WO2022062423A1 - 一种电机 - Google Patents

一种电机 Download PDF

Info

Publication number
WO2022062423A1
WO2022062423A1 PCT/CN2021/093413 CN2021093413W WO2022062423A1 WO 2022062423 A1 WO2022062423 A1 WO 2022062423A1 CN 2021093413 W CN2021093413 W CN 2021093413W WO 2022062423 A1 WO2022062423 A1 WO 2022062423A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
motor
accommodating cavity
impeller
motor housing
Prior art date
Application number
PCT/CN2021/093413
Other languages
English (en)
French (fr)
Inventor
高春超
郑磊
Original Assignee
追觅创新科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 追觅创新科技(苏州)有限公司 filed Critical 追觅创新科技(苏州)有限公司
Priority to JP2023514498A priority Critical patent/JP2023540102A/ja
Priority to EP21870810.5A priority patent/EP4167443A4/en
Priority to US18/027,119 priority patent/US20230336056A1/en
Priority to KR1020237008977A priority patent/KR20230059171A/ko
Publication of WO2022062423A1 publication Critical patent/WO2022062423A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/22Mountings for motor fan assemblies
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2842Suction motors or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present application relates to the technical field of motors, and in particular, to brushless motors.
  • Motor refers to an electromagnetic device that realizes the conversion or transfer of electrical energy according to the law of electromagnetic induction.
  • DC motors can be divided according to their structure and working principle: brushless DC motors and brushed DC motors.
  • brushless DC motors Although the development time of brushless motor in my country is short, it has developed rapidly with the increasing maturity and improvement of technology. It has been widely used in many fields such as model aircraft, medical equipment, household appliances, and electric vehicles.
  • the internal temperature of the motor increases, which affects the performance of the motor.
  • the present application provides a motor, which has the advantage of good heat dissipation effect.
  • a motor comprising: a motor housing with a hollow interior to form a first accommodating cavity, the motor housing is provided with an annular support frame, and the annular support frame surrounds a circumferential ring of the motor housing It is arranged on the outer side of the motor housing; the fixed impeller is detachably arranged on the side of the motor housing close to the annular support frame and is clamped with the annular support frame; The impeller is abutted, and the inside of the hood is hollow to form a second accommodating cavity; the moving impeller is disposed in the second accommodating cavity and is located on the side of the fixed impeller away from the annular support frame, and uses blowing air in the second accommodating cavity to form a high-speed air flow; an outer cover, sleeved on the outer peripheral surface of the wind cover and clamped with the annular support frame; and a motor main body, arranged on the electric The casing is partially extended out of the accommodating cavity and connected to the moving impeller, so as to drive the rotating impeller to rotate, so that
  • an air flow channel that communicates with the first accommodating cavity is formed on the motor housing, and the air flow channel extends from the first accommodating cavity to the annular shape
  • the support frame, the outlet of the air flow channel is formed on the outer peripheral surface of the annular support frame;
  • the inner wall of the outer cover is at least formed with an air guide groove connecting the air flow channel and the second accommodating cavity,
  • the air guide groove and the outer wall of the air hood are surrounded to form an air channel; wherein, the air channel and the air channel constitute the heat dissipation channel, and the inlet of the air channel is facing the air channel
  • the outlet of the air duct communicates with the second accommodating cavity.
  • the fixed impeller includes a first fixed impeller and a second fixed impeller
  • the second accommodating cavity is formed with a first fixed impeller on a side of the wind cover away from the motor housing.
  • an air inlet the second accommodating cavity is formed with a first air outlet on the other side of the air cover close to the motor housing; wherein, from the first air inlet to the first air outlet
  • the moving impeller, the first stationary impeller and the second stationary impeller are arranged in sequence in the direction.
  • the second stator impeller includes a second stator impeller body and a connecting portion surrounding the circumferential ring of the second stator impeller body and provided on the outer periphery of the second stator impeller body; wherein, the The first air outlet is in contact with the connecting portion.
  • the outer peripheral surface of the connecting portion is provided with a limiting convex ring, which is used to separate the outer peripheral surface of the connecting portion into a first connection end close to the windshield and a distance away from the windshield.
  • the second connection end of the air hood wherein, the first air outlet is in contact with the first connection end, and the second connection end is clamped to the annular support frame along the axial direction of the motor housing .
  • the inside of the cover is hollow to form a third accommodating cavity, and the third accommodating cavity is formed with a second inlet on the side of the cover away from the motor housing.
  • an air outlet the third accommodating cavity is formed with a second air outlet on the other side of the outer cover close to the motor housing; wherein, the second air outlet is provided with a clamping structure, and the outer cover passes through
  • the clamping structure is connected to the annular support frame, the air guide groove and the clamping structure are located on the extension line of the same busbar, and the inlet of the air guide groove is arranged adjacent to the clamping structure.
  • the second stationary impeller or/and the annular support frame are provided with a snap-fit slot matched with the snap-fit structure.
  • the motor casing includes a main casing and a rear cover, the main casing is hollow inside and has an opening at one end, and the rear cover is detachably covered on the main casing
  • the first accommodating cavity is formed at the opening of the motor body; wherein, the annular support frame is formed on the main casing, the first air inlet is formed on the rear cover, and the motor body is connected to the main body.
  • An installation gap exists between the inner walls of the motor housing to form a space for air circulation in the motor housing.
  • the motor body includes a rotating shaft disposed in the motor housing, a rotor located in the first accommodating cavity and fixed on the rotating shaft, and a rotor disposed in the first accommodating cavity and fixed on the rotating shaft.
  • a stator is arranged in the accommodating cavity and surrounds the outer circumference of the rotor, and the part of the rotating shaft extending to the outside of the main casing is connected to the moving impeller; wherein, a plurality of coils are wound around the stator, and each phase At least one of the air flow channels is arranged between two adjacent coils.
  • the motor is further provided with a waterproof sealing structure;
  • the waterproof sealing structure includes a waterproof gasket disposed on the rotating shaft and rotating with the rotating shaft, and a waterproof gasket formed on the motor casing and a sealing part that cooperates with the waterproof gasket; wherein, the waterproof gasket is provided with a first annular rib distributed around the circumference of the rotating shaft, and the sealing part is provided with a second annular rib distributed around the circumference of the rotating shaft annular ribs, the first annular rib and the second annular rib are distributed alternately.
  • the present invention also provides a motor, comprising: a motor casing, the interior of which is hollow to form a first accommodating cavity, and the motor casing is provided with a first accommodating cavity that communicates with the first accommodating cavity.
  • a motor comprising: a motor casing, the interior of which is hollow to form a first accommodating cavity, and the motor casing is provided with a first accommodating cavity that communicates with the first accommodating cavity.
  • an air inlet ; an air hood, provided on the motor housing, the air hood is hollow inside to form a second accommodating cavity, and the second accommodating cavity is far from the motor housing when the air hood is far away
  • a first air inlet is formed on one side of the body;
  • a moving impeller is arranged in the second accommodating cavity for blowing air in the second accommodating cavity to form a high-speed airflow;
  • an outer cover is arranged in the second accommodating cavity a motor casing is sleeved on the outer peripheral surface of the wind cover, and the outer cover is provided with a second air inlet
  • an air guide groove is formed on the inner wall of the outer cover, and the air guide groove and the outer wall of the air cover are surrounded to form the air duct.
  • the outlet portion of the air duct is formed on the hole wall of the second air inlet.
  • the wind cover is provided in the outer cover.
  • the outer cover is a shock-absorbing cover made of rubber material.
  • a second air outlet opposite to the second air inlet is further formed on the outer cover, and a clamping structure is provided at the second air outlet, and the outer cover passes through the clamping structure.
  • the connecting structure is detachably connected to the motor housing.
  • the motor body has a rotation center axis
  • the extension direction of the first air inlet is collinear or parallel with the extension direction of the rotation center axis
  • the air flow channel has an extension direction.
  • the extension direction is perpendicular to the extension direction of the rotation center axis.
  • the motor casing includes a main casing and a rear cover, the main casing is hollow inside and provided with an opening at one end, and the rear cover is detachably covered on the main casing. opening to form the first accommodating cavity.
  • the air hood is provided on a side of the main casing away from the rear cover, the first air inlet is formed on the rear cover, and the air flow channel is provided with the first air inlet. on the side of the main casing close to the wind cover.
  • the motor body includes a rotating shaft disposed in the motor housing, a rotor located in the first accommodating cavity and fixed on the rotating shaft, and a rotor disposed in the first accommodating cavity and fixed on the rotating shaft.
  • the stator in the accommodating cavity and surrounding the outer circumference of the rotor, the part of the rotating shaft extending to the outside of the main casing is connected with the moving impeller; wherein the motor main body and the inner wall of the motor casing are connected. There is an installation gap between them to provide a flow space for airflow.
  • the present invention also provides a motor, comprising: a motor housing provided with an annular support frame, the annular support frame being arranged around the outer side of the motor housing along the circumferential direction of the motor housing; and a wind cover provided with On one side of the motor housing, the inside of the wind hood is hollow to form a second accommodating cavity; blowing air in the cavity to form high-speed airflow; and an outer cover, sleeved on the outer peripheral surface of the wind cover and clamped with the annular support frame; wherein, the outer cover is provided with a side close to the annular support frame There is a clamping structure, and the outer cover is clamped with the annular support frame through the clamping structure.
  • the inside of the cover is hollow to form a third accommodating cavity, and the third accommodating cavity is formed with a second outlet on the side of the cover close to the annular support frame. an air outlet, the third accommodating cavity is formed with a second air inlet on the other side of the outer cover away from the annular support frame; wherein, the clamping structure is arranged at the second air outlet.
  • the clamping structure is a clamping block formed on the inner wall of the second air outlet.
  • the motor further includes: a fixed impeller, partially located in the second accommodating cavity, for guiding the flow direction of the airflow discharged through the moving impeller; wherein, along the outer cover The moving impeller and the fixed impeller are arranged in sequence from the second air inlet to the second air outlet.
  • the interior of the motor housing is hollow to form a first accommodating cavity, and the motor housing is provided with a first accommodating cavity that communicates with the first accommodating cavity. an air inlet; wherein, the first accommodating cavity and the second accommodating cavity are communicated through a heat dissipation channel for heat dissipation inside the motor housing.
  • an air flow channel communicating with the first accommodating cavity is further formed on the motor housing, and an outlet of the air flow channel is formed on the outer peripheral surface of the annular support frame superior.
  • an air guide groove is formed on the outer cover, and the air guide groove and the outer wall of the air cover are surrounded to form a space that can communicate with the air flow channel and the second accommodating cavity.
  • Air duct when the moving impeller rotates, the negative pressure generated by it can make the air flow in from the first air inlet and flow through the first accommodating cavity, the air duct, the air duct and the air duct in turn.
  • the second accommodating cavity is then discharged; wherein, the air flow channel and the air duct form the heat dissipation channel for connecting the first accommodating cavity and the second accommodating cavity.
  • the inlet of the air guide groove is disposed adjacent to the clamping structure.
  • the motor casing includes a main casing and a rear cover
  • the main casing is hollow inside and has an opening at one end
  • the rear cover is detachably covered on the main casing the opening to form the first accommodating cavity.
  • the annular support frame is formed on the main casing, and the first air inlet is formed on the rear cover.
  • the present invention also provides a motor, comprising: a motor housing; a motor body including a rotating shaft disposed on the motor housing, one end of the rotating shaft extending out of the motor housing; and a waterproof gasket, It is sleeved on the rotating shaft for waterproof sealing; wherein, one end of the motor casing is provided with a sealing part matched with the waterproof gasket, and the waterproof gasket is provided with a circumferential distribution around the rotating shaft and a plurality of first waterproof parts extending toward the sealing part, a plurality of second waterproof parts distributed in the circumferential direction around the rotating shaft and extending toward the waterproof gasket are arranged in the sealing part, the first waterproof parts It is spaced from the second waterproof part to prevent water vapor from entering the motor housing.
  • the plurality of first waterproof parts are a plurality of concentrically arranged first annular ribs, and adjacent first annular ribs are surrounded to form concentrically distributed first annular grooves;
  • the The plurality of second waterproof parts are a plurality of second annular ribs arranged concentrically, and the plurality of second annular ribs divide the sealing part into a plurality of second annular grooves distributed concentrically; wherein, the first annular grooves A second annular rib is accommodated, and the second annular groove accommodates the first annular rib to extend the flow path of the water vapor.
  • the free end of the first annular rib is in abutment with the groove bottom of the second annular groove.
  • the number of the second annular grooves is 2-3.
  • the waterproof gasket rotates synchronously with the rotating shaft, and a gap is provided between the side wall of the first annular rib and the side wall of the second annular groove to reduce friction.
  • the motor further includes a moving impeller and a fixed impeller;
  • the moving impeller is provided on one end of the rotating shaft extending out of the motor housing, and is used for blowing air;
  • the fixed impeller is used for blowing air;
  • the impeller is arranged at one end of the motor housing; wherein, the thickness of the waterproof gasket in the axial direction is greater than or equal to the depth of the sealing portion, so as to abut with the moving impeller for reducing the moving impeller. Friction between the impeller and the fixed impeller.
  • the fixed impeller includes a first fixed impeller disposed adjacent to the moving impeller; wherein a concave groove is formed on one end surface of the first fixed impeller close to the moving impeller , which is used to reduce the friction between the movable impeller and the first fixed impeller.
  • the concave groove extends from the center of the first stationary impeller to an edge direction.
  • the motor further includes a wind cover, and the wind cover covers the moving impeller and the first stationary impeller.
  • the first accommodating cavity of the motor housing is communicated with the second accommodating cavity of the air hood through a heat dissipation channel, and the negative pressure generated by the moving impeller in the second accommodating cavity is used to displace the motor housing.
