WO2022062037A1 - 一种聚酰亚胺前体树脂及其制备方法和应用 - Google Patents

一种聚酰亚胺前体树脂及其制备方法和应用 Download PDF

Info

Publication number
WO2022062037A1
WO2022062037A1 PCT/CN2020/123877 CN2020123877W WO2022062037A1 WO 2022062037 A1 WO2022062037 A1 WO 2022062037A1 CN 2020123877 W CN2020123877 W CN 2020123877W WO 2022062037 A1 WO2022062037 A1 WO 2022062037A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide precursor
precursor resin
independently selected
optionally
polyimide
Prior art date
Application number
PCT/CN2020/123877
Other languages
English (en)
French (fr)
Inventor
李长青
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022062037A1 publication Critical patent/WO2022062037A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present application belongs to the technical field of polymer materials, and relates to a polyimide precursor resin and a preparation method and application thereof.
  • Polyimide has excellent mechanical properties, good heat resistance, chemical resistance, radiation resistance and good film-forming properties, and is widely used in various fields.
  • polyimide can be used in ⁇ particle shielding layers, stress buffer layers, interlayer dielectric materials or photosensitive rewiring materials, etc. These materials play an important role that is difficult to replace in the modern microelectronics semiconductor industry.
  • the traditional polyimide precursor resin must be heated and cured at at least 300-400 °C to make it exert the ideal properties of polyimide.
  • Such high temperature processing conditions greatly limit its application in the field of microelectronics. For example, some electronic devices lose their performance at high operating ambient temperatures.
  • the high-temperature process often causes cracking, falling off, and recrystallization of the low-melting solder of the plastic-encapsulated circuit, which damages the performance of the plastic-encapsulated device.
  • the residual stress generated in ultra-thin wafer devices processed at high temperature leads to serious problems such as warpage and peeling, which affects the reliability of their use; at the same time, reducing the curing temperature can also greatly improve the Residual stress problem due to thermal expansion coefficient mismatch problem due to linear thermal expansion coefficient CTE. Therefore, it is particularly important to develop polyimide precursors whose curing temperature is lower than 250°C, even lower than 200°C.
  • the so-called “low temperature curing” refers to increasing the degree of imidization of the polyimide precursor at 200-250 ° C, or even lower than this temperature range, so that the polyimide obtained by heating and curing at a lower temperature is more
  • the polyimide obtained by heating and curing at 300°C has comparable mechanical and thermal properties.
  • the imidization process of polyimide involves complex processes such as solvation effect, solvent volatilization, dehydration condensation of imine ring, movement and arrangement of chain segments.
  • a common dehydrating agent is acetic anhydride
  • the catalyst is an organic amine, including pyridine, Quinoline, ⁇ -picoline, etc. Due to the extremely poor solubility in organic solutions (such as N-methylpyrrolidone or N,N-dimethylacetamide) of the currently widely used homophenyl and biphenyl type polyimides, it is difficult to process. The method is only applicable to soluble polyimide systems. Second, the low temperature curing accelerator method. There are many kinds of low-temperature curing accelerators reported at present.
  • Masayuki Oba studied the catalytic effect of 26 kinds of additives on the imidization reaction of polyamic acid solution at 100 °C, and found that 9 kinds of accelerators including p-hydroxybenzoic acid and p-hydroxyphenylacetic acid were found. The reaction works best ("Effect of curing accelerators on thermal imidization of polyamic acids at low temperature", Masayuki Oba, Journal of Polymer Science Part a-Polymer Chemistry, 1996, 34, 651-658). Mitsuru Ueda et al.
  • the disadvantage of the one-step method is that the types of polyimides that are applicable are very limited, and it is only suitable for soluble polyimides. Not applicable.
  • the curing accelerator method has two major disadvantages. First, the addition of low-temperature curing accelerators will lead to the problem of residues in the film. Due to the residues of these accelerators, the mechanical properties of polyimide will be negatively affected to varying degrees. Even compared with the film without adding curing agent, the mechanical properties will decrease by more than 50-70%; secondly, the amount of low-temperature curing accelerator is usually relatively large. According to the reports in the literature, it is usually necessary to add polyamic acid/polyamic acid.
  • Esters are about two molar equivalents, and for industrial production, the negative factors brought about by them are immeasurable.
  • the polyimide film prepared by the terminal cross-linking group method is brittle and thin, and the excessively high degree of cross-linking greatly destroys the toughness of the film.
  • the mechanical properties of the polyimide films obtained by the microwave method will be greatly affected, and the application of this method is still in the exploratory stage.
  • the purpose of the present application is to provide a polyimide precursor resin and its preparation method and application.
  • a diamine monomer with a specific structure it has an autocatalytic function in the curing of the polyimide precursor resin, so that the The imidization rate of the polyimide precursor resin at low temperature is significantly improved, and low-temperature curing is realized, thereby fully satisfying the application of polyimide precursor resin in microelectronic chip materials, packaging materials and interlayer dielectric layers, etc. Application requirements in cryogenic processing environments.
  • the present application provides a polyimide precursor resin obtained by polycondensation of a diamine monomer and an aromatic tetracarboxylic dianhydride.
  • the diamine monomer includes at least one compound having the structure shown in formula I:
  • X 1 , X 2 , X 3 and X 4 are each independently selected from C or N, and at least one of them is N.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , and Z 10 are each independently selected from C or N.
  • C1-C12 such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11, etc
  • R 1 and R 2 are each independently selected from deuterium, halogen, substituted or unsubstituted C1-C10 (such as C2, C3, C4, C5, C6, C7, C8 or C9, etc.) linear or branched chain Alkyl, substituted or unsubstituted C6-C30 (such as C6, C8, C10, C12, C13, C14, C15, C16, C18, C20, C22, C24, C26 or C28, etc.) aryl, C1-C10 (such as C2, C3, C4, C5, C6, C7, C8 or C9, etc.) alkoxy, substituted or unsubstituted C1-C10 (such as C2, C3, C4, C5, C6, C7, C8 or C9, etc.) alkyl Silicon, C1-C10 (such as C2, C3, C4, C5, C6, C7, C8 or C9, etc.) alkylamino, C1-C10 (
  • halogen can be fluorine, chlorine, bromine or iodine; the same descriptions are referred to below, and all have the same meaning.
  • n 1 and n 2 are each independently selected from integers from 1 to 3, for example, 1, 2 or 3; and the sum of n 1 and n 2 is less than or equal to 4.
  • n 1 and m 2 are each independently selected from an integer from 0 to 4, such as 0, 1, 2, 3 or 4.
  • the polyimide precursor resin provided in the present application is obtained by polycondensation of a diamine monomer and an aromatic tetracarboxylic dianhydride, and the diamine monomer includes a compound having the structure shown in formula I.
  • the compound having the structure shown in formula I at least one of X 1 , X 2 , X 3 and X 4 is N, which is a diamine monomer containing an aza aromatic ring, an aza aromatic ring. It contains sp 2 -hybridized nitrogen atoms, which itself has basicity, and can undergo autocatalytic reaction in the polyimide precursor resin cured by heating, and accelerate the reaction process of imidization.
  • the structural unit plays an autocatalytic function in the curing process of the polyimide precursor resin, thereby improving the imidization rate of the polyimide precursor resin at a low temperature below 250°C or even lower than 200°C, achieving Low temperature curing of polyimide precursor resins.
  • the number of N atoms in the X 1 , X 2 , X 3 , and X 4 is 1 to 3, and may further be 2.
  • the aza aromatic ring where X 1 is located can be any one of a pyridine ring, a pyrazine ring, a pyrimidine ring or a pyridazine ring , which can be further optionally a pyrazine ring or a pyrimidine ring.
  • the pyrazine ring or the pyrimidine ring contains 2 sp 2 hybridized nitrogen atoms, which have strong basicity and can accelerate the imidization reaction process through autocatalytic reaction during the curing process.
