of electric charge flowing through the wiring RDL and the amount of electric charge flowing through the wiring RDLr into voltage values. Therefore, the circuit RDD can acquire each of the amount of electric charge flowing through the wiring RDL and the amount of electric charge flowing through the wiring RDLr as voltage values.
  • a circuit for example, a QV conversion circuit, an integrator circuit, etc.
  • the circuit RDD has, for example, a circuit that compares a voltage value according to the amount of electric charge flowing through the wiring RDL and a voltage value corresponding to the amount of electric charge flowing through the wiring RDLr, and outputs the comparison result as a voltage value.
  • the circuit RDD obtains the result of the product-sum calculation of the plurality of first data and the plurality of second data in the memory cell MC [1, j] to the memory cell MC [m, j] as the voltage. It can be output as a value.
  • the pulse voltage is, for example, wiring VCE, wiring VCEr, wiring FCA, wiring FCB, or the like. It may be an operation supplied to at least one.
  • a predetermined voltage may be input as a pulse voltage to the wiring VCE and the wiring VCEr at the timing when the electric charge flows between the memory cell MC and the wiring RDL.
  • a predetermined voltage may be input as a pulse voltage to each of the wiring FCA and the wiring FCB at the timing of flowing an electric charge between the memory cell MC and the wiring RDL.
  • ⁇ Configuration example> 18A and 18B show an example of a circuit configuration of a memory cell MC that can be provided in a storage device that is a semiconductor device of one aspect of the present invention.
  • the memory cell MC shown in FIGS. 18A and 18B has a circuit configuration in which the data is not destroyed during the data reading operation and the data can be refreshed.
  • the memory cell MC of FIG. 18A has, for example, a configuration having a transistor M5 and a capacitance C1 in addition to the configuration of the memory cell MC of FIG. 1A. Further, in the memory cell MC of FIG. 18A, the second terminal of the transistor M1, the output terminal of the FTJ element FJA, and the input terminal of the FTJ element FJB are interposed between the first terminal and the second terminal of the transistor M5. It is also different from the memory cell MC of FIG. 1A in that it is electrically connected to the gate of the transistor M2.
  • the first terminal of the transistor M5 is electrically connected to the second terminal of the transistor M1, the output terminal of the FTJ element FJA, and the input terminal of the FTJ element FJB. .. Further, the second terminal of the transistor M5 is electrically connected to the first terminal of the capacitance C1 and the gate of the transistor M2, and the second terminal of the capacitance C1 is electrically connected to the wiring VCE2. Further, the gate of the transistor M5 is electrically connected to the wiring WHL.
  • the memory cell MC of FIG. 18B has, for example, a configuration having a transistor M5 and a capacitance C1 in addition to the configuration of the memory cell MC of FIG. 4A. Further, in the memory cell MC of FIG. 18B, the second terminal of the transistor M1, the output terminal of the dielectric capacitor FEA, and the input terminal of the dielectric capacitor FEB are interposed between the first terminal and the second terminal of the transistor M5. It is also different from the memory cell MC of FIG. 4A in that it is electrically connected to the gate of the transistor M2.
  • the first terminal of the transistor M5 is electrically connected to the second terminal of the transistor M1, the output terminal of the ferroelectric capacitor FEA, and the input terminal of the ferroelectric capacitor FEB.
  • the second terminal of the transistor M5 is electrically connected to the first terminal of the capacitance C1 and the gate of the transistor M2, and the second terminal of the capacitance C1 is electrically connected to the wiring VCE2.
  • the gate of the transistor M5 is electrically connected to the wiring WHL.
  • transistor M5 in FIGS. 18A and 18B for example, a transistor applicable to the transistors M1 to M3 included in the memory cell MC in FIG. 1A can be used.
  • Wiring VCE2 functions as wiring that gives a constant voltage, for example.
  • the constant voltage can be, for example, a high level potential, a low level potential, a ground potential, or the like.
  • the wiring VCE2 may be the same wiring as the wiring VCE, for example. That is, the voltage given by the wiring VCE2 may be the same as the voltage given by the wiring VCE.
  • the wiring WHL functions as a wiring for transmitting a control signal for switching between the conductive state and the non-conducting state of the transistor M5, as an example.
  • the transistor M5 becomes conductive, and the data transmitted to the memory cell MC can be written to the first terminal of the capacitance C1.
  • the transistor M5 becomes a non-conducting state, and the data can be held in the first terminal of the capacitance C1.
  • the description of the memory cell MC of FIG. 1A of the first embodiment is taken into consideration. Further, regarding the contents of the memory cell MC of FIG. 18B that overlap with the memory cell MC of FIG. 4A, the description of the memory cell MC of FIG. 4A of the first embodiment is referred to.
  • FIG. 19 is a timing chart showing an example of a data writing operation in the memory cell MC of FIG. 18A.
  • the timing chart of FIG. 19 shows changes in the potentials of the wiring WWL, the wiring WDL, the wiring WHL, the wiring FCA, the wiring FCB, and the wiring RWL during and near the time V11 to the time V24.
  • the operation example between the time V11 and the time V18 in the timing chart of FIG. 19 is the same as the operation example of the time T11 to the time T18 in the timing chart of FIG. Therefore, the operation example of the memory cell MC of FIG. 18A between the time V11 and the time V18 takes into consideration the operation example of the memory cell MC of FIG. 1A between the time T11 and the time T18 of the timing chart of FIG.
  • a low level potential (described as Low in FIG. 19) is given to the wiring WHL between the time V11 and the time V19 in the timing chart of FIG. Therefore, between the time V11 and the time V19, a low level potential is input to the gate of the transistor M5, and the transistor M5 is turned off.
  • the potential of the wiring RDL does not change, it is not shown in the timing chart of FIG. Further, the potential of the wiring RDL between the time V11 and the time V24 is not particularly limited.
  • the potential given by the wiring VCE can be a high level potential, a low level potential, a ground potential, or the like as described above, but in this operation example, it is a low level potential VSS .
  • the potential given by the wiring VCE2 can be a high level potential, a low level potential, a ground potential, or the like as described above, but in this operation example, it is a low level potential VSS.
  • the wiring FCA is given a potential VM and the wiring FCB is given a potential V 0B .
  • the VM has a potential higher than V 0A and V 0B and lower than V 1A , similar to the VM described in the timing chart of FIG. 3A. Further, when the potential of the wiring FCB is V 0B , the VM is set to such a potential that the polarization does not change (the direction of polarization does not change) in the FTJ element FJA and the FTJ element FJB.
  • the potential VM may be a voltage of the transistor M5 having a threshold voltage Vth or less, or a voltage obtained by adding about 1V to a voltage of Vth or less.
  • the voltage division of the FTJ element FJA and the FTJ element FJB is applied to each of the FTJ element FJA and the FTJ element FJB.
  • a voltage VM ⁇ V 0B is applied between the wiring FCA and the wiring FCB, and the FTJ element FJA and the FTJ element FJB are divided by the ratio of a: b (a and b are positive real numbers).
  • VFJA (VM ⁇ V 0B ) ⁇ a / (a + b)
  • VFJB (VM ⁇ V 0B ) ⁇ b / (a + b)
  • the VFJA when the direction of polarization is the direction from the input terminal (wiring FCA) to the output terminal (positive direction), the VFJA becomes high, and the direction of polarization is from the output terminal to the input terminal. When it is in the direction (negative direction) of (wiring FCA), VFJA becomes low.
  • the FTJ element FJB when the direction of polarization is the direction from the output terminal (wiring FCB) to the input terminal (negative direction), the VFJB becomes low and the direction of polarization is output from the input terminal. When it is in the direction (positive direction) of the terminal (wiring FCB), the VFJB becomes high.
  • the direction of polarization of the FTJ element FJA is the input terminal (wiring FCA). Since the direction is from the output terminal (positive direction), the VFJA becomes high, and the polarization direction of the FTJ element FJB is the direction from the output terminal (wiring FCB) to the input terminal (negative direction), so that the VFJB Will be low. That is, the ratio a: b of the partial pressure applied to each of the FTJ element FJA and the FTJ element FJB is a> b. Further, the potential of the first terminal of the transistor M5 at this time (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is set to VHLD0 .
  • the direction of polarization of the FTJ element FJA is from the output terminal to the input terminal (wiring). Since the direction (negative direction) is toward FCA), the VFJA is low, and the polarization direction of the FTJ element FJB is the direction (positive direction) from the input terminal to the output terminal (wiring FCB), so that the VFJB is It gets higher. That is, the ratio a: b of the partial pressure applied to each of the FTJ element FJA and the FTJ element FJB is b> a. Further, the potential of the first terminal of the transistor M5 at this time (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is set to VHLD1 .
  • the voltage V FJB between the input terminal and the output terminal of the FTJ element FJB is higher when the potential written in the memory cell MC is V 1 than when it is V 0 . Therefore, when the potential V 0B given by the wiring FCB is used as a reference, the potential of the first terminal of the transistor M5 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is the potential written in the memory cell MC. It is higher at V 1 than at V 0 . That is, V HLD1 > V HLD 0 .
  • the connection between the first terminal of the transistor M5 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) and the gate of the transistor M2 and the first terminal of the capacitance C1 It becomes a conductive state. Further, between the time V19 and the time V20, VM is given from the wiring FCA and V0B is given from the wiring FCB, so that the potentials of the gate of the transistor M2 and the first terminal of the capacitance C1 are different. It becomes V HLD0 or V HLD1 .
  • the transistor M5 When the transistor M5 is turned off, there is a gap between the first terminal of the transistor M5 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) and the gate of the transistor M2 and the first terminal of the capacitance C1. It becomes a non-conducting state. Further, as a result, the potential V HLD0 or V HLD1 of the gate of the transistor M2 is held by the capacitance C1.
  • the wiring FCA is given a potential V 0A
  • the wiring FCB is given a potential V 0B . That is, after the time V21, the potential given by the wiring FCA and the wiring FCB is the same as the potential given by the wiring FCA and the wiring FCB before the time V18.
  • the potential given by the wiring WWL changes from a low level potential to a high level potential. Therefore, a high level potential is input to the gate of the transistor M1 and the transistor M1 is turned on. That is, the wiring WDL and the first terminal of the transistor M5 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) are in a conductive state. Therefore, the ground potential given by the wiring WDL is given to the first terminal of the transistor M5 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB). Therefore, the potential of the gate of the transistor M2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) is assumed to be the ground potential.
  • the operation between the time V22 and the time V23 is not essential and may not be performed.
  • Data can be written to the memory cell MC of FIG. 18 by the operation between the time V23 and the time V24 described above.
  • FIG. 20A is a timing chart showing an example of a data read operation in the memory cell MC of FIG. 18A.
  • the timing chart of FIG. 20A shows the change of the potential of the wiring RWL and the wiring RDL at the time between the time V25 and the time V29 and the time in the vicinity thereof.
  • the wiring WWL is given a low level potential
  • the wiring WDL is given a ground potential
  • the wiring WHL is given a low level potential
  • the wiring FCA has a potential V 0A . It is assumed that the electric potential V 0B is given to the wiring FCB.
  • the transistor M1 since the wiring WWL is given a low level potential, the transistor M1 is turned off. Further, since the wiring WHL is given a low level potential, the transistor M5 is turned off.
  • the potential of the wiring RWL is a low level potential (described as Low in FIG. 20A). Therefore, a low level potential is input to the gate of the transistor M3, and the transistor M3 is in the off state. Further, the potential of the wiring RDL is a low level potential.
  • V RE1 which is a constant voltage is given to the potential of the wiring RDL.
  • V RE1 is a constant voltage for reading higher than VSS .
  • the potential of the gate of the transistor M2 is V HLD0 or V HLD1
  • the potential of the first terminal of the transistor M2 is V SS
  • a constant potential V RE1 higher than VSS is input from the wiring RDL as an example to the second terminal of the transistor M2.
  • the gate-source voltage V HLD0 ⁇ V SS (or V HLD1 ⁇ V SS ) of the transistor M2 is higher than the threshold voltage Vth of the transistor M2, the gate-source voltage of the transistor M2 is high.
  • a current corresponding to the inter-voltage V HLD0 -V SS (or V HLD1 -V SS ) flows.
  • the amount of current flowing through the wiring RDL is determined according to the potential of the gate of the transistor M2. Specifically, since V HLD1 > V HLD 0 , the current flowing from the transistor M2 to the wiring RDL is larger when the potential given to the memory cell MC from the wiring WDL is V 1 than when the potential is V 0 . ..
  • the data held in the memory cell MC can be read out.
  • a read-out circuit for example, a current-voltage conversion circuit or the like
  • the data written in the memory cell MC of FIG. 18A can be read out. Further, when the data is read from the memory cell MC of FIG. 18A, the polarization directions of the FTJ element FJA and the FTJ element FJB do not change, so that the above-mentioned data reading operation example is not destructive reading. That is, the data can be read from the memory cell MC while retaining the data written in the memory cell MC.
  • the potential given by the wiring VCE is set to the low level potential VSS, but the potential given by the wiring VCE may be set to the high level potential.
  • the timing chart of FIG. 20B shows an operation example when the potential given by the wiring VCE is set to a high level potential in the reading operation example of the timing chart of FIG. 20A.
  • the fluctuation of the potential is shown by a solid line and a broken line.
  • the potential change shown by the solid line indicates the case where V0 is input from the wiring WDL to the memory cell MC in the writing operation of the timing chart of FIG. 19, and the potential change shown by the broken line is the timing chart of FIG. In the writing operation of, the case where V1 is input from the wiring WDL to the memory cell MC is shown.
  • the low level potential VSS is precharged with respect to the wiring RDL between the time V25 and the time V27. Further, after the wiring RDL is precharged, the wiring RDL is assumed to be in a floating state.
  • the potential of the wiring RWL changes from the low level potential to the high level potential. Therefore, a high level potential is input to the gate of the transistor M3, and the transistor M3 is turned on.
  • the potential of the gate of the transistor M2 is V HLD0 or V HLD1
  • the potential of the first terminal of the transistor M2 is V DD .
  • the transistor M3 since the transistor M3 is in the ON state, the precharged potential in the wiring RDL is input to the second terminal of the transistor M2.
  • the gate-source voltage V HLD0 -V SS (or V HLD1 -V SS ) of the transistor M2 is higher than the threshold voltage V th of the transistor M2, the potential of the wiring RDL is V SS . To a predetermined potential.
  • the potential of the gate of the transistor M2 when the potential of the gate of the transistor M2 is V HLD 0 , ideally, the potential of the wiring RD L rises from VSS to V HLD 0 ⁇ V th (described as V ON in FIG. 20B). Further, for example, when the potential of the gate of the transistor M2 is V HLD1 , the potential of the wiring RDL ideally rises from VSS to V HLD1 ⁇ V th (described as V OP in FIG. 20B). do.
  • the memory cell MC is similar to the timing chart and the reading operation example of FIG. 20A. The data held in can be read out.
  • the potential given by the wiring VCE is set as VDD , and after the time V25, a constant voltage for reading lower than that of VDD is given to the wiring RDL, and the timing of FIG. Similar to the operation of the chart, the data held in the memory cell MC can be read out by acquiring the amount of the current flowing through the wiring RDL.
  • a high level potential is given to the wiring WWL between time V12 and time V17 in the timing chart of FIG. 19, and V0 or V1 is given to the wiring WDL between time V13 and time V16.
  • a high level potential may be applied to the wiring WWL within the period in which V 0 or V 1 is applied to the wiring WD L.
  • the potential V 1A is given to the wiring FCA and the potential V 0B is given to the wiring FCB
  • the potential V 0A is given to the wiring FCA and the potential V 1B is given to the wiring FCB.
  • the period may be any timing as long as the wiring WWL is given a high level potential and the wiring WDL is given V 0 or V 1 . Further, during the period in which the potential V 0A is given to the wiring FCA and the potential V 1B is given to the wiring FCB, the potential V 1A is given to the wiring FCA and the potential V 0B is given to the wiring FCB. It may be earlier than the period. Further, for example, VM is given to the wiring FCA between the time V18 and the time V21 in the timing chart of FIG. 19, and a high level potential is given to the wiring WHL between the time V19 and the time V20. However, VM may be given to the wiring FCA within the period when the wiring WHL is given a high level potential.
  • VM is given to the wiring FCA and V 0B is given to the wiring FCB.
  • V 0A is given to the wiring FCA.
  • VM may be given to the wiring FCB .
  • the operation from the time V18 to the time V24 in the timing chart of FIG. 19 may be performed. Since the direction of polarization of the material having the strong dielectric property of each of the FTJ element FJA and the FTJ element FJB is fixed, the potential VM is applied from the wiring FCA to the input terminal of the FTJ element FJA , and the wiring FCB to the FTJ element.
  • V 0B the output terminal of the FJB
  • the potential of the first terminal of the transistor M5 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) can be set to V HLD 0 or V HLD 1 . Then, by turning on the transistor M5, the potentials of the first terminal of the capacitance C1 of the memory cell MC and the gate of the transistor M2 can be refreshed to V HLD0 or V HLD1 .
  • FIG. 21 shows an example of a circuit configuration of a memory cell MC that can be provided in a storage device that is a semiconductor device of one aspect of the present invention. Note that the memory cell MC shown in FIG. 21 has a circuit configuration in which the data is not destroyed during the data reading operation and the data can be refreshed, similar to the memory cell MC of FIGS. 18A and 18B.
  • the memory cell MC of FIG. 21 has, for example, a configuration having a transistor M6 and a capacitance C2 in addition to the configuration of the memory cell MC of FIG. 1A. Further, in the memory cell MC of FIG. 21, the second terminal of the transistor M1, the output terminal of the FTJ element FJA, and the input terminal of the FTJ element FJB are interposed between the first terminal and the second terminal of the capacitance C2. It is also different from the memory cell MC of FIG. 1A in that it is electrically connected to the gate of the transistor M2.
  • the first terminal of the capacitance C2 is electrically connected to the second terminal of the transistor M1, the output terminal of the FTJ element FJA, and the input terminal of the FTJ element FJB. .. Further, the second terminal of the capacitance C2 is electrically connected to the first terminal of the transistor M6 and the gate of the transistor M2. The second terminal of the transistor M6 is electrically connected to the second terminal of the transistor M2 and the first terminal of the transistor M3. Further, the gate of the transistor M6 is electrically connected to the wiring WCL.
  • transistor M6 for example, a transistor applicable to the transistors M1 to M3 included in the memory cell MC of FIG. 1A can be used.
  • the wiring WCL functions as a wiring for transmitting a control signal for switching between the conductive state and the non-conducting state of the transistor M6 as an example. For example, by applying a high level potential to the wiring WCL, the transistor M6 becomes a conductive state, and by applying a low level potential to the wiring WCL, the transistor M6 becomes a non-conducting state.
  • the description of the memory cell MC of FIG. 1A of the first embodiment is taken into consideration.
  • FIG. 22 is a timing chart showing an operation example of correcting the threshold voltage of the transistor M2 in the memory cell MC of FIG. 21.
  • the timing chart of FIG. 22 shows changes in the potentials of the wiring WWL, the wiring WDL, the wiring WCL, the wiring RWL, and the wiring RDL during and near the time W11 to the time W18.
  • the potential given by the wiring VCE can be a high level potential, a low level potential, a ground potential, or the like as described above, but in this operation example, it is a low level potential VSS .
  • the ground potential (denoted as GND in FIG. 22) is input to each of the wiring WDL and the wiring RDL as an example.
  • the wiring WDL and the first terminal of the capacitance C2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) are in a conductive state. Therefore, the potential of the first terminal of the capacitance C2 (the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB) becomes the ground potential because the ground potential is input from the wiring WDL.
  • the wiring RDL and the second terminal of the capacitance C2 (the gate of the transistor M2) are in a conductive state. Therefore, the potential of the second terminal (gate of the transistor M2) of the capacitance C2 becomes the ground potential because the ground potential is input from the wiring RDL.
  • the potential given by the wiring RDL changes from the ground potential to a potential higher than the threshold voltage Vth of the transistor M2.
  • the potential is Vth + ⁇ V.
  • Vth + ⁇ V is input from the wiring RDL to the second terminal of the transistor M2.
  • Vth + ⁇ V is input from the wiring RDL to each of the gate of the transistor M2 and the second terminal of the capacitance C2.
  • the transistor M6 since the transistor M6 is in the ON state, the gate of the transistor M2 and the second terminal of the transistor M2 are in the conductive state. Further, since the potentials of the gate of the transistor M2 and the second terminal of the transistor M2 are V th + ⁇ V and the potential of the first terminal of the transistor M1 is the low level potential VSS, the transistor M2 is turned on. Therefore, the respective potentials of the gate of the transistor M2 and the second terminal of the transistor M2 decrease until the transistor M2 is turned off. Specifically, when the gate-source voltage of the transistor M2 drops to the threshold voltage, the transistor M2 is turned off, so that the potential of the gate of the transistor M2 at this time is VSS + Vth .
  • VSS + Vth which is the potential of the gate of the transistor M2, is held by the second terminal of the capacitance C2.
  • the threshold voltage of the transistor M2 can be corrected by the above-mentioned operation. As a result, it is possible to reduce the variation in the threshold voltage of the transistors M2 included in each of the plurality of arranged memory cells MC. By reducing the variation in the threshold voltage of the transistor M2, the amount of each current read from the plurality of memory cells MC in which the same data is held can be made substantially equal.
  • data is written in the same manner as the memory cell MC of FIG. 1, for example, in the same manner as the operation example of the timing chart of FIG. 2, and the operation example of the timing chart of FIG. 3A.
  • the current flowing between the first terminal and the second terminal of the transistor M2 whose threshold voltage has been corrected can be treated as read data.
  • the potential VM is input to the wiring FCA and the potential V 0B is input to the wiring FCB .
  • the potentials of the output terminal of the FTJ element FJA and the input terminal of the FTJ element FJB become V HLD0 or V HLD1 .
  • the potential of the gate of the transistor M2 becomes V HLD0 + V SS + V th or V HLD1 + V SS + V th due to the capacitive coupling of the capacitance C2.
  • the gate-source voltage of the transistor M2 is V HLD0 + V th or V HLD1 + V th . Therefore, when the transistor M2 operates in the saturation region, the amount of current flowing between the first terminal and the second terminal of the transistor M2 does not depend on the threshold voltage of the transistor M2, and is therefore read from the memory cell MC. It is possible to reduce the influence of the variation in the threshold voltage of the transistor M2 on the data.
  • FIG. 23 is a semiconductor device having a memory cell including a capacitive element, and the semiconductor device includes a transistor 300, a transistor 500, and a capacitive element 600.
  • 24A shows a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 24B shows a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 24C shows a cross-sectional view of the transistor 300 in the channel width direction.
  • the transistor 500 is a transistor (OS transistor) having a metal oxide in the channel forming region.
  • the transistor 500 has a characteristic that the off-current is small and the field effect mobility does not change easily even at a high temperature.
  • a semiconductor device for example, the transistor M1 included in the memory cell MC described in the above embodiment, it is possible to realize a semiconductor device whose operating ability does not easily decrease even at high temperatures.
  • the transistor 500 to the transistor M1 for example, the potential written in the capacity of the memory cell MC can be held for a long time by utilizing the characteristic that the off current is small.
  • the transistor 500 is provided above the transistor 300, for example, and the capacitive element 600 is provided above the transistor 300 and the transistor 500, for example.
  • the capacitive element 600 can be, for example, a capacitive element that holds a potential according to the data written in the memory cell. Depending on the circuit configuration, the capacitive element 600 shown in FIG. 23 may not necessarily be provided.
  • the transistor 300 is provided on the substrate 310, and has an element separation layer 312, a conductor 316, an insulator 315, a semiconductor region 313 including a part of the substrate 310, a low resistance region 314a functioning as a source region or a drain region, and a low resistance region. It has a resistance region 314b.
  • the transistor 300 can be applied to, for example, the transistor M2 described in the above embodiment. Note that FIG. 23 shows a configuration in which the gate of the transistor 300 is electrically connected to one of the source and drain of the transistor 500 via a pair of electrodes of the capacitive element 600.
  • one of the source and drain of the transistor 300 is electrically connected to one of the source and drain of the transistor 500 via a pair of electrodes of the capacitive element 600.
  • one of the source and drain of the transistor 300 can be electrically connected to the gate of the transistor 500 via a pair of electrodes of the capacitive element 600, and the transistor 300 can be configured.
  • Each terminal may be configured so as not to be electrically connected to any of the terminals of the transistor 500 and the terminals of the capacitive element 600.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • the substrate 310 it is preferable to use a semiconductor substrate (for example, a single crystal substrate or a silicon substrate) as the substrate 310.
  • the transistor 300 is covered with the conductor 316 on the upper surface of the semiconductor region 313 and the side surface in the channel width direction via the insulator 315.
  • the on characteristic of the transistor 300 can be improved by increasing the effective channel width. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristic of the transistor 300 can be improved.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • a semiconductor such as a silicon-based semiconductor in a region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, a low resistance region 314a serving as a source region or a drain region, a low resistance region 314b, and the like.
  • It preferably contains crystalline silicon.
  • it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), GaN (gallium nitride), or the like.
  • a configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used.
  • the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs and GaAlAs or the like.
  • n-type conductivity such as arsenic and phosphorus, or p-type conductivity such as boron are imparted.
  • the conductor 316 that functions as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy containing an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • a conductive material such as a material or a metal oxide material can be used.
  • the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding property, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • the element separation layer 312 is provided to separate a plurality of transistors formed on the substrate 310.
  • the element separation layer can be formed by using, for example, a LOCOS (Local Oxidation of Silicon) method, an STI (Shallow Trench Isolation) method, a mesa separation method, or the like.
  • LOCOS Local Oxidation of Silicon
  • STI Shallow Trench Isolation
  • the transistor 300 shown in FIG. 23 is an example, and the transistor 300 is not limited to its structure, and an appropriate transistor may be used depending on the circuit configuration, driving method, and the like.
  • the transistor 300 may have a planar type structure instead of the FIN type shown in FIG. 24C.
  • the transistor 300 may be configured in the same manner as the transistor 500 using an oxide semiconductor, as shown in FIG. 25. The details of the transistor 500 will be described later.
  • the unipolar circuit means a circuit including a transistor having only one polarity of an n-channel transistor or a p-channel transistor.
  • the transistor 300 is provided on the substrate 310A.
  • a semiconductor substrate may be used in the same manner as the substrate 310 of the semiconductor device of FIG. 23.
  • the substrate 310A includes, for example, an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a sapphire glass substrate, a metal substrate, a stainless steel substrate, a substrate having a stainless steel still foil, a tungsten substrate, and a tungsten foil.
  • a substrate, a flexible substrate, a laminated film, a paper containing a fibrous material, a base film, or the like can be used.
  • glass substrates include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • flexible substrates, laminated films, base films, etc. include the following.
  • plastics typified by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PTFE polytetrafluoroethylene
  • synthetic resin such as acrylic.
  • polypropylene polyester, polyvinyl fluoride, polyvinyl chloride and the like.
  • polyamide, polyimide, aramid epoxy resin, inorganic thin-film film, papers and the like.
  • the transistor 300 shown in FIG. 23 is provided with an insulator 320, an insulator 322, an insulator 324, and an insulator 326 stacked in this order from the substrate 310 side.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxide, silicon nitride, silicon nitride, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, etc. are used. Just do it.
  • silicon oxide refers to a material having a higher oxygen content than nitrogen as its composition
  • silicon nitride as its composition refers to a material having a higher nitrogen content than oxygen as its composition. Is shown.
  • aluminum nitride refers to a material whose composition has a higher oxygen content than nitrogen
  • aluminum nitride refers to a material whose composition has a higher nitrogen content than oxygen. Is shown.
  • the insulator 322 may have a function as a flattening film for flattening a step caused by a transistor 300 or the like covered with the insulator 320.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • the insulator 324 it is preferable to use a film having a barrier property so that hydrogen, impurities, etc. do not diffuse in the region where the transistor 500 is provided from the substrate 310, the transistor 300, or the like.
  • Silicon nitride formed by the CVD method can be used as an example of a film having a barrier property against hydrogen.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, which may deteriorate the characteristics of the semiconductor element. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 300.
  • the membrane that suppresses the diffusion of hydrogen is a membrane in which the amount of hydrogen desorbed is small.
  • the amount of hydrogen desorbed can be analyzed using, for example, a heated desorption gas analysis method (TDS).
  • TDS heated desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 324 is the amount desorbed in terms of hydrogen atoms in the range of 50 ° C. to 500 ° C. in the surface temperature of the film, which is converted into the area of the insulator 324. It may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 has a lower dielectric constant than the insulator 324.
  • the relative permittivity of the insulator 326 is preferably less than 4, more preferably less than 3.
  • the relative permittivity of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less the relative permittivity of the insulator 324.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a capacitive element 600, a conductor 328 connected to the transistor 500, a conductor 330, and the like.
  • the conductor 328 and the conductor 330 have a function as a plug or wiring.
  • a plurality of structures may be collectively given the same reference numeral.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and wiring As the material of each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or laminated. be able to. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are provided in order above the insulator 326 and the conductor 330.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or wiring for connecting to the transistor 300.
  • the conductor 356 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 350 it is preferable to use an insulator having a barrier property against impurities such as hydrogen and water, similarly to the insulator 324.
  • the insulator 352 and the insulator 354 it is preferable to use an insulator having a relatively low relative permittivity in order to reduce the parasitic capacitance generated between the wirings, similarly to the insulator 326.
  • the conductor 356 preferably contains a conductor having a barrier property against impurities such as hydrogen and water.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • the conductor having a barrier property against hydrogen for example, tantalum nitride or the like may be used. Further, by laminating tantalum nitride and tungsten having high conductivity, it is possible to suppress the diffusion of hydrogen from the transistor 300 while maintaining the conductivity as wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen has a structure in contact with the insulator 350 having a barrier property against hydrogen.
  • the insulator 360, the insulator 362, and the insulator 364 are laminated in order on the insulator 354 and the conductor 356.
  • the insulator 360 it is preferable to use an insulator having a barrier property against impurities such as water and hydrogen, similarly to the insulator 324 and the like. Therefore, as the insulator 360, for example, a material applicable to the insulator 324 or the like can be used.
  • the insulator 362 and the insulator 364 have a function as an interlayer insulating film and a flattening film. Further, as the insulator 362 and the insulator 364, it is preferable to use an insulator having a barrier property against impurities such as water and hydrogen, similarly to the insulator 324. Therefore, as the insulator 362 and / or the insulator 364, a material applicable to the insulator 324 can be used.
  • an opening is formed in a region overlapping with the conductor 356, and the conductor 366 is provided so as to fill the opening.
  • the conductor 366 is also formed on the insulator 362.
  • the conductor 366 has a function as a plug or wiring for connecting to the transistor 300.
  • the conductor 366 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 are laminated in this order on the insulator 364 and the conductor 366.
  • any of the insulator 510, the insulator 512, the insulator 514, and the insulator 516 it is preferable to use a substance having a barrier property against oxygen and hydrogen.
  • the insulator 510 and the insulator 514 have a barrier property such that hydrogen and impurities do not diffuse from the region where the substrate 310 or the transistor 300 is provided to the region where the transistor 500 is provided. It is preferable to use. Therefore, the same material as the insulator 324 can be used.
  • Silicon nitride formed by the CVD method can be used as an example of a film having a barrier property against hydrogen.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, which may deteriorate the characteristics of the semiconductor element. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 300.
  • the membrane that suppresses the diffusion of hydrogen is a membrane in which the amount of hydrogen desorbed is small.
  • metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 510 and the insulator 514.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and moisture that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, it is possible to suppress the release of oxygen from the oxides constituting the transistor 500. Therefore, it is suitable for use as a protective film for the transistor 500.
  • the same material as the insulator 320 can be used for the insulator 512 and the insulator 516. Further, by applying a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon nitride film, or the like can be used as the insulator 512 and the insulator 516.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 include a conductor 518, a conductor constituting the transistor 500 (for example, the conductor 503 shown in FIGS. 24A and 24B) and the like. It is embedded.
  • the conductor 518 has a function as a plug or wiring for connecting to the capacitive element 600 or the transistor 300.
  • the conductor 518 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the conductor 510 and the conductor 518 in the region in contact with the insulator 514 are preferably conductors having a barrier property against oxygen, hydrogen, and water.
  • the transistor 300 and the transistor 500 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and the diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.
  • a transistor 500 is provided above the insulator 516.
  • the transistor 500 has an insulator 516 on the insulator 514 and a conductor 503 (conductor 503a, and conductivity) arranged to be embedded in the insulator 514 or the insulator 516.
  • Body 503b insulator 522 on insulator 516, and insulator 503, insulator 524 on insulator 522, oxide 530a on insulator 524, and oxide 530b on oxide 530a.
  • the insulator 552 includes the upper surface of the insulator 522, the side surface of the insulator 524, the side surface of the oxide 530a, the side surface and the upper surface of the oxide 530b, and the side surface of the conductor 542.
  • the upper surface of the conductor 560 is arranged so as to substantially coincide in height with the upper part of the insulator 554, the upper part of the insulator 550, the upper part of the insulator 552, and the upper surface of the insulator 580.
  • the insulator 574 is in contact with at least a part of the upper surface of the conductor 560, the upper part of the insulator 552, the upper part of the insulator 550, the upper part of the insulator 554, and the upper surface of the insulator 580.
  • the insulator 580 and the insulator 544 are provided with an opening reaching the oxide 530b.
  • Insulator 552, insulator 550, insulator 554, and conductor 560 are arranged in the opening. Further, in the channel length direction of the transistor 500, the conductor 560, the insulator 552, the insulator 550, and the insulator 554 are placed between the insulator 571a and the conductor 542a and the insulator 571b and the conductor 542b. It is provided.
  • the insulator 554 has a region in contact with the side surface of the conductor 560 and a region in contact with the bottom surface of the conductor 560.
  • the oxide 530 preferably has an oxide 530a arranged on the insulator 524 and an oxide 530b arranged on the oxide 530a.
  • the oxide 530a By having the oxide 530a under the oxide 530b, it is possible to suppress the diffusion of impurities from the structure formed below the oxide 530a to the oxide 530b.
  • the transistor 500 shows a configuration in which the oxide 530 is laminated with two layers of the oxide 530a and the oxide 530b
  • the present invention is not limited to this.
  • the transistor 500 can be configured to have a single layer of oxide 530b or a laminated structure of three or more layers.
  • each of the oxide 530a and the oxide 530b may have a laminated structure.
  • the conductor 560 functions as a first gate (also referred to as a top gate) electrode, and the conductor 503 functions as a second gate (also referred to as a back gate) electrode.
  • the insulator 552, the insulator 550, and the insulator 554 function as the first gate insulator, and the insulator 522 and the insulator 524 function as the second gate insulator.
  • the gate insulator may be referred to as a gate insulating layer or a gate insulating film.
  • the conductor 542a functions as one of the source or the drain, and the conductor 542b functions as the other of the source or the drain. Further, at least a part of the region overlapping with the conductor 560 of the oxide 530 functions as a channel forming region.
  • FIG. 26A an enlarged view of the vicinity of the channel formation region in FIG. 24A is shown in FIG. 26A.
  • the oxide 530b is provided with a region 530 bc that functions as a channel forming region of the transistor 500, and a region 530 ba and a region 530 bb that are provided so as to sandwich the region 530 bc and function as a source region or a drain region.
  • Have At least a part of the region 530bc overlaps with the conductor 560.
  • the region 530bc is provided in the region between the conductor 542a and the conductor 542b.
  • the region 530ba is provided so as to be superimposed on the conductor 542a
  • the region 530bb is provided so as to be superimposed on the conductor 542b.
  • the region 530bc that functions as a channel forming region has more oxygen deficiency than the regions 530ba and 530bb (in the present specification and the like, the oxygen deficiency in the metal oxide may be referred to as VO (oxygen vacancy)). It is a high resistance region with a low carrier concentration because it is low or the impurity concentration is low. Therefore, it can be said that the region 530bc is i-type (intrinsic) or substantially i-type.
  • Transistors using metal oxides are likely to fluctuate in electrical characteristics and may be unreliable if impurities or oxygen deficiencies (VOs) are present in the regions where channels are formed in the metal oxides. Further, hydrogen in the vicinity of oxygen deficiency (VO) forms a defect in which hydrogen is contained in oxygen deficiency (VO) (hereinafter, may be referred to as VOH ) to generate electrons as carriers. In some cases. Therefore, if oxygen deficiency is contained in the region where the channel is formed in the oxide semiconductor, the transistor has normal-on characteristics (the channel exists even if no voltage is applied to the gate electrode, and the current is applied to the transistor. Flowing characteristics). Therefore, it is preferable that impurities, oxygen deficiency, and VOH are reduced as much as possible in the region where channels are formed in the oxide semiconductor.
  • the region 530ba and the region 530bab that function as a source region or a drain region have a large amount of oxygen deficiency (VO) or a high concentration of impurities such as hydrogen, nitrogen, and metal elements, so that the carrier concentration increases and the resistance is low. It is an area that has become. That is, the region 530ba and the region 530bb are n-type regions having a high carrier concentration and low resistance as compared with the region 530bc.
  • VO oxygen deficiency
  • impurities such as hydrogen, nitrogen, and metal elements
  • the carrier concentration of the region 530 bc that functions as a channel forming region is preferably 1 ⁇ 10 18 cm -3 or less, more preferably less than 1 ⁇ 10 17 cm -3 , and 1 ⁇ 10 16 cm. It is more preferably less than -3 , still more preferably less than 1 ⁇ 10 13 cm -3 , and even more preferably less than 1 ⁇ 10 12 cm -3 .
  • the lower limit of the carrier concentration of the region 530 bc that functions as the channel forming region is not particularly limited, but may be, for example, 1 ⁇ 10 -9 cm -3 .
  • the carrier concentration between the region 530 bc and the region 530 ba or the region 530 bb is equal to or lower than the carrier concentration of the region 530 ba and the region 530 bb, and equal to or higher than the carrier concentration of the region 530 bc.
  • Regions may be formed. That is, the region functions as a junction region between the region 530 bc and the region 530 ba or the region 530 bb.
  • the hydrogen concentration may be equal to or lower than the hydrogen concentration in the regions 530ba and 530bb, and may be equal to or higher than the hydrogen concentration in the region 530bc.
  • the junction region may have an oxygen deficiency equal to or less than that of the regions 530ba and 530bb, and may be equal to or greater than that of the region 530bc.
  • FIG. 26A shows an example in which the region 530ba, the region 530bb, and the region 530bc are formed on the oxide 530b, but the present invention is not limited thereto.
  • each of the above regions may be formed not only with the oxide 530b but also with the oxide 530a.
  • the concentrations of the metal elements detected in each region and the impurity elements such as hydrogen and nitrogen are not limited to the stepwise changes in each region, but may be continuously changed in each region. That is, the closer the region is to the channel formation region, the lower the concentration of the metal element and the impurity elements such as hydrogen and nitrogen is sufficient.
  • a metal oxide hereinafter, also referred to as an oxide semiconductor that functions as a semiconductor for the oxide 530 (oxide 530a and oxide 530b) containing a channel forming region.
  • the metal oxide that functions as a semiconductor it is preferable to use a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more. As described above, by using a metal oxide having a large bandgap, the off-current of the transistor can be reduced.
  • an In-M-Zn oxide having indium, element M and zinc (element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium).
  • Zinc, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. (one or more) and the like may be used.
  • an In-Ga oxide, an In-Zn oxide, or an indium oxide may be used as the oxide 530.
  • the atomic number ratio of In to the element M in the metal oxide used for the oxide 530b is larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the oxide 530a under the oxide 530b By arranging the oxide 530a under the oxide 530b in this way, it is possible to suppress the diffusion of impurities and oxygen from the structure formed below the oxide 530a to the oxide 530b. ..
  • the oxide 530a and the oxide 530b have a common element (main component) other than oxygen, the defect level density at the interface between the oxide 530a and the oxide 530b can be lowered. Since the defect level density at the interface between the oxide 530a and the oxide 530b can be lowered, the influence of the interfacial scattering on the carrier conduction is small, and a high on-current can be obtained.
  • the oxide 530b preferably has crystallinity.
  • CAAC-OS c-axis aligned crystalline semiconductor semiconductor
  • CAAC-OS is a metal oxide having a highly crystalline and dense structure and having few impurities and defects (for example, oxygen deficiency (VO)).
  • the CAAC-OS is heat-treated at a temperature at which the metal oxide does not polycrystallize (for example, 400 ° C. or higher and 600 ° C. or lower), whereby CAAC-OS has a more crystalline and dense structure. Can be.
  • a temperature at which the metal oxide does not polycrystallize for example, 400 ° C. or higher and 600 ° C. or lower
  • the metal oxide having CAAC-OS has stable physical properties. Therefore, the metal oxide having CAAC-OS is resistant to heat and has high reliability.
  • a transistor using an oxide semiconductor if impurities and oxygen deficiencies are present in the region where a channel is formed in the oxide semiconductor, the electrical characteristics are liable to fluctuate and the reliability may be deteriorated. Further, hydrogen in the vicinity of the oxygen deficiency may form a defect in which hydrogen is contained in the oxygen deficiency (hereinafter, may be referred to as VOH) to generate an electron as a carrier. Therefore, if oxygen deficiency is contained in the region where the channel is formed in the oxide semiconductor, the transistor has normal-on characteristics (the channel exists even if no voltage is applied to the gate electrode, and the current is applied to the transistor. Flowing characteristics).
  • the region in which the channel is formed in the oxide semiconductor is preferably i-type (intrinsic) or substantially i-type with a reduced carrier concentration.
  • excess oxygen an insulator containing oxygen desorbed by heating
  • the oxide semiconductor is removed from the insulator.
  • the on-current of the transistor 500 may decrease or the field effect mobility may decrease.
  • the amount of oxygen supplied to the source region or the drain region varies in the surface of the substrate, so that the characteristics of the semiconductor device having the transistor vary.
  • the region 530bc that functions as a channel forming region is preferably i-type or substantially i-type because the carrier concentration is reduced, but the region 530ba that functions as a source region or a drain region and
  • the region 530bb has a high carrier concentration and is preferably n-type. That is, it is preferable to reduce oxygen deficiency and VOH in the region 530 bc of the oxide semiconductor so that an excessive amount of oxygen is not supplied to the region 530 ba and the region 530 bb.
  • microwave treatment is performed in an atmosphere containing oxygen to reduce oxygen deficiency and VOH in the region 530bc .
  • the microwave processing refers to processing using, for example, a device having a power source for generating high-density plasma using microwaves.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma by using a high frequency such as microwave or RF, and the oxygen plasma can be allowed to act. At this time, it is also possible to irradiate the region 530bc with a high frequency such as microwave or RF.
  • a high frequency such as microwave or RF.
  • the VO H in the region 530 bc can be divided, the hydrogen H can be removed from the region 530 bc, and the oxygen -deficient VO can be supplemented with oxygen. That is, in the region 530 bc, the reaction “VO H ⁇ H + VO” occurs, and the hydrogen concentration in the region 530 bc can be reduced. Therefore, oxygen deficiency and VOH in the region 530bc can be reduced, and the carrier concentration can be lowered.
  • the action of microwaves, high frequencies such as RF, oxygen plasma, etc. is shielded by the conductors 542a and 542b and does not reach the regions 530ba and 530bb. .. Further, the action of the oxygen plasma can be reduced by the insulator 571 and the insulator 580 provided overlying the oxide 530b and the conductor 542. As a result, during microwave treatment, the reduction of VOH and the supply of an excessive amount of oxygen do not occur in the regions 530ba and 530bab , so that the reduction of the carrier concentration can be prevented.
  • microwave treatment in an atmosphere containing oxygen after the film formation of the insulating film to be the insulator 552 or the film formation of the insulating film to be the insulator 550.
  • microwave treatment in an atmosphere containing oxygen through the insulator 552 or the insulator 550 in this way, oxygen can be efficiently injected into the region 530 bc.
  • the insulator 552 so as to be in contact with the side surface of the conductor 542 and the surface of the region 530 bc, the injection of oxygen in excess of the required amount into the region 530 bc is suppressed, and the oxidation of the side surface of the conductor 542 is suppressed. can do. Further, it is possible to suppress the oxidation of the side surface of the conductor 542 when the insulating film to be the insulator 550 is formed.
  • oxygen injected into the region 530bc has various forms such as an oxygen atom, an oxygen molecule, and an oxygen radical (also referred to as an O radical, which is an atom or molecule having an unpaired electron, or an ion).
  • the oxygen injected into the region 530bc is preferably one or more of the above-mentioned forms, and is particularly preferable to be an oxygen radical. Further, since the film quality of the insulator 552 and the insulator 550 can be improved, the reliability of the transistor 500 is improved.
  • oxygen deficiency and VOH can be selectively removed in the region 530bc of the oxide semiconductor to make the region 530bc i-type or substantially i-type. Further, it is possible to suppress the supply of excess oxygen to the region 530ba and the region 530bb that function as a source region or a drain region, and maintain conductivity. As a result, it is possible to suppress fluctuations in the electrical characteristics of the transistor 500 and reduce variations in the electrical characteristics of the transistor 500 within the substrate surface.
  • a curved surface may be provided between the side surface of the oxide 530b and the upper surface of the oxide 530b in a cross-sectional view of the transistor 500 in the channel width direction. That is, the end portion of the side surface and the end portion of the upper surface may be curved (hereinafter, also referred to as a round shape).
  • the radius of curvature on the curved surface is preferably larger than 0 nm, smaller than the film thickness of the oxide 530b in the region overlapping the conductor 542, or smaller than half the length of the region having no curved surface.
  • the radius of curvature on the curved surface is larger than 0 nm and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 2 nm or more and 10 nm or less.
  • the oxide 530 preferably has a laminated structure of a plurality of oxide layers having different chemical compositions.
  • the atomic number ratio of the element M to the metal element as the main component is the ratio of the element M to the metal element as the main component in the metal oxide used for the oxide 530b. It is preferably larger than the atomic number ratio.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the oxide 530b is preferably an oxide having crystallinity such as CAAC-OS.
  • Crystalline oxides such as CAAC-OS have a dense structure with high crystallinity with few impurities and defects (oxygen deficiency, etc.). Therefore, it is possible to suppress the extraction of oxygen from the oxide 530b by the source electrode or the drain electrode. As a result, oxygen can be reduced from being extracted from the oxide 530b even if heat treatment is performed, so that the transistor 500 is stable against a high temperature (so-called thermal budget) in the manufacturing process.
  • the lower end of the conduction band changes gently.
  • the lower end of the conduction band at the junction between the oxide 530a and the oxide 530b is continuously changed or continuously bonded. In order to do so, it is preferable to reduce the defect level density of the mixed layer formed at the interface between the oxide 530a and the oxide 530b.
  • the oxide 530a and the oxide 530b have a common element other than oxygen as a main component, so that a mixed layer having a low defect level density can be formed.
  • the oxide 530b is an In-M-Zn oxide
  • the oxide 530a is an In-M-Zn oxide, an M-Zn oxide, an element M oxide, an In-Zn oxide, or an indium oxide. Etc. may be used.
  • a metal oxide having a composition in the vicinity thereof may be used.
  • a metal oxide having a composition may be used.
  • the composition in the vicinity includes a range of ⁇ 30% of the desired atomic number ratio. Further, it is preferable to use gallium as the element M.
  • the above-mentioned atomic number ratio is not limited to the atomic number ratio of the formed metal oxide, but is the atomic number ratio of the sputtering target used for forming the metal oxide. May be.
  • the interface between the oxide 530 and the insulator 552 and its vicinity thereof can be provided.
  • Indium contained in the oxide 530 may be unevenly distributed.
  • the vicinity of the surface of the oxide 530 has an atomic number ratio close to that of indium oxide or an atomic number ratio close to that of In—Zn oxide.
  • the atomic number ratio of indium in the vicinity of the surface of the oxide 530, particularly the oxide 530b, is increased, so that the field effect mobility of the transistor 500 can be improved.
  • the defect level density at the interface between the oxide 530a and the oxide 530b can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 500 can obtain a large on-current and high frequency characteristics.
  • At least one of the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581 has impurities such as water and hydrogen from the substrate side or the transistor 500. It is preferable to function as a barrier insulating film that suppresses diffusion from above to the transistor 500.
  • insulator 512, insulator 514, insulator 544, insulator 571, insulator 574, insulator 576, and insulator 581 is a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, It is preferable to use an insulating material having a function of suppressing the diffusion of impurities such as nitrogen oxide molecules ( N2O, NO, NO2, etc.) and copper atoms (the above impurities are difficult to permeate). Alternatively, it is preferable to use an insulating material having a function of suppressing the diffusion of oxygen (for example, at least one such as an oxygen atom and an oxygen molecule) (the above-mentioned oxygen is difficult to permeate).
  • the barrier insulating film refers to an insulating film having a barrier property.
  • the barrier property is a function of suppressing the diffusion of the corresponding substance (also referred to as low permeability).
  • the corresponding substance has a function of capturing and fixing (also referred to as gettering).
  • the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581 are insulators having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen.
  • impurities such as water and hydrogen, and oxygen.
  • silicon nitride it is preferable to use silicon nitride having a higher hydrogen barrier property.
  • the insulator 514, the insulator 571, the insulator 574, and the insulator 581 it is preferable to use aluminum oxide or magnesium oxide having a high function of capturing hydrogen and fixing hydrogen. This makes it possible to prevent impurities such as water and hydrogen from diffusing from the substrate side to the transistor 500 side via the insulator 512 and the insulator 514. Alternatively, it is possible to prevent impurities such as water and hydrogen from diffusing to the transistor 500 side from the interlayer insulating film or the like arranged outside the insulator 581. Alternatively, it is possible to suppress the diffusion of oxygen contained in the insulator 524 or the like to the substrate side via the insulator 512 and the insulator 514.
  • the transistor 500 has an insulator 512, an insulator 514, an insulator 571, an insulator 544, an insulator 574, an insulator 576, and an insulator 512 having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen. It is preferable to have a structure surrounded by an insulator 581.
  • an oxide having an amorphous structure as the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581.
  • a metal oxide such as AlO x (x is an arbitrary number larger than 0) or MgO y (y is an arbitrary number larger than 0).
  • an oxygen atom has a dangling bond, and the dangling bond may have a property of capturing or fixing hydrogen.
  • a metal oxide having such an amorphous structure as a component of the transistor 500 or providing it around the transistor 500, hydrogen contained in the transistor 500 or hydrogen existing around the transistor 500 is captured or fixed. be able to. In particular, it is preferable to capture or fix hydrogen contained in the channel forming region of the transistor 500.
  • a metal oxide having an amorphous structure as a component of the transistor 500 or providing it around the transistor 500, it is possible to manufacture the transistor 500 having good characteristics and high reliability, and a semiconductor device.
  • the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581 preferably have an amorphous structure, but a region of a polycrystal structure is partially formed. It may be formed. Further, the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581 are multi-layered in which a layer having an amorphous structure and a layer having a polycrystal structure are laminated. It may be a structure. For example, a laminated structure in which a layer having a polycrystalline structure is formed on a layer having an amorphous structure may be used.
  • the film formation of the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581 may be performed by using, for example, a sputtering method. Since the sputtering method does not require the use of molecules containing hydrogen in the film forming gas, the hydrogen concentrations of the insulator 512, the insulator 514, the insulator 544, the insulator 571, the insulator 574, the insulator 576, and the insulator 581. Can be reduced.
  • the film forming method is not limited to the sputtering method, but is limited to a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, and a pulsed laser deposition (PLD) method.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • atomic layer deposition ALD: Atomic Layer Deposition
  • the resistivity of the insulator 512, the insulator 544, and the insulator 576 it may be preferable to reduce the resistivity of the insulator 512, the insulator 544, and the insulator 576.
  • the insulator 512, the insulator 544, and the insulator 576 are used in the process of manufacturing the semiconductor device using plasma or the like.
  • the insulator 576 can alleviate the charge-up of the conductor 503, the conductor 542, the conductor 560, and the like.
  • the resistivity of the insulator 512, the insulator 544, and the insulator 576 is preferably 1 ⁇ 10 10 ⁇ cm or more and 1 ⁇ 10 15 ⁇ cm or less.
  • the insulator 516, the insulator 574, the insulator 580, and the insulator 581 have a lower dielectric constant than the insulator 514.
  • the insulator 516, the insulator 580, and the insulator 581 include silicon oxide, silicon oxide nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and holes. Silicon oxide or the like may be used as appropriate.
  • the insulator 581 is preferably an insulator that functions as an interlayer film, a flattening film, or the like.
  • the conductor 503 is arranged so as to overlap the oxide 530 and the conductor 560.
  • the conductor 503 is embedded in the opening formed in the insulator 516.
  • a part of the conductor 503 may be embedded in the insulator 514.
  • the conductor 503 has a conductor 503a and a conductor 503b.
  • the conductor 503a is provided in contact with the bottom surface and the side wall of the opening.
  • the conductor 503b is provided so as to be embedded in the recess formed in the conductor 503a.
  • the height of the upper part of the conductor 503b roughly coincides with the height of the upper part of the conductor 503a and the height of the upper part of the insulator 516.
  • the conductor 503a has a function of suppressing the diffusion of impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule ( N2O, NO, NO2 , etc.) and copper atom. It is preferable to use a conductive material having. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one such as an oxygen atom and an oxygen molecule).
  • the conductor 503a By using a conductive material having a function of reducing the diffusion of hydrogen in the conductor 503a, impurities such as hydrogen contained in the conductor 503b are prevented from diffusing into the oxide 530 via the insulator 524 and the like. Can be prevented. Further, by using a conductive material having a function of suppressing the diffusion of oxygen for the conductor 503a, it is possible to prevent the conductor 503b from being oxidized and the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used. Therefore, as the conductor 503a, the above-mentioned conductive material may be a single layer or a laminated material. For example, titanium nitride may be used for the conductor 503a.
  • the conductor 503b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • tungsten may be used for the conductor 503b.
  • the conductor 503 may function as a second gate electrode.
  • the threshold voltage (Vth) of the transistor 500 can be controlled by independently changing the potential applied to the conductor 503 without interlocking with the potential applied to the conductor 560.
  • Vth threshold voltage
  • the electrical resistivity of the conductor 503 is designed in consideration of the potential applied to the above-mentioned conductor 503, and the film thickness of the conductor 503 is set according to the electrical resistivity.
  • the film thickness of the insulator 516 is substantially the same as that of the conductor 503.
  • the absolute amount of impurities such as hydrogen contained in the insulator 516 can be reduced, so that the impurities can be reduced from diffusing into the oxide 530. ..
  • the conductor 503 is provided larger than the size of the region that does not overlap with the conductor 542a and the conductor 542b of the oxide 530 when viewed from the upper surface.
  • the conductor 503 is also stretched in a region outside the ends of the oxides 530a and 530b in the channel width direction. That is, it is preferable that the conductor 503 and the conductor 560 are superimposed on each other via an insulator on the outside of the side surface of the oxide 530 in the channel width direction.