  • the external cooler air is sucked into the motor housing, and the warmer air in the motor housing flows to the second accommodating cavity through the above-mentioned heat dissipation channel and then is discharged from the air hood, which has the advantage of good heat dissipation effect.
  • Embodiment 1 is a schematic structural diagram of a motor proposed in the present application in Embodiment 1;
  • Fig. 2 is the exploded structure schematic diagram of Fig. 1;
  • Fig. 3 is the half-section structure schematic diagram of Fig. 1;
  • Fig. 4 is the partial sectional structure schematic diagram of Fig. 1;
  • Fig. 5 is the structural representation of the waterproof gasket in Fig. 1;
  • Fig. 6 is the structural representation of the air hood in Fig. 1;
  • Fig. 7 is the structural representation of the outer cover in Fig. 1;
  • Fig. 8 is the structural representation of the first fixed impeller in Fig. 1;
  • Fig. 9 is the structural representation of the second fixed impeller in Fig. 1;
  • Figure 10 is a schematic diagram of the positional relationship between the air flow channel and the stator in Figure 1;
  • FIG. 11 is a schematic half-section structure diagram of the motor proposed in the present application in the second embodiment.
  • Fig. 12 is the enlarged structural schematic diagram of A area in Fig. 11;
  • Fig. 13 is the enlarged structural schematic diagram of B region in Fig. 11;
  • Fig. 14 is the structural representation of the first fixed impeller in Fig. 11;
  • Fig. 15 is the structural representation of the second fixed impeller in Fig. 11;
  • FIG. 16 is a schematic diagram of the exploded structure of the motor proposed in the present application in Embodiment 3;
  • Fig. 17 is the sectional structure schematic diagram of Fig. 16;
  • FIG. 19 is a schematic cross-sectional structure diagram of FIG. 18 .
  • 111a-rotating shaft 120a-motor housing; 1211a-first accommodating cavity; 1212a-air flow channel; 1212a'-air flow channel; 1213a-annular support frame; 1221a-first air inlet; 140a-wind cover; 141a-second accommodating cavity; 142a-first air inlet; 143a-first air outlet; 160a-fixed impeller; 161a-first fixed impeller; 162a-second fixed impeller;
  • 180-partition plate 111c-rotating shaft; 120c-motor housing; 121c-main housing; 1211c-first accommodating cavity; 1212c-air flow channel; 122c-rear cover; 1221c-first air inlet; 130c - moving impeller; 140c - windshield; 141c - second accommodating cavity; 142c - first air inlet; 143c - first air outlet; 160c - fixed impeller; 161c - first fixed impeller; 162c - second fixed impeller.
  • a motor 100 which includes a motor housing 120 , a motor body 110 mounted on the motor housing 120 , a moving impeller 130 and a fan cover 140 .
  • the interior of the motor housing 120 is hollow to form a first accommodating cavity 1211 .
  • the motor housing 120 includes a main housing 121 and a back cover 122.
  • the interior of the main housing 121 is hollow and the bottom end is open, and the back cover 122 is detachably covered on the main housing
  • a first accommodating cavity 1211 is formed at the bottom opening of the casing 121 .
  • the motor body 110 includes a rotating shaft 111 rotatably disposed in the motor housing 120 , a rotor 112 located in the first accommodating cavity 1211 and fixed on the rotating shaft 111 , and disposed in the first accommodating cavity 1211 and surrounding the outer circumference of the rotor 112 .
  • the stator 113 and the driving board 114 located in the first accommodating cavity 1211 and electrically connected to the stator 113 .
  • the part of the rotating shaft 111 that extends outside the main casing 121 is connected to the moving impeller 130 .
  • the top of the rotating shaft 111 extends outside the main casing 121 , and the top of the rotating shaft 111 is connected to the moving impeller 130 , and the moving impeller 130 follows the rotating shaft 111 .
  • the expressions "top” and “bottom” here are only for the purpose of illustration, and should not be construed as a limitation on the present application.
  • the wind hood 140 is disposed on the side of the main casing 121 away from the rear cover 122 and is covered on the impeller 130 .
  • the inside of the wind hood 140 is hollow to form a second accommodating cavity 141 .
  • the second accommodating cavity 141 is located in the wind hood
  • a first air inlet 142 communicated with the second accommodating cavity 141 is formed on one side of the 140 away from the motor housing 120
  • the second accommodating cavity 141 is formed with a second accommodating cavity 141 on the other side of the hood 140 close to the motor housing 120 .
  • the first air outlet 143 communicated with the second accommodating cavity 141.
  • the second accommodating cavity 141 can be understood as a through hole penetrating the air hood 140 in the axial direction thereof.
  • the impeller 130 is located in the second accommodating cavity. into the cavity 141 .
  • the moving impeller 130 has a moving impeller air inlet 131 and a moving impeller air outlet 132, and the moving impeller air outlet 132 communicates with the outside atmosphere.
  • the rotating shaft 111 drives the moving impeller 130 to rotate, the air enters the second accommodating cavity 141 from the first air inlet 142, and then flows to the plurality of moving impeller air outlets 132 through the plurality of moving impeller air inlets 131, so that the moving impeller 130 can reach the
  • the second accommodating cavity 141 is blown to form a high-speed airflow, so that the second accommodating cavity 141 forms a negative pressure.
  • the stator 113 and the drive plate 114 in the motor housing 120 will generate a large amount of heat, and the air in the motor housing 120 cannot flow effectively, and the stator 113 cannot be effectively moved. 113 and the drive board 114 dissipate heat, which causes the temperature rise of the motor to be too high and the motor cannot be used normally.
  • the motor 100 of the present application is provided with at least one accommodating cavity 1211 communicating with the first accommodating cavity 1211 of the motor housing 120 and the second accommodating cavity 141 of the hood 140 .
  • the bottom of the motor housing 120 is provided with a first air inlet 1221 communicating with the first accommodating cavity 1211.
  • the first air inlet 1221 is formed in the center of the rear cover 122 for air intake.
  • the heat dissipation channel and the first air inlet 1221 are located on opposite sides of the motor housing 120, respectively.
  • the first air inlet 1221 is formed at the bottom of the motor housing 120, and the heat dissipation channel is located at the motor housing. 120 above.
  • An installation gap exists between the motor body 110 and the inner wall of the motor housing 120 for providing a flow space for airflow.
  • installation gaps exist between the stator 113 and the inner wall of the motor housing 120 and between the driving plate 114 and the inner wall of the motor housing 120 to form the above-mentioned flow space.
  • the moving impeller 130 is driven to rotate, and the second accommodating cavity 141 forms a negative pressure.
  • the airflow Q1 outside the motor housing 120 enters the first accommodating cavity 1211 through the first air inlet 1221
  • the airflow Q2 entering the first accommodating cavity 1211 passes through the drive plate 114 and the stator 113 from bottom to top, and then enters the second accommodating cavity 141 through the heat dissipation channel, and the airflow Q5 in the second accommodating cavity 141 is discharged through the moving impeller 130
  • the hood 140, and the airflow Q7 discharged from the wind hood 140 enters the outside atmosphere. Therefore, the negative pressure generated by the moving impeller 130 in the second accommodating cavity 141 can draw the cooler air outside the motor housing 120 into the motor housing 120 , while the warmer air in the motor housing 120 passes through the motor housing 120 .
  • the above-mentioned heat dissipation channel flows to the second accommodating cavity 141 and then is discharged from the air hood 140, which can effectively dissipate heat to the stator 113 and the drive plate 114 in the motor housing 120, avoid the temperature rise of the motor from being too high, and improve the working efficiency of the motor and service life.
  • a cover 150 is covered on the outer peripheral surface of the wind cover 140.
  • the cover 150 is used to isolate vibration and noise, which can effectively improve the performance of the motor and the user experience.
  • the above-mentioned outer casing 150 is a shock-absorbing sleeve, which is made of rubber material.
  • the wind cover 140 is disposed in the outer cover 150 and is detachably connected to the motor housing 120 through the outer cover 150. It can be understood that the wind cover 140 and the outer cover 150 are detachably connected to the motor housing 120 after being assembled. .
  • the interior of the outer cover 150 is hollow to form a third accommodating cavity
  • a second air inlet 152 is formed on the side of the outer cover 150 away from the motor housing 120 in the third accommodating cavity
  • the third accommodating cavity is located in the outer cover 150
  • a second air outlet 153 is formed on the other side close to the motor housing 120
  • the air cover 140 is located in the third accommodating cavity.
  • the wind cover 140 and the outer cover 150 are respectively disposed coaxially with the rotation center axis L of the motor body 110 , and the rotation center axis L is the center axis of the rotating shaft 111 .
  • the extension directions of the second air inlet 152 and the first air inlet 142 are the same, and the extension direction here refers to the axial direction of the wind cover 140 and the outer cover 150 .
  • the extending direction of the first air inlet 1221 and the extending direction of the rotation center axis L are collinear or parallel.
  • an annular support frame 1213 is provided on the top of the main casing 121 .
  • the top of the main casing 121 is further formed with at least an air flow channel 1212 communicating with the first accommodating cavity 1211 .
  • the air flow channel 1212 extends from the first accommodating cavity 1211 to the annular support frame 1213.
  • the air flow channel 1212 and the annular support frame 1213 are integrally formed into an integral structure.
  • the extension direction of the air flow channel 1212 is the same as the extension direction of the rotation center axis L. vertical.
  • the air channel and the air channel 1212 constitute a heat dissipation channel connecting the first accommodating cavity 1211 and the second accommodating cavity 141, and the air channel 1212 and the air channel are arranged in a one-to-one correspondence.
  • At least one air guide groove 151 is formed on the inner wall of the outer cover 150 along its generatrix and communicates with the air flow channel 1212 and the second accommodating cavity 141 .
  • the air guide grooves 151 extend along the direction of the generatrix of the housing 150 , and the generatrix refers to the moving line forming the curved surface of the housing 150 .
  • the outlet of the air duct 1212 is formed on the outer peripheral surface of the annular support frame 1213, the inlet of the air duct is facing the outlet of the air duct 1212, and the outlet of the air duct is formed on the hole wall of the second air inlet 152, so as to be in line with the second air inlet 152.
  • the two accommodating cavities 141 communicate with each other.
  • the outlet part of the air duct is formed on the hole wall of the second air inlet 152 to guide the outlet of the air groove 151 to be formed on the hole wall of the second air inlet 152 .
  • the airflow Q3 entering the air duct 1212 then flows upward through the air duct, and the airflow Q4 in the air duct enters the second accommodating cavity 141 through the second air inlet 152 and the first air inlet 142 in turn, and enters the second accommodating cavity 141.
  • the airflow Q5 in the accommodating cavity 141 passes through the moving impeller 130 and then is discharged out of the housing 150 .
  • the arrangement relationship between the plurality of coils wound on the stator 113 and the air flow channels 1212 is as follows: At least one air flow channel 1212 is provided between the coils, which has the advantage of good heat dissipation effect.
  • the number of coils is i
  • the wind cover 140 and the cover 150 are assembled into a whole and then snap-connected to the annular support frame 1213.
  • the second air outlet 153 of the outer cover 150 is provided with a clamping structure 154 , and the outer cover 150 is clamped to the annular support frame 1213 through the clamping structure 154 , and the air cover 140 is disposed on the motor housing 120 through the outer cover 150 .
  • the clamping structure 154 is a clamping block formed on the inner wall of the second air outlet 153 , and the clamping blocks are distributed at equal intervals along the circumferential direction of the second air outlet 153 .
  • the blocking block and the air guide groove 151 are located on the extension line of the same bus bar, and the inlet of the air guide groove 151 is arranged adjacent to the blocking block. Therefore, in addition to being used for engagement, the blocking block also has the function of guiding the flow direction of the airflow.
  • the negative pressure generated by the impeller 130 makes the air flow in the first accommodating cavity 1211 flow through the air flow channel 1212, the air guide groove 151 of the outer cover 150, the second air inlet 152, the first air inlet 142 and the The second accommodating cavity 141 is finally discharged directly into the atmosphere through the moving impeller 130 .
  • the air flow channel 1212 is not directly communicated with the atmosphere, but is communicated with the inlet of the air guide groove 151, so that the first accommodating The air flow out of the cavity 1211 can follow the air flow channel 1212 , the air guide groove 151 , the second air inlet 152 , the first air inlet 142 , and the second accommodating cavity 141 under the action of the moving impeller 130 , and is finally driven by the moving impeller 130 .
  • the moving impeller air outlet 132 discharges.
  • the clamping block is not arranged adjacent to the inlet of the air guide groove 151, there may be air leakage at the connection between the air flow channel 1212 and the air guide groove 151, which will interfere with the negative pressure generated in the air flow channel 1212, so that the motor housing The airflow in 120 cannot flow out from the air channel 1212 under the action of negative pressure, thereby affecting the heat dissipation effect.
  • the motor further includes a fixed impeller 160, and the fixed impeller 160 has the functions of guiding the airflow direction and reducing noise.
  • the fixed impeller 160 is detachably disposed on the top of the main casing 121 and is clamped with the annular support frame 1213 .
  • the fixed impeller 160 includes a first fixed impeller 161 and a second fixed impeller 162, and the first fixed impeller 161 and the second fixed impeller 162 are fixed on the top of the main casing 121 by screws.
  • the rotating shaft 111 After one end of the rotating shaft 111 extends from the main casing 121 to the outside, it passes through the second fixed impeller 162 , the first fixed impeller 161 and the moving impeller 130 in sequence, that is, in the direction from the first air inlet 142 to the first air outlet 143
  • the movable impeller 130 , the first fixed impeller 161 and the second fixed impeller 162 are arranged in sequence.
  • the wind cover 140 covers the movable impeller 130 and the first stationary impeller 161 and abuts against the side of the second stationary impeller 162 away from the motor housing 120 .
  • the first air outlet 143 of the air hood 140 is in contact with the side of the second fixed impeller 162 away from the motor housing 120, the moving impeller 130 and the first fixed impeller 161 are located in the second accommodating cavity 141, and the second fixed impeller Part 162 is located outside the second accommodating cavity 141 .
  • the moving impeller 130 rotates, the airflow enters from the first air inlet 142 at the top of the moving impeller 130, the airflow Q5 flows from the moving impeller air outlet 132 on the side of the moving impeller 130 to the fixed impeller 160, and the airflow Q6 at the fixed impeller 160 passes through the first air outlet 132 on the side of the moving impeller 130.
  • the air outlet 143 is discharged, and the airflow Q7 discharged from the air hood 140 enters the outside atmosphere.
  • the guiding effect of the airflow direction can be improved, more air volume can be guided per unit time, the power of the air sucked by the moving impeller 130 can be improved, and the heat dissipation effect of the airflow on the motor can be improved.
  • the second stator impeller 162 includes a second stator impeller body 1621 and a connecting portion 1622 surrounding the circumference of the second stator impeller body 1621 and provided on the outer periphery of the second stator impeller body 1621 .
  • the connecting portion 1622 is clamped to the annular support frame 1213 along the axial direction of the motor housing 120 , and the first air outlet 143 of the air cover 140 is abutted against the connecting portion 1622 . Thereby, the stability and reliability of the overall structure of the motor can be enhanced.
  • a limiting convex ring 1623 is arranged on the outer peripheral surface of the connecting portion 1622 for dividing the outer peripheral surface of the connecting portion 1622 into a first connecting end M close to the wind cover 140 and a second connecting end far away from the wind cover 140 N, the first connection end M and the second connection end N are respectively located on opposite sides of the limiting convex ring 1623 .