  • the basic functional group containing nitrogen atoms is embedded in the polymer chain to avoid the problem of mechanical properties decline caused by the residual curing accelerator in the polyimide film.
  • each of the Z 1 , Z 2 , Z 3 , Z 4 , and Z 5 is independently selected from C or N, and at least four of them are C.
  • each of the Z 6 , Z 7 , Z 8 , Z 9 , and Z 10 is independently selected from C or N, and at least four of them are C.
  • the Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , and Z 10 are all C.
  • L 1 and L 2 are each independently selected from a single bond, -O-, -S- or -NH-.
  • the R 1 and R 2 are each independently selected from deuterium, halogen (such as fluorine, chlorine, bromine or iodine), substituted or unsubstituted C1-C5 (such as C1, C2, C3, C4 or C5) Linear or branched alkyl, substituted or unsubstituted C6-C12 (eg C6, C9, C10 or C12) aryl, C1-C5 (eg C1, C2, C3, C4 or C5) alkoxy, substituted or Unsubstituted C1-C5 (eg C1, C2, C3, C4 or C5) alkylsilyl, C1-C5 (eg C1, C2, C3, C4 or C5) alkylamino, C1-C3 acyl, aldehyde or Any of the carboxyl groups; the substituted substituents are each independently selected from deuterium or sulfhydryl.
  • halogen such as fluorine, chlorine, bromine or io
  • the R 1 and R 2 are each independently selected from deuterium, halogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, aldehyde group, carboxyl group, methoxy group, ethoxy group group, propoxy, mercaptomethyl, mercaptoethyl, acetyl, methylamino, dimethylamino, ethylamino, propylamino, trimethylsilyl, deuterated methyl or deuterated trimethylsilyl.
  • n 1 and n 2 are each independently selected from 1 or 2.
  • both n 1 and n 2 are 1.
  • the m 1 and m 2 are each independently selected from an integer from 0 to 2, for example, 0, 1 or 2.
  • the diamine monomer includes any one or a combination of at least two of the following compounds:
  • the aromatic tetracarboxylic dianhydride has a structure as shown in formula II:
  • Ar 3 is selected from C6-C60 (such as C6, C9, C10, C12, C14, C16, C18, C20, C24, C26, C28, C30, C32, C36, C40, C42, C48, C54 or C60 etc.) tetravalent aromatic groups.
  • the Ar is selected from any one of the following groups:
  • the present application provides a preparation method of the above-mentioned polyimide precursor resin, the preparation method comprises: performing a polycondensation reaction of a diamine monomer and an aromatic tetracarboxylic dianhydride to obtain the polyimide Imide precursor resin.
  • the temperature of the polycondensation reaction is 0 to 30°C, such as 2°C, 5°C, 8°C, 10°C, 12°C, 15°C, 18°C, 20°C, 22°C, 25°C or 28°C,
  • the specific point values between the above point values due to space limitations and for the sake of brevity, the present application will not exhaustively list the specific point values included in the range.
  • the time of the polycondensation reaction is 1 to 16h, such as 1.5h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 11h, 12h, 13h, 14h or 15h, and the above points
  • the specific point values between the values are limited by space and for the sake of brevity, and the present application will not exhaustively list the specific point values included in the range.
  • the polycondensation reaction is carried out in a protective atmosphere; the protective atmosphere can be optionally nitrogen.
  • the polycondensation reaction is carried out in the presence of a solvent.
  • the solvent includes N,N-dimethylacetamide.
  • the present application provides a photosensitive resin comprising the above-mentioned combination of the polyimide precursor resin and a photosensitive monomer.
  • the photosensitive monomer includes tetraethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol Alcohol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane diacrylate methacrylate, trimethylolpropane trimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate , 1,6-hexanediol dimethacrylate, pentaerythritol trienoate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetrame
  • the present application provides a polyimide material obtained by curing the above-mentioned polyimide precursor resin.
  • the polyimide material is a polyimide film.
  • the present application provides an application of the above-mentioned photosensitive resin or the above-mentioned polyimide material in photoresist, semiconductor device, display device or lighting device.
  • the polyimide precursor resin provided in the present application is obtained by polycondensation of a diamine monomer and an aromatic tetracarboxylic dianhydride, wherein the diamine monomer includes at least one compound having a structure as shown in formula I, and the The compound contains a nitrogen heteroaromatic ring, which can play an autocatalytic role in the curing process of the polyimide precursor resin, so that the imidization rate of the polyimide precursor resin at low temperature is significantly improved, and the polyimide precursor resin is not high. Curing is achieved at 250°C.
  • the imidization rate of the polyimide precursor resin heated and cured at 200° C. reaches 63.2-73%, and the imidization rate of the polyimide film heated and cured at 250° C.
  • polyimide precursor resin 73.9-96%. %, which is 1.8-14% higher than that of common polyimide precursor resin without specific diamine monomer at the same temperature.
  • the polyimide precursor resin can be cured at low temperature to obtain a polyimide film with excellent mechanical properties and thermal stability, so that the 5% thermal weight loss temperature of the polyimide film can be increased by more than 78°C, The high stress residue caused by high temperature curing is effectively avoided, thus fully meeting the application requirements of polyimide precursor resin in low temperature processing environments such as microelectronic chip materials, packaging materials and interlayer dielectric layers.
  • Fig. 1 is the ATR-FTIR spectrum comparison diagram of polyimide precursor resin PAA1 provided in Example 1 cured at different temperatures;
  • Fig. 2 is the ATR-FTIR spectrum comparison diagram of polyimide precursor resin PAA2 provided in Example 2 cured at different temperatures;
  • Fig. 3 is the ATR-FTIR spectrum comparison diagram of polyimide precursor resin PAA-1C provided by comparative example 1 cured at different temperatures;
  • Fig. 4 is the ATR-FTIR spectrum comparison diagram of the polyimide precursor resin PAA-2C provided by comparative example 2 cured at different temperatures;
  • Example 5 is a comparison diagram of the fracture stress of the polyimide precursor resins provided in Example 2 and Comparative Example 2 by curing into a film;
  • FIG. 6 is a scanning electron microscope image of a lithography pattern of the photoresist made of the photosensitive resin described in Application Example 2.
  • FIG. 6 is a scanning electron microscope image of a lithography pattern of the photoresist made of the photosensitive resin described in Application Example 2.
  • a diamine monomer, 4,4'-pyrazine-diphenylamine has the following structure:
  • the preparation method includes the following steps:
  • a kind of diamine monomer is as follows:
  • the preparation method includes the following steps:
  • a polyimide precursor resin PAA1 obtained by polycondensation of 4,4'-pyrazine-diphenylamine (preparation example 1) and 3,3',4,4'-biphenyltetracarboxylic dianhydride; specific preparation method as follows:
  • a polyimide precursor resin PAA2 is obtained by polycondensation of 4,4'-pyrazine-diphenylamine (preparation example 1) and 4,4'-oxybisphthalic anhydride; the specific preparation method is as follows:
  • the polycondensation of pyromellitic dianhydride is obtained; Concrete preparation method is as follows:
  • a polyimide precursor resin PAA4 obtained by 2,5-bis(4-aminophenyl)pyrimidine (purchased from Changzhou Sunshine Pharmaceutical Co., Ltd.) and 3,3',4,4'-biphenyltetracarboxylic dianhydride Polycondensation is obtained; Concrete preparation method is as follows:
  • a kind of polyimide precursor resin PAA5 obtains by 2,5-bis (4-aminophenyl) pyrimidine and 4,4 '-oxygen two phthalic anhydride polycondensation; Concrete preparation method is as follows:
  • a kind of polyimide precursor resin PAA6, the diamine monomer provided by preparation example 2 and 3,3',4,4'-biphenyltetracarboxylic dianhydride is obtained by polycondensation; the specific preparation method is as follows:
  • a polyimide precursor resin PAA7 is obtained by the polycondensation of the diamine monomer provided in Preparation Example 2 and 4,4'-oxydiphthalic anhydride; the specific preparation method is as follows:
  • a polyimide precursor resin PAA-1C is obtained by polycondensation of 4,4'-diaminotriphenylene and 3,3',4,4'-biphenyltetracarboxylic dianhydride; the specific preparation method is as follows:
  • a polyimide precursor resin PAA-2C is obtained by polycondensation of 4,4'-diaminoterphenyl and 4,4'-oxybisphthalic anhydride; the specific preparation method is as follows:
  • a polyimide film is obtained by curing the polyimide precursor resins provided in Examples 1-7 and Comparative Examples 1-2 respectively; the specific method is as follows:
  • the polyimide precursor resin was uniformly spin-coated on a 4-inch silicon wafer at a rotational speed of 1000rpm/min within 30s, and then the wafer was placed in a nitrogen oven (AS ONE/NDK-2K), first heated at 65°C 1h, then rise to 100°C at 1°C/min, hold the temperature for 1h, then rise to 150°C at 1°C/min, hold the temperature for 1h, and finally rise to 200°C or 250°C at 1°C/min as the end temperature, at The end point temperature was maintained for 1h. After curing, cool to room temperature and remove.