  • the channel forming region of the oxide 530 is electrically surrounded by the electric field of the conductor 560 that functions as the first gate electrode and the electric field of the conductor 503 that functions as the second gate electrode. Can be done.
  • the structure of the transistor that electrically surrounds the channel forming region by the electric fields of the first gate and the second gate is called a curved channel (S-channel) structure.
  • the transistor having an S-channel structure represents the structure of a transistor that electrically surrounds the channel formation region by the electric fields of one and the other of the pair of gate electrodes.
  • the S-channel structure disclosed in the present specification and the like is different from the Fin type structure and the planar type structure.
  • the conductor 503 is stretched to function as wiring.
  • the present invention is not limited to this, and a conductor that functions as wiring may be provided under the conductor 503. Further, it is not always necessary to provide one conductor 503 for each transistor. For example, the conductor 503 may be shared by a plurality of transistors.
  • the conductor 503 shows a configuration in which the conductor 503a and the conductor 503b are laminated, but the present invention is not limited to this.
  • the conductor 503 may be provided as a single layer or a laminated structure having three or more layers.
  • the insulator 522 and the insulator 524 function as a gate insulator.
  • the insulator 522 preferably has a function of suppressing the diffusion of hydrogen (for example, at least one hydrogen atom, hydrogen molecule, etc.). Further, the insulator 522 preferably has a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.). For example, the insulator 522 preferably has a function of suppressing the diffusion of one or both of hydrogen and oxygen more than the insulator 524.
  • the insulator 522 it is preferable to use an insulator containing oxides of one or both of aluminum and hafnium, which are insulating materials.
  • the insulator it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 522 releases oxygen from the oxide 530 to the substrate side and diffuses impurities such as hydrogen from the peripheral portion of the transistor 500 to the oxide 530. And, it functions as a layer to suppress.
  • the insulator 522 impurities such as hydrogen can be suppressed from diffusing into the inside of the transistor 500, and the generation of oxygen deficiency in the oxide 530 can be suppressed. Further, it is possible to suppress the conductor 503 from reacting with the oxygen contained in the insulator 524 or the oxide 530.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to the insulator.
  • these insulators may be nitrided.
  • the insulator 522 may be used by laminating silicon oxide, silicon oxide or silicon nitride on these insulators.
  • an insulator containing a so-called high-k material such as aluminum oxide, hafnium oxide, tantalum oxide, and zirconium oxide may be used in a single layer or in a laminated state.
  • a so-called high-k material such as aluminum oxide, hafnium oxide, tantalum oxide, and zirconium oxide
  • problems such as leakage current may occur due to the thinning of the gate insulator.
  • a high-k material for an insulator that functions as a gate insulator it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • insulator 522 a substance having a high dielectric constant such as lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), (Ba, Sr) TiO 3 (BST) may be used.
  • PZT lead zirconate titanate
  • strontium titanate SrTiO 3
  • Ba, Sr Ba TiO 3
  • silicon oxide, silicon nitride nitride, or the like may be appropriately used.
  • the heat treatment may be performed, for example, at 100 ° C. or higher and 600 ° C. or lower, more preferably 350 ° C. or higher and 550 ° C. or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more of an oxidizing gas, 1% or more, or 10% or more.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen can be supplied to the oxide 530 to reduce oxygen deficiency (VO).
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to supplement the desorbed oxygen after the heat treatment in an atmosphere of nitrogen gas or an inert gas. good.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more of an oxidizing gas, 1% or more, or 10% or more, and then continuously heat-treated in an atmosphere of nitrogen gas or an inert gas.
  • the oxygen deficiency in the oxide 530 can be repaired by the supplied oxygen, in other words, the reaction "VO + O ⁇ null" can be promoted. .. Further, the oxygen supplied to the hydrogen remaining in the oxide 530 reacts with the hydrogen, so that the hydrogen can be removed (dehydrated) as H2O . As a result, it is possible to suppress the hydrogen remaining in the oxide 530 from being recombined with the oxygen deficiency to form VOH.
  • the insulator 522 and the insulator 524 may have a laminated structure of two or more layers.
  • the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the insulator 524 may be formed in an island shape by superimposing on the oxide 530a. In this case, the insulator 544 is in contact with the side surface of the insulator 524 and the upper surface of the insulator 522.
  • the conductor 542a and the conductor 542b are provided in contact with the upper surface of the oxide 530b.
  • the conductor 542a and the conductor 542b each function as a source electrode or a drain electrode of the transistor 500.
  • Examples of the conductors 542 include nitrides containing tantalum, nitrides containing titanium, nitrides containing molybdenum, nitrides containing tungsten, and nitrides containing tantalum and aluminum. It is preferable to use a nitride containing titanium and aluminum. In one aspect of the invention, a nitride containing tantalum is particularly preferred. Further, for example, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, and the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize or materials that maintain conductivity even when oxygen is absorbed.
  • hydrogen contained in the oxide 530b or the like may diffuse into the conductor 542a or the conductor 542b.
  • hydrogen contained in the oxide 530b or the like is likely to diffuse into the conductor 542a or the conductor 542b, and the diffused hydrogen is the conductor. It may bind to the nitrogen contained in the 542a or the conductor 542b. That is, hydrogen contained in the oxide 530b or the like may be absorbed by the conductor 542a or the conductor 542b.
  • the conductor 542 it is preferable that no curved surface is formed between the side surface of the conductor 542 and the upper surface of the conductor 542.
  • the conductor 542 on which the curved surface is not formed the cross-sectional area of the conductor 542 in the cross section in the channel width direction can be increased.
  • the conductivity of the conductor 542 can be increased and the on-current of the transistor 500 can be increased.
  • the insulator 571a is provided in contact with the upper surface of the conductor 542a, and the insulator 571b is provided in contact with the upper surface of the conductor 542b.
  • the insulator 571 preferably functions as a barrier insulating film against at least oxygen. Therefore, it is preferable that the insulator 571 has a function of suppressing the diffusion of oxygen.
  • the insulator 571 preferably has a function of suppressing the diffusion of oxygen more than the insulator 580.
  • a nitride containing silicon such as silicon nitride may be used.
  • the insulator 571 preferably has a function of capturing impurities such as hydrogen.
  • a metal oxide having an amorphous structure for example, an insulator such as aluminum oxide or magnesium oxide may be used.
  • an insulator such as aluminum oxide or magnesium oxide
  • the insulator 544 is provided so as to cover the insulator 524, the oxide 530a, the oxide 530b, the conductor 542, and the insulator 571. It is preferable that the insulator 544 has a function of capturing hydrogen and fixing hydrogen. In that case, the insulator 544 preferably contains an insulator such as silicon nitride or a metal oxide having an amorphous structure, for example, aluminum oxide or magnesium oxide. Further, for example, as the insulator 544, a laminated film of aluminum oxide and silicon nitride on the aluminum oxide may be used.
  • the conductor 542 can be wrapped with the insulator having a barrier property against oxygen. That is, it is possible to prevent oxygen contained in the insulator 524 and the insulator 580 from diffusing into the conductor 542. As a result, the conductor 542 is directly oxidized by the oxygen contained in the insulator 524 and the insulator 580 to increase the resistivity and suppress the decrease in the on-current.
  • the insulator 552 functions as a part of the gate insulator.
  • an insulator that can be used for the above-mentioned insulator 574 may be used.
  • an insulator containing an oxide of one or both of aluminum and hafnium may be used.
  • aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), an oxide containing hafnium and silicon (hafnium silicate) and the like can be used.
  • aluminum oxide is used as the insulator 552.
  • the insulator 552 is an insulator having at least oxygen and aluminum.
  • the insulator 552 is provided in contact with the upper surface and the side surface of the oxide 530b, the side surface of the oxide 530a, the side surface of the insulator 524, and the upper surface of the insulator 522. That is, the region of the oxide 530a, the oxide 530b, and the insulator 524 overlapping with the conductor 560 is covered with the insulator 552 in the cross section in the channel width direction. As a result, it is possible to block the desorption of oxygen by the oxides 530a and 530b by the insulator 552 having a barrier property against oxygen when heat treatment or the like is performed.
  • the insulator 580 and the insulator 550 contain an excessive amount of oxygen, it is possible to suppress the excessive supply of the oxygen to the oxide 530a and the oxide 530b. Therefore, it is possible to prevent the region 530ba and the region 530bb from being excessively oxidized via the region 530bc to cause a decrease in the on-current of the transistor 500 or a decrease in the field effect mobility.
  • the insulator 552 is provided in contact with the side surfaces of the conductor 542, the insulator 544, the insulator 571, and the insulator 580, respectively. Therefore, it is possible to reduce the oxidation of the side surface of the conductor 542 and the formation of an oxide film on the side surface. As a result, it is possible to suppress a decrease in the on-current of the transistor 500 or a decrease in the field effect mobility.
  • the insulator 552 needs to be provided in the opening formed in the insulator 580 or the like together with the insulator 554, the insulator 550, and the conductor 560. In order to miniaturize the transistor 500, it is preferable that the thickness of the insulator 552 is thin.
  • the film thickness of the insulator 552 is preferably 0.1 nm or more, 0.5 nm or more, or 1.0 nm or more, and preferably 1.0 nm or less, 3.0 nm or less, or 5.0 nm or less. ..
  • the above-mentioned lower limit value and upper limit value can be combined.
  • the insulator 552 may have a region having the above-mentioned film thickness at least in a part thereof. Further, the film thickness of the insulator 552 is preferably thinner than the film thickness of the insulator 550. In this case, the insulator 552 may have a region having a film thickness thinner than that of the insulator 550, at least in part.
  • the ALD method alternates between a first source gas (also referred to as a precursor, precursor, or metal precursor) and a second source gas (also referred to as reactant, reactor, oxidant, or non-metal precursor) for the reaction. It is a method of forming a film by introducing it into a chamber and repeating the introduction of these raw material gases.
  • Examples of the ALD method include a thermal ALD (Thermal ALD) method in which the reaction of the precursor and the reactor is performed only by thermal energy, and a PEALD (Plasma Enhanced ALD) method using a plasma-excited reactor. In the PEALD method, it may be preferable to use plasma because it is possible to form a film at a lower temperature.
  • the ALD method utilizes the characteristics of atoms, which are self-regulating properties, and can deposit atoms layer by layer, so ultra-thin film formation is possible, film formation into structures with a high aspect ratio is possible, pinholes, etc. It has the effects of being able to form a film with few defects, being able to form a film with excellent coverage, and being able to form a film at a low temperature. Therefore, the insulator 552 can be formed on the side surface of the opening formed in the insulator 580 or the like with good coverage and with a thin film thickness as described above.
  • the film provided by the ALD method may contain a large amount of impurities such as carbon as compared with the film provided by other film forming methods.
  • the quantification of impurities can be performed by using secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry) or X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • the insulator 550 functions as a part of the gate insulator.
  • the insulator 550 is preferably arranged in contact with the upper surface of the insulator 552.
  • the insulator 550 includes silicon oxide, silicon nitriding, silicon nitride, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having holes, and the like. Can be used.
  • silicon oxide and silicon nitride nitride are preferable because they are heat-stable.
  • the insulator 550 is an insulator having at least oxygen and silicon.
  • the insulator 550 has a reduced concentration of impurities such as water and hydrogen in the insulator 550.
  • the film thickness of the insulator 550 is preferably 1 nm or more, or 0.5 nm or more, and preferably 15 nm or less, or 20 nm or less.
  • the above-mentioned lower limit value and upper limit value can be combined.
  • the insulator 550 may have a region having the above-mentioned film thickness at least in a part thereof.
  • FIGS. 24A and 24B show a configuration in which the insulator 550 is a single layer
  • the present invention is not limited to this, and a laminated structure of two or more layers may be used.
  • the insulator 550 may have a two-layer laminated structure of the insulator 550a and the insulator 550b on the insulator 550a.
  • the lower insulator 550a is formed by using an insulator that easily permeates oxygen
  • the upper insulator 550b is a diffusion of oxygen. It is preferable to use an insulator having a function of suppressing the above. With such a configuration, oxygen contained in the insulator 550a can be suppressed from diffusing into the conductor 560. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 530. Further, it is possible to suppress the oxidation of the conductor 560 by the oxygen contained in the insulator 550a.
  • the insulator 550a may be provided by using a material that can be used for the above-mentioned insulator 550, and the insulator 550b may be an insulator containing an oxide of one or both of aluminum and hafnium.
  • the insulator aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), an oxide containing hafnium and silicon (hafnium silicate) and the like can be used.
  • hafnium oxide is used as the insulator 550b.
  • the insulator 550b is an insulator having at least oxygen and hafnium.
  • the film thickness of the insulator 550b is preferably 0.5 nm or more, or 1.0 nm or more, and preferably 3.0 nm or less, or 5.0 nm or less.
  • the above-mentioned lower limit value and upper limit value can be combined.
  • the insulator 550b may have, at least in part, a region having the above-mentioned film thickness.
  • an insulating material which is a high-k material having a high relative permittivity may be used for the insulator 550b.
  • the gate insulator By forming the gate insulator into a laminated structure of the insulator 550a and the insulator 550b, it is possible to obtain a laminated structure that is stable against heat and has a high relative permittivity. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness of the gate insulator. Further, it is possible to reduce the equivalent oxide film thickness (EOT) of the insulator that functions as a gate insulator. Therefore, the withstand voltage of the insulator 550 can be increased.
  • EOT equivalent oxide film thickness
  • the insulator 554 functions as a part of the gate insulator.
  • silicon nitride formed by the PEALD method may be used as the insulator 554.
  • the insulator 554 is an insulator having at least nitrogen and silicon.
  • the insulator 554 may further have a barrier property against oxygen. As a result, oxygen contained in the insulator 550 can be suppressed from diffusing into the conductor 560.
  • the insulator 554 needs to be provided in the opening formed in the insulator 580 or the like together with the insulator 552, the insulator 550, and the conductor 560. In order to miniaturize the transistor 500, it is preferable that the thickness of the insulator 554 is thin.
  • the film thickness of the insulator 554 is preferably 0.1 nm or more, 0.5 nm or more, or 1.0 nm or more, and preferably 3.0 nm or less, or 5.0 nm or less.
  • the above-mentioned lower limit value and upper limit value can be combined.
  • the insulator 554 may have a region having the above-mentioned film thickness at least in a part thereof.
  • the film thickness of the insulator 554 is preferably thinner than the film thickness of the insulator 550.
  • the insulator 554 may have a region having a film thickness thinner than that of the insulator 550, at least in part.
  • the conductor 560 functions as the first gate electrode of the transistor 500.
  • the conductor 560 preferably has a conductor 560a and a conductor 560b arranged on the conductor 560a.
  • the conductor 560a is preferably arranged so as to wrap the bottom surface and the side surface of the conductor 560b.
  • the position of the upper part of the conductor 560 substantially coincides with the position of the upper part of the insulator 550. In FIGS.
  • the conductor 560 is shown as a two-layer structure of the conductor 560a and the conductor 560b, but the conductor 560 has a single-layer structure or a three-layer structure other than the two-layer structure. It can be a laminated structure with more than one layer.
  • a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule and copper atom.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one such as an oxygen atom and an oxygen molecule.
  • the conductor 560a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 560b from being oxidized by the oxygen contained in the insulator 550 and the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductor 560 also functions as wiring, it is preferable to use a conductor having high conductivity.
  • a conductor having high conductivity for example, as the conductor 560b, a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 560b can have a laminated structure. Specifically, for example, the conductor 560b may have a laminated structure of titanium or titanium nitride and the conductive material.
  • the conductor 560 is self-aligned so as to fill the opening formed in the insulator 580 or the like.
  • the conductor 560 can be reliably arranged in the region between the conductor 542a and the conductor 542b without aligning the conductor 560.
  • the height is preferably lower than the height of the bottom surface of the oxide 530b.
  • the conductor 560 functioning as a gate electrode covers the side surface and the upper surface of the channel forming region of the oxide 530b via an insulator 550 or the like, so that the electric field of the conductor 560 can be applied to the channel forming region of the oxide 530b. It becomes easier to act on the whole. Therefore, the on-current of the transistor 500 can be increased and the frequency characteristics can be improved.
  • the difference is preferably 0 nm or more, 3 nm or more, or 5 nm or more, and preferably 20 nm or less, 50 nm or less, or 100 nm or less.
  • the above-mentioned lower limit value and upper limit value can be combined.
  • the insulator 580 is provided on the insulator 544, and an opening is formed in the region where the insulator 550 and the conductor 560 are provided. Further, the upper surface of the insulator 580 may be flattened.
  • the insulator 580 that functions as an interlayer film preferably has a low dielectric constant.
  • a material having a low dielectric constant As an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the insulator 580 is provided, for example, by using the same material as the insulator 516.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • materials such as silicon oxide, silicon oxynitride, and silicon oxide having pores are preferable because they can easily form a region containing oxygen desorbed by heating.
  • the insulator 580 has a reduced concentration of impurities such as water and hydrogen in the insulator 580.
  • the insulator 580 may appropriately use an oxide containing silicon such as silicon oxide and silicon nitride nitride.
  • the insulator 574 preferably functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 580 from above, and preferably has a function of capturing impurities such as hydrogen. Further, the insulator 574 preferably functions as a barrier insulating film that suppresses the permeation of oxygen.
  • a metal oxide having an amorphous structure for example, an insulator such as aluminum oxide may be used. In this case, the insulator 574 is an insulator having at least oxygen and aluminum.
  • the insulator 574 which has a function of capturing impurities such as hydrogen in contact with the insulator 580, hydrogen contained in the insulator 580 and the like can be provided. Impurities can be captured and the amount of hydrogen in the region can be kept constant.
  • the insulator 576 functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 580 from above. Insulator 576 is placed on top of insulator 574.
  • a nitride containing silicon such as silicon nitride or silicon nitride oxide.
  • silicon nitride formed by a sputtering method may be used as the insulator 576.
  • a silicon nitride film having a high density can be formed.
  • silicon nitride formed by the PEALD method or the CVD method may be further laminated on the silicon nitride formed by the sputtering method.
  • one of the first terminal or the second terminal of the transistor 500 is electrically connected to the conductor 540a functioning as a plug, and the other of the first terminal or the second terminal of the transistor 500 is connected to the conductor 540b. It is electrically connected.
  • the conductor 540a and the conductor 540b are collectively referred to as a conductor 540.
  • the conductor 540a is provided in a region overlapping with the conductor 542a. Specifically, in the region overlapping with the conductor 542a, the insulator 571a shown in FIG. 24A, the insulator 544, the insulator 580, the insulator 574, the insulator 576, and the insulator 581, and further the insulator shown in FIG. 23. An opening is formed in the 582 and the insulator 586, and the conductor 540a is provided inside the opening. Further, the conductor 540b is provided, for example, in a region overlapping with the conductor 542b. Specifically, in the region overlapping with the conductor 542b, the insulator 571b shown in FIG.
  • FIG. 24A the insulator 544, the insulator 580, the insulator 574, the insulator 576, and the insulator 581, and further the insulator shown in FIG. 23.
  • An opening is formed in the 582 and the insulator 586, and the conductor 540b is provided inside the opening.
  • the insulator 582 and the insulator 586 will be described later.
  • an insulator 541a may be provided as an insulator having a barrier property against impurities between the side surface of the opening of the region overlapping with the conductor 542a and the conductor 540a. ..
  • an insulator 541b may be provided as an insulator having a barrier property against impurities between the side surface of the opening of the region overlapping with the conductor 542b and the conductor 540b.
  • the insulator 541a and the insulator 541b are collectively referred to as an insulator 541.
  • the conductor 540a and the conductor 540b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, the conductor 540a and the conductor 540b may have a laminated structure.
  • the conductor 540 has a laminated structure
  • the insulator 574, the insulator 576, the insulator 581, the insulator 580, the insulator 544, and the first conductor arranged in the vicinity of the insulator 571 are included in the first conductor.
  • a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductive material having a function of suppressing the permeation of impurities such as water and hydrogen may be used in a single layer or in a laminated manner. Further, it is possible to prevent impurities such as water and hydrogen contained in the layer above the insulator 576 from being mixed into the oxide 530 through the conductor 540a and the conductor 540b.
  • a barrier insulating film that can be used for the insulator 544 or the like may be used.
  • insulators such as silicon nitride, aluminum oxide, and silicon nitride may be used. Since the insulator 541a and the insulator 541b are provided in contact with the insulator 574, the insulator 576, and the insulator 571, impurities such as water and hydrogen contained in the insulator 580 and the like are contained in the conductor 540a and the conductor 540b. It is possible to prevent the oxide from being mixed with the oxide 530. In particular, silicon nitride is suitable because it has a high blocking property against hydrogen. Further, it is possible to prevent oxygen contained in the insulator 580 from being absorbed by the conductor 540a and the conductor 540b.
  • the first insulator in contact with the inner wall of the opening such as the insulator 580 and the second insulator inside the insulator are against oxygen. It is preferable to use a barrier insulating film in combination with a barrier insulating film against hydrogen.
  • aluminum oxide formed by the ALD method may be used as the first insulator, and silicon nitride formed by the PEALD method may be used as the second insulator.
  • silicon nitride formed by the PEALD method may be used as the second insulator.
  • the transistor 500 shows a configuration in which the first insulator of the insulator 541 and the second insulator of the insulator 541 are laminated
  • the present invention is not limited to this.
  • the insulator 541 may be provided as a single layer or a laminated structure having three or more layers.
  • the configuration in which the first conductor of the conductor 540 and the second conductor of the conductor 540 are laminated is shown, but the present invention is not limited to this.
  • the conductor 540 may be provided as a single layer or a laminated structure having three or more layers.
  • a conductor 610, a conductor 612, or the like which is in contact with the upper part of the conductor 540a and the upper part of the conductor 540b and functions as wiring may be arranged.
  • the conductor 610 and the conductor 612 it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor may also have a laminated structure.
  • the conductor may be titanium or a laminate of titanium nitride and the conductive material.
  • the conductor may be formed so as to be embedded in an opening provided in the insulator.
  • the structure of the transistor included in the semiconductor device of the present invention is not limited to the transistor 500 shown in FIGS. 23, 24A, 24B, and 25.
  • the structure of the transistor included in the semiconductor device of one aspect of the present invention may be changed depending on the situation.
  • the transistor 500 shown in FIGS. 23, 24A, 24B, and 25 may have the configuration shown in FIG. 27.
  • the transistor of FIG. 27 differs from the transistor 500 shown in FIGS. 23, 24A, 24B, and 25 in that it has an oxide of 543a and an oxide of 543b.
  • the oxide 543a and the oxide 543b are collectively referred to as an oxide 543.
  • the cross section of the transistor in FIG. 27 in the channel width direction can be the same as the cross section of the transistor 500 shown in FIG. 24B.
  • the oxide 543a is provided between the oxide 530b and the conductor 542a, and the oxide 543b is provided between the oxide 530b and the conductor 542b.
  • the oxide 543a is preferably in contact with the upper surface of the oxide 530b and the lower surface of the conductor 542a.
  • the oxide 543b is preferably in contact with the upper surface of the oxide 530b and the lower surface of the conductor 542b.
  • the oxide 543 preferably has a function of suppressing the permeation of oxygen.
  • the oxide 543 is placed between the conductor 542 and the oxide 530b. It is preferable because the electric resistance is reduced. With such a configuration, the electrical characteristics, field effect mobility, and reliability of the transistor 500 may be improved.
  • a metal oxide having an element M may be used.
  • the element M aluminum, gallium, yttrium, or tin may be used.
  • the oxide 543 preferably has a higher concentration of the element M than the oxide 530b.
  • gallium oxide may be used as the oxide 543.
  • a metal oxide such as In—M—Zn oxide may be used.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the film thickness of the oxide 543 is preferably 0.5 nm or more, or 1 nm or more, and preferably 2 nm or less, 3 nm or less, or 5 nm or less.
  • the above-mentioned lower limit value and upper limit value can be combined.
  • the oxide 543 preferably has crystallinity. When the oxide 543 has crystallinity, the release of oxygen in the oxide 530 can be suitably suppressed. For example, as the oxide 543, if it has a crystal structure such as a hexagonal crystal, it may be possible to suppress the release of oxygen in the oxide 530.
  • An insulator 582 is provided on the insulator 581, and an insulator 586 is provided on the insulator 582.
  • the insulator 582 it is preferable to use a substance having a barrier property against oxygen and hydrogen. Therefore, the same material as the insulator 514 can be used for the insulator 582. For example, it is preferable to use a metal oxide such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 582.
  • the same material as the insulator 320 can be used. Further, by applying a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon nitride film, or the like can be used as the insulator 586.
  • a capacitive element 600, wiring, and / or a plug are provided above the transistor 500 shown in FIGS. 23 and 25.
  • the capacitive element 600 has, for example, a conductor 610, a conductor 620, and an insulator 630.
  • a conductor 610 is provided on one of the conductors 540a or 540b, the conductor 546, and the insulator 586.
  • the conductor 610 has a function as one of a pair of electrodes of the capacitive element 600.
  • the conductor 612 is provided on the other of the conductor 540a or the conductor 540b and on the insulator 586.
  • the conductor 612 has a function as a plug, wiring, terminal, or the like for electrically connecting the transistor 500 and a circuit element, wiring, or the like arranged above.
  • the conductor 612 and the conductor 610 may be formed at the same time.
  • the conductor 612 and the conductor 610 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-mentioned elements as components.
  • a metal nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film and the like can be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon oxide are added. It is also possible to apply a conductive material such as indium tin oxide.
  • the conductor 612 and the conductor 610 have a single-layer structure, but the structure is not limited to this, and a laminated structure of two or more layers may be used.
  • a conductor having a barrier property and a conductor having a high adhesion to the conductor having a high conductivity may be formed between the conductor having the barrier property and the conductor having a high conductivity.
  • An insulator 630 is provided on the insulator 586 and the conductor 610.
  • the insulator 630 functions as a dielectric sandwiched between a pair of electrodes of the capacitive element 600.
  • Examples of the insulator 630 include silicon oxide, silicon oxide, silicon nitride, silicon nitride, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium nitride, and hafnium nitride.
  • Aluminum oxide or the like can be used.
  • the insulator 630 can be provided as a laminated layer or a single layer by using the above-mentioned materials.
  • the capacitive element 600 can secure a sufficient capacitance by having an insulator having a high dielectric constant (high-k), and by having an insulator having a large dielectric strength, the dielectric strength is improved and the capacitance is improved. It is possible to suppress electrostatic breakdown of the element 600.
  • the insulator of the high dielectric constant (high-k) material material having a high specific dielectric constant
  • the insulator 630 may include, for example, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST). Insulators containing high-k material may be used in a single layer or laminated. Further, as the insulator 630, a compound containing hafnium and zirconium may be used. As semiconductor devices become finer and more integrated, problems such as leakage currents in transistors and capacitive elements may occur due to the thinning of the gate insulator and the dielectric used in the capacitive element.
  • the gate insulator and the insulator that functions as a dielectric used for the capacitive element By using a high-k material for the gate insulator and the insulator that functions as a dielectric used for the capacitive element, it is possible to reduce the gate potential during transistor operation and secure the capacitance of the capacitive element while maintaining the physical film thickness. It will be possible.
  • the conductor 620 is provided so as to be superimposed on the conductor 610 via the insulator 630.
  • the conductor 610 has a function as one of the pair of electrodes of the capacitive element 600
  • the conductor 620 has a function as the other of the pair of electrodes of the capacitive element 600.
  • a conductive material such as a metal material, an alloy material, or a metal oxide material can be used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten. Further, when it is formed at the same time as another structure such as a conductor, Cu (copper), Al (aluminum) or the like, which are low resistance metal materials, may be used. Further, for example, as the conductor 620, a material applicable to the conductor 610 can be used. Further, the conductor 620 may have a laminated structure of two or more layers instead of a single layer structure.
  • An insulator 640 is provided on the conductor 620 and the insulator 630.
  • the insulator 640 for example, it is preferable to use a film having a barrier property so that hydrogen, impurities and the like do not diffuse in the region where the transistor 500 is provided. Therefore, the same material as the insulator 324 can be used.
  • An insulator 650 is provided on the insulator 640.
  • the insulator 650 can be provided by using the same material as the insulator 320. Further, the insulator 650 may function as a flattening film that covers the uneven shape below the insulator 650. Therefore, the insulator 650 can be, for example, a material applicable to the insulator 324.
  • the capacitive element 600 shown in FIGS. 23 and 25 is of a planar type, but the shape of the capacitive element is not limited to this.
  • the capacitive element 600 may be, for example, a cylinder type instead of the planar type.
  • a wiring layer may be provided above the capacitive element 600.
  • the insulator 411, the insulator 412, the insulator 413, and the insulator 414 are provided in order above the insulator 650.
  • the insulator 411, the insulator 412, and the insulator 413 are provided with a conductor 416 that functions as a plug or wiring.
  • the conductor 416 can be provided in a region superposed on the conductor 660, which will be described later.
  • the insulator 630, the insulator 640, and the insulator 650 are provided with an opening in a region overlapping with the conductor 612, and the conductor 660 is provided so as to fill the opening.
  • the conductor 660 functions as a plug and wiring that are electrically connected to the conductor 416 included in the wiring layer described above.
  • the insulator 411 and the insulator 414 for example, it is preferable to use an insulator having a barrier property against impurities such as water and hydrogen, similarly to the insulator 324 and the like. Therefore, as the insulator 411 and the insulator 414, for example, a material applicable to the insulator 324 and the like can be used.
  • the insulator 412 and the insulator 413 for example, like the insulator 326, it is preferable to use an insulator having a relatively low relative permittivity in order to reduce the parasitic capacitance generated between the wirings.
  • the conductor 612 and the conductor 416 can be provided, for example, by using the same materials as the conductor 328 and the conductor 330.
  • FIG. 28 shows an example in which the capacitance element 600 located on the upper surface of the insulator 582 and the conductor 546 is changed to the FTJ element 700 in the semiconductor device shown in FIG. 23.
  • the FTJ element 700 has, for example, a conductor 610 that functions as a lower electrode, a conductor 620 that functions as an upper electrode, an insulator 630, and an insulator 631.
  • a material capable of having ferroelectricity can be used as the insulator 631.
  • Examples of the material having strong dielectric property include hafnium oxide, zirconium oxide, hafnium oxide ( HfZrOX ), hafnium oxide and element J1 (the element J1 here is zirconium (Zr), silicon (Si), and the like.
  • Examples thereof include materials to which silicon (Si), aluminum (Al), gadrinium (Gd), yttrium (Y), lanthanum (La), strontium (Sr), etc.) are added.
  • lead titanate PbTiO X
  • barium titanate strontium BST
  • strontium titanate PZT
  • strontium bismuthate tantanate SBT
  • a piezoelectric ceramic having a perovskite structure such as bismuth ferrite (BFO) and barium titanate
  • the material capable of having ferroelectricity for example, a mixture or a compound selected from the materials listed above can be used.
  • the material capable of having ferroelectricity may be a laminated structure composed of a plurality of materials selected from the materials listed above.
  • the crystal structure (characteristics) of hafnium oxide, zirconium oxide, zirconium oxide hafnium oxide, and materials obtained by adding the element J1 to hafnium oxide may change not only depending on the film forming conditions but also depending on various processes.
  • a material exhibiting ferroelectricity is not only referred to as a ferroelectric substance, but is also referred to as a material capable of having ferroelectricity.
  • hafnium oxide, or a material having hafnium oxide and zirconium oxide as a material capable of having ferroelectricity is preferable because it can have ferroelectricity even when processed into a thin film of several nm.
  • the film thickness of the insulator 631 can be 100 nm or less, preferably 50 nm or less, more preferably 20 nm or less, and further preferably 10 nm or less.
  • the conductor 610 and the conductor 612 can be made of the same material as the conductor 610 and the conductor 612 in FIG. 23. Further, in FIG. 28, the conductor 610 and the conductor 612 can be formed in the same manner as the conductor 610 and the conductor 612 in FIG. 23.
  • the insulator 630 is provided on the upper surface of the conductor 610 and a part of the region of the insulator 586. Further, the insulator 631 is provided on the upper surface of the insulator 630, and the conductor 620 is provided on the upper surface of the insulator 631.
  • the insulator 630 functions as a tunnel insulating film in the FTJ element 700.
  • the insulator 630 for example, silicon oxide, silicon nitride, a laminate of silicon oxide and silicon nitride can be used.
  • the insulator 640 is an upper surface of a region including an end portion of the insulator 630, a region including the end portion of the insulator 631, a conductor 620, and a part region of the insulator 586. It is provided in.
  • insulator 640 for example, a material applicable to the insulator 640 of FIG. 23 can be used.
  • the FTJ element can be provided in the semiconductor device shown in FIG. 23.
  • the FTJ element 700 shown in FIG. 28 can be, for example, the FTJ element FJB shown in the above embodiment.
  • the FTJ element 700 can be made into an FTJ element FJA by changing the stacking order of the insulator 630 that functions as a tunnel insulating film and the insulator 631 that contains a material that may have ferroelectricity.
  • FIG. 29 shows a configuration in which the stacking order of the insulator 630 functioning as the tunnel insulating film shown in FIG. 28 and the insulator 631 containing a material having a ferroelectricity is changed.
  • the FTJ element 700 shown in FIG. 29 can be, for example, the FTJ element FJA shown in the above embodiment.
  • the semiconductor device shown in FIG. 30 is a modification of the semiconductor device of FIG. 28, and is provided by an insulator 571, an insulator 544, an insulator 574, an insulator 576, an insulator 581, an insulator 641, an insulator 642, and the like. It has a structure that surrounds the transistor 500 and the FTJ element 700.
  • an opening is provided which reaches the insulator 514 after the substrate 310 to the insulator 574 are provided in order, but the semiconductor device of FIG. 30 is provided with an opening. After the substrate 310 to the insulator 640 are provided in order, an opening extending to the insulator 514 is provided.
  • an insulator 641, an insulator 642, and an insulator 650 are provided in order on the bottom of the opening and the upper surface of the insulator 640.
  • the insulator 641 and the insulator 642 function as a barrier insulating film that suppresses the diffusion of impurities such as water and hydrogen from above the transistor 500 and the FTJ element 700 to the transistor 500 and the FTJ element 700. Is preferable.
  • a sputtering method can be used as a film forming method for the insulator 641.
  • silicon nitride formed by a sputtering method can be used. Since the sputtering method does not require the use of molecules containing hydrogen in the film-forming gas, the hydrogen concentration of the insulator 641 can be reduced. As described above, the hydrogen concentration of the insulator 641 in contact with the conductor 610, the conductor 612, and the insulator 586 is reduced, so that the insulator 641 becomes the conductor 610, the conductor 612, and the insulator 586. It is possible to suppress the diffusion of hydrogen.
  • the insulator 642 for example, it is preferable to form a film by using the ALD method, particularly the PEALD method.
  • the ALD method particularly the PEALD method.
  • silicon nitride formed by the PEALD method can be used as the insulator 642.
  • the insulator 642 can be formed into a film with good coverage. Therefore, even if pinholes or streaks are formed in the insulator 641 due to the unevenness of the base, hydrogen can be formed by covering them with the insulator 642. Can be reduced from diffusing into the conductor 610, the conductor 612, and the insulator 586.
  • impurities such as water and hydrogen are diffused to the transistor 500 and the FTJ element 700 side via the insulator 512, the insulator 514, the insulator 641, the insulator 642 and the like. Can be prevented. Further, oxygen contained in the insulator 580 and the like can be prevented from diffusing to the outside through the insulator 574, the insulator 641 and the insulator 642.
  • the area of the circuit constituting the semiconductor device can be reduced by stacking, miniaturizing, and highly integrating the circuit elements.
  • a ferroelectric capacitor as a capacitive element included in a semiconductor device
  • the value of the capacitance of the capacitive element can be increased, so that the capacitive element can be miniaturized. Therefore, the area of the circuit including the capacitive element can be reduced.
  • by stacking the transistors and the capacitive elements it is possible to increase the circuit scale while suppressing the increase in the circuit area of the semiconductor device.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • FIG. 31A is a diagram illustrating the classification of the crystal structure of an oxide semiconductor, typically IGZO (a metal oxide containing In, Ga, and Zn).
  • IGZO a metal oxide containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous”, “Crystalline”, and “Crystal”.
  • Amorphous includes “completable amorphous”.
  • Crystalline includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (Cloud-AlignedComposite) (excluding single crystal).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 31A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Diffraction) spectrum.
  • XRD X-ray diffraction
  • FIG. 31B the XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement of the CAAC-IGZO film classified as “Crystalline” is shown in FIG. 31B (horizontal axis is 2 ⁇ [deg.], And vertical axis is intensity. (Intensity) is represented by an arbitrary unit (a.u.)).
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 31B may be simply referred to as an XRD spectrum.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or the substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 31C.
  • FIG. 31C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors may be classified differently from FIG. 31A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystal oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: atomous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. The In layer may contain Zn.
  • the layered structure is observed as a grid image, for example, in a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film. Note that a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam transmitted through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction, the bond distance between atoms changes due to the replacement of metal atoms, and the like. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries can be confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be deteriorated due to the mixing of impurities and the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method. For example, when structural analysis is performed on an nc-OS film using an XRD device, a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan. Further, when electron beam diffraction (also referred to as selected area electron diffraction) using an electron beam having a probe diameter larger than that of nanocrystals (for example, 50 nm or more) is performed on the nc-OS film, a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as selected area electron diffraction
  • nanocrystals for example, 50 nm or more
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic shape or a patch shape.
  • the CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). It is said.). That is, the CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region where [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) are unevenly distributed and have a mixed structure.
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on -current (Ion), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on -current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. In addition, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, and more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more preferably 1 ⁇ 10 -9 cm -3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel forming region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentrations of silicon and carbon in the oxide semiconductor and the concentrations of silicon and carbon near the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • defect levels may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, and more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • This embodiment shows an example of a semiconductor wafer on which a storage device or the like shown in the above embodiment is formed, and an electronic component in which the storage device is incorporated.
  • the semiconductor wafer 4800 shown in FIG. 32A has a wafer 4801 and a plurality of circuit units 4802 provided on the upper surface of the wafer 4801.
  • the portion without the circuit portion 4802 is the spacing 4803, which is a dicing region.
  • the semiconductor wafer 4800 can be manufactured by forming a plurality of circuit portions 4802 on the surface of the wafer 4801 by the previous process. Further, after that, the surface on the opposite side on which the plurality of circuit portions 4802 of the wafer 4801 are formed may be ground to reduce the thickness of the wafer 4801. By this step, the warp of the wafer 4801 can be reduced and the size of the wafer can be reduced.
  • a dicing process is performed. Dicing is performed along the scribe line SCL1 and the scribe line SCL2 (sometimes referred to as a dicing line or a cutting line) indicated by a alternate long and short dash line.
  • the spacing 4803 is provided so that the plurality of scribe lines SCL1 are parallel to each other and the plurality of scribe lines SCL2 are parallel to each other in order to facilitate the dicing process. It is preferable to provide it so that it is vertical.
  • the chip 4800a as shown in FIG. 32B can be cut out from the semiconductor wafer 4800.
  • the chip 4800a has a wafer 4801a, a circuit unit 4802, and a spacing 4803a.
  • the spacing 4803a is preferably made as small as possible. In this case, the width of the spacing 4803 between the adjacent circuit portions 4802 may be substantially the same as the cutting margin of the scribe line SCL1 or the cutting margin of the scribe line SCL2.
  • the shape of the element substrate of one aspect of the present invention is not limited to the shape of the semiconductor wafer 4800 shown in FIG. 32A.
  • the shape of the element substrate can be appropriately changed depending on the process of manufacturing the device and the device for manufacturing the device.
  • FIG. 32C shows a perspective view of a board (mounting board 4704) on which the electronic component 4700 and the electronic component 4700 are mounted.
  • the electronic component 4700 shown in FIG. 32C has a chip 4800a in the mold 4711.
  • the chip 4800a shown in FIG. 32C shows a configuration in which circuit units 4802 are laminated. That is, the storage device described in the above embodiment can be applied as the circuit unit 4802. In FIG. 32C, a part is omitted in order to show the inside of the electronic component 4700.
  • the electronic component 4700 has a land 4712 on the outside of the mold 4711.
  • the land 4712 is electrically connected to the electrode pad 4713, and the electrode pad 4713 is electrically connected to the chip 4800a by a wire 4714.
  • the electronic component 4700 is mounted on, for example, a printed circuit board 4702. A plurality of such electronic components are combined and electrically connected to each other on the printed circuit board 4702 to complete the mounting board 4704.
  • FIG. 32D shows a perspective view of the electronic component 4730.
  • the electronic component 4730 is an example of SiP (System in package) or MCM (Multi Chip Module).
  • the electronic component 4730 is provided with an interposer 4731 on a package substrate 4732 (printed circuit board), and a semiconductor device 4735 and a plurality of semiconductor devices 4710 are provided on the interposer 4731.
  • the electronic component 4730 has a semiconductor device 4710.
  • the semiconductor device 4710 can be, for example, a storage device described in the above embodiment, a wideband memory (HBM: High Bandwidth Memory), or the like.
  • HBM High Bandwidth Memory
  • an integrated circuit semiconductor device such as a CPU, GPU, FPGA, or storage device can be used.
  • the package substrate 4732 a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used.
  • the interposer 4731 a silicon interposer, a resin interposer, or the like can be used.
  • the interposer 4731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits having different terminal pitches. Multiple wirings are provided in a single layer or multiple layers. Further, the interposer 4731 has a function of electrically connecting the integrated circuit provided on the interposer 4731 to the electrode provided on the package substrate 4732. For these reasons, the interposer may be referred to as a "rewiring board" or an "intermediate board”. Further, a through electrode may be provided on the interposer 4731, and the integrated circuit and the package substrate 4732 may be electrically connected using the through electrode. Further, in the silicon interposer, a TSV (Through Silicon Via) can be used as a through electrode.
  • TSV Three Silicon Via
  • interposer 4731 It is preferable to use a silicon interposer as the interposer 4731. Since it is not necessary to provide an active element in the silicon interposer, it can be manufactured at a lower cost than an integrated circuit. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with a resin interposer.
  • the interposer on which the HBM is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as an interposer for mounting HBM.
  • the reliability is unlikely to decrease due to the difference in the expansion coefficient between the integrated circuit and the interposer. Further, since the surface of the silicon interposer is high, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is unlikely to occur. In particular, in a 2.5D package (2.5-dimensional mounting) in which a plurality of integrated circuits are arranged side by side on an interposer, it is preferable to use a silicon interposer.
  • a heat sink may be provided on top of the electronic component 4730.
  • the heat sink it is preferable that the heights of the integrated circuits provided on the interposer 4731 are the same.
  • the heights of the semiconductor device 4710 and the semiconductor device 4735 are the same.
  • an electrode 4733 may be provided on the bottom of the package substrate 4732.
  • FIG. 32D shows an example in which the electrode 4733 is formed of a solder ball.
  • BGA Ball Grid Array
  • the electrode 4733 may be formed of a conductive pin.
  • PGA Peripheral Component Interconnect
  • the electronic component 4730 can be mounted on another board by using various mounting methods, not limited to BGA and PGA.
  • BGA Base-Chip
  • PGA Stepgered Pin Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN QuadFN
  • FIG. 33 is a block diagram showing a configuration of an example of a CPU using the storage device described in the above embodiment as a part.
  • the CPU shown in FIG. 33 has an ALU 1191 (ALU: Arithmetic logic unit, arithmetic unit), an ALU controller 1192, an instruction decoder 1193, an interrupt controller 1194, a timing controller 1195, a register 1196, a register controller 1197, and a bus interface 1198 on a substrate 1190. It has a (Bus I / F), a rewritable ROM 1199, and a ROM interface 1189 (ROM I / F).
  • the substrate 1190 a semiconductor substrate, an SOI substrate, a glass substrate, or the like is used.
  • the ROM 1199 and the ROM interface 1189 may be provided on separate chips.
  • the configuration including the CPU or the arithmetic circuit shown in FIG. 33 may be regarded as one core, and a configuration including a plurality of the cores and each core operating in parallel, that is, a configuration such as a GPU may be used.
  • the number of bits that the CPU can handle in the internal calculation circuit and the data bus can be, for example, 8 bits, 16 bits, 32 bits, 64 bits, and the like.
  • Instructions input to the CPU via the bus interface 1198 are input to the instruction decoder 1193, decoded, and then input to the ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195.
  • the ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195 perform various controls based on the decoded instructions. Specifically, the ALU controller 1192 generates a signal for controlling the operation of the ALU 1191. Further, the interrupt controller 1194 determines an interrupt request from an external input / output device, a peripheral circuit, or the like from its priority and mask state and processes it while the CPU program is being executed. The register controller 1197 generates the address of the register 1196, and reads or writes the register 1196 according to the state of the CPU.
  • the timing controller 1195 generates a signal for controlling the operation timing of the ALU 1191, the ALU controller 1192, the instruction decoder 1193, the interrupt controller 1194, and the register controller 1197.
  • the timing controller 1195 includes an internal clock generation unit that generates an internal clock signal based on the reference clock signal, and supplies the internal clock signal to the above-mentioned various circuits.
  • Register 1196 may include, for example, the storage device shown in the previous embodiment.
  • the register controller 1197 selects the holding operation in the register 1196 according to the instruction from the ALU 1191. That is, in the memory cell of the register 1196, it is selected whether to hold the data by the flip-flop or the data by the capacitive element. When data retention by flip-flop is selected, the power supply voltage is supplied to the memory cells in the register 1196. When the retention of data in the capacitive element is selected, the data is rewritten to the capacitive element, and the supply of the power supply voltage to the memory cell in the register 1196 can be stopped.
  • FIGS. 34A to 34I illustrate how each electronic device includes an electronic component 4700 having the storage device.
  • the information terminal 5500 shown in FIG. 34A is a mobile phone (smartphone) which is a kind of information terminal.
  • the information terminal 5500 has a housing 5510 and a display unit 5511, and as an input interface, a touch panel is provided in the display unit 5511 and a button is provided in the housing 5510.
  • the information terminal 5500 can hold a temporary file (for example, a cache when using a web browser) generated when the application is executed.
  • a temporary file for example, a cache when using a web browser
  • FIG. 34B illustrates an information terminal 5900, which is an example of a wearable terminal.
  • the information terminal 5900 has a housing 5901, a display unit 5902, an operation button 5903, a crown 5904, a band 5905, and the like.
  • the wearable terminal can hold a temporary file generated when the application is executed by applying the storage device described in the above embodiment.
  • FIG. 34C shows a notebook type information terminal 5300.
  • the notebook-type information terminal 5300 shown in FIG. 34C is provided with a display unit 5331 in the housing 5330a and a keyboard unit 5350 in the housing 5330b.
  • the notebook-type information terminal 5300 can hold a temporary file generated when the application is executed by applying the storage device described in the above embodiment.
  • smartphones, wearable terminals, and notebook-type information terminals are taken as examples of electronic devices and are shown in FIGS. 34A to 34C, respectively, but information terminals other than smartphones, wearable terminals, and notebook-type information terminals can be applied. can. Examples of information terminals other than smartphones, wearable terminals, and notebook-type information terminals include PDAs (Personal Digital Assistants), desktop information terminals, workstations, and the like.
  • PDAs Personal Digital Assistants
  • desktop information terminals workstations, and the like.
  • FIG. 34D shows an electric freezer / refrigerator 5800 as an example of an electric appliance.
  • the electric freezer / refrigerator 5800 has a housing 5801, a refrigerator door 5802, a freezer door 5803, and the like.
  • the electric freezer / refrigerator 5800 can be used as, for example, IoT (Internet of Things).
  • IoT Internet of Things
  • the electric refrigerator-freezer 5800 can send and receive information such as foodstuffs stored in the electric refrigerator-freezer 5800 and the expiration date of the foodstuffs to the above-mentioned information terminal or the like via the Internet or the like. can.
  • the electric refrigerator / freezer 5800 transmits the information, the information can be stored in the storage device as a temporary file.
  • an electric refrigerator / freezer has been described as an electric appliance, but other electric appliances include, for example, a vacuum cleaner, a microwave oven, an electric oven, a rice cooker, a water heater, an IH cooker, a water server, and an air conditioner. Examples include appliances, washing machines, dryers, audiovisual equipment, etc.
  • FIG. 34E illustrates a portable game machine 5200, which is an example of a game machine.
  • the portable game machine 5200 has a housing 5201, a display unit 5202, a button 5203, and the like.
  • the video of the portable game machine 5200 can be output by a display device such as a television device, a personal computer display, a game display, or a head-mounted display.
  • a display device such as a television device, a personal computer display, a game display, or a head-mounted display.
  • the storage device described in the above embodiment By applying the storage device described in the above embodiment to the portable game machine 5200, it is possible to realize the portable game machine 5200 with low power consumption. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • FIG. 34E illustrates a portable game machine as an example of a game machine
  • the electronic device of one aspect of the present invention is not limited to this.
  • Examples of the electronic device of one aspect of the present invention include a stationary game machine, an arcade game machine installed in an entertainment facility (game center, amusement park, etc.), a pitching machine for batting practice installed in a sports facility, and the like. Can be mentioned.
  • the storage device described in the above embodiment can be applied to a moving vehicle and the vicinity of the driver's seat of the vehicle.
  • FIG. 34F shows an automobile 5700, which is an example of a moving body.
  • an instrument panel that provides various information by displaying the speedometer, tachometer, mileage, fuel gauge, gear status, air conditioner settings, etc. Further, a display device showing such information may be provided around the driver's seat.
  • the storage device described in the above embodiment can temporarily hold information, it is necessary for, for example, in an automatic driving system of an automobile 5700, a road guidance, a system for predicting danger, and the like. It can be used to temporarily retain information.
  • the display device may be configured to display temporary information such as road guidance and danger prediction. Further, the image of the driving recorder installed in the automobile 5700 may be retained.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets) and the like.
  • FIG. 34G illustrates a digital camera 6240, which is an example of an image pickup device.
  • the digital camera 6240 has a housing 6241, a display unit 6242, an operation button 6243, a shutter button 6244, and the like, and a removable lens 6246 is attached to the digital camera 6240.
  • the digital camera 6240 is configured so that the lens 6246 can be removed from the housing 6241 and replaced here, the lens 6246 and the housing 6241 may be integrated. Further, the digital camera 6240 may be configured so that a strobe device, a viewfinder, or the like can be separately attached.
  • a low power consumption digital camera 6240 can be realized. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • ICD implantable cardioverter-defibrillator
  • FIG. 34H is a schematic cross-sectional view showing an example of an ICD.
  • the ICD body 5400 has at least a battery 5401, an electronic component 4700, a regulator, a control circuit, an antenna 5404, a wire 5402 to the right atrium, and a wire 5403 to the right ventricle.
  • the ICD body 5400 is surgically placed in the body, and two wires are passed through the subclavian vein 5405 and the superior vena cava 5406 of the human body, and one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium. To be done.
  • the ICD main body 5400 has a function as a pacemaker and performs pacing to the heart when the heart rate deviates from the specified range. Also, if pacing does not improve heart rate (fast ventricular tachycardia, ventricular fibrillation, etc.), treatment with electric shock is given.
  • the ICD body 5400 needs to constantly monitor the heart rate in order to properly perform pacing and electric shock. Therefore, the ICD main body 5400 has a sensor for detecting the heart rate. Further, the ICD main body 5400 can store the heart rate data acquired by the sensor or the like, the number of times of treatment by pacing, the time, etc. in the electronic component 4700.
  • the ICD main body 5400 has a plurality of batteries, so that the safety can be enhanced. Specifically, even if a part of the battery of the ICD main body 5400 becomes unusable, the remaining battery can function, so that it also functions as an auxiliary power source.
  • the antenna 5404 that can receive power it may have an antenna that can transmit physiological signals.
  • physiological signals such as pulse, respiratory rate, heart rate, and body temperature can be confirmed by an external monitoring device.
  • a system for monitoring various cardiac activities may be configured.
  • the storage device described in the above embodiment can be applied to a computer such as a PC (Personal Computer) and an expansion device for an information terminal.
  • a computer such as a PC (Personal Computer) and an expansion device for an information terminal.
  • FIG. 34I shows, as an example of the expansion device, an expansion device 6100 externally attached to a PC equipped with a portable chip capable of storing information.
  • the expansion device 6100 can store information by the chip by connecting to a PC by, for example, USB (Universal Serial Bus) or the like.
  • USB Universal Serial Bus
  • FIG. 34I illustrates a portable expansion device 6100, but the expansion device according to one aspect of the present invention is not limited to this, and is relatively equipped with, for example, a cooling fan. It may be a large form of expansion device.
  • the expansion device 6100 has a housing 6101, a cap 6102, a USB connector 6103, and a board 6104.
  • the substrate 6104 is housed in the housing 6101.
  • the substrate 6104 is provided with a circuit for driving the storage device and the like described in the above embodiment.
  • an electronic component 4700 and a controller chip 6106 are attached to the substrate 6104.
  • the USB connector 6103 functions as an interface for connecting to an external device.
  • a storage device described in the above embodiment also for a computer such as a PC (Personal Computer), an SD card that can be attached to an expansion device for an information terminal, an SSD (Solid State Drive), and the like. Can be applied.
  • PC Personal Computer
  • SSD Solid State Drive
  • a new electronic device can be provided by applying the semiconductor device or the storage device described in the first embodiment or the second embodiment to the storage device included in the above-mentioned electronic device.
  • MCA memory cell array
  • MC memory cell array
  • MC memory cell
  • MC [1,1] memory cell
  • MC [m, 1] memory cell
  • MC [1, n] memory cell
  • MC [m, n] memory cell
  • WDD Circuit
  • RDD Circuit
  • WWD Circuit
  • FECD Circuit
  • M2 Transistor
  • M3 Transistor
  • M4A Transistor
  • M4B Transistor
  • FJA FTJ element
  • FJB FTJ element
  • FEB strong dielectric capacitor
  • ANA circuit element
  • ANB circuit element
  • REA resistor
  • REB resistor
  • WDL wiring, WDL [1]: wiring, WDL [n]: wiring, WDL [n]: wiring, RDL [1]: Wiring, RDL [n]: Wiring, WRDL: Wiring, WRWL: Wiring, WWL: Wiring, WWL [1]: Wiring, WWL [1]: Wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Logic Circuits (AREA)