  • the first air outlet 143 of the air hood 140 is in contact with the first connection end M, the second connection end N is clamped to the annular support frame 1213 along the axial direction of the motor housing 120 , and the second connection end N is also formed
  • There is a card slot 1624 for limiting the installation position of the clip structure 154.
  • the aforementioned card slot 1624 can also be provided on the annular support frame 1213, or the second fixed impeller 162 and the annular support frame 1213 are provided with the aforementioned card slot at the same time.
  • the groove 1624 it can be seen from the above that the second fixed impeller 162 or/and the annular support frame 1213 are provided with a clamping groove 1624 which is matched with the clamping structure 154 .
  • the air entering from the first air inlet 1221 is dry air without water vapor; the air entering the second accommodating cavity 141 through the second air inlet 152 and the first air inlet 142 is Humid air, containing water vapor.
  • the moving impeller air outlet 132 is communicated with the atmosphere.
  • the moving impeller 130 rotates, the air with water vapor entering from the second air inlet 152 and the first air inlet 142 will be directly discharged into the atmosphere from the moving impeller air outlet 132 of the moving impeller 130 in order to achieve waterproofing.
  • the moving impeller 130 will generate heat during the movement. When the moving impeller 130 stops moving, condensed water is likely to be generated.
  • a waterproof sealing structure 170 is provided, and the waterproof sealing structure 170 is located on the side of the rotating shaft 111 extending out of the motor housing 120 .
  • the waterproof sealing structure 170 includes a waterproof gasket 171 and a sealing portion 172 formed on the top end of the motor housing 120 and matched with the waterproof gasket 171 .
  • the first fixed impeller 161 has a central hole 1611 , the sealing portion 172 is located in the central hole 1611 , and the waterproof gasket 171 is located just above the sealing portion 172 .
  • the waterproof gasket 171 is sleeved on the rotating shaft 111 and rotates together with the rotating shaft 111 for waterproof sealing.
  • the waterproof gasket 171 is provided with a plurality of first waterproof portions distributed in the circumferential direction around the rotating shaft 111 and extending toward the sealing portion 172 .
  • a second waterproof portion is provided, and the first waterproof portion is spaced apart from the second waterproof portion to prevent water vapor from entering the motor housing 120 . In this way, the movement path of the water vapor can be effectively extended, the water vapor can be reduced or prevented from entering the interior of the motor housing 120 , and the service life of the motor can be prolonged.
  • the plurality of first waterproof parts are a plurality of concentrically arranged first annular ribs 1711, and the adjacent first annular ribs 1711 are surrounded by concentrically distributed first annular grooves 1712; the plurality of second waterproof parts are a plurality of concentric first annular grooves 1712
  • the second annular ribs 1721 are provided, and the plurality of second annular ribs 1721 divide the sealing portion 172 into a plurality of concentrically distributed second annular grooves 1722 .
  • the first annular groove 1712 accommodates the second annular rib 1721
  • the second annular groove 1722 accommodates the first annular rib 1711
  • the first annular rib 1711 and the second annular rib 1721 are distributed alternately.
  • the number of the second annular grooves 1722 is 2 to 3, which simplifies the structure and reduces the difficulty of production while achieving waterproof sealing.
  • the free end of the first annular rib 1711 is in contact with the groove bottom of the second annular groove 1722 .
  • a gap is provided between the side wall of the first annular rib 1711 and the side wall of the second annular groove 1722 .
  • the waterproof gasket 171 can be used as a gasket of the moving impeller 130 .
  • the thickness of the waterproof gasket 171 in the axial direction is greater than or equal to the depth of the sealing portion 172 to abut against the moving impeller 130 for reducing friction between the moving impeller 130 and the first stationary impeller 161 .
  • a concave groove 1612 is formed on one end surface of the first fixed impeller 161 close to the movable impeller 130 , and the concave groove 1612 extends from the center of the first fixed impeller 161 to the edge direction. The recessed groove 1612 is used to further reduce the friction between the moving impeller 130 and the first stationary impeller 161 .
  • the second embodiment please refer to FIGS. 11 to 15, the difference from the first embodiment is that the outer cover 150 is not provided, and the wind cover 140a directly covers the moving impeller 130a and the fixed impeller 160a, that is, all the impellers are covered by the wind cover 140a, and the wind The cover 140a is directly connected to the motor housing 120a.
  • the arrangement form and position of the heat dissipation channels have changed.
  • the heat dissipation channel is the air channel 1212a.
  • the second accommodating cavity 141a is formed with a first air inlet 142a on the side of the hood 140a away from the motor housing 120a, and the second accommodating cavity 141a is formed on the other side of the hood 140a close to the motor housing 120a
  • a first air outlet 143a is formed on one side, and the first air outlet 143a is used to connect with the annular support frame 1213a of the motor housing 120a.
  • the air cover 140a and the motor housing 120a may be connected detachably or not.
  • the outer surface of the fixed impeller 160a is provided with a plurality of wind guide vanes, and the adjacent wind guide vanes on the fixed impeller 160a are sandwiched to form an air guide channel H for air flow, the first accommodating cavity 1211a and the wind guide channel
  • An air flow channel 1212a is provided between the H to communicate with the first accommodating cavity 1211a and the air guide channel H.
  • the inlet of the air flow channel 1212a is communicated with the first accommodating cavity 1211a, and the outlet of the air flow channel 1212a is connected with the air guide channel H. Connected.
  • the negative pressure generated by the impeller 130a causes the airflow to flow in from the first air inlet 1221a and sequentially flow through the first accommodating cavity 1211a, the air flow channel 1212a and the air guide channel H before being discharged.
  • the movement direction of the air flowing out through the outlet of the air flow channel 1212a is consistent with the movement direction of the air flow in the air guide channel H of the fixed impeller 160a, thus, the air outlet is smooth and the air outlet efficiency is high.
  • the air flow channel 1212a may be a hole connecting the first accommodating cavity 1211a and the air guide channel H; ).
  • the air flow channel 1212a includes the motor housing flow channel formed on the motor housing 120a and the stator impeller flow channel formed on the stator impeller 160a, the motor housing flow channel and the stator The impeller flow channels are connected.
  • the flow channel of the motor housing is communicated with the first accommodating cavity 1211a, and the flow channel of the fixed impeller is communicated with the air guide channel H.
  • the air flow channel 1212a is connected by a hose, one end of the hose extends to the first accommodating cavity 1211a, and the other end extends to the air guide channel H.
  • the fixed impeller 160a also includes a first fixed impeller 161a and a second fixed impeller 162a.
  • a first air guide channel H1 is provided between adjacent air guide blades of the first stationary impeller 161a
  • a second air guide channel H2 is provided between adjacent air guide blades of the second stationary impeller 162a.
  • the outlet of the air flow channel 1212a is communicated with the first air guide channel H1 and/or the second air guide channel H2, which includes three parallel schemes, namely: the first scheme, the outlet of the air flow channel 1212a is connected with the first air guide channel
  • the passage H1 is connected.
  • the moving impeller 130a works, the negative pressure generated by it makes the airflow Qa1 flow in from the first air inlet 1221a, and then the airflow Qa2 in the first accommodating cavity 1211a enters the air flow passage 1212a, and then the air The air flow Qa3 in the flow channel 1212a flows to the first air guide channel H1 of the first fixed impeller 161a, and finally, the air flow Qa4 in the first air guide channel H1 is discharged from the air hood 140a.
  • the inverted “L” shape includes the motor housing flow channel extending axially along the central axis of the rotating shaft 111a and the stator impeller flow channel extending along the radial direction of the rotating shaft 111a; the second solution, the air flow channel 1212a' The outlet is communicated with the second air guide channel H2.
  • the moving impeller 130a works, the negative pressure generated by it makes the airflow Qa1 flow in from the first air inlet 1221a, and then the airflow Qa2 in the first accommodating cavity 1211a enters the air The flow channel 1212a', and then the airflow Qa3 in the air flow channel 1212a' flows to the second air guide channel H2 of the second stator impeller 162a, and finally, the air flow Qa4' in the second air guide channel H2 is discharged from the air hood 140a.
  • the air flow channel 1212a' extends substantially along the radial direction of the rotating shaft 111a; in the third solution, the outlet of the air flow channel is communicated with the first air guide channel H1 and the second air guide channel H2 at the same time.
  • the third embodiment please refer to FIGS. 16 and 17, the difference from the first embodiment is that the outer cover 150 is not provided, and the wind cover 140b directly covers the moving impeller 130b and the fixed impeller 160b, that is, all the impellers are covered by the wind cover 140b, and the wind The cover 140b is directly connected to the motor housing 120b.
  • a first air inlet 142b is formed in the second accommodating cavity 141b on the side of the hood 140b away from the motor housing 120b, and the second accommodating cavity 141b is formed on the other side of the hood 140b close to the motor housing 120b
  • a first air outlet 143b is formed on one side, and the first air outlet 143b is used to connect with the annular support frame 1213b of the motor housing 120b.
  • the first air outlet 143b is clamped or interfered with the motor housing 120b. connect.
  • the cooling air duct in this embodiment is composed of an air flow duct 1212b and an air duct 144b, and the difference lies in that the arrangement form of the air duct 144b has changed.
  • the motor housing 120b has at least one air passage 1212b communicating with the first accommodating cavity 1211b, and the motor is provided with at least one air passage 1212b communicating with the second accommodating cavity 141b Air duct 144b.
  • the air passages 144b and the air passages 1212b are arranged in a one-to-one correspondence, the inlet of the air passage 144b is communicated with the air passage 1212b, and the outlet is communicated with the first air inlet 142b.
  • the moving impeller 130b works, the negative pressure generated by it makes the airflow Qb1 flow into the first accommodating cavity 1211b from the first air inlet 1221b, and then the airflow Qb2 in the first accommodating cavity 1211b flows through the air flow channel 1212b, and then the air
  • the airflow Qb3 in the flow channel 1212b enters the air channel 144b, and then the airflow Qb4 in the air channel flows to the second accommodating cavity 141b, and finally the airflow Qb5 in the second accommodating cavity 141b passes through the moving impeller 130b and is discharged.
  • the air duct 144b can be arranged in various forms.
  • 144b is a through hole formed between the outer wall and the inner wall of the air hood 140b and extending along the direction of its generatrix; or 144b is provided on the inner wall of the air hood 140b on the hose.
  • the fourth embodiment please refer to FIG. 18 and FIG. 19 , the difference from the first embodiment is: different waterproof sealing structures and different arrangement forms and positions of the heat dissipation channels.
  • the waterproof sealing structure is a partition plate 180.
  • the partition plate 180 is located in the wind hood 140c.
  • the partition plate 180 is sleeved on one end of the rotating shaft 111c extending out of the motor housing 120c, and is located between the moving impeller 130c and the motor housing. Between 120c, it is used to isolate water vapor.
  • the partition plate 180 rotates synchronously with the rotating shaft 111c, and a ventilation gap P extending along the radial direction of the rotating shaft 111c is formed between the partition plate 180 and the motor housing 120c.
  • the ventilation gap P is located in the air hood 140c, and the ventilation gap P communicates with the first accommodating cavity 1211c through the air passage 1212c.
  • the heat dissipation channel is formed by the air flow channel 1212c and the ventilation gap P.
  • the moving impeller 130c works, a negative pressure is generated at the ventilation gap P, and the airflow flows into the first accommodating cavity 1211c from the first air inlet 1221c, and flows to the ventilation gap P through the air flow channel 1212c and then is discharged.
  • the flow path is: Qc1-Qc2-Qc3-Qc4-Qc5.
  • the motor further includes a fixed impeller 160c, which is detachably disposed on the top end of the motor housing 120c and is located between the partition plate 180 and the motor housing 120c.
  • the ventilation gap P is located between the partition plate 180 and the fixed impeller 160c.
  • the fixed impeller 160c includes a first fixed impeller 161c and a second fixed impeller 162c, and the moving impeller 130c, the first fixed impeller 161c and the second fixed impeller 162c are sequentially provided from the automatic impeller 130c to the motor housing 120c.
  • the ventilation gap P is located between the partition plate 180 and the first stationary impeller 161c.
  • the projection of the partition plate 180 in the axial direction of the rotating shaft 111c completely covers the impeller 130c, thereby preventing water vapor from entering the motor housing 120c through the partition plate 180, which has the advantage of good waterproof sealing effect.
  • the air flow passage 1212c includes: a first flow passage formed on the motor housing 120c; a second flow passage formed on the first fixed impeller 161c; and a second flow passage formed on the second fixed impeller 162c. Three channels.
  • the motor housing 120c includes a main housing 121c and a rear cover 122c. A first flow channel is formed on the main housing 121c.
  • the first air inlet 1221c and the first flow channel are located on opposite sides of the motor housing 120c, respectively.
  • the interior of the air hood 140c is hollow to form a second accommodating cavity 141c.
  • the second accommodating cavity 141c is provided with a first air inlet 142c on the side of the air hood 140c away from the motor housing 120c.
  • the second accommodating cavity 141c A first air outlet 143c is provided on the other side of the air cover 140c close to the motor housing 120c.
  • the movable impeller 130c, the partition plate 180 and the first stationary impeller 161c are sequentially arranged in the second accommodating cavity 141c, and the first air outlet 143c abuts the side of the second stationary impeller 162c away from the motor housing 120c.
  • the motor of the present application can be applied to a cleaning device for cleaning a surface to be cleaned.
  • the cleaning device includes the motor 100 and a body, and the motor 100 is arranged in the body to provide cleaning power.
  • the first accommodating cavity of the motor casing and the second accommodating cavity of the wind hood are communicated through the heat dissipation channel, and the negative pressure generated by the moving impeller in the second accommodating cavity is used to connect the motor casing.
  • the external cooler air is sucked into the motor housing, and the warmer air in the motor housing flows to the second accommodating cavity through the above-mentioned heat dissipation channel and then is discharged from the air hood, which has the advantage of good heat dissipation effect.
  • the cover can be snap-fitted with the annular support frame on the motor housing through the snap-fit structure, so that the connection between the cover and the motor housing has the advantages of stable and reliable connection.
  • the inlet of the air guide groove is arranged adjacent to the clamping structure, which can effectively avoid air leakage at the connection between the air flow channel and the air guide groove.
  • the guiding effect of the airflow direction can be improved, more air volume can be guided per unit time, the power of the air inhaled by the moving impeller can be improved, and the heat dissipation effect of the airflow on the motor can be improved.
  • a waterproof sealing structure between the rotating shaft and the motor housing water vapor can be prevented from entering the motor housing, which has the advantages of good water room sealing effect and effectively prolongs the service life of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本申请公开了一种电机,包括:电机壳体,内部呈中空设置,以形成第一容置腔,电机壳体设有环形支撑架,环形支撑架围绕电机壳体的周向环设于电机壳体的外侧;定叶轮,可拆卸设于电机壳体靠近环形支撑架的一侧且与环形支撑架卡接;风罩,与定叶轮抵接,风罩内部呈中空设置以形成第二容置腔;动叶轮,设于第二容置腔内;外罩,套设于风罩的外周面上且与环形支撑架卡接;以及电机主体,设于电机壳体且部分延伸出容置腔与动叶轮连接;其中,电机上还设有连通第一容置腔和第二容置腔的散热通道,电机壳体上设有与第一容置腔连通的第一进气口。通过上述方式,本申请具有散热效果好的优点。