  • a complete polyimide film can be obtained by ultrasonic oscillation in ultrapure water.
  • the test method is as follows:
  • FIG. 1 shows the polyimide precursor resin PAA1 provided in Example 1 in ATR-FTIR spectrum comparison diagram of curing at different temperatures
  • Figure 2 is the ATR-FTIR spectrum comparison diagram of polyimide precursor resin PAA2 provided in Example 2 cured at different temperatures
  • Figure 3 is the polyimide precursor resin provided in Comparative Example 1.
  • Figure 4 is the ATR-FTIR spectrum of polyimide precursor resin PAA-2C cured at different temperatures provided by Comparative Example 2 Comparison chart.
  • the calculation method of the imidization rate is: compare the ratio of the peak area of the CN stretching vibration peak of the polyimide ring and the CC stretching vibration peak of the benzene ring in the infrared spectrum, and calculate the ratio by using the ratio obtained at 350 ° C as a reference.
  • the imidization rate ⁇ is obtained, and the calculation formula is: where S ⁇ (CN) is the CN stretching vibration peak area, and S ⁇ (CC) is the CC stretching vibration peak area.
  • the polyimide precursor resins PAA6 and PAA7 obtained by using the diamine monomer provided in Preparation Example 2 in Examples 6 and 7 have no significant change in the imidization rate compared with Comparative Examples 1 to 2, but are significantly lower
  • the possible reason is that the hydrogen atom on the nitrogen of the linking group is easily dissociated, resulting in a decrease in the electron cloud density of the nitrogen atom on the pyridine ring, thus weakening the basicity.
  • the mechanical properties of the polyimide film were obtained by dynamic mechanical thermal analyzer (TA, DMA Q800), and the polyimide precursor resin PAA-2 provided in Example 2 and PAA-2C in Comparative Example 2 were The polyimide film cured at the end-point curing temperature of 200°C was cut into strips of 3 mm ⁇ 5 mm for testing.
  • the obtained fracture stress comparison chart is shown in Figure 5.
  • thermogravimetric loss temperature T d -5%
  • the polyimide films obtained by PAA-2C and PAA1, PAA2, PAA3, PAA5 and PAA7 under the same low-temperature curing conditions the polyimide films obtained by low-temperature curing of PAA-2C without nitrogen atoms.
  • the 5% thermal weight loss temperature (T d -5%) of the imide film is significantly lower than that of other films, which proves that the polyimide precursor obtained from the diamine monomer of the nitrogen heteroaromatic ring provided in this application is formed under low temperature curing.
  • the polyimide film has better thermal stability.
  • PAA1 593 PAA2 561
  • PAA3 561 PAA5 567
  • PAA7 561 PAA-2C 483
  • a kind of photosensitive resin, preparation method is as follows:
  • the specific formula is as follows: 1.0 parts by weight of photosensitive resin, 0.03 parts by weight of tetraethyl Michler's ketone, 0.06 parts by weight of o-chlorohexaarylbisimidazole, 0.02 parts by weight of 2-mercaptobenzene oxazole, 30 parts by weight of N-methylpyrrolidone.
  • the exposure amount is 370mJ/cm 2
  • the developing time is 20s (developer KS5400)
  • the pattern of 15 ⁇ m/15 ⁇ m line width/line spacing can be obtained.
  • the patterns were tested by a scanning electron microscope (SEM, NanoSEM 450), and the obtained SEM image was shown in FIG. 6 .
  • the present application describes a polyimide precursor resin of the present application and its preparation method and application through the above-mentioned embodiments, but the present application is not limited to the above-mentioned process steps, that is, it does not mean that the present application must rely on The above process steps can be implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本申请提供一种聚酰亚胺前体树脂及其制备方法和应用,所述聚酰亚胺前体树脂通过二胺单体和芳香族四羧酸二酐缩聚得到;所述二胺单体中包括至少一种具有如式I所示结构的化合物,是一种含有氮杂芳环的二胺单体。

Description

一种聚酰亚胺前体树脂及其制备方法和应用 技术领域
本申请属于聚合物材料技术领域,涉及一种聚酰亚胺前体树脂及其制备方法和应用。
背景技术
聚酰亚胺具有优异的机械性能、良好的耐热性、耐化学腐蚀性、抗辐射性能和良好的成膜性,被广泛应用于各个领域。在半导体电子领域中,聚酰亚胺可以应用于ɑ粒子屏蔽层、应力缓冲层、层间介质材料或光敏再布线材料等,这些材料在现代微电子半导体产业中发挥着难以取代的重要作用。传统的聚酰亚胺前体树脂必须在至少300~400℃下加热固化才能使其发挥聚酰亚胺的理想性能,这样的高温加工条件极大地限制了其在微电子领域中的应用范围,比如一些电子器件会在高温工作环境温度下失去效能。此外,高温过程常常引起塑封电路低熔焊锡的焊点开裂、脱落、重结晶等现象,破坏塑封器件的性能。随着芯片短小轻薄发展趋势的要求,在高温下处理的超薄晶圆器件中产生的残余应力,导致翘曲、剥离等严重问题,影响其使用可靠性;同时,降低固化温度还可以大大改善由于线性热膨胀系数CTE导致的热膨胀系数错配问题引起的残余应力问题。因此,开发固化温度低于250℃、甚至低于200℃的聚酰亚胺前体尤为重要。