Abstract

消費電力が低減された、非破壊読み出しが可能な半導体装置を提供する。 第1トランジスタと、第2トランジスタと、第3トランジスタと、第1FTJ素子と、第2FTJ素子と、を有する、半導体装置である。第1トランジスタの第1端子は、第1FTJ素子の出力端子と、第2FTJ素子の入力端子と、第2トランジスタのゲートと、に電気的に接続されている。また、第2トランジスタの第1端子は、第3トランジスタの第2端子に電気的に接続されている。データの書き込みとしては、第1FTJ素子と、第2FTJ素子と、のそれぞれにおいて、データに応じて分極を起こす。データの読み出しとしては、第1FTJ素子の入力端子と、第2FTJ素子の出力端子と、の間に分極が変化しない程度の電圧を与えて、第2トランジスタのゲートに電位を与えて、第2トランジスタの第1端子からデータに応じた電流、又は電圧を取得する。

Description

半導体装置、及び電子機器
 本発明の一態様は、半導体装置、及び電子機器に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、駆動方法、又は、製造方法に関するものである。又は、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、信号処理装置、プロセッサ、電子機器、システム、それらの駆動方法、それらの製造方法、又はそれらの検査方法を一例として挙げることができる。
 近年、半導体装置の開発が進められ、LSI(Large Scale Integration)、CPU(Central Processing Unit)、メモリなどが主に半導体装置に用いられている。CPUは、半導体ウェハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 また、上述した半導体集積回路に、強誘電性を有する誘電体を用いた、強誘電キャパシタ、FTJ(Ferroelectric Tunnel Junction、又はFerroelectric Transportation Junction)素子、FeFET(Ferroelectric FET)などを設けた半導体装置の開発が進められている。例えば、特許文献1には、バックゲート側のゲート絶縁膜に強誘電体膜を設けたトランジスタを有する半導体メモリセルが開示されている。また、例えば、特許文献2には、トランジスタのゲートに強誘電キャパシタを電気的に接続した構成のメモリが開示されている。
特開2009−164473号公報 特開2003−178577号公報
 近年、電子機器などにおいて扱われるデータ量が増大している傾向にあって、記憶容量を増やすため、記憶装置、特にメモリセルを微細化する試みが行われている。メモリセルの微細化として、容量のサイズを小さくする場合、その静電容量の値が小さくなるため、長い時間データを保持することが難しくなる。また、データを保持するためのリフレッシュ動作の回数も多くなるため、消費電力も高くなる場合がある。そのため、記憶装置は、長い時間データの保持ができるメモリセルを用いることが好ましい。
 特に、記憶装置としてDRAM(Dynamic Random Access Memory)の構成の場合、メモリセルからデータを読み出した際に、保持されているデータが破壊されてしまうため(破壊読み出しが起こるため)、データの再書き込みが必須となる。そのため、DRAMには、読み出した後にデータを書き戻すための回路が必要となる場合がある。また、データの再書き込みを行うため、消費電力も高くなる場合がある。
 本発明の一態様は、データの再書き込みが不要な半導体装置(非破壊読み出しを行う半導体装置)を提供することを課題の一とする。又は、本発明の一態様は、消費電力が低減された半導体装置を提供することを課題の一とする。又は、本発明の一態様は、回路面積が低減された半導体装置を提供することを課題の一とする。又は、本発明の一態様は、新規な半導体装置を提供することを課題の一とする。又は、本発明の一態様は、上述したいずれかの半導体装置を有する電子機器を提供することを課題の一とする。
 なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した課題、及び他の課題の全てを解決する必要はない。
(1)
 本発明の一態様は、第1トランジスタと、第2トランジスタと、第1FTJ素子と、第2FTJ素子と、を有する半導体装置である。特に、第1FTJ素子、及び第2FTJ素子のそれぞれは、入力端子と、トンネル絶縁膜と、誘電体と、出力端子と、を有する。また、第1FTJ素子、及び第2FTJ素子のそれぞれは、入力端子、トンネル絶縁膜、誘電体、出力端子が、この順に重畳されている構成を有する。また、第1トランジスタのソース又はドレインの一方は、第1FTJ素子の出力端子と、第2FTJ素子の入力端子と、第2トランジスタのゲートと、に電気的に接続されていることが好ましい。
(2)
 又は、本発明の一態様は、上記(1)において、トンネル絶縁膜は、酸化シリコン、又は窒化シリコンを有し、かつ誘電体は、ハフニウム、及びジルコニウムの一方、又は双方を含む酸化物を有する構成とすることが好ましい。
(3)
 又は、本発明の一態様は、第1トランジスタと、第2トランジスタと、第1強誘電キャパシタと、第2強誘電キャパシタと、を有する半導体装置である。特に、第1トランジスタの第1端子は、第1強誘電キャパシタの第1端子と、第2強誘電キャパシタの第1端子と、第2トランジスタのゲートと、に電気的に接続されていることが好ましい。
(4)
 又は、本発明の一態様は、上記(3)において、強誘電キャパシタは、誘電体を有する構成とすることが好ましい。特に、誘電体は、ハフニウム、及びジルコニウムの一方、又は双方を含む酸化物を有することが好ましい。
(5)
 又は、本発明の一態様は、第1トランジスタと、第2トランジスタと、第1回路素子と、第2回路素子と、を有する半導体装置である。特に、第1トランジスタのソース又はドレインの一方は、第1回路素子の出力端子と、第2回路素子の入力端子と、第2トランジスタのゲートと、に電気的に接続されていることが好ましい。なお、第1回路素子、及び第2回路素子のそれぞれは、抵抗変化素子、MTJ素子、相変化メモリ素子のいずれか一を有する。
(6)
 又は、本発明の一態様は、上記(1)乃至(5)のいずれか一において、第2トランジスタのソース又はドレインの一方が第1トランジスタのソース又はドレインの他方に電気的に接続されている構成としてもよい。
(7)
 又は、本発明の一態様は、上記(1)乃至(5)のいずれか一において、第3トランジスタを有し、第2トランジスタのソース又はドレインの一方が第3トランジスタのソース又はドレインの一方に電気的に接続されている構成としてもよい。
(8)
 又は、本発明の一態様は、上記(7)において、第3トランジスタのソース又はドレインの他方が第1トランジスタのソース又はドレインの他方に電気的に接続されている構成としてもよい。
(9)
 又は、本発明の一態様は、上記(1)乃至(8)のいずれか一の半導体装置と、筐体と、を有する電子機器である。
 なお、本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップ、及びパッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置及び電子機器等は、それ自体が半導体装置である場合があり、半導体装置を有している場合がある。
 また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図又は文章に示された接続関係以外のものも、図又は文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(デジタルアナログ変換回路、アナログデジタル変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きくできる回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
 なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとする。
 また、例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。又は、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。又は、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
 また、本明細書等において、「抵抗素子」とは、例えば、0Ωよりも高い抵抗値を有する回路素子、0Ωよりも高い配線などとすることができる。そのため、本明細書等において、「抵抗素子」は、抵抗値を有する配線、ソース−ドレイン間に電流が流れるトランジスタ、ダイオード、コイルなどを含むものとする。そのため、「抵抗素子」という用語は、「抵抗」、「負荷」、「抵抗値を有する領域」などの用語に言い換えることができる場合がある。逆に「抵抗」、「負荷」、「抵抗値を有する領域」という用語は、「抵抗素子」などの用語に言い換えることができる場合がある。抵抗値としては、例えば、好ましくは1mΩ以上10Ω以下、より好ましくは5mΩ以上5Ω以下、更に好ましくは10mΩ以上1Ω以下とすることができる。また、例えば、1Ω以上1×10Ω以下としてもよい。
 また、本明細書等において、「容量素子」とは、例えば、0Fよりも高い静電容量の値を有する回路素子、0Fよりも高い静電容量の値を有する配線の領域、寄生容量、トランジスタのゲート容量などとすることができる。そのため、本明細書等において、「容量素子」は、一対の電極と、当該電極の間に含まれている誘電体と、を含む回路素子などを含むものとする。また、「容量素子」、「寄生容量」、「ゲート容量」などという用語は、「容量」などの用語に言い換えることができる場合がある。逆に、「容量」という用語は、「容量素子」、「寄生容量」、「ゲート容量」などの用語に言い換えることができる場合がある。また、「容量」の「一対の電極」という用語は、「一対の導電体」、「一対の導電領域」、「一対の領域」などに言い換えることができる。なお、静電容量の値としては、例えば、0.05fF以上10pF以下とすることができる。また、例えば、1pF以上10μF以下としてもよい。
 また、本明細書等において、トランジスタは、ゲート、ソース、及びドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソース又はドレインとして機能する2つの端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソース及びドレインの用語は、互いに言い換えることができる場合がある。また、本明細書等では、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲート又はバックゲートの一方を第1ゲートと呼称し、トランジスタのゲート又はバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
 例えば、本明細書等において、トランジスタの一例としては、ゲート電極が2個以上のマルチゲート構造のトランジスタを用いることができる。マルチゲート構造にすると、チャネル形成領域が直列に接続されるため、複数のトランジスタが直列に接続された構造となる。よって、マルチゲート構造により、オフ電流の低減、トランジスタの耐圧向上(信頼性の向上)を図ることができる。または、マルチゲート構造により、飽和領域で動作する時に、ドレインとソースとの間の電圧が変化しても、ドレインとソースとの間の電流があまり変化せず、傾きがフラットである電圧・電流特性を得ることができる。傾きがフラットである電圧・電流特性を利用すると、理想的な電流源回路、又は非常に高い抵抗値をもつ能動負荷を実現することができる。その結果、特性のよい差動回路又はカレントミラー回路などを実現することができる。
 また、回路図上では、単一の回路素子が図示されている場合でも、当該回路素子が複数の回路素子を有する場合がある。例えば、回路図上に1個の抵抗が記載されている場合は、2個以上の抵抗が直列に電気的に接続されている場合を含むものとする。また、例えば、回路図上に1個の容量が記載されている場合は、2個以上の容量が並列に電気的に接続されている場合を含むものとする。また、例えば、回路図上に1個のトランジスタが記載されている場合は、2個以上のトランジスタが直列に電気的に接続され、かつそれぞれのトランジスタのゲート同士が電気的に接続されている場合を含むものとする。また、同様に、例えば、回路図上に1個のスイッチが記載されている場合は、当該スイッチが2個以上のトランジスタを有し、2個以上のトランジスタが直列、又は並列に電気的に接続され、それぞれのトランジスタのゲート同士が電気的に接続されている場合を含むものとする。
 また、本明細書等において、ノードは、回路構成、及びデバイス構造に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、及び配線をノードと言い換えることが可能である。
 また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。なお、グラウンド電位は必ずしも0Vを意味するとは限らない。また、電位は相対的なものであり、基準となる電位が変わることによって、配線に与えられる電位、回路などに印加される電位、回路などから出力される電位なども変化する。
 また、本明細書等において、「高レベル電位」、「低レベル電位」という用語は、特定の電位を意味するものではない。例えば、2本の配線において、両方とも「高レベル電位を供給する配線として機能する」と記載されていた場合、両方の配線が与えるそれぞれの高レベル電位は、互いに等しくなくてもよい。また、同様に、2本の配線において、両方とも「低レベル電位を供給する配線として機能する」と記載されていた場合、両方の配線が与えるそれぞれの低レベル電位は、互いに等しくなくてもよい。
「電流」とは、電荷の移動現象(電気伝導)のことであり、例えば、「正の荷電体の電気伝導が起きている」という記載は、「その逆向きに負の荷電体の電気伝導が起きている」と換言することができる。そのため、本明細書等において、「電流」とは、特に断らない限り、キャリアの移動に伴う電荷の移動現象(電気伝導)をいうものとする。ここでいうキャリアとは、電子、正孔、アニオン、カチオン、錯イオン等が挙げられ、電流の流れる系(例えば、半導体、金属、電解液、真空中など)によってキャリアが異なる。また、配線等における「電流の向き」は、正電荷となるキャリアが移動する方向とし、正の電流量で記載する。換言すると、負電荷となるキャリアが移動する方向は、電流の向きと逆の方向となり、負の電流量で表現される。そのため、本明細書等において、電流の正負(又は電流の向き)について断りがない場合、「素子Aから素子Bに電流が流れる」等の記載は「素子Bから素子Aに電流が流れる」等に言い換えることができるものとする。また、「素子Aに電流が入力される」等の記載は「素子Aから電流が出力される」等に言い換えることができるものとする。
 また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。
 また、「上」、又は「下」の用語は、構成要素の位置関係が直上又は直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
 また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。又は、場合によっては、又は、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」又は「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。又は、例えば、「絶縁層」、「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
 また、本明細書等において「電極」、「配線」、「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」、「配線」などの用語は、複数の「電極」、「配線」などが一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」、「電極」などの一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」、「配線」、「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」又は「端子」の一部とすることができ、また、例えば、「端子」は「配線」又は「電極」の一部とすることができる。また、「電極」、「配線」、「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。
 また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」、「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、又は、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
 本明細書等において、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体の欠陥準位密度が高くなること、キャリア移動度が低下すること、結晶性が低下すること、などが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。具体的には、半導体がシリコン層である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第15族元素など(但し、酸素、水素は含まない)がある。
 本明細書等において、スイッチとは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。又は、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。そのため、スイッチは、制御端子とは別に、電流を流す端子を2つ、又は3つ以上有する場合がある。一例としては、電気的なスイッチ、機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
 電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、例えば、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態、ソース電極とドレイン電極との間に電流を流すことができる状態、をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
 機械的なスイッチの一例としては、MEMS(マイクロ・エレクトロ・メカニカル・システムズ)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
 本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」又は「概略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」又は「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
 本発明の一態様によって、データの再書き込みが不要な半導体装置(非破壊読み出しを行う半導体装置)を提供することができる。又は、本発明の一態様によって、消費電力が低減された半導体装置を提供することができる。又は、本発明の一態様によって、回路面積が低減された半導体装置を提供することができる。又は、本発明の一態様によって、新規な半導体装置を提供することができる。又は、本発明の一態様によって、上述したいずれかの半導体装置を有する電子機器を提供することができる。
 なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
図1A、及び図1Bは、半導体装置に係るメモリセルの構成例を示す回路図である。
図2は、半導体装置に係るメモリセルの動作例を説明するタイミングチャートである。
図3A、及び図3Bは、半導体装置に係るメモリセルの動作例を説明するタイミングチャートである。
図4A乃至図4Cは、半導体装置に係るメモリセルの構成例を示す回路図である。
図5A乃至図5Fは、半導体装置に係るメモリセルの構成例を示す回路図である。
図6A乃至図6Fは、半導体装置に係るメモリセルの構成例を示す回路図である。
図7は、半導体装置に係るメモリセルの構成例を示す回路図である。
図8A、及び図8Bは、半導体装置に係るメモリセルの構成例を示す回路図である。
図9A、及び図9Bは、半導体装置に係るメモリセルの動作例を説明するタイミングチャートである。
図10は、記憶装置の構成例を示すブロック図である。
図11は、記憶装置の動作例を説明するタイミングチャートである。
図12は、記憶装置の動作例を説明するタイミングチャートである。
図13は、記憶装置の動作例を説明するタイミングチャートである。
図14は、記憶装置の動作例を説明するタイミングチャートである。
図15は、記憶装置の動作例を説明するタイミングチャートである。
図16は、演算回路の構成例を示すブロック図である。
図17は、演算回路に含まれる回路の構成例を示す回路図である。
図18A、及び図18Bは、記憶装置に係るメモリセルの構成例を示す回路図である。
図19は、記憶装置に係るメモリセルの動作例を説明するタイミングチャートである。
図20A、及び図20Bは、記憶装置に係るメモリセルの動作例を説明するタイミングチャートである。
図21は、記憶装置に係るメモリセルの構成例を示す回路図である。
図22は、記憶装置に係るメモリセルの動作例を説明するタイミングチャートである。
図23は、半導体装置の構成例を示す断面模式図である。
図24A乃至図24Cは、トランジスタの構成例を示す断面模式図である。
図25は、半導体装置の構成例を示す断面模式図である。
図26A、及び図26Bは、トランジスタの構成例を示す断面模式図である。
図27は、トランジスタの構成例を示す断面模式図である。
図28は、半導体装置の構成例を示す断面模式図である。
図29は、トランジスタの構成例を示す断面模式図である。
図30は、半導体装置の構成例を示す断面模式図である。
図31AはIGZOの結晶構造の分類を説明する図であり、図31Bは結晶性IGZOのXRDスペクトルを説明する図であり、図31Cは結晶性IGZOの極微電子線回折パターンを説明する図である。
図32Aは半導体ウェハの一例を示す斜視図であり、図32Bはチップの一例を示す斜視図であり、図32C、及び図32Dは電子部品の一例を示す斜視図である。
図33は、CPUを説明するブロック図である。
図34A乃至図34Iは、製品の一例を説明する斜視図、又は、模式図である。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)などに分類される。例えば、トランジスタのチャネル形成領域に金属酸化物が含まれている場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有するトランジスタのチャネル形成領域を構成し得る場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)と呼称することができる。また、OSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
 また、本明細書等において、各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、又は置き換えなどを行うことができる。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
 本明細書に記載の実施の形態について図面を参照しながら説明している。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、斜視図などにおいて、図面の明確性を期すために、一部の構成要素の記載を省略している場合がある。
 本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、“[m,n]”等の識別用の符号を付記して記載する場合がある。また、図面等において、符号に“_1”、“[n]”、“[m,n]”等の識別用の符号を付記している場合、本明細書等において区別する必要が無いときには、識別用の符号を記載しない場合がある。
 また、本明細書の図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
(実施の形態1)
 本実施の形態では、本発明の一態様の半導体装置について説明する。
<構成例1>
 図1Aには、本発明の一態様の半導体装置である記憶装置に備えられる、メモリセルMCの回路構成例を示している。
 メモリセルMCは、トランジスタM1乃至トランジスタM3と、FTJ素子FJAと、FTJ素子FJBと、を有する。
 FTJ素子FJA及びFTJ素子FJBのそれぞれは、一対の電極と、強誘電性を有しうる材料と、トンネル絶縁膜として機能する絶縁体と、を含むトンネル接合素子である。また、FTJ素子は、強誘電性を有しうる材料の分極の方向、強度などに応じて、抵抗値が変化する機能を有する。
 当該絶縁体は、強誘電性を有しうる材料に重畳するように設けられ、当該絶縁体及び強誘電性を有しうる材料は、当該一対の電極の間に設けられる。また、FTJ素子は、トンネル絶縁膜として機能する絶縁体が強誘電性を有しうる材料に重畳するように設けられているため、整流特性を有する。例えば、FTJ素子が、一対の電極の一方、トンネル絶縁膜として機能する絶縁体、強誘電性を有しうる材料、一対の電極の他方の順に積層されている構成であるとき、FTJ素子の電流が流れる順方向は、一対の電極の一方から一対の電極の他方への方向となる。なお、本明細書では、当該一対の電極の一方を入力端子と記載し、当該一対の電極の他方を出力端子と記載することがある。
 例えば、本明細書等で説明するFTJ素子は、平坦な絶縁膜又は導電膜上に、第1の導電体、トンネル絶縁膜、強誘電性を有しうる材料、第2の導電体をこの順に積層することで、形成することができる。なお、第1の導電体は下部電極と言い換えることができ、第2の導電体は上部電極と言い換えることができる。また、このとき、第1の導電体及び第2の導電体は上述した一対の電極であり、第1の導電体(下部電極)は、一例として、入力端子として機能し、第2の導電体(上部電極)は、一例として、出力端子として機能する。また、例えば、本明細書等で説明するFTJ素子は、平坦な絶縁膜又は導電膜上に、第1の導電体(下部電極)、強誘電性を有しうる材料、トンネル絶縁膜、第2の導電体(上部電極)をこの順に積層して形成されてもよい。また、このとき、第1の導電体(下部電極)は、一例として、出力端子として機能し、第2の導電体(上部電極)は、一例として、入力端子として機能する。
 また、トンネル絶縁膜としては、例えば、酸化シリコン、窒化シリコン、酸化シリコンと窒化シリコンの積層体などを用いることができる。
 また、前述したとおり、FTJ素子は、強誘電性を有しうる材料の分極の方向、強度に応じて、抵抗値が変化する。例えば、FTJ素子の入力端子と出力端子との間の強誘電性を有しうる材料において、分極の向きが出力端子から入力端子の方向(このとき分極ベクトルの方向を負とする)となっているとき、FTJ素子において入力端子から出力端子に流れる電流の量は大きくなる。一方、FTJ素子の入力端子と出力端子との間の強誘電性を有しうる材料において、分極の向きが入力端子から出力端子(このとき分極ベクトルの方向を正とする)の方向となっているとき、FTJ素子において入力端子から出力端子に流れる電流の量は小さくなる。つまり、FTJ素子において、分極の方向が入力端子から出力端子の方向となっている場合、FTJ素子の入力端子から出力端子に流れる電流に対する抵抗値は大きくなり、また、FTJ素子において、分極の方向が出力端子から入力端子の方向となっている場合、FTJ素子の入力端子から出力端子に流れる電流に対する抵抗値は小さくなる。
 なお、FTJ素子の強誘電性を有しうる材料で分極を起こす(分極の方向を変化させる)方法としては、例えば、FTJ素子の入力端子と出力端子との間に、高電圧を与えればよい。例えば、FTJ素子の入力端子側に高レベル電位、出力端子側に低レベル電位を与えることで、FTJ素子の強誘電性を有しうる材料において、分極の向きが入力端子から出力端子の方向(正方向)に向き、一方、FTJ素子の入力端子側に低レベル電位、出力端子側に高レベル電位を与えることで、分極の向きが出力端子から入力端子の方向(負方向)に向く。なお、FTJ素子は、分極の強度においてヒステリシス性を有するため、分極を起こす(分極の方向を変化させる)には、FTJ素子の構造に相応した電圧を印加する必要があり、当該電圧よりも低い電圧では、FTJ素子において、分極は起こらない(分極の方向は変化しない)。
 なお、本明細書の図面において、FTJ素子は、ダイオードの回路記号に、矢印を加えたものとして表している。また、本明細書の図面において、配線に接続されているダイオードの回路記号のアノードに相当する三角形の辺を、FTJ素子における入力端子とし、配線に接続されているダイオードの回路記号のカソードに相当する三角形の頂点及び線を、FTJ素子における出力端子とする。
 また、強誘電性を有しうる材料としては、例えば、酸化ハフニウムを用いることが好ましい。また、FTJ素子に含まれる強誘電性を有しうる材料として酸化ハフニウムを用いる場合、酸化ハフニウムの膜厚(又は、FTJ素子の一対の電極の間の距離)は、10nm以下とすることが好ましく、5nm以下とすることがより好ましく、2nm以下とすることがさらに好ましい。
 または、強誘電性を有しうる材料としては、酸化ハフニウム以外としては、酸化ジルコニウム、酸化ジルコニウムハフニウム(HfZrO(Xは0よりも大きい実数とする)と記載する場合がある)、酸化ハフニウムに元素J1(ここでの元素J1は、ジルコニウム(Zr)、シリコン(Si)、アルミニウム(Al)、ガドリニウム(Gd)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)など。)を添加した材料、酸化ジルコニウムに元素J2(ここでの元素J2は、ハフニウム(Hf)、シリコン(Si)、アルミニウム(Al)、ガドリニウム(Gd)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)など。)を添加した材料、などが挙げられる。また、強誘電性を有しうる材料として、チタン酸鉛(PbTiOと記載する場合がある)、チタン酸バリウムストロンチウム(BST)、チタン酸ストロンチウム、チタン酸ジルコン酸鉛(PZT)、タンタル酸ビスマス酸ストロンチウム(SBT)、ビスマスフェライト(BFO)、チタン酸バリウム、などのペロブスカイト構造を有する圧電性セラミックを用いてもよい。また、強誘電性を有しうる材料としては、例えば、上記に列挙した材料から選ばれた混合物又は化合物とすることができる。又は、強誘電性を有しうる材料は、上記に列挙した材料から選ばれた複数の材料からなる積層構造とすることができる。ところで、酸化ハフニウム、酸化ジルコニウム、酸化ジルコニウムハフニウム、および酸化ハフニウムに元素J1を添加した材料などは、成膜条件だけでなく、各種プロセスなどによっても結晶構造(特性)が変わり得る可能性があるため、本明細書等では強誘電性を発現する材料のみを強誘電体と呼ぶだけでなく、強誘電性を有しうる材料とも呼んでいる。
 また、強誘電性を有しうる材料として酸化ジルコニウムハフニウムを用いる場合、原子層堆積(ALD:Atomic Layer Deposition)法、特に熱ALD法を用いて成膜することが好ましい。また、熱ALD法を用いて、強誘電性を有しうる材料を成膜する場合、プリカーサとして炭化水素(Hydro Carbon、HCともいう)を含まない材料を用いると好適である。強誘電性を有しうる材料中に、水素、及び炭素のいずれか一方または双方が含まれる場合、強誘電性を有しうる材料の結晶化を阻害する場合がある。このため、上記のように、炭化水素を含まないプリカーサを用いることで、強誘電性を有しうる材料中の、水素、及び炭素のいずれか一方または双方の濃度を低減することが好ましい。例えば、炭化水素を含まないプリカーサとしては、塩素系材料があげられる。なお、強誘電性を有しうる材料として、酸化ハフニウムおよび酸化ジルコニウムを有する材料(酸化ジルコニウムハフニウムなど)を用いる場合、プリカーサとしては、HfCl、及び/またはZrClを用いればよい。
 なお、強誘電性を有しうる材料を用いた膜を成膜する場合、膜中の不純物、ここでは水素、炭化水素、及び炭素の少なくとも一以上を徹底的に排除することで、高純度真性な強誘電性を有しうる膜を形成することができる。なお、高純度真性な強誘電性を有しうる膜と、後述する実施の形態に示す高純度真性な酸化物半導体とは、製造プロセスの整合性が非常に高い。よって、生産性が高い半導体装置の作製方法を提供することができる。
 また、強誘電性を有しうる材料として酸化ジルコニウムハフニウムを用いる場合、熱ALD法を用いて酸化ハフニウムと酸化ジルコニウムとを1:1の組成になるように交互に成膜すると好ましい。
 また、熱ALD法を用いて、強誘電性を有しうる材料を成膜する場合、酸化剤はHOまたはOを用いることができる。ただし、熱ALD法の酸化剤としては、これに限定されない。例えば、熱ALD法の酸化剤としては、O、O、NO、NO、HO、及びHの中から選ばれるいずれか一または複数を含んでもよい。
 また、強誘電性を有しうる材料の結晶構造は、特に限定されない。例えば、強誘電性を有しうる材料の結晶構造としては、立方晶系、正方晶系、直方晶系、及び単斜晶系の中から選ばれるいずれか一の結晶構造または複数を有する複合構造とすればよい。特に強誘電性を有しうる材料としては、直方晶系の結晶構造を有すると、強誘電性が発現するため好ましい。または、強誘電性を有しうる材料として、アモルファス構造と、結晶構造とを有する複合構造としてもよい。
 トランジスタM1乃至トランジスタM3のそれぞれとしては、例えば、OSトランジスタを適用することができる。また、OSトランジスタのチャネル形成領域に含まれる金属酸化物としては、例えば、インジウム、ガリウム、亜鉛の少なくとも一を含む酸化物が含まれていることが好ましい。又は、当該金属酸化物としては、例えば、インジウム、元素M(元素Mとしては、例えば、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種などが挙げられる。)、亜鉛の少なくとも一を含む酸化物としてもよい。また、トランジスタM1乃至トランジスタM3は、実施の形態6に記載するトランジスタの構造であることが更に好ましい。
 また、トランジスタM1乃至トランジスタM3のそれぞれとしては、OSトランジスタ以外では、シリコンがチャネル形成領域に含まれるトランジスタ(以後、Siトランジスタと呼称する)を適用してもよい。また、当該シリコンとしては、例えば、非晶質シリコン(水素化アモルファスシリコンと呼ぶ場合がある)、微結晶シリコン、多結晶シリコン、単結晶シリコンなどとしてもよい。
 また、トランジスタM1乃至トランジスタM3のそれぞれとしては、OSトランジスタ及びSiトランジスタ以外では、Geなどがチャネル形成領域に含まれているトランジスタ、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体がチャネル形成領域に含まれているトランジスタ、カーボンナノチューブがチャネル形成領域に含まれるトランジスタ、有機半導体がチャネル形成領域に含まれるトランジスタ等を適用してもよい。
 なお、トランジスタM1乃至トランジスタM3のそれぞれのチャネル形成領域には、同じ材料が含まれていてもよいし、互いに異なる材料が含まれていてもよい。例えば、トランジスタM1乃至トランジスタM3のうち、一部がOSトランジスタであって、残りがSiトランジスタであってもよい。
 また、図1Aに図示しているトランジスタM1乃至トランジスタM3は、一例として、チャネルの上下にゲートを有する構造のトランジスタとしており、トランジスタM1乃至トランジスタM3のそれぞれは第1ゲートと第2ゲートとを有する。便宜上、一例として、第1ゲートをゲート(フロントゲートと記載する場合がある。)、第2ゲートをバックゲートとして区別するように記載しているが、第1ゲートと第2ゲートは互いに入れ替えることができる。そのため、本明細書等において、「ゲート」という語句は「バックゲート」という語句と入れ替えて記載することができる。同様に、「バックゲート」という語句は「ゲート」という語句と入れ替えて記載することができる。具体例としては、「ゲートは第1配線に電気的に接続され、バックゲートは第2配線に電気的に接続されている」という接続構成は、「バックゲートは第1配線に電気的に接続され、ゲートは第2配線に電気的に接続されている」という接続構成として置き換えることができる。
 また、本発明の一態様の半導体装置に係るメモリセルMCは、トランジスタのバックゲートの接続構成に依らない。図1Aに図示されているトランジスタM1乃至トランジスタM3には、バックゲートが図示され、当該バックゲートの接続構成については図示されていないが、当該バックゲートの電気的な接続先は、設計の段階で決めることができる。例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのオン電流を高めるために、ゲートとバックゲートとを電気的に接続してもよい。つまり、例えば、トランジスタM1のゲートとバックゲートとを電気的に接続してもよい。また、例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのしきい値電圧を変動させるため、または、そのトランジスタのオフ電流を小さくするために、外部回路などと電気的に接続されている配線を設けて、当該外部回路などによってトランジスタのバックゲートに固定電位、又は可変電位を与えてもよい。なお、これについては、図1Aだけでなく、明細書の他の箇所に記載されているトランジスタ、又は他の図面に図示されているトランジスタについても同様である。
 また、本発明の一態様の半導体装置に係るメモリセルMCは、メモリセルMCに含まれるトランジスタの構造に依らない。例えば、図1Aに図示しているトランジスタM1乃至トランジスタM3のそれぞれは、図1Bに示すとおり、バックゲートを有さないような構成、つまり、シングルゲート構造のトランジスタとしてもよい。また、一部のトランジスタはバックゲートを有している構成とし、別の一部のトランジスタは、バックゲートを有さない構成としてもよい。なお、これについては、図1Aだけでなく、明細書の他の箇所に記載されているトランジスタ、又は他の図面に図示されているトランジスタについても同様である。
 また、図1Aに図示しているトランジスタM1乃至トランジスタM3は、一例として、nチャネル型トランジスタを図示しているが、状況に応じて、又は、場合によって、全て、又は一部をpチャネル型トランジスタに置き換えてもよい。また、nチャネル型トランジスタをpチャネル型トランジスタに置き換えた場合、メモリセルMCが正常に動作するように、メモリセルMCなどに入力される電位などを適切に変更する必要がある。また、メモリセルMCから出力される結果も変わる場合がある。なお、これについては、図1Aだけでなく、明細書の他の箇所に記載されているトランジスタ、又は他の図面に図示されているトランジスタについても同様である。また、本実施の形態では、トランジスタM1乃至トランジスタM3がnチャネル型トランジスタとして、メモリセルMCの構成、及び動作を説明する。
 図1AのメモリセルMCにおいて、トランジスタM1の第1端子は、配線WDLに電気的に接続され、トランジスタM1のゲートは、配線WWLに電気的に接続されている。また、FTJ素子FJAの入力端子は、配線FCAに電気的に接続されている。また、FTJ素子FJAの出力端子は、トランジスタM1の第2端子と、FTJ素子FJBの入力端子と、トランジスタM2のゲートと、に電気的に接続されている。また、FTJ素子FJBの出力端子は、配線FCBに電気的に接続されている。また、トランジスタM2の第1端子は、配線VCEに電気的に接続され、トランジスタM2の第2端子は、トランジスタM3の第1端子に電気的に接続されている。トランジスタM3の第2端子は、配線RDLに電気的に接続され、トランジスタM3のゲートは、配線RWLに電気的に接続されている。
 配線WDLは、一例として、メモリセルMCに書き込まれるデータを送信する配線として機能する。つまり、配線WDLは、書き込みデータ線として機能してもよい。
 配線RDLは、一例として、メモリセルMCから読み出されたデータを送信する配線として機能する。つまり、配線RDLは、読み出しデータ線として機能してもよい。
 配線WWLは、一例として、データの書き込み先となるメモリセルMCを選択するための配線として機能する。つまり、配線WWLは、書き込みワード線として機能してもよい。
 配線RWLは、一例として、データを読み出すメモリセルMCを選択するための配線として機能する。つまり、配線RWLは、読み出しワード線として機能してもよい。
 配線FCA、及び配線FCBのそれぞれは、一例として、メモリセルMCにデータを書き込むときに、FTJ素子FJA、及びFTJ素子FJBのそれぞれに含まれる、強誘電性を有しうる材料に分極を生じさせる程度の電位を与える配線として機能する。また、配線FCA、及び配線FCBのそれぞれは、一例として、メモリセルMCからデータを読み出すときに、強誘電性を有しうる材料の分極を変化させない程度の電位を与える配線としても機能する。
 配線VCEは、一例として、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位、低レベル電位、接地電位などとすることができる。
 ところで、詳細な動作例については、後述するが、メモリセルMCの動作としては、配線FCAと配線FCBとの間に電圧を印加して、FTJ素子FJAと、FTJ素子FJBと、のそれぞれに当該電圧の分圧をかける。このとき、FTJ素子FJAと、FTJ素子FJBと、のそれぞれには、トンネル電流が流れる。このとき、トランジスタM1を介して、当該トンネル電流のリークを防ぎたい場合には、トランジスタM1としてはOSトランジスタを用いることが好ましい。OSトランジスタはオフ電流が非常に低いため、FTJ素子FJA及び/又はFTJ素子FJBに流れるトンネル電流の配線WDL側へのリークを防ぐことができる場合がある。
<動作例>
 次に、図1AのメモリセルMCにおける、データの書き込み動作例、及びデータの読み出し動作例について説明する。
<<データの書き込み動作例>>
 図2は、図1AのメモリセルMCにおけるデータの書き込み動作の一例を示したタイミングチャートである。図2のタイミングチャートは、時刻T11から時刻T18までの間、及びその近傍の時刻における、配線WWL、配線WDL、配線FCA、配線FCB、及び配線RWLの電位の変化を示している。
 なお、本動作例において、配線RDLは電位が変化しないため、図2のタイミングチャートには図示しない。また、時刻T11から時刻T18までの間における配線RDLの電位は、特に限定されないものとする。
 また、配線VCEが与える電位は、前述したとおり、高レベル電位、低レベル電位、接地電位などとすることができるが、本動作例では、低レベル電位VSSとする。
[時刻T11から時刻T12まで]
 時刻T11から時刻T12までの間において、配線WWL、及び配線RWLのそれぞれの電位は、低レベル電位(図2には、Lowと記載している)となっている。このため、トランジスタM1のゲートには低レベル電位が入力され、トランジスタM3のゲートには低レベル電位が入力される。したがって、トランジスタM1、及びトランジスタM3のそれぞれはオフ状態となっている。
 また、配線WDLには、メモリセルMCに書き込むためのデータはまだ入力されていない。そのため、本動作例では、時刻T11から時刻T12までの間において、配線WDLの電位は、一例として、接地電位(図2には、GNDと記載している)とする。なお、本動作例において、接地電位は0Vとすることが好ましい。
 また、配線FCA、及び配線FCBのそれぞれが与える電位は、V0A、V0Bとする。V0A、及びV0Bは、例えば、基準電位、又は基準電位近傍の値とすることができる。基準電位近傍の値としては、例えば、基準電位をVとしたとき、V−0.1[V]以上、V−0.05[V]以上、又はV−0.01[V]以上の電位であることが好ましく、かつV+0.01[V]以下、V+0.05[V]以下、又はV+0.1[V]以下であることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。また、基準電位Vとしては、例えば、0[V]、又は接地電位とすることがより好ましい。また、V0A、及びV0Bは、互いに等しい電位とすることが更に好ましい。
[時刻T12から時刻T13まで]
 時刻T12から時刻T13までの間において、配線WWLが与える電位は、低レベル電位から高レベル電位(図2には、Highと記載している)に変化する。このため、トランジスタM1のゲートには高レベル電位が入力されて、トランジスタM1はオン状態となる。つまり、配線WDLとトランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)との間が導通状態となる。したがって、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)には、配線WDLが与える接地電位が与えられる。このため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位は、接地電位になるものとする。
[時刻T13から時刻T14まで]
 時刻T13から時刻T14までの間では、配線WDLからメモリセルMCに、メモリセルMCに書き込むためのデータが送信される。具体的には、例えば、配線WDLには、当該データに応じた電位としてV、又はVが与えられるものとする。トランジスタM1は、時刻T13以前からオン状態となっているため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)には、配線WDLが与えるV、又はVが与えられる。このため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位は、V、又はVになるものとする。
 なお、V、及びVのそれぞれは、2値のデータ(デジタル値)を表す電位とする。例えば、Vは“0”又は“1”の一方を示す電位とし、Vは、“0”又は“1”の他方を示す電位とすることができる。本動作例では、Vは“0”を示す電位とし、Vは“1”を示す電位として説明する。また、V、及びVの大きさとしては、V−VがFTJ素子FJA、及びFTJ素子FJBのそれぞれの分極を起こす、又は分極の方向を書き換える程度の電圧となるように設定することができる。例えば、FTJ素子FJA、及びFTJ素子FJBのそれぞれにおいて、分極を発生させる(分極の方向を変化)させる程度の電圧を3Vとした場合、V、Vは、V−Vが3V以上となるように設定すればよい。なお、Vは、例えば、V0A、及び/又はV0Bの電位と等しいことが好ましい。具体的には、例えば、Vを0Vなどとし、Vを3Vなどとすればよい。なお、本動作例では、2値のデータの書き込み、及び読み出しについて説明するが、メモリセルMCは、例えば、多値のデータ、アナログ電位の書き込み、及び/又は、読み出しを行うことができる場合がある。
[時刻T14から時刻T15まで]
 時刻T14から時刻T15までの間において、配線FCAには電位V1Aが与えられ、配線FCBには電位V0Bが与えられる。V1Aは、一例として、V0Aよりも高い電位であるものとする。また、V1Aは、FTJ素子FJAの出力端子がVであるときに、FTJ素子FJAにて分極が起こる程度の電位とする。なお、このとき、当該分極の向きは、FTJ素子FJAの入力端子から出力端子への方向(正方向)となる。
 なお、本動作例では、V1Aは、一例として、Vの電位と等しいことが好ましい。
 初めに、FTJ素子FJAに着目する。FTJ素子FJAの出力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJAに含まれる強誘電性を有する誘電体は、入力端子から出力端子への方向(正方向)に分極する。一方、FTJ素子FJAの出力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJAに含まれる強誘電性を有する誘電体において分極は変化しない。
 次に、FTJ素子FJBに着目する。FTJ素子FJBの入力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJBに含まれる強誘電性を有する誘電体において分極は変化しない。一方、FTJ素子FJBの入力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJBに含まれる強誘電性を有する誘電体は、入力端子から出力端子への方向(正方向)に分極する。
[時刻T15から時刻T16まで]
 時刻T15から時刻T16までの間において、配線FCAには電位V0Aが与えられ、配線FCBには電位V1Bが与えられる。V1Bは、一例として、V0Bよりも高い電位であるものとする。また、V1Bは、FTJ素子FJBの入力端子がVであるときに、FTJ素子FJBにて分極が起こる程度(分極の方向が変化する程度)の電位とする。なお、このとき、当該分極の向きは、FTJ素子FJBの出力端子から入力端子への方向(負方向)となる。
 なお、V1Bは、V1Aに等しいことが好ましい。つまり、V1Bは、Vに等しいことが好ましい。
 初めに、FTJ素子FJAに着目する。FTJ素子FJAの出力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJAに含まれる強誘電性を有する誘電体において分極の方向は変化しない。一方、FTJ素子FJAの出力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJAに含まれる強誘電性を有する誘電体は、出力端子から入力端子への方向(負方向)に分極する。
 次に、FTJ素子FJBに着目する。FTJ素子FJBの入力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJBに含まれる強誘電性を有する誘電体は、出力端子から入力端子への方向(負方向)に分極する。一方、FTJ素子FJBの入力端子(トランジスタM2のゲート)の電位がVであるとき、FTJ素子FJBに含まれる強誘電性を有する誘電体において分極の方向は変化しない。
 時刻T14から時刻T16までの間において、配線FCA、及び配線FCBの電位が、図2のタイミングチャートのとおり変化することで、配線WDLからトランジスタM2のゲートに与えられている電位に応じて、FTJ素子FJA、及びFTJ素子FJBの分極の方向が、次の表のとおりに定められる。
Figure JPOXMLDOC01-appb-T000001
 なお、時刻T16以降において、配線FCA、及び配線FCBが与える電位は、それぞれV0A、V0Bとする。つまり、時刻T16以降において、配線FCA、及び配線FCBが与える電位は、時刻T14以前において、配線FCA、及び配線FCBが与える電位と同様としている。
[時刻T16から時刻T17まで]
 時刻T16から時刻T17までの間において、配線WDLからメモリセルMCへのデータの送信が終了する。具体的には、例えば、配線WDLには、接地電位が与えられるものとする。トランジスタM1は、時刻T16以前からオン状態となっているため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)には、配線WDLが与える接地電位が与えられる。このため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位は、接地電位になるものとする。
 トランジスタM1は、時刻T16以前からオン状態となっているため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)には、配線WDLが与える接地電位が与えられる。このため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位は、接地電位になるものとする。なお、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位が接地電位になっても、時刻T14から時刻T16までの間に書き込まれたFTJ素子FJA、及びFTJ素子FJBのそれぞれの分極の方向は、変化しない。
[時刻T17から時刻T18まで]
 時刻T17から時刻T18までの間において、配線WWLの電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM1のゲートには低レベル電位が入力されて、トランジスタM1はオフ状態となる。
 上述した時刻T11から時刻T18までの間の動作によって、図1AのメモリセルMCにデータを書き込むことができる。
<<データの読み出し動作例>>
 図3Aは、図1AのメモリセルMCにおけるデータの読み出し動作の一例を示したタイミングチャートである。図3Aのタイミングチャートは、時刻T21から時刻T27での間、及びその近傍の時刻における、配線WWL、配線FCA、配線FCB、配線RWL、及び配線RDLの電位の変化について示している。
 なお、本動作例において、配線WDLは電位が変化がしないため、図3Aのタイミングチャートには図示しない。また、時刻T21から時刻T27までの間における配線WDLの電位は、特に限定されないものとする。なお、本動作例では、一例として、接地電位が与えられているものとする。
 また、配線VCEが与える電位は、前述したとおり、高レベル電位、低レベル電位、接地電位などとすることができるが、本動作例では、低レベル電位VSSとする。
[時刻T21から時刻T22まで]
 時刻T21から時刻T22までの間において、配線WWL、及び配線RWLのそれぞれの電位は、低レベル電位(図3Aには、Lowと記載している)となっている。このため、トランジスタM1のゲートには低レベル電位が入力され、トランジスタM3のゲートには低レベル電位が入力される。したがって、トランジスタM1、及びトランジスタM3のそれぞれはオフ状態となっている。
 また、時刻T21から時刻T22までの間において、配線FCA、及び配線FCBのそれぞれが与える電位は、時刻T11から時刻T12までの間における配線FCA、及び配線FCBのそれぞれが与える電位と同様に、V0A、V0Bとする。
[時刻T22から時刻T23まで]
 時刻T22から時刻T23までの間では、配線RDLの電位には、定電圧である電位VRE1が与えられる。VRE1は、VSSよりも高い読み出し用の定電圧である。
[時刻T23から時刻T24まで]
 時刻T23から時刻T24までの間において、配線FCAには電位Vが与えられ、配線FCBには電位V0Bが与えられる。Vは、V0A及びV0Bよりも高く、かつV1Aよりも低い電位とする。また、配線FCBの電位がV0Bであるとき、Vは、FTJ素子FJA、及びFTJ素子FJBにて分極の変化が起こらない(分極の方向が変化しない)程度の電位とする。
 このとき、配線FCAと配線FCBとの間では、V−V0Bの電圧がかかるため、FTJ素子FJA、及びFTJ素子FJBのそれぞれには、当該電圧の分圧がかかる。例えば、配線FCAと配線FCBとの間に電圧V−V0Bがかかって、FTJ素子FJA、及びFTJ素子FJBにおいて、a:b(a、及びbは正の実数とする)の比で分圧がかかるとしたとき、FTJ素子FJAの入力端子と出力端子との間の電圧をVFJAとすると、VFJA=(V−V0B)×a/(a+b)となり、FTJ素子FJBの入力端子と出力端子との間の電圧をVFJBとすると、VFJB=(V−V0B)×b/(a+b)となる。なお、VFJA、及びVFJBは、V−V0B=VFJA+VFJBの関係を満たす。
 また、FTJ素子FJAにおいて、分極の方向が入力端子(配線FCA)から出力端子への方向(正方向)となっているとき、VFJAは高くなり、また、分極の方向が出力端子から入力端子(配線FCA)の方向(負方向)となっているとき、VFJAは低くなる。同様に、FTJ素子FJBにおいて、分極の方向が出力端子(配線FCB)から入力端子への方向(負方向)となっているとき、VFJBは低くなり、また、分極の方向が入力端子から出力端子(配線FCB)の方向(正方向)となっているとき、VFJBは高くなる。
 ここで、例えば、図2のタイミングチャートの動作例において、メモリセルMCに書き込まれた電位をVとしたとき、FTJ素子FJAの分極の方向が入力端子(配線FCA)から出力端子への方向(正方向)となるため、VFJAは高くなり、FTJ素子FJBの分極の方向が出力端子(配線FCB)から入力端子への方向(負方向)となるため、VFJBは低くなる。つまり、FTJ素子FJA、及びFTJ素子FJBのそれぞれにかかる分圧の割合a:bとしては、a>bとなる。また、このときのトランジスタM2のゲート(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位をVHLD0とする。
 また、例えば、図2のタイミングチャートの動作例において、メモリセルMCに書き込まれた電位をVとしたとき、FTJ素子FJAの分極の方向が出力端子から入力端子(配線FCA)への方向(負方向)となるため、VFJAは低くなり、FTJ素子FJBの分極の方向が入力端子から出力端子(配線FCB)への方向(正方向)となるため、VFJBは高くなる。つまり、FTJ素子FJA、及びFTJ素子FJBのそれぞれにかかる分圧の割合a:bとしては、b>aとなる。また、このときのトランジスタM2のゲート(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位をVHLD1とする。
 FTJ素子FJBの入力端子と出力端子との間の電圧VFJBは、メモリセルMCに書き込まれた電位がVのときよりもVのときのほうが高くなる。そのため、配線FCBが与える電位V0Bを基準としたとき、トランジスタM2のゲート(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位は、メモリセルMCに書き込まれた電位がVのときよりもVのときのほうが高くなる。つまり、VHLD1>VHLD0となる。
[時刻T24から時刻T25まで]
 時刻T24から時刻T25までの間において、配線RWLが与える電位は、低レベル電位から高レベル電位(図3AではHighと記載している)に変化する。このため、トランジスタM3のゲートには高レベル電位が入力されて、トランジスタM3はオン状態となる。
 ところで、トランジスタM2のゲートの電位は、VHLD0、又はVHLD1となっており、トランジスタM2の第1端子の電位は、VSSとなっている。さらに、トランジスタM3はオン状態となっているため、トランジスタM2の第2端子には、一例として、配線RDLから、VSSよりも高い定電位VRE1が入力される。ここで、トランジスタM2のゲート−ソース間電圧VHLD0−VSS(又は、VHLD1−VSS)がトランジスタM2のしきい値電圧Vthよりも高いものとすると、トランジスタM2には、ゲート−ソース間電圧VHLD0−VSS(又は、VHLD1−VSS)に応じた電流が流れる。
 つまり、トランジスタM3をオン状態にすることによって、トランジスタM2のゲート(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位に応じて、配線RDLに流れる電流量が決まる。具体的には、VHLD1>VHLD0であるため、トランジスタM2から配線RDLに流れる電流は、配線WDLからメモリセルMCに与えられた電位がVのときよりもVのときのほうが大きくなる。
 ここで、配線RDLに流れる電流を読み出し回路(例えば、電流電圧変換回路など)などに入力することによって、メモリセルMCに保持されたデータを読み出すことができる。
[時刻T25から時刻T26まで]
 時刻T25から時刻T26までの間において、配線RWLの電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM3のゲートには低レベル電位が入力され、トランジスタM3はオフ状態となる。
[時刻T26から時刻T27まで]
 時刻T26から時刻T27までの間において、配線FCAには電位V0Aが与えられ、配線FCBには電位V0Bが与えられている。つまり、時刻T26以降において、配線FCA、及び配線FCBが与える電位は、時刻T23以前において、配線FCA、及び配線FCBが与える電位と同様としている。
 上述した時刻T21から時刻T27までの間の動作例によって、図1AのメモリセルMCに書き込まれたデータを読み出すことができる。また、図1AのメモリセルMCからデータを読み出したとき、FTJ素子FJA、及びFTJ素子FJBのそれぞれの分極の方向は変化しないため、上述したデータの読み出し動作例は、破壊読み出しとならない。つまり、メモリセルMCに書き込まれたデータを保持したまま、メモリセルMCから当該データを読み出すことができる。
 なお、図3Aのタイミングチャートの読み出し動作例では、配線VCEが与える電位を低レベル電位VSSとしたが、配線VCEが与える電位は高レベル電位としてもよい。図3Bのタイミングチャートは、図3Aのタイミングチャートの読み出し動作例において、配線VCEが与える電位を高レベル電位にした場合の動作例を示している。