Description

一种电机 技术领域
本申请涉及电机技术领域,尤其涉及无刷电机。
背景技术
电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。无刷电机在我国的发展时间虽短,但是随着技术的日益成熟与完善得到了迅猛发展。已在航模、医疗器械、家用电器、电动车等多个领域得到广泛应用,而传统的电机由于散热效果差,导致电机内部温升高,影响了电机的使用性能。
发明内容
针对上述技术中存在的不足之处,本申请提供了一种电机,具有散热效果好的优点。
为解决上述技术问题,本申请采用的技术方案是:
一种电机,包括:电机壳体,内部呈中空设置,以形成第一容置腔,所述电机壳体设有环形支撑架,所述环形支撑架围绕所述电机壳体的周向环设于所述电机壳体的外侧;定叶轮,可拆卸设于所述电机壳体靠近所述环形支撑架的一侧且与所述环形支撑架卡接;风罩,与所述定叶轮抵接,所述风罩内部呈中空设置以形成第二容置腔;动叶轮,设于所述第二容置腔内且位于所述定叶轮远离所述环形支撑架的一侧,用于在所述第二容置腔内鼓风,以形成高速气流;外罩,套设于所述风罩的外周面上且与所述环形支撑架卡接;以及电机主体,设于所述电机壳体且部分延伸出所述容置腔与所述动叶轮连接,以驱使所述动叶轮旋转,从而使得所述第二容置腔形成负压;其中,所述电机上还设有连通所述第一容置腔和所述第二容置腔的散热通道,所述电机壳体上还设有与所述第一容置腔相连通的第一进气口;当所述动叶轮转动时,其产生的负压使得空气从所述第一进气口流入并依次流经所述第一容置腔、所述散热通道和所述第二容置腔后排出。
在本申请的一实施例中,所述电机壳体上形成有与所述第一容置腔连通的空气流道,所述空气流道从所述第一容置腔延伸至所述环形支撑架,所述空气流道的出口形成于所述环形支撑架的外周面上;所述外罩的内壁上至少形成有一连通所述空气流道与所述第二容置腔的导风槽,所述导风槽和所述风罩的外壁围设形成风道;其中,所述空气流道和所述风道构成了所述散热通道,所述风道的进口正对所述空气流道的出口,所述风道的出口与所述第二容置腔连通。
在本申请的一实施例中,所述定叶轮包括第一定叶轮和第二定叶轮,所述第二容置腔在所述风罩远离所述电机壳体的一侧形成有第一进风口,所述第二容置腔在所述风罩靠近所述电机壳体的另一侧形成有第一出风口;其中,自所述第一进风口至所述第一出风口的方向上依次设有所述动叶轮、所述第一定叶轮和所述第二定叶轮。
在本申请的一实施例中,所述第二定叶轮包括第二定叶轮本体和围绕所述第二定叶轮本体的周向环设于所述第二定叶轮本体外周的连接部;其中,所述第一出风口与所述连接部抵接。
在本申请的一实施例中,所述连接部的外周面上环设有限位凸环,用于将所述连接部的外周面分隔为靠近所述风罩的第一连接端和远离所述风罩的第二连接端;其中,所述第一出风口与所述第一连接端抵接,所述第二连接端沿所述电机壳体的轴向卡接于所述环形支撑架。
在本申请的一实施例中,所述外罩内部呈中空设置以形成第三容置腔,所述第三容置腔在所述外罩远离所述电机壳体的一侧形成有第二进风口,所述第三容置腔在所述外罩靠近所述电机壳体的另一侧形成有第二出风口;其中,所述第二出风口处设置有卡接结构,所述外罩通过所述卡接结构与所述环形支撑架连接,所述导风槽与所述卡接结构位于同一母线的延长线上,且所述导风槽的进口与所述卡接结构相邻设置。
在本申请的一实施例中,所述第二定叶轮或/和所述环形支撑架上设有与所述卡接结构相配合的卡槽。
在本申请的一实施例中,所述电机壳体包括主壳体和后盖,所述主壳体内部中空且一端部设有开口,所述后盖可拆卸盖在所述主壳体的开口处,以形成所述第一容置腔;其中,所述主壳体上形成有所述环形支撑架,所述后盖上形 成有所述第一进气口,所述电机主体与所述电机壳体的内壁之间存在安装间隙,以在所述电机壳体内形成空气流通的空间。
在本申请的一实施例中,所述电机主体包括设于所述电机壳体的转轴、位于所述第一容置腔内且固设于所述转轴上的转子以及设于所述第一容置腔内且围设于所述转子外周的定子,所述转轴延伸至所述主壳体外的部分与所述动叶轮连接;其中,所述定子上绕设有多个线圈,每相邻两个所述线圈之间设有至少一个所述空气流道。
在本申请的一实施例中,所述电机还设有防水密封结构;所述防水密封结构包括设于所述转轴上且随所述转轴旋转的防水垫圈和形成于所述电机壳体上且与所述防水垫圈配合的密封部;其中,所述防水垫圈设有围绕所述转轴的周向分布的第一环形筋,所述密封部设有围绕所述转轴的周向分布的第二环形筋,所述第一环形筋和所述第二环形筋相间分布。
本发明还提供一种电机,包括:电机壳体,内部呈中空设置,以形成第一容置腔,所述电机壳体上设有与所述第一容置腔相连通的第一进气口;风罩,设于所述电机壳体,所述风罩内部呈中空设置以形成第二容置腔,所述第二容置腔在所述风罩远离所述电机壳体的一侧形成有第一进风口;动叶轮,设于所述第二容置腔内,用于在所述第二容置腔内鼓风,以形成高速气流;外罩,设于所述电机壳体且套设于所述风罩的外周面上,所述外罩上设有与所述第一进风口的延伸方向一致的第二进风口;以及电机主体,设于所述电机壳体且部分延伸出所述第一容置腔与所述动叶轮连接,以驱使所述动叶轮旋转,从而使得所述第二容置腔形成负压;其中,所述电机壳体上形成有一与所述第一容置腔连通的空气流道,所述外罩的内壁与所述风罩的外壁之间形成有连通所述空气流道与所述第二容置腔的风道,当所述动叶轮工作时,其产生的负压使得空气从第一进气口流入并依次流经所述第一容置腔、所述空气流道、所述风道和所述第二容置腔后排出。
在本申请的一实施例中,所述外罩的内壁上形成有导风槽,所述导风槽和所述风罩的外壁围设形成所述风道。
在本申请的一实施例中,所述风道的出口部分形成于所述第二进风口的孔壁上。
在本申请的一实施例中,所述风罩设于所述外罩内。
在本申请的一实施例中,所述外罩为减震套,采用橡胶材料制成。
在本申请的一实施例中,所述外罩上还形成有与所述第二进风口相对的第二出风口,所述第二出风口处设有卡接结构,所述外罩通过所述卡接结构与所述电机壳体可拆卸连接。
在本申请的一实施例中,所述电机主体具有一旋转中心轴线,所述第一进气口的延伸方向与所述旋转中心轴线的延伸方向共线或是平行,所述空气流道的延伸方向与所述旋转中心轴线的延伸方向相垂直。
在本申请的一实施例中,所述电机壳体包括主壳体和后盖,所述主壳体内部中空且一端部开口设置,所述后盖可拆卸盖在所述主壳体的开口处,以形成所述第一容置腔。
在本申请的一实施例中,所述风罩设于所述主壳体远离所述后盖的一侧,所述后盖上形成有所述第一进气口,所述空气流道设于所述主壳体靠近所述风罩的一侧。
在本申请的一实施例中,所述电机主体包括设于所述电机壳体的转轴、位于所述第一容置腔内且固定于所述转轴上的转子以及设于所述第一容置腔内且围设于所述转子外周的定子,所述转轴延伸至所述主壳体外的部分与所述动叶轮连接;其中,所述电机主体与所述电机壳体的内壁之间存在安装间隙,用于提供气流的流动空间。
本发明还提供一种电机,包括:电机壳体,设有环形支撑架,所述环形支撑架沿所述电机壳体的周向环设于所述电机壳体的外侧;风罩,设于所述电机壳体的一侧,所述风罩内部呈中空设置,以形成第二容置腔;动叶轮,设于所述第二容置腔内,用于在所述第二容置腔内鼓风,以形成高速气流;以及外罩,套设于所述风罩的外周面上且与所述环形支撑架卡接;其中,所述外罩靠近所述环形支撑架的一侧设有卡接结构,所述外罩通过所述卡接结构与所述环形支撑架卡接。
在本申请的一实施例中,所述外罩内部呈中空设置,以形成第三容置腔,所述第三容置腔在所述外罩靠近所述环形支撑架的一侧形成有第二出风口,所 述第三容置腔在所述外罩远离所述环形支撑架的另一侧形成有第二进风口;其中,所述卡接结构设于所述第二出风口处。
在本申请的一实施例中,所述卡接结构为形成于所述第二出风口内壁上的卡块。
在本申请的一实施例中,所述电机还包括:定叶轮,部分位于所述第二容置腔内,用于引导经由所述动叶轮排出的气流的流向;其中,在沿所述外罩的第二进风口至第二出风口的方向上依次设有所述动叶轮和所述定叶轮。
在本申请的一实施例中,所述电机壳体内部呈中空设置,以形成第一容置腔,所述电机壳体上设有与所述第一容置腔相连通的第一进气口;其中,所述第一容置腔和所述第二容置腔之间通过散热通道连通,用于所述电机壳体内部散热。
在本申请的一实施例中,所述电机壳体上还形成有一与所述第一容置腔连通的空气流道,所述空气流道的出口形成于所述环形支撑架的外周面上。
在本申请的一实施例中,所述外罩上形成有一导风槽,所述导风槽和所述风罩的外壁围设形成能够连通所述空气流道与所述第二容置腔的风道;当所述动叶轮转动时,其产生的负压能够使得空气从第一进气口流入并依次流经所述第一容置腔、所述空气流道、所述风道和所述第二容置腔后排出;其中,所述空气流道和所述风道构成了用于连通所述第一容置腔和所述第二容置腔的所述散热通道。
在本申请的一实施例中,所述导风槽的进口与所述卡接结构相邻设置。
在本申请的一实施例中,所述电机壳体包括主壳体和后盖,所述主壳体内部中空且一端部设有开口,所述后盖可拆卸盖在所述主壳体的开口处,以形成所述第一容置腔。
在本申请的一实施例中,所述主壳体上形成有所述环形支撑架,所述后盖上形成有所述第一进气口。
本发明还提供一种电机,包括:电机壳体;电机主体,包括设于所述电机壳体上的转轴,所述转轴的一端部延伸出所述电机壳体;以及防水垫圈,套设 于所述转轴上,用于防水密封;其中,所述电机壳体的一端设有与所述防水垫圈配合的密封部,所述防水垫圈设有围绕所述转轴的周向分布且朝向所述密封部延伸的多个第一防水部,所述密封部内设有围绕所述转轴的周向分布且朝向所述防水垫圈延伸的多个第二防水部,所述第一防水部与所述第二防水部间隔设置,以防止水汽进入所述电机壳体。
在本申请的一实施例中,所述多个第一防水部为多个同心设置的第一环形筋,相邻的所述第一环形筋围设形成同心分布的第一环形槽;所述多个第二防水部为多个同心设置的第二环形筋,所述多个第二环形筋将所述密封部分隔为多个同心分布的第二环形槽;其中,所述第一环形槽容置有第二环形筋,所述第二环形槽容置有第一环形筋,以延长水汽的流动路径。
在本申请的一实施例中,所述第一环形筋的自由端与所述第二环形槽的槽底相抵接。
在本申请的一实施例中,所述第二环形槽的数量为2~3个。
在本申请的一实施例中,所述防水垫圈随所述转轴同步转动,所述第一环形筋的侧壁与所述第二环形槽的侧壁之间间隙设置,以减小摩擦。
在本申请的一实施例中,所述电机还包括动叶轮和定叶轮;所述动叶轮设于所述转轴延伸出所述电机壳体的一端部上,用于鼓风;所述定叶轮设于所述电机壳体的一端;其中,所述防水垫圈在轴向方向上的厚度大于或等于所述密封部的深度,以与所述动叶轮抵接用于减小所述动叶轮与所述定叶轮之间的摩擦。
在本申请的一实施例中,所述定叶轮包括与所述动叶轮相邻设置的第一定叶轮;其中,所述第一定叶轮靠近所述动叶轮的一侧端面上成型有凹陷槽,用于减小所述动叶轮与所述第一定叶轮之间的摩擦。
在本申请的一实施例中,所述凹陷槽自所述第一定叶轮的中心往边沿方向延伸。
在本申请的一实施例中,所述电机还包括风罩,所述风罩覆盖所述动叶轮和所述第一定叶轮。
本申请与现有技术相比,其有益效果是:
本申请提供的电机,其通过散热通道将电机壳体的第一容置腔和风罩的第二容置腔连通,利用动叶轮在第二容置腔内产生的负压将电机壳体外部较冷的空气吸入电机壳体,电机壳体内较热的空气则通过上述散热通道流至第二容置腔后排出风罩,具有散热效果好的优点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提出的电机在实施例一中的结构示意图;
图2是图1的分解结构示意图;
图3是图1的半剖结构示意图;
图4是图1的部分剖结构示意图;
图5是图1中防水垫圈的结构示意图;
图6是图1中风罩的结构示意图;
图7是图1中外罩的结构示意图;
图8是图1中第一定叶轮的结构示意图;
图9是图1中第二定叶轮的结构示意图;
图10是图1中空气流道和定子之间位置关系示意图;
图11是本申请提出的电机在实施例二中的半剖结构示意图;
图12是图11中A区域的放大结构示意图;
图13是图11中B区域的放大结构示意图;
图14是图11中第一定叶轮的结构示意图;
图15是图11中第二定叶轮的结构示意图;
图16是本申请提出的电机在实施例三中的分解结构示意图;
图17是图16的剖面结构示意图;
图18是本申请提出的电机在实施例四中的分解结构示意图;
图19是图18的剖面结构示意图。