所谓“低温固化”即指在200~250℃、甚至低于该温度范围下提高聚酰亚胺的前体的亚胺化程度,使较低的温度下加热固化得到的聚酰亚胺与超过300℃下加热固化得到的聚酰亚胺具有相当的机械性能和热学性能。聚酰亚胺的亚胺化过程涉及溶剂化效应、溶剂的挥发、亚胺环的脱水缩合、链段的运动和排布等 复杂过程。目前公开报道的主要有四种方式:第一,一步法。该方法可以在低温下实现聚酰胺酸的酰亚胺化过程,通常将脱水剂和催化剂加入聚酰胺酸溶液中,常见的脱水剂为乙酸酐,催化剂为有机胺,包括吡啶、喹啉、异喹啉、β-皮考啉等。由于目前广泛应用的均苯、联苯类型的聚酰亚胺在有机溶液(如N-甲基吡咯烷酮或N,N-二甲基乙酰胺)中的溶解性极差,难以加工,因此这种方法只适用于可溶性聚酰亚胺体系。第二,低温固化加速剂法。目前报道的低温固化加速剂种类繁多,Masayuki Oba研究了26种添加剂对聚酰胺酸溶液100℃下亚胺化反应的催化效果,并发现其中对羟基苯甲酸、对羟基苯乙酸等9种加速剂反应效果最好(“Effect of curing accelerators on thermal imidization of polyamic acids at low temperature”,Masayuki Oba,Journal of Polymer Science Part a-Polymer Chemistry,1996,34,651-658)。Mitsuru Ueda等研究了一系列碱性化合物在低温下加速固化的效果,其中包括三乙烯二胺、1,8-二氮杂二环十一碳-7-烯(DBU)和4-羟基吡啶(“Efficient Catalyst for Low Temperature Solid-Phase Imidization of Poly-amic acid”,Mitsuru Ueda等,Chemistry Letters,2004,33,1156-1157),发现碱性较强的DBU等添加量为体系质量1w%时就可以实现在200℃下的亚胺化。Shoya Uchida等发现,聚乙二醇可以作为半芳香型聚酰亚胺体系的固化加速剂,当体系中加入5~25w%的PEG可以实现在230摄氏度下加热固化(“Promotion of Thermal Imidization of Semi-Aliphatic Polyimide Precursors by Incorporation of Polyethylene Glycol and Their Modified Solid Structures”,Shoya Uchida等,Journal of Photopolymer Science and Technology,2017,30,139-146)。第三,通过特定封端基团发生交联反应,该方法也称为PMR法(Polymerization of Monomer Reactants)。John F.Waters等将单体末端使用降冰片烯进行封端,通过在200℃下加热1~2h形成端基交联的寡聚物(“Lower  temperature curing thermoset polyimides utilizing a substituted norbornene endcap”,John F.Waters等,Macromolecules,1992,25,3868-3873)。第四,微波法。Hiroshi Matsutani等报道了利用变频微波加热可以将传统聚酰亚胺的固化温度降低50℃左右,实现了聚酰亚胺在低温下的固化行为(“Low temperature curing of polyimide wafer coatings”,Hiroshi Matsutani等,IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium,2004,149-151)。
在上述四种现有技术中,一步法的缺点在于适用的聚酰亚胺的种类十分有限,只适用于可溶性的聚酰亚胺,对于目前广泛使用的均苯、联苯型聚酰亚胺不能适用。固化加速剂法存在两大缺点,其一,低温固化加速剂的加入会导致其在薄膜中的残留问题,由于这些加速剂的残留,聚酰亚胺的力学性质会受到不同程度的负面影响,甚至相比于不加入固化剂的薄膜力学性能会下降50~70%以上;其二,低温固化加速剂的用量通常比较大,从文献中报道来看,通常需要加入聚酰胺酸/聚酰胺酸酯两摩尔当量左右,对于产业化生产来讲,其带来的负面因素不可估量。末端交联基团法制备出得聚酰亚胺薄膜脆且薄,其过高的交联程度大大破坏了薄膜的韧性。微波法得到的得聚酰亚胺薄膜的力学性质会受到较大影响,这种方法的应用还属于探索阶段。
因此,开发一种在不影响聚酰亚胺材料的各项性能的前提下、降低其固化温度的聚酰亚胺前体,是本领域亟待解决的问题。
发明内容
本申请的目的在于提供一种聚酰亚胺前体树脂及其制备方法和应用,通过引入具有特定结构的二胺单体,其在聚酰亚胺前体树脂固化中具有自催化功能,使所述聚酰亚胺前体树脂在低温下的亚胺化率显著提升,实现低温固化,从而充分满足了聚酰亚胺前体树脂在微电子芯片材料、封装材料以及层间介电层等 低温加工环境中的应用需求。
为达到此申请目的,本申请采用以下技术方案:
第一方面,本申请提供一种聚酰亚胺前体树脂,所述聚酰亚胺前体树脂通过二胺单体和芳香族四羧酸二酐缩聚得到。
所述二胺单体中包括至少一种具有如式I所示结构的化合物:
Figure PCTCN2020123877-appb-000001
式I中,X 1、X 2、X 3、X 4各自独立地选自C或N,且至少有1个为N。
式I中,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10各自独立地选自C或N。
式I中,L 1、L 2各自独立地选自单键、C1~C12(例如C2、C3、C4、C5、C6、C7、C8、C9、C10或C11等)直链或支链亚烷基、-O-、-S-、-CO-O-、-CO-NH-、-CO-、-NH-、-CO-CH 2=CH 2-或砜基;其中,“L 1为单键”代表Z 6所在的六元环直接与X 1所在的六元环相连,“L 2为单键”代表Z 1所在的六元环直接与X 1所在的六元环相连;基团两侧的短直线代表接入键,并非甲基。
式I中,R 1、R 2各自独立地选自氘、卤素、取代或未取代的C1~C10(例如C2、C3、C4、C5、C6、C7、C8或C9等)直链或支链烷基、取代或未取代的C6~C30(例如C6、C8、C10、C12、C13、C14、C15、C16、C18、C20、C22、C24、C26或C28等)芳基、C1~C10(例如C2、C3、C4、C5、C6、C7、C8或C9等)烷氧基、取代或未取代的C1~C10(例如C2、C3、C4、C5、C6、C7、C8或C9等)烷基硅基、C1~C10(例如C2、C3、C4、C5、C6、C7、C8或C9 等)烷基氨基、C1~C10(例如C2、C3、C4、C5、C6、C7、C8或C9等)酰基、醛基或羧基中的任意一种;所述取代的取代基各自独立地选自氘、巯基、羟基或卤素。
本申请中,所述卤素都可以为氟、氯、溴或碘;下文涉及到相同描述,都具有相同含义。
式I中,n 1、n 2各自独立地选自1~3的整数,例如1、2或3;且n 1与n 2之和≤4。
式I中,m 1、m 2各自独立地选自0~4的整数,例如0、1、2、3或4。
本申请提供的聚酰亚胺前体树脂通过二胺单体和芳香族四羧酸二酐缩聚得到,所述二胺单体中包括具有如式I所示结构的化合物。所述具有如式I所示结构的化合物中,X 1、X 2、X 3、X 4中至少有1个为N,是一种含有氮杂芳环的二胺单体,氮杂芳环中含有sp 2杂化的氮原子,其本身具有碱性,可以在加热固化的聚酰亚胺前体树脂中发生自催化反应,加速亚胺化的反应进程。同时,由于氮原子具有较强的电负性,聚合物主链之间的相互作用会增强,提高聚合物薄膜的热稳定性。将这种含有氮原子的碱性官能团嵌入高分子链,既可以避免由于碱性固化加速剂在聚酰亚胺薄膜中的残留所导致的力学性能下降的问题,又可以通过增强分子链间的相互作用提高薄膜的力学性质。该结构单元在聚酰亚胺前体树脂固化过程中发挥自催化的功能,从而提高聚酰亚胺前体树脂在低于250℃、甚至低于200℃的低温下的亚胺化率,实现聚酰亚胺前体树脂的低温固化。这种特性将极大拓展聚酰亚胺前体树脂在微电子芯片材料、封装材料、层间介电层以及传统聚酰亚胺材料不能适应的低温固化加热环境中的使用,为聚酰亚胺前体树脂以及聚酰亚胺材料在微电子半导体产业的应用研究奠定基础。
可选地,所述X 1、X 2、X 3、X 4中N原子的个数为1~3个,进一步可选为2 个。
作为本申请的可选技术方案,所述具有如式I所示结构的化合物中,X 1所在的氮杂芳环可以为吡啶环、吡嗪环、嘧啶环或哒嗪环中的任意一种,进一步可选为吡嗪环或嘧啶环。吡嗪环或嘧啶环中含有2个sp 2杂化的氮原子,其本身具有较强的碱性,可在固化过程中通过自催化反应加速亚胺化的反应进程。同时,由于氮原子具有较强的电负性,能够有效增强聚合物主链之间的相互作用,提高聚合物薄膜的热稳定性和力学性质。将这种含有氮原子的碱性官能团嵌入高分子链,避免了固化加速剂在聚酰亚胺薄膜中的残留所导致的力学性能下降的问题。
可选地,所述Z 1、Z 2、Z 3、Z 4、Z 5各自独立地选自C或N,且至少有4个为C。
可选地,所述Z 6、Z 7、Z 8、Z 9、Z 10各自独立地选自C或N,且至少有4个为C。
可选地,所述Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10均为C。
可选地,L 1、L 2各自独立地选自单键、-O-、-S-或-NH-。
可选地,所述R 1、R 2各自独立地选自氘、卤素(例如氟、氯、溴或碘)、取代或未取代的C1~C5(例如C1、C2、C3、C4或C5)直链或支链烷基、取代或未取代的C6~C12(例如C6、C9、C10或C12)芳基、C1~C5(例如C1、C2、C3、C4或C5)烷氧基、取代或未取代的C1~C5(例如C1、C2、C3、C4或C5)烷基硅基、C1~C5(例如C1、C2、C3、C4或C5)烷基氨基、C1~C3酰基、醛基或羧基中的任意一种;所述取代的取代基各自独立地选自氘或巯基。
可选地,所述述R 1、R 2各自独立地选自氘、卤素、甲基、乙基、正丙基、异丙基、正丁基、醛基、羧基、甲氧基、乙氧基、丙氧基、巯甲基、巯乙基、 乙酰基、甲氨基、二甲氨基、乙氨基、丙氨基、三甲基硅基、氘代甲基或氘代三甲基硅基.