 以下に、図3Bのタイミングチャートの読み出し動作例について、説明する。なお、図3Bのタイミングチャートの読み出し動作において、図3Aのタイミングチャートの読み出し動作と内容が重複する箇所については、説明を省略する。また、本動作例において、配線VCEが与える高レベル電位をVDDとする。
 また、図3Bのタイミングチャートの時刻T24以降の配線RDLにおいて、電位の変動を実線と破線で示している。実線で示した電位変化は、図2のタイミングチャートの書き込み動作において、配線WDLからメモリセルMCにVが入力された場合を示し、また、破線で示した電位変化は、図2のタイミングチャートの書き込み動作において、配線WDLからメモリセルMCにVが入力された場合を示している。
 図3Bのタイミングチャートにおいて、時刻T22から時刻T23までの間では、配線RDLに対して、低レベル電位VSSにプリチャージが行われるものとする。また、配線RDLに対するプリチャージが行われた後、配線RDLは、フローティング状態になるものとする。
 また、時刻T24から時刻T25までの間では、配線RWLの電位が、低レベル電位から高レベル電位に変化する。このため、トランジスタM3のゲートには高レベル電位が入力されて、トランジスタM3はオン状態となる。
 このとき、トランジスタM2のゲートの電位は、VHLD0、又はVHLD1となっており、トランジスタM2の第1端子の電位は、VDDとなっている。さらに、トランジスタM3はオン状態となっているため、トランジスタM2の第2端子には、配線RDLにおいてプリチャージされた電位が入力される。ここで、トランジスタM2のゲート−ソース間電圧VHLD0−VSS(又は、VHLD1−VSS)がトランジスタM2のしきい値電圧Vthよりも高いものとすると、配線RDLの電位は、VSSから所定の電位まで上昇する。例えば、トランジスタM2のゲート(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位がVHLD0であるとき、理想的には、配線RDLの電位はVSSからVHLD0−Vth(図3BではVONと記載している。)まで上昇する。また、例えば、トランジスタM2のゲート(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位がVHLD1であるとき、理想的には、配線RDLの電位はVSSからVHLD1−Vth(図3BではVOPと記載している。)まで上昇する。
 上記のとおり、配線VCEが与える電位を高レベル電位にした場合でも、配線RDLにプリチャージする電位を最適な値にすることで、図3Aのタイミングチャートと読み出し動作例と同様に、メモリセルMCに保持されているデータを読み出すことができる。
 なお、図3A及び図3Bのタイミングチャートの時刻T24から時刻T25までの間では、配線RDLに流れる電流、又は配線RDLの電位を取得して、メモリセルMCに保持されたデータを読み出す動作の一例について説明したが、メモリセルMCの読み出し動作は上述した動作例に限定されない。
 また、例えば、図3Aのタイミングチャートの動作例において、配線VCEが与える電位をVDDとして、時刻T22以降において、配線RDLにVDDよりも低い読み出し用の定電圧を与えて、図3Aのタイミングチャートの動作と同様に、配線RDLに流れる電流の量を取得することによって、メモリセルMCに保持されているデータを読み出すことができる。
 なお、本実施の形態で説明した、図2、図3A、及び図3Bのタイミングチャートの動作は、一例であるため、状況に応じて、又は場合によって、その動作を変更することができる。例えば、図2のタイミングチャートの時刻T12から時刻T17までの間で、配線WWLに高レベル電位が与えられ、時刻T13から時刻T16までの間で、配線WDLにV又はVが与えられているが、配線WDLにV又はVが与えられている期間内に、配線WWLに高レベル電位が与えられていてもよい。また、配線FCAに電位V1Aが与えられ、かつ配線FCBに電位V0Bが与えられている期間、及び配線FCAに電位V0Aが与えられて、かつ配線FCBに電位V1Bが与えられている期間は、配線WWLに高レベル電位が与えられ、かつ配線WDLにV又はVが与えられている期間内であれば、どのタイミングでもよい。また、配線FCAに電位V0Aが与えられて、かつ配線FCBに電位V1Bが与えられている期間は、配線FCAに電位V1Aが与えられ、かつ配線FCBに電位V0Bが与えられている期間よりも先でもよい。
<構成例2>
 本発明の一態様の半導体装置である、記憶装置に備えられるメモリセルMCは、図1Aの回路構成に限定されない。当該記憶装置に備えられるメモリセルMCの回路構成は、場合によって、又は、状況に応じて、変更してもよい。本構成例では、図1AのメモリセルMCに備えられているFTJ素子FJA、及びFTJ素子FJBの一方を、別の回路素子に変更したメモリセルMCについて説明する。
 例えば、メモリセルMCは、図4Aに示すとおり、FTJ素子FJAを強誘電キャパシタFEAに置き換え、かつFTJ素子FJBを強誘電キャパシタFEBに置き換えた構成としてもよい。
 なお、本明細書の図面において、強誘電キャパシタ(例えば、強誘電キャパシタFEA、強誘電キャパシタFEBなど)の回路記号は、図4Aのとおり、容量の回路記号に斜線を加えたものとしている。また、別の回路記号としては、図4Bのとおり、容量の回路記号において、互いに平行である2本の線の間に複数の斜線を加えたものとしてもよい。
 図4A、及び図4BのメモリセルMCのとおり、図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBのそれぞれを強誘電キャパシタFEA、及び強誘電キャパシタFEBに置き換えても、図1AのメモリセルMCと同様に、配線FCAと配線FCBとの間にかかる電圧を、強誘電キャパシタFEA、及び強誘電キャパシタFEBによって分圧することができる。また、図4A(図4B)のメモリセルMCは、図1AのメモリセルMCと同様に、図4A(図4B)メモリセルMCに書き込まれるデータに応じて、強誘電キャパシタFEA、及び強誘電キャパシタFEBのそれぞれの分圧の比が決められるため、メモリセルMCへのデータの書き込みと、保持したデータを破壊せずに、当該データを読み出すことができる場合がある。
 また、図4A、及び図4Bでは、図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBを強誘電キャパシタFEA、及び強誘電キャパシタFEBに置き換えた例を示したが、図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBは、強誘電キャパシタ以外の回路素子に置き換えてもよい。例えば、図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBは、図4Cに示すとおり、抵抗値を変化させることができる回路素子ANA、及び回路素子ANBに置き換えてもよい。具体的には、回路素子ANAの入力端子は、配線FCAに電気的に接続され、回路素子ANAの出力端子は、トランジスタM1の第2端子と、トランジスタM2のゲートと、回路素子ANBの入力端子と、に電気的に接続され、回路素子ANBの出力端子は、配線FCBに電気的に接続されている。回路素子ANA、及び回路素子ANBとしては、例えば、ReRAM(Resistive Random Access Memory)などに用いられる抵抗変化素子、MRAM(Magnetoresistive Random Access Memory)などに用いられるMTJ(Magnetic Tunnel Junction、又はMagnetic Transportation Junction)素子、相変化メモリ(PCM)素子などが挙げられる。
 図4CのメモリセルMCのとおり、図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBのそれぞれを回路素子ANA、及び回路素子ANBに置き換えても、図1AのメモリセルMCと同様に、配線FCAと配線FCBとの間にかかる電圧を、回路素子ANA、及び回路素子ANBによって分圧することができる。また、図4CのメモリセルMCは、図1AのメモリセルMCと同様に、図4CのメモリセルMCに書き込まれるデータに応じて、回路素子ANA、及び回路素子ANBのそれぞれの分圧の比が決められるため、メモリセルMCへのデータの書き込みと、保持したデータを破壊せずに、当該データを読み出すことができる場合がある。
 また、例えば、メモリセルMCは、図5Aに示すとおり、図1AのメモリセルMCのFTJ素子FJAを抵抗REAに置き換えた構成としてもよい。又は、図5Bに示す通り、FTJ素子FJAを抵抗REAに置き換えず、FTJ素子FJBを抵抗REBに置き換えた構成としてもよい。
 図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBの一方を抵抗に置き換えても、FTJ素子FJA、及びFTJ素子FJBの他方によって、メモリセルMCに書き込まれるデータを保持することができる。また、上述した図2のタイミングチャートの書き込み動作例によって、当該データ(V又はV)に応じて、FTJ素子FJA、及びFTJ素子FJBの他方において発生する分極の方向を定めることができる。そのため、図5A、及び図5BのメモリセルMCの回路構成を用いても、保持したデータを破壊せずに、当該データを読み出すことができる。
 また、例えば、メモリセルMCは、図5Cに示すとおり、図1AのメモリセルMCのFTJ素子FJAを容量CAに置き換えた構成としてもよい。又は、図5Dに示す通り、FTJ素子FJAを容量CAに置き換えず、FTJ素子FJBを容量CBに置き換えた構成としてもよい。
 図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBの一方を容量CAに置き換えても、図5A、及び図5Bと同様に、FTJ素子FJA、及びFTJ素子FJBの他方によって、メモリセルMCに書き込まれるデータを保持することができる。また、図5C及び図5Dに示すメモリセルMCを用いても、図5A、及び図5Bと同様に、保持したデータを破壊せずに、当該データを読み出すことができる。
 また、例えば、メモリセルMCは、図5Eに示すとおり、図1AのメモリセルMCのFTJ素子FJAを図4Cで説明した回路素子ANAに置き換えた構成としてもよい。又は、図5Fに示す通り、FTJ素子FJAを回路素子ANAに置き換えず、FTJ素子FJBを図4Cで説明した回路素子ANBに置き換えた構成としてもよい。なお、図5E、及び図5Fのそれぞれに示す回路素子ANA、及び回路素子ANBとしては、例えば、ReRAMなどに用いられる抵抗変化素子、MRAMなどに用いられるMTJ素子、相変化メモリ素子、強誘電キャパシタなどを用いることができる。
 図1AのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBの一方を回路素子ANA(回路素子ANB)に置き換えることで、図5A、及び図5Bと同様に、FTJ素子FJA、及びFTJ素子FJBの他方によって、メモリセルMCに書き込まれるデータを保持することができる。また、図5E及び図5Fに示すメモリセルMCを用いても、図5A、及び図5Bと同様に、保持したデータを破壊せずに、当該データを読み出すことができる。
 また、例えば、メモリセルMCは、図6A、及び図6Cに示すとおり、FTJ素子FJAをトランジスタM4Aに置き換えた構成としてもよい。
 具体的には、図6AのメモリセルMCにおいて、トランジスタM4Aの第1端子は、配線FCAと、トランジスタM4Aのゲートと、に電気的に接続され、トランジスタM4Aの第2端子は、トランジスタM1の第2端子と、トランジスタM2のゲートと、FTJ素子FJBの入力端子と、に電気的に接続されている。また、図6CのメモリセルMCにおいて、トランジスタM4Aの第1端子は、配線FCAに電気的に接続され、トランジスタM4Aの第2端子は、トランジスタM4Aのゲートと、トランジスタM1の第2端子と、トランジスタM2のゲートと、FTJ素子FJBの入力端子と、に電気的に接続されている。
 また、例えば、図6B、及び図6Dに示す通り、FTJ素子FJAをトランジスタM4Aに置き換えず、FTJ素子FJBをトランジスタM4Bに置き換えた構成としてもよい。
 具体的には、図6BのメモリセルMCにおいて、トランジスタM4Bの第1端子は、トランジスタM4Bのゲートと、トランジスタM1の第2端子と、トランジスタM2のゲートと、FTJ素子FJAの出力端子と、に電気的に接続され、トランジスタM4Bの第2端子は、配線FCBに電気的に接続されている。また、図6DのメモリセルMCにおいて、トランジスタM4Bの第1端子は、トランジスタM1の第2端子と、トランジスタM2のゲートと、FTJ素子FJAの出力端子と、に電気的に接続され、トランジスタM4Bの第2端子は、トランジスタM4Bのゲートと、配線FCBと、に電気的に接続されている。
 図6A、及び図6Cにおいて、トランジスタM4Aは、いわゆるダイオード接続された構成となっている。また、図6B、及び図6Dにおいて、トランジスタM4Bも、ダイオード接続された構成となっている。図6A乃至図6Dに示すとおり、FTJ素子FJA、及びFTJ素子FJBの一方を、ダイオードなどの整流特性を有する回路素子に置き換えても、FTJ素子FJA、及びFTJ素子FJBの他方によって、メモリセルMCに書き込まれるデータを保持することができる。また、図6A乃至図6Dに示すメモリセルMCを用いても、図5A乃至図5Dと同様に、保持したデータを破壊せずに、当該データを読み出すことができる。
 また、図6A、及び図6Cでは、トランジスタM4Aがダイオード接続された構成を示しているが、図6Eに示すとおり、トランジスタM4Aのゲートは、トランジスタM4Aの第1端子、及び第2端子ではなく、一例として、定電圧を与える配線BSAに電気的にされていてもよい。配線BSAは、トランジスタM4Aのゲートに、定電圧としてバイアス電圧を与える配線として機能する。配線BSAがトランジスタM4Aのゲートにバイアス電圧を与えることで、トランジスタM4Aの第1端子、第2端子、及びゲートのそれぞれの電位に応じた電流が、トランジスタM4Aの第1端子−第2端子間に流れる。また、トランジスタM4Aの第1端子−第2端子間の電圧と、FTJ素子FJBの入力端子−出力端子間の電圧と、のそれぞれは、配線FCAと配線FCBとの間の電圧の分圧となるため、FTJ素子FJBの分極の方向が定まると、FTJ素子FJBの入力端子−出力端子間の電圧が決まり、トランジスタM4Aの第1端子−第2端子間の電圧も決まる。このため、メモリセルMCに書き込まれるデータに応じて、トランジスタM2のゲートの電位が定まるため、図6Eに示すメモリセルMCを用いても、図5A乃至図5D、及び図6A乃至図6Dと同様に、データの書き込みと、当該データを破壊しない当該データの読み出しを行うことができる。
 また、図6B、及び図6Dでは、トランジスタM4Bがダイオード接続された構成を示しているが、図6Fに示すとおり、トランジスタM4Bのゲートは、トランジスタM4Bの第1端子、及び第2端子ではなく、一例として、定電圧を与える配線BSBに電気的にされていてもよい。つまり、図6FのメモリセルMCは、図6EのメモリセルMCと同様に、書き込まれるデータに応じて、FTJ素子FJAの入力端子−出力端子間の電圧と、トランジスタM4Bの第1端子−第2端子間の電圧と、が決められる。また、図6Eのメモリセルと同様に、持したデータを破壊せずに、当該データを読み出すことができる。
<構成例3>
 本構成例では、図1AのメモリセルMCとは異なる、本発明の一態様の半導体装置である記憶装置に備えることができるメモリセルについて、説明する。
 図7に示すメモリセルMCは、図1AのメモリセルMCの変形例であって、配線WDLと配線RDLとが1本の配線WRDLにまとめられ、かつトランジスタM3の第2端子が配線WRDLに電気的に接続されている構成となっている。
 つまり、図7のメモリセルMCは、書き込みデータ線と読み出しデータ線を1本の配線にまとめた場合の回路構成となっている。そのため、配線WRDLは、メモリセルMCに書き込むためのデータに送信する配線としても機能する。
 また、図7のメモリセルMCへのデータの書き込み動作例については、図2のタイミングチャートを参酌する。特に、配線WRDLに与えられる電位としては、図2のタイミングチャートに記載の配線WDLに与えられる電位と同様とすればよい。また、図7のメモリセルMCからのデータの読み出し動作例については、図3A、又は図3Bのタイミングチャートを参酌する。特に、配線WRDLに与えられる電位としては、図3A、又は図3Bのタイミングチャートに記載の配線RDLに与えられる電位と同様とすればよい。
 次に、図1A、図1B、及び図7のメモリセルMCとは異なる、本発明の一態様の半導体装置である記憶装置に備えることができるメモリセルについて、説明する。
 図8Aに示すメモリセルMCは、図1AのメモリセルMCの変形例であって、トランジスタM3が設けられていない構成となっている。また、トランジスタM3が設けられていないため、図8Aには配線RWLも設けられていない。また、図8AのメモリセルMCにおいて、トランジスタM2の第1端子は、配線VCEでなく、配線RVEに電気的に接続されている。なお、配線RVEは、一例として、可変電位を与える配線として機能する。具体的には、配線RVEは、例えば、高レベル電位(例えばVDDなど)、低レベル電位(例えばVSSなど)などの電位を、状況に応じて与えることができる。
 図1AのメモリセルMCは、トランジスタM3のオン状態とオフ状態の切り替えを行うことで、トランジスタM2の第2端子と配線RDLとの間を導通状態又は非導通状態にする構成としたが、図8AのメモリセルMCは、配線RVEに与えられる電位を変動させて、トランジスタM2の第2端子と配線RDLとの間を導通状態又は非導通状態にする構成となっている。
 図8AのメモリセルMCにデータの書き込む場合、配線WWL、配線WDL、配線FCA、及び配線FCBの電位変化については、図2のタイミングチャートの動作例を参酌する。なお、このとき、配線RVE、及び配線RDLのそれぞれに、互いに等しい電位(例えば、低レベル電位、接地電位など)が与えられることによって、トランジスタM2のゲートの電位に依らず、トランジスタM2をオフ状態にすることができる。また、メモリセルMCからデータの読み出しを行わないとき(メモリセルMCにおいてデータを保持するとき)についても同様に、配線RVE、及び配線RDLのそれぞれに等しい電位を与えることで、トランジスタM2をオフ状態にすればよい。
 図8AのメモリセルMCからデータを読み出す場合、一例として、図9Aに示すタイミングチャートの動作を行えばよい。なお、配線WWL、配線WDL、配線FCA、及び配線FCBの電位変化については、図3A、及び図3Bのタイミングチャートの動作例と同様であるため、これらの配線の電位変化については図3A、及び図3Bのタイミングチャートの説明を参酌する。
 図9Aのタイミングチャートの時刻T21から時刻T24までの間では、配線RVEの電位は、配線RDLと同様の電位変化としている。図9Aのタイミングチャートにおいて、配線RVE、及び配線RDLのそれぞれの電位は、時刻T21から時刻T24までの間では、低レベル電位となっている。これにより、時刻T21から時刻T24までの間では、トランジスタM2の第1端子−第2端子間の電圧は0Vとなるため、トランジスタM2をオフ状態にすることができる。
 また、図9Aのタイミングチャートの時刻T22から時刻T23までの間に、配線RDLはフローティング状態になるものとする。
 その後、図9Aのタイミングチャートの時刻T24から時刻T25までの間において、配線RVEの電位を低レベル電位(図9では、Lowと記載している)から高レベル電位(図9では、Highと記載している)に変化させることで、トランジスタM2が一時的にオン状態となり、図3Aのタイミングチャートの時刻T24から時刻T25までの間と同様に、配線RDLの高レベル電位を、トランジスタM2のゲートの電位に応じた電位に変動させることができる。その後、配線RDLの電位を読み出し回路などによって取得することで、図8AのメモリセルMCに保持されたデータを破壊せずに、当該データを読み出すことができる。
 次に、図9Aとは異なる、図8AのメモリセルMCからのデータの読み出し動作例について説明する。図9Bのタイミングチャートに示す動作例は、配線RDLに与えられている電圧の変化において、図9Aのタイミングチャートと異なっている。
 図9Bのタイミングチャートの時刻T21から時刻T24までの間では、配線RVEの電位は、配線RDLと同様の電位変化としている。図9Bのタイミングチャートにおいて、配線RVE、及び配線RDLのそれぞれの電位は、時刻T21から時刻T24までの間では、低レベル電位となっている。これにより、時刻T21から時刻T24までの間では、トランジスタM2の第1端子−第2端子間の電圧は0Vとなるため、トランジスタM2をオフ状態にすることができる。
 なお、図9Bのタイミングチャートの時刻T22から時刻T23までの間は、図9Aと異なり、配線RDLはフローティング状態にしなくてもよい。
 その後、図9Bのタイミングチャートの時刻T24から時刻T25までの間において、配線RVEの電位を低レベル電位(図9BではLowと記載している)よりも高い読み出し用の定電圧VRE2に変化させることで、トランジスタM2がオン状態となり、トランジスタM2を介して、配線RVEと配線RDLとの間に、トランジスタM2のゲートの電位に応じた電流が流れる。その後、配線RDLに流れる電流の量を電流読み出し回路などによって取得することで、図8AのメモリセルMCに保持されたデータを破壊せずに、当該データを読み出すことができる。
 また、本発明の一態様の半導体装置に係るメモリセルMCの回路構成は、図8AのメモリセルMCの回路構成に限定されない。本発明の一態様の半導体装置に係るメモリセルMCの構成は、場合によって、又は、状況に応じて、図8AのメモリセルMCを変更した構成としてもよい。
 例えば、図8AのメモリセルMCの回路構成は、図8Bに示すメモリセルMCの回路構成に変更してもよい。図8BのメモリセルMCは、図7に示すメモリセルMCと同様に、図8Aに図示されている配線WDLと配線RDLを一本の配線WRDLにまとめた構成となっている。
 配線WRDLは、一例として、図7のメモリセルMCに電気的に接続されている配線WRDLと同様に、メモリセルMCに書き込むためのデータに送信する配線としても機能し、また、メモリセルMCからデータを読み出すためにプリチャージ電位を供給する配線としても機能する。
 また、図8BのメモリセルMCへのデータの書き込み動作例については、図7のメモリセルMCのデータの書き込み動作例の説明を参酌する。特に、配線WRDLに与えられる電位としては、図2のタイミングチャートに記載の配線WDLに与えられる電位と同様とすればよい。また、図7のメモリセルMCへのデータの読み出し動作例については、図9A、又は図9Bのタイミングチャートを参酌する。特に、配線WRDLに与えられる電位としては、図3A、又は図3Bのタイミングチャートに記載の配線RDLに与えられる電位と同様とすればよい。
 本実施の形態で説明した、半導体装置にメモリセルMCを適用することによって、データの再書き込みが不要な半導体装置(非破壊読み出しを行う半導体装置)を構成することができる。また、半導体装置にメモリセルMCを適用することで、データの再書き込みが不要となるため、再書き込みに必要な消費電力を低減することができる。また、半導体装置にメモリセルMCを適用することで、データの再書き込みを行う回路を設ける必要が無くなるため、半導体装置の回路面積を低減することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
 本実施の形態では、上記実施の形態で説明したメモリセルMCを備えることができる記憶装置について説明する。
<記憶装置の構成例>
 図10は、当該記憶装置の回路構成の一例である。記憶装置100は、メモリセルアレイMCAと、回路WDDと、回路RDDと、回路WWDと、回路RWDと、回路FECDと、を有する。なお、図10の記憶装置100に適用できるメモリセルMCは、一例として、図1A(図1B)のメモリセルMCとしている。
 メモリセルアレイMCAは、複数のメモリセルMCを有する。また、メモリセルアレイMCAにおいて、複数のメモリセルMCは、m行n列(m、nのそれぞれは1以上の整数とする)のマトリクス状に配置されている。なお、図10において、一例として、i行j列(iは1以上m以下の整数であって、jは1以上n以下の整数である)に位置するメモリセルMCは、メモリセルMC[i,j]としている(メモリセルMC[i,j]は図示しない)。
 また、記憶装置100のメモリセルアレイMCAには、配線WDL[1]乃至配線WDL[n]と、配線RDL[1]乃至配線RDL[n]と、が列方向に延設されている。なお、配線WDL、及び配線RDLに付している[1]は、1列目の配線であることを表し、配線WDL、及び配線RDLに付している[n]は、n列目の配線であることを表している。また、配線RWL[1]乃至配線RWL[m]と、配線WWL[1]乃至配線WWL[m]と、配線FCA[1]乃至配線FCA[m]と、配線FCB[1]乃至配線FCB[m]と、が行方向に延設されている。なお、配線RWL、配線WWL、配線FCA、及び配線FCBに付している[1]は、1行目の配線であることを表し、配線RWL、配線WWL、配線FCA、及び配線FCBに付している[m]は、m行目の配線であることを表している。
 配線WDL[1]乃至配線WDL[n]は、図1A(図1B)のメモリセルMCにおける配線WDLに相当し、配線RDL[1]乃至配線RDL[n]は、図1A(図1B)のメモリセルMCにおける配線RDLに相当する。また、配線RWL[1]乃至配線RWL[m]は、図1A(図1B)のメモリセルMCにおける配線RWLに相当し、配線WWL[1]乃至配線WWL[m]は、図1A(図1B)のメモリセルMCにおける配線WWLに相当し、配線FCA[1]乃至配線FCA[m]は、図1A(図1B)のメモリセルMCにおける配線FCAに相当し、配線FCB[1]乃至配線FCB[m]は、図1A(図1B)のメモリセルMCにおける配線FCBに相当する。
 回路WDDは、配線WDL[1]乃至配線WDL[n]に電気的に接続されている。また、回路RWDは、配線RWL[1]乃至配線RWL[m]に電気的に接続されている。また、回路WWDは、配線WWL[1]乃至配線WWL[m]に電気的に接続されている。また、回路FECDは、配線FCA[1]乃至配線FCA[m]と、配線FCB[1]乃至配線FCB[m]と、に電気的に接続されている。また、回路RDDは、配線RDL[1]乃至配線RDL[n]に電気的に接続されている。
 回路WWDは、一例として、書き込みワード線ドライバ回路として機能する。例えば、回路WWDは、配線WWL[1]乃至配線WWL[m]のうち1本の配線に選択信号を送信し、残りの配線に非選択信号を送信することで、メモリセルアレイMCAにおいて、書き込み動作を行う複数のメモリセルMCを選択することができる。具体的には、例えば、図1AのメモリセルMCの場合、選択信号としては高レベル電位とし、非選択信号としては低レベル電位とすればよい。図1AのメモリセルMCにおいて、配線WWLに高レベル電位が与えられている場合、トランジスタM1がオン状態となるため、配線WDLからメモリセルMCに書き込み用のデータを送信することができる。一方、図1A(図1B)のメモリセルMCにおいて、配線WWLに低レベル電位が与えられている場合、トランジスタM1がオフ状態となるため、配線WDLから別のメモリセルMCに対する書き込み用のデータが送信されたとしても、配線WWLから低レベル電位が与えられているメモリセルMCに当該データが書き込まれることはない。
 回路RWDは、一例として、読み出しワード線ドライバ回路として機能する。例えば、回路RDDは、配線RWL[1]乃至配線RWL[m]のうち1本の配線に選択信号を送信し、残りの配線に非選択信号を送信することで、メモリセルアレイMCAにおいて、読み出し動作を行う複数のメモリセルMCを選択することができる。具体的には、例えば、図1AのメモリセルMCの場合、選択信号としては高レベル電位とし、非選択信号としては低レベル電位とすればよい。図1AのメモリセルMCにおいて、配線RWLに高レベル電位が与えられている場合、トランジスタM1がオン状態となるため、メモリセルMCから配線RDLに、メモリセルMCに保持されたデータを送信することができる。一方、図1AのメモリセルMCにおいて、配線RWLに低レベル電位が与えられている場合、トランジスタM3がオフ状態となるため、メモリセルMCから配線RDLに、メモリセルMCに保持されたデータが送信されることはない。
 回路FECDは、一例として、配線FCA及び配線FCBのそれぞれに定電位を与える機能を有する。具体的には、例えば、回路FECDは、メモリセルMCへのデータの書き込み時において、配線FCA及び配線FCBのそれぞれに定電位を与えることによって、複数のメモリセルMCのそれぞれに備わるFTJ素子FJA、及びFTJ素子FJBの分極を発生させる(分極の方向を変える)ことができる。又は、回路FECDは、メモリセルMCからデータを読み出す際に、配線FCA及び配線FCBのそれぞれに定電位を与えることによって、FTJ素子FJAの入力端子−出力端子間、及びFTJ素子FJBの入力端子−出力端子間のそれぞれに、配線FCAと配線FCBとの電位差に応じた分圧を与えることができる。
 回路WDDは、一例として、書き込みデータ線ドライバ回路として機能する。例えば、回路WDDは、配線WDL[1]乃至配線WDL[n]のそれぞれに書き込み用のデータ(例えば、電圧)を送信することで、回路WWDによって選択された特定の行に配置されている複数のメモリセルMCに、当該書き込み用のデータを書き込むことができる。
 回路RDDは、一例として、読み出し回路として機能する。例えば、回路RDDは、回路RWDによって選択された特定の行に配置されている複数のメモリセルMCから出力されたデータ(例えば、電圧、電流など)を配線RDL[1]乃至配線RDL[n]のそれぞれから取得して、当該データを読み出すことができる。回路WDDは、一例として、プリチャージ回路、センスアンプ回路、電流電圧変換回路などから選ばれた一、又は複数を有する。
<記憶装置の動作例>
 次に、記憶装置100の動作例について説明する。
<<書き込み動作例1>>
 図11は、記憶装置100のメモリセルMCへのデータの書き込み動作の一例を示したタイミングチャートである。なお、上記の実施の形態で説明した、図2のタイミングチャートは、1個のメモリセルMCにおける動作例について示したものであって、図11のタイミングチャートは、メモリセルアレイMCAに含まれる複数のメモリセルMCへのデータ書き込みの動作例を示したものである。
 図11のタイミングチャートは、時刻U1から時刻U13までの間、及びその近傍の時刻における、配線WWL[1]、配線WWL[2]、配線WWL[m]、配線WDL[1]、配線WDL[2]、配線WDL[n]、配線FCA[1]、配線FCB[1]、配線FCA[2]、配線FCB[2]、配線FCA[m]、及び配線FCB[m]の電位の変化を示している。
 時刻U1から時刻U2までの間では、例えば、回路WWDは、配線WWL[1]乃至配線WWL[m]に、初期電位として、低レベル電位(図11ではLowと記載している)を与える。そのため、メモリセルアレイMCAに含まれている全てのメモリセルMCのそれぞれのトランジスタM1のゲートには、低レベル電位が与えられるため、トランジスタM1はオフ状態となる。
 また、時刻U1から時刻U2までの間では、回路WDDは、配線WDL[1]乃至配線WDL[n]に、書き込み用のデータを送信しない。そのため、時刻U1から時刻U2までの間では、回路WDDは、配線WDL[1]乃至配線WDL[n]に、一例として、接地電位を与えている。
 また、時刻U1から時刻U2までの間では、回路FECDは、配線FCA[1]乃至配線FCA[m]、及び配線FCB[1]乃至配線FCB[m]のそれぞれに、電位V0A、及び電位V0Bを与える。なお、電位V0A、及び電位V0Bについては、図2のタイミングチャートの説明を参酌する。
 時刻U2から時刻U5までの間では、回路WWDは、配線WWL[1]に高レベル電位(図11ではHighと記載している)を与え、配線WWL[2]乃至配線WWL[m]に低レベル電位を与える。そのため、メモリセルアレイMCAにおいて、1行目に配置されているメモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに含まれているトランジスタM1のゲートに高レベル電位が与えられるため、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに含まれているトランジスタM1はオン状態となる。また、メモリセルアレイMCAにおいて、2行目乃至m行目に配置されているメモリセルMC[2,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM1のゲートに低レベル電位が与えられるため、メモリセルMC[2,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM1はオフ状態となる。つまり、回路WWDは、配線WWL[1]に高レベル電位を与え、配線WWL[2]乃至配線WWL[m]に低レベル電位を与えることで、書き込み先として、メモリセルアレイMCAの1行目に配置されているメモリセルMCを選択することができる。
 また、時刻U2から時刻U5までの間では、回路WDDは、配線WDL[1]乃至配線WDL[n]のそれぞれに、書き込み用のデータとして、一例として、D[1,1]乃至D[1,n]を与える。また、回路WWDによって、メモリセルアレイMCAの1行目に配置されているメモリセルMCが書き込み先として選択されているため、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートに、D[1,1]乃至D[1,n]に応じた電位が与えられる。
 また、時刻U3から時刻U4までの間では、回路FECDは、配線FCA[1]に電位V1Aを与え、配線FCB[1]に電位V0Bを与える。なお、回路FECDは、配線FCA[2]乃至配線FCA[m]のそれぞれに電位V0Aを与え、また、配線FCB[2]乃至配線FCB[m]のそれぞれに電位V0Bを与える。
 さらに、時刻U4から時刻U5までの間では、回路FECDは、配線FCA[1]に電位V0Aを与え、配線FCB[1]に電位V1Bを与える。なお、回路FECDは、引き続き、配線FCA[2]乃至配線FCA[m]のそれぞれに電位V0Aを与え、また、配線FCB[2]乃至配線FCB[m]のそれぞれに電位V0Bを与える。
 なお、電位V1A、及び電位V1Bについては、図2のタイミングチャートの説明を参酌する。
 時刻U2から時刻U5までの間の動作によって、メモリセルアレイMCAの1行目のメモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに含まれているFTJ素子FJA、及びFTJ素子FJBで発生する分極の方向が、配線WDL[1]乃至配線WDL[n]から送られているD[1,1]乃至D[1,n]に応じて定められる。つまり、時刻U2から時刻U5までの動作で、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれへのD[1,1]乃至D[1,n]の書き込みが行われる。
 時刻U5から時刻U8までの間では、回路WWDは、配線WWL[2]に高レベル電位を与え、配線WWL[1]、及び配線WWL[3]乃至配線WWL[m]に低レベル電位を与える。そのため、メモリセルアレイMCAにおいて、2行目に配置されているメモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに含まれているトランジスタM1のゲートに高レベル電位が与えられるため、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに含まれているトランジスタM1はオン状態となる。また、メモリセルアレイMCAにおいて、1行目、及び3行目からm行目に配置されているメモリセルMC[1,1]乃至メモリセルMC[1,n]、及びメモリセルMC[3,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM1のゲートに高レベル電位が与えられるため、メモリセルMC[1,1]乃至メモリセルMC[1,n]、及びメモリセルMC[3,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM1はオフ状態となる。つまり、回路WWDは、配線WWL[2]に高レベル電位を与え、配線WWL[1]、及び配線WWL[3]乃至配線WWL[m]に低レベル電位を与えることで、書き込み先として、メモリセルアレイMCAの2行目に配置されているメモリセルMCを選択することができる。
 また、時刻U5から時刻U8までの間では、回路WDDは、配線WDL[1]乃至配線WDL[n]のそれぞれに、書き込み用のデータとして、一例として、D[2,1]乃至D[2,n]を与える。また、回路WWDによって、メモリセルアレイMCAの2行目に配置されているメモリセルMCが書き込み先として選択されているため、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれのトランジスタM2のゲートに、D[2,1]乃至D[2,n]に応じた電位が与えられる。
 また、時刻U6から時刻U7までの間では、回路FECDは、配線FCA[2]に電位V1Aを与え、配線FCB[2]に電位V0Bを与える。なお、回路FECDは、配線FCA[1]、及び配線FCA[3]乃至配線FCA[m]のそれぞれに電位V0Aを与え、また、配線FCB[1]、配線FCB[3]乃至配線FCB[m]のそれぞれに電位V0Bを与える。
 さらに、時刻U7から時刻U8までの間では、回路FECDは、配線FCA[2]に電位V0Aを与え、配線FCB[2]に電位V1Bを与える。なお、回路FECDは、引き続き、配線FCA[1]、及び配線FCA[3]乃至配線FCA[m]のそれぞれに電位V0Aを与え、また、配線FCB[1]、及び配線FCB[3]乃至配線FCB[m]のそれぞれに電位V0Bを与える。
 時刻U5から時刻U8までの間の動作によって、メモリセルアレイMCAの2行目のメモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに含まれているFTJ素子FJA、及びFTJ素子FJBで発生する分極の方向は、配線WDL[1]乃至配線WDL[n]から送られているD[2,1]乃至D[2,n]に応じて定められる。つまり、時刻U5から時刻U8までの動作で、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれへのD[2,1]乃至D[2,n]の書き込みが行われる。
 時刻U8から時刻U9までの間では、時刻U2から時刻U5までの間で行われたメモリセルアレイMCAの1行目に配置されているメモリセルMCへのデータの書き込み動作、及び時刻U5から時刻U8までの間で行われたメモリセルアレイMCAの2行目に配置されているメモリセルMCへのデータの書き込み動作、と同様にメモリセルアレイMCAの3行目からm−1行目までに配置されているメモリセルMCへのデータの書き込み動作が行われる。
 時刻U9から時刻U12までの間では、回路WWDは、配線WWL[m]に高レベル電位を与え、配線WWL[1]乃至配線WWL[m−1]に低レベル電位を与える。そのため、メモリセルアレイMCAにおいて、m行目に配置されているメモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM1のゲートに高レベル電位が与えられるため、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM1はオン状態となる。また、メモリセルアレイMCAにおいて、1行目乃至m−1行目に配置されているメモリセルMC[1,1]乃至メモリセルMC[m−1,n]のそれぞれに含まれているトランジスタM1のゲートに低レベル電位が与えられるため、メモリセルMC[1,1]乃至メモリセルMC[m−1,n]のそれぞれに含まれているトランジスタM1はオフ状態となる。つまり、回路WWDは、配線WWL[m]に高レベル電位を与え、配線WWL[1]乃至配線WWL[m−1]に低レベル電位を与えることで、書き込み先として、メモリセルアレイMCAのm行目に配置されているメモリセルMCを選択することができる。
 また、時刻U9から時刻U12までの間では、回路WDDは、配線WDL[1]乃至配線WDL[n]のそれぞれに、書き込み用のデータとして、一例として、D[m,1]乃至D[m,n]を与える。また、回路WWDによって、メモリセルアレイMCAのm行目に配置されているメモリセルMCが書き込み先として選択されているため、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM2のゲートに、D[m,1]乃至D[m,n]に応じた電位が与えられる。
 また、時刻U10から時刻U11までの間では、回路FECDは、配線FCA[m]に電位V1Aを与え、配線FCB[m]に電位V0Bを与える。なお、回路FECDは、配線FCA[1]乃至配線FCA[m−1]のそれぞれに電位V0Aを与え、また、配線FCB[1]乃至配線FCB[m−1]のそれぞれに電位V0Bを与える。
 さらに、時刻U11から時刻U12までの間では、回路FECDは、配線FCA[m]に電位V0Aを与え、配線FCB[m]に電位V1Bを与える。なお、回路FECDは、引き続き、配線FCA[1]乃至配線FCA[m−1]のそれぞれに電位V0Aを与え、また、配線FCB[1]乃至配線FCB[m−1]のそれぞれに電位V0Bを与える。
 時刻U9から時刻U12までの間の動作によって、メモリセルアレイMCAのm行目のメモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれに含まれているFTJ素子FJA、及びFTJ素子FJBで発生する分極の方向は、配線WDL[1]乃至配線WDL[n]から送られているD[m,1]乃至D[m,n]に応じて定められる。つまり、時刻U9から時刻U12までの動作で、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれへのD[m,1]乃至D[m,n]の書き込みが行われる。
 時刻U1から時刻U12までの動作が行われることによって、メモリセルアレイMCAに含まれるメモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれに、D[1,1]乃至D[m,n]を書き込むことができる。
 なお、図11のタイミングチャートでは、メモリセルMC[1,1]乃至メモリセルMC[m,n]へのデータの書き込み動作の終了後の動作(時刻U12から時刻U13までの間の動作)として、回路WWDは、一例として、配線WWL[1]乃至配線WWL[m]に低レベル電位を与えている。また、回路WDDは、一例として、配線WDL[1]乃至配線WDL[n]に接地電位を与えている。また、回路FECDは、一例として、配線FCA[1]乃至配線FCA[m]、及び配線FCB[1]乃至配線FCB[m]のそれぞれに、電位V0A、及び電位V0Bを与えている。
 なお、図11のタイミングチャートの動作は、一例であるため、状況に応じて、又は場合によって、その動作を変更してもよい。例えば、図11のタイミングチャートの時刻U2から時刻U5までの間の動作において、配線WWL[1]に高レベル電位が与えられて、配線WDL[1]乃至配線WDL[n]にD[1,1]乃至D[1,n]が与えられているが、配線WWL[1]に高レベル電位が与えられている期間内に、配線WDL[1]乃至配線WDL[n]にD[1,1]乃至D[1,n]が与えられていてもよいし、配線WDL[1]乃至配線WDL[n]にD[1,1]乃至D[1,n]が与えられている期間内に配線WWL[1]に高レベル電位が与えられていてもよい。また、配線FCA[1]に電位V1Aが与えられ、かつ配線FCB[1]に電位V0Bが与えられている期間、及び配線FCA[1]に電位V0Aが与えられて、かつ配線FCB[1]に電位V1Bが与えられている期間は、配線WWL[1]に高レベル電位が与えられ、かつ配線WDL[1]乃至配線WDL[n]にD[1,1]乃至D[1,n]が与えられている期間内であれば、どのタイミングでもよい。また、配線FCA[1]に電位V0Aが与えられて、かつ配線FCB[1]に電位V1Bが与えられている期間は、配線FCA[1]に電位V1Aが与えられ、かつ配線FCB[1]に電位V0Bが与えられている期間よりも先でもよい。
<<書き込み動作例2>>
 次に、図11のタイミングチャートとは異なる、記憶装置100のメモリセルMCへのデータの書き込み動作の一例について説明する。
 図12に示すタイミングチャートは、図11のタイミングチャートの書き込み動作例とは異なる、書き込み動作の一例を示している。図12のタイミングチャートは、図11のタイミングチャートと同様に、時刻U1から時刻U13までの間、及びその近傍の時刻における、配線WWL[1]、配線WWL[2]、配線WWL[m]、配線WDL[1]、配線WDL[2]、配線WDL[n]、配線FCA[1]、配線FCB[1]、配線FCA[2]、配線FCB[2]、配線FCA[m]、及び配線FCB[m]の電位の変化を示している。
 図12のタイミングチャートの書き込み動作は、時刻U2から時刻U12までの間において配線WWL[1]乃至配線WWL[m]のそれぞれに高レベル電位が入力されている点と、時刻U1から時刻U13までの間において配線FCA[1]乃至配線FCA[m]及び配線FCB[1]乃至配線FCB[m]のそれぞれの電位変動の点で、図11のタイミングチャートの書き込み動作と異なっている。
 図12のタイミングチャートの時刻U2から時刻U12までの間において配線WWL[1]乃至配線WWL[m]のそれぞれに高レベル電位が入力されているため、時刻U2から時刻U12までの間では、メモリセルアレイMCAに含まれているメモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM1のゲートに高レベル電位が入力されるため、メモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM1はオン状態となる。つまり、j列目に着目すると、配線WDL[j]と、メモリセルMC[1,j]乃至メモリセルMC[m,j]のそれぞれのトランジスタM2のゲートとの間は導通状態となる。
 また、図12のタイミングチャートの時刻U1から時刻U2までの間において、配線FCA[1]乃至配線FCA[m]には電位VNAが与えられ、配線FCB[1]乃至配線FCB[m]には電位VNBが与えられている。
 なお、VNAは、配線WDLからトランジスタM2のゲートに入力される全てのデータ(電位)に対して、FTJ素子FJAにて分極が起こらない(変化しない)程度の電位とし、VNBは、配線WDLからトランジスタM2のゲートに入力される全てのデータ(電位)に対して、FTJ素子FJBにて分極が起こらない(変化しない)程度の電位としている。例えば、VNAは、V0Aよりも高くV1Aよりも低い電位とすることができる。また、例えば、VNBは、V0Bよりも高くV1Bよりも低い電位とすることができる。
 また、図12のタイミングチャートの時刻U3から時刻U4までの間において、配線FCA[1]には電位V1Aが与えられ、配線FCB[1]には電位V0Bが与えられている。なお、配線FCA[2]乃至配線FCA[m]のそれぞれには、引き続き電位VNAが与えられ、また、配線FCB[2]乃至配線FCB[m]のそれぞれには、引き続き電位VNBが与えられている。
 また、図12のタイミングチャートの時刻U4から時刻U5までの間において、配線FCA[1]には電位V0Aが与えられ、配線FCB[1]には電位V1Bが与えられている。なお、配線FCA[2]乃至配線FCA[m]のそれぞれには、引き続き電位VNAが与えられ、また、配線FCB[2]乃至配線FCB[m]のそれぞれには、引き続き電位VNBが与えられている。
 図12のタイミングチャートの時刻U2から時刻U5までの間の動作によって、メモリセルアレイMCAの1行目のメモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに含まれているFTJ素子FJA、及びFTJ素子FJBで発生する分極の方向が、配線WDL[1]乃至配線WDL[n]から送られているD[1,1]乃至D[1,n]に応じて定められる。一方、時刻U2から時刻U5までの間において、配線FCA[2]乃至配線FCA[m]のそれぞれには電位VNAが与えられ、また、配線FCB[2]乃至配線FCB[m]のそれぞれには電位VNBが与えられているため、メモリセルMC[2,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM1がオン状態になっていたとしても、各列のメモリセルMCにD[1,1]乃至D[1,n]が書き込まれることはない。
 つまり、図12のタイミングチャートの動作では、配線FCA[1]乃至配線FCA[m]、及び配線FCB[1]乃至配線FCB[m]のそれぞれを、FTJ素子FJA、及びFTJ素子FJBの分極の制御用の配線だけでなく、データの書き込みの選択信号線も兼ねて機能させることができる。
 図12のタイミングチャートにおいて時刻U5以降についても、配線WDL[1]乃至配線WDL[n]から送信されるデータにあわせて、配線FCA[1]乃至配線FCA[m]、及び配線FCB[1]乃至配線FCB[m]を用いて、メモリセルアレイMCAの2行目からm行目まで1行ずつメモリセルMCを選択することによって、図11のタイミングチャートの動作例と同様に、メモリセルアレイMCAに含まれるメモリセルMC[2,1]乃至メモリセルMC[m,n]のそれぞれに、D[2,1]乃至D[m,n]を書き込むことができる。
<<読み出し動作例1>>
 図13は、記憶装置100のメモリセルMCからのデータの読み出し動作の一例を示したタイミングチャートである。なお、上記の実施の形態で説明した、図3A、及び図3Bなどのタイミングチャートは、1個のメモリセルMCにおける動作例について示したものであって、図13のタイミングチャートは、メモリセルアレイMCAに含まれる複数のメモリセルMCからのデータ読み出しの動作例を示したものである。
 図13のタイミングチャートは、時刻U21から時刻U33までの間、及びその近傍の時刻における、配線RWL[1]、配線RWL[2]、配線RWL[m]、配線FCA[1]、配線FCB[1]、配線FCA[2]、配線FCB[2]、配線FCA[m]、配線FCB[m]、配線RDL[1]、配線RDL[2]、及び配線RDL[n]の電位の変化を示している。
 時刻U21から時刻U22までの間では、例えば、回路RWDは、配線RWL[1]乃至配線RWL[m]に、初期電位として、低レベル電位(図13ではLowと記載している)を与える。そのため、メモリセルアレイMCAに含まれている全てのメモリセルMCのそれぞれのトランジスタM3のゲートには、低レベル電位が与えられるため、トランジスタM3はオフ状態となる。
 また、時刻U21から時刻U22までの間では、回路FECDは、配線FCA[1]乃至配線FCA[m]、及び配線FCB[1]乃至配線FCB[m]のそれぞれに、電位V0A、及び電位V0Bを与える。なお、電位V0A、及び電位V0Bについては、図2、図3Aなどのタイミングチャートの説明を参酌する。
 また、時刻U21から時刻U22までの間では、配線RDL[1]乃至配線RDL[n]には、一例として、配線VCEに与えられる電位に対応した電位を与えることが好ましい。例えば、配線VCEが低レベル電位であるとき、配線RDL[1]乃至配線RDL[n]には高レベル電位が与えられることが好ましく、又は、配線VCEが高レベル電位であるとき、配線RDL[1]乃至配線RDL[n]には低レベル電位が与えられることが好ましい。本動作例では、配線RDL[1]乃至配線RDL[n]には、メモリセルMCからのデータの読み出しに支障が出ない程度の電位として、VRE3が与えられるものとする。
 時刻U22から時刻U25までの間では、回路FECDは、配線FCA[1]に電位Vを与え、配線FCB[1]に電位V0Bを与えている。また、回路FECDは、配線FCA[2]乃至配線FCA[m]に電位V0Aを与え、配線FCB[2]乃至配線FCB[m]に電位V0Bを与えている。このとき、配線FCA[1]と配線FCB[1]との間では、V−V0Bの電圧がかかるため、メモリセルアレイMCAの1行目のメモリセルMC[1,1]乃至メモリセルMC[1,n]のFTJ素子FJA、及びFTJ素子FJBのそれぞれには、当該電圧の分圧がかかる。そのため、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位は、FTJ素子FJA、及びFTJ素子FJBの分極の方向、つまり、そのメモリセルMCに書き込まれているデータによって決められる。
 なお、電位Vについては、図3Aなどのタイミングチャートの説明を参酌する。
 時刻U23から時刻U24までの間では、回路RWDは、配線RWL[1]に高レベル電位(図13ではHighと記載している)を与える。また、回路RWDは、配線RWL[2]乃至配線RWL[m]に低レベル電位を与える。そのため、メモリセルアレイMCAにおいて、1行目に配置されているメモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに含まれているトランジスタM3のゲートに高レベル電位が与えられるため、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに含まれているトランジスタM3はオン状態となる。また、メモリセルアレイMCAにおいて、2行目からm行目に配置されているメモリセルMC[2,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM3のゲートに低レベル電位が与えられるため、メモリセルMC[2,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM3はオフ状態となる。
 つまり、回路FECDが配線FCA[1]に電位Vを与え、配線FCB[1]に電位V0Bを与え、配線FCA[2]乃至配線FCA[m]に電位V0Aを与え、配線FCB[2]乃至配線FCB[m]に電位V0Bを与えて、かつ回路RWDが配線RWL[1]に高レベル電位を与え、配線RWL[2]乃至配線RWL[m]に低レベル電位を与えることで、読み出し元として、メモリセルアレイMCAの1行目に配置されているメモリセルMCを選択することができる。
 また、時刻U23から時刻U24までの間において、メモリセルアレイMCAの1行目のメモリセルMC[1,1]乃至メモリセルMC[1,n]の配線VCEと配線RDL[1]乃至配線RDL[n]との間が導通状態となるため、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位に応じた電流が、配線RDL[1]乃至配線RDL[n]に流れる。又は、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位に応じて、配線RDL[1]乃至配線RDL[n]のそれぞれの電位が変化する。つまり、配線RDL[1]乃至配線RDL[n]には、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに保持されているデータとして、D[1,1]乃至D[1,n]に応じたデータ(例えば、電流、又は電圧)が配線RDL[1]乃至配線RDL[n]に送信される。
 このとき、回路RDDなどで、配線RDL[1]乃至配線RDL[n]に送信されるデータ(例えば、電流、又は電圧)を取得することによって、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに保持されているD[1,1]乃至D[1,n]を読み出すことができる。
 時刻U25から時刻U27までの間では、回路FECDは、配線FCA[2]に電位Vを与え、配線FCB[2]に電位V0Bを与えている。また、回路FECDは、配線FCA[1]、及び配線FCA[3]乃至配線FCA[m]に電位V0Aを与え、配線FCB[1]、及び配線FCB[3]乃至配線FCB[m]に電位V0Bを与えている。このとき、配線FCA[2]と配線FCB[2]との間では、V−V0Bの電圧がかかるため、メモリセルアレイMCAの2行目のメモリセルMC[2,1]乃至メモリセルMC[2,n]のFTJ素子FJA、及びFTJ素子FJBのそれぞれには、当該電圧の分圧がかかる。そのため、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれのトランジスタM2のゲートの電位は、FTJ素子FJA、及びFTJ素子FJBの分極の方向、つまり、そのメモリセルMCに書き込まれているデータによって決められる。
 時刻U26から時刻U27までの間では、回路RWDは、配線RWL[2]に高レベル電位を与える。また、回路RWDは、配線RWL[1]、及び配線RWL[3]乃至配線RWL[m]に低レベル電位を与える。そのため、メモリセルアレイMCAにおいて、2行目に配置されているメモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに含まれているトランジスタM3のゲートに高レベル電位が与えられるため、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに含まれているトランジスタM3はオン状態となる。また、メモリセルアレイMCAにおいて、1行目及び3行目からm行目に配置されているメモリセルMCのそれぞれに含まれているトランジスタM3のゲートに低レベル電位が与えられるため、1行目及び3行目からm行目に配置されているメモリセルMCのそれぞれに含まれているトランジスタM3はオフ状態となる。
 つまり、回路FECDが配線FCA[2]に電位Vを与え、配線FCB[2]に電位V0Bを与え、配線FCA[1]及び配線FCA[3]乃至配線FCA[m]に電位V0Aを与え、配線FCB[1]及び配線FCB[3]乃至配線FCB[m]に電位V0Bを与えて、かつ回路RWDが配線RWL[2]に高レベル電位を与え、配線RWL[1]及び配線RWL[3]乃至配線RWL[m]に低レベル電位を与えることで、読み出し元として、メモリセルアレイMCAの2行目に配置されているメモリセルMCを選択することができる。
 また、時刻U26から時刻U27までの間において、メモリセルアレイMCAの2行目のメモリセルMC[2,1]乃至メモリセルMC[2,n]の配線VCEと配線RDL[1]乃至配線RDL[n]との間が導通状態となるため、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれのトランジスタM2のゲートの電位に応じた電流が、配線RDL[1]乃至配線RDL[n]に流れる。又は、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれのトランジスタM2のゲートの電位に応じて、配線RDL[1]乃至配線RDL[n]のそれぞれの電位が変化する。つまり、配線RDL[1]乃至配線RDL[n]には、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに保持されているデータとして、D[2,1]乃至D[2,n]に応じたデータ(例えば、電流、又は電圧)が配線RDL[1]乃至配線RDL[n]に送信される。
 このとき、回路RDDなどで、配線RDL[1]乃至配線RDL[n]に送信されるデータ(例えば、電流、又は電圧)を取得することによって、メモリセルMC[2,1]乃至メモリセルMC[2,n]のそれぞれに保持されているD[2,1]乃至D[2,n]を読み出すことができる。
 時刻U28から時刻U29までの間では、時刻U22から時刻U25までの間で行われたメモリセルアレイMCAの1行目に配置されているメモリセルMCからのデータの読み出し動作、及び時刻U25から時刻U28までの間で行われたメモリセルアレイMCAの2行目に配置されているメモリセルMCからのデータの読み出し動作、と同様にメモリセルアレイMCAの3行目からm−1行目までに配置されているメモリセルMCからのデータの読み出し動作が行われる。
 時刻U29から時刻U32までの間では、回路FECDは、配線FCA[m]に電位Vを与え、配線FCB[m]に電位V0Bを与えている。また、回路FECDは、配線FCA[1]乃至配線FCA[m−1]に電位V0Aを与え、配線FCB[1]乃至配線FCB[m−1]に電位V0Bを与えている。このとき、配線FCA[m]と配線FCB[m]との間では、V−V0Bの電圧がかかるため、メモリセルアレイMCAのm行目のメモリセルMC[m,1]乃至メモリセルMC[m,n]のFTJ素子FJA、及びFTJ素子FJBのそれぞれには、当該電圧の分圧がかかる。そのため、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM2のゲートの電位は、FTJ素子FJA、及びFTJ素子FJBの分極の方向、つまり、そのメモリセルMCに書き込まれているデータによって決められる。