100-电机;110-电机主体;111-转轴;112-转子;113-定子;114-驱动板; 120-电机壳体;121-主壳体;1211-第一容置腔;1212-空气流道;1213-环形支撑架;122-后盖;1221-第一进气口;130-动叶轮;131-动叶轮入风口;132-动叶轮出风口;140-风罩;141-第二容置腔;142-第一进风口;143-第一出风口;150-外罩;151-导风槽;152-第二进风口;153-第二出风口;154-卡接结构;160-定叶轮;161-第一定叶轮;1611-中心孔;1612-凹陷槽;162-第二定叶轮;1621-第二定叶轮本体;1622-连接部;1623-限位凸环;1624-卡槽;170-防水密封结构;171-防水垫圈;1711-第一环形筋;172-密封部;1712-第一环形槽;
111a-转轴;120a-电机壳体;1211a-第一容置腔;1212a-空气流道;1212a’-空气流道;1213a-环形支撑架;1221a-第一进气口;130a-动叶轮;140a-风罩;141a-第二容置腔;142a-第一进风口;143a-第一出风口;160a-定叶轮;161a-第一定叶轮;162a-第二定叶轮;
1211b-第一容置腔;120b-电机壳体;1212b-空气流道;1221b-第一进气口;130b-动叶轮;140b-风罩;141b-第二容置腔;142b-第一进风口;143b-第一出风口;144b-风道;160b-定叶轮;
180-隔板;111c-转轴;120c-电机壳体;121c-主壳体;1211c-第一容置腔;1212c-空气流道;122c-后盖;1221c-第一进气口;130c-动叶轮;140c-风罩;141c-第二容置腔;142c-第一进风口;143c-第一出风口;160c-定叶轮;161c-第一定叶轮;162c-第二定叶轮。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图,对本申请的具体实施方式做详细的说明。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选 地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
实施例一
请参阅图1至图10所示,本申请提出了一种电机100,包括:电机壳体120、安装于电机壳体120上的电机主体110、动叶轮130和风罩140。电机壳体120内部呈中空设置,以形成第一容置腔1211。为了便于将电机主体110安装至电机壳体120,电机壳体120包括主壳体121和后盖122,主壳体121内部中空且底端部开口设置,后盖122可拆卸盖在主壳体121的底部开口处,以形成第一容置腔1211。由此,在安装电机主体110时,将后盖122从主壳体121上拆下后,能够方便的将电机主体110安装于主壳体121。电机主体110包括转动设于电机壳体120的转轴111、位于第一容置腔1211内且固定于转轴111上的转子112、设于第一容置腔1211内且围设于转子112外周的定子113以及位于第一容置腔1211内且与定子113电连接的驱动板114。转轴111延伸至主壳体121外的部分与动叶轮130连接,在本申请中,转轴111的顶部延伸至主壳体121外,转轴111的顶部与动叶轮130连接,动叶轮130随转轴111的转动而转动,这里“顶部”、“底部”表述仅仅是为了说明目的,不宜理解为对本申请的限制。风罩140设于主壳体121远离后盖122的一侧且罩设于动叶轮130,风罩140内部呈中空设置,以形成第二容置腔141,第二容置腔141在风罩140远离电机壳体120的一侧形成有与第二容置腔141相连通的第一进风口142,第二容置腔141在风罩140靠近电机壳体120的另一侧形成有与第二容置腔141相连通的第一出风口143,在本申请中,第二容置腔141可以理解为沿风罩140的轴向贯穿其的贯穿孔,动叶轮130位于第二容置腔141内。动叶轮130具有动叶轮入风口131和动叶轮出风口132,动叶轮出风口132与外部大气连通。当转轴111驱使动叶轮130转动时,空气从第一进风口142进入第二容置腔141后,再通过多个动叶轮入风口131流向多个动叶轮出风口132,从而实现动叶轮130在第二容 置腔141内鼓风,形成高速气流,从而使得第二容置腔141形成负压。
现有的干湿两用电机在运行过程中,电机壳体120内的定子113和驱动板114会产生大量的热量,而电机壳体120内的空气不能进行有效的流动,无法对定子113和驱动板114进行散热,导致电机的温升过高,电机无法正常使用。为了能够对电机壳体120内的定子113和驱动板114散热,本申请的电机100上至少设有一连通电机壳体120的第一容置腔1211和风罩140的第二容置腔141的散热通道,电机壳体120的底部设有与第一容置腔1211相连通的第一进气口1221,第一进气口1221形成于后盖122的中央,用于进气。散热通道和第一进气口1221分别位于电机壳体120的相对两侧,在本实施例中,第一进气口1221形成于电机壳体120的底部,散热通道位于电机壳体120的上方。电机主体110与电机壳体120的内壁之间存在安装间隙,用于提供气流的流动空间。具体地,定子113与电机壳体120的内壁之间、驱动板114与电机壳体120的内壁之间均存在安装间隙,以形成上述流动空间。本申请的电机工作时,驱使动叶轮130转动,第二容置腔141形成负压,此时,电机壳体120外部的气流Q1通过第一进气口1221进入第一容置腔1211,进入第一容置腔1211内的气流Q2由下至上途经驱动板114和定子113后通过散热通道进入第二容置腔141内,第二容置腔141内的气流Q5通过动叶轮130排出风罩140,从风罩140排出的气流Q7进入外部大气。由此,动叶轮130在第二容置腔141内产生的负压能够将电机壳体120外部较冷的空气吸入电机壳体120,而电机壳体120内较热的空气则通过上述散热通道流至第二容置腔141后排出风罩140,能够对电机壳体120内的定子113和驱动板114进行有效散热,避免电机的温升过高,提高了电机的工作效率和使用寿命。
考虑到电机在使用时会因振动产生噪音,噪音大大影响了电机的使用性能和用户体验感。为了降低电机的噪音,在风罩140的外周面上套设有外罩150,外套150用于隔绝振动和噪音,能够有效地提高电机的使用性能和用户体验感,在一具体的应用场景中,上述外套150为减震套,采用橡胶材料制成。在本实施例中,风罩140设于外罩150内,且通过外罩150与电机壳体120可拆卸连接,可以理解为,风罩140和外罩150组装后与电机壳体120可拆卸连接。具体地,外罩150内部呈中空设置以形成第三容置腔,第三容置腔在外罩150远 离电机壳体120的一侧形成有第二进风口152,第三容置腔在外罩150靠近电机壳体120的另一侧形成有第二出风口153,风罩140位于第三容置腔内。风罩140和外罩150分别与电机主体110的旋转中心轴线L同轴设置,上述旋转中心轴线L为转轴111的中心轴线。第二进风口152和第一进风口142的延伸方向一致,这里的延伸方向是指风罩140和外罩150的轴向方向。第一进气口1221的延伸方向与旋转中心轴线L的延伸方向共线或是平行。
在本实施例中,主壳体121的顶部设有环形支撑架1213,环形支撑架1213围绕主壳体121的周向环设于主壳体121的外周,环形支撑架1213靠近风罩140设置。主壳体121的顶部还至少形成有一与第一容置腔1211连通的空气流道1212,空气流道1212设于主壳体121靠近风罩140的一侧。空气流道1212从第一容置腔1211延伸至环形支撑架1213,空气流道1212与环形支撑架1213为一体成型的整体结构,空气流道1212的延伸方向与旋转中心轴线L的延伸方向相垂直。外罩150和风罩140之间至少有一连通空气流道1212与第二容置腔141的风道。在本实施例中,风道和空气流道1212构成了连通第一容置腔1211和第二容置腔141的散热通道,空气流道1212和风道一一对应设置。
具体地,外罩150的内壁上至少形成有一沿其母线分布且连通空气流道1212与第二容置腔141的导风槽151,导风槽151和风罩140的外壁围设形成上述风道。导风槽151沿外罩150的母线方向延伸,母线指形成外罩150曲面的动线。空气流道1212的出口形成于环形支撑架1213的外周面上,风道的进口正对空气流道1212的出口,风道的出口部分形成于第二进风口152的孔壁上,以与第二容置腔141连通。风道出口部分成型于第二进风口152的孔壁上是指导风槽151出口成型于第二进风口152的孔壁上。当动叶轮130工作时,其产生的负压使得气流Q1从第一进气口1221流入第一容置腔1211,进入第一容置腔1211的气流Q2经过驱动板114和定子113后向上流动进入空气流道1212,进入空气流道1212的气流Q3再向上流经风道,风道内的气流Q4依次通过第二进风口152和第一进风口142进入第二容置腔141,进入第二容置腔141内的气流Q5通过动叶轮130后排出外罩150。
请参阅图10,为了能够最大程度的带走定子113上的热量,达到较为理想的散热效果,定子113上绕设的多个线圈和空气流道1212之间的设置关系为: 每相邻两个线圈之间设有至少一个空气流道1212,于此,具有散热效果好的优点。在一具体的应用场景中,线圈的数量为i,空气流道1212的数量为j,i=j;即每相邻两个线圈之间设有一个空气流道1212,由此,在保证定子113充分散热的情况下,尽量简化电机100结构。
考虑到外罩150安装的方便性,风罩140和外罩150组装成一整体后与环形支撑架1213卡接。具体地,外罩150的第二出风口153处设有卡接结构154,外罩150通过卡接结构154与环形支撑架1213卡接,风罩140通过外罩150设于电机壳体120上。卡接结构154为形成于第二出风口153内壁上的卡块,卡块沿第二出风口153的周向等间隔分布。
为了避免空气流道1212与导风槽151的连接处发生漏气现象,进而干扰空气流道1212内产生负压。优选的,卡块和导风槽151位于同一母线的延长线上,且导风槽151的进口与卡块相邻设置。由此,卡块除了用于卡合外,还具有引导气流的流动方向的作用。当动叶轮130工作时,其产生的负压使得第一容置腔1211内的气流依次流经空气流道1212、外罩150的导风槽151、第二进风口152、第一进风口142和第二容置腔141,最后经过动叶轮130直接排入大气中。在上述过程中,气流从空气流道1212流出后,由于卡块的阻挡作用,使得空气流道1212不会直接与大气连通,而是与导风槽151的进口连通,从而使得第一容置腔1211流出的气流能够在动叶轮130的作用下沿着空气流道1212、导风槽151、第二进风口152、第一进风口142和第二容置腔141,最后由动叶轮130的动叶轮出风口132排出。若卡块不与导风槽151的进口相邻设置,空气流道1212与导风槽151的连接处可能会有漏气现象,会干扰空气流道1212内产生负压,这样电机壳体120内的气流就不能在负压的作用下从空气流道1212流出,从而影响散热效果。
所述的电机还包括定叶轮160,定叶轮160具有引导气流流向和降噪的功能。定叶轮160可拆卸设于主壳体121的顶部,且与环形支撑架1213卡接。为了提高对气流流向的引导效果,定叶轮160包括第一定叶轮161和第二定叶轮162,第一定叶轮161和第二定叶轮162通过螺钉固定设于主壳体121的顶部。转轴111的一端部从主壳体121延伸至外侧后,依次穿过第二定叶轮162、第一定叶轮161和动叶轮130,即自第一进风口142至第一出风口143的方向上依次设有 动叶轮130、第一定叶轮161和第二定叶轮162。其中,风罩140覆盖动叶轮130和第一定叶轮161且与第二定叶轮162远离电机壳体120的一侧抵接,由此可知,在外罩150卡接至环形支撑架1213上后,风罩140的第一出风口143与第二定叶轮162远离电机壳体120的一侧抵接,动叶轮130和第一定叶轮161位于第二容置腔141内,第二定叶轮162部分位于第二容置腔141的外侧。当动叶轮130转动时,气流从动叶轮130顶部的第一进风口142进入,气流Q5从动叶轮130侧面的动叶轮出风口132流至定叶轮160,定叶轮160处的气流Q6通过第一出风口143排出,从风罩140排出的气流Q7进入外部大气。通过设置第一定叶轮161和第二定叶轮162能够提高对气流流向的引导效果,单位时间内能够引导更多的风量,提高动叶轮130吸入空气的功率,进而提高气流对电机的散热效果。
具体地,第二定叶轮162包括第二定叶轮本体1621和围绕第二定叶轮本体1621的周向环设于第二定叶轮本体1621外周的连接部1622。其中,连接部1622沿电机壳体120的轴向方向卡接于环形支撑架1213,风罩140的第一出风口143与连接部1622抵接。由此,能够增强电机整体结构的稳定性和可靠性。