可选地,所述n 1、n 2各自独立地选自1或2。
可选地,所述n 1、n 2均为1。
可选地,所述m 1、m 2各自独立地选自0~2的整数,例如0、1或2。
可选地,所述二胺单体包括如下化合物中的任意一种或至少两种的组合:
Figure PCTCN2020123877-appb-000002
可选地,所述芳香族四羧酸二酐具有如式II所示结构:
Figure PCTCN2020123877-appb-000003
式II中,Ar 3选自C6~C60(例如C6、C9、C10、C12、C14、C16、C18、C20、C24、C26、C28、C30、C32、C36、C40、C42、C48、C54或C60等)四价芳香族基团。
可选地,所述Ar 3选自如下基团中的任意一种:
Figure PCTCN2020123877-appb-000004
上述基团两侧的短直线代表基团的接入键,并非甲基。
另一方面,本申请提供一种如上所述的聚酰亚胺前体树脂的制备方法,所述制备方法包括:二胺单体和芳香族四羧酸二酐进行缩聚反应,得到所述聚酰亚胺前体树脂。
可选地,所述缩聚反应的温度为0~30℃,例如2℃、5℃、8℃、10℃、12℃、15℃、18℃、20℃、22℃、25℃或28℃,以及上述点值之间的具体点值,限于 篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,所述缩聚反应的时间为1~16h,例如1.5h、2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h、13h、14h或15h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
可选地,所述缩聚反应在保护气氛中进行;所述保护气氛可选为氮气。
可选地,所述缩聚反应在溶剂存在下进行。
可选地,所述溶剂包括N,N-二甲基乙酰胺。
另一方面,本申请提供一种感光树脂,所述感光树脂包括如上所述的聚酰亚胺前体树脂和感光性单体的组合。
可选地,所述感光性单体包括二甲基丙烯酸三缩四乙二醇酯、二乙二醇二丙烯酸酯、三乙二醇二丙烯酸酯、四乙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、四乙二醇二甲基丙烯酸、三羟甲基丙烷二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷二甲基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、季戊四醇三烯酸酯、季戊四醇四丙烯酸酯、季戊四醇三甲基丙烯酸酯、季戊四醇四甲基丙烯酸酯、苯乙烯、二乙烯基苯、4-乙烯基甲苯、4-乙烯基吡啶、N-乙烯基吡咯烷酮、甲基丙烯酸羟基乙酯、丙烯酸2-羟基乙酯、1,3-丙烯酰氧基-2-羟基丙烷、1,3-甲基丙烯酰氧基-2-羟基丙烷、亚甲基双丙烯酰胺、N,N-二甲基丙烯酰胺或N-羟甲基丙烯酰胺中的任意一种或至少两种的组合。
另一方面,本申请提供一种聚酰亚胺材料,所述聚酰亚胺材料通过如上所述的聚酰亚胺前体树脂固化得到。
可选地,所述聚酰亚胺材料为聚酰亚胺薄膜。
另一方面,本申请提供一种如上所述的感光树脂或如上所述的聚酰亚胺材料在光刻胶、半导体器件、显示器件或照明器件中的应用。
相对于现有技术,本申请具有以下有益效果:
本申请提供的聚酰亚胺前体树脂通过二胺单体和芳香族四羧酸二酐缩聚得到,所述二胺单体中包括至少一种具有如式I所示结构的化合物,所述化合物中含有氮杂芳环,能够在聚酰亚胺前体树脂固化过程中发挥自催化作用,使所述聚酰亚胺前体树脂在低温下的亚胺化率显著提升,进而在不高于250℃的条件下实现固化。所述聚酰亚胺前体树脂在200℃下加热固化的聚酰亚胺薄膜亚胺化率达到63.2~73%,在250℃加热固化的聚酰亚胺薄膜亚胺化率为73.9~96%,比不含有特定二胺单体的普通聚酰亚胺前体树脂在相同温度下的亚胺化率提高了1.8~14%。所述聚酰亚胺前体树脂能够在低温下实现固化,得到具有优异力学性能和热稳定性的聚酰亚胺薄膜,使聚酰亚胺薄膜的5%热失重温度能够提高78℃以上,有效避免了高温固化引发的高应力残留,从而充分满足了聚酰亚胺前体树脂在微电子芯片材料、封装材料以及层间介电层等低温加工环境中的应用需求。
附图说明
图1为实施例1提供的聚酰亚胺前体树脂PAA1在不同温度下固化的ATR-FTIR光谱对比图;
图2为实施例2提供的聚酰亚胺前体树脂PAA2在不同温度下固化的ATR-FTIR光谱对比图;
图3为对比例1提供的聚酰亚胺前体树脂PAA-1C在不同温度下固化的ATR-FTIR光谱对比图;
图4为对比例2提供的聚酰亚胺前体树脂PAA-2C在不同温度下固化的ATR-FTIR光谱对比图;
图5为实施例2、对比例2提供的聚酰亚胺前体树脂固化成膜的断裂应力对比图;
图6为应用例2中所述感光性树脂制成的光刻胶的光刻图案扫描电镜图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
制备例1
一种二胺单体,4,4'-吡嗪-二苯胺,结构如下:
Figure PCTCN2020123877-appb-000005
制备方法包括如下步骤:
Figure PCTCN2020123877-appb-000006
将54mmol 4-胺基苯硼酸酯、27mmol 2,5-二溴吡嗪、3.24mmol四三苯基磷钯和67.5mmol碳酸钾置于反应瓶中,保持在氮气氛围下,并加入140mL溶剂(体积比为4:1:1的甲苯、乙醇和水的混合溶剂);在氮气氛围下搅拌升温至100℃并反应24h。反应完成后,用饱和食盐水洗涤3次,并加入无水硫酸钠干燥,该液体在真空下除去。通过柱层析分离,得到目标产物,产率为63%。
4,4'-吡嗪-二苯胺的表征结果:
1H-NMR(400MHz,DMSO-d 6):δ(ppm)8.95(s,2H),7.85(d,J 2=12.0Hz,4H),6.67(d,J 2=8.0Hz,4H),5.52(s,4H)。
制备例2
一种二胺单体,结构如下:
Figure PCTCN2020123877-appb-000007
制备方法包括如下步骤:
Figure PCTCN2020123877-appb-000008
将46mmol 1,4-苯二胺、23mmol 2,5-二溴吡嗪、2.3mmol三二亚苄基丙酮二钯、4.6mmol二环己基[3,6-二甲氧基-2',4',6'-三异丙基[1,1'-联苯]-2-基]膦(Brettphos),92mmol叔丁醇钠置于反应瓶中,保持在氮气氛围下,并加入250mL甲苯,在氮气氛围下搅拌升温至90℃并反应24h。反应完成后,在真空下除去溶剂,通过乙醇重结晶得到目标产物,产率为51%。
所述二胺单体的表征结果:
1H-NMR(400MHz,DMSO-d 6):δ(ppm)7.74(m,6H),7.54(m,4H),7.0(m,2H),6.75(m,4H)。
实施例1
一种聚酰亚胺前体树脂PAA1,通过4,4'-吡嗪-二苯胺(制备例1)和3,3',4,4'-联苯四甲酸二酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol 4,4'-吡嗪-二苯胺溶解于100mL N,N-二甲基乙 酰胺中,加入0.05mol 3,3',4,4'-联苯四甲酸二酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA1。
实施例2
一种聚酰亚胺前体树脂PAA2,通过4,4'-吡嗪-二苯胺(制备例1)和4,4'-氧双邻苯二甲酸酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol 4,4'-吡嗪-二苯胺溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 4,4'-氧双邻苯二甲酸酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA2。
实施例3
一种聚酰亚胺前体树脂PAA3,通过4,4'-吡嗪-二苯胺(制备例1)、4,4'-二氨基二苯醚和3,3',4,4'-联苯四甲酸二酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.025mol 4,4'-吡嗪-二苯胺和0.025mol 4,4'-二氨基二苯醚溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 3,3',4,4'-联苯四甲酸二酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA3。