 時刻U30から時刻U31までの間では、回路RWDは、配線RWL[m]に高レベル電位を与える。また、回路RWDは、配線RWL[1]乃至配線RWL[m−1]に低レベル電位を与える。そのため、メモリセルアレイMCAにおいて、m行目に配置されているメモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM3のゲートに高レベル電位が与えられるため、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれに含まれているトランジスタM3はオン状態となる。また、メモリセルアレイMCAにおいて、1行目乃至m−1行目に配置されているメモリセルMC[1,1]乃至メモリセルMC[m−1,n]のそれぞれに含まれているトランジスタM3のゲートに低レベル電位が与えられるため、メモリセルMC[1,1]乃至メモリセルMC[m−1,n]のそれぞれに含まれているトランジスタM3はオフ状態となる。
 つまり、回路FECDが配線FCA[m]に電位Vを与え、配線FCB[m]に電位V0Bを与え、配線FCA[1]乃至配線FCA[m−1]に電位V0Aを与え、配線FCB[1]乃至配線FCB[m−1]に電位V0Bを与えて、かつ回路RWDが配線RWL[m]に高レベル電位を与え、配線RWL[1]乃至配線RWL[m−1]に低レベル電位を与えることで、読み出し元として、メモリセルアレイMCAのm行目に配置されているメモリセルMCを選択することができる。
 また、時刻U30から時刻U31までの間において、メモリセルアレイMCAのm行目のメモリセルMC[m,1]乃至メモリセルMC[m,n]の配線VCEと配線RDL[1]乃至配線RDL[n]との間が導通状態となるため、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM2のゲートの電位に応じた電流が、配線RDL[1]乃至配線RDL[n]に流れる。又は、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM2のゲートの電位に応じて、配線RDL[1]乃至配線RDL[n]のそれぞれの電位が変化する。つまり、配線RDL[1]乃至配線RDL[n]には、メモリセルMC[m,1]乃至メモリセルMC[m,n]のそれぞれに保持されているデータとして、D[m,1]乃至D[m,n]に応じたデータ(例えば、電流、又は電圧)が配線RDL[1]乃至配線RDL[n]に送信される。
 時刻U21から時刻U32までの動作が行われることによって、メモリセルアレイMCAに含まれるメモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれから、D[1,1]乃至D[m,n]を読み出すことができる。
 なお、図13のタイミングチャートでは、メモリセルMC[1,1]乃至メモリセルMC[m,n]からのデータの読み出し動作の終了後の動作(時刻U32から時刻U33までの間の動作)として、回路RWDは、一例として、配線RWL[1]乃至配線RWL[m]に低レベル電位を与えている。また、回路FECDは、一例として、配線FCA[1]乃至配線FCA[m]、及び配線FCB[1]乃至配線FCB[m]のそれぞれに、電位V0A、及び電位V0Bを与えている。また、配線RDL[1]乃至配線RDL[n]のそれぞれには、一例として接地電位が与えられている。
<<読み出し動作例2>>
 次に、図13のタイミングチャートとは異なる、記憶装置100のメモリセルMCからのデータの読み出し動作の一例について説明する。
 図14に示すタイミングチャートは、図13のタイミングチャートの読み出し動作例とは異なる、読み出し動作の一例を示している。図14のタイミングチャートは、図13のタイミングチャートと同様に、時刻U21から時刻U33までの間、及びその近傍の時刻における、配線RWL[1]、配線RWL[2]、配線RWL[m]、配線FCA[1]、配線FCB[1]、配線FCA[2]、配線FCB[2]、配線FCA[m]、配線FCB[m]、配線RDL[1]、配線RDL[2]、及び配線RDL[n]の電位の変化を示している。
 図14のタイミングチャートの読み出し動作は、時刻U22から時刻U32までの間において配線FCA[1]乃至配線FCA[m]のそれぞれが電位Vになっている点で、図13のタイミングチャートの読み出し動作と異なっている。
 図14のタイミングチャートの時刻U22から時刻U32までの間において配線FCA[1]乃至配線FCA[m]のそれぞれにVが入力され、かつ配線FCB[1]乃至配線FCB[m]のそれぞれにV0Bが入力されているため、時刻U22から時刻U32までの間では、メモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM2のゲートの電位は、それぞれのメモリセルMCに保持されているデータに応じた電位となる。また、このとき、メモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM2のゲート−第1端子間において電圧が生じるため、トランジスタM2の第2端子の電位次第で、トランジスタM2の第1端子−第2端子間に電流が流れる。
 また、本動作例において、メモリセルアレイMCAから読み出すメモリセルMCを選択する場合は、回路RWDから配線RWL[1]乃至配線RWL[m]のいずれか一に高レベル電位を入力し、残りの配線に低レベル電位を入力することによって行うことができる。例えば、図14のタイミングチャートにおいて、時刻U23から時刻U24までの間のとおり、配線RWL[1]に高レベル電位を与え、配線RWL[2]乃至配線RWL[m]に低レベル電位を与えることで、メモリセルアレイMCAの1行目に配置されているメモリセルMCに保持されているデータを読み出すことができる。同様に、時刻U26から時刻U27までの間のとおり、配線RWL[2]に高レベル電位を与え、配線RWL[1]及び配線RWL[3]乃至配線RWL[m]に低レベル電位を与えることで、メモリセルアレイMCAの2行目に配置されているメモリセルMCに保持されているデータを読み出すことができ、時刻U30から時刻U31までの間のとおり、配線RWL[m]に高レベル電位を与え、配線RWL[1]乃至配線RWL[m−1]に低レベル電位を与えることで、メモリセルアレイMCAのm行目に配置されているメモリセルMCに保持されているデータを読み出すことができる。
 つまり、図14のタイミングチャートの動作例において、配線RWL[1]乃至配線RWL[m]の電位の変動は、図13のタイミングチャートの動作例と同様とすることができる。
 図14のタイミングチャートの動作では、メモリセルアレイMCAに含まれる複数のメモリセルMCを読み出す際に、配線FCA[1]乃至配線FCA[m]と、配線FCB[1]乃至配線FCB[m]と、のそれぞれの電位を、読み出すメモリセルMCごとに電位を変化させる必要がない。つまり、図14のタイミングチャートの動作例を適用することで、回路FECDを、セレクタなど信号を送信する配線を選択する回路を有さない構成とすることができる。
<<読み出し動作例3>>
 次に、図13、及び図14のタイミングチャートとは異なる、記憶装置100のメモリセルMCからのデータの読み出し動作の一例について説明する。
 図15に示すタイミングチャートは、図13、及び図14のタイミングチャートの読み出し動作例とは異なる、読み出し動作の一例を示している。図15のタイミングチャートは、図13、及び図14のタイミングチャートと同様に、時刻U21から時刻U33までの間、及びその近傍の時刻における、配線RWL[1]、配線RWL[2]、配線RWL[m]、配線FCA[1]、配線FCB[1]、配線FCA[2]、配線FCB[2]、配線FCA[m]、配線FCB[m]、配線RDL[1]、配線RDL[2]、及び配線RDL[n]の電位の変化を示している。
 図15のタイミングチャートの読み出し動作は、時刻U22から時刻U32までの間において配線RWL[1]乃至配線RWL[m]のそれぞれが高レベル電位になっている点と、時刻U22から時刻U32までの間において配線FCA[1]乃至配線FCA[m]及び配線FCB[1]乃至配線FCB[m]のそれぞれの電位変動の点で、図13のタイミングチャートの読み出し動作と異なっている。
 図15のタイミングチャートの時刻U22から時刻U32までの間において、配線RWL[1]乃至配線RWL[m]のそれぞれに高レベル電位が入力されているため、時刻U22から時刻U32までの間では、メモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM3のゲートに高レベル電位が入力される。このため、メモリセルMC[1,1]乃至メモリセルMC[m,n]のそれぞれのトランジスタM3は、オン状態となる。
 また、図15のタイミングチャートの時刻U23から時刻U24までの間において、配線FCA[1]には電位Vが与えられ、配線FCB[1]には電位V0Bが与えられる。また、配線FCA[2]乃至配線FCA[m]には電位V0Aが与えられ、配線FCB[2]乃至配線FCB[m]には電位V0Bが与えられている。このとき、配線FCA[1]と配線FCB[1]との間では、V−V0Bの電圧がかかるため、メモリセルアレイMCAの1行目のメモリセルMC[1,1]乃至メモリセルMC[1,n]のFTJ素子FJA、及びFTJ素子FJBのそれぞれには、当該電圧の分圧がかかる。そのため、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位は、FTJ素子FJA、及びFTJ素子FJBの分極の方向、つまり、そのメモリセルMCに書き込まれているデータによって決められる。
 また、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位が決まることで、トランジスタM2のゲート−第1端子間において電圧が生じるため、トランジスタM2の第2端子の電位次第で、トランジスタM2の第1端子−第2端子間に電流が流れる。なお、トランジスタM3はオン状態であるため、トランジスタM2の第2端子には、電位VRE3が入力される。したがって、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位に応じた電流が、配線RDL[1]乃至配線RDL[n]に流れる。又は、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位に応じて、配線RDL[1]乃至配線RDL[n]のそれぞれの電位が変化する。つまり、配線RDL[1]乃至配線RDL[n]には、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれに保持されているデータとして、D[1,1]乃至D[1,n]に応じたデータ(例えば、電流、又は電圧)が配線RDL[1]乃至配線RDL[n]に送信される。これにより、メモリセルMC[1,1]乃至メモリセルMC[1,n]に保持されているデータとして、D[1,1]乃至D[1,n]を読み出すことができる。
 一方、配線FCA[2]乃至配線FCA[m]には電位V0Aが与えられ、配線FCB[2]乃至配線FCB[m]には電位V0Bが与えられているため、メモリセルアレイMCAの2行目からm行目までのメモリセルMCのFTJ素子FJA、及びFTJ素子FJBのそれぞれには、V0A−V0Bの分圧がかかる。V0A−V0Bが0V又は0V近傍の値としたとき、メモリセルMC[1,1]乃至メモリセルMC[1,n]のそれぞれのトランジスタM2のゲートの電位も0V又は0近傍の値とすることができる。つまり、トランジスタM2のしきい値電圧が適正な値であれば、トランジスタM2はオフ状態となるため、メモリセルアレイMCAの2行目からm行目までのメモリセルMCにおいて、配線VCEと配線RDL[1]乃至配線RDL[m]との間は非導通状態となり、メモリセルMCに保持されているデータに応じたデータ(例えば、電流、電圧など)が、配線RDL[1]乃至配線RDL[m]に流れることはない。
 また、本動作例において、メモリセルアレイMCAの2行目のメモリセルMCからデータを読み出す場合は、時刻U26から時刻U27までの間のとおり、配線FCA[2]に電位Vを与え、配線FCB[2]に電位V0Bを与えればよい。また、メモリセルアレイMCAのm行目のメモリセルMCからデータを読み出す場合は、時刻U30から時刻U31までの間のとおり、配線FCA[m]に電位Vを与え、配線FCB[m]に電位V0Bを与えればよい。
 つまり、図15のタイミングチャートの動作例では、配線FCA[1]乃至配線FCA[m]が、メモリセルアレイMCAから読み出すメモリセルMCを選択するための選択信号線として機能する。このため、図15のタイミングチャートの動作例では、配線RWL[1]乃至配線RWL[m]のそれぞれで、読み出すメモリセルMCごとに電位を変化させる必要がない。このため、図15のタイミングチャートの動作例を適用することで、回路RDDを、セレクタなど信号を送信する配線を選択する回路を有さない構成とすることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態で説明した記憶装置を演算回路として扱う場合について説明する。
<演算回路1>
 一例として、図1AのメモリセルMCが適用された、図10の記憶装置100について考える。また、この場合、演算回路として機能する記憶装置100は、例えば、複数の第1データと、複数の第2データと、の積和演算を行うことができる。また、複数の第1データのそれぞれは“0”又は“1”とし、複数の第2データのそれぞれは“0”又は“1”とする。
 第1データは、例えば、記憶装置100のメモリセルアレイMCAに含まれる複数のメモリセルMCに保持されるものとする。つまり、メモリセルアレイMCAに含まれる複数のメモリセルMCは、データとして“0”、又は“1”を保持するものとする。
 また、本実施の形態では、例えば、配線WDLからメモリセルMCに送信される電位(第1データ)として、Vはデータ“0”に対応し、Vはデータ“1”に対応するものとする。つまり、図3A又は図3Bのタイミングチャートの時刻T23から時刻T25までの間のとおり、配線FCAに電位Vが入力され、配線FCBに電位V0Bが入力されたとき、メモリセルMCにデータ“0”が保持されている場合には、トランジスタM2のゲートの電位はVHLD0となり、メモリセルMCにデータ“1”が保持されている場合には、トランジスタM2のゲートの電位はVHLD1となる。
 また、記憶装置100を演算回路として扱う場合、メモリセルMCに含まれるトランジスタM2のゲートの電位がVHLD0であるときには、トランジスタM2はオフ状態となることが好ましい。なお、本実施の形態では、メモリセルMCに含まれるトランジスタM2のゲートの電位がVHLD0であるときは、トランジスタM2はオフ状態になるものとする。
 第2データは、例えば、配線RWLに与えられる電位に応じた値とすることができる。例えば、第2データが“0”であるとき、配線RWLは回路RWDによって低レベル電位が与えられ、また、第2データが“1”であるとき、配線RWLは回路RWDによって高レベル電位が与えられるものとする。
 ここで、メモリセルMCに保持されている第1データと、メモリセルMCに入力される第2データと、に応じたメモリセルMCの動作例について説明する。
 メモリセルMCに保持されている第1データが“0”であるとき、メモリセルMCに含まれるトランジスタM2のゲートの電位がVHLD0となるため、トランジスタM2はオフ状態となる。一方、メモリセルMCに保持されている第1データが“1”であるとき、メモリセルMCに含まれるトランジスタM2のゲートの電位がVHLD1となるため、トランジスタM2はオン状態となり、トランジスタM2の第1端子−第2端子には、トランジスタM2のゲート−ソース間電圧に応じた電流が流れる。
 また、第2データが“0”であるとき、つまり、配線RWLからメモリセルMCに低レベル電位が入力されるとき、メモリセルMCに含まれるトランジスタM3はオフ状態となる。一方、第2データが“1”であるとき、つまり、配線RWLからメモリセルMCに高レベル電位が入力されるとき、メモリセルMCに含まれるトランジスタM3はオン状態となる。
 上記より、第1データ、及び第2データのそれぞれが“1”であるとき、配線VCEと配線RDLとの間が導通状態となるため、メモリセルMCと配線RDLとの間には、トランジスタM2のゲート−ソース間電圧に応じた電流が流れる。また、第1データ、第2データの少なくとも一方が“0”であるとき、トランジスタM2及び/又はトランジスタM3がオフ状態となるため、メモリセルMCと配線RDLとの間には電流が流れない。換言すると、第1データと第2データとの積が“1”であるとき、結果として、メモリセルMCと配線RDLとの間に電流が流れる。また、第1データと第2データとの積が“0”であるとき、結果として、メモリセルMCと配線RDLとの間に電流が流れない。
 ここで、第1データ、及び第2データのそれぞれが“1”であるときに、メモリセルMCと配線RDLとの間に流れる電流量をIMPとすると、第1データ、及び第2データのそれぞれの値によって、メモリセルMCと配線RDLとの間に流れる電流量は、下表のとおりとなる。
Figure JPOXMLDOC01-appb-T000002
 つまり、第1データと第2データの積が“1”であるとき、その演算結果として、メモリセルMCと配線RDLとの間に電流量IMPの電流が流れ、第1データと第2データの積が“0”であるとき、その演算結果として、メモリセルMCと配線RDLとの間に電流量0の電流が流れる(メモリセルMCと配線RDLとの間には電流が流れない)。このように、メモリセルMCは、メモリセルMCに第1データを保持し、その後にメモリセルMCに第2データを入力することによって、第1データと第2データとの積を演算することができる。
 次に、メモリセルアレイMCAに含まれる複数のメモリセルMCのそれぞれに第1データが保持されている状態で、配線RWL[1]乃至配線RWL[m]のそれぞれに一括に複数の第2データを供給する場合を考える。なお、メモリセルMC[i,j](iは1以上m以下の整数とし、jは1以上n以下の整数とする)に保持される第1データをW[i,j]とし、配線RWL[i]に供給される第2データをX[i]とする。
 例えば、j列目において、メモリセルMC[1,j]乃至メモリセルMC[m,j]のそれぞれに、配線RWL[1]乃至配線RWL[m]から第2データとしてX[1]乃至X[m]が入力されたとき、メモリセルMC[1,j]乃至メモリセルMC[m,j]のそれぞれでは、W[1,j]×X[1]乃至W[m,j]×X[m]の演算が行われる。そして、第1データ及び第2データのそれぞれが“1”であるとき、そのメモリセルMCと配線RDL[j]との間に電流量IMPの電流が流れるため、配線RDL[j]に流れる電流の総和は、W[1,j]×X[1]乃至W[m,j]×X[m]のうち、積が1となるメモリセルMCの数に応じた電流量となる。例えば、メモリセルMC[1,j]乃至メモリセルMC[m,j]のうち、第1データと第2データとの積が1となる数をM(Mは、1以上m以下の整数とする)としたとき、配線RDL[j]には、電流量M×IMPの電流が流れる。
 ここで、回路RDDが、電流電圧変換回路などの機能を有することで、例えば、配線RDL[j]に流れる電流の総和を電圧値に変換することができる。つまり、メモリセルアレイMCAのj列目のメモリセルMC[1,j]乃至メモリセルMC[m,j]で行われる積和の結果である電流量M×IMPを電圧値として出力することができる。
 また、回路RDDは、例えば、当該積和の結果を用いて、さらに関数の演算を行う機能を有してもよい。例えば、回路RDDは、積和の結果を用いて活性化関数の演算を行うことで、人工ニューラルネットワークの演算を行うことができる。当該活性化関数としては、例えば、シグモイド関数、tanh関数、ソフトマックス関数、ReLU関数、しきい値関数などを用いることができる。
 また、上記では、j列目に位置するメモリセルMC[1,j]乃至メモリセルMC[m,j]における複数の第1データと複数の第2データとの積和演算の結果について説明したが、複数の第2データは行方向に延設されている配線RWL[1]乃至配線RWL[m]によって送信されるため、j列目以外の列においても積和演算を行うことができる。つまり、記憶装置100を、積和を実行する回路として用いる場合、列の数(図10ではn個)だけ積和演算を同時に実行することができる。
<演算回路2>
 上記の演算回路では、第1データが2値(“0”又は“1”)、第2データが2値(“0”又は“1”)であるときの演算を一例として説明したが、本発明の一態様は、当該演算回路の構成を変更することで、多値、アナログ値などを扱った演算を行うことができる。
 図16は、“正の値”、“0”、及び“負の値”のいずれかをとる複数の第1データと、“−1”、“0”、及び“1”のいずれかをとる複数の第2データとの積和演算を行うことができる演算回路の構成例である。
 演算回路110は、メモリセルアレイMCAと、回路WDDと、回路RDDと、回路WWDと、回路RWDと、回路FECDと、を有する。
 メモリセルアレイMCAは、複数のメモリセルMCを有する。また、メモリセルアレイMCAにおいて、複数のメモリセルMCはm行n列(ここでのm、nのそれぞれは1以上の整数とする)のマトリクス状に配置されている。なお、図16では、メモリセルMC[1,j]とメモリセルMC[m,j]を抜粋して示している。また、図16において、一例として、i行j列(ここでのiは1以上m以下の整数であって、jは1以上n以下の整数である)に位置するメモリセルMCは、メモリセルMC[i,j]としている(図示しない)。
 メモリセルMCは、回路MPと、回路MPrと、を有する。回路MPと、回路MPrと、のそれぞれの回路構成については後述する。
 また、演算回路110のメモリセルアレイMCAには、配線WDL[1]乃至配線WDL[n]と、配線WDLr[1]乃至配線WDLr[n]と、配線RDL[1]乃至配線RDL[n]と、配線RDLr[1]乃至配線RDLr[n]と、が列方向に延設されている。なお、配線WDL、配線WDLr、配線RDL、及び配線RDLrに付している[j]は、j列目の配線であることを表している。また、配線RWLa[1]乃至配線RWLa[m]と、配線RWLb[1]乃至配線RWLb[m]と、配線WWL[1]乃至配線WWL[m]と、配線FCA[1]乃至配線FCA[m]と、配線FCB[1]乃至配線FCB[m]と、が行方向に延設されている。なお、配線RWLa、配線RWLb、配線WWL、配線FCA、及び配線FCBに付している[i]は、i行目の配線であることを示している。
 メモリセルMC[1,j]において、回路MP[1,j]は、配線WDL[j]と、配線RWLa[1]と、配線RWLb[1]と、配線WWL[1]と、配線FCA[1]と、配線FCB[1]と、配線RDL[j]と、配線RDLr[j]と、に電気的に接続されている。また、回路MPr[1,j]は、配線WDLr[j]と、配線RWLa[1]と、配線RWLb[1]と、配線WWL[1]と、配線FCA[1]と、配線FCB[1]と、配線RDL[j]と、配線RDLr[j]と、に電気的に接続されている。
 また、メモリセルMC[m,j]において、回路MP[m,j]は、配線WDL[j]と、配線RWLa[m]と、配線RWLb[m]と、配線WWL[m]と、配線FCA[m]と、配線FCB[m]と、配線RDL[j]と、配線RDLr[j]と、に電気的に接続されている。また、回路MPr[m,j]は、配線WDLr[j]と、配線RWLa[m]と、配線RWLb[m]と、配線WWL[m]と、配線FCA[m]と、配線FCB[m]と、配線RDL[j]と、配線RDLr[j]と、に電気的に接続されている。
 次に、メモリセルMCに含まれている回路MP、及び回路MPrの構成例について説明する。
 図17は、図16の演算回路110のメモリセルアレイMCAに含まれるメモリセルMCに適用できる回路構成の一例を示している。
 図17に示す回路MPは、実施の形態1で説明した図1AのメモリセルMCの構成を変更したもので、トランジスタM3を、トランジスタM3a、及びトランジスタM3bに置き換えた構成となっている。
 トランジスタM3aの第1端子は、トランジスタM2の第2端子に電気的に接続され、トランジスタM3aの第2端子は、配線RDLに電気的に接続され、トランジスタM3aのゲートは、配線RWLaに電気的に接続されている。また、トランジスタM3bの第1端子は、トランジスタM2の第2端子に電気的に接続され、トランジスタM3bの第2端子は、配線RDLrに電気的に接続され、トランジスタM3bのゲートは、配線RWLbに電気的に接続されている。
 また、図17に示す回路MPrは、回路MPと同様の構成となっている。そのため、回路MPrの有する回路素子などには、回路MPの有する回路素子などと区別をするため、符号に「r」を付している。
 回路MPrにおいて、トランジスタM1rの第1端子は、配線WDLrに電気的に接続され、トランジスタM1rのゲートは、配線WWLに電気的に接続されている。また、FTJ素子FJArの入力端子は、配線FCAに電気的に接続されている。また、FTJ素子FJArの出力端子は、トランジスタM1rの第2端子と、FTJ素子FJBrの入力端子と、トランジスタM2rのゲートと、に電気的に接続されている。また、FTJ素子FJBrの出力端子は、配線FCBに電気的に接続されている。また、トランジスタM2rの第1端子は、配線VCErに電気的に接続され、トランジスタM2rの第2端子は、トランジスタM3arの第1端子と、トランジスタM3brの第1端子と、に電気的に接続されている。トランジスタM3arの第2端子は、配線RDLrに電気的に接続され、トランジスタM3arのゲートは、配線RWLaに電気的に接続されている。また、トランジスタM3brの第2端子は、配線RDLに電気的に接続され、トランジスタM3brのゲートは、配線RWLbに電気的に接続されている。
 配線WDL、及び配線WDLrのそれぞれは、一例として、メモリセルMCの回路MP、及び回路MPrに書き込むための第1データを送信する配線として機能する。なお、当該第1データは、配線WDL、及び配線WDLrに送信される1組の信号によって表現されるものとする。
 配線RDLは、一例として、メモリセルMCの回路MP、又は回路MPrによる演算結果をデータとして送信する配線として機能する。また、配線RDLrは、一例として、配線RDLと同様に、メモリセルMCの回路MP、又は回路MPrによる演算結果をデータとして送信する配線として機能する。
 配線WWLは、一例として、データの書き込み先となるメモリセルMCを選択するための配線として機能する。つまり、配線WWLは、書き込みワード線として機能してもよい。
 配線RWLa、及び配線RWLbは、一例として、第2データを送信する配線として機能する。なお、当該第2データは、配線RWLa、及び配線RWLbに送信される1組の信号によって表現されるものとする。
 配線FCA、及び配線FCBのそれぞれは、一例としては、実施の形態1で説明した図1のメモリセルMCと同様に、回路MP、及び回路MPrに第1データを書き込むときに、FTJ素子FJA、FTJ素子FJB、FTJ素子FJAr、及びFTJ素子FJBrのそれぞれに含まれる、強誘電性を有しうる材料に分極を生じさせる程度の電位を与える配線として機能する。また、配線FCA、及び配線FCBのそれぞれは、一例として、メモリセルMCにおいて、第1データと第2データとの積を演算するときに、当該誘電体の分極を変化させない程度の電位を与える配線としても機能する。また、当該電位は、パルス電圧としてもよい。
 配線VCEは、一例として、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位、低レベル電位、接地電位などとすることができる。また、配線VCEが与える電位としては、パルス電圧としてもよい。
 また、配線VCErは、一例として、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位、低レベル電位、接地電位などとすることができる。配線VCErが与える電位としては、パルス電圧としてもよい。なお、配線VCErが与える電圧が、配線VCEが与える電圧と等しい場合は、配線VCEと配線VCErとの間は互いに導通状態としてもよい。
 回路WDDは、配線WDL[1]乃至配線WDL[n]、及び配線WDLr[1]乃至配線WDLr[n]に電気的に接続されている。また、回路RWDは、配線RWLa[1]乃至配線RWLa[m]、及び配線RWLb[1]乃至配線RWLb[m]に電気的に接続されている。また、回路WWDは、配線WWL[1]乃至配線WWL[m]に電気的に接続されている。また、回路FECDは、配線FCA[1]乃至配線FCA[m]と、配線FCB[1]乃至配線FCB[m]と、に電気的に接続されている。また、回路RDDは、配線RDL[1]乃至配線RDL[n]と、配線RDLr[1]乃至配線RDLr[1]に電気的に接続されている。
 回路WWDについては、実施の形態2で説明した図10の記憶装置100の回路WWDを参酌する。また、回路FECDについては、実施の形態2で説明した図10の記憶装置100の回路FECDを参酌する。
 回路WDDは、一例として、j列目において、配線WDL[j]、及び配線WDLr[j]に第1データを供給する回路として機能する。また、回路WDDは、配線WDL[1]乃至配線WDL[n]、及び配線WDLr[1]乃至配線WDLr[n]に対して、一括に第1データを供給することができる構成としてもよい。
 回路RWDは、一例として、配線RWLa[i]、及び配線RWLb[i]に第2データを供給する回路として機能する。また、回路RWDは、配線RWLa[1]乃至配線RWLa[m]、及び配線RWLb[1]乃至配線RWLb[m]に対して、一括に第2データを供給することができる構成としてもよい。
 ここで、第1データとして、メモリセルMCの回路MP、及び回路MPrのそれぞれに供給される電位を次のとおり定義する。
 メモリセルMCに第1データとして“1”を保持する場合、配線WDLから回路MPに電位Vが供給され、配線WDLrから回路MPrに電位Vが供給されるものとする。また、メモリセルMCに第1データとして“−1”を保持する場合、配線WDLから回路MPに電位Vが供給され、配線WDLrから回路MPrに電位Vが供給されるものとする。また、メモリセルMCに第1データとして“0”を保持する場合、配線WDLから回路MPに電位Vが供給され、配線WDLrから回路MPrに電位Vが供給されるものとする。
 つまり、図3A又は図3Bのタイミングチャートの時刻T23から時刻T26までの間のとおり、配線FCAに電位Vが入力され、配線FCBに電位V0Bが入力されたとき、メモリセルMCに第1データ“1”が保持されている場合には、トランジスタM2のゲートの電位はVHLD1となり、トランジスタM2rのゲートの電位はVHLD0となる。また、メモリセルMCに第1データ“−1”が保持されている場合には、トランジスタM2のゲートの電位はVHLD0となり、トランジスタM2rのゲートの電位はVHLD1となる。また、メモリセルMCに第1データ“0”が保持されている場合には、トランジスタM2のゲートの電位はVHLD0となり、トランジスタM2rのゲートの電位はVHLD0となる。
 なお、演算回路110において、回路MPに含まれるトランジスタM2のゲートの電位がVHLD0であるときには、トランジスタM2はオフ状態となることが好ましい。また、回路MPrに含まれるトランジスタM2rのゲートの電位がVHLD0であるときには、トランジスタM2rはオフ状態となることが好ましい。なお、本実施の形態では、回路MPに含まれるトランジスタM2のゲートの電位がVHLD0であるときは、トランジスタM2はオフ状態になるものとし、回路MPrに含まれるトランジスタM2rのゲートの電位がVHLD0であるときは、トランジスタM2rはオフ状態になるものとする。
 また、演算回路110において、回路MPに含まれるトランジスタM2のゲートの電位がVHLD1であり、トランジスタM2の第2端子に所定の電位が入力されているときには、トランジスタM2の第1端子と第2端子との間には電流量IMPの電流が流れるものとする。また、同様に、回路MPrに含まれるトランジスタM2rのゲートの電位がVHLD1であり、トランジスタM2rの第2端子に所定の電位が入力されているときには、トランジスタM2rの第1端子と第2端子との間には電流量IMPの電流が流れるものとする。
 また、第2データとして、配線RWLa、及び配線RWLbのそれぞれに供給される電位を次のとおり定義する。
 メモリセルMCに対して第2データとして“1”を入力する場合、配線RWLaから回路MP及び回路MPrに高レベル電位が供給され、配線RWLbから回路MP及び回路MPrに低レベル電位が供給されるものとする。また、メモリセルMCに対して第2データとして“−1”を入力する場合、配線RWLaから回路MP及び回路MPrに低レベル電位が供給され、配線RWLbから回路MP及び回路MPrに高レベル電位が供給されるものとする。また、メモリセルMCに対して第2データとして“0”を入力する場合、配線RWLaから回路MP及び回路MPrに低レベル電位が供給され、配線RWLbから回路MP及び回路MPrに低レベル電位が供給されるものとする。
 つまり、メモリセルMCに対して第2データとして“1”が入力されているとき、回路MPにおいて、トランジスタM3aはオン状態、トランジスタM3bはオフ状態となり、回路MPrにおいて、トランジスタM3arはオン状態、トランジスタM3brはオフ状態となるため、回路MPと配線RDL[j]との間が導通状態となり、回路MPrと配線RDLr[j]との間が導通状態となり、回路MPと配線RDLr[j]との間が非導通状態となり、回路MPrと配線RDL[j]との間が非導通状態となる。また、メモリセルMCに対して第2データとして“−1”が入力されているとき、回路MPにおいて、トランジスタM3aはオフ状態、トランジスタM3bはオン状態となり、回路MPrにおいて、トランジスタM3arはオフ状態、トランジスタM3brはオン状態となるため、回路MPと配線RDL[j]との間が非導通状態となり、回路MPrと配線RDLr[j]との間が非導通状態となり、回路MPと配線RDLr[j]との間が導通状態となり、回路MPrと配線RDL[j]との間が導通状態となる。また、メモリセルMCに対して第2データとして“0”が入力されているとき、回路MPにおいて、トランジスタM3aはオフ状態、トランジスタM3bはオフ状態となり、回路MPrにおいて、トランジスタM3arはオフ状態、トランジスタM3brはオフ状態となるため、回路MPと配線RDL[j]との間が非導通状態となり、回路MPrと配線RDLr[j]との間が非導通状態となり、回路MPと配線RDLr[j]との間が非導通状態となり、回路MPrと配線RDL[j]との間が非導通状態となる。
 上記のとおり、メモリセルMCに保持される第1データと、メモリセルMCに入力される第2データと、を定義することによって、メモリセルMCと配線RDL、又は配線RDLrとの間に流れる電流は下の表のとおりとなる。
Figure JPOXMLDOC01-appb-T000003
 つまり、第1データと第2データの積が“1”であるとき、その演算結果として、回路MP又は回路MPrと配線RDLとの間に電流量IMPの電流が流れ、第1データと第2データの積が“−1”であるとき、その演算結果として、回路MP又は回路MPrと配線RDLrとの間に電流量IMPの電流が流れ、第1データと第2データの積が“0”であるとき、その演算結果として、回路MP又は回路MPrと配線RDLとの間、及び回路MP又は回路MPrと配線RDLrとの間に電流量0の電流が流れる(回路MP又は回路MPrと配線RDLとの間、及び回路MP又は回路MPrと配線RDLrとの間には電流が流れない)。このように、メモリセルMCは、メモリセルMCに第1データを保持し、その後にメモリセルMCに第2データを入力することによって、第1データと第2データとの積を演算することができる。
 次に、メモリセルアレイMCAに含まれる複数のメモリセルMCのそれぞれに第1データが保持されている状態で、配線RWLa[1]乃至配線RWLa[m]及び配線RWLb[1]乃至配線RWLb[m]のそれぞれに一括に複数の第2データを供給する場合を考える。なお、メモリセルMC[i,j](iは1以上m以下の整数とし、jは1以上n以下の整数とする)に保持される第1データをW[i,j]とし、配線RWL[i]に供給される第2データをX[i]とする。
 例えば、j列目において、メモリセルMC[1,j]乃至メモリセルMC[m,j]のそれぞれに、配線RWLa[1]乃至配線RWLa[m]及び配線RWLb[1]乃至配線RWLb[m]から第2データとしてX[1]乃至X[m]が入力されたとき、メモリセルMC[1,j]乃至メモリセルMC[m,j]のそれぞれでは、W[1,j]×X[1]乃至W[m,j]×X[m]の演算が行われる。
 また、第1データと第2データの積は“1”、“−1”、及び“0”の3通りなので、メモリセルMC[1,j]乃至メモリセルMC[m,j]において、第1データと第2データの積が“1”となるメモリセルMCの個数をP個、第1データと第2データの積が“−1”となるメモリセルMCの個数をQ個、第1データと第2データの積が“0”となるメモリセルMCの個数をR個とする(P、Q、Rのそれぞれは、0以上であって、P+Q+R=mを満たす整数である)。このとき、配線RDL[j]に流れる電流量の総和は、P×IMPとなり、配線RDLr[j]に流れる電流量の総和は、Q×IMPとなる。
 ここで、回路RDDは、例えば、配線RDL[j]に流れる電流量P×IMPと配線RDLr[j]に流れる電流量Q×IMPとの差分を取得して、当該差分から電圧値に変換する機能を有することによって、メモリセルMC[1,j]乃至メモリセルMC[m,j]における複数の第1データと複数の第2データとの積和演算の結果を、当該電圧値として出力することができる。
 また、回路RDDは、例えば、当該積和の結果を用いて、さらに関数の演算を行う機能を有してもよい。例えば、回路RDDは、積和の結果を用いて活性化関数の演算を行うことで、人工ニューラルネットワークの演算を行うことができる。当該活性化関数としては、例えば、シグモイド関数、tanh関数、ソフトマックス関数、ReLU関数、しきい値関数などを用いることができる。
 また、上記では、j列目に位置するメモリセルMC[1,j]乃至メモリセルMC[m,j]における複数の第1データと複数の第2データとの積和演算の結果について説明したが、複数の第2データは行方向に延設されている配線RWLa[1]乃至配線RWLa[m]及び配線RWLb[1]乃至配線RWLb[m]によって送信されるため、j列目以外の列においても積和演算を行うことができる。つまり、演算回路110で積和を実行する場合、列の数(図16ではn個)だけ積和演算を同時に実行することができる。
 また、上記では、第1データを“1”、“0”、“−1”の3値とした場合について説明したが、動作方法の変更、回路構成の変更などを行うことによって、第1データを2値、4値以上、又はアナログ値として扱うことができる場合がある。
 また、上記では、第2データを“1”、“0”、“−1”の3値とした場合について説明したが、動作方法の変更、回路構成の変更などを行うことによって、第2データを2値、4値以上、又はアナログ値として扱うことができる。
 例えば、上記の演算回路の動作において、配線RWLa、及び配線RWLbのそれぞれに供給される、第2データに相当する電位をパルス電圧とする。このとき、配線RWLa、配線RWLbのいずれか一方が入力するパルス電圧が高レベル電位であるとき、トランジスタM3aとトランジスタM3ar、又はトランジスタM3bとトランジスタM3brの一方がパルス電圧の入力時間だけオン状態となる。
 ここで、回路MPのトランジスタM2のゲートの電位がVHLD1であり、回路MPのトランジスタM2rのゲートの電位がVHLD0であるとき(つまりメモリセルMCに保持されている第1データが“1”であるとき)、回路MPから、配線RDL又は配線RDLrの一方に、当該入力時間だけ電流が流れる。又は、回路MPのトランジスタM2のゲートの電位がVHLD0であり、回路MPのトランジスタM2rのゲートの電位がVHLD1であるとき(つまりメモリセルMCに保持されている第1データが“−1”であるとき)、回路MPrから、配線RDL又は配線RDLrの一方に、当該入力時間だけ電流が流れる。つまり、配線RDL又は配線RDLrには、配線RWLa、及び配線RWLbのそれぞれに入力されるパルス電圧の入力時間に応じた電荷量が流れることになる。
 例えば、メモリセルMCに第1データとして“1”が保持されている場合を考える。また、第2データが“1”であるとき、入力時間Tutだけ、配線RWLaには高レベル電位、配線RWLbには低レベル電位が与えられるものとする。このとき、メモリセルMCの回路MPと配線RDLとの間に流れる電荷量はTut×IMPとなり、メモリセルMCの回路MPrと配線RDLとの間に流れる電荷量は0となり、メモリセルMCの回路MPと配線RDLrとの間に流れる電荷量は0となり、メモリセルMCの回路MPrと配線RDLrとの間に流れる電荷量は0となる。
 また、第2データが“2”であるとき、入力時間2×Tutだけ、配線RWLaには高レベル電位、配線RWLbには低レベル電位が与えられるものとする。このとき、メモリセルMCの回路MPと配線RDLとの間に流れる電荷量は2×Tut×IMPとなり、メモリセルMCの回路MPrと配線RDLとの間に流れる電荷量は0となり、メモリセルMCの回路MPと配線RDLrとの間に流れる電荷量は0となり、メモリセルMCの回路MPrと配線RDLrとの間に流れる電荷量は0となる。
 また、第2データが“−2”であるとき、入力時間2×Tutだけ、配線RWLaには低レベル電位、配線RWLbには高レベル電位が与えられるものとする。このとき、メモリセルMCの回路MPと配線RDLとの間に流れる電荷量は0となり、メモリセルMCの回路MPrと配線RDLとの間に流れる電荷量は0となり、メモリセルMCの回路MPと配線RDLrとの間に流れる電荷量は2×Tut×IMPとなり、メモリセルMCの回路MPrと配線RDLrとの間に流れる電荷量は0となる。
 上述したとおり、配線RWLa、及び配線RWLbに与えられるパルス電圧の入力時間を増減することによって、メモリセルMCの回路MP又は回路MPrと配線RDLとの間に流れる電荷量、及びメモリセルMCの回路MP又は回路MPrと配線RDLrとの間に流れる電荷量を変化させることができる。具体的には、配線RDL及び配線RDLrのそれぞれに流れる電荷量は、当該パルス電圧の入力時間に比例するため、第2データの値に応じて当該入力時間を決めることによって、メモリセルMCは、第2データを2値、4値以上、又はアナログ値として、第1データと第2データの積の結果に応じた電荷量を配線RDL又は配線RDLrに流すことができる。
 また、ここで、回路RDDが、例えば、配線RDLに流れた電荷量、及び配線RDLrに流れた電荷量のそれぞれを電圧値に変換する回路(例えば、QV変換回路、積分回路など)を有する構成とすることによって、回路RDDは、配線RDLに流れた電荷量、及び配線RDLrに流れた電荷量のそれぞれを電圧値として取得することができる。
 また、回路RDDが、例えば、配線RDLに流れた電荷量に応じた電圧値、及び配線RDLrに流れた電荷量に応じた電圧値を比較して、比較結果を電圧値として出力する回路を有する構成とすることによって、回路RDDは、メモリセルMC[1,j]乃至メモリセルMC[m,j]における複数の第1データと複数の第2データとの積和演算の結果を、当該電圧値として出力することができる。
 また、上記の例では、パルス電圧が配線RWLa、及び配線RWLbに供給される動作について説明したが、積和演算は、パルス電圧が、例えば、配線VCE、配線VCEr、配線FCA、配線FCBなどの少なくとも一に供給される動作としてもよい。例えば、メモリセルMCと配線RDLとの間に電荷を流すタイミングで、配線VCE及び配線VCErに所定の電圧をパルス電圧として入力すればよい。又は、例えば、メモリセルMCと配線RDLとの間に電荷を流すタイミングで、配線FCA及び配線FCBのそれぞれに所定の電圧をパルス電圧として入力すればよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、上記の実施の形態で説明したメモリセルとは異なる、本発明の一態様の半導体装置に適用可能なメモリセルについて説明する。
<構成例>
 図18A、及び図18Bには、本発明の一態様の半導体装置である記憶装置に備えることができる、メモリセルMCの回路構成例を示している。なお、図18A、及び図18Bに示すメモリセルMCは、データの読み出し動作時にデータが破壊されず、かつデータのリフレッシュが可能な回路構成となっている。
 図18AのメモリセルMCは、例えば、図1AのメモリセルMCの構成に加えて、トランジスタM5と、容量C1と、を有する構成となっている。また、図18AのメモリセルMCは、トランジスタM1の第2端子と、FTJ素子FJAの出力端子と、FTJ素子FJBの入力端子と、がトランジスタM5の第1端子−第2端子間を介して、トランジスタM2のゲートに電気的に接続されている点でも、図1AのメモリセルMCと異なっている。
 例えば、図18AのメモリセルMCにおいて、トランジスタM5の第1端子は、トランジスタM1の第2端子と、FTJ素子FJAの出力端子と、FTJ素子FJBの入力端子と、に電気的に接続されている。また、トランジスタM5の第2端子は、容量C1の第1端子と、トランジスタM2のゲートと、に電気的に接続され、容量C1の第2端子は、配線VCE2に電気的に接続されている。また、トランジスタM5のゲートは、配線WHLに電気的に接続されている。
 図18BのメモリセルMCは、例えば、図4AのメモリセルMCの構成に加えて、トランジスタM5と、容量C1と、を有する構成となっている。また、図18BのメモリセルMCは、トランジスタM1の第2端子と、強誘電キャパシタFEAの出力端子と、強誘電キャパシタFEBの入力端子と、がトランジスタM5の第1端子−第2端子間を介して、トランジスタM2のゲートに電気的に接続されている点でも、図4AのメモリセルMCと異なっている。
 例えば、図18BのメモリセルMCにおいて、トランジスタM5の第1端子は、トランジスタM1の第2端子と、強誘電キャパシタFEAの出力端子と、強誘電キャパシタFEBの入力端子と、に電気的に接続されている。また、トランジスタM5の第2端子は、容量C1の第1端子と、トランジスタM2のゲートと、に電気的に接続され、容量C1の第2端子は、配線VCE2に電気的に接続されている。また、トランジスタM5のゲートは、配線WHLに電気的に接続されている。
 なお、図18A、及び図18BのトランジスタM5としては、例えば、図1AのメモリセルMCに含まれているトランジスタM1乃至トランジスタM3に適用できるトランジスタを用いることができる。
 配線VCE2は、一例として、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位、低レベル電位、接地電位などとすることができる。また、配線VCE2は、例えば、配線VCEと同一の配線としてもよい。つまり、配線VCE2が与える電圧は、配線VCEが与える電圧と同一としてもよい。
 また、配線WHLは、一例として、トランジスタM5の導通状態と非導通状態との切り替えを行うための制御信号を送信する配線として機能する。例えば、配線WHLに高レベル電位を与えることによって、トランジスタM5は導通状態となり、メモリセルMCに送信されたデータを容量C1の第1端子に書き込むことができる。また、その後に、配線WHLに低レベル電位を与えることによって、トランジスタM5は非導通状態となり、当該データを容量C1の第1端子に保持することができる。
 なお、図18AのメモリセルMCにおいて、図1AのメモリセルMCと重複する内容については、実施の形態1の図1AのメモリセルMCの記載を参酌する。また、図18BのメモリセルMCにおいて、図4AのメモリセルMCと重複する内容については、実施の形態1の図4AのメモリセルMCの記載を参酌する。
<動作例>
 次に、図18AのメモリセルMCにおける、データの書き込み動作例、及びデータの読み出し動作例について説明する。
<<データの書き込み動作例>>
 図19は、図18AのメモリセルMCにおけるデータの書き込み動作の一例を示したタイミングチャートである。図19のタイミングチャートは、時刻V11から時刻V24までの間、及びその近傍の時刻における、配線WWL、配線WDL、配線WHL、配線FCA、配線FCB、及び配線RWLの電位の変化を示している。
 なお、図19のタイミングチャートの時刻V11から時刻V18までの間での動作例は、図2のタイミングチャートの時刻T11乃至時刻T18の動作例と同様である。そのため、時刻V11乃至時刻V18の間における図18AのメモリセルMCの動作例は、図2のタイミングチャートの時刻T11乃至時刻T18の間における図1AのメモリセルMCの動作例を参酌する。
 なお、図19のタイミングチャートの時刻V11から時刻V19までの間において、配線WHLには、低レベル電位(図19ではLowと記載されている)が与えられているものとする。このため、時刻V11から時刻V19までの間では、トランジスタM5のゲートには低レベル電位が入力されて、トランジスタM5はオフ状態となる。
 また、本動作例において、配線RDLの電位の変化はないため、図19のタイミングチャートには図示しない。また、時刻V11から時刻V24までの間における配線RDLの電位は、特に限定されないものとする。
 また、配線VCEが与える電位は、前述したとおり、高レベル電位、低レベル電位、接地電位などとすることができるが、本動作例では、低レベル電位VSSとする。また、配線VCE2が与える電位は、前述したとおり、高レベル電位、低レベル電位、接地電位などとすることができるが、本動作例では、低レベル電位VSSとする。
[時刻V18から時刻V19まで]
 時刻V18から時刻V19までの間において、配線FCAには電位Vが与えられ、配線FCBには電位V0Bが与えられる。Vは、図3Aのタイミングチャートで説明したVと同様に、V0A及びV0Bよりも高く、かつV1Aよりも低い電位とする。また、配線FCBの電位がV0Bであるとき、Vは、FTJ素子FJA、及びFTJ素子FJBにて分極の変化が起こらない(分極の方向が変化しない)程度の電位とする。
 また、例えば、電位Vは、トランジスタM5のしきい値電圧Vth以下の電圧、又はVth以下の電圧に1V程度加えた電圧としてもよい。電位Vをこのように定めることによって、トランジスタM5の第1端子−第2端子に流れる電流量を大きくすることができる場合がある。
 このとき、配線FCAと配線FCBとの間では、V−V0Bの電圧がかかるため、FTJ素子FJA、及びFTJ素子FJBのそれぞれには、当該電圧の分圧がかかる。例えば、配線FCAと配線FCBとの間に電圧V−V0Bがかかって、FTJ素子FJA、及びFTJ素子FJBにおいて、a:b(a、及びbは正の実数とする)の比で分圧がかかるとしたとき、FTJ素子FJAの入力端子と出力端子との間の電圧をVFJAとすると、VFJA=(V−V0B)×a/(a+b)となり、FTJ素子FJBの入力端子と出力端子との間の電圧をVFJBとすると、VFJB=(V−V0B)×b/(a+b)となる。なお、VFJA、及びVFJBは、V−V0B=VFJA+VFJBの関係を満たす。
 また、FTJ素子FJAにおいて、分極の方向が入力端子(配線FCA)から出力端子への方向(正方向)となっているとき、VFJAは高くなり、また、分極の方向が出力端子から入力端子(配線FCA)の方向(負方向)となっているとき、VFJAは低くなる。同様に、FTJ素子FJBにおいて、分極の方向が出力端子(配線FCB)から入力端子への方向(負方向)となっているとき、VFJBは低くなり、また、分極の方向が入力端子から出力端子(配線FCB)の方向(正方向)となっているとき、VFJBは高くなる。
 ここで、例えば、図19のタイミングチャートの時刻V13から時刻V16までの間において、メモリセルMCに書き込まれた電位をVとしたとき、FTJ素子FJAの分極の方向が入力端子(配線FCA)から出力端子への方向(正方向)となるため、VFJAは高くなり、FTJ素子FJBの分極の方向が出力端子(配線FCB)から入力端子への方向(負方向)となるため、VFJBは低くなる。つまり、FTJ素子FJA、及びFTJ素子FJBのそれぞれにかかる分圧の割合a:bとしては、a>bとなる。また、このときのトランジスタM5の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位をVHLD0とする。
 また、例えば、図19のタイミングチャートの時刻V13から時刻V16までの間において、メモリセルMCに書き込まれた電位をVとしたとき、FTJ素子FJAの分極の方向が出力端子から入力端子(配線FCA)への方向(負方向)となるため、VFJAは低くなり、FTJ素子FJBの分極の方向が入力端子から出力端子(配線FCB)への方向(正方向)となるため、VFJBは高くなる。つまり、FTJ素子FJA、及びFTJ素子FJBのそれぞれにかかる分圧の割合a:bとしては、b>aとなる。また、このときのトランジスタM5の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位をVHLD1とする。
 FTJ素子FJBの入力端子と出力端子との間の電圧VFJBは、メモリセルMCに書き込まれた電位がVのときよりもVのときのほうが高くなる。そのため、配線FCBが与える電位V0Bを基準としたとき、トランジスタM5の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位は、メモリセルMCに書き込まれた電位がVのときよりもVのときのほうが高くなる。つまり、VHLD1>VHLD0となる。
[時刻V19から時刻V20まで]
 時刻V19から時刻V20までの間において、配線WHLが与える電位は、低レベル電位から高レベル電位(図19ではHighと記載している)に変化する。このため、トランジスタM5のゲートには高レベル電位が入力されて、トランジスタM5はオン状態となる。
 トランジスタM5がオン状態になることによって、トランジスタM5の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)と、トランジスタM2のゲート及び容量C1の第1端子と、の間が導通状態となる。また、時刻V19から時刻V20までの間では、配線FCAからVが与えられ、配線FCBからV0Bが与えられているため、トランジスタM2のゲート及び容量C1の第1端子のそれぞれの電位は、VHLD0、又はVHLD1となる。
[時刻V20から時刻V21まで]
 時刻V20から時刻V21までの間において、配線WHLが与える電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM5のゲートには低レベル電位が入力されて、トランジスタM5はオフ状態となる。
 トランジスタM5がオフ状態になることによって、トランジスタM5の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)と、トランジスタM2のゲート及び容量C1の第1端子と、の間が非導通状態となる。また、これにより、トランジスタM2のゲートの電位VHLD0、又はVHLD1は、容量C1によって保持される。
[時刻V21から時刻V22まで]
 時刻V21から時刻V22までの間において、配線FCAには電位V0Aが与えられ、配線FCBには電位V0Bが与えられている。つまり、時刻V21以降において、配線FCA、及び配線FCBが与える電位は、時刻V18以前において、配線FCA、及び配線FCBが与える電位と同様としている。
[時刻V22から時刻V23まで]
 時刻V22から時刻V23までの間において、配線WWLが与える電位は、低レベル電位から高レベル電位に変化する。このため、トランジスタM1のゲートには高レベル電位が入力されて、トランジスタM1はオン状態となる。つまり、配線WDLとトランジスタM5の第1端子(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)との間が導通状態となる。したがって、トランジスタM5の第1端子(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)には、配線WDLが与える接地電位が与えられる。このため、トランジスタM2のゲート(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位は、接地電位になるものとする。
 なお、図18のメモリセルMCの動作例において、時刻V22から時刻V23までの間の動作は必須ではなく、行わなくてもよい。
[時刻V23から時刻V24まで]
 時刻V23から時刻V24までの間において、配線WWLが与える電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM1のゲートには低レベル電位が入力されて、トランジスタM1はオフ状態となる。つまり、配線WDLとトランジスタM5の第1端子(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)との間が非導通状態となる。
 上述した時刻V23から時刻V24までの間の動作によって、図18のメモリセルMCにデータを書き込むことができる。
<<データの読み出し動作例>>
 図20Aは、図18AのメモリセルMCにおけるデータの読み出し動作の一例を示したタイミングチャートである。図20Aのタイミングチャートは、時刻V25から時刻V29での間、及びその近傍の時刻における、配線RWL、及び配線RDLの電位の変化について示している。
 なお、図20Aのタイミングチャートに示す時刻V25よりも以前の動作は、図19のタイミングチャートの動作例が行われたものとする。つまり、図18AのメモリセルMCは、図19のタイミングチャートの動作例によって、トランジスタM2のゲート及び容量C1の第1端子のそれぞれの電位は、VHLD0、又はVHLD1となっているものとする。
 なお、本動作例において、配線WWL、配線WDL、配線WHL、配線FCA、及び配線FCBにおいて電位の変化はないため、図20Aのタイミングチャートには図示しない。また、時刻V25から時刻V29までの間における配線WWL、配線WDL、配線WHL、配線FCA、及び配線FCBの電位は、特に限定されないものとする。なお、本動作例では、一例として、配線WWLには低レベル電位が与えられ、配線WDLには接地電位が与えられ、配線WHLには低レベル電位が与えられ、配線FCAには電位V0Aが与えられ、配線FCBには電位V0Bが与えられているものとする。
 また、配線WWLには低レベル電位が与えられているため、トランジスタM1はオフ状態となる。また、配線WHLには低レベル電位が与えられているため、トランジスタM5はオフ状態となる。
[時刻V25から時刻V26まで]
 時刻V25から時刻V26までの間において、配線RWLの電位は、低レベル電位(図20Aには、Lowと記載している)となっている。そのため、トランジスタM3のゲートには低レベル電位が入力され、トランジスタM3はオフ状態となっている。また、配線RDLの電位は、低レベル電位となっている。
[時刻V26から時刻V27まで]
 時刻V26から時刻V27までの間では、配線RDLの電位には、定電圧である電位VRE1が与えられる。VRE1は、VSSよりも高い読み出し用の定電圧である。
[時刻V27から時刻V28まで]
 時刻V27から時刻V28までの間において、配線RWLが与える電位は、低レベル電位から高レベル電位(図20AではHighと記載している)に変化する。このため、トランジスタM3のゲートには高レベル電位が入力されて、トランジスタM3はオン状態となる。
 ところで、トランジスタM2のゲートの電位は、VHLD0、又はVHLD1となっており、トランジスタM2の第1端子の電位は、VSSとなっている。さらに、トランジスタM3はオン状態となっているため、トランジスタM2の第2端子には、一例として、配線RDLから、VSSよりも高い定電位VRE1が入力される。ここで、トランジスタM2のゲート−ソース間電圧VHLD0−VSS(又は、VHLD1−VSS)がトランジスタM2のしきい値電圧Vthよりも高いものとすると、トランジスタM2には、ゲート−ソース間電圧VHLD0−VSS(又は、VHLD1−VSS)に応じた電流が流れる。
 つまり、トランジスタM3をオン状態にすることによって、トランジスタM2のゲートの電位に応じて、配線RDLに流れる電流量が決まる。具体的には、VHLD1>VHLD0であるため、トランジスタM2から配線RDLに流れる電流は、配線WDLからメモリセルMCに与えられた電位がVのときよりもVのときのほうが大きくなる。
 ここで、配線RDLに流れる電流を読み出し回路(例えば、電流電圧変換回路など)などに入力することによって、メモリセルMCに保持されたデータを読み出すことができる。
[時刻V28から時刻V29まで]
 時刻V28から時刻V29までの間において、配線RWLの電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM3のゲートには低レベル電位が入力され、トランジスタM3はオフ状態となる。
 上述した時刻V28から時刻V29までの間の動作例によって、図18AのメモリセルMCに書き込まれたデータを読み出すことができる。また、図18AのメモリセルMCからデータを読み出したとき、FTJ素子FJA、及びFTJ素子FJBのそれぞれの分極の方向は変化しないため、上述したデータの読み出し動作例は、破壊読み出しとならない。つまり、メモリセルMCに書き込まれたデータを保持したまま、メモリセルMCから当該データを読み出すことができる。
 なお、図20Aのタイミングチャートの読み出し動作例では、配線VCEが与える電位を低レベル電位VSSとしたが、配線VCEが与える電位は高レベル電位としてもよい。図20Bのタイミングチャートは、図20Aのタイミングチャートの読み出し動作例において、配線VCEが与える電位を高レベル電位にした場合の動作例を示している。