进一步,连接部1622的外周面上环设有限位凸环1623,用于将连接部1622的外周面分隔为靠近风罩140的第一连接端M和远离所述风罩140的第二连接端N,第一连接端M和第二连接端N分别位于限位凸环1623的相对两侧。其中,风罩140的第一出风口143与第一连接端M抵接,第二连接端N沿电机壳体120的轴向卡接于环形支撑架1213,第二连接端N上还形成有用于限定卡接结构154安装位置的卡槽1624,可以理解地,上述卡槽1624还可以设于环形支撑架1213上,或是第二定叶轮162和环形支撑架1213上同时设有上述卡槽1624,综上可知,第二定叶轮162或/和环形支撑架1213上设有与卡接结构154相配合的卡槽1624。当卡槽1624设于连接部1622的第二连接端N上时,卡槽1624内容置有空气流道1212,卡槽1624呈倒置的“U”字型,卡接结构154卡设于“U”字型的开口处。当卡槽1624设于环形支撑架1213上时,卡槽1624设于环形支撑架1213的底部,这一情况未在附图中示出。
所述的电机100在实际使用时,从第一进气口1221进入的空气是干燥空气,不含水汽;经由第二进风口152和第一进风口142进入第二容置腔141的空气 是湿空气,含有水汽。动叶轮出风口132与大气连通,当动叶轮130旋转时,从第二进风口152和第一进风口142进入的带有水汽的空气会从动叶轮130的动叶轮出风口132直接排入大气中,从而实现防水。
动叶轮130在运动的过程中会产生热,当动叶轮130停止运动后,容易产生冷凝水,为了防止水汽通过转轴111与电机壳体120连接处的缝隙进入电机壳体120内部,需要设置防水密封结构170,防水密封结构170位于转轴111延伸出电机壳体120的一侧。防水密封结构170包括防水垫圈171和成型于电机壳体120的顶端与防水垫圈171配合的密封部172。第一定叶轮161具有中心孔1611,密封部172位于中心孔1611内,防水垫圈171位于密封部172正上方。防水垫圈171套设于转轴111上且随转轴111一起转动,用于防水密封。具体地,防水垫圈171设有围绕转轴111的周向分布且朝向密封部172延伸的多个第一防水部,密封部172内设有围绕转轴111的周向分布且朝向防水垫圈171延伸的多个第二防水部,第一防水部与第二防水部间隔设置,以防止水汽进入电机壳体120。由此,能够有效延长水汽的运动路径,能够减少或避免水汽进入电机壳体120内部,延长了电机的使用寿命。
进一步,多个第一防水部为多个同心设置的第一环形筋1711,相邻的第一环形筋1711围设形成同心分布的第一环形槽1712;多个第二防水部为多个同心设置的第二环形筋1721,多个第二环形筋1721将密封部172分隔为多个同心分布的第二环形槽1722。其中,第一环形槽1712容置有第二环形筋1721,第二环形槽1722容置有第一环形筋1711,第一环形筋1711和第二环形筋1721相间分布。优选的,第二环形槽1722的数量为2~3个,在能够达到防水密封的同时,简化了结构,降低了生产制造的难度。为了较好的隔绝水汽,第一环形筋1711的自由端与第二环形槽1722的槽底相抵接。为了减少防水垫圈与密封部转动时的摩擦,第一环形筋1711的侧壁与第二环形槽1722的侧壁之间间隙设置。
动叶轮130安装于转轴111上时,防水垫圈171可作为动叶轮130的垫圈。具体地,防水垫圈171在轴向方向上的厚度大于或等于密封部172的深度,以与动叶轮130抵接用于减小动叶轮130与第一定叶轮161之间的摩擦。第一定叶轮161靠近所述动叶轮130的一侧端面上成型有凹陷槽1612,凹陷槽1612自第一定叶轮161的中心往边沿方向延伸。凹陷槽1612用于进一步减小动叶轮130 与第一定叶轮161之间的摩擦。
实施例二,请参阅图11至图15,其与实施例一的区别在于:不设有外罩150,风罩140a直接覆盖动叶轮130a和定叶轮160a,即所有叶轮被风罩140a覆盖,风罩140a直接与电机壳体120a连接。相对应地,散热通道的设置形式和位置发生了变化。在本实施例中,散热通道即为空气流道1212a。
具体地,第二容置腔141a在风罩140a远离所述电机壳体120a的一侧形成有第一进风口142a,第二容置腔141a在风罩140a靠近电机壳体120a的另一侧形成有第一出风口143a,第一出风口143a用于与电机壳体120a的环形支撑架1213a连接。在本实施例中,风罩140a与电机壳体120a之间可以是可拆卸连接,也可以为不可拆卸连接。
定叶轮160a的外轮面上环设有多个导风叶片,定叶轮160a上相邻的导风叶片夹设形成有用于供空气流动的导风通道H,第一容置腔1211a和导风通道H之间设有空气流道1212a,以连通第一容置腔1211a和导风通道H,空气流道1212a的进口与第一容置腔1211a连通,空气流道1212a的出口与导风通道H连通。当动叶轮130a工作时,其产生的负压使得气流从第一进气口1221a流入并依次流经第一容置腔1211a、空气流道1212a和导风通道H后排出。为了提高定叶轮160a的出风效率,经由空气流道1212a出口流出的气流的运动方向与定叶轮160a的导风通道H内气流的运动方向一致,由此,具有出风顺畅、出风效率高的优点。
进一步,空气流道1212a可以为连通第一容置腔1211a和导风通道H的孔道;或是空气流道1212a可以为通第一容置腔1211a和导风通道H的软管(图未示)。当空气流道1212a为孔道时,空气流道1212a包括形成于电机壳体120a上的电机壳体流道和形成于定叶轮160a上的定叶轮流道,电机壳体流道和定叶轮流道相连通。其中,上述电机壳体流道与第一容置腔1211a连通,上述定叶轮流道与导风通道H连通。当空气流道1212a采用软管的连接方式时,软管的一端部延伸至第一容置腔1211a、另一端部延伸至导风通道H。
在本实施例中,定叶轮160a还是包括第一定叶轮161a和第二定叶轮162a。第一定叶轮161a的相邻导风叶片之间具有第一导风通道H1,第二定叶轮162a的相邻导风叶片之间具有第二导风通道H2。空气流道1212a的出口与第一导风 通道H1和/或第二导风通道H2连通,其包括三个并列的方案,分别为:第一方案,空气流道1212a的出口与第一导风通道H1连通,此时,当动叶轮130a工作时,其产生的负压使得气流Qa1从第一进气口1221a流入,接着第一容置腔1211a内的气流Qa2进入空气流道1212a,然后空气流道1212a内的气流Qa3流至第一定叶轮161a的第一导风通道H1,最终,第一导风通道H1内的气流Qa4排出风罩140a,在上述方案中,空气流道1212a大致呈倒置的“L”型,包括沿转轴111a的中心轴线的轴向延伸的电机壳体流道和沿转轴111a的径向方向延伸的定叶轮流道;第二方案,空气流道1212a’的出口与第二导风通道H2连通,此时,当动叶轮130a工作时,其产生的负压使得气流Qa1从第一进气口1221a流入,接着第一容置腔1211a内的气流Qa2进入空气流道1212a’,然后空气流道1212a’内的气流Qa3流至第二定叶轮162a的第二导风通道H2,最终,第二导风通道H2内的气流Qa4’排出风罩140a,在上述方案中,空气流道1212a’大致沿转轴111a的径向方向延伸;第三方案,空气流道的出口同时与第一导风通道H1和第二导风通道H2连通。
实施例三,请参阅图16和图17,其与实施例一的区别在于:不设有外罩150,风罩140b直接覆盖动叶轮130b和定叶轮160b,即所有叶轮被风罩140b覆盖,风罩140b直接与电机壳体120b连接。具体地,第二容置腔141b在风罩140b远离所述电机壳体120b的一侧形成有第一进风口142b,第二容置腔141b在风罩140b靠近电机壳体120b的另一侧形成有第一出风口143b,第一出风口143b用于与电机壳体120b的环形支撑架1213b连接,具体地,第一出风口143b与电机壳体120b卡接或是过盈连接。
本实施例中的散热风道由空气流道1212b和风道144b构成,不同点在于:风道144b的设置形式发生了变化。具体地,电机壳体120b上至少具有一与所述第一容置腔1211b连通的空气流道1212b,所述电机上至少设有一连通所述空气流道1212b与第二容置腔141b的风道144b。风道144b与空气流道1212b一一对应设置,风道144b的进口与空气流道1212b连通、出口与第一进风口142b连通。当动叶轮130b工作时,其产生的负压使得气流Qb1从第一进气口1221b流入第一容置腔1211b,接着第一容置腔1211b内的气流Qb2流经空气流道1212b,然后空气流道1212b内的气流Qb3进入风道144b,再接着风道内的气流Qb4流 向第二容置腔141b,最后第二容置腔141b内的气流Qb5通过动叶轮130b后排出。风道144b的设置形式有多种,考虑到安装的便捷性,144b为形成于风罩140b的外壁与内壁之间且沿其母线方向延伸的通孔;或是144b为设于风罩140b内壁上的软管。
实施例四,请参阅图18和图19,其与实施例一的区别在于:不同的防水密封结构以及散热通道设置形式和位置的不同。
具体地,防水密封结构为隔板180,隔板180位于风罩140c内,隔板180套设于转轴111c延伸出电机壳体120c的一端部上,且位于动叶轮130c与电机壳体120c之间,用于隔绝水汽。隔板180随转轴111c同步转动,隔板180与电机壳体120c之间形成有沿转轴111c的径向方向延伸的通风间隙P。通风间隙P位于风罩140c内,通风间隙P与第一容置腔1211c之间通过空气流道1212c连通。本实施例中散热通道由空气流道1212c和通风间隙P构成。当动叶轮130c工作时,使得通风间隙P处产生负压,气流从第一进气口1221c流入所述第一容置腔1211c内,并通过空气流道1212c流至通风间隙P后排出,气流的流动路径为:Qc1-Qc2-Qc3-Qc4-Qc5。
进一步,所述电机还包括定叶轮160c,可拆卸设于电机壳体120c的顶端部且位于隔板180和电机壳体120c之间。其中,通风间隙P位于隔板180和定叶轮160c之间,当动叶轮130c工作时,空气从动叶轮130c流向定叶轮160c,使得通风间隙P处产生负压。具体地,定叶轮160c包括第一定叶轮161c和第二定叶轮162c,自动叶轮130c至电机壳体120c的方向上依次设有动叶轮130c、第一定叶轮161c和第二定叶轮162c。其中,通风间隙P位于隔板180和第一定叶轮161c之间。隔板180在转轴111c轴向方向上的投影完全覆盖住动叶轮130c,由此,避免水汽通过上述隔板180进入电机壳体120c内部,具有防水密封效果好的优点。
空气流道1212c包括:形成在所述电机壳体120c上的第一流道;形成在所述第一定叶轮161c上的第二流道;以及形成在所述第二定叶轮162c上的第三流道。电机壳体120c包括主壳体121c和后盖122c,第一流道形成于主壳体121c上,第一进气口1221c和第一流道分别位于电机壳体120c的相对两侧。
风罩140c内部呈中空设置,以形成第二容置腔141c,第二容置腔141c在 风罩140c远离电机壳体120c的一侧设有第一进风口142c,第二容置腔141c在风罩140c靠近电机壳体120c的另一侧设有第一出风口143c。其中,动叶轮130c、隔板180和第一定叶轮161c依次设于第二容置腔141c内,第一出风口143c与第二定叶轮162c远离电机壳体120c的一侧抵接。
可以理解地,本申请中的电机可以应用到不同的使用场景,下面举例进行说明。
本申请中的电机可以应用于清洁设备,该清洁设备用于对待清洁表面进行清洁。其中,该清洁设备包括所述的电机100和机身,所述的电机100设于机身内,用于提供清洁动力。
综上所述,本申请通过散热通道将电机壳体的第一容置腔和风罩的第二容置腔连通,利用动叶轮在第二容置腔内产生的负压将电机壳体外部较冷的空气吸入电机壳体,电机壳体内较热的空气则通过上述散热通道流至第二容置腔后排出风罩,具有散热效果好的优点。进一步地,通过在外罩上设置卡接结构,外罩通过卡接结构与电机壳体上的环形支撑架卡接,由此,外罩和电机壳体之间具有连接稳性、可靠的优点。进一步地,导风槽的进口与卡接结构相邻设置,能够有效避免空气流道与导风槽的连接处发生漏气现象。进一步地,通过设置第一定叶轮和第二定叶轮,能够提高对气流流向的引导效果,单位时间内能够引导更多的风量,提高动叶轮吸入空气的功率,进而提高气流对电机的散热效果。进一步地,通过在转轴和电机壳体之间设置防水密封结构,能够防止水汽进入电机壳体内,具有水房密封效果好的优点,有效地延长了电机的使用寿命。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (39)