实施例4
一种聚酰亚胺前体树脂PAA4,通过2,5-双(4-氨基苯基)嘧啶(购自常州阳光药业)和3,3',4,4'-联苯四甲酸二酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol 2,5-双(4-氨基苯基)嘧啶溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 3,3',4,4'-联苯四甲酸二酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA4。
实施例5
一种聚酰亚胺前体树脂PAA5,通过2,5-双(4-氨基苯基)嘧啶和4,4'-氧双邻 苯二甲酸酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol 2,5-双(4-氨基苯基)嘧啶溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 4,4'-氧双邻苯二甲酸酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA5。
实施例6
一种聚酰亚胺前体树脂PAA6,通过制备例2提供的二胺单体
Figure PCTCN2020123877-appb-000009
和3,3',4,4'-联苯四甲酸二酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol制备例2提供的二胺单体溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 3,3',4,4'-联苯四甲酸二酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA6。
实施例7
一种聚酰亚胺前体树脂PAA7,通过制备例2提供的二胺单体和4,4'-氧双邻苯二甲酸酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol制备例2提供的二胺单体溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 4,4'-氧双邻苯二甲酸酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA7。
对比例1
一种聚酰亚胺前体树脂PAA-1C,通过4,4'-二氨基三连苯和3,3',4,4'-联苯四甲酸二酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol 4,4'-二氨基三连苯溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 3,3',4,4'-联苯四甲酸二酐,于0℃反应1h,升温至25℃ 继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA-1C。
对比例2
一种聚酰亚胺前体树脂PAA-2C,通过4,4'-二氨基三连苯和4,4'-氧双邻苯二甲酸酐缩聚得到;具体制备方法如下:
在干燥氮气流下,将0.05mol 4,4'-二氨基三连苯溶解于100mL N,N-二甲基乙酰胺中,加入0.05mol 4,4'-氧双邻苯二甲酸酐,于0℃反应1h,升温至25℃继续反应12h。反应结束后,得到聚酰亚胺前体树脂PAA-2C。
应用例1
一种聚酰亚胺薄膜,分别通过实施例1~7、对比例1~2提供的聚酰亚胺前体树脂固化得到;具体方法如下:
将聚酰亚胺前体树脂以转速1000rpm/min在30s内均匀旋涂于4英寸硅片上,然后将硅片置于氮气烘箱(AS ONE/NDK-2K)中,首先在65℃下加热1h,再以1℃/min升至100℃,持温1h,再以1℃/min升至150℃,持温1h,最后以1℃/min升至200℃或250℃作为终点温度,在终点温度持温1h。固化完成后冷却至室温并取出。在超纯水中超声震荡可以得到完整的聚酰亚胺薄膜。
(1)分别测试终点温度为200℃或250℃时得到的聚酰亚胺薄膜的亚胺化率,测试方法如下:
采用傅里叶变化衰减全反射红外光谱仪(ATR-FTIR,vertex 70)测试不同终点固化温度下固化得到的聚酰亚胺薄膜,图1为实施例1提供的聚酰亚胺前体树脂PAA1在不同温度下固化的ATR-FTIR光谱对比图,图2为实施例2提供的聚酰亚胺前体树脂PAA2在不同温度下固化的ATR-FTIR光谱对比图,图3为对比例1提供的聚酰亚胺前体树脂PAA-1C在不同温度下固化的ATR-FTIR光谱对比图,图4为对比例2提供的聚酰亚胺前体树脂PAA-2C在不同温度下固化 的ATR-FTIR光谱对比图。
亚胺化率的计算方法为:对比红外光谱图中聚酰亚胺环C-N伸缩振动峰和苯环C-C伸缩振动峰的峰面积之比,通过将350℃下得到的该比值作为参比,计算得到亚胺化率ɑ,计算公式为:
Figure PCTCN2020123877-appb-000010
其中,S ν(C-N)为C-N伸缩振动峰面积,S ν(C-C)为C-C伸缩振动峰面积。
按照上述方法测试并计算实施例1~7、对比例1~2提供的聚酰亚胺前体树脂在不同温度下的固化程度(亚胺化率),具体数据如表1所示。
表1
    200℃的亚胺化率 250℃的亚胺化率
实施例1 PAA1 72.2% 82.7%
实施例2 PAA2 70.8% 95.4%
实施例3 PAA3 63.2% 78.4%
实施例4 PAA4 71.2% 83.9%
实施例5 PAA5 69.5% 93.6%
实施例6 PAA6 65.2% 73.9%
实施例7 PAA7 67.8% 85.2%
对比例1 PAA-1C 58.9% 72.1%
对比例2 PAA-2C 62.0% 88.3%
结合图1~4以及表1的数据可知,实施例1~2中,当特定二胺单体4,4'-吡嗪-二苯胺分别和3,3',4,4'-联苯四甲酸二酐、4,4'-氧双邻苯二甲酸酐缩聚形成相应的聚酰亚胺前体树脂PAA1和PAA2时,ATR-FTIR光谱研究其在200℃下加热 固化形成的薄膜亚胺化率分别为72.2%和70.8%,而对比例1~2中使用与其结构相似但不含有吡嗪基团的二胺单体4,4'-二氨基三连苯分别与3,3',4,4'-联苯四甲酸二酐、4,4'-氧双邻苯二甲酸酐聚合形成相应的聚酰亚胺前体树脂PAA-1C和PAA-2C,200℃下加热固化的聚酰亚胺薄膜亚胺化率分别为58.9%和62%,结果表明,在200℃下,含有吡嗪单元的聚酰亚胺前体树脂的亚胺化率分别提高13.3%和8.8%;当加热温度为250℃时,实施例1~2所述聚酰亚胺前体树脂的亚胺化率比对比例1~2提高10.6%和7.1%。由实施例4和5可知,使用含有与制备例1相似结构的嘧啶二胺所得到的PAA4和PAA5拥有与PAA1和PAA2相当的亚胺化率的提高水平,这说明具有相似含氮骨架的二胺单体同样可以降低聚酰亚胺前体的固化温度。同时,实施例6和7中使用制备例2提供的二胺单体得到的聚酰亚胺前体树脂PAA6和PAA7和对比例1~2相比,亚胺化率没有显著变化,但是明显低于其他实施例,可能的原因是来自于连接基团氮上的氢原子容易解离,造成吡啶环上氮原子电子云密度降低,因此碱性减弱的缘故。
(2)力学性能
聚酰亚胺薄膜的力学性能通过动态力学热分析仪(TA,DMA Q800)得出,将实施例2中提供的聚酰亚胺前体树脂PAA-2和对比例2中的PAA-2C在终点固化温度200℃时固化得到的聚酰亚胺薄膜裁剪成3mm×5mm的条状进行测试,得到的断裂应力对比图如图5所示。
从图5中可知,实施例2提供的聚酰亚胺前体树脂PAA2在200℃固化形成的聚酰亚胺薄膜的断裂伸长率为10%,断裂应力为140MPa,相比于对比例2中的PAA-2C,性能有一倍的提高,由此也证明了采用含氮杂芳环的二胺单体得到的聚酰亚胺前体在低温固化下形成的聚酰亚胺薄膜,相对于不含氮的普通聚酰亚胺前体树脂低温固化得到的聚酰亚胺薄膜具有更优的力学性能。
(3)热稳定性
通过热重同步分析仪(METTLER,TGA/DSC2)分析聚酰亚胺薄膜的热稳定性,以5%热失重温度(T d-5%)评价聚酰亚胺薄膜的热稳定性,得到的测试结果如表2所示。
根据表2的具体数据可知,对比PAA-2C和PAA1、PAA2、PAA3、PAA5和PAA7在相同的低温固化条件下得到的聚酰亚胺薄膜,不含有氮原子的PAA-2C低温固化得到的聚酰亚胺薄膜的5%热失重温度(T d-5%)明显低于其他薄膜,证明本申请提供的氮杂芳环的二胺单体得到的聚酰亚胺前体在低温固化下形成的聚酰亚胺薄膜具有更好的热稳定性。