 以下に、図20Bのタイミングチャートの読み出し動作例について、説明する。なお、図20Bのタイミングチャートの読み出し動作において、図20Aのタイミングチャートの読み出し動作と内容が重複する箇所については、説明を省略する。また、本動作例において、配線VCEが与える高レベル電位をVDDとする。
 また、図20Bのタイミングチャートの時刻V27以降の配線RDLにおいて、電位の変動を実線と破線で示している。実線で示した電位変化は、図19のタイミングチャートの書き込み動作において、配線WDLからメモリセルMCにVが入力された場合を示し、また、破線で示した電位変化は、図19のタイミングチャートの書き込み動作において、配線WDLからメモリセルMCにVが入力された場合を示している。
 図20Bのタイミングチャートにおいて、時刻V25から時刻V27までの間では、配線RDLに対して、低レベル電位VSSにプリチャージが行われるものとする。また、配線RDLに対するプリチャージが行われた後、配線RDLは、フローティング状態になるものとする。
 また、時刻V27から時刻V28までの間では、配線RWLの電位が、低レベル電位から高レベル電位に変化する。このため、トランジスタM3のゲートには高レベル電位が入力されて、トランジスタM3はオン状態となる。
 このとき、トランジスタM2のゲートの電位は、VHLD0、又はVHLD1となっており、トランジスタM2の第1端子の電位は、VDDとなっている。さらに、トランジスタM3はオン状態となっているため、トランジスタM2の第2端子には、配線RDLにおいてプリチャージされた電位が入力される。ここで、トランジスタM2のゲート−ソース間電圧VHLD0−VSS(又は、VHLD1−VSS)がトランジスタM2のしきい値電圧Vthよりも高いものとすると、配線RDLの電位は、VSSから所定の電位まで上昇する。例えば、トランジスタM2のゲートの電位がVHLD0であるとき、理想的には、配線RDLの電位はVSSからVHLD0−Vth(図20BではVONと記載している。)まで上昇する。また、例えば、トランジスタM2のゲートの電位がVHLD1であるとき、理想的には、配線RDLの電位はVSSからVHLD1−Vth(図20BではVOPと記載している。)まで上昇する。
 上記のとおり、配線VCEが与える電位を高レベル電位にした場合でも、配線RDLにプリチャージする電位を最適な値にすることで、図20Aのタイミングチャートと読み出し動作例と同様に、メモリセルMCに保持されているデータを読み出すことができる。
 なお、図20A及び図20Bのタイミングチャートの時刻V27から時刻V28までの間では、配線RDLに流れる電流、又は配線RDLの電位を取得して、メモリセルMCに保持されたデータを読み出す動作の一例について説明したが、メモリセルMCの読み出し動作は上述した動作例に限定されない。
 また、例えば、図20Aのタイミングチャートの動作例において、配線VCEが与える電位をVDDとして、時刻V25以降において、配線RDLにVDDよりも低い読み出し用の定電圧を与えて、図20Aのタイミングチャートの動作と同様に、配線RDLに流れる電流の量を取得することによって、メモリセルMCに保持されているデータを読み出すことができる。
 なお、本実施の形態で説明した、図19、図20A、及び図20Bのタイミングチャートの動作は、一例であるため、状況に応じて、又は場合によって、その動作を変更することができる。例えば、図19のタイミングチャートの時刻V12から時刻V17までの間で、配線WWLに高レベル電位が与えられ、時刻V13から時刻V16までの間で、配線WDLにV又はVが与えられているが、配線WDLにV又はVが与えられている期間内に、配線WWLに高レベル電位が与えられていてもよい。また、配線FCAに電位V1Aが与えられ、かつ配線FCBに電位V0Bが与えられている期間、及び配線FCAに電位V0Aが与えられて、かつ配線FCBに電位V1Bが与えられている期間は、配線WWLに高レベル電位が与えられ、かつ配線WDLにV又はVが与えられている期間内であれば、どのタイミングでもよい。また、配線FCAに電位V0Aが与えられて、かつ配線FCBに電位V1Bが与えられている期間は、配線FCAに電位V1Aが与えられ、かつ配線FCBに電位V0Bが与えられている期間よりも先でもよい。また、例えば、図19のタイミングチャートの時刻V18から時刻V21までの間で、配線FCAにVが与えられ、時刻V19から時刻V20までの間で、配線WHLに高レベル電位が与えられているが、配線WHLに高レベル電位が与えられている期間内に、配線FCAにVが与えられていてもよい。
 また、例えば、図19のタイミングチャートの時刻V18から時刻V21までの間で、配線FCAにVが与えられ、配線FCBにV0Bが与えられているが、このとき、配線FCAにV0Aが与えられ、配線FCBにVが与えられていてもよい。
<<データのリフレッシュの動作例>>
 図18A、図18BのメモリセルMCの容量C1の第1端子に保持した電位VHLD0、又はVHLD1が時間経過によって変動したとき、所定の動作を行うことによって、図18A、図18BのメモリセルMCの容量C1の第1端子の電位をVHLD0、又はVHLD1に戻すことができる。つまり、図18A、図18BのメモリセルMCは、保持したデータに対してリフレッシュを行う機能を有する。
 メモリセルMCの容量C1の第1端子に保持した電位をリフレッシュする場合は、図19のタイミングチャートの時刻V18から時刻V24の動作を行えばよい。FTJ素子FJA、及びFTJ素子FJBのそれぞれの強誘電性を有しうる材料の分極の方向が定まっているため、配線FCAからFTJ素子FJAの入力端子に電位Vを与え、配線FCBからFTJ素子FJBの出力端子にV0Bを与えることによって、トランジスタM5の第1端子(FTJ素子FJAの出力端子、FTJ素子FJBの入力端子)の電位をVHLD0、又はVHLD1にすることができる。そして、トランジスタM5をオン状態にすることによって、メモリセルMCの容量C1の第1端子と、トランジスタM2のゲートと、の電位をVHLD0、又はVHLD1にリフレッシュすることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、上記の実施の形態で説明したメモリセルとは異なる、本発明の一態様の半導体装置に適用可能なメモリセルについて説明する。
<構成例>
 図21には、本発明の一態様の半導体装置である記憶装置に備えることができる、メモリセルMCの回路構成例を示している。なお、図21に示すメモリセルMCは、図18A、及び図18BのメモリセルMCと同様に、データの読み出し動作時にデータが破壊されず、かつデータのリフレッシュが可能な回路構成となっている。
 図21のメモリセルMCは、例えば、図1AのメモリセルMCの構成に加えて、トランジスタM6と、容量C2と、を有する構成となっている。また、図21のメモリセルMCは、トランジスタM1の第2端子と、FTJ素子FJAの出力端子と、FTJ素子FJBの入力端子と、が容量C2の第1端子−第2端子間を介して、トランジスタM2のゲートに電気的に接続されている点でも、図1AのメモリセルMCと異なっている。
 例えば、図21のメモリセルMCにおいて、容量C2の第1端子は、トランジスタM1の第2端子と、FTJ素子FJAの出力端子と、FTJ素子FJBの入力端子と、に電気的に接続されている。また、容量C2の第2端子は、トランジスタM6の第1端子と、トランジスタM2のゲートと、に電気的に接続されている。トランジスタM6の第2端子は、トランジスタM2の第2端子と、トランジスタM3の第1端子と、に電気的に接続されている。また、トランジスタM6のゲートは、配線WCLに電気的に接続されている。
 なお、トランジスタM6としては、例えば、図1AのメモリセルMCに含まれているトランジスタM1乃至トランジスタM3に適用できるトランジスタを用いることができる。
 また、配線WCLは、一例として、トランジスタM6の導通状態と非導通状態との切り替えを行うための制御信号を送信する配線として機能する。例えば、配線WCLに高レベル電位を与えることによって、トランジスタM6は導通状態となり、また、配線WCLに低レベル電位を与えることによって、トランジスタM6は非導通状態となる。
 なお、図21のメモリセルMCにおいて、図1AのメモリセルMCと重複する内容については、実施の形態1の図1AのメモリセルMCの記載を参酌する。
<動作例>
 次に、図21のメモリセルMCにおける、トランジスタM2のしきい値電圧を補正する動作例について説明する。
 図22は、図21のメモリセルMCにおける、トランジスタM2のしきい値電圧を補正する動作例を示したタイミングチャートである。図22のタイミングチャートは、時刻W11から時刻W18までの間、及びその近傍の時刻における、配線WWL、配線WDL、配線WCL、配線RWL、及び配線RDLの電位の変化を示している。
 また、本動作例において、配線FCA、及び配線FCBのそれぞれの電位の変化はないため、図22のタイミングチャートには図示しない。なお、本動作例において、配線FCAには電位V0Aが与えられ、配線FCBには電位V0Bが与えられているものとする。
 また、配線VCEが与える電位は、前述したとおり、高レベル電位、低レベル電位、接地電位などとすることができるが、本動作例では、低レベル電位VSSとする。
[時刻W11から時刻W12まで]
 時刻W11から時刻W12までの間において、配線WWL、配線WCL、及び配線RWLのそれぞれの電位は、低レベル電位(図22には、Lowと記載している)となっている。そのため、トランジスタM1、トランジスタM6、及びトランジスタM3のそれぞれのゲートには低レベル電位が入力され、トランジスタM1、トランジスタM6、及びトランジスタM3のそれぞれはオフ状態となっている。
 また、時刻W11から時刻W12までの間において、配線WDL、及び配線RDLのそれぞれには、一例として、接地電位(図22では、GNDと記載している)が入力されている。
[時刻W12から時刻W13まで]
 時刻W12から時刻W13までの間において、配線WWL、配線WCL、及び配線RWLのそれぞれが与える電位は、低レベル電位から高レベル電位(図22には、Highと記載している)に変化する。このため、トランジスタM1、トランジスタM6、及びトランジスタM3のそれぞれのゲートには高レベル電位が入力されて、トランジスタM1、トランジスタM6、及びトランジスタM3のそれぞれはオン状態となる。
 トランジスタM1がオン状態になることによって、配線WDLと、容量C2の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)と、の間が導通状態となる。このため、容量C2の第1端子(FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子)の電位は、配線WDLから接地電位が入力されるため、接地電位となる。
 また、トランジスタM3、及びトランジスタM6がオン状態になることによって、配線RDLと、容量C2の第2端子(トランジスタM2のゲート)と、の間が導通状態となる。このため、容量C2の第2端子(トランジスタM2のゲート)の電位は、配線RDLから接地電位が入力されるため、接地電位となる。
[時刻W13から時刻W14まで]
 時刻W13から時刻W14までの間において、配線RDLが与える電位は、接地電位から、トランジスタM2のしきい値電圧Vthよりも高い電位に変化する。例えば、当該電位としては、Vth+ΔVとする。
 このとき、トランジスタM3はオン状態となっているため、トランジスタM2の第2端子には、配線RDLからVth+ΔVが入力される。更に、トランジスタM6もオン状態となっているため、トランジスタM2のゲート、及び容量C2の第2端子のそれぞれにも、配線RDLからVth+ΔVが入力される。
[時刻W14から時刻W15まで]
 時刻W14から時刻W15までの間において、配線RWLが与える電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM3のゲートには低レベル電位が入力されて、トランジスタM3はオフ状態となる。
 このとき、トランジスタM6はオン状態となっているため、トランジスタM2のゲートとトランジスタM2の第2端子は導通状態となっている。また、トランジスタM2のゲートとトランジスタM2の第2端子とのそれぞれの電位はVth+ΔV、トランジスタM1の第1端子の電位は低レベル電位VSSであるため、トランジスタM2はオン状態となる。このため、トランジスタM2のゲートとトランジスタM2の第2端子とのそれぞれの電位は、トランジスタM2がオフ状態となるまで低下する。具体的には、トランジスタM2のゲート−ソース間電圧がしきい値電圧まで低下することでトランジスタM2はオフ状態となるので、このときのトランジスタM2のゲートの電位は、VSS+Vthとなる。
[時刻W15から時刻W16まで]
 時刻W15から時刻W16までの間において、配線WCLが与える電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM6のゲートには低レベル電位が入力されて、トランジスタM6はオフ状態となる。
 また、容量C2の第1端子には、配線WDLからの接地電位が与えられている。これにより、トランジスタM2のゲートの電位であるVSS+Vthは、容量C2の第2端子によって保持される。
 上述した動作によって、トランジスタM2のしきい値電圧の補正を行うことができる。これにより、複数配置されたメモリセルMCのそれぞれに含まれるトランジスタM2のしきい値電圧のばらつきを少なくすることができる。トランジスタM2のしきい値電圧のばらつきを少なくすることによって、同じデータが保持されている複数のメモリセルMCから読み出されたそれぞれの電流の量をほぼ等しくすることができる。
[時刻W16から時刻W17まで]
 時刻W16から時刻W17までの間において、配線WWLが与える電位は、高レベル電位から低レベル電位に変化する。このため、トランジスタM1のゲートには低レベル電位が入力されて、トランジスタM1はオフ状態となる。
[時刻W17から時刻W18まで]
 時刻W17から時刻W18までの間において、配線RDLが与える電位は、Vth+ΔVから接地電位に変化する。
 その後、図21のメモリセルMCにおいて、図1のメモリセルMCと同様に、例えば、図2のタイミングチャートの動作例と同様に、データの書き込みを行い、また、図3Aのタイミングチャートの動作例と同様に、当該データの読み出しを行うことによって、しきい値電圧が補正されたトランジスタM2の第1端子−第2端子間に流れる電流を、読み出し用のデータとして扱うことができる。
 例えば、図21のメモリセルMCの構成で、図3Aのタイミングチャートの時刻T23から時刻T26までの間の動作を行ったとき、配線FCAに電位Vが入力され、配線FCBに電位V0Bが入力されて、FTJ素子FJAの出力端子、及びFTJ素子FJBの入力端子の電位はVHLD0、又はVHLD1となる。このとき、トランジスタM2のゲートの電位は、容量C2の容量結合によって、VHLD0+VSS+Vth、又はVHLD1+VSS+Vthとなる。したがって、トランジスタM2のゲート−ソース間電圧は、VHLD0+Vth、又はVHLD1+Vthとなる。このため、トランジスタM2が飽和領域で動作する場合、トランジスタM2の第1端子−第2端子間に流れる電流量は、トランジスタM2のしきい値電圧に依存しなくなるため、メモリセルMCから読み出されたデータが受ける、トランジスタM2のしきい値電圧のばらつきによる影響を少なくすることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、上記実施の形態で説明した半導体装置の構成例、及び上記の実施の形態で説明した半導体装置に適用できるトランジスタの構成例について説明する。
<半導体装置の構成例1>
 図23は、容量素子を含むメモリセルを有する半導体装置であって、当該半導体装置は、トランジスタ300と、トランジスタ500と、容量素子600と、を有する。また、図24Aにはトランジスタ500のチャネル長方向の断面図、図24Bにはトランジスタ500のチャネル幅方向の断面図を示しており、図24Cにはトランジスタ300のチャネル幅方向の断面図を示している。
 トランジスタ500は、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、オフ電流が小さく、また、高温でも電界効果移動度が変化しにくい特性を有する。トランジスタ500を、半導体装置、例えば、上記実施の形態で説明した、メモリセルMCに含まれるトランジスタM1などに適用することにより、高温でも動作能力が低下しにくい半導体装置を実現できる。特に、トランジスタ500を、例えば、トランジスタM1に適用することにより、オフ電流が小さい特性を利用して、メモリセルMCの容量に書き込んだ電位を長時間保持することができる。
 トランジスタ500は、例えば、トランジスタ300の上方に設けられ、容量素子600は、例えば、トランジスタ300、及びトランジスタ500の上方に設けられている。なお、容量素子600は、例えば、メモリセルに書き込まれるデータに応じた電位を保持する容量素子とすることができる。なお、回路構成によっては、図23に示す容量素子600は必ずしも設けなくてもよい。
 トランジスタ300は、基板310上に設けられ、素子分離層312、導電体316、絶縁体315、基板310の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、上記実施の形態で説明したトランジスタM2などに適用することができる。なお、図23では、トランジスタ300のゲートが、容量素子600の一対の電極を介して、トランジスタ500のソース又はドレインの一方に電気的に接続されている構成を示しているが、本発明の一態様の半導体装置の構成によっては、トランジスタ300のソース又はドレインの一方が、容量素子600の一対の電極を介して、トランジスタ500のソース又はドレインの一方に電気的に接続されている構成とすることができ、また、トランジスタ300のソース又はドレインの一方が、容量素子600の一対の電極を介して、トランジスタ500のゲートに電気的に接続されている構成とすることができ、また、トランジスタ300の各端子は、トランジスタ500の各端子、容量素子600の各端子のいずれにも電気的に接続されない構成とすることができる。
 また、基板310としては、半導体基板(例えば単結晶基板又はシリコン基板)を用いることが好ましい。
 トランジスタ300は、図24Cに示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
 なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、GaN(窒化ガリウム)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタン、窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステン、アルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 素子分離層312は、基板310上に形成されている複数のトランジスタ同士を分離するために設けられている。素子分離層は、例えば、LOCOS(Local Oxidation of Silicon)法、STI(Shallow Trench Isolation)法、メサ分離法などを用いて形成することができる。
 なお、図23に示すトランジスタ300は一例であり、その構造に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。例えば、トランジスタ300は、図24Cに示すFIN型ではなく、プレーナ型の構造としてもよい。また、例えば、半導体装置をOSトランジスタのみの単極性回路とする場合、図25に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。なお、本明細書等において、単極性回路とは、nチャネル型トランジスタ又はpチャネル型トランジスタの一方のみの極性のトランジスタを含む回路のことをいう。
 なお、図25において、トランジスタ300は、基板310A上に設けられているが、この場合、基板310Aとしては、図23の半導体装置の基板310と同様に半導体基板を用いてもよい。また、基板310Aとしては、例えば、SOI基板、ガラス基板、石英基板、プラスチック基板、サファイアガラス基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどを用いることができる。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ樹脂、無機蒸着フィルム、又は紙類などがある。
 図23に示すトランジスタ300には、絶縁体320、絶縁体322、絶縁体324、絶縁体326が、基板310側から順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、絶縁体320に覆われているトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板310、又はトランジスタ300などから、トランジスタ500が設けられる領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326には容量素子600、又はトランジスタ500と接続する導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウム、銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図23において、絶縁体350、絶縁体352、及び絶縁体354が、絶縁体326、及び導電体330の上方に、順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素、水などの不純物に対するバリア性を有する絶縁体を用いることが好ましい。また、絶縁体352、及び絶縁体354としては、絶縁体326と同様に、配線間に生じる寄生容量を低減するために、比誘電率が比較的低い絶縁体を用いることが好ましい。また、導電体356は、水素、水などの不純物に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
 また、絶縁体354、及び導電体356上には、絶縁体360と、絶縁体362と、絶縁体364が順に積層されている。
 絶縁体360は、絶縁体324などと同様に、水、水素などの不純物に対するバリア性を有する絶縁体を用いることが好ましい。そのため、絶縁体360としては、例えば、絶縁体324などに適用できる材料を用いることができる。
 絶縁体362、及び絶縁体364は、層間絶縁膜、及び平坦化膜としての機能を有する。また、絶縁体362、及び絶縁体364は、絶縁体324と同様に、水、水素などの不純物に対するバリア性を有する絶縁体を用いることが好ましい。このため、絶縁体362、及び/又は絶縁体364としては、絶縁体324に適用できる材料を用いることができる。
 また、絶縁体360、絶縁体362、及び絶縁体364において、導電体356と重畳する領域に開口部が形成されて、当該開口部を埋めるように導電体366が設けられている。また、導電体366は、絶縁体362上にも形成されている。導電体366は、一例として、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお、導電体366は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 絶縁体364、及び導電体366上には絶縁体510、絶縁体512、絶縁体514、及び絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、及び絶縁体516のいずれかは、酸素、水素に対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、及び絶縁体514には、例えば、基板310、又はトランジスタ300を設ける領域などから、トランジスタ500が設けられている領域に、水素、不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、及び絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、及び絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、及び絶縁体516として、酸化シリコン膜、酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、及び絶縁体516には、導電体518、及びトランジスタ500を構成する導電体(例えば、図24A、及び図24Bに示す導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体518は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、及び絶縁体514と接する領域の導電体518は、酸素、水素、及び水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、及び水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図24A、及び図24Bに示すように、トランジスタ500は、絶縁体514上の絶縁体516と、絶縁体514または絶縁体516に埋め込まれるように配置された導電体503(導電体503a、および導電体503b)と、絶縁体516上、および導電体503上の絶縁体522と、絶縁体522上の絶縁体524と、絶縁体524上の酸化物530aと、酸化物530a上の酸化物530bと、酸化物530b上の導電体542aと、導電体542a上の絶縁体571aと、酸化物530b上の導電体542bと、導電体542b上の絶縁体571bと、酸化物530b上の絶縁体552と、絶縁体552上の絶縁体550と、絶縁体550上の絶縁体554と、絶縁体554上に位置し、酸化物530bの一部と重なる導電体560(導電体560a、および導電体560b)と、絶縁体522、絶縁体524、酸化物530a、酸化物530b、導電体542a、導電体542b、絶縁体571a、および絶縁体571b上に配置される絶縁体544と、を有する。ここで、図24A、及び図24Bに示すように、絶縁体552は、絶縁体522の上面、絶縁体524の側面、酸化物530aの側面、酸化物530bの側面および上面、導電体542の側面、絶縁体571の側面、絶縁体544の側面、絶縁体580の側面、および絶縁体550の下面と接する。また、導電体560の上面は、絶縁体554の上部、絶縁体550の上部、絶縁体552の上部、および絶縁体580の上面と高さが概略一致するように配置される。また、絶縁体574は、導電体560の上面、絶縁体552の上部、絶縁体550の上部、絶縁体554の上部、および絶縁体580の上面の少なくともいずれかの一部と接する。
 絶縁体580、および絶縁体544には、酸化物530bに達する開口が設けられる。当該開口内に、絶縁体552、絶縁体550、絶縁体554、および導電体560が配置されている。また、トランジスタ500のチャネル長方向において、絶縁体571a、および導電体542aと、絶縁体571b、および導電体542bと、の間に導電体560、絶縁体552、絶縁体550、および絶縁体554が設けられている。絶縁体554は、導電体560の側面と接する領域と、導電体560の底面と接する領域と、を有する。
 酸化物530は、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、を有することが好ましい。酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
 なお、トランジスタ500では、酸化物530が、酸化物530a、および酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、トランジスタ500は、酸化物530bの単層、または3層以上の積層構造を有する構成とすることができる。又は、酸化物530a、および酸化物530bのそれぞれが積層構造を有する構成とすることができる。
 導電体560は、第1のゲート(トップゲートともいう。)電極として機能し、導電体503は、第2のゲート(バックゲートともいう。)電極として機能する。また、絶縁体552、絶縁体550、及び絶縁体554は、第1のゲート絶縁体として機能し、絶縁体522、および絶縁体524は、第2のゲート絶縁体として機能する。なお、ゲート絶縁体は、ゲート絶縁層、またはゲート絶縁膜と呼ぶ場合もある。また、導電体542aは、ソースまたはドレインの一方として機能し、導電体542bは、ソースまたはドレインの他方として機能する。また、酸化物530の導電体560と重畳する領域の少なくとも一部はチャネル形成領域として機能する。
 ここで、図24Aにおけるチャネル形成領域近傍の拡大図を図26Aに示す。酸化物530bに酸素が供給されることで、導電体542aと導電体542bの間の領域にチャネル形成領域が形成される。よって、図26Aに示すように、酸化物530bは、トランジスタ500のチャネル形成領域として機能する領域530bcと、領域530bcを挟むように設けられ、ソース領域またはドレイン領域として機能する領域530baおよび領域530bbと、を有する。領域530bcは、少なくとも一部が導電体560と重畳している。言い換えると、領域530bcは、導電体542aと導電体542bの間の領域に設けられている。領域530baは、導電体542aに重畳して設けられており、領域530bbは、導電体542bに重畳して設けられている。
 チャネル形成領域として機能する領域530bcは、領域530baおよび領域530bbよりも、酸素欠損(本明細書等では、金属酸化物中の酸素欠損をV(oxygen vacancy)と呼称する場合がある。)が少なく、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって領域530bcは、i型(真性)または実質的にi型であるということができる。
 金属酸化物を用いたトランジスタは、金属酸化物中のチャネルが形成される領域に不純物または酸素欠損(V)が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損(V)近傍の水素が、酸素欠損(V)に水素が入った欠陥(以下、VHと呼称する場合がある。)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネルが形成される領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。
 また、ソース領域またはドレイン領域として機能する領域530baおよび領域530bbは、酸素欠損(V)が多く、または水素、窒素、金属元素などの不純物濃度が高い、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、領域530baおよび領域530bbは、領域530bcと比較して、キャリア濃度が高く、低抵抗なn型の領域である。
 ここで、チャネル形成領域として機能する領域530bcのキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域として機能する領域530bcのキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 また、領域530bcと領域530baまたは領域530bbとの間に、キャリア濃度が、領域530baおよび領域530bbのキャリア濃度と同等、またはそれよりも低く、領域530bcのキャリア濃度と同等、またはそれよりも高い、領域が形成されていてもよい。つまり、当該領域は、領域530bcと領域530baまたは領域530bbとの接合領域として機能する。当該接合領域は、水素濃度が、領域530baおよび領域530bbの水素濃度と同等、またはそれよりも低く、領域530bcの水素濃度と同等、またはそれよりも高くなる場合がある。また、当該接合領域は、酸素欠損が、領域530baおよび領域530bbの酸素欠損と同等、またはそれよりも少なく、領域530bcの酸素欠損と同等、またはそれよりも多くなる場合がある。
 なお、図26Aでは、領域530ba、領域530bb、および領域530bcが酸化物530bに形成される例について示しているが、本発明はこれに限られるものではない。例えば、上記の各領域が酸化物530bだけでなく、酸化物530aまで形成されてもよい。
 また、酸化物530において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
 トランジスタ500は、チャネル形成領域を含む酸化物530(酸化物530a、および酸化物530b)に、半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。
 また、半導体として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物530として、例えば、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物530として、In−Ga酸化物、In−Zn酸化物、インジウム酸化物を用いてもよい。
 ここで、酸化物530bに用いる金属酸化物における、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 このように、酸化物530bの下に酸化物530aを配置することで、酸化物530aよりも下方に形成された構造物からの、酸化物530bに対する、不純物および酸素の拡散を抑制することができる。
 また、酸化物530aおよび酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、酸化物530aと酸化物530bの界面における欠陥準位密度を低くすることができる。酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
 酸化物530bは、結晶性を有することが好ましい。特に、酸化物530bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物、及び欠陥(例えば、酸素欠損(V))が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある。)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネルが形成される領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中のチャネルが形成される領域は、キャリア濃度が低減され、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある。)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、およびVHを低減することができる。ただし、ソース領域またはドレイン領域に過剰な量の酸素が供給されると、トランジスタ500のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、ソース領域またはドレイン領域に供給される酸素の量が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。
 よって、酸化物半導体中において、チャネル形成領域として機能する領域530bcは、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、ソース領域またはドレイン領域として機能する領域530baおよび領域530bbは、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体の領域530bcの酸素欠損、およびVHを低減し、領域530baおよび領域530bbには過剰な量の酸素が供給されないようにすることが好ましい。
 そこで、本実施の形態では、酸化物530b上に導電体542aおよび導電体542bを設けた状態で、酸素を含む雰囲気でマイクロ波処理を行い、領域530bcの酸素欠損、およびVHの低減を図る。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを作用させることができる。このとき、マイクロ波、またはRF等の高周波を領域530bcに照射することもできる。プラズマ、マイクロ波などの作用により、領域530bcのVHを分断し、水素Hを領域530bcから除去し、酸素欠損Vを酸素で補填することができる。つまり、領域530bcにおいて、「VH→H+V」という反応が起きて、領域530bcの水素濃度を低減することができる。よって、領域530bc中の酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。
 また、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用は、導電体542aおよび導電体542bに遮蔽され、領域530baおよび領域530bbには及ばない。さらに、酸素プラズマの作用は、酸化物530b、および導電体542を覆って設けられている、絶縁体571、および絶縁体580によって、低減することができる。これにより、マイクロ波処理の際に、領域530baおよび領域530bbで、VHの低減、および過剰な量の酸素供給が発生しないので、キャリア濃度の低下を防ぐことができる。
 また、絶縁体552となる絶縁膜の成膜後、または絶縁体550となる絶縁膜の成膜後に、酸素を含む雰囲気でマイクロ波処理を行うとことが好ましい。このように絶縁体552、または絶縁体550を介して、酸素を含む雰囲気でマイクロ波処理を行うことで、効率良く領域530bc中へ酸素を注入することができる。また、絶縁体552を導電体542の側面、および領域530bcの表面と接するように配置することで、領域530bcへの必要量以上の酸素の注入を抑制し、導電体542の側面の酸化を抑制することができる。また、絶縁体550となる絶縁膜の成膜時に導電体542の側面の酸化を抑制することができる。
 また、領域530bc中に注入される酸素は、酸素原子、酸素分子、酸素ラジカル(Oラジカルともいう。不対電子をもつ原子または分子、あるいはイオン)など様々な形態がある。なお、領域530bc中に注入される酸素は、上述の形態のいずれか一または複数であれば好ましく、特に酸素ラジカルであると好適である。また、絶縁体552、および絶縁体550の膜質を向上させることができるので、トランジスタ500の信頼性が向上する。
 このようにして、酸化物半導体の領域530bcで選択的に酸素欠損、およびVHを除去して、領域530bcをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域530baおよび領域530bbに過剰な酸素が供給されるのを抑制し、導電性を維持することができる。これにより、トランジスタ500の電気特性の変動を抑制し、基板面内でトランジスタ500の電気特性のばらつきを少なくすることができる。
 以上のような構成にすることで、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。また、信頼性が良好な半導体装置を提供することができる。また、良好な電気特性を有する半導体装置を提供することができる。
 また、図24Bに示すように、トランジスタ500のチャネル幅方向の断面視において、酸化物530bの側面と酸化物530bの上面との間に、湾曲面を有してもよい。つまり、当該側面の端部と当該上面の端部は、湾曲してもよい(以下、ラウンド状ともいう。)。
 上記湾曲面での曲率半径は、0nmより大きく、導電体542と重なる領域の酸化物530bの膜厚より小さい、または、上記湾曲面を有さない領域の長さの半分より小さいことが好ましい。上記湾曲面での曲率半径は、具体的には、0nmより大きく20nm以下、好ましくは1nm以上15nm以下、さらに好ましくは2nm以上10nm以下とする。このような形状にすることで、絶縁体552、絶縁体550、絶縁体554、および導電体560の、酸化物530bへの被覆性を高めることができる。
 酸化物530は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、酸化物530bは、CAAC−OSなどの結晶性を有する酸化物であることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物、及び欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物530bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物530bから酸素が引き抜かれることを低減できるので、トランジスタ500は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 ここで、酸化物530aと酸化物530bの接合部において、伝導帯下端はなだらかに変化する。換言すると、酸化物530aと酸化物530bの接合部における伝導帯下端は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面に形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物530aと酸化物530bが、酸素以外に共通の元素を主成分として有することで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−M−Zn酸化物の場合、酸化物530aとして、In−M−Zn酸化物、M−Zn酸化物、元素Mの酸化物、In−Zn酸化物、インジウム酸化物などを用いてもよい。
 具体的には、酸化物530aとして、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。また、酸化物530bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 また、図24Aなどに示すように、酸化物530の上面および側面に接して、酸化アルミニウムなどにより形成される絶縁体552を設けることにより、酸化物530と絶縁体552の界面およびその近傍に、酸化物530に含まれるインジウムが偏在する場合がある。これにより、酸化物530の表面近傍が、インジウム酸化物に近い原子数比、またはIn−Zn酸化物に近い原子数比になる。このように酸化物530、特に酸化物530bの表面近傍のインジウムの原子数比が大きくなることで、トランジスタ500の電界効果移動度を向上させることができる。
 酸化物530aおよび酸化物530bを上述の構成とすることで、酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は大きいオン電流、および高い周波数特性を得ることができる。
 絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、及び絶縁体581の少なくとも一は、水、水素などの不純物が、基板側から、または、トランジスタ500の上方からトランジスタ500に拡散するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581の少なくとも一は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
 なお、本明細書において、バリア絶縁膜とは、バリア性を有する絶縁膜のことを指す。本明細書において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、および固着する(ゲッタリングともいう)機能とする。
 絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581としては、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体を用いることが好ましく、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体512、絶縁体544、および絶縁体576として、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体514、絶縁体571、絶縁体574、および絶縁体581として、水素を捕獲および水素を固着する機能が高い、酸化アルミニウムまたは酸化マグネシウムなどを用いることが好ましい。これにより、水、水素などの不純物が絶縁体512、および絶縁体514を介して、基板側からトランジスタ500側に拡散することを抑制できる。または、水、水素などの不純物が絶縁体581よりも外側に配置されている層間絶縁膜などから、トランジスタ500側に拡散するのを抑制することができる。または、絶縁体524などに含まれる酸素が、絶縁体512、および絶縁体514を介して基板側に、拡散するのを抑制することができる。または、絶縁体580などに含まれる酸素が、絶縁体574などを介してトランジスタ500より上方に、拡散するのを抑制することができる。この様に、トランジスタ500を、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体512、絶縁体514、絶縁体571、絶縁体544、絶縁体574、絶縁体576、および絶縁体581で取り囲む構造とすることが好ましい。
 ここで、絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581として、アモルファス構造を有する酸化物を用いることが好ましい。例えば、AlO(xは0より大きい任意数)、またはMgO(yは0より大きい任意数)などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。このようなアモルファス構造を有する金属酸化物をトランジスタ500の構成要素として用いる、またはトランジスタ500の周囲に設けることで、トランジスタ500に含まれる水素、またはトランジスタ500の周囲に存在する水素を捕獲または固着することができる。特にトランジスタ500のチャネル形成領域に含まれる水素を捕獲または固着することが好ましい。アモルファス構造を有する金属酸化物をトランジスタ500の構成要素として用いる、またはトランジスタ500の周囲に設けることで、良好な特性を有し、信頼性の高いトランジスタ500、および半導体装置を作製することができる。
 また、絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581は、アモルファス構造であることが好ましいが、一部に多結晶構造の領域が形成されていてもよい。また、絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581は、アモルファス構造の層と、多結晶構造の層と、が積層された多層構造であってもよい。例えば、アモルファス構造の層の上に多結晶構造の層が形成された積層構造でもよい。
 絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581の成膜は、例えば、スパッタリング法を用いて行えばよい。スパッタリング法は、成膜ガスに水素を含む分子を用いなくてよいので、絶縁体512、絶縁体514、絶縁体544、絶縁体571、絶縁体574、絶縁体576、および絶縁体581の水素濃度を低減することができる。なお、成膜方法は、スパッタリング法に限られるものではなく、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法などを適宜用いてもよい。
 また、絶縁体512、絶縁体544、および絶縁体576の抵抗率を低くすることが好ましい場合がある。例えば、絶縁体512、絶縁体544、および絶縁体576の抵抗率を概略1×1013Ωcmとすることで、半導体装置作製工程のプラズマ等を用いる処理において、絶縁体512、絶縁体544、および絶縁体576が、導電体503、導電体542、導電体560などのチャージアップを緩和することができる場合がある。絶縁体512、絶縁体544、および絶縁体576の抵抗率は、好ましくは、1×1010Ωcm以上1×1015Ωcm以下とする。
 また、絶縁体516、絶縁体574、絶縁体580、および絶縁体581は、絶縁体514よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体516、絶縁体580、および絶縁体581として、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを適宜用いればよい。
 また、絶縁体581は、一例として、層間膜、平坦化膜などとして機能する絶縁体とすることが好ましい。
 導電体503は、酸化物530、および導電体560と、重なるように配置する。ここで、導電体503は、絶縁体516に形成された開口に埋め込まれて設けることが好ましい。また、導電体503の一部が絶縁体514に埋め込まれる場合がある。
 導電体503は、導電体503a、および導電体503bを有する。導電体503aは、当該開口の底面および側壁に接して設けられる。導電体503bは、導電体503aに形成された凹部に埋め込まれるように設けられる。ここで、導電体503bの上部の高さは、導電体503aの上部の高さおよび絶縁体516の上部の高さと概略一致する。
 ここで、導電体503aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体503aに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体503bに含まれる水素などの不純物が、絶縁体524等を介して、酸化物530に拡散するのを防ぐことができる。また、導電体503aに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体503bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。したがって、導電体503aとしては、上記導電性材料を単層または積層とすればよい。例えば、導電体503aは、窒化チタンを用いればよい。
 また、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体503bは、タングステンを用いればよい。
 導電体503は、第2のゲート電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧(Vth)を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体503の電気抵抗率は、上記の導電体503に印加する電位を考慮して設計され、導電体503の膜厚は当該電気抵抗率に合わせて設定される。また、絶縁体516の膜厚は、導電体503とほぼ同じになる。ここで、導電体503の設計が許す範囲で導電体503および絶縁体516の膜厚を薄くすることが好ましい。絶縁体516の膜厚を薄くすることで、絶縁体516中に含まれる水素などの不純物の絶対量を低減することができるので、当該不純物が酸化物530に拡散するのを低減することができる。
 なお、導電体503は、上面から見て、酸化物530の導電体542aおよび導電体542bと重ならない領域の大きさよりも、大きく設けるとよい。特に、図24Bに示すように、導電体503は、酸化物530aおよび酸化物530bのチャネル幅方向の端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物530のチャネル幅方向における側面の外側において、導電体503と、導電体560とは、絶縁体を介して重畳していることが好ましい。当該構成を有することで、第1のゲート電極として機能する導電体560の電界と、第2のゲート電極として機能する導電体503の電界によって、酸化物530のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート、および第2のゲートの電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 なお、本明細書等において、S−channel構造のトランジスタとは、一対のゲート電極の一方および他方の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を表す。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる。S−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 また、図24Bに示すように、導電体503は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体503の下に、配線として機能する導電体を設ける構成にしてもよい。また、導電体503は、必ずしも各トランジスタに一個ずつ設ける必要はない。例えば、導電体503を複数のトランジスタで共有する構成にしてもよい。
 なお、トランジスタ500では、導電体503は、導電体503a、および導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構造として設ける構成にしてもよい。
 絶縁体522、および絶縁体524は、ゲート絶縁体として機能する。
 絶縁体522は、水素(例えば、水素原子、水素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。また、絶縁体522は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体522は、絶縁体524よりも水素および酸素の一方または双方の拡散を抑制する機能を有することが好ましい。
 絶縁体522は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530から基板側への酸素の放出と、トランジスタ500の周辺部から酸化物530への水素等の不純物の拡散と、を抑制する層として機能する。よって、絶縁体522を設けることで、水素等の不純物が、トランジスタ500の内側へ拡散することを抑制し、酸化物530中の酸素欠損の生成を抑制することができる。また、導電体503が、絶縁体524、又は酸化物530が有する酸素と反応することを抑制することができる。
 または、上記絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。または、これらの絶縁体を窒化処理してもよい。また、絶縁体522は、これらの絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウムなどの、いわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、絶縁体522として、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、(Ba,Sr)TiO(BST)などの誘電率が高い物質を用いることができる場合もある。
 酸化物530と接する絶縁体524は、例えば、酸化シリコン、酸化窒化シリコンなどを適宜用いればよい。
 また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上600℃以下、より好ましくは350℃以上550℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行ってもよい。
 なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 なお、絶縁体522、および絶縁体524が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、絶縁体524は、酸化物530aと重畳して島状に形成してもよい。この場合、絶縁体544が、絶縁体524の側面および絶縁体522の上面に接する構成になる。
 導電体542a、および導電体542bは酸化物530bの上面に接して設けられる。導電体542aおよび導電体542bは、それぞれトランジスタ500のソース電極またはドレイン電極として機能する。
 導電体542(導電体542a、および導電体542b)としては、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタルおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物530bなどに含まれる水素が、導電体542aまたは導電体542bに拡散する場合がある。特に、導電体542aおよび導電体542bに、タンタルを含む窒化物を用いることで、酸化物530bなどに含まれる水素は、導電体542aまたは導電体542bに拡散しやすく、拡散した水素は、導電体542aまたは導電体542bが有する窒素と結合することがある。つまり、酸化物530bなどに含まれる水素は、導電体542aまたは導電体542bに吸い取られる場合がある。
 また、導電体542の側面と導電体542の上面との間に、湾曲面が形成されないことが好ましい。当該湾曲面が形成されない導電体542とすることで、チャネル幅方向の断面における、導電体542の断面積を大きくすることができる。これにより、導電体542の導電率を大きくし、トランジスタ500のオン電流を大きくすることができる。
 絶縁体571aは、導電体542aの上面に接して設けられており、絶縁体571bは、導電体542bの上面に接して設けられている。絶縁体571は、少なくとも酸素に対するバリア絶縁膜として機能することが好ましい。したがって、絶縁体571は、酸素の拡散を抑制する機能を有することが好ましい。例えば、絶縁体571は、絶縁体580よりも酸素の拡散を抑制する機能を有することが好ましい。絶縁体571としては、例えば、窒化シリコンなどのシリコンを含む窒化物を用いればよい。また、絶縁体571は、水素などの不純物を捕獲する機能を有することが好ましい。その場合、絶縁体571としては、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムまたは酸化マグネシウムなどの絶縁体を用いればよい。特に、絶縁体571として、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ500、および半導体装置を作製することができる。
 絶縁体544は、絶縁体524、酸化物530a、酸化物530b、導電体542、および絶縁体571を覆うように設けられる。絶縁体544として、水素を捕獲および水素を固着する機能を有することが好ましい。その場合、絶縁体544としては、窒化シリコンまたは、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムまたは酸化マグネシウムなどの絶縁体を含むことが好ましい。また、例えば、絶縁体544として、酸化アルミニウムと、当該酸化アルミニウム上の窒化シリコンの積層膜を用いてもよい。
 上記のような絶縁体571および絶縁体544を設けることで、酸素に対するバリア性を有する絶縁体で導電体542を包み込むことができる。つまり、絶縁体524、および絶縁体580に含まれる酸素が、導電体542に拡散するのを防ぐことができる。これにより、絶縁体524、および絶縁体580に含まれる酸素によって、導電体542が直接酸化されて抵抗率が増大し、オン電流が低減するのを抑制することができる。
 絶縁体552は、ゲート絶縁体の一部として機能する。絶縁体552としては、酸素に対するバリア絶縁膜を用いることが好ましい。絶縁体552としては、上述の絶縁体574に用いることができる絶縁体を用いればよい。絶縁体552として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウムおよびシリコンを含む酸化物(ハフニウムシリケート)などを用いることができる。本実施の形態では、絶縁体552として、酸化アルミニウムを用いる。この場合、絶縁体552は、少なくとも酸素と、アルミニウムと、を有する絶縁体となる。
 図24Bに示すように、絶縁体552は、酸化物530bの上面および側面、酸化物530aの側面、絶縁体524の側面、および絶縁体522の上面に接して設けられる。つまり、酸化物530a、酸化物530b、および絶縁体524の導電体560と重なる領域は、チャネル幅方向の断面において、絶縁体552に覆われている。これにより、熱処理などを行った際に、酸化物530aおよび酸化物530bで酸素が脱離するのを、酸素に対するバリア性を有する絶縁体552でブロックすることができる。よって、酸化物530aおよび酸化物530bに酸素欠損(Vo)が形成されるのを低減することができる。これにより、領域530bcに形成される、酸素欠損(Vo)、およびVHを低減することができる。よって、トランジスタ500の電気特性を良好にし、信頼性を向上させることができる。
 また、逆に、絶縁体580および絶縁体550などに過剰な量の酸素が含まれていても、当該酸素が酸化物530aおよび酸化物530bに過剰に供給されるのを抑制することができる。よって、領域530bcを介して、領域530baおよび領域530bbが過剰に酸化され、トランジスタ500のオン電流の低下、または電界効果移動度の低下を起こすのを抑制することができる。