  1. 一种电机,其特征在于,包括:
    电机壳体,内部呈中空设置,以形成第一容置腔,所述电机壳体设有环形支撑架,所述环形支撑架围绕所述电机壳体的周向环设于所述电机壳体的外侧;
    定叶轮,可拆卸设于所述电机壳体靠近所述环形支撑架的一侧且与所述环形支撑架卡接;
    风罩,与所述定叶轮抵接,所述风罩内部呈中空设置以形成第二容置腔;
    动叶轮,设于所述第二容置腔内且位于所述定叶轮远离所述环形支撑架的一侧,用于在所述第二容置腔内鼓风,以形成高速气流;
    外罩,套设于所述风罩的外周面上且与所述环形支撑架卡接;以及
    电机主体,设于所述电机壳体且部分延伸出所述容置腔与所述动叶轮连接,以驱使所述动叶轮旋转,从而使得所述第二容置腔形成负压;
    其中,所述电机上还设有连通所述第一容置腔和所述第二容置腔的散热通道,所述电机壳体上还设有与所述第一容置腔相连通的第一进气口;当所述动叶轮转动时,其产生的负压使得空气从所述第一进气口流入并依次流经所述第一容置腔、所述散热通道和所述第二容置腔后排出。
  2. 根据权利要求1所述的电机,其特征在于,
    所述电机壳体上形成有与所述第一容置腔连通的空气流道,所述空气流道从所述第一容置腔延伸至所述环形支撑架,所述空气流道的出口形成于所述环形支撑架的外周面上;所述外罩的内壁上至少形成有一连通所述空气流道与所述第二容置腔的导风槽,所述导风槽和所述风罩的外壁围设形成风道;
    其中,所述空气流道和所述风道构成了所述散热通道,所述风道的进口正对所述空气流道的出口,所述风道的出口与所述第二容置腔连通。
  3. 根据权利要求2所述的电机,其特征在于,
    所述定叶轮包括第一定叶轮和第二定叶轮,所述第二容置腔在所述风罩远离所述电机壳体的一侧形成有第一进风口,所述第二容置腔在所述风罩靠近所述电机壳体的另一侧形成有第一出风口;
    其中,自所述第一进风口至所述第一出风口的方向上依次设有所述动叶轮、所述第一定叶轮和所述第二定叶轮。
  4. 根据权利要求3所述的电机,其特征在于,
    所述第二定叶轮包括第二定叶轮本体和围绕所述第二定叶轮本体的周向环设于所述第二定叶轮本体外周的连接部;
    其中,所述第一出风口与所述连接部抵接。
  5. 根据权利要求4所述的电机,其特征在于,
    所述连接部的外周面上环设有限位凸环,用于将所述连接部的外周面分隔为靠近所述风罩的第一连接端和远离所述风罩的第二连接端;
    其中,所述第一出风口与所述第一连接端抵接,所述第二连接端沿所述电机壳体的轴向卡接于所述环形支撑架。
  6. 根据权利要求5所述的电机,其特征在于,
    所述外罩内部呈中空设置以形成第三容置腔,所述第三容置腔在所述外罩远离所述电机壳体的一侧形成有第二进风口,所述第三容置腔在所述外罩靠近所述电机壳体的另一侧形成有第二出风口;
    其中,所述第二出风口处设置有卡接结构,所述外罩通过所述卡接结构与所述环形支撑架连接,所述导风槽与所述卡接结构位于同一母线的延长线上,且所述导风槽的进口与所述卡接结构相邻设置。
  7. 根据权利要求6所述的电机,其特征在于,
    所述第二定叶轮或/和所述环形支撑架上设有与所述卡接结构相配合的卡槽。
  8. 根据权利要求1所述的电机,其特征在于,
    所述电机壳体包括主壳体和后盖,所述主壳体内部中空且一端部设有开口,所述后盖可拆卸盖在所述主壳体的开口处,以形成所述第一容置腔;
    其中,所述主壳体上形成有所述环形支撑架,所述后盖上形成有所述第一进气口,所述电机主体与所述电机壳体的内壁之间存在安装间隙,以在所述电机壳体内形成空气流通的空间。
  9. 根据权利要求2所述的电机,其特征在于,
    所述电机主体包括设于所述电机壳体的转轴、位于所述第一容置腔内且固设于所述转轴上的转子以及设于所述第一容置腔内且围设于所述转子外周的定子,所述转轴延伸至所述主壳体外的部分与所述动叶轮连接;
    其中,所述定子上绕设有多个线圈,每相邻两个所述线圈之间设有至少一 个所述空气流道。
  10. 根据权利要求9所述的电机,其特征在于,
    所述干湿两用电机还设有防水密封结构;
    所述防水密封结构包括设于所述转轴上且随所述转轴旋转的防水垫圈和形成于所述电机壳体上且与所述防水垫圈配合的密封部;
    其中,所述防水垫圈设有围绕所述转轴的周向分布的第一环形筋,所述密封部内设有围绕所述转轴的周向分布的第二环形筋,所述第一环形筋和所述第二环形筋相间分布。
  11. 一种电机,其特征在于,包括:
    电机壳体,内部呈中空设置,以形成第一容置腔,所述电机壳体上设有与所述第一容置腔相连通的第一进气口;
    风罩,设于所述电机壳体,所述风罩内部呈中空设置以形成第二容置腔,所述第二容置腔在所述风罩远离所述电机壳体的一侧形成有第一进风口;
    动叶轮,设于所述第二容置腔内,用于在所述第二容置腔内鼓风,以形成高速气流;
    外罩,设于所述电机壳体且套设于所述风罩的外周面上,所述外罩上设有与所述第一进风口的延伸方向一致的第二进风口;以及
    电机主体,设于所述电机壳体且部分延伸出所述第一容置腔与所述动叶轮连接,以驱使所述动叶轮旋转,从而使得所述第二容置腔形成负压;
    其中,所述电机壳体上形成有一与所述第一容置腔连通的空气流道,所述外罩的内壁与所述风罩的外壁之间形成有连通所述空气流道与所述第二容置腔的风道,当所述动叶轮工作时,其产生的负压使得空气从第一进气口流入并依次流经所述第一容置腔、所述空气流道、所述风道和所述第二容置腔后排出。
  12. 根据权利要求11所述的电机,其特征在于,
    所述外罩的内壁上形成有导风槽,所述导风槽和所述风罩的外壁围设形成所述风道。
  13. 根据权利要求11所述的电机,其特征在于,
    所述风道的出口部分形成于所述第二进风口的孔壁上。
  14. 根据权利要求11所述的电机,其特征在于,
    所述风罩设于所述外罩内。
  15. 根据权利要求11所述的电机,其特征在于,
    所述外罩为减震套,采用橡胶材料制成。
  16. 根据权利要求11所述的电机,其特征在于,
    所述外罩上还形成有与所述第二进风口相对的第二出风口,所述第二出风口处设有卡接结构,所述外罩通过所述卡接结构与所述电机壳体可拆卸连接。
  17. 根据权利要求11所述的电机,其特征在于,
    所述电机主体具有一旋转中心轴线,所述第一进气口的延伸方向与所述旋转中心轴线的延伸方向共线或是平行,所述空气流道的延伸方向与所述旋转中心轴线的延伸方向相垂直。
  18. 根据权利要求11所述的电机,其特征在于,
    所述电机壳体包括主壳体和后盖,所述主壳体内部中空且一端部开口设置,所述后盖可拆卸盖在所述主壳体的开口处,以形成所述第一容置腔。
  19. 根据权利要求18所述的电机,其特征在于,
    所述风罩设于所述主壳体远离所述后盖的一侧,所述后盖上形成有所述第一进气口,所述空气流道设于所述主壳体靠近所述风罩的一侧。
  20. 根据权利要求19所述的电机,其特征在于,
    所述电机主体包括设于所述电机壳体的转轴、位于所述第一容置腔内且固定于所述转轴上的转子以及设于所述第一容置腔内且围设于所述转子外周的定子,所述转轴延伸至所述主壳体外的部分与所述动叶轮连接;
    其中,所述电机主体与所述电机壳体的内壁之间存在安装间隙,用于提供气流的流动空间。
  21. 一种电机,其特征在于,包括:
    电机壳体,设有环形支撑架,所述环形支撑架沿所述电机壳体的周向环设于所述电机壳体的外侧;
    风罩,设于所述电机壳体的一侧,所述风罩内部呈中空设置,以形成第二容置腔;
    动叶轮,设于所述第二容置腔内,用于在所述第二容置腔内鼓风,以形成高速气流;以及
    外罩,套设于所述风罩的外周面上且与所述环形支撑架卡接;
    其中,所述外罩靠近所述环形支撑架的一侧设有卡接结构,所述外罩通过所述卡接结构与所述环形支撑架卡接。
  22. 根据权利要求21所述的电机,其特征在于,
    所述外罩内部呈中空设置,以形成第三容置腔,所述第三容置腔在所述外罩靠近所述环形支撑架的一侧形成有第二出风口,所述第三容置腔在所述外罩远离所述环形支撑架的另一侧形成有第二进风口;
    其中,所述卡接结构设于所述第二出风口处。
  23. 根据权利要求22所述的电机,其特征在于,
    所述卡接结构为形成于所述第二出风口内壁上的卡块。
  24. 根据权利要求22所述的电机,其特征在于,所述电机还包括:
    定叶轮,部分位于所述第二容置腔内,用于引导经由所述动叶轮排出的气流的流向;
    其中,在沿所述外罩的第二进风口至第二出风口的方向上依次设有所述动叶轮和所述定叶轮。
  25. 根据权利要求21所述的电机,其特征在于,
    所述电机壳体内部呈中空设置,以形成第一容置腔,所述电机壳体上设有与所述第一容置腔相连通的第一进气口;
    其中,所述第一容置腔和所述第二容置腔之间通过散热通道连通,用于所述电机壳体内部散热。
  26. 根据权利要求25所述的电机,其特征在于,
    所述电机壳体上还形成有一与所述第一容置腔连通的空气流道,所述空气流道的出口形成于所述环形支撑架的外周面上。
  27. 根据权利要求26所述的电机,其特征在于,
    所述外罩上形成有一导风槽,所述导风槽和所述风罩的外壁围设形成能够连通所述空气流道与所述第二容置腔的风道;当所述动叶轮转动时,其产生的负压能够使得空气从第一进气口流入并依次流经所述第一容置腔、所述空气流道、所述风道和所述第二容置腔后排出;
    其中,所述空气流道和所述风道构成了用于连通所述第一容置腔和所述第二容置腔的所述散热通道。
  28. 根据权利要求27所述的电机,其特征在于,
    所述导风槽的进口与所述卡接结构相邻设置。
  29. 根据权利要求25所述的电机,其特征在于,
    所述电机壳体包括主壳体和后盖,所述主壳体内部中空且一端部设有开口,所述后盖可拆卸盖在所述主壳体的开口处,以形成所述第一容置腔。
  30. 根据权利要求29所述的电机,其特征在于,所述主壳体上形成有所述环形支撑架,所述后盖上形成有所述第一进气口。
  31. 一种电机,其特征在于,包括:
    电机壳体;
    电机主体,包括设于所述电机壳体上的转轴,所述转轴的一端部延伸出所述电机壳体;以及
    防水垫圈,套设于所述转轴上,用于防水密封;
    其中,所述电机壳体的一端设有与所述防水垫圈配合的密封部,所述防水垫圈设有围绕所述转轴的周向分布且朝向所述密封部延伸的多个第一防水部,所述密封部内设有围绕所述转轴的周向分布且朝向所述防水垫圈延伸的多个第二防水部,所述第一防水部与所述第二防水部间隔设置,以防止水汽进入所述电机壳体。
  32. 根据权利要求31所述的电机,其特征在于,
    所述多个第一防水部为多个同心设置的第一环形筋,相邻的所述第一环形筋围设形成同心分布的第一环形槽;
    所述多个第二防水部为多个同心设置的第二环形筋,所述多个第二环形筋将所述密封部分隔为多个同心分布的第二环形槽;
    其中,所述第一环形槽容置有第二环形筋,所述第二环形槽容置有第一环形筋,以延长水汽的流动路径。
  33. 根据权利要求32所述的电机,其特征在于,
    所述第一环形筋的自由端与所述第二环形槽的槽底相抵接。
  34. 根据权利要求32所述的电机,其特征在于,
    所述第二环形槽的数量为2~3个。
  35. 根据权利要求32所述的电机,其特征在于,
    所述防水垫圈随所述转轴同步转动,所述第一环形筋的侧壁与所述第二环形槽的侧壁之间间隙设置,以减小摩擦。
  36. 根据权利要求31所述的电机,其特征在于,
    所述电机还包括动叶轮和定叶轮;
    所述动叶轮设于所述转轴延伸出所述电机壳体的一端部上,用于鼓风;
    所述定叶轮设于所述电机壳体的一端;
    其中,所述防水垫圈在轴向方向上的厚度大于或等于所述密封部的深度,以与所述动叶轮抵接用于减小所述动叶轮与所述定叶轮之间的摩擦。
  37. 根据权利要求36所述的电机,其特征在于,
    所述定叶轮包括与所述动叶轮相邻设置的第一定叶轮;
    其中,所述第一定叶轮靠近所述动叶轮的一侧端面上成型有凹陷槽,用于减小所述动叶轮与所述第一定叶轮之间的摩擦。
  38. 根据权利要求37所述的电机,其特征在于,
    所述凹陷槽自所述第一定叶轮的中心往边沿方向延伸。
  39. 根据权利要求38所述的电机,其特征在于,
    所述电机还包括风罩,所述风罩覆盖所述动叶轮和所述第一定叶轮。
PCT/CN2021/093413 2020-09-24 2021-05-12 一种电机 WO2022062423A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023514498A JP2023540102A (ja) 2020-09-24 2021-05-12 モータ
EP21870810.5A EP4167443A4 (en) 2020-09-24 2021-05-12 ENGINE
US18/027,119 US20230336056A1 (en) 2020-09-24 2021-05-12 Motor with improved heat dissipation effect
KR1020237008977A KR20230059171A (ko) 2020-09-24 2021-05-12 모터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011012097.XA CN111934474B (zh) 2020-09-24 2020-09-24 一种电机
CN202011012097.X 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022062423A1 true WO2022062423A1 (zh) 2022-03-31