表2
  T d-5%(℃)
PAA1 593
PAA2 561
PAA3 561
PAA5 567
PAA7 561
PAA-2C 483
应用例2
一种感光性树脂,制备方法如下:
向实施例3提供的聚酰亚胺前体树脂PAA350g(固含量15%)中加入200mL N,N-二甲基乙酰胺进行稀释,然后在氮气氛围下缓慢加入7.5mL三氟乙酸酐,并将温度升至50℃反应2h。之后加入15g甲基丙烯酸羟基乙酯并在50℃下搅拌过夜。将得到的产物在甲醇中沉淀析出,抽滤干燥得到灰黄色固体,即 所述感光性树脂。
采用上述感光性树脂配制光刻胶,具体配方如下:1.0重量份感光性树脂,0.03重量份四乙基米氏酮,0.06重量份邻氯代六芳基双咪唑,0.02重量份2-巯基苯并恶唑,30重量份N-甲基吡咯烷酮。
光刻胶的光刻性能测试:
在紫外曝光机(EVG610)下,曝光量为370mJ/cm 2,显影时间为20s(显影液KS5400),可以得到15μm/15μm线宽/线距的图案。通过扫描电子显微镜(SEM,NanoSEM 450)对所述图案进行测试,得到的扫描电镜图如图6所示。
申请人声明,本申请通过上述实施例来说明本申请的一种聚酰亚胺前体树脂及其制备方法和应用,但本申请并不局限于上述工艺步骤,即不意味着本申请必须依赖上述工艺步骤才能实施。

Claims (12)

  1. 一种聚酰亚胺前体树脂,其通过二胺单体和芳香族四羧酸二酐缩聚得到;
    所述二胺单体中包括至少一种具有如式I所示结构的化合物:
    Figure PCTCN2020123877-appb-100001
    其中,X 1、X 2、X 3、X 4各自独立地选自C或N,且至少有1个为N;
    Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10各自独立地选自C或N;
    L 1、L 2各自独立地选自单键、C1~C12直链或支链亚烷基、-O-、-S-、-CO-O-、-CO-NH-、-CO-、-NH-、-CO-CH 2=CH 2-或砜基;
    R 1、R 2各自独立地选自氘、卤素、取代或未取代的C1~C10直链或支链烷基、取代或未取代的C6~C30芳基、C1~C10烷氧基、取代或未取代的C1~C10烷基硅基、C1~C10烷基氨基、C1~C10酰基、醛基或羧基中的任意一种;所述取代的取代基各自独立地选自氘、巯基、羟基或卤素;
    n 1、n 2各自独立地选自1~3的整数,且n 1与n 2之和≤4;
    m 1、m 2各自独立地选自0~4的整数。
  2. 根据权利要求1所述的聚酰亚胺前体树脂,其中,所述X 1、X 2、X 3、X 4中有1~3个为N。
  3. 根据权利要求2所述的聚酰亚胺前体树脂,其中,所述X 1、X 2、X 3、X 4中有2个为N。
  4. 根据权利要求1~3任一项所述的聚酰亚胺前体树脂,其中,所述Z 1、 Z 2、Z 3、Z 4、Z 5各自独立地选自C或N,且至少有4个为C;
    可选地,所述Z 6、Z 7、Z 8、Z 9、Z 10各自独立地选自C或N,且至少有4个为C;
    可选地,所述Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10均为C;
    可选地,L 1、L 2各自独立地选自单键、-O-、-S-或-NH-。
  5. 根据权利要求1~4中任一项所述的聚酰亚胺前体树脂,其中,所述R 1、R 2各自独立地选自氘、卤素、取代或未取代的C1~C5直链或支链烷基、取代或未取代的C6~C12芳基、C1~C5烷氧基、取代或未取代的C1~C5烷基硅基、C1~C5烷基氨基、C1~C3酰基、醛基或羧基中的任意一种;所述取代的取代基各自独立地选自氘或巯基;
    可选地,所述R 1、R 2各自独立地选自氘、卤素、甲基、乙基、正丙基、异丙基、正丁基、醛基、羧基、甲氧基、乙氧基、丙氧基、巯甲基、巯乙基、乙酰基、甲氨基、二甲氨基、乙氨基、丙氨基、三甲基硅基、氘代甲基或氘代三甲基硅基;
    可选地,所述n 1、n 2各自独立地选自1或2;
    可选地,所述n 1、n 2均为1;
    可选地,所述m 1、m 2各自独立地选自0~2的整数。
  6. 根据权利要求1~5任一项所述的聚酰亚胺前体树脂,其中,所述二胺单体包括如下化合物中的任意一种或至少两种的组合:
    Figure PCTCN2020123877-appb-100002
    Figure PCTCN2020123877-appb-100003
  7. 根据权利要求1~6任一项所述的聚酰亚胺前体树脂,其中,所述芳香族四羧酸二酐具有如式II所示结构:
    Figure PCTCN2020123877-appb-100004
    其中,Ar 3选自C6~C60四价芳香族基团;
    可选地,所述Ar 3选自如下基团中的任意一种:
    Figure PCTCN2020123877-appb-100005
    Figure PCTCN2020123877-appb-100006
  8. 一种如权利要求1~7任一项所述的聚酰亚胺前体树脂的制备方法,其包括:二胺单体和芳香族四羧酸二酐进行缩聚反应,得到所述聚酰亚胺前体树脂。
  9. 根据权利要求8所述的制备方法,其中,所述缩聚反应的温度为0~30℃;
    可选地,所述缩聚反应的时间为1~16h;
    可选地,所述缩聚反应在保护气氛中进行;
    可选地,所述缩聚反应在溶剂存在下进行。
  10. 一种感光树脂,其包括如权利要求1~7任一项所述的聚酰亚胺前体树脂和感光性单体的组合;
    可选地,所述感光性单体包括二甲基丙烯酸三缩四乙二醇酯、二乙二醇二丙烯酸酯、三乙二醇二丙烯酸酯、四乙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、四乙二醇二甲基丙烯酸、三羟甲基丙烷二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷二甲基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、季戊四醇三烯酸酯、季戊四醇四丙烯酸酯、季戊四醇三甲基丙烯酸酯、季戊四醇四甲基丙烯酸酯、苯乙烯、二乙烯基苯、4-乙烯基甲苯、4-乙烯基吡啶、N-乙烯基吡咯烷酮、甲基丙烯酸羟基乙酯、丙烯酸2-羟基乙酯、1,3-丙烯酰氧基-2-羟基丙烷、1,3-甲基丙烯酰氧基 -2-羟基丙烷、亚甲基双丙烯酰胺、N,N-二甲基丙烯酰胺或N-羟甲基丙烯酰胺中的任意一种或至少两种的组合。
  11. 一种聚酰亚胺材料,其中,所述聚酰亚胺材料通过如权利要求1~7任一项所述的聚酰亚胺前体树脂固化得到;
    可选地,所述聚酰亚胺材料为聚酰亚胺薄膜。
  12. 一种如权利要求10所述的感光树脂或如权利要求11所述的聚酰亚胺材料在光刻胶、半导体器件、显示器件或照明器件中的应用。
PCT/CN2020/123877 2020-09-24 2020-10-27 一种聚酰亚胺前体树脂及其制备方法和应用 WO2022062037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011017412.8A CN114249892B (zh) 2020-09-24 2020-09-24 一种聚酰亚胺前体树脂及其制备方法和应用
CN202011017412.8 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022062037A1 true WO2022062037A1 (zh) 2022-03-31

Family

ID=80788829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123877 WO2022062037A1 (zh) 2020-09-24 2020-10-27 一种聚酰亚胺前体树脂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114249892B (zh)
WO (1) WO2022062037A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678010B (zh) * 2023-01-04 2023-04-14 中国科学院过程工程研究所 一种聚酰胺酸、聚酰亚胺树脂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270623A (ja) * 1985-12-07 1987-11-25 Daicel Chem Ind Ltd ビス(4−アミノフエニル)ピラジンおよびその製法、ならびにポリイミドおよびその製法
CN102154018A (zh) * 2010-01-26 2011-08-17 智索株式会社 液晶配向剂、液晶配向膜以及液晶显示元件
CN109574915A (zh) * 2018-11-05 2019-04-05 阜阳欣奕华材料科技有限公司 二胺化合物、聚酰亚胺薄膜及柔性显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120057467A (ko) * 2010-11-26 2012-06-05 삼성전자주식회사 실리콘 변성 그룹을 갖는 감광성 폴리이미드, 이를 포함하는 접착 조성물 및 반도체 패키지
CN105061302A (zh) * 2015-08-27 2015-11-18 哈尔滨工程大学 含吡啶环二胺和由其制备的聚酰亚胺及制备方法
CN105693625B (zh) * 2016-03-30 2018-04-24 倚顿新材料(苏州)有限公司 一种具有偶氮嘧啶结构单元的聚酰亚胺聚合物的制备方法
JP7035632B2 (ja) * 2018-03-05 2022-03-15 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
CN109988312B (zh) * 2019-04-09 2023-04-11 深圳先进技术研究院 一种聚酰胺酸酯、制备方法以及负性聚酰亚胺组合物和应用
CN111393379B (zh) * 2020-04-22 2021-09-28 深圳先进电子材料国际创新研究院 二胺化合物及感光性树脂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270623A (ja) * 1985-12-07 1987-11-25 Daicel Chem Ind Ltd ビス(4−アミノフエニル)ピラジンおよびその製法、ならびにポリイミドおよびその製法
CN102154018A (zh) * 2010-01-26 2011-08-17 智索株式会社 液晶配向剂、液晶配向膜以及液晶显示元件
CN109574915A (zh) * 2018-11-05 2019-04-05 阜阳欣奕华材料科技有限公司 二胺化合物、聚酰亚胺薄膜及柔性显示装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Functional polymer materials; 1st Edition", 31 July 2000, CHEMICAL INDUSTRY PRESS, CN, ISBN: 7-5025-2853-9, article MA, JIANBIAO: "Photosenstive Polymer Material", pages: 291 - 300, XP009535745 *
HAI-QUAN GUO;HAI-BO YAO;XIAO-YE MA;XUE-PENG QIU;LIAN-XUN GAO: "Synthesis and Adhesion Properties of Polyimdies Containing Diphenylpyrimidine", ACTA POLYMERICA SINICA, 20 March 2015 (2015-03-20), CN, pages 356 - 362, XP055913510, ISSN: 1000-3304 *
LUO LONGBO, ZHANG JING, HUANG JIEYANG, FENG YAN, PENG CHAORONG, WANG XU, LIU XIANGYANG: "The dominant factor for mechanical property of polyimide films containing heterocyclic moieties: In-plane orientation, crystallization, or hydrogen bonding", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 133, no. 39, 15 October 2016 (2016-10-15), US , pages 1 - 8, XP055913516, ISSN: 0021-8995, DOI: 10.1002/app.44000 *

Also Published As

Publication number Publication date
CN114249892A (zh) 2022-03-29
CN114249892B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US6600006B2 (en) Positive-type photosensitive polyimide precursor and composition comprising the same
JP5649242B2 (ja) 絶縁膜
US20060269868A1 (en) Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
Wu et al. Synthesis of highly transparent and heat‐resistant polyimides containing bulky pendant moieties
TWI425027B (zh) 光敏性聚醯亞胺及包含其之光敏樹脂組成物
TW201425390A (zh) 感光型聚亞醯胺及負型光阻組成物
Fukukawa et al. Recent development of photosensitive polybenzoxazoles
WO2022062037A1 (zh) 一种聚酰亚胺前体树脂及其制备方法和应用
KR20200121253A (ko) 포지티브형 감광성 수지 조성물, 패턴 형성 방법, 경화 피막 형성 방법, 층간 절연막, 표면 보호막, 및 전자 부품
KR100523257B1 (ko) 포지티브형 감광성 폴리이미드 전구체 및 이를 포함하는조성물
CN111484615A (zh) 低热膨胀系数和吸水率的透明聚酰亚胺薄膜及制备方法
KR101994976B1 (ko) 폴리이미드계 블록 공중합체 및 이를 포함하는 폴리이미드계 필름
CN113467187B (zh) 树脂组合物、树脂膜及显示器件
JPH0446345A (ja) ポジ型感光性樹脂組成物
CN111965940B (zh) 正型感光性聚酰亚胺树脂组合物、树脂组合物的制备方法及其应用
WO2023165011A1 (zh) 一种三氮唑基交联剂及其制备方法、应用
JP4945858B2 (ja) 有機絶縁膜用材料及び有機絶縁膜
KR20140073277A (ko) 네가티브형 감광성 폴리이미드 및 이의 조성물
US7635551B2 (en) Poly (imide-azomethine) copolymer, poly (amic acid-azomethine) copolymer, and positive photosensitive resin composition
CN111909045A (zh) 一种含有可交联基团的封端剂、改性聚酰亚胺前驱体树脂、光敏树脂组合物及其应用
CN117886706A (zh) 一种含三氟甲基和炔基的单胺单体及其应用、光敏聚酰亚胺薄膜及其制备方法
KR20140073246A (ko) 네가티브형 감광성 폴리이미드 및 이의 조성물
CN116262827A (zh) 一种聚酰亚胺前驱体树脂、光敏树脂组合物及其应用
CN116462630A (zh) 一种喹啉类低温固化剂、聚酰亚胺和感光树脂
KR20240131134A (ko) 감광성 수지 조성물, 경화막 및 전자 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954883

Country of ref document: EP

Kind code of ref document: A1