 また、図24Aに示すように、絶縁体552は、導電体542、絶縁体544、絶縁体571、および絶縁体580、それぞれの側面に接して設けられる。よって、導電体542の側面が酸化され、当該側面に酸化膜が形成されるのを低減することができる。これにより、トランジスタ500のオン電流の低下、または電界効果移動度の低下が起こるのを抑制することができる。
 また、絶縁体552は、絶縁体554、絶縁体550、および導電体560と、ともに、絶縁体580などに形成された開口に設ける必要がある。トランジスタ500の微細化を図るにあたって、絶縁体552の膜厚は薄いことが好ましい。絶縁体552の膜厚は、0.1nm以上、0.5nm以上、又は1.0nm以上とすることが好ましく、かつ1.0nm以下、3.0nm以下、又は5.0nm以下とすることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。この場合、絶縁体552は、少なくとも一部において、上記のような膜厚の領域を有していればよい。また、絶縁体552の膜厚は絶縁体550の膜厚より薄いことが好ましい。この場合、絶縁体552は、少なくとも一部において、絶縁体550より膜厚が薄い領域を有していればよい。
 絶縁体552を上記のように膜厚を薄く成膜するには、ALD法を用いて成膜することが好ましい。ALD法は、反応のための第1の原料ガス(前駆体、プリカーサ、または金属プリカーサとも呼ぶ)と第2の原料ガス(反応剤、リアクタント、酸化剤、または非金属プリカーサとも呼ぶ)を交互にチャンバーに導入し、これらの原料ガスの導入を繰り返すことで成膜を行う方法である。ALD法には、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。
 ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。よって、絶縁体552を絶縁体580などに形成された開口の側面などに被覆性良く、上記のような薄い膜厚で成膜することができる。
 なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、またはX線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
 絶縁体550は、ゲート絶縁体の一部として機能する。絶縁体550は、絶縁体552の上面に接して配置することが好ましい。絶縁体550は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。この場合、絶縁体550は、少なくとも酸素とシリコンと、を有する絶縁体となる。
 絶縁体550は、絶縁体524と同様に、絶縁体550中の水、水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上、又は0.5nm以上とすることが好ましく、かつ15nm以下、又は20nm以下とすることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。この場合、絶縁体550は、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 図24A、及び図24Bなどでは、絶縁体550を単層とする構成について示したが、本発明はこれに限られず、2層以上の積層構造としてもよい。例えば図26Bに示すように、絶縁体550を、絶縁体550aと、絶縁体550a上の絶縁体550bの2層の積層構造にしてもよい。
 図26Bに示すように、絶縁体550を2層の積層構造とする場合、下層の絶縁体550aは、酸素を透過しやすい絶縁体を用いて形成し、上層の絶縁体550bは、酸素の拡散を抑制する機能を有する絶縁体を用いて形成することが好ましい。このような構成にすることで、絶縁体550aに含まれる酸素が、導電体560へ拡散するのを抑制することができる。つまり、酸化物530へ供給する酸素量の減少を抑制することができる。また、絶縁体550aに含まれる酸素による導電体560の酸化を抑制することができる。例えば、絶縁体550aは、上述した絶縁体550に用いることができる材料を用いて設け、絶縁体550bは、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウムおよびシリコンを含む酸化物(ハフニウムシリケート)などを用いることができる。本実施の形態では、絶縁体550bとして、酸化ハフニウムを用いる。この場合、絶縁体550bは、少なくとも酸素と、ハフニウムと、を有する絶縁体となる。また、絶縁体550bの膜厚は、0.5nm以上、又は1.0nm以上とすることが好ましく、かつ3.0nm以下、又は5.0nm以下とすることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。この場合、絶縁体550bは、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 なお、絶縁体550aに酸化シリコン、酸化窒化シリコンなどを用いる場合、絶縁体550bは、比誘電率が高いhigh−k材料である絶縁性材料を用いてもよい。ゲート絶縁体を、絶縁体550aと絶縁体550bとの積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。よって、絶縁体550の絶縁耐圧を高くすることができる。
 絶縁体554は、ゲート絶縁体の一部として機能する。絶縁体554としては、水素に対するバリア絶縁膜を用いることが好ましい。これにより、導電体560に含まれる水素などの不純物が、絶縁体550、および酸化物530bに拡散するのを防ぐことができる。絶縁体554としては、上述した絶縁体576に用いることができる絶縁体を用いればよい。例えば、絶縁体554としてPEALD法で成膜した窒化シリコンを用いればよい。この場合、絶縁体554は、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 また、絶縁体554が、さらに酸素に対するバリア性を有してもよい。これにより、絶縁体550に含まれる酸素が、導電体560へ拡散するのを抑制することができる。
 また、絶縁体554は、絶縁体552、絶縁体550、および導電体560と、ともに、絶縁体580などに形成された開口に設ける必要がある。トランジスタ500の微細化を図るにあたって、絶縁体554の膜厚は薄いことが好ましい。絶縁体554の膜厚は、0.1nm以上、0.5nm以上、又は1.0nm以上とすることが好ましく、かつ3.0nm以下、又は5.0nm以下とすることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。この場合、絶縁体554は、少なくとも一部において、上記のような膜厚の領域を有していればよい。また、絶縁体554の膜厚は絶縁体550の膜厚より薄いことが好ましい。この場合、絶縁体554は、少なくとも一部において、絶縁体550より膜厚が薄い領域を有していればよい。
 導電体560は、トランジスタ500の第1のゲート電極として機能する。導電体560は、導電体560aと、導電体560aの上に配置された導電体560bと、を有することが好ましい。例えば、導電体560aは、導電体560bの底面および側面を包むように配置されることが好ましい。また、図24Aおよび図24Bに示すように、導電体560の上部の高さの位置は、絶縁体550の上部の高さの位置と概略一致している。なお、図24Aおよび図24Bでは、導電体560は、導電体560aと導電体560bの2層構造として示しているが、導電体560は、当該2層構造以外としては、単層構造、又は3層以上の積層構造とすることができる。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。
 また、導電体560は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは、積層構造とすることができる。具体的には、例えば、導電体560bは、チタン、または窒化チタンと上記導電性材料との積層構造とすることができる。
 また、トランジスタ500では、導電体560は、絶縁体580などに形成されている開口を埋めるように自己整合的に形成される。導電体560をこのように形成することにより、導電体542aと導電体542bとの間の領域に、導電体560を位置合わせすることなく確実に配置することができる。
 また、図24Bに示すように、トランジスタ500のチャネル幅方向において、絶縁体522の底面を基準としたときの、導電体560の、導電体560と酸化物530bとが重ならない領域の底面の高さは、酸化物530bの底面の高さより低いことが好ましい。ゲート電極として機能する導電体560が、絶縁体550などを介して、酸化物530bのチャネル形成領域の側面および上面を覆う構成とすることで、導電体560の電界を酸化物530bのチャネル形成領域全体に作用させやすくなる。よって、トランジスタ500のオン電流を増大させ、周波数特性を向上させることができる。絶縁体522の底面を基準としたときの、酸化物530aおよび酸化物530bと、導電体560とが、重ならない領域における導電体560の底面の高さと、酸化物530bの底面の高さと、の差は、0nm以上、3nm以上、又は5nm以上とすることが好ましく、かつ20nm以下、50nm以下、又は100nm以下とすることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。
 絶縁体580は、絶縁体544上に設けられ、絶縁体550、および導電体560が設けられる領域に開口が形成されている。また、絶縁体580の上面は、平坦化されていてもよい。
 層間膜として機能する絶縁体580は、誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。絶縁体580は、例えば、絶縁体516と同様の材料を用いて設けることが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体580は、絶縁体580中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体580は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を適宜用いればよい。
 絶縁体574は、水、水素などの不純物が、上方から絶縁体580に拡散するのを抑制するバリア絶縁膜として機能することが好ましく、水素などの不純物を捕獲する機能を有することが好ましい。また、絶縁体574は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。絶縁体574としては、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムなどの絶縁体を用いればよい。この場合、絶縁体574は、少なくとも酸素と、アルミニウムと、を有する絶縁体となる。絶縁体512と絶縁体581に挟まれた領域内で、絶縁体580に接して、水素などの不純物を捕獲する機能を有する、絶縁体574を設けることで、絶縁体580などに含まれる水素などの不純物を捕獲し、当該領域内における、水素の量を一定値にすることができる。特に、絶縁体574として、アモルファス構造を有する酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ500、および半導体装置を作製することができる。
 絶縁体576は、水、水素などの不純物が、上方から絶縁体580に拡散するのを抑制するバリア絶縁膜として機能する。絶縁体576は、絶縁体574の上に配置される。絶縁体576としては、窒化シリコンまたは窒化酸化シリコンなどの、シリコンを含む窒化物を用いることが好ましい。例えば、絶縁体576としてスパッタリング法で成膜された窒化シリコンを用いればよい。絶縁体576をスパッタリング法で成膜することで、密度が高い窒化シリコン膜を形成することができる。また、絶縁体576として、スパッタリング法で成膜された窒化シリコンの上に、さらに、PEALD法または、CVD法で成膜された窒化シリコンを積層してもよい。
 また、トランジスタ500の第1端子、又は第2端子の一方は、プラグとして機能する導電体540aに電気的に接続され、トランジスタ500の第1端子、又は第2端子の他方は、導電体540bに電気的に接続されている。なお、本明細書等では、導電体540a、及び導電体540bをまとめて導電体540と呼ぶこととする。
 導電体540aは、一例として、導電体542aと重畳する領域に設けられている。具体的には、導電体542aと重畳する領域において、図24Aに示す絶縁体571a、絶縁体544、絶縁体580、絶縁体574、絶縁体576、及び絶縁体581、更に図23に示す絶縁体582、及び絶縁体586には開口部が形成されており、導電体540aは、当該開口部の内側に設けられている。また、導電体540bは、一例として、導電体542bと重畳する領域に設けられている。具体的には、導電体542bと重畳する領域において、図24Aに示す絶縁体571b、絶縁体544、絶縁体580、絶縁体574、絶縁体576、及び絶縁体581、更に図23に示す絶縁体582、及び絶縁体586には開口部が形成されており、導電体540bは、当該開口部の内側に設けられている。なお、絶縁体582、及び絶縁体586については後述する。
 さらに、図24Aに示すとおり、導電体542aと重畳する領域の開口部の側面と導電体540aとの間には、不純物に対してバリア性を有する絶縁体として、絶縁体541aを設けてもよい。同様に、導電体542bと重畳する領域の開口部の側面と導電体540bとの間には、不純物に対してバリア性を有する絶縁体として、絶縁体541bを設けてもよい。なお、本明細書等では、絶縁体541a、及び絶縁体541bをまとめて絶縁体541と呼ぶこととする。
 導電体540aおよび導電体540bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体540aおよび導電体540bは積層構造としてもよい。
 また、導電体540を積層構造とする場合、絶縁体574、絶縁体576、絶縁体581、絶縁体580、絶縁体544、および絶縁体571の近傍に配置される第1の導電体には、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、酸化ルテニウムなどを用いることが好ましい。また、水、水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。また、絶縁体576より上層に含まれる水、水素などの不純物が、導電体540aおよび導電体540bを通じて酸化物530に混入することを抑制することができる。
 絶縁体541aおよび絶縁体541bとしては、絶縁体544などに用いることができるバリア絶縁膜を用いればよい。例えば、絶縁体541aおよび絶縁体541bとして、窒化シリコン、酸化アルミニウム、窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体541aおよび絶縁体541bは、絶縁体574、絶縁体576、および絶縁体571に接して設けられるので、絶縁体580などに含まれる水、水素などの不純物が、導電体540aおよび導電体540bを通じて酸化物530に混入するのを抑制することができる。特に、窒化シリコンは水素に対するブロッキング性が高いので好適である。また、絶縁体580に含まれる酸素が導電体540aおよび導電体540bに吸収されるのを防ぐことができる。
 絶縁体541aおよび絶縁体541bを、図24Aに示すように積層構造にする場合、絶縁体580などの開口の内壁に接する第1の絶縁体と、その内側の第2の絶縁体は、酸素に対するバリア絶縁膜と、水素に対するバリア絶縁膜を組み合わせて用いることが好ましい。
 例えば、第1の絶縁体として、ALD法で成膜された酸化アルミニウムを用い、第2の絶縁体として、PEALD法で成膜された窒化シリコンを用いればよい。このような構成にすることで、導電体540の酸化を抑制し、さらに、導電体540に水素が混入するのを低減することができる。
 なお、トランジスタ500では、絶縁体541の第1の絶縁体および絶縁体541の第2の絶縁体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、絶縁体541を単層、または3層以上の積層構造として設ける構成にしてもよい。また、トランジスタ500では、導電体540の第1の導電体および導電体540の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体540を単層、または3層以上の積層構造として設ける構成にしてもよい。
 また、図23に示すとおり、導電体540aの上部、および導電体540bの上部に接して配線として機能する導電体610、導電体612などを配置してもよい。導電体610、導電体612は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもすることができる。具体的には、例えば、当該導電体は、チタン、または窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
 なお、本発明の一隊の半導体装置に含まれるトランジスタの構造は、図23、図24A、図24B、及び図25に示したトランジスタ500に限定されない。本発明の一態様の半導体装置に含まれるトランジスタの構造は、状況に応じて、変更してもよい。
 例えば、図23、図24A、図24B、及び図25に示すトランジスタ500は、図27に示す構成としてもよい。図27のトランジスタは、酸化物543a、及び酸化物543bを有する点で、図23、図24A、図24B、及び図25に示すトランジスタ500と異なっている。なお、本明細書等では、酸化物543a、及び酸化物543bをまとめて酸化物543と呼ぶこととする。また、図27のトランジスタのチャネル幅方向の断面の構成については、図24Bに示すトランジスタ500の断面と同様の構成とすることができる。
 酸化物543aは、酸化物530bと導電体542aの間に設けられ、酸化物543bは、酸化物530bと導電体542bの間に設けられる。ここで、酸化物543aは、酸化物530bの上面、および導電体542aの下面に接することが好ましい。また、酸化物543bは、酸化物530bの上面、および導電体542bの下面に接することが好ましい。
 酸化物543は、酸素の透過を抑制する機能を有することが好ましい。ソース電極、又はドレイン電極として機能する導電体542と酸化物530bとの間に酸素の透過を抑制する機能を有する酸化物543を配置することで、導電体542と、酸化物530bとの間の電気抵抗が低減されるので好ましい。このような構成とすることで、トランジスタ500の電気特性、電界効果移動度、および信頼性を向上させることができる場合がある。
 また、酸化物543として、元素Mを有する金属酸化物を用いてもよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物543は、酸化物530bよりも元素Mの濃度が高いことが好ましい。また、酸化物543として、酸化ガリウムを用いてもよい。また、酸化物543として、In−M−Zn酸化物等の金属酸化物を用いてもよい。具体的には、酸化物に用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物543の膜厚は、0.5nm以上、又は1nm以上であることが好ましく、かつ2nm以下、3nm以下、又は5nm以下であることが好ましい。なお、上述した下限値、及び上限値はそれぞれ組み合わせることができるものとする。また、酸化物543は、結晶性を有すると好ましい。酸化物543が結晶性を有する場合、酸化物530中の酸素の放出を好適に抑制することが出来る。例えば、酸化物543としては、六方晶などの結晶構造であれば、酸化物530中の酸素の放出を抑制できる場合がある。
 絶縁体581上には、絶縁体582が設けられ、絶縁体582上には絶縁体586が設けられている。
 絶縁体582は、酸素、及び水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 また、絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜、酸化窒化シリコン膜などを用いることができる。
 続いて、図23、及び図25に示す半導体装置に含まれている、容量素子600、及びその周辺の配線、又はプラグについて説明する。なお、図23、及び図25に示すトランジスタ500の上方には、容量素子600と、配線、及び/又はプラグが設けられている。
 容量素子600は、一例として、導電体610と、導電体620と、絶縁体630とを有する。
 導電体540a又は導電体540bの一方、導電体546、及び絶縁体586上には、導電体610が設けられている。導電体610は、容量素子600の一対の電極の一方としての機能を有する。
 また、導電体540a、又は導電体540bの他方、及び絶縁体586上には、導電体612が設けられる。導電体612は、トランジスタ500と、上方に配置される回路素子、配線等と、を電気的に接続するプラグ、配線、端子などとしての機能を有する。
 なお、導電体612、及び導電体610は、同時に形成してもよい。
 導電体612、及び導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 図23では、導電体612、及び導電体610は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、及び導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体586、導電体610上には、絶縁体630が設けられている。絶縁体630は、容量素子600の一対の電極に挟まれる誘電体として機能する。
 絶縁体630としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウム、酸化ジルコニウムなどを用いることができる。また、絶縁体630は、上述した材料を用いて、積層または単層として設けることができる。
 また、例えば、絶縁体630には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いてもよい。当該構成により、容量素子600は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子600の静電破壊を抑制することができる。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
 または、絶縁体630は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba、Sr)TiO(BST)などのhigh−k材料を含む絶縁体を単層または積層で用いてもよい。また、絶縁体630としては、ハフニウムと、ジルコニウムとが含まれる化合物などを用いても良い。半導体装置の微細化、および高集積化が進むと、ゲート絶縁体、および容量素子に用いる誘電体の薄膜化により、トランジスタ、容量素子などのリーク電流などの問題が生じる場合がある。ゲート絶縁体、および容量素子に用いる誘電体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減、および容量素子の容量の確保が可能となる。
 絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。導電体610は、容量素子600の一対の電極の一方としての機能を有し、導電体620は、容量素子600の一対の電極の他方としての機能を有する。
 なお、導電体620は、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)、Al(アルミニウム)等を用いればよい。また、例えば、導電体620は、導電体610に適用できる材料を用いることができる。また、導電体620は、単層構造ではなく、2層以上の積層構造としてもよい。
 導電体620、及び絶縁体630上には、絶縁体640が設けられている。絶縁体640としては、例えば、トランジスタ500が設けられている領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 絶縁体640上には、絶縁体650が設けられている。絶縁体650は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体650は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。そのため、絶縁体650としては、例えば、絶縁体324に適用できる材料とすることができる。
 ところで、図23、及び図25に示す容量素子600は、プレーナ型としているが、容量素子の形状はこれに限定されない。容量素子600は、プレーナ型ではなく、例えば、シリンダ型としてもよい。
 また、容量素子600の上方には、配線層を設けてもよい。例えば、図23において、絶縁体411、絶縁体412、絶縁体413、及び絶縁体414が、絶縁体650の上方に、順に設けられている。また、絶縁体411、絶縁体412、及び絶縁体413には、プラグ、又は配線として機能する導電体416が設けられている構成を示している。また、導電体416は、一例として、後述する導電体660に重畳する領域に設けることができる。
 また、絶縁体630、絶縁体640、及び絶縁体650には、導電体612と重畳する領域に開口部が設けられ、当該開口部を埋めるように導電体660が設けられている。導電体660は、上述した配線層に含まれている導電体416に電気的に接続するプラグ、配線として機能する。
 絶縁体411、及び絶縁体414は、例えば、絶縁体324などと同様に、水、水素などの不純物に対するバリア性を有する絶縁体を用いることが好ましい。そのため、絶縁体411、及び絶縁体414としては、例えば、絶縁体324などに適用できる材料を用いることができる。
 絶縁体412、及び絶縁体413は、例えば、絶縁体326と同様に、配線間に生じる寄生容量を低減するために、比誘電率が比較的低い絶縁体を用いることが好ましい。
 また、導電体612、及び導電体416は、例えば、導電体328、及び導電体330と同様の材料を用いて設けることができる。
<半導体装置の構成例2>
 次に、上述した半導体装置に、FTJ素子を備えた場合の構成例を説明する。
 図28は、図23に示した半導体装置において、絶縁体582、及び導電体546の上面に位置する容量素子600をFTJ素子700に変更した例を示している。
 具体的には、FTJ素子700は、一例として、下部電極として機能する導電体610と、上部電極として機能する導電体620と、絶縁体630と、絶縁体631と、を有する。特に、絶縁体631としては、強誘電性を有しうる材料を用いることができる。
 なお、強誘電性を有しうる材料としては、酸化ハフニウム、酸化ジルコニウム、酸化ジルコニウムハフニウム(HfZrO)、酸化ハフニウムに元素J1(ここでの元素J1は、ジルコニウム(Zr)、シリコン(Si)、アルミニウム(Al)、ガドリニウム(Gd)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)など。)を添加した材料、酸化ジルコニウムに元素J2(ここでの元素J2は、ハフニウム(Hf)、シリコン(Si)、アルミニウム(Al)、ガドリニウム(Gd)、イットリウム(Y)、ランタン(La)、ストロンチウム(Sr)など。)を添加した材料、などが挙げられる。また、強誘電性を有しうる材料として、チタン酸鉛(PbTiO)、チタン酸バリウムストロンチウム(BST)、チタン酸ストロンチウム、チタン酸ジルコン酸鉛(PZT)、タンタル酸ビスマス酸ストロンチウム(SBT)、ビスマスフェライト(BFO)、チタン酸バリウム、などのペロブスカイト構造を有する圧電性セラミックを用いてもよい。また、強誘電性を有しうる材料としては、例えば、上記に列挙した材料から選ばれた混合物又は化合物とすることができる。又は、強誘電性を有しうる材料としては、上記に列挙した材料から選ばれた複数の材料からなる積層構造とすることができる。ところで、酸化ハフニウム、酸化ジルコニウム、酸化ジルコニウムハフニウム、および酸化ハフニウムに元素J1を添加した材料などは、成膜条件だけでなく、各種プロセスなどによっても結晶構造(特性)が変わり得る可能性があるため、本明細書等では強誘電性を発現する材料を強誘電体と呼ぶだけでなく、強誘電性を有しうる材料とも呼んでいる。
 中でも強誘電性を有しうる材料として、酸化ハフニウム、あるいは酸化ハフニウムおよび酸化ジルコニウムを有する材料は、数nmといった薄膜に加工しても強誘電性を有しうることができるため、好ましい。ここで、絶縁体631の膜厚は、100nm以下、好ましくは50nm以下、より好ましくは20nm以下、さらに好ましくは10nm以下にすることができる。薄膜化された強誘電体層を用いることによって、強誘電体キャパシタを、微細化されたトランジスタ500に組み合わせて半導体装置を形成することができる。
 図28において、導電体610、及び導電体612は、図23の導電体610、及び導電体612と同様の材料とすることができる。また、図28において、導電体610、及び導電体612は、図23の導電体610、及び導電体612と同様の方法で形成することができる。
 また、図28において、絶縁体630は、導電体610と、絶縁体586の一部の領域と、の上面に設けられている。また、絶縁体631は、絶縁体630の上面に設けられ、導電体620は、絶縁体631の上面に設けられている。
 絶縁体630は、FTJ素子700におけるトンネル絶縁膜として機能する。絶縁体630としては、例えば、酸化シリコン、窒化シリコン、酸化シリコンと窒化シリコンの積層などを用いることができる。
 また、図28において、絶縁体640は、絶縁体630の端部を含む領域と、絶縁体631の端部を含む領域と、導電体620と、絶縁体586の一部の領域と、の上面に設けられている。
 絶縁体640としては、例えば、図23の絶縁体640に適用できる材料を用いることができる。
 図28のとおり、FTJ素子700の構成を適用することによって、図23に示した半導体装置に、FTJ素子を設けることができる。
 なお、図28に示したFTJ素子700は、例えば、上記実施の形態で示した、FTJ素子FJBとすることができる。なお、トンネル絶縁膜として機能する絶縁体630と、強誘電性を有しうる材料を含む絶縁体631と、の積層順を変えることで、FTJ素子700をFTJ素子FJAとすることができる。
 例えば、図28に示したトンネル絶縁膜として機能する絶縁体630と、強誘電性を有しうる材料を含む絶縁体631と、の積層順を入れ換えた構成を図29に示す。図29に示したFTJ素子700は、例えば、上記実施の形態で示した、FTJ素子FJAとすることができる。
 次に、図28とは異なる、強誘電キャパシタを備えた場合の半導体装置の構成例について、説明する。
 図30に示す半導体装置は、図28の半導体装置の変形例であって、絶縁体571、絶縁体544、絶縁体574、絶縁体576、絶縁体581、絶縁体641、絶縁体642などによって、トランジスタ500と、FTJ素子700を取り囲む構造となっている。
 また、図23、及び図28のそれぞれの半導体装置では、基板310から絶縁体574までが順に設けられた後に、絶縁体514まで達する開口部が設けられているが、図30の半導体装置では、基板310から絶縁体640までが順に設けられた後に、絶縁体514まで達する開口部が設けられている。
 また、図30の半導体装置において、当該開口部の底部と、絶縁体640と、の上面には、絶縁体641、絶縁体642、及び絶縁体650が順に設けられている。
 絶縁体641、絶縁体642は、例えば、水、水素などの不純物が、トランジスタ500、及びFTJ素子700の上方からトランジスタ500、及びFTJ素子700に拡散するのを抑制するバリア絶縁膜として機能することが好ましい。
 絶縁体641の成膜方法としては、例えば、スパッタリング法を用いることができる。例えば、絶縁体641として、スパッタリング法で成膜した窒化シリコンを用いることができる。スパッタリング法は、成膜ガスに水素を含む分子を用いなくてよいので、絶縁体641の水素濃度を低減することができる。このように、導電体610、導電体612、及び絶縁体586に接する絶縁体641の水素濃度が低減されていることで、絶縁体641から、導電体610、導電体612、及び絶縁体586に水素が拡散することを抑制できる。
 絶縁体642としては、例えば、ALD法、特にPEALD法を用いて成膜することが好ましい。例えば、絶縁体642として、PEALD法で成膜した窒化シリコンを用いることができる。これにより、絶縁体642を被覆性良く成膜することができるので、下地の凹凸によって絶縁体641にピンホールまたは段切れなどが形成されたとしても、絶縁体642でそれらを覆うことで、水素が導電体610、導電体612、及び絶縁体586に拡散することを低減することができる。
 図30に示す構成を適用することによって、水、水素などの不純物が、絶縁体512、絶縁体514、絶縁体641、絶縁体642などを介して、トランジスタ500、及びFTJ素子700側への拡散を防ぐことができる。また、絶縁体580などに含まれる酸素が、絶縁体574、絶縁体641、絶縁体642などを介して、外部への拡散を防ぐことができる。
 酸化物半導体を有するトランジスタを用いた半導体装置に、本実施の形態で説明した本構造を適用することにより、当該トランジスタの電気特性の変動を抑制するとともに、信頼性を向上させることができる。
 また、酸化物半導体を有するトランジスタを用いた半導体装置において、回路素子の積層化、微細化、高集積化などを図ることで、半導体装置を構成する回路の面積を低減することができる。特に、半導体装置に含まれる容量素子として、強誘電キャパシタを用いることによって、当該容量素子の静電容量の値を大きくすることができるため、容量素子の微細化を図ることができる。このため、当該容量素子を含む回路の面積を低減することができる。また、本実施の形態で説明したとおり、トランジスタ及び容量素子を積層することにより、半導体装置の回路面積の増加を抑えつつ、回路規模を大きくすることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(以下、酸化物半導体ともいう。)について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
<結晶構造の分類>
 まず、酸化物半導体における、結晶構造の分類について、図31Aを用いて説明を行う。図31Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
 図31Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(Cloud−Aligned Composite)が含まれる(excluding single crystal and poly crystal)。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
 なお、図31Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」、及び「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図31Bに示す(横軸は2θ[deg.]とし、また、縦軸は強度(Intensity)を任意単位(a.u.)で表している)。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図31Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す場合がある。なお、図31Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図31Bに示すCAAC−IGZO膜の厚さは、500nmである。
 図31Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図31Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図31Cに示す。図31Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図31Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
 図31Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、結晶構造に着目した場合、図31Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化すること、などによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、及び欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物、欠陥(酸素欠損など)などの少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OS、及び非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼称する場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコン、炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコン、炭素の濃度と、酸化物半導体との界面近傍のシリコン、炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態8)
 本実施の形態は、上記実施の形態に示す記憶装置などが形成された半導体ウェハ、及び当該記憶装置が組み込まれた電子部品の一例を示す。
<半導体ウェハ>
 初めに、記憶装置などが形成された半導体ウェハの例を、図32Aを用いて説明する。
 図32Aに示す半導体ウェハ4800は、ウェハ4801と、ウェハ4801の上面に設けられた複数の回路部4802と、を有する。なお、ウェハ4801の上面において、回路部4802の無い部分は、スペーシング4803であり、ダイシング用の領域である。
 半導体ウェハ4800は、ウェハ4801の表面に対して、前工程によって複数の回路部4802を形成することで作製することができる。また、その後に、ウェハ4801の複数の回路部4802が形成された反対側の面を研削して、ウェハ4801を薄膜化してもよい。この工程により、ウェハ4801の反りなどを低減し、部品としての小型化を図ることができる。
 次の工程としては、ダイシング工程が行われる。ダイシングは、一点鎖線で示したスクライブラインSCL1及びスクライブラインSCL2(ダイシングライン、又は切断ラインと呼ぶ場合がある)に沿って行われる。なお、スペーシング4803は、ダイシング工程を容易に行うために、複数のスクライブラインSCL1が平行になるように設け、複数のスクライブラインSCL2が平行になるように設け、スクライブラインSCL1とスクライブラインSCL2が垂直になるように設けるのが好ましい。
 ダイシング工程を行うことにより、図32Bに示すようなチップ4800aを、半導体ウェハ4800から切り出すことができる。チップ4800aは、ウェハ4801aと、回路部4802と、スペーシング4803aと、を有する。なお、スペーシング4803aは、極力小さくなるようにするのが好ましい。この場合、隣り合う回路部4802の間のスペーシング4803の幅が、スクライブラインSCL1の切りしろと、又はスクライブラインSCL2の切りしろとほぼ同等の長さであればよい。
 なお、本発明の一態様の素子基板の形状は、図32Aに図示した半導体ウェハ4800の形状に限定されない。例えば、矩形の形状の半導体ウェハあってもよい。素子基板の形状は、素子の作製工程、及び素子を作製するための装置に応じて、適宜変更することができる。
<電子部品>
 図32Cに電子部品4700および電子部品4700が実装された基板(実装基板4704)の斜視図を示す。図32Cに示す電子部品4700は、モールド4711内にチップ4800aを有している。なお、図32Cに示すチップ4800aには、回路部4802が積層された構成を示している。つまり、回路部4802として、上記の実施の形態で説明した記憶装置を適用することができる。図32Cは、電子部品4700の内部を示すために、一部を省略している。電子部品4700は、モールド4711の外側にランド4712を有する。ランド4712は電極パッド4713と電気的に接続され、電極パッド4713はチップ4800aとワイヤ4714によって電気的に接続されている。電子部品4700は、例えばプリント基板4702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板4702上で電気的に接続されることで実装基板4704が完成する。
 図32Dに電子部品4730の斜視図を示す。電子部品4730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品4730は、パッケージ基板4732(プリント基板)上にインターポーザ4731が設けられ、インターポーザ4731上に半導体装置4735、および複数の半導体装置4710が設けられている。
 電子部品4730では、半導体装置4710を有する。半導体装置4710としては、例えば、上記実施の形態で説明した記憶装置、広帯域メモリ(HBM:High Bandwidth Memory)などとすることができる。また、半導体装置4735は、CPU、GPU、FPGA、記憶装置などの集積回路(半導体装置)を用いることができる。
 パッケージ基板4732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ4731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ4731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ4731は、インターポーザ4731上に設けられた集積回路をパッケージ基板4732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ4731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板4732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
 インターポーザ4731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiP、MCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品4730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ4731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品4730では、半導体装置4710と半導体装置4735の高さを揃えることが好ましい。
 電子部品4730を他の基板に実装するため、パッケージ基板4732の底部に電極4733を設けてもよい。図32Dでは、電極4733を半田ボールで形成する例を示している。パッケージ基板4732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極4733を導電性のピンで形成してもよい。パッケージ基板4732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品4730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態9)
 本実施の形態では、上記の実施の形態の記憶装置を備えることができるCPUについて説明する。
 図33は、上記の実施の形態で説明した記憶装置を一部に用いたCPUの一例の構成を示すブロック図である。
 図33に示すCPUは、基板1190上に、ALU1191(ALU:Arithmetic logic unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198(Bus I/F)、書き換え可能なROM1199、及びROMインターフェース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。ROM1199及びROMインターフェース1189は、別チップに設けてもよい。もちろん、図33に示すCPUは、その構成を簡略化して示した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例えば、図33に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成、つまりGPUのような構成としてもよい。また、CPUが内部演算回路、データバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。
 バスインターフェース1198を介してCPUに入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。
 ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラム実行中に、外部の入出力装置、周辺回路などからの割り込み要求を、その優先度、マスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、CPUの状態に応じてレジスタ1196の読み出し、又は書き込みを行なう。
 また、タイミングコントローラ1195は、ALU1191、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、及びレジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタイミングコントローラ1195は、基準クロック信号を元に、内部クロック信号を生成する内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。
 図33に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ1196は、例えば、先の実施の形態に示した記憶装置などを有してもよい。
 図33に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態10)
 本実施の形態では、上記実施の形態で説明した記憶装置を有する電子機器の一例について説明する。なお、図34A乃至図34Iには、当該記憶装置を有する電子部品4700が各電子機器に含まれている様子を図示している。
[携帯電話]
 図34Aに示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、上記実施の形態で説明した記憶装置を適用することで、アプリケーションの実行時に生成される一時的なファイル(例えば、ウェブブラウザの使用時のキャッシュなど)を保持することができる。
[ウェアラブル端末]
 また、図34Bには、ウェアラブル端末の一例である情報端末5900が図示されている。情報端末5900は、筐体5901、表示部5902、操作ボタン5903、竜頭5904、バンド5905などを有する。
 ウェアラブル端末は、先述した情報端末5500と同様に、上記実施の形態で説明した記憶装置を適用することで、アプリケーションの実行時に生成される一時的なファイルを保持することができる。
[情報端末]
 また、図34Cには、ノート型情報端末5300が図示されている。図34Cに示すノート型情報端末5300には、一例として、筐体5330aに表示部5331、筐体5330bにキーボード部5350が備えられている。
 ノート型情報端末5300は、先述した情報端末5500と同様に、上記実施の形態で説明した記憶装置を適用することで、アプリケーションの実行時に生成される一時的なファイルを保持することができる。
 なお、上述では、電子機器としてスマートフォン、ウェアラブル端末、ノート型情報端末を例として、それぞれ図34A乃至図34Cに図示したが、スマートフォン、ウェアラブル端末、ノート型情報端末以外の情報端末を適用することができる。スマートフォン、ウェアラブル端末、ノート型情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、デスクトップ用情報端末、ワークステーションなどが挙げられる。
[電化製品]
 また、図34Dには、電化製品の一例として電気冷凍冷蔵庫5800が図示されている。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に上記実施の形態で説明した記憶装置を適用することによって、電気冷凍冷蔵庫5800を、例えば、IoT(Internet of Things)として利用することができる。IoTを利用することによって、電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などの情報を、インターネットなどを通じて、上述したような情報端末などに送受信することができる。また、電気冷凍冷蔵庫5800は、当該情報を送信する際に、当該情報を一時ファイルとして、当該記憶装置に保持することができる。
 本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電気オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
 また、図34Eには、ゲーム機の一例である携帯ゲーム機5200が図示されている。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203等を有する。
 また、携帯ゲーム機5200の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、ヘッドマウントディスプレイなどの表示装置によって、出力することができる。
 携帯ゲーム機5200に上記実施の形態で説明した記憶装置を適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5200に上記実施の形態で説明した記憶装置を適用することによって、ゲームの実行中に発生する演算に必要な一時ファイルなどの保持をおこなうことができる。
 図34Eでは、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様の電子機器はこれに限定されない。本発明の一態様の電子機器としては、例えば、据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
 上記実施の形態で説明した記憶装置は、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図34Fには移動体の一例である自動車5700が図示されている。
 自動車5700の運転席周辺には、スピードメーター、タコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供するインストゥルメントパネルが備えられている。また、運転席周辺には、それらの情報を示す表示装置が備えられていてもよい。
 特に当該表示装置には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーなどで遮られた視界、運転席の死角などを補うことができ、安全性を高めることができる。
 上記実施の形態で説明した記憶装置は、情報を一時的に保持することができるため、例えば、当該記憶装置を自動車5700の自動運転システム、道路案内、危険予測などを行うシステムなどにおける、必要な一時的な情報の保持に用いることができる。当該表示装置には、道路案内、危険予測などの一時的な情報を表示する構成としてもよい。また、自動車5700に備え付けられたドライビングレコーダの映像を保持する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができる。
[カメラ]
 上記実施の形態で説明した記憶装置は、カメラに適用することができる。
 図34Gには、撮像装置の一例であるデジタルカメラ6240が図示されている。デジタルカメラ6240は、筐体6241、表示部6242、操作ボタン6243、シャッターボタン6244等を有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置、ビューファインダー等を別途装着することができる構成としてもよい。
 デジタルカメラ6240に上記実施の形態で説明した記憶装置を適用することによって、低消費電力のデジタルカメラ6240を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
[ICD]
 上記実施の形態で説明した記憶装置は、植え込み型除細動器(ICD)に適用することができる。
 図34Hは、ICDの一例を示す断面模式図である。ICD本体5400は、バッテリー5401と、電子部品4700と、レギュレータと、制御回路と、アンテナ5404と、右心房へのワイヤ5402、右心室へのワイヤ5403とを少なくとも有している。
 ICD本体5400は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5405及び上大静脈5406を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
 ICD本体5400は、ペースメーカとしての機能を有し、心拍数が規定の範囲から外れた場合に心臓に対してペーシングを行う。また、ペーシングによって心拍数が改善しない場合(速い心室頻拍、心室細動など)、電気ショックによる治療が行われる。
 ICD本体5400は、ペーシング及び電気ショックを適切に行うため、心拍数を常に監視する必要がある。そのため、ICD本体5400は、心拍数を検知するためのセンサを有する。また、ICD本体5400は、当該センサなどによって取得した心拍数のデータ、ペーシングによる治療を行った回数、時間などを電子部品4700に記憶することができる。
 また、アンテナ5404で電力が受信でき、その電力はバッテリー5401に充電される。また、ICD本体5400は複数のバッテリーを有することにより、安全性を高くすることができる。具体的には、ICD本体5400の一部のバッテリーが使えなくなったとしても残りのバッテリーが機能させることができるため、補助電源としても機能する。
 また、電力を受信できるアンテナ5404とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
[PC用の拡張デバイス]
 上記実施の形態で説明した記憶装置は、PC(Personal Computer)などの計算機、情報端末用の拡張デバイスに適用することができる。
 図34Iは、当該拡張デバイスの一例として、持ち運びのできる、情報の記憶が可能なチップが搭載された、PCに外付けする拡張デバイス6100を示している。拡張デバイス6100は、例えば、USB(Universal Serial Bus)などでPCに接続することで、当該チップによる情報の記憶を行うことができる。なお、図34Iは、持ち運びが可能な形態の拡張デバイス6100を図示しているが、本発明の一態様に係る拡張デバイスは、これに限定されず、例えば、冷却用ファンなどを搭載した比較的大きい形態の拡張デバイスとしてもよい。
 拡張デバイス6100は、筐体6101、キャップ6102、USBコネクタ6103及び基板6104を有する。基板6104は、筐体6101に収納されている。基板6104には、上記実施の形態で説明した記憶装置などを駆動する回路が設けられている。例えば、基板6104には、電子部品4700、コントローラチップ6106が取り付けられている。USBコネクタ6103は、外部装置と接続するためのインターフェースとして機能する。
 また、図示していないが、PC(Personal Computer)などの計算機、情報端末用の拡張デバイスに取り付けが可能なSDカード、SSD(Solid State Drive)などについても、上記実施の形態で説明した記憶装置を適用することができる。
 実施の形態1、又は実施の形態2で説明した半導体装置、又は記憶装置を、上述した電子機器に含まれている記憶装置に適用することによって、新規の電子機器を提供することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
MCA:メモリセルアレイ、MC:メモリセル、MC[1,1]:メモリセル、MC[m,1]:メモリセル、MC[1,n]:メモリセル、MC[m,n]:メモリセル、WDD:回路、RDD:回路、WWD:回路、RWD:回路、FECD:回路、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、M4A:トランジスタ、M4B:トランジスタ、FJA:FTJ素子、FJB:FTJ素子、FEA:強誘電キャパシタ、FEB:強誘電キャパシタ、ANA:回路素子、ANB:回路素子、REA:抵抗、REB:抵抗、WDL:配線、WDL[1]:配線、WDL[n]:配線、RDL:配線、RDL[1]:配線、RDL[n]:配線、WRDL:配線、WRWL:配線、WWL:配線、WWL[1]:配線、WWL[m]:配線、RWL:配線、RWL[1]:配線、RWL[m]:配線、FCA:配線、FCA[1]:配線、FCA[m]:配線、FCB:配線、FCB[1]:配線、FCB[m]:配線、RVE:配線、BSA:配線、BSB:配線、VCE:配線、MP:回路、MPr:回路、RDLr:配線、RWLa:配線、RWLb:配線、WDLr:配線、VCEr:配線、VCE2:配線、WHL:配線、WCL:配線、M1r:トランジスタ、M2r:トランジスタ、M3a:トランジスタ、M3ar:トランジスタ、M3b:トランジスタ、M3br:トランジスタ、M5:トランジスタ、M6:トランジスタ、FJAr:FTJ素子、FJBr:FTJ素子、100:記憶装置、110:演算回路、300:トランジスタ、310:基板、310A:基板、312:素子分離層、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、411:絶縁体、412:絶縁体、413:絶縁体、414:絶縁体、416:導電体、500:トランジスタ、503:導電体、503a:導電体、503b:導電体、510:絶縁体、512:絶縁体、514:絶縁体、516:絶縁体、518:導電体、522:絶縁体、524:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、530ba:領域、530bb:領域、530bc:領域、540:導電体、540a:導電体、540b:導電体、541:絶縁体、541a:絶縁体、541b:絶縁体、542:導電体、542a:導電体、542b:導電体、543:酸化物、543a:酸化物、543b:酸化物、544:絶縁体、546:導電体、550:絶縁体、550a:絶縁体、550b:絶縁体、552:絶縁体、554:絶縁体、560:導電体、560a:導電体、560b:導電体、571:絶縁体、571a:絶縁体、571b:絶縁体、574:絶縁体、576:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、586:絶縁体、600:容量素子、610:導電体、612:導電体、620:導電体、630:絶縁体、631:絶縁体、640:絶縁体、641:絶縁体、642:絶縁体、650:絶縁体、660:導電体、700:FTJ素子、1189:ROMインターフェース、1190:基板、1191:ALU、1192:ALUコントローラ、1193:インストラクションデコーダ、1194:インタラプトコントローラ、1195:タイミングコントローラ、1196:レジスタ、1197:レジスタコントローラ、1198:バスインターフェース、1199:ROM、4700:電子部品、4702:プリント基板、4704:実装基板、4710:半導体装置、4711:モールド、4712:ランド、4713:電極パッド、4714:ワイヤ、4730:電子部品、4731:インターポーザ、4732:パッケージ基板、4733:電極、4735:半導体装置、4800:半導体ウェハ、4800a:チップ、4801:ウェハ、4801a:ウェハ、4802:回路部、4803:スペーシング、4803a:スペーシング、5200:携帯ゲーム機、5201:筐体、5202:表示部、5203:ボタン、5300:ノート型情報端末、5330a:筐体、5330b:筐体、5331:表示部、5350:キーボード部、5400:ICD本体、5401:バッテリー、5402:ワイヤ、5403:ワイヤ、5404:アンテナ、5405:鎖骨下静脈、5406:上大静脈、5500:情報端末、5510:筐体、5511:表示部、5700:自動車、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉、5900:情報端末、5901:筐体、5902:表示部、5903:操作ボタン、5904:竜頭、5905:バンド、6100:拡張デバイス、6101:筐体、6102:キャップ、6103:USBコネクタ、6104:基板、6106:コントローラチップ、6240:デジタルカメラ、6241:筐体、6242:表示部、6243:操作ボタン、6244:シャッターボタン、6246:レンズ

Claims (9)

  1.  第1トランジスタと、第2トランジスタと、第1FTJ素子と、第2FTJ素子と、を有し、
     前記第1FTJ素子、及び前記第2FTJ素子のそれぞれは、入力端子と、トンネル絶縁膜と、誘電体と、出力端子と、を有し、
     前記第1FTJ素子、及び前記第2FTJ素子のそれぞれは、前記入力端子、前記トンネル絶縁膜、前記誘電体、前記出力端子、の順に重畳されている構成を有し、
     前記第1トランジスタのソース又はドレインの一方は、前記第1FTJ素子の前記出力端子と、前記第2FTJ素子の前記入力端子と、前記第2トランジスタのゲートと、に電気的に接続されている、
     半導体装置。
  2.  請求項1において、
     前記トンネル絶縁膜は、酸化シリコン、又は窒化シリコンを有し、
     前記誘電体は、ハフニウム、及びジルコニウムの一方、又は双方を含む酸化物を有する、
     半導体装置。
  3.  第1トランジスタと、第2トランジスタと、第1強誘電キャパシタと、第2強誘電キャパシタと、を有し、
     前記第1トランジスタのソース又はドレインの一方は、前記第1強誘電キャパシタの第1端子と、前記第2強誘電キャパシタの第1端子と、前記第2トランジスタのゲートと、に電気的に接続されている、
     半導体装置。
  4.  請求項3において、
     前記強誘電キャパシタは、誘電体を有し、
     前記誘電体は、ハフニウム、及びジルコニウムの一方、又は双方を含む酸化物を有する、
     半導体装置。
  5.  第1トランジスタと、第2トランジスタと、第1回路素子と、第2回路素子と、を有し、
     前記第1トランジスタのソース又はドレインの一方は、前記第1回路素子の出力端子と、前記第2回路素子の入力端子と、前記第2トランジスタのゲートと、に電気的に接続され、
     前記第1回路素子、及び前記第2回路素子のそれぞれは、抵抗変化素子、MTJ素子、相変化メモリ素子のいずれか一を有する、
     半導体装置。
  6.  請求項1乃至請求項5のいずれか一において、
     前記第2トランジスタのソース又はドレインの一方は、前記第1トランジスタのソース又はドレインの他方に電気的に接続されている、
     半導体装置。
  7.  請求項1乃至請求項5のいずれか一において、
     第3トランジスタを有し、
     前記第2トランジスタのソース又はドレインの一方は、前記第3トランジスタのソース又はドレインの一方に電気的に接続されている、
     半導体装置。
  8.  請求項7において、
     前記第3トランジスタのソース又はドレインの他方は、前記第1トランジスタのソース又はドレインの他方に電気的に接続されている、
     半導体装置。
  9.  請求項1乃至請求項8のいずれか一の半導体装置と、筐体と、を有する、
     電子機器。
PCT/IB2021/058147 2020-09-22 2021-09-08 半導体装置、及び電子機器 WO2022064303A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180062785.3A CN116114019A (zh) 2020-09-22 2021-09-08 半导体装置及电子设备
KR1020237009829A KR20230071139A (ko) 2020-09-22 2021-09-08 반도체 장치 및 전자 기기
US18/025,457 US20230335173A1 (en) 2020-09-22 2021-09-08 Semiconductor device and electronic device
JP2022551435A JPWO2022064303A1 (ja) 2020-09-22 2021-09-08

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-158053 2020-09-22
JP2020158053 2020-09-22
JP2021-034922 2021-03-05
JP2021034922 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022064303A1 true WO2022064303A1 (ja) 2022-03-31

Family

ID=80845034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/058147 WO2022064303A1 (ja) 2020-09-22 2021-09-08 半導体装置、及び電子機器

Country Status (5)

Country Link
US (1) US20230335173A1 (ja)
JP (1) JPWO2022064303A1 (ja)
KR (1) KR20230071139A (ja)
CN (1) CN116114019A (ja)
WO (1) WO2022064303A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347422A (ja) * 1992-06-16 1993-12-27 Fujitsu Ltd 二安定ダイオード
JP2004264896A (ja) * 2003-02-06 2004-09-24 Rohm Co Ltd 論理演算回路、論理演算装置および論理演算方法
JP2007207406A (ja) * 2006-01-06 2007-08-16 Nec Corp 半導体記憶装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960030B2 (ja) 2001-12-11 2007-08-15 富士通株式会社 強誘電体メモリ
JP5190275B2 (ja) 2008-01-09 2013-04-24 パナソニック株式会社 半導体メモリセル及びそれを用いた半導体メモリアレイ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347422A (ja) * 1992-06-16 1993-12-27 Fujitsu Ltd 二安定ダイオード
JP2004264896A (ja) * 2003-02-06 2004-09-24 Rohm Co Ltd 論理演算回路、論理演算装置および論理演算方法
JP2007207406A (ja) * 2006-01-06 2007-08-16 Nec Corp 半導体記憶装置

Also Published As

Publication number Publication date
JPWO2022064303A1 (ja) 2022-03-31
CN116114019A (zh) 2023-05-12
US20230335173A1 (en) 2023-10-19
KR20230071139A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
JP7433250B2 (ja) 記憶装置
WO2022064303A1 (ja) 半導体装置、及び電子機器
WO2022084782A1 (ja) 半導体装置、及び電子機器
WO2022064309A1 (ja) 半導体装置、及び電子機器
WO2022064315A1 (ja) 半導体装置、及び電子機器
WO2021009607A1 (ja) 記憶装置、半導体装置、及び電子機器
WO2022049448A1 (ja) 半導体装置、及び電子機器
WO2022064304A1 (ja) 半導体装置の駆動方法
WO2022084802A1 (ja) 半導体装置、および半導体装置の駆動方法
WO2022064308A1 (ja) 半導体装置の駆動方法
WO2022084785A1 (ja) 半導体装置の駆動方法
WO2022106956A1 (ja) 半導体装置
WO2023144653A1 (ja) 記憶装置
WO2023144652A1 (ja) 記憶装置
WO2023148580A1 (ja) 半導体装置の動作方法
WO2022084800A1 (ja) 半導体装置、及び電子機器
WO2023242664A1 (ja) 半導体装置、記憶装置
US20230298650A1 (en) Driving method of semiconductor device
WO2024042404A1 (ja) 半導体装置
WO2023089440A1 (ja) 記憶素子、記憶装置
WO2023161757A1 (ja) 半導体装置
WO2023047224A1 (ja) 半導体装置
WO2024100467A1 (ja) 半導体装置
US20230018223A1 (en) Semiconductor device
WO2022058838A1 (ja) 半導体装置、および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871747

Country of ref document: EP

Kind code of ref document: A1