Family

ID=73334083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093413 WO2022062423A1 (zh) 2020-09-24 2021-05-12 一种电机

Country Status (6)

Country Link
US (1) US20230336056A1 (zh)
EP (1) EP4167443A4 (zh)
JP (1) JP2023540102A (zh)
KR (1) KR20230059171A (zh)
CN (4) CN112838706B (zh)
WO (1) WO2022062423A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133714A (zh) * 2022-08-30 2022-09-30 苏州可昱机械设备有限公司 一种防过热型高温炉高温尾气排风装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838706B (zh) * 2020-09-24 2022-08-16 追觅创新科技(苏州)有限公司 一种电机
CN112928849B (zh) * 2021-01-22 2022-02-15 珠海格力电器股份有限公司 电机风罩、电机
CN114221472B (zh) * 2021-10-30 2023-02-28 星德胜科技(苏州)股份有限公司 防水电机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309311A (ja) * 2006-04-19 2007-11-29 Masaaki Kimura 異なる二つの真空圧の発生機能を持たせた羽根車を備えた、真空掃除機の吸引ファン。
CN103580360A (zh) * 2012-08-03 2014-02-12 日本电产伺服有限公司 旋转电机
CN106160319A (zh) * 2015-04-22 2016-11-23 莱克电气股份有限公司 悬浮式电机罩组件结构
CN211093779U (zh) * 2019-10-28 2020-07-28 稻津电机(珠海)有限公司 一种高速吸尘器马达
CN111934474A (zh) * 2020-09-24 2020-11-13 追创科技(苏州)有限公司 一种电机
CN213185739U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185708U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185729U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185787U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185786U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185788U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1308475B1 (it) * 1999-05-07 2001-12-17 Gate Spa Motoventilatore, particolarmente per uno scambiatore di calore di unautoveicolo
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
JP5110809B2 (ja) * 2006-06-23 2012-12-26 セイコーインスツル株式会社 電動モータ及び電子機器
CN201044385Y (zh) * 2007-05-01 2008-04-02 无锡华达电机有限公司 电机轴的密封结构
CN201750290U (zh) * 2010-08-26 2011-02-16 莱克电气股份有限公司 新型冷却方式的直流吸尘器电机
CN202127318U (zh) * 2011-07-19 2012-01-25 北京三一电机系统有限责任公司 电机及其密封装置
CN102606496B (zh) * 2012-03-06 2013-12-18 东莞市鹏科电子科技有限公司 一种气泵及其气阀的开闭结构
EP2961038B1 (en) * 2014-06-05 2019-12-11 Samsung Electronics Co., Ltd. Vacuum cleaner with motor assembly
CN204271828U (zh) * 2014-12-30 2015-04-15 重庆和亚科技有限公司 一种数码发电机
CN106468286A (zh) * 2015-08-19 2017-03-01 德昌电机(深圳)有限公司 风机及其扩散器
CN105485032B (zh) * 2015-12-01 2017-11-24 宁波德昌电机制造有限公司 一种具备稳定导风能力的电机
US10804764B2 (en) * 2015-12-23 2020-10-13 Wolong Electric America Llc Systems and methods for air-cooling motor components
DE102016204007A1 (de) * 2016-01-26 2017-07-27 Siemens Aktiengesellschaft Dichtung
CN205568869U (zh) * 2016-03-24 2016-09-14 苏州市润豪电机有限公司 一种无刷吸尘器电机
CN206513589U (zh) * 2016-11-23 2017-09-22 广东威灵电机制造有限公司 风机和具有其的吸尘器
CN206364655U (zh) * 2016-11-30 2017-07-28 苏州永捷电机有限公司 高效反转干湿两用吸尘器电机
KR101881247B1 (ko) * 2017-01-16 2018-08-17 엘지전자 주식회사 팬 모터
JP2018123738A (ja) * 2017-01-31 2018-08-09 日本電産株式会社 送風装置、および掃除機
FR3062757B1 (fr) * 2017-02-03 2019-04-05 Alstom Transport Technologies Moteur auto-ventile silencieux, notamment pour un vehicule ferroviaire
CN109687624A (zh) * 2018-09-28 2019-04-26 苏州工业园区星德胜电机有限公司 一种高速马达非接触架空式防水结构
KR102078716B1 (ko) * 2018-10-19 2020-02-18 엘지전자 주식회사 팬 모터
CN109441878A (zh) * 2018-12-30 2019-03-08 南京航空航天大学 一种吸尘器用离心风机的气动性能的优化方法
JP2020114065A (ja) * 2019-01-09 2020-07-27 日本電産株式会社 モータ、送風装置、および、掃除機
CN209593204U (zh) * 2019-05-09 2019-11-05 宁波大华电器有限公司 一种吸尘器用无刷电机的导流结构
CN210446894U (zh) * 2019-05-21 2020-05-05 苏州市春菊电器有限公司 一种吸水吸尘器的吸力装置及吸水吸尘器

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309311A (ja) * 2006-04-19 2007-11-29 Masaaki Kimura 異なる二つの真空圧の発生機能を持たせた羽根車を備えた、真空掃除機の吸引ファン。
CN103580360A (zh) * 2012-08-03 2014-02-12 日本电产伺服有限公司 旋转电机
CN106160319A (zh) * 2015-04-22 2016-11-23 莱克电气股份有限公司 悬浮式电机罩组件结构
CN211093779U (zh) * 2019-10-28 2020-07-28 稻津电机(珠海)有限公司 一种高速吸尘器马达
CN111934474A (zh) * 2020-09-24 2020-11-13 追创科技(苏州)有限公司 一种电机
CN112769280A (zh) * 2020-09-24 2021-05-07 追创科技(苏州)有限公司 一种电机
CN213185739U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185708U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185729U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185787U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185786U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN213185788U (zh) * 2020-09-24 2021-05-11 追创科技(苏州)有限公司 一种电机及具有其的清洁设备
CN112838706A (zh) * 2020-09-24 2021-05-25 追创科技(苏州)有限公司 一种电机
CN112865393A (zh) * 2020-09-24 2021-05-28 追创科技(苏州)有限公司 一种电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167443A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133714A (zh) * 2022-08-30 2022-09-30 苏州可昱机械设备有限公司 一种防过热型高温炉高温尾气排风装置
CN115133714B (zh) * 2022-08-30 2022-11-11 苏州可昱机械设备有限公司 一种防过热型高温炉高温尾气排风装置

Also Published As

Publication number Publication date
CN112769280B (zh) 2022-05-24
JP2023540102A (ja) 2023-09-21
KR20230059171A (ko) 2023-05-03
CN111934474B (zh) 2021-02-02
CN112838706B (zh) 2022-08-16
EP4167443A4 (en) 2023-11-22
EP4167443A1 (en) 2023-04-19
CN112769280A (zh) 2021-05-07
CN111934474A (zh) 2020-11-13
CN112865393A (zh) 2021-05-28
US20230336056A1 (en) 2023-10-19
CN112865393B (zh) 2023-03-14
CN112838706A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022062423A1 (zh) 一种电机
CN213185787U (zh) 一种电机及具有其的清洁设备
CN213185708U (zh) 一种电机及具有其的清洁设备
JP4951588B2 (ja) 電動送風機及びこれを備えた電気掃除機
CN213185729U (zh) 一种电机及具有其的清洁设备
CN213185786U (zh) 一种电机及具有其的清洁设备
CN213185788U (zh) 一种电机及具有其的清洁设备
CN213185739U (zh) 一种电机及具有其的清洁设备
CN113494465A (zh) 一种干湿两用的吸尘器电机以及吸尘器
CN213879547U (zh) 一种电机及具有其的清洁设备
WO2023124038A1 (zh) 电机保护结构和出风装置
CN216714757U (zh) 一种干湿两用风机及其应用的清洁设备
WO2022194228A1 (zh) 一种双进双出吸力马达系统和洗地机
CN105406634B (zh) 一种微型数码吸风电机
CN113489218A (zh) 一种可吸水式干湿两用无刷直流电机
CN216216374U (zh) 电机及电器
CN216794759U (zh) 一种散热结构
CN215409276U (zh) 一种干湿两用的吸尘器电机以及吸尘器
CN220024974U (zh) 一种洗碗机的送风装置及洗碗机
CN219888308U (zh) 干湿两用真空电风机
CN220024973U (zh) 一种风机保护罩及洗碗机的送风装置
CN218920130U (zh) 一种吸尘器电机
CN220024975U (zh) 一种洗碗机的干燥装置及洗碗机
CN211670726U (zh) 无刷电机
CN220929773U (zh) 风扇导流结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021870810

Country of ref document: EP

Effective date: 20230112

ENP Entry into the national phase

Ref document number: 2023514498

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008977

